
Cray Research, Inc.

 CPU Module (CPE1)
(CRAY T90 �  Series)

HTM-300-0

Cray Research Proprietary

C
P

U
 M

odule (C
P

E
1)

-300-



Record of Revision

REVISION DESCRIPTION

May 1996.  Original printing.

Any shipment to a country outside of the United States requires a
letter of assurance from Cray Research, Inc.

This document is the property of Cray Research, Inc.  The use of this document is subject to specific license rights
extended by Cray Research, Inc. to the owner or lessee of a Cray Research, Inc. computer system or other licensed
party according to the terms and conditions of the license and for no other purpose.

Cray Research, Inc.  Unpublished Proprietary Information — All Rights Reserved.

Autotasking, CF77, CRAY, CRAY-1, Cray Ada, CraySoft, CRAY Y-MP, CRInform, CRI/TurboKiva, HSX, LibSci,
MPP Apprentice, SSD, SUPERCLUSTER, SUPERSERVER, UNICOS, and X-MP EA are federally registered
trademarks and Because no workstation is an island, CCI, CCMT, CF90, CFT, CFT2, CFT77,
ConCurrent Maintenance Tools, COS, CRAY-2, Cray Animation Theater, CRAY APP, CRAY C90, CRAY C90D,
Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, Cray NQS, Cray/REELlibrarian,
CRAY S-MP, CRAY SUPERSERVER 6400, CRAY T3D, CRAY T3E, CRAY T90, CrayTutor, CRAY X-MP,
CRAY XMS, CS6400, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR,
SMARTE, SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS,
UNICOS MAX, and UNICOS/mk are trademarks of Cray Research, Inc.

Requests for copies of Cray Research, Inc. publications should be directed to:

CRAY RESEARCH, INC.
Customer Service Logistics
1100 Lowater Road
P.O. Box 4000
Chippewa Falls, WI 54729-0078
USA

Comments about this publication should be directed to:

CRAY RESEARCH, INC.
Service Publications and Training
890 Industrial Blvd.
P.O. Box 4000
Chippewa Falls, WI  54729-0078
USA



iiiCray Research ProprietaryHTM-300-0

CPU MODULE (CPE1)

CPE1 MODULE   1

CPE1 General Description 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Module Assembly Components 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 

ADDRESS AND SCALAR REGISTERS         7

Address Registers 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Entry Codes 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A Register Memory References 11. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Special Register Values 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Scalar Registers 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Instruction Issue 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

S Register Memory References 13. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Special Register Values 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Lower/Upper Scalar Register Load 14. . . . . . . . . . . . . . . . . . . . . . . . 

B AND T REGISTERS                                                                                                   15

ADDRESS AND SCALAR ADD 19

SCALAR LOGICAL 21

Address and Scalar Mask 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Transmit nm to Si, Si Upper, Si Lower 25. . . . . . . . . . . . . . . . . . . . . 



iv Cray Research Proprietary HTM-300-0

ADDRESS/SCALAR POP/PARITY AND LEADING ZERO 27

ADDRESS REGISTER SHIFT 31

Address Register Single Shift 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Address Register Double Shift 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Address Register Shift Count Description 33. . . . . . . . . . . . . . . . . . . 

Address Register Left Single Shift 34. . . . . . . . . . . . . . . . . . . . . . . . 

Address Register Right Single Shift 35. . . . . . . . . . . . . . . . . . . . . . . 

Address Register Left Double Shift 36. . . . . . . . . . . . . . . . . . . . . . . . 

Address Register Right Double Shift 37. . . . . . . . . . . . . . . . . . . . . . . 

Left Single-shift Instruction 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Right Single-shift Instruction 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Left Double-shift Instruction 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Right Double-shift Instruction 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SCALAR SHIFT 43

Scalar Single Shift 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Scalar Double Shift 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Scalar Shift Count Description 44. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Scalar Left Single Shift 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Scalar Right Single Shift 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Scalar Left Double Shift 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Scalar Right Double Shift 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Left Single-shift Instruction 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Right Single-shift Instruction 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Left Double-shift Instruction 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Right Double-shift Instruction 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

ADDRESS MULTIPLY 55

Multiply Algorithm 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Standard Binary Multiplication 57. . . . . . . . . . . . . . . . . . . . . . . . 

Booth Recode Multiplication 57. . . . . . . . . . . . . . . . . . . . . . . . . . 



vCray Research ProprietaryHTM-300-0

INTEGER MULTIPLY 59

VECTOR REGISTERS 61

VB Option 63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Vector Length Register 63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chaining 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

VE Option 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

VN Option 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

VQ Option 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Write Data Steering 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Read Data Steering 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

VECTOR LOGICAL 91

Vector Logical Instructions 93. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Vector Merge 93. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Vector Mask 96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Compressed Iota 98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

RE Option 99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

VECTOR ADD 101

VECTOR SHIFT 105

Vector Shift Instructions 105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Vector Shift Count Description 106. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Vector Right Shift 005400 151ij0 108. . . . . . . . . . . . . . . . . . . . . . . . . 

Vector Right Double Shift 153ijk 109. . . . . . . . . . . . . . . . . . . . . . . . . . 

Vector Transfer 005400 152ijk 110. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Vector Compress 005400 153ij0 110. . . . . . . . . . . . . . . . . . . . . . . . . . 

Vector Expand 005400 153ij1 111. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

VECTOR POP/POP PARITY AND LEADING ZERO 113

Pop/Parity/Leading Zero Functional Units 115. . . . . . . . . . . . . . . . . . 



vi Cray Research Proprietary HTM-300-0

Vector Population Count 174ij1 115. . . . . . . . . . . . . . . . . . . . . . . . 

Vector Population/Parity 174ij2 115. . . . . . . . . . . . . . . . . . . . . . . . 

Vector Leading Zero Count 174ij3 115. . . . . . . . . . . . . . . . . . . . . 

Vector Population/Parity Instructions 116. . . . . . . . . . . . . . . . . . . . . . 

GATHER/SCATTER INSTRUCTIONS 117

Gather Instructions 117. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Scatter Instructions 118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

IEEE FLOATING-POINT OVERVIEW 119

IEEE Floating-point Number Examples 120. . . . . . . . . . . . . . . . . . . . 

IEEE Terms 120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Rules of Operation for NaNs 121. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Deviations from the IEEE Standard 123. . . . . . . . . . . . . . . . . . . . . . . . 

Special Operand Values 123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Floating-point Exception (Flags) 124. . . . . . . . . . . . . . . . . . . . . . . . . . 

Rounding 125. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

IEEE Mathematical Functions 126. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Addition and Subtraction Rules 127. . . . . . . . . . . . . . . . . . . . . . . . 

Multiplication, Division, and Square Root Rules 127. . . . . . . . . . 

IEEE FLOATING-POINT ADD AND COMPARE 129

Floating Point Addition / Subtraction 130. . . . . . . . . . . . . . . . . . . . . . 

Floating-point Add Functional Unit Instructions 134. . . . . . . . . . . . . . 

Floating-point Format 134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Floating-point-to-Integer Conversion 134. . . . . . . . . . . . . . . . . . . . . . 

Integer-to-Floating-Point Conversion 135. . . . . . . . . . . . . . . . . . . . . . 

Floating-point Comparisons 136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

IEEE DIVIDE AND SQUARE ROOT 139

IEEE Divide 139. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Divide/Square Root Options 140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



viiCray Research ProprietaryHTM-300-0

RD option 140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

RE Option 141. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Normalization 141. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Rounding 142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Floating Point Exception Flags 142. . . . . . . . . . . . . . . . . . . . . 

Division and Square Root Rules 143. . . . . . . . . . . . . . . . . . . . 

IEEE FLOATING-POINT MULTIPLY AND INTEGER MULTIPLY 147

Multiply Algorithm 148. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Standard Binary Multiplication 148. . . . . . . . . . . . . . . . . . . . . . . . 

Booth Recode Multiplication 149. . . . . . . . . . . . . . . . . . . . . . . . . . 

Integer Multiply Instructions 149. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Floating-point Multiply Instructions 150. . . . . . . . . . . . . . . . . . . . . . . 

Multiply Functional Unit Options 151. . . . . . . . . . . . . . . . . . . . . . . . . 

NE Option 151. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

NF Option 152. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

NG Option 152. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

NH Option 152. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

BIT MATRIX MULTIPLY 161

Bit Matrix Multiply Theory of Operation 161. . . . . . . . . . . . . . . . . . . 

Instructions 165. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

INSTRUCTION BUFFERS 171

Fetch 171. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Prefetch 172. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

INSTRUCTION ISSUE 183

Instruction Formats 184. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

One-parcel Instructions 184. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Three-parcel Instructions 184. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Four-parcel Instructions 185. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Instruction Decode 185. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



viii Cray Research Proprietary HTM-300-0

P Register 186. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Coincidence 186. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Reading the Instruction Buffer 186. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

JB Option 187. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Parcel Data Distribution 187. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A/S/V/B/T Register Requests 188. . . . . . . . . . . . . . . . . . . . . . . . . 

Functional Unit Requests 188. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Constant Data Requests 189. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Extended Instruction Set (EIS) Requests 189. . . . . . . . . . . . . . . . . 

Common Memory Requests 189. . . . . . . . . . . . . . . . . . . . . . . . . . 

Shared Resource Requests 190. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Branch Requests 190. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Exchange Requests 190. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Interrupt Requests 191. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Control Signal Distribution 192. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Branch Instruction Control 194. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Conditional Branch Instructions 194. . . . . . . . . . . . . . . . . . . . . . . 

Unconditional Branch Instructions 194. . . . . . . . . . . . . . . . . . . . . 

Issue Control 195. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

EXCHANGE 205

Exchange Process 205. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SIPI 206. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Interrupt Flag Set 207. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Program Exit 207. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Exchange Sequence 207. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Exchange Package Descriptions 208. . . . . . . . . . . . . . . . . . . . . . . . . . 

P Register 208. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Modes 208. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Status 209. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Interrupt Flags 213. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Vector Length 216. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Exchange Address 216. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Exit Address 216. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



ixCray Research ProprietaryHTM-300-0

Cluster Number 216. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Processor Number 217. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Logical Address Translation 217. . . . . . . . . . . . . . . . . . . . . . . . . . 

REAL-TIME CLOCK, PROGRAMMABLE CLOCK INTERRUPT , 
STATUS REGISTER, PERFORMANCE MONITOR 219

Real-time Clock 219. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Programmable Clock 220. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

RTC and PC Instructions 221. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Performance Monitor 221. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Performance Monitor Instructions 223. . . . . . . . . . . . . . . . . . . . . . . . . 

Clearing the Performance Counters 223. . . . . . . . . . . . . . . . . . . . . . . . 

Reading the Performance Monitor 223. . . . . . . . . . . . . . . . . . . . . . . . . 

Performance Monitor Block Diagram 224. . . . . . . . . . . . . . . . . . . . . . 

Status Register 224. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SCALAR CACHE 233

Cache Hit 233. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Cache Miss 234. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Cache Addressing 235. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Potential Cache Problems 235. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

CH Option 236. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Scalar Cache Instructions 236. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



x Cray Research Proprietary HTM-300-0

Figures

Figure 1. CP Module Assembly Components 2. . . . . . . . . . . . . . 

Figure 2. Option Layout Board 1 3. . . . . . . . . . . . . . . . . . . . . . . 

Figure 3. Option Layout Board 2 4. . . . . . . . . . . . . . . . . . . . . . . 

Figure 4. CPU Block Diagram 5. . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 5. Address and Scalar Register Data Paths 8. . . . . . . . . . 

Figure 6. A/S Control Terms 10. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 7. Memory-to-A/S Register Block Diagram 12. . . . . . . . . 

Figure 8. B and T Register Inputs and Outputs 15. . . . . . . . . . . . 

Figure 9. B/T-register-to-memory Block Diagram 17. . . . . . . . . . 

Figure 10. Carry Bit and Enable Bit Fanouts 20. . . . . . . . . . . . . . . 

Figure 11. Address/Scalar Logical Block Diagram 
(Instructions 044ijk through 051ijk) 21. . . . . . . . . . . . . 

Figure 12. Scalar Mask Block Diagram 24. . . . . . . . . . . . . . . . . . . 

Figure 13. A/S Population/Parity/Leading Zero Count 29. . . . . . . 

Figure 14. Shift Count Breakdown 33. . . . . . . . . . . . . . . . . . . . . . . 

Figure 15. Address Register Left Single Shift 34. . . . . . . . . . . . . . 

Figure 16. Address Register Right Single Shift 35. . . . . . . . . . . . . 

Figure 17. Address Register Left Double Shift 36. . . . . . . . . . . . . 

Figure 18. Address Register Right Double Shift 37. . . . . . . . . . . . 

Figure 19. Example of an A Register 
Left Single-shift Instruction 38. . . . . . . . . . . . . . . . . . . 

Figure 20. Example of an Address Register 
Left Double-shift Instruction 40. . . . . . . . . . . . . . . . . . . 

Figure 21. Example of an Address Register Right Double-shift
Instruction 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 22. Address Register Shift 42. . . . . . . . . . . . . . . . . . . . . . . . 

Figure 23. Shift Count Breakdown 45. . . . . . . . . . . . . . . . . . . . . . . 

Figure 24. Scalar Left Single Shift 46. . . . . . . . . . . . . . . . . . . . . . . 

Figure 25. Scalar Right Single Shift 47. . . . . . . . . . . . . . . . . . . . . . 

Figure 26. Scalar Left Double Shift 48. . . . . . . . . . . . . . . . . . . . . . 

Figure 27. Scalar Right Double Shift 49. . . . . . . . . . . . . . . . . . . . . 

Figure 28. Example of a Scalar Left Single-shift Instruction 50. . . 

Figure 29. Example of a Scalar Register 
Left Double-shift Instruction 52. . . . . . . . . . . . . . . . . . . 

Figure 30. Example of a Scalar Register 
Right Double-shift Instruction 53. . . . . . . . . . . . . . . . . . 

Figure 31. Scalar Shift 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 32. AN Option 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



xiCray Research ProprietaryHTM-300-0

Figure 33. C90 Integer Multiply Mode 59. . . . . . . . . . . . . . . . . . . . 

Figure 34. AM Option Inputs 60. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 35. Write Data Path 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 36. Read Data Path for Pipe 0, Even Elements 69. . . . . . . . 

Figure 37. Read Data Path for Pipe 1, Odd Elements 70. . . . . . . . . 

Figure 38. Vectors 0 through 3, Pipe 0/1, Read Data Path 71. . . . . 

Figure 39. Vectors 4 through 7, Pipe 0/1, Read Data Path 73. . . . . 

Figure 40. Vector Register Write Block Diagram, Pipe 0 75. . . . . . 

Figure 41. S Register to Vectors 77. . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 42. Memory Data to Vectors, Even Elements 79. . . . . . . . . 

Figure 43. Memory Data to Vectors, Odd Elements 81. . . . . . . . . . 

Figure 44. Vector Register Decode Bit Fanout,
Pipe 0 and 1, Path 1 Only 83. . . . . . . . . . . . . . . . . . . . . 

Figure 45. Vector Register Decode Bit Fanout,
Pipe 0 and 1, Path 2 Only 85. . . . . . . . . . . . . . . . . . . . . 

Figure 46. Vectors 0 through 3, Pipe 0/1, Write Data Path 87. . . . . 

Figure 47. Vectors 4 through 7, Pipe 0/1, Write Data Path 89. . . . . 

Figure 48. Vector Logical Block Diagram 92. . . . . . . . . . . . . . . . . 

Figure 49. Vector Merge Operation 95. . . . . . . . . . . . . . . . . . . . . . 

Figure 50. 1750j0 Instructions 97. . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 51. Function of the 175ij4 Instructions 98. . . . . . . . . . . . . . 

Figure 51. Function of the 175ij4 Instructions 98. . . . . . . . . . . . . . 

Figure 52. Iota Pipe 0 and 1 99. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 53. Function of the 070ij1 Instructions 100. . . . . . . . . . . . . . 

Figure 54. Vector Add Block Diagram 103. . . . . . . . . . . . . . . . . . . . 

Figure 55. Shift Count Breakdown 106. . . . . . . . . . . . . . . . . . . . . . . 

Figure 56. Vector Shift Block Diagram 107. . . . . . . . . . . . . . . . . . . 

Figure 57. Vector Right Shift 108. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 58. Vector Right Double Shift 109. . . . . . . . . . . . . . . . . . . . . 

Figure 59. Vector Transfer 110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 60. Vector Compress 110. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 61. Vector Expand 111. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 62. Vector Population/Parity/Leading Zero 
Block Diagram 114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 63. IEEE Floating-point Format 119. . . . . . . . . . . . . . . . . . . 

Figure 64. Floating Add Functional Unit 133. . . . . . . . . . . . . . . . . . 

Figure 65. IEEE Floating-point Format 134. . . . . . . . . . . . . . . . . . . 

Figure 66. Serial Floating-point Status 143. . . . . . . . . . . . . . . . . . . . 

Figure 67. Divide Unit Block Diagram 145. . . . . . . . . . . . . . . . . . . . 



xii Cray Research Proprietary HTM-300-0

Figure 68. IEEE Floating-point Format 150. . . . . . . . . . . . . . . . . . . 

Figure 69. NE Option Pyramid 153. . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 70. NF0 Option Pyramid 154. . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 71. NF1 Option Pyramid 155. . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 72. NG Option Pyramid 156. . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 73. Multiply Data Paths 157. . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 74. Multiply Control Paths 159. . . . . . . . . . . . . . . . . . . . . . . 

Figure 75. Vector Storage of Bit Matrices 162. . . . . . . . . . . . . . . . . 

Figure 76. Mathematical Representation of Matrices A and B 163. . 

Figure 77. B Matrix and Bt Matrix Relationships 163. . . . . . . . . . . . 

Figure 78. Multiplication of A and Bt 164. . . . . . . . . . . . . . . . . . . . . 

Figure 79. Bit Matrix Multiply Block Diagram, Pipe 0 167. . . . . . . 

Figure 80. Bit Matrix Multiply Block Diagram, Pipe 1 169. . . . . . . 

Figure 81. IC Options Bit Layout 174. . . . . . . . . . . . . . . . . . . . . . . . 

Figure 82. IC Block Diagram 175. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 83. IC Option Terms 176. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 84. Memory-to-instruction Buffers, Path 1 177. . . . . . . . . . . 

Figure 85. Memory-to-instruction Buffers, Path 2 178. . . . . . . . . . . 

Figure 86. Common Memory Path, Code 1 Fanouts 179. . . . . . . . . 

Figure 87. Common Memory Path, Code 2 Fanouts 181. . . . . . . . . 

Figure 88. Instruction Issue Block Diagram 183. . . . . . . . . . . . . . . . 

Figure 89. Format for a 1-parcel Instruction 184. . . . . . . . . . . . . . . . 

Figure 90. Format for a 3-parcel Instruction 184. . . . . . . . . . . . . . . . 

Figure 91. Format for a 4-parcel Instruction 185. . . . . . . . . . . . . . . . 

Figure 92. Bjk (Exchange P) Fan-out Bits 196. . . . . . . . . . . . . . . . . 

Figure 93. JB-to-IC Parcel Data for Branches 197. . . . . . . . . . . . . . 

Figure 94. Path 1 CH-to-IC-to-JB Option 198. . . . . . . . . . . . . . . . . . 

Figure 95. Path 2 CH-to-IC-to-JB Option 199. . . . . . . . . . . . . . . . . . 

Figure 96. Instruction Data Distribution A/S/B/T/V Registers 200. 

Figure 97. CIP Distribution to HH Options 201. . . . . . . . . . . . . . . . 

Figure 98. CIP Distribution to HH Option 202. . . . . . . . . . . . . . . . . 

Figure 99. JB Option Block Diagram 203. . . . . . . . . . . . . . . . . . . . . 

Figure 100. Exchange Package 212. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 101. RTC and PCI Block Diagram 220. . . . . . . . . . . . . . . . . . 

Figure 102 Performance Monitor Block Diagram 225. . . . . . . . . . . . 

Figure 103. Status Registers 227. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 104. Cache Layout 234. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 105. Memory Addresses 235. . . . . . . . . . . . . . . . . . . . . . . . . . 



xiiiCray Research ProprietaryHTM-300-0

Tables

Table 1. A/S Register Entry Codes 9. . . . . . . . . . . . . . . . . . . . . 

Table 2. B/T Register Instructions 16. . . . . . . . . . . . . . . . . . . . . . 

Table 3. A/S Adder Instructions 19. . . . . . . . . . . . . . . . . . . . . . . 

Table 4. Scalar Logical Functional Unit Instructions 22. . . . . . . 

Table 5. Address Logical Functional Unit Instructions 23. . . . . . 

Table 6. Scalar Mask Instructions 23. . . . . . . . . . . . . . . . . . . . . . 

Table 7. Address Mask Instructions 24. . . . . . . . . . . . . . . . . . . . 

Table 8. Transmit nm to Si Instructions 25. . . . . . . . . . . . . . . . . . 

Table 9. Scalar Pop Count/Parity and Leading Zero Count
Instructions 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 10. Address Register Shift Instructions 31. . . . . . . . . . . . . . 

Table 11. Scalar Shift Instructions 43. . . . . . . . . . . . . . . . . . . . . . 

Table 12. Recode Groups 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 13. Vector Register Options 62. . . . . . . . . . . . . . . . . . . . . . . 

Table 14. VN/VQ Data Steering 66. . . . . . . . . . . . . . . . . . . . . . . . 

Table 15. Vector Logical Instructions 93. . . . . . . . . . . . . . . . . . . . 

Table 16. Vector Merge Instructions 94. . . . . . . . . . . . . . . . . . . . 

Table 17. Vector Mask Operations 96. . . . . . . . . . . . . . . . . . . . . . 

Table 18. Vector Mask Test Operations 97. . . . . . . . . . . . . . . . . . 

Table 19. Iota Instruction 98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 20. Vector Add Instructions 101. . . . . . . . . . . . . . . . . . . . . . . 

Table 21. Vector Shift Instructions 105. . . . . . . . . . . . . . . . . . . . . . 

Table 22. Vector Population/Parity Instructions 116. . . . . . . . . . . . 

Table 23. IEEE Floating-point Numbers 120. . . . . . . . . . . . . . . . . . 

Table 24. NaN Tag Codes 122. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 25. Effects of Rounding Mode on LSB 126. . . . . . . . . . . . . . 

Table 26. Addition and Subtraction Results 127. . . . . . . . . . . . . . . 

Table 27. Multiplication Results 128. . . . . . . . . . . . . . . . . . . . . . . . 

Table 28. Division Results 128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 29. Square Root Results 128. . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 30. Rounding Modes 131. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 31. Effects of Rounding Mode on LSB 132. . . . . . . . . . . . . . 

Table 32. Floating-point Add Functional Unit Instructions 134. . . 

Table 33. Floating-Point-to-Integer Conversion Instructions 135. . 

Table 34. Conversion Instructions 135. . . . . . . . . . . . . . . . . . . . . . . 

Table 35. Compare Instructions 136. . . . . . . . . . . . . . . . . . . . . . . . 



xiv Cray Research Proprietary HTM-300-0

Table 36. Floating-point Divide and Square Root 
Unit Instructions 140. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 37. Divide  Options 140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 38. NaN Identifiers 144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 39. Division Results 144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 40. Square Root Results 144. . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 41. Recode Groups 148. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 42. Integer Multiply Instructions 150. . . . . . . . . . . . . . . . . . . 

Table 43. Floating-point Multiply Instructions 151. . . . . . . . . . . . . 

Table 44. Multiply Options 151. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 45. Bit Matrix Multiply Instructions 165. . . . . . . . . . . . . . . . 

Table 46. IC Options 171. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 47. Read-out Path Codes 187. . . . . . . . . . . . . . . . . . . . . . . . 

Table 48. Interrupt Modes Register Bit Assignments 214. . . . . . . . 

Table 49. Flag Register Bit Assignments 215. . . . . . . . . . . . . . . . . 

Table 50. LAT Fields 217. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 51. RTC and PC Instructions 221. . . . . . . . . . . . . . . . . . . . . . 

Table 52. Performance Monitor 222. . . . . . . . . . . . . . . . . . . . . . . . . 

Table 53. Performance Monitor Instructions 223. . . . . . . . . . . . . . . 

Table 54. Status Register (SR0) 228. . . . . . . . . . . . . . . . . . . . . . . . 

Table 55. Status Register 4 (SR4) 229. . . . . . . . . . . . . . . . . . . . . . . 

Table 56. Destination Codes 230. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 57. Status Register 7 (SR7) Bit Definitions 231. . . . . . . . . . 

Table 58. CH Option Bits 236. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 59. Scalar Cache Instructions 236. . . . . . . . . . . . . . . . . . . . . 



1Cray Research ProprietaryHTM-300-0

CPU MODULE (CPE1)

CPE1 General Description

The CPE1 module contains the central processing unit (CPU) for the
CRAY T90 series computer systems.  There is one CPU per CPE1
module.  This CPU uses the IEEE standard format for floating-point
arithmetic.

There have been many enhancements to the CRAY T90 series CPU, and
several new instructions have been added to increase the performance.
Figure 1 illustrates CP module components.  Figure 2 and Figure 3 show
the basic functions and locations of all options on a CP module.  Figure 4
shows a block diagram of the CPU.

The CP modules are arranged in stacks in the system.  A CRAY T94
system contains one stack of as many as four modules.  A CRAY T916
systems contains up to two stacks of as many as eight modules.  A
CRAY T932 system contains up to four stacks of as many as eight
modules.

Each module in a stack functions independently; there are no
interconnections between modules in a stack.  The CP modules connect
directly with either the memory modules, as in the CRAY T94 system, or
with the system interconnect board (SIB), as in larger systems.



Module CPU Module (CPE1)

2 Cray Research Proprietary HTM-300-0
 

Module Assembly Components

Refer to Figure 1 for an illustration of the CP module assembly
components.  This illustration is provided to show the basic components
that are part of all mainframe modules.  The sizes of various components
differ between modules.

Figure 1.  CP Module Assembly Components

A Flow Block, Board 1

B Optical Receiver

M

L

K

A

B

E

F

G

H

I

C PC Board Edge Shim

D Maintenance Connector Flex Assembly

E Fiber-optic Spool Assembly

F Voltage Regulator Board Assembly

H Fiber-optic Coupler

I Flow Block, Board 2

J PC Logic Board 2

K Outer Rail

L Inner Rail

C

D

M PC Logic Board 1

J

G Maintenance Connector



ModuleCPU Module (CPE1)

3Cray Research ProprietaryHTM-300-0

Figure 2.  Option Layout Board 1

CJ006CI006CJ002CI002CJ004CI004CJ000CI000HG000

TW008CF002CK002CH004CH006CK000CF000CF004HA002

VF002IC002CH000CH012CH014CH002IC000CC000HA000

VM009VM008CA000CH008CH010VM000AR000VM001TW004

VM011VM010CB000CD000BT000VM002AS001VM003VF000

VM013VM012CG000VA000JA000VM004AT000VM005HD000

VM015VM014OA001OA000SS000VM006AU000VM007TW002

NC001RB001OA002FA001TW006FA000RB000NC000TW000

NA001RC001TW010HM000RC000NA000

HB000

TZ000 MZ000

I/O
Control

Flt Mult Recip Clock
Logic

Monitor BS Fanout Recip Flt MultNot Used

Not Used Flt Mult Recip Not Used Recip Flt Mult
Flt Add
Coeff

Flt Add
Coeff

BMM
and

Parity

Not Used BMM
and

Parity

BMM
and

Parity

Not Used

Shift
Pop
LZ

Issue
Control

Not Used

A/S Reg

Bits 48 – 55

A/S Reg

Bits 32 – 39

A/S Reg

Bits 16 – 23

A/S Reg

Bits 0 – 7

Vector
Control

Vector Even
R Bit 60 – 63
W Bit 56 – 63

Vector Even
R Bit 52 – 55
W Bit 48 – 55

B/T/P Reg

Bits 32 – 47
Bits 0 – 15

Vector 
Control

Inst
Buffers

 Bit 0 – 7
 Bit 32 – 39

Inst
Buffers

 Bit 16 – 23
 Bit 48 – 55

Vector
Control

CIP

I/O to Mem
SBCDBD

I/O to Mem
SBCDBD

Maint
Channel

Section
Driver

Section 0

Section
Driver

Section 4

Section
Driver

Section 2

Section
Driver

Section 6

Section
Receiver
Section 0

Section
Receiver
Section 4

Section
Receiver
Section 2

Section
Receiver
Section 6

Ports A, A’

Ports C
Ports E

Cache
HIT

Ports
D

Check-bit
Generation

Write Data
Conflicts

Write Data
Conflicts

Write Data
Conflicts

Data
Steering

Data
Steering

Data MUX
Cache

Data MUX
Cache
16 – 19
48 – 51

Data MUX
Cache

Data MUX
Cache

Data MUX
Cache

Data MUX
Cache

Data MUX
Cache

Data MUX
Cache
0 – 3

32 – 35
4 – 7

36 – 39

8 – 11
40 – 43

12 – 15
44 – 47

20 – 23
52 – 55

24 – 27
56 – 59

28 – 31
60 – 63

ZB008 ZB000 ZB004 ZB002 ZB006

Exchange
Package

Vector Odd
R Bit 52 – 55
W Bit 48 – 55

Vector Odd
R Bit 60 – 63
W Bit 56 – 63

Vector Even
R Bit 44 – 47
W Bit 40 – 47

Vector Even
R Bit 36 – 39
W Bit 32 – 39

Vector Odd
R Bit 36 – 39
W Bit 32 – 39

Vector Odd
R Bit 44 – 47
W Bit 40 – 47

Vector Even
R Bit 28 – 31
W Bit 24 – 31

Vector Even
R Bit 20 – 23
W Bit 16 – 23

Vector Odd
R Bit 28 – 31
W Bit 24 – 31

Vector Odd
R Bit 20 – 23
W Bit 16 – 23

Vector Even
R Bit 12 – 15
W Bit 8 – 15

Vector Even
R Bit 4 – 7
W Bit 0 – 7

Vector Odd
R Bit 12 – 15
W Bit 8 – 15

Vector Odd
R Bit 4 – 7
W Bit 0 – 7



Module CPU Module (CPE1)

4 Cray Research Proprietary HTM-300-0
 

Figure 3.  Option Layout Board 2

CI007 CJ007 CI003 CJ003 CI005 CJ005 CI001 CJ001 HF000

TW009 CF003 CK003 CH005 CH007 CK001 CF001 CF005 HA003

VF003 IC003 CH001 CH013 CH015 CH003 IC001 TW005 HA001

VR009 VR008 CA001 CH009 CH011 VR000 AS000 VR001 AN000

VR011 VR010 CB001 CD001 BT001 VR002 AS002 VR003 VF001

VR013 VR012 CG001 VA001 JA001 VR004 AT001 VR005 HD001

VR015 VR014 OA004 OA003 VS000 VR006 AU001 VR007 TW003

NB001 RA001 OA005 FB001 TW007 FB000 RA000 NB000 TW001

ND001 AM001 TW011 HM001 AM002 ND000

HC000

Not Used

Not Used Not Used

Not Used

Not Used

Integer
Multi

Integer
Multi

A/S Reg

Bits 56 – 63

A/S Reg

Bits 40 – 47

A/S Reg

Bits 24 – 31

A/S Reg

Bits 8 – 15

BMM
and

Parity

BMM
and

Parity

BMM
and

Parity

Flt Add
Exponent

Flt Add
Exponent

Maint
Channel

Section
Driver

Section 3

Section
Driver

Section 5

Section
Driver

Section 1

Section
Driver

Section 7

Section
Receiver
Section 3

Section
Receiver
Section 5

Section
Receiver
Section 1

Section
Receiver
Section 7

Perf
Monitor

Issue
Control

Flt Mult

Recip Flt MultFlt Mult Recip

Flt Mult
Logic

Monitor

ZB007 ZB003 ZB005 ZB001 ZB009

I/O Relay
Data

Address
Multi

Vector 0 Vector 1

Vector 3

Vector 5

Vector 7Vector 6

Vector 4

Vector 2

Vector 0Vector 1

Vector 2Vector 3

Vector 4Vector 5
Odd

Vector 6Vector 7

Bits 0 – 3 Bits 8 – 11

Bits 16 – 19 Bits 24 – 27

Bits 32 – 35 Bits 40 – 43

Bits 48 – 51 Bits 56 – 59

Bits 0 – 3Bits 8 – 11

Bits 16 – 19Bits 24 – 27

Bits 32 – 35Bits 40 – 43

Bits 48 – 51Bits 56 – 59

Odd Odd

Odd

Odd Odd

Odd Odd

Even Even

Even Even

Even Even

Even Even

Vector
Control

Vector
Control

Vector 
Shift

B/T/P Reg

Bits 48 – 63
Bits 16 – 31

Vector
Control

Write Data
Conflicts

Write Data
Conflicts

Inst
Buffers

 Bit 24 – 31
 Bit 56 – 63

Inst
Buffers

 Bit 8 – 15
 Bit 40 – 47

Port
B, B’

Port
 C’

Port
 E

Cache
Control

Check-bit
Generation

Not Used

Exchange
Package

CIP

I/O
SECDED

Write Data
Conflicts

Data
Steering

Cache
Control

Data
Steering
Cache
Control

Data MUX
Cache
4 – 7

36 – 39

Data MUX
Cache
28 – 31
60 – 63

Data MUX
Cache

Data MUX
Cache
0 – 3

32 – 35
24 – 27
56 – 59

Data MUX
Cache

Data MUX
Cache
12 – 15
44 – 47

16 – 19
48 – 51

Data MUX
Cache
8 – 11

40 – 43

Data MUX
Cache
20 – 23
52 – 55



ModuleCPU Module (CPE1)

5Cray Research ProprietaryHTM-300-0

Figure 4.  CPU Block Diagram

CIP

LIP

LIP1

Comp Index
Comp/Exp

I/O Data to
LOSP, HISP,

VHISP Channels

Common
Memory

[(A0) + (Ak)], [(A0) + (Vk)]

[(A0) + (Ak)], [(A0) + (Vk)]
[(A0) + (Ak)], [(A0) + (Vk)]

00

177

[(Ah) + (pnm)]

Sj

Sj

Sj

S0
S1

S2
S3

S4
S5

S6
S7

Vj
Vk
Vi

Vector Mask

Vector Control

Si

Vj
Vk
Vi
Si
Sj
Sk

Aj
Ak
Ai

Si

Si

Si

V7
V6

V5
V4

V3
V2

V0
V1

Vector Registers

Real-time Clock

Status

Programmable
Clock Interrupt

Performance
 Log

Add
Vector

Functional
Units
Pipe 0

Logical
Shift

Pop/Parity/LZ

Add
Vector

Functional
Units
Pipe 1

Shift

Add

Multiply

Add
Shared

Vector/Scalar
Functional

Units
Pipe 0

Recip Appr

T00

T77

Add
Scalar

Functional
Units

Logical

Shift

Pop/Parity/LZ

Exchange
Control

XA

Vector
Control

Vector
Length

Add
Address

Functional
Units

Multiply

B00

B77

A0
A1

A2
A3

A4
A5

A6
A7

Address Registers

P

IB0

IB7
IB6

IB5
IB4

IB3
IB2

IB1

Instruction
Buffers

0

37

NIP

Execution

Ak

Ai

Ak

(A0) Si

Tjk

(A0) Ai

Bjk

+1
+3
+4

Scalar Registers

•
•
•

Logical

Logical 2
Int Multiply

Comp Index
Comp/Exp

Pop/Parity/LZ
Logical 2
Int Multiply

Bit Matrix Multiply

Add

Multiply
Recip Appr

Data
Cache

To A Registers

To S Registers

Shared Resources

I/O Status and Control
SB and ST Registers

Semaphores

Shared
Vector/Scalar

Functional
Units
Pipe 1

Ai

Ak

 



Module CPU Module (CPE1)

6 Cray Research Proprietary HTM-300-0
 

This page intentionally left blank.



7Cray Research ProprietaryHTM-300-0

ADDRESS AND SCALAR REGISTERS

The address and scalar registers are located together on the same options.
The following subsections describe the address and scalar registers.

Address Registers

The address and scalar registers are contained on eight options:  one AV
option, three AW options, two AX options, and two AY options.  Each
CRAY T90 series CPU contains eight address registers designated A0
through A7.  Each register is 64 bits wide (32 bits in C90 mode) and
performs the following functions:

• Determines addresses for memory references
• Provides memory reference indexing
• Provides loop control
• Determines shift counts
• Provides I/O channel set-up
• Determines I/O channel status
• Receives results from scalar leading zero and pop count
• Determines vector length
• Provides an exchange address (monitor mode only)
• Provides an index for shared registers and B and T instructions
• Provides operands and results for address add and address multiply
• Transfers data to and from scalar registers
• Provides integer-to-floating-point conversion

As illustrated in Figure 5, each AV000, AW000, AW001, AW002, AX000,
AX001, AY000, and AY001 option contains an 8-bit slice of the address
registers.   Figure 5 also illustrates the input and output data paths for the
address and scalar registers.



Address and Scalar Registers CPU Module (CPE1)

8 Cray Research Proprietary HTM-300-0

Figure 5.  Address and Scalar Register Data Paths

AV000

AW000

AW001

AX000

AX001

AY000

AY001

AW002

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 32 – 39

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63

Address Multiply Results

Shared Data IBA – IBH

Constant Data ICA – ICH

B/T Register Data IDA – IDH

Floating-point Add Results

Floating-point
Multiply Results

 Divide Results

Shift Data, VM IHA – IHH

Vj (Even) Data to Scalar IIA – IIH

Vj (Odd) Data to Scalar III – IIP

Common Memory Path 1 IJA – IJH

Common Memory Path 2 IKA – IKH

OAA – OAH

OBA – OBH

OCA – OCH

ODA – ODH

OEA – OEH

OEI – OEP

OFA – OFH

OFI – OFP

OGA – OGH

OHA – OHH

OIA – OIH

OJA – OJH

OMA – OMH

ONA – ONH

Floating-point Add
Operand (Sj)

Floating-point Add
Operand (Sk)

Floating-point Multiply
Operand (Sj)

Floating-point Multiply
Operand (Sk)

CM Address to Vector
Pipe 0

CM Address to Vector
Pipe 1

Sj to Shift, Pop/Parity/LZ/VM

Aj to Shift, Pop/Parity/LZ/VM

Address Multiply
Operand (Aj)

Address Multiply
Operand (Ak)

Ai to Shared Data Path

Ai to B/T Registers and CM

Ah Address to CM Port E

Constant Data to CM Port E

OPA – OPG

OQA –OQH

Ak to Vector Control

Ak to Scalar Shift Count

(AN)

(HH)

(JB)

(BU)

(FC)

(NH)

(RE)

(SS)

(VQ)

(VQ)

(CH)

(CH)

(FC)

(FC)

(NE, NF)

(VN, VQ)

(VN, VQ)

(SS)

(SS)

(AN)

(AN)

(HH)

(BU)

(CD)

(CD)

(VB)

(SS)

BMM ISA – ISH
(OA)

IAA – IAH

IEA – IEH

IFA – IFH

IGA – IGH

(NE, NF)

OSA –OSD A/S Addres Carry
(A_)

OXA Enter Exchange VL
(VB)

ORA –ORC A/S Zero Test
(JB)



CPU Module (CPE1) Address and Scalar Registers

9Cray Research ProprietaryHTM-300-0

Entry Codes

During the instruction decode on the JB option, the A/S register options
receive an A/S entry code from the the JB option.  This code generates the
control that is necessary to complete the operations.  The operand data is
then transmitted to the appropriate resources, and a destination delay chain
is entered on the option.  Refer to Table 1 for the address/scalar (A/S)
register entry codes and to Figure 6 for an illustration of the A/S control
terms.

Table 1.  A/S Register Entry Codes

Entry Code Instruction

0 020i  Constants

1 023ij0  Sj

2 023ij1  VL data

3 024ijk  B data

4 030,031ijk  Add

5 026ij (0 – 3), 027ij (0 – 1)  pop/par/lz

6 032ijk  A multiply

7 022ijk, 04 (2 – 3)   jk/mask data

10 N/A

11 073i (2 – 3) 0  VM data

12 N/A

13 N/A

14 04 (4 – 7) ijk, 05 (0 – 1) ijk  Logical

15 N/A

16 05 (2 – 5) ijk, 05 (6 – 7) ijk  Shift

17 N/A



Address and Scalar Registers CPU Module (CPE1)

10 Cray Research Proprietary HTM-300-0

Figure 6.  A/S Control Terms

A/S Register Read-out Code

Enter CPU VL

Go 071i(0,1,2)k

Pop/Parity/LZ  (AR000 Only)

A/S Register Entry Code

A/S Entry Code Valid

A/S Entry Code Valid

i, j, k, h Data

Memory Path 1 Read Code

Memory Path 2 Read Code

Shared Data Code

Enter Exchange VL (AR000 Only)

Exchange Active

Exchange Path 2 Select

ILA – ILB(JB000)
ILC

AV000
AW000
AW001
AW002

ILD

IMA – IMG
(SS000)

INA – INC

IOA – IOD

IOA – IOD

IPA – IPL

IQA – IQE
(VQ)

IRA – IRE
(VQ)

IUA – IUE
(HH000)

IVA
(HH001)

IVB
(IC001)

IVE
(VQ004)

A/S Register Read-out Code ILA – ILB
(JB001)

Enter CPU VL ILC
(JB001)

AX000
AX001
AY000
AY001

Go 071i(0,1,2)k ILD
(JB001)

A/S Register Entry Code INA – INC
(JB001)

A/S Entry Code Valid IOA – IOD
(JB001)

A/S Entry Code Valid IOA – IOD
(JB001)

i, j, k, h Data IPA – IPL
(JB001)

Memory Path 1 Read Code IQA – IQE
(VQ)

Memory Path 2 Read Code IRA – IRE
(VQ)

Shared Data Code IUA – IUE
(HH001)

Exchange Active IVB
(IC002)

Exchange Path 2 Select IVE
(VQ004)

(JB000)

(JB000)

(JB000)

(JB000)

(JB000)

(JB000)



CPU Module (CPE1) Address and Scalar Registers

11Cray Research ProprietaryHTM-300-0

A Register Memory References

Refer to Figure 7 for a memory-to-A/S-register block diagram.  The
address registers read or write one word of memory during each
instruction.  The B registers provide intermediate storage for the address
registers and perform memory block references; one B register instruction
can access a group of operands from memory.  The A registers use these
operands to generate results that are sent back to the B registers and stored
in memory.  Using the B registers as buffer storage, a block reference
requires fewer clock periods than if several individual address or scalar
references were issued.

The A registers also have an access path to cache memory, which provides
access to common memory data without having to reference memory
directly.  If the requested address resides in cache, a “cache hit” is initiated
and the data is read from cache memory instead of from common memory.

Special Register Values

The A0 register has special features that the other A registers do not have.
The A0 register holds the starting address for all block transfers for the
B, T, and V registers and branch control.  A0 is the only register that can
be tested for equal-to-zero, not-equal-to-zero, positive, or negative
conditions using A0 conditional branch instructions.

This register also has a special feature for reading data.  If A0 is specified
as an operand in the h, j, or k field of an instruction, it will not send the
actual contents of the register.  Instead, the register sends a value of 0 if
A0 is used in the j or h field, or it sends a value of 1 if A0 is used in the k
field.  If A0 is used in the i field, the actual contents of the A0 register are
sent.

Because the A registers in CRAY T90 series systems are 64 bits wide,
special mode instructions have been implemented.  These instructions are
part of the extended instruction set (EIS).  These instructions make the A
registers functionally equal to S registers, enabling A registers to be
shifted and logical operations to be performed.  To execute these special
mode instructions, an EIS 005400 instruction must precede the actual A
register instruction.



Address and Scalar Registers CPU Module (CPE1)

12 Cray Research Proprietary HTM-300-0

Figure 7.  Memory-to-A/S Register Block Diagram

B/T Registers

CH000

CH002

CH004

CH006

CH008

CH010

CH012

CH014

CH009

CH011

CH013

CH015

CH001

CH003

CH005

CH007

B/T Registers

BU001

BU000Read Data

Read Data

Read Data

Read Data

CM Left (Path 1)

CM Right

CM Left

CM Right (Path 2)

ICA – ICP

IEA – IEP

IFA – IFP

AV000
AW000
AX000
AX001

OAA – OAP,
OBA – OBP

Bits 16 – 31, 48 – 63

Bits 0 – 15, 32 – 47
IDA – IDP

IFA – IFP

IEA – IEP

ICA – ICP

IDA – IDP
IDA – IDH

AW001
AW002
AY000
AY001

IDA – IDH

A/S Registers

OAA – OAP,
OBA – OBP



CPU Module (CPE1) Address and Scalar Registers

13Cray Research ProprietaryHTM-300-0

Scalar Registers

The CPU contains eight 64-bit scalar registers that are designated S0
through S7.  The scalar registers are contained on the AV, AW, AX, and
AY options (refer to Figure 5).

The scalar registers send operands to and receive results from the scalar
functional units and the floating-point functional units.  The functional
units perform integer and floating-point arithmetic and logical operations.
The scalar registers read and write central memory through the T registers,
read and write the data cache, and provide paths to the vector registers,
vector mask, real-time clock, status register, programmable clock
interrupt, and the performance monitor.

Instruction Issue

When an instruction issues, the scalar register receiving the data is
reserved until the result is latched in the register.  If an instruction in the
current instruction parcel (CIP) register requires the reserved result
register, that CIP instruction holds issue until the register is available.

The S0 register is an exception.  If the S0 register is reserved as a result
register and is needed as an Sj or Sk operand in a following instruction, no
hold issue occurs because the S0 register has special register values as an
operand.

The issue hardware also develops scalar functional unit codes.  These
codes select the input terms to be gated from the proper functional unit
into the scalar register multiplexer.

S Register Memory References

Scalar registers read or write one word of memory during each instruction.
The T registers provide intermediate storage for the scalar registers, and
can perform memory block references; a single instruction can access a
group of operands from memory.  These operands are then used by the
scalar registers to generate results that can be sent back to the T registers
and stored in memory.  Using the T registers as buffer storage, a block
reference requires fewer clock periods than if several individual address or
scalar references were issued.



Address and Scalar Registers CPU Module (CPE1)

14 Cray Research Proprietary HTM-300-0

The S registers also have an access path to cache memory, which provides
access to common memory data without having to reference memory
directly.  If the requested address resides in cache, a “cache hit” is initiated
and the data is read from cache instead of from common memory.

Special  Register  Values

S0 has special register values when Sj or Sk is used as an operand.  When
the j field equals 0, a value of 0 is sent out regardless of the actual value
stored in S0.  When the k field equals 0, bit 63 is set to a 1.

Lower/Upper  Scalar  Register  Load

It is possible to load either the lower- or upper-half of a scalar register
with a 32-bit quantity.  The following four instructions load constants into
scalar registers.

• 040i00 nm  Si exp:  loads the quantity nm into the lower 32 bits of
register Si.  The upper 32 bits are cleared.

• 041i00 nm  Si exp:  loads the one’s complement of nm into the lower
32 bits of register Si.  The upper 32 bits are all 1’s.

• 040i20 nm  Si exp:  loads the quantity nm into the lower 32 bits of
register Si.  The upper 32 bits are unchanged.

• 040i40   Si exp:  loads the quantity nm into the upper 32 bits of
register Si.  The lower 32 bits are unchanged.



15Cray Research ProprietaryHTM-300-0

B AND T REGISTERS

Each CPU contains 64 (1008) B registers and 64 T registers.  The B and T
registers act as intermediate registers for the address and scalar registers,
respectively.  Each B and T register is 64 bits wide.

Two BU options, BU000 and BU001, compose the B and T registers.
Each option contains 32 bits of each register.  BU000 contains bits 00
through 15 and bits 32 through 47.  BU001 contains bits 16 through 31
and bits 48 through 63.  As shown in Figure 8, the B and T registers can
be loaded from the address and scalar registers, common memory, and
branch control.

Figure 8.  B and T Register Inputs and Outputs

BU000

BU001

IAA – IAP,
IBA – IBPFrom Ai or Si

IGA – IGPP Entry on Branch

ICA – ICP,
IDA – IDPCM Path 1

IEA – IEP,
IFA – IFPCM Path 2

Ai Length (BU001 Only) IIA – IIG

OAA – OAP,
OBA – OBP To Ai or Si

OCA – OCP,
ODA – ODP Ai, Si, B or T CM Data

OEA – OEP Bjk to Branch Control

Bits 0 – 15,
32 – 47

Bits 16 – 31,
48 – 63

The B and T registers are used primarily for block transfers to and from
common memory.  Refer to Table 2 for a list of the B and T register
instructions.  Refer also to Figure 9 for a B/T-register-to-memory block
diagram.



B and T Registers CPU Module (CPE1)

16 Cray Research Proprietary HTM-300-0

Table 2.  B/T Register Instructions

Instruction CAL Description

0050jk J  Bjk Jump to Bjk

0051jk* JINV  Bjk Jump to Bjk  (invalidate instruction buffers)

024ijk Ai  Bjk Transmit (Bjk) to Ai

025ijk Bjk  Ai Transmit (Ai) to Bjk

034ijk Bjk  Ai, A0 Transmit (Ai) words from common memory starting at
address (A0) to B registers starting at register jk

035ijk ,A0  Bjk,Ai Transmit (Ai) words from B registers starting at register jk to
memory starting at address (A0)

036ijk Tjk  Ai, A0 Transmit (Ai) words from memory starting at address (A0) to
T register starting at register jk

037ijk ,A0  Tjk,Ai Transmit (Ai) words from T registers starting at register jk to
memory starting at address (A0)

074ijk Si  Tjk Transmit (Tjk) to Si

075ijk   Tjk  Si Transmit (Si) to Tjk

* Denotes a maintenance mode instruction only.



CPU Module (CPE1) B and T Registers

17Cray Research ProprietaryHTM-300-0

Figure 9.  B/T-register-to-memory Block Diagram

B/T Registers

CH000

CH002

CH004

CH006

CH008

CH010

CH012

CH014

CH009

CH011

CH013

CH015

CH001

CH003

CH005

CH007

B/T Registers

BU001

BU000Read Data

Read Data

Read Data

Read Data

CM Left

CM Right

CM Left

CM Right

ICA – ICP

IEA – IEP

IFA – IFP

Bits 16 – 31, 48 – 63

Bits 0 – 15, 32 – 47
IDA – IDP

IFA – IFP

IEA – IEP

ICA – ICP

IDA – IDP

Memory
Write Data

Memory
Write Data

CG000

CG001

OCA – OCP,
ODA – ODP

OCA – OCP,
ODA – ODP



B and T Registers CPU Module (CPE1)

18 Cray Research Proprietary HTM-300-0

This page intentionally left blank.



19Cray Research ProprietaryHTM-300-0

ADDRESS AND SCALAR ADD

The address and scalar registers are contained on eight options:  one AV
option, three AW options, two AX options, and two AY options.  Each
option contains 8 bits of the 64-bit address registers.  These options also
contain the address and scalar add functional unit.  Table 3 describes the
instructions that use the address and scalar add functional unit.

Table 3.  A/S Adder Instructions

Instruction CAL Description

030ijk Ai  Aj+Ak Transmit integer sum of (Aj) and (Ak) to Ai

030i0k Ai  AkS Transmit (Ak) to Ai

030ij0 Ai  Aj+1S Transmit integer sum of (Aj) and 1 to Ai

031ijk Ai  Aj–Ak Transmit integer difference of (Aj) and (Ak) to Ai

031i0k Ai  –AkS Transmit inverse of (Ak) to Ai

031ij0 Ai  Aj–1S Transmit integer difference of (Aj) and 1 to Ai

060ijk Si   Sj+Sk Transmit integer sum of (Sj) and (Sk) to Si

061ijk Si   Sj–Sk Transmit integer difference of (Sj) and (Sk) to Si

061i0k Si  –Sk Transmit inverse of (Sk) to Si

D denotes a difference between Triton mode and C90 mode.

S denotes a special CAL syntax.

The address add and scalar functional units perform a 64-bit add; each
option performs the add function on the bits of the operands contained on
that option.  Carry and enable bits generated during the add are passed on
to the next option, as shown in Figure 10.  The 64-bit result is stored in the
destination register in 4 clock periods.



Address and Scalar Add CPU Module (CPE1)

20 Cray Research Proprietary HTM-300-0

Figure 10.  Carry Bit and Enable Bit Fanouts

AW0

AW1

AW2

AX0

AX1

AY0

AY1

AV0 OSA ISA

OSB

OSC

OSD

ISA

ISA

ISA

AX0

AX1

OSB
ISC

AW2
ISC

OTA ITB

OTB

ITB

AY0

AY1

OSC
ISC

OTC

ITB

AX0

AX1

OSB
ISB

OTB

ITA

AW1

AW2

OSA
ISB

OTA

ITA

AY0

AY1

OSC
ISB

OTC

ITA

OSA

AX0

AX1

OSA
ISD

OTA

ITC

AY0

AY1

OSB
ISD

OTB

ITC

AY0

AY1

OSB
ISE

OTB

ITD

AX1
ISE

OTA ITD

OSA

AY0

AY1

OSA
ISF

OTA

ITE

AY1
ISG

OTA ITF

OSA

NOTE: ISA – ISG and OSA – OSC terms are
adder carries.  ITA – ITF and OTA – OTC
terms are adder enables.

AW0

AW1

AY0

AX1

AX0

AW2

Bits
0 – 7

Bits
8 – 15

Bits
16 – 23

Bits
24 – 31

Bits
32 – 39

Bits
40 – 47

Bits
48 – 55



21Cray Research ProprietaryHTM-300-0

SCALAR LOGICAL

The scalar logical functional unit performs logical operations on the scalar
registers.  Logical operations include OR, AND, and XOR and merges.

Refer to Figure 11 for an illustration of the address and scalar registers.
The scalar registers are contained on eight options:  one AV option, three
AW options, two AX options, and two AY options.  Each option contains
8 bits of the 64-bit address registers.  These options also contain the scalar
logical functional unit.  The operands are latched and the logical operation
is completed in 1 clock period.  The result is then entered into the proper
destination register.

Figure 11. Address/Scalar Logical Block Diagram (Instructions 044ijk through 051ijk)

AV000

A/S0

 Logical
Functional Unit

Ai/Si
FU

Select

Operand
Select

Address/Scalar Register

IOA – IODA/S Entry Code Valid

hijk Instruction Data

A/S Register
Data Path 1

A/S Entry Code INA – INC

IJA – IJH

IPA – IPL

Ai/Si

(JB0)

(JB0)

Aj/Sj

Ak/Sk

(JB0)

(CH0)

A/S Register
Data Path 2 IKA – IKH

(CH0)

Bits 0 – 7

AW000 Bits 8 – 15

AW001 Bits 16 – 23

AW002 Bits 24 – 31

AX000 Bits 32 – 39

AX001 Bits 40 – 47

AY000 Bits 48 – 55

AY001 Bits 56 – 63

A/S1
A/S2
A/S3
A/S4

A/S5
A/S6

A/S7



Scalar Logical CPU Module (CPE1)

22 Cray Research Proprietary HTM-300-0

Table 4 and Table 5 list the instructions used in the address and scalar
logical functional unit.  The instructions listed in NO TAG must be
preceded by a 005400 instruction.

Table 4.   Scalar Logical Functional Unit Instructions

Instruction CAL Description

044ijk Si Sj&Sk Logical product of (Sj) and (Sk) to Si

044ij0 Si Sj&SB Sign bit of (Sj) to Si

044ij0 Si SB&Sj Sign bit of (Sj) to Si (Sj ≠ 0)

045ijk Si #Sk&Sj Logical product of (Sj) and one’s complement of (Sk) to Si

045ij0 Si #SB&Sj (Sj) with sign bit cleared to Si

046ijk Si Sj\Sk Logical difference of (Sj) and (Sk) to Si (Sj ≠ 0)

046ij0 Si Sj\SB Transmit (Sj) with sign bit toggled to Si

046ij0 Si SB\Sj Transmit (Sj) with sign bit toggled to Si (Sj ≠ 0)

047ijk Si #Sj\Sk Logical equivalence of (Sk) and (Sj) to Si

047i0k Si #Sk Transmit one’s complement of (Sk) to Si

047ij0 Si #Sj\SB Logical equivalence of (Sj) and sign bit to Si

047ij0 Si #SB\Sj Logical equivalence of (Sj) and sign bit to Si (Sj ≠ 0)

047i00 Si #SB Enter one’s complement of sign bit into Si

050ijk Si Sj!Si&Sk Logical product of (Si) and (Sk) complement ORed with
logical  product of (Sj) and (Sk)

050ij0 Si Sj!Si&SB Scalar merge of (Si) and sign bit of (Sj) to Si

051ijk Si Sj!Sk Logical sum of (Sj) and (Sk) to Si

051i0k Si Sk Transmit (Sk) to Si

051ij0 Si Sj!SB Logical sum of (Sj) and sign bit to Si (Sj ≠ 0)

051i00 Si SB Enter sign bit into Si



CPU Module (CPE1) Scalar Logical

23Cray Research ProprietaryHTM-300-0

Table 5.  Address Logical Functional Unit Instructions 

Instruction CAL Description

044ijk Ai Aj&Ak Logical product of (Aj) and (Ak) to Ai

045ijk Ai #Ak&Aj Logical product of (Aj) and one’s complement of (Ak) to Ai

046ijk Ai Aj\Ak Logical difference of (Aj) and (Ak) to Ai  (Aj ≠ 0)

047ijk Ai #Aj\Ak Logical equivalence of (Ak) and (Aj) to Ai

047i0k Ai #Aj Transmit one’s complement of (Ak) to Ai

050ijk Ai Aj!Ai&Ak Logical product of (Ai) and (Ak) complement ORed with
logical  product of (Aj) and (Ak)

051ijk Ai Aj!Ak Logical sum of (Aj) and (Ak) to Ai

Address and Scalar Mask

The address mask and scalar mask functions are not scalar logical
operations, but are included in this section.  Address and scalar mask
functions use instructions 042ijk and 043ijk.  Refer to Table 6 and Table 7
for the scalar and address mask instruction formats, respectively.

Table 6.  Scalar Mask Instructions

Instruction CAL Description

042ijk Si<exp Form ones mask in Si exp bits from the right; jk
field = 100 – exp

042i77 Si 1 Enter 1 into Si

042i00 Si-1 Enter  -1 into Si; 
(Si = 177777  177777  177777  177777)

043ijk Si >exp Form ones mask in Si exp bits from the left:  
jk field = exp

043ijk Si #<exp Form zeroes mask in Si exp bits from the right:
jk field gets 1008= exp

043i00 Si 0 Clear Si



Scalar Logical CPU Module (CPE1)

24 Cray Research Proprietary HTM-300-0

Table 7.  Address Mask Instructions

Instruction CAL Description

042ijk Ai<exp Form ones mask in Ai exp bits from the right; 
jk field = 100 – exp

042i77 Ai 1 Enter 1 into Ai

042i00 A-1 Enter  -1 into Ai; 
(Ai = 177777  177777  177777  177777)

043ijk Ai>exp Form ones mask in Ai exp bits from the left:  
jk field = exp

043ijk Ai #<exp Form zeroes mask in Ai exp bits from the right:
jk field gets 1008 = exp

043i00 Ai 0 Clear Ai

The address and scalar mask functional unit is located on the SS options.
When the 042ijk or 043ijk instruction issues, the jk field is sent from the
BU0 option.  The jk field determines how many 1 bits are set, and the h
field bit 0 determines whether the mask should be formed from the left or
the right.  Figure 12 is a block diagram of the scalar mask functional unit.

Figure 12.  Scalar Mask Block Diagram

Sji

SS000

jk

h

Scalar
Shift

Vector
Mask
Upper

Address/
Scalar Maskh0

MUX

ORed
AV000

Address/Scalar
Registers

(AV, AW, AX, AY)

AW000

AW001

AW002

AX000

AX001

AY000

AY001

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 32 – 39

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63IAA – IDP

IEE

IGA – IGF
(BU)

(IC)

Lower



CPU Module (CPE1) Scalar Logical

25Cray Research ProprietaryHTM-300-0

Transmit nm  to S i, Si Upper, S i Lower

Constant data can be transmitted to an S register by four different
instructions.  Refer to Table 8 for a list of these instructions.

Table 8.  Transmit nm to Si Instructions

Instruction CAL Description

040i00nm Si exp Transmit expression = nm to Si, bits 
0 through 31 (bits 32 through 63 = 0)

040i20nm Si Si:exp Transmit expression = nm to Si, bits 0 through
31 (bits 32 through 63 unchanged) (j2 = 0)

040i40nm Si exp:Si Transmit expression = nm to Si, bits 32
through 63 (bits 0 through 31 unchanged) 
(j2 = 1)

041i00nm Si exp Transmit expression = one’s complement of
nm to Si, bits 0 through 31 (Si bits 32 through
63 = 1)



Scalar Logical CPU Module (CPE1)

26 Cray Research Proprietary HTM-300-0

This page intentionally left blank.



27Cray Research ProprietaryHTM-300-0

ADDRESS/SCALAR POP/PARITY AND LEADING ZERO

The address/scalar population count functional unit counts the number of
1 bits in the scalar (S) register or address (A) register as designated by the
k field of instruction 026ijk (k = 0 or 1 for S registers, and k = 2 or 3 for A
registers).  The maximum count is 1008 (6410) for the corresponding
number of 1 bits set in the A or S register.  The smallest count is zero,
which occurs when no bits are set in the A or S register.

The k field of the instruction determines whether or not the entire
population count is recorded in Ai.  If the instruction is 026ij0/2, all 7 bits
of the final population count are sent to the A register.  When a 026ij1/3
instruction is issued, the entire S or A register is counted for the number of
1 bits set, but only bit 0 of the count is sent to the A register.  If bit 0 of the
count equals 0, then the count has even parity, indicating an even number
of bits set.  If bit 0 of the count equals 1, then the count has odd parity.

Starting from bit position 63, the address/scalar leading zero count
functional unit counts the number of 0’s preceding the first bit set to a 1 in
a specified address or scalar register.  The number of leading 0’s is then
transferred to the lower 7 bits of the Ai register.  To use the address/scalar
leading zero count functional unit, a 027ij0 instruction is issued where Sj
is the operand and Ai is the result register.  The 027ij1 instruction is issued
when Aj is the operand and Ai is the result register.

The SS option performs scalar pop/parity and leading zero functions.
Population count/parity and leading zero functions are performed on either
a scalar or an address register operand, and the result is sent to an address
register.  Table 9 describes the instructions that use the pop/parity and
leading zero functional unit, and Figure 13 illustrates the A/S
population/parity/leading zero count.



Address/Scalar Pop/Parity and Leading Zero CPU Module (CPE1)

28 Cray Research Proprietary HTM-300-0

Table 9.  Scalar Pop Count/Parity and Leading Zero Count Instructions 

Instruction CAL Description

026ij0 Ai  PSj Transmit population count of (Sj) to Ai

026ij1 Ai  QSj Transmit population count parity of (Sj) to Ai

026ij2 Ai  PAj Transmit population count of (Aj) to Ai

026ij3 Ai  QAj Transmit population count parity of (Aj) to Ai

027ij0 Ai  ZSj Transmit leading zero count of (Sj) to Ai

027ij1 Ai  ZAj Transmit leading zero count of (Aj) to Ai

Figure 13.  A/S Population/Parity/Leading Zero Count

Sj/Si Bits 0 – 15

Sj/Si Bits 16 – 31

Sj/Si Bits 32 – 47

Sj/Si Bits 48 – 63

AV000

AW000

Go 026ijx

      027ij0
(JB000)

Result Bits 0 – 6

AW001

AW002

AX001

AX000

AY000

AY001

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63

Bits 32 – 39 AV000

Bits 0 – 7

IED

OFA – OFG

IAA – IAP

IBA – IBP

ICA – ICP

IDA – IDP

Aj/Ai Bits 0 – 15

Aj/Ai Bits 16 – 31

Aj/Ai Bits 32 – 47

Aj/Ai Bits 48 – 63

IJA – IJP

IKA – IKP

ILA – ILP

IMA – IMP

IGA – IGCj Data
(BU001)

IGD – IGFk Data
(BU000)

IEEh0 Bit
(IC000)

4-bit Sum

8-bit Sum

16-bit Sum

32-bit Sum

64-bit Sum

I
n
s
t
r
u
c
t
i
o
n

D
e
c
o
d
e

SS000



CPU Module (CPE1) Address/Scalar Pop/Parity and Leading Zero

29Cray Research ProprietaryHTM-300-0

This page intentionally left blank.



30 Cray Research Proprietary HTM-300-0

ADDRESS REGISTER SHIFT

The address register shift function is performed on the SS option (refer to
Figure 22 for a block diagram of address register shift).  This functional
unit performs both left and right single-register shifts and left and right
double-register shifts (also referred to as “long shifts”).  All shifts are
end-off with zero fill.  For example, if data is shifted more than 6410
places in a single shift, or more than 12810 places in a double-register
shift, the data is shifted completely off the register, leaving the register
cleared.

The shift unit performs only left shifts.  The shift count for a right shift
must be in the two’s complement form; the unit then performs a left shift.
Refer to Table 10 for a list of the address register shift instructions.

NOTE: To issue A-register-shift instructions, a 005400 (EIS) instruction
must precede the shift instruction.

Table 10.  Address Register Shift Instructions

Instruction CAL Description

052ijk A0 Ai<exp Shift (Ai) left exp = jk places to A0

053ijk A0 Ai>exp Shift (Ai) right exp = 1008–jk places to A0

054ijk Ai Ai<exp Shift (Ai) left exp = jk places to Ai

055ijk Ai Ai>exp Shift (Ai) right exp = 1008–jk places to Ai

056ijk Ai Ai, Aj<Ak Shift (Ai) and (Aj) left (Ak) places to Ai

056ij0 Ai Ai, Aj<1 Shift (Ai) and (Aj) left one place to Ai

056i0k Ai Ai<Ak Shift (Ai) left (Ak) places to Ai

057ijk Ai Aj, Ai>Ak Shift (Aj) and (Ai) right (Ak) places to Ai

057ij0 Ai Aj, Ai>1 Shift (Aj) and (Ai) right one place to Ai

056i0k Ai Ai>Ak Shift (Ai) right (Ak) places to Ai



CPU Module (CPE1) Address Register Shift

31Cray Research ProprietaryHTM-300-0

Address Register Single Shift

The address register single-shift instructions are 052ijk through 055ijk.
The first two instructions perform left single shifts (052ijk) and right
single shifts (053ijk) on the content of the Ai register and always store the
result in A0.  The shift count is obtained from the jk field of the
instruction.  The value placed in the jk field for the single-shift
instructions depends on whether it is a left or right shift.  For a single left
shift, the value in the jk field is the number of octal places desired to shift
Ai.  This allows a shift left of 0 to 778 places.  For a right shift, the jk field
is equal to the two’s complement of the actual number of places desired to
shift right.  If a shift of 248 places were required, 54 would be entered in
the jk field (two’s complement of 24 is 54).

When instructions are written in machine code, this operation must be
done by the person writing the code.  However, when instructions are
written in CAL, this is done by the assembler.  In the CAL instruction, you
would simply enter the shift count.  This allows a shift right of 1 to 1008
places.  Because the two’s complement of the shift count is used for a
single shift, a shift right 0 places is not possible.

The 054ijk and 055ijk instructions perform single shifts left or right on the
contents of Ai.  However, these instructions store the result of the shift
back in Ai.  These shifts overwrite the original contents of Si with the new
results from the shifter.

Address Register Double Shift

Double shifts work similarly to single shifts and are end-off with zero fill.
The difference is that a double shift concatenates two S registers, forming
a 128-bit register.  The arrangement of the two registers is determined by
the shift direction.

Double shifts always shift data into Si.  The two instructions associated
with double shifts are 056ijk (left double shift) and 057ijk (right double
shift).  The double shifts use the i and j fields to specify the two operand
registers; the i field also specifies the result register.  The k field of the
instructions specifies the A register used for the shift count.

Because a double shift uses a 128-bit operand and shifts are end-off with
zero fill, a shift equal to or greater than 12810 (2008) produces a result of
zero.  The A register bits 0 through 6 are used as a shift count, providing a
shift of 0 to 1778.  Bit 7 is checked, and if this bit is set to a 1, it causes the
double shift result to equal zero.  For right double shifts, the shift count
does not need to be entered into the A register in two’s complement form;
the hardware performs this function.



Address Register Shift CPU Module (CPE1)

32 Cray Research Proprietary HTM-300-0

Address Register Shift Count Description

The AV option sends 7 bits of shift count to the SS option.  With both
single and double shifts, the breakdown of the shift count is nearly the
same, except that the double shift has 1 extra bit (bit 6).  Refer to
Figure 14 for a breakdown of the shift count.

Figure 14.  Shift Count Breakdown

Double
Shift
Only
6
64

5
32

4
16

3
8

2
4

1
2

0
1

Bit Position
Shift Value

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: All references to shift counts in this documentation are in
decimal notation.

If the jk field of a left single shift equals 278 and bits 4, 2, 1, and 0 are set,
the shift values are 16, 4, 2, and 1, respectively.  The sum of the shift
values is 23 (16 + 4 + 2 + 1) and the unit  shifts the data left 2310 places.

The hardware that performs the shifts is the same for both left and right
shifts.  In reality, the hardware can perform only left shifts.  Right shifts
are accomplished by the way in which data is entered into the shifter,
hence the use of two’s complement for right shifts.



CPU Module (CPE1) Address Register Shift

33Cray Research ProprietaryHTM-300-0

Address Register Left Single Shift

Figure 15 illustrates how a left single shift is performed for a 054220
instruction.  (Ai Ai<exp), shift A2 left jk places (208) with data bit 10 set.

Figure 15.  Address Register Left Single Shift

A2 =

A2 Final Results

Address Shift Functional Unit

Bit
10

Shift A2 1610 places
to the left, moving bit
26 to bit position 10Bit

26

Bit 10

Bit 26



Address Register Shift CPU Module (CPE1)

34 Cray Research Proprietary HTM-300-0

Address Register Right Single Shift

Figure 16 illustrates how a right single shift is performed using left shifts
and a two’s complement shift count.  This example uses a 055254
instruction (Ai>Ai exp) that shifts Ai right exp = 100 – jk places to Ai.  In
this example, data bit 45 shifts to the right 248 (2010) places.  Notice that
the jk field of the instruction 055254 contains 548, which is the two’s
complement of 248.  The content of A2 is shifted to the left 548 places to
set bit 25 of the result.

Figure 16.  Address Register Right Single Shift

Address Shift Functional Unit

Shift  548

A2 =

A2 =

Bit
25

Bit 45

Bit 25

Bit 45

Bit 63 0 63 0

Bit 25

NOTE: On a right shift, the programmer is responsible for converting
the shift count to a two’s complement value and supplying that
value to the functional unit.



CPU Module (CPE1) Address Register Shift

35Cray Research ProprietaryHTM-300-0

Address Register Left Double Shift

Double shift instructions execute in the same manner as single shifts
except that the double shift concatenates two 64-bit registers to form a
value.  Figure 17  illustrates a left double shift using a 056123 instruction
(Ai A1, Aj<Ak).  In this example,  (Ai) and (Aj) left shift (Ak) places to
Ai.  A3 = 408 (3210), A1 has bit 30 set, and S2 has bit 10 set.  When a left
double shift occurs, the content of Aj is moved into Ai, and the two
registers are positioned as shown with Ai ahead of Aj.

Figure 17.  Address Register Left Double Shift

40

A2 (Aj) =

A1 (Ai) =

A3 = – Shift Control

Address Shift Functional Unit

Ai Aj

Shift 32 Shift 32

= A1 Final Result

(A2)(A1)

Bit
62

Bit
42

Bit 10

Bit 30

Bit 30 Bit 10

Bit 62

Bit 62

Shifting Ai and Aj to the left 32 places puts bit 30 of A1 at bit position 62
and bit 10 of A2 at bit position 41.  Because bit 41 of A2 does not transfer
to the result register (A1), it is lost.  The result bit (bit 62) is sent to the Ai
(A1) register.  The Aj (A2) register remains unchanged.



Address Register Shift CPU Module (CPE1)

36 Cray Research Proprietary HTM-300-0

Address Register Right Double Shift

To perform an address register right double shift, a 057ijk [(A i Aj, Ai
>Ak),  shift (Aj) and (Ai) right (Ak) places to Ai] instruction is used.
Figure 18 illustrates a 057123 instruction with the indicated parameters.

Figure 18.  Address Register Right Double Shift

60

A1 =

A2 =

A3 = – Shift Control

Address Shift Functional Unit

AiAj

Shift 80 Shift 80

= A1 Final Result

(A1)(A2)

Bit
56

Bit
36

Bit 20

Bit 40

Bit 20Bit 40

Bit 56

Bit 56

To right shift Aj and Ai using left shifts, the two’s complement is first
performed on A3, which currently equals 608 (4810).  Because the two’s
complement is 1208 (or 10100002 or 8010), the required shift can be
accomplished through successive shifts of 6410 and 1610 for a total shift of
8010 places.  A left shift of 8010  moves bit 40 of A2 to bit position 56
inside the dotted box and bit 20 of A1 to bit position 36 of A2.  Because
bit 36 does not transfer into the result register (indicated by the dotted
box), it is lost.  Bit 56 is sent to the final result register (A1).



CPU Module (CPE1) Address Register Shift

37Cray Research ProprietaryHTM-300-0

Left Single-shift Instruction

Refer to Figure 19 when reading the following two examples of the
address register left single-shift instruction.

Figure 19.  Example of an A Register Left Single-shift Instruction

2

j                        k

32 4

= jk Field

052ijk Results to A0

054ijk Results to Ai

1 0 2 1 0Bits

= Shift Values Decimal16 28 1

Example 1: Write the instruction to shift the contents of A2 left 
2010 places and put the result into A0.

Steps: 1. 052ijk – left shift instruction result goes to A0

2. jk field – shift count 2010 = 248 = jk field

3. 052224 – final instruction

Example 2: Write the instruction to shift A4 left 3510 places and put the 
result into A4.

Steps: 1. 054ijk – left shift instruction result goes to Ai

2. jk field – shift count 3510 = 438

3. 054443 – final instruction



Address Register Shift CPU Module (CPE1)

38 Cray Research Proprietary HTM-300-0

Right Single-shift Instruction

The right single-shift count is the jk field of the instruction, which must
either be in the two’s complement form or 1008 minus the number of
places to right shift.  The following two examples show an address
register right single-shift instruction.

• 053ijk results to A0
• 055ijk results to Ai

Example 1: Write the instruction to shift A5 right 1010 places and put 
 the result into A0.

Steps: 1. 053ijk – right shift instruction results to A0

2. jk field – shift count in two’s complement equals 668

1010 = 128 = 001010

two’s complement = 110101

        + 1

110110 = 668

3. 053566 – final instruction

Example 2: Write the instruction to shift A7 right 2810 places.

Steps: 1. 055ijk right shift instruction results to Ai

2. jk field – shift count in two’s complement equals

2810 = 348 = 011100

two’s complement = 100011

        + 1

100100 = 448

or 1008 – 348 = 448

3. 055744 – final instruction



CPU Module (CPE1) Address Register Shift

39Cray Research ProprietaryHTM-300-0

Left Double-shift Instruction

Refer to Figure 20 when reading the following example of an address
register left double-shift instruction.

Figure 20.  Example of an Address Register Left Double-shift Instruction

056ijk Shift Ai and Aj left by Ak places to Ai

Ai Aj

Ai

Ak contains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any bits from 7 through 63 are set, the results of Ai are zeroed.

Zero Results 64  32  16   8    4     2    1 = Valid Decimal Shifts

On a left double shift, the contents of Aj are always shifted into Ai.  This shift is done
inside the address shift functional unit.

Bits 63 7 6 5 4 3 2 1 0     = Ak

Example 1: Write the instruction to double shift A2 and A3 left 6410 
places and put the results into A2.

056234 – final instruction, where A4 – 1008

NOTE: A 056 instruction with i = j and (Ak)< 64 effects a circular left
shift.



Address Register Shift CPU Module (CPE1)

40 Cray Research Proprietary HTM-300-0

Right Double-shift Instruction

Refer to Figure 21 when reading the following example of a scalar right
double-shift instruction.

Figure 21.  Example of an Address Register Right Double-shift Instruction

Bits 63 7 6 5 4 3 2 1 0     = Ak

057ijk Shift Aj and Ai right by Ak places to Ai

Aj Ai

Ai

Zero Results

Two’s Complement

64  32  16   8     4     2    1 = Valid Decimal Shifts

= During Right Double Shift

Ak contains the shift count, and address (A) register bits 0 through 6
contain the valid shift counts.  If any bits from 7 through 63 are set, the
results of Ai are zeroed.  Also, the hardware generates the two’s
complement of the shift count Ak register bits 0 through 6 on a right
double shift.

On a right double shift, the contents of Aj are always shifted into Ai.  This
operation and the two’s complement of the shift count occur inside the
address shift functional unit.

Example 1: Write the instruction to double shift right A4 and A5 
3210 places and put the result into A4.

057454 – final instruction, where A4 = 408 
hardware generates a shift count of 1408 inside 
the functional unit.

NOTE: Issue a 057 instruction with i = j and (Ak)< 64 to effect a
circular right shift.



C
P

U
 M

odule (C
P

E
1)

A
ddress R

egister S
hift

41
C

ray R
esearch P

roprietary
H

T
M

-300-0

Figure 22.  Address Register Shift

Aj/Ai  Bits 0 – 15

Aj/Ai Bits 16 – 31

Aj/Ai Bits 32 – 47

Aj/Ai Bits 48 – 63

AV000

AW000

Go A Type
(Gate A Data)

(JB000)
h0 Bit
(1 = Right Shift)

(IC000)

Ak Shift Count
(AV000)

Ak = 0
(AV, AW, AX, AY)

OAA – OAP

OBA – OBP

OCA – OCP

ODA – ODP

OHA – OHG
(VS)

OHH
(VS)

SS

AW001

AW002

AX001

AX000

AY000

AY001

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 32 – 39

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63

Shift Count (Ak)

Aj Data

Ai Data

Ai Result

(Ak)  7 – 63 = 0

IGA – IGF
JA001 via BT
jk Shift Count

IJA – IJP

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 32 – 39

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63

IEF

IEE

IHA – IHH

IIA – IIG

IKA – IKP

ILA – ILP

IMA – IMP

Ai Bits 0 – 15

Ai Bits 16 – 31

Ai Bits 32 – 47

Ai Bits 48 – 63

Ak Shift Count

No Ak Overflow

AV000

AW000

AW001

AW002

AX001

AX000

AY000

AY001



42 Cray Research Proprietary HTM-300-0

SCALAR SHIFT

The scalar shift function is performed on the SS option (refer to Figure 31
for a block diagram of a scalar shift).  This functional unit performs both
left and right single-register shifts, and left and right double-register shifts
(also referred to as “long shifts”).  All shifts are end-off with zero fill.  For
example, if data is shifted more than 6410 places in a single shift, or more
than 12810 places in a double-register shift, the data is shifted off the
register.  The data is then lost, and the register is filled with 0’s.

The shift unit performs only left shifts.  The shift count for a right shift
has to be in the two’s complement form; the unit then performs a left shift.
Refer to Table 11 for a list of the scalar shift instructions.

Table 11.  Scalar Shift Instructions

Instruction CAL Description

052ijk S0 Si<exp Shift (Si) left exp = jk places to S0

053ijk S0 Si>exp Shift (Si) right exp = 1008 – jk places to S0

054ijk Si Si<exp Shift (Si) left exp = jk places to Si

055ijk Si Si>exp Shift (Si) right exp = 1008 – jk places to Si

056ijk S1 Si, Sj<Ak Shift (Si) and (Sj) left (Ak) places to Si

056ij0  � S1 Si, Sj<1 Shift (Si) and (Sj) left 1 place to Si

056i0k  � S1 Si<Ak Shift (Si) left (Ak) places to Si

057ijk Si Sj, Si>Ak Shift (Sj) and (Si) right (Ak) places to Si

057ij0  � S1 Sj, Si>1 Shift (Sj) and (Si) right 1 place to Si

057i0k  � S1 Si>Ak Shift (Si) right (Ak) places to Si

† If j = 0, then (Sj) = 0.

‡ If k = 0, then (Ak) = 1.

Scalar Single Shift

The scalar single-shift instructions are 052ijk through 055ijk.  The first
two instructions perform single shifts left (052ijk) and right (053ijk) on the
contents of the Si register and always store the result in S0.  The shift
count is obtained from the jk field of the instruction.  How the value is



CPU Module (CPE1) Scalar Shift

43Cray Research ProprietaryHTM-300-0

represented in the jk field for single-shift instructions depends on whether
the shift is left or right.  For a single left shift, the value in the jk field
represents the number of octal places (in the range of 0 to 778 places) to
shift Si.  For a right shift, the jk field is equal to the two’s complement of
the actual number of places to shift right.  If a shift of 248 places were
required, 54 would be entered in the jk field (the two’s complement of 24
is 54).

When instructions are written in machine code, the programmer is
responsible for complementing the shift count.  However when
instructions are written in CAL, the assembler performs this operation
automatically; that is, in the CAL instruction, simply enter the shift count
in the range of 1 to 1008 places.  Because the two’s complement of the
shift count is used for a single shift, a right shift of 0 places is not possible.

The 054ijk and 055ijk instructions perform single shifts left or right on the
contents of Si.  However, these instructions store the result of the shift
back in Si.  These shifts overwrite the original contents of Si with the new
results from the shifter.

Scalar Double Shift

Double shifts are similar to single shifts; all shifts are end-off with zero
fill.  However, a double shift concatenates two S registers, forming a
128-bit register.  The arrangement of the two registers is determined by
the shift direction.

Double shifts always shift data into Si.  The two instructions associated
with double shifts are 056ijk (double left shift) and 057ijk (double right
shift).  The double shifts use the i and j fields to specify the two operand
registers; the i field also specifies the result register.  The k field of the
instructions specifies the A register used for the shift count.

A double shift uses a 128-bit operand and shifts are end-off with zero fill.
Therefore a shift equal to or greater than 12810 (2008) produces a result of
zero.  The shift count is determined by bits 0 through 6 of the Ak register,
providing a shift range of 0 to 1778.  For right double shifts, the shift
count does not need to be entered into the A register in two’s complement;
the hardware performs this function.

Scalar Shift Count Description

The AV000 option sends the shift count to the SS option.  All eight
A-series options check the value of the 64-bit A register to determine if
any bits greater than bit 6 have been set.  If any of these bits are set, the



Scalar Shift CPU Module (CPE1)

44 Cray Research Proprietary HTM-300-0

result is lost due to overshift.  If each A-series option reports that its bits
are zero, the shift count is valid and a signal called Ak = 0 is sent to the SS
option.

The AR option sends 7 bits of shift count to the SS option.  For both
single and double shifts, the breakdown of the shift count is similar,
except that the double shift has 1 extra bit (bit 6).  Refer to Figure 23 for a
breakdown of the shift count.

Figure 23.  Shift Count Breakdown

Double
Shift
Only
6
64

5
32

4
16

3
8

2
4

1
2

0
1

Bit Position
Shift Value

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in this document refer to a decimal count.

If the jk field of a left single shift equals 278 and bits 4, 2, 1, and 0 are set,
the shift values are 16, 4, 2, and 1, respectively.  The sum of the shift
values is 23 (16 + 4 + 2 + 1), and the instruction shifts the data left 2310
places.

The hardware that performs the shifts is the same for both left and right
shifts.  (Actually, the physical hardware can perform only left shifts.)
Right shifts are achieved by the way in which the data is entered into the
shifter and by the use of two’s complement values for shift counts.



CPU Module (CPE1) Scalar Shift

45Cray Research ProprietaryHTM-300-0

Scalar Left Single Shift

Figure 24 is an illustration of how a left single shift is performed for a
054220 instruction (Si Si<exp).  In the following example, the contents of
S2 (data bit 10 set) are shifted left 208 places (1610 ), and the result is
returned to S2.

Figure 24.  Scalar Left Single Shift

S2 =

S2 Final Result

Scalar Shift Functional Unit

Shift S2 1610
places to the left,
moving bit 10 to
bit position 26

Bit
26

Bit 10

Bit 10

Bit 26



Scalar Shift CPU Module (CPE1)

46 Cray Research Proprietary HTM-300-0

Scalar Right Single Shift

Figure 25 illustrates how a right single shift is performed using left shifts
and a two’s complement shift count.  This example uses a 055254
instruction (Si>Si exp) that shifts Si right exp = 100 – jk places to Si.

In this example, data bit 45 shifts to the right 248 (2010) places.  Notice
that the jk field of the instruction 055254 contains 548, which is the two’s
complement of 248, causing S2 to be shifted to the left 548 places to set bit
25 of the result.

Figure 25.  Scalar Right Single Shift

Scalar Shift Functional Unit

Shift  548

S2 =

S2 =

Bit
25

Bit 45

Bit 45

Bit 25

Bit 25

Bit 63 0 63 0

NOTE: It is the programmer’s responsibility to perform the two’s
complement of the shift count and supply that value to the
functional unit.



CPU Module (CPE1) Scalar Shift

47Cray Research ProprietaryHTM-300-0

Scalar Left Double Shift

Double shifts are similar to single shifts except that they concatenate two
64-bit registers to form a value.  Figure 26 illustrates a left double shift
using a 056123 instruction (Si, Sj < Ak).  In this example, S (Si) and (Sj)
shift left (Ak) places to Si.  Ak = A3 = 408 (3210).  Initially, bit 30 is set in
S1, and bit 10 is set in S2.  During a left double shift, the content of Sj
moves into Si.  The two registers are concatenated as illustrated, with Si
ahead of Sj.

Figure 26.  Scalar Left Double Shift

40

S2 (Sj) =

S1 (Si) =

A3 = – Shift Control

Scalar Shift Functional Unit

Si Sj

Shift 32 Shift 32

= S1 Final Result

(S2)(S1)

Bit
62

Bit 10

Bit 30

Bit
41 Bit 10Bit 30

Bit 62

Bit 62

Shifting Si and Sj to the left 32 places puts bit 30 of S1 at bit position 62
and bit 10 of S2 at bit position 41.  Bit 41 of S2 does not enter the result
register S1 and is lost.  The result bit (bit 62) is then sent to the Si (S1)
register.  The content of register Sj (S2) remains unchanged.



Scalar Shift CPU Module (CPE1)

48 Cray Research Proprietary HTM-300-0

Scalar Right Double Shift

A 057ijk instruction (Si Sj, Si > Ak) shifts (Sj) and (Si) right (Ak) places to
Si.  Figure 27 illustrates a 057123 instruction with the indicated
parameters.

Figure 27.  Scalar Right Double Shift

60

S1 =

S2 =

A3 = – Shift Control

Scalar Shift Functional Unit

SiSj

Shift 80 Shift 80

= S1 Final Result

(S1)(S2)

Bit
56

Bit
36

Bit 20

Bit 40

Bit 20Bit 40

Bit 56

Bit 56

To right shift Sj and Si using left shift operations, the content of A3, which
currently equals 608 (4810) is converted into a two’s complemented value.
The two’s complement of 608 is 1208 (or 10100002 or 8010).  The required
shift can be accomplished through successive shifts of 6410 and 1610.  A
left shift of 8010 moves bit 40 in S2 to bit position 56 inside the dotted box
and bit 20 of S1 to bit position 36 of S2.  Because bit 36 does not enter
the intermediate result register (indicated by the dotted box), it is lost, and
bit 56 is sent to the final result register (S1).



CPU Module (CPE1) Scalar Shift

49Cray Research ProprietaryHTM-300-0

Left Single-shift Instruction

Refer to Figure 28 while reading the following two examples of the scalar
left single-shift instruction:

• 052ijk, results to S0
• 054ijk, results to S1

Figure 28.  Example of a Scalar Left Single-shift Instruction

2

j                        k

32 4

= jk Field1 0 2 1 0Bits

= Shift Values Decimal16 28 1

Example 1: Write the instruction that shifts S2 left 2010 places, and 
places the results into S0.

Steps: 1. 052ijk – left shift instruction result goes to S0

2. jk field– shift count 2010 = 248 = jk field

3. 052224 – final instruction

Example 2: Write the instruction that shifts S4 left 3510 places, and 
places the results into S4.

Steps: 1. 054ijk – left shift instruction result goes to Si

2. jk field– shift count 3510 = 438

3. 054443 – final instruction



Scalar Shift CPU Module (CPE1)

50 Cray Research Proprietary HTM-300-0

Right Single-shift Instruction

The right single-shift count is the jk field of the instruction, which must be
either in the two’s complement form or equal to 1008 minus the number of
places to right shift.  Two examples of a scalar right single-shift
instruction follow:

• 053ijk, results to S0
• 055ijk, results to Si

Example 1: Write the instruction that shifts S5 right 1010 places, and 
places the results into S0.

Steps: 1. 053ijk – right shift instruction results to S0

2. jk field – shift count in two’s complement equals 668

   1010 = 128 = 001010

one’s complement = 110101
               + 1

two’s complement = 110110 = 668

3. 053566 – final instruction

Example 2: Write the instruction to shift S7 right 2810 places.

Steps: 1. 055ijk right shift instruction results to Si

2. jk field – shift count in two’s complement equals

   2810 = 348 = 011100

one’s complement = 100011
               + 1

two’s complement = 100100 = 448

    or 1008 – 348 = 448

3. 055744 – final instruction



CPU Module (CPE1) Scalar Shift

51Cray Research ProprietaryHTM-300-0

Left Double-shift Instruction

Refer to Figure 29 while reading the following example of a scalar left
double-shift instruction:  056ijk, Shift Si and Sj left Ak places to Si.

Figure 29.  Example of a Scalar Register Left Double-shift Instruction

Zero Results

Bits 63 7 6 5 4 3 2 1 0     = Ak

056ijk Shift Si and Sj left by Ak places to Si

Si Sj

Si

Ak contains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any of bits 7 through 63 are set, the results of Si are zeroed.

= Valid Decimal Shifts

On a left double shift, the contents of Sj are always shifted into Si.  This shift is done
inside the scalar shift functional unit.

64 32 16 8 4 2 1

Example 1: Write the instruction that left double shifts S2 and S3 6410 
places, and places the result into S2.

Step 1.  056234 – final instruction, where (A4) = 1008

NOTE: A circular left shift can be achieved by issuing a 056 instruction
with i = j and (Ak) < 64.



Scalar Shift CPU Module (CPE1)

52 Cray Research Proprietary HTM-300-0

Right Double-shift Instruction

Refer to Figure 30 while reading the following example of a scalar right
double-shift instruction.

Figure 30.  Example of a Scalar Register Right Double-shift Instruction

Bits 63 7 6 5 4 3 2 1 0

057ijk Shift Sj and Si right by Ak places to Si

Sj Si

Si

      Zero Results

Two’s Complement

= Valid Decimal Shifts

= During Right Double Shift

64 32 16 8 4 2 1

Ak contains the shift count, and address (A) register bits 0 through 7
contain the valid shift counts.  If any bit in the range from bit 7 through
bit 63 is set, the result from Si is zeroed.  Also, the hardware generates the
two’s complement of the shift count on the Ak register bits 0 through 7 for
a right double shift.

During a right double shift, the contents of Sj are always shifted into Si.
This operation and the two’s complement of the shift count occur inside
the scalar shift functional unit.

Example 1: Write an instruction to right double shift S4 and S5 
3210 places, and place the result into S4.

057454 – final instruction, where (A4) = 408 
hardware generates a shift count of 1408 inside the 
functional unit.

NOTE: A circular right shift can be effected by issuing a 057 instruction
with i = j and (Ak) < 64.



C
P

U
 M

odule (C
P

E
1)

S
calar S

hift

53
C

ray R
esearch P

roprietary
H

T
M

-300-0

AV000

AW000

AW001

AW002

AX001

AX000

AY000

AY001

Sj/Si Bits 0 – 15

Sj/Si Bits 16 – 31

Sj/Si Bits 32 – 47

Sj/Si Bits 48 – 63

Go 056ijk/0571jk
(JB001)

h0 Bit 
(1 = Right Shift)

(IC000)

Ak Shift Count
(AV000)

Ak = 0
(AV, AW, AX, AY)

Si Bits 0 – 15

Si Bits 16 – 31

Si Bits 32 – 47

Si Bits 48 – 63

Ak Shift Count
(VS)

No Ak Overflow
(VS)

Scalar Shift

Shift Count (Ak)

Sj Data

Si Data

Si Result

(Ak)  7 – 63 = 0

IED

OAA – OAP

OBA – OBP

OCA – OCP

ODA – ODP

OHH

IAA – IAP

IBA – IBP

ICA – ICP

IDA – IDP

IEE

IHA – IHH

IIA – IIG

OHA – OHG

SS000

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 32 – 39

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 32 – 39

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63

AV000

AW000

AW001

AW002

AX001

AX000

AY000

AY001

Figure 31.  Scalar Shift



54 Cray Research Proprietary HTM-300-0

ADDRESS MULTIPLY

The AN option performs the address multiply operation (a 032ijk
instruction).  The AN option also distributes (fans out) the Aj and Ak
operands used for other A register operations.

In Triton mode, two 48-bit operands are presented to the functional unit to
produce a 48-bit result.  The AN option then does a sign extension to bit
63 and a leading zero count on the operands to determine whether the
result will fit within 48 bits.  If the result exceeds 48 bits, the 64-bit
incompatibility signal sets, which sets the Address Multiply Interrupt
(AMI) flag in the exchange package.

The AN option does not use a standard pyramid formation multiply
algorithm.  Instead, it uses a variation of the Booth Recode algorithm.
This algorithm enables the address multiply unit to reside on a single
option.

Half of the recode groups form as soon as the data arrives at the AN
option (namely, those groups that are centered on bits 0, 4, 8, 12, 16, etc).
One clock period later, using the same logic, those groups centered on bits
2, 6, 10, and 14 are recoded.  This method enables a multiply operation to
execute on about one-fourth of the logic used in a standard pyramid
multiply.  Because this method holds the Ak operand for 2 clock periods,
the AN operand can accept data only every other clock period.  Refer to
Figure 32 for an illustration of the AN option.



CPU Module (CPE1) Address Multiply

55Cray Research ProprietaryHTM-300-0

Figure 32.  AN OptionÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ

IAA – ICP

IDA – IFP
A Registers

IGF – IGJ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

IHA – IHB

Multiply

Fanout

OCA – ODP,
OEA – OFP

Ak Bits 0 – 7 to VL

OAA – OBV A Register Data

OGA – OGT,
OHA – OHPg Data

Go 032

OIA – OIH Sign Extend Bits
Aj

Ak

Multiply Algorithm

The multiplier is partitioned into 3-bit recode groups centered on the even
bits (0 to 46); a forced zero is added to the first recode group.  The recode
groups are formed as shown in Table 12.  The following subsections
provide examples of standard and Booth Recode multiplication.

Table 12.  Recode Groups

Odd Bit Even Bit i –1 Recode Value Recode Product

0 0 0 +0 0

0 0 1 +1 X47 – X0

0 1 0 +1 X47 – X0

0 1 1 +2 2(X47 – X0)

1 0 0 –2 {2(X47 – X0}’+1

1 0 1 –1 (X47 – X0)’+1

1 1 0 –1 (X47 – X0)’+1

1 1 1 –0 0

i – 1 = Bit to right of recode
group

X47 – X0 = Multiplicand



Address Multiply CPU Module (CPE1)

56 Cray Research Proprietary HTM-300-0

Standard Binary Multiplication

Refer to the following example of standard binary multiplication.

000011  (3)
    011101  (35)

000011
    000000
 000011

     000011
  000011

     000000
 0000001010111

Booth Recode Multiplication

Refer to the following example of Booth Recode multiplication.

   000011   (3)
   011101  (35)

   000000000011
                11111111010
               00000110
         1    000001010111

In the previous example, the multiplier is recoded into bit groups centered
on the even bit.  A forced zero is appended to the first recode group.

As shown in Table 12, the first recode of the multiplier, bits 1 and 0 and
the forced zero, produces a recode value of 010, or +1.  The multiplicand
is brought down to form the first partial product.

The second recode, bits 3, and 2, and 1, produces a recode value of –1.  In
this case, the multiplicand is two’s complemented and left shifted 1 place.

The final recode, bits 5, 4, and 3 produces a recode value of +2.  The
multiplicand is left shifted 1 place.



CPU Module (CPE1) Address Multiply

57Cray Research ProprietaryHTM-300-0

This page intentionally left blank.



58 Cray Research Proprietary HTM-300-0

INTEGER MULTIPLY

The AM option performs the scalar vector integer multiply operation
(166ijk).  In Triton mode, the AA option receives Sj and Vk operands and
sends a 40-bit output to Vi for VL length.  In C90 mode, the AA option
produces a 32-bit result.  To produce the 32 bit result, the Sj operand must
be left shifted 3110  places, and the Vk operand must be left shifted by 1610

places before executing the 166ijk instruction.  (Refer to Figure 33.)

Figure 33.  C90 Integer Multiply Mode
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

015163147

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

63

015163132474863

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

0151631324748

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

63

015163132474863

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

Sj bits 0 through 31 are gated into bit
positions 32 through 63 for Triton mode.

Vk bits 0 through 31 are gated into bit
positions 15 through 47 for C90 mode.

ÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏ

C90 32-bit Mode

Bits

Bits

Bits

Bits

ÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏ

C90 32-bit Mode

3248



CPU Integer Multiply

59Cray Research ProprietaryHTM-300-0

The AM option, like the AN option (refer to the “Address Multiply”
section), also uses the Booth Recode algorithm for the multiply operation.
The AN option performs a leading zero count on the operands to
determine whether the results will fit within 40 bit positions.  The input
operands pass through the floating-point multiply unit before they arrive at
the AM option, as shown in Figure 34.

Figure 34.  AM Option Inputs

IAA – IAT
IBA – IBT

ICA – ICT
IDA – IDT

Sj Bits 0 – 19
Sj Bits 20 – 39

OGA – OGT
OGU – OHNNB

AM

NA

Vk Bits 0 – 19
Vk Bits 20 – 39

OEA – OET
OEU – OFT

IFA – IFHODA – ODH Sj Bits 40 – 47

NC
IFI – IFWOGA – OGO Sj Bits 48 – 62

IGA – IGBOFO – OFP Vk Bits 40 – 41

IGC – IGHOIA – OIF Vk Bits 42 – 47

IEDOHA Valid

IECOJA Go V 166

IC

IEAOYQ Triton Mode

OAA, OAZ
Vi Bits 0 – 25 to 
Result Register

OBA, OBZ
Vi Bits 26 – 51 to 
Result Register

OHQ, OHR 40-bit Mode



60 Cray Research Proprietary HTM-300-0

VECTOR REGISTERS

A CRAY T90 series computer system contains eight vector (V) registers,
which are designated V0 through V7.  Each register contains 12810
elements; each element is 6410 bits wide.  The 12810 elements are divided
into two pipes of even and odd elements.

The vector registers have their own integer functional units, which include
vector add, vector logical 1, vector logical 2, vector shift, vector
population, vector leading zero count, and 32-bit integer multiply.  The
vector registers share the floating-point functional units with the scalar
registers.  These floating-point functional units include floating-point add,
floating-point multiply, floating-point divide/square root and bit matrix
multiply.

The vector registers can send data to memory or load data from memory.
The number of elements sent to a functional unit (including memory)
depends on the value contained in the vector length (VL) register.  Any
element of a vector register can be loaded into a scalar register, and any
scalar register can be loaded into any element of a vector register by using
the 076ijk and 077ijk instructions.

The vector registers use 1-parcel instructions.  In a 1-parcel instruction,
the gh field contains the instruction decode, and the ijk field contains the
operands and destination.  The gh field of the instruction indicates the
functional unit needed, and the ijk field indicates the vector registers used.
Usually, the k field of the instruction selects the vector operand registers,
V0 through V7.  The j field of the instruction indicates either Sj or Vj,
depending on the instruction.  The i field of the instruction points to the
destination or result register.

When preceded by a 005400 instruction, some vector instructions execute
differently.  For example, an instruction sequence of 005400 150ij0 issues,
a left shift of Vj V0 places to Vi is performed.  Without the preceding
005400 instruction, a 150ij0 instruction performs a left shift of Vj A0
places to Vi.



CPU Module (CPE1) Vector Registers

61Cray Research ProprietaryHTM-300-0

The vector registers in the CRAY T90 series system contain a dual set of
functional unit pipes.  Each functional unit has an identical twin functional
unit.  For example, the vector add functional unit is duplicated so that all
the even elements go to one of the vector add functional units, while all
the odd elements go to the other vector add functional unit.  The even and
odd elements are sent to the functional unit simultaneously, and the two
results are loaded back into the result vector register simultaneously.

If the vector add functional unit fails in the even elements, the cause of the
failure is the pipe 0 vector add.  Pipe 1 handles the odd vector elements.  If
the vector length register is an even value, the results are written into the
vector register simultaneously using pipe 0 and pipe 1, until the last
element specified by the vector length is used.  Refer to Table 13 for a list
of the vector register options.

Table 13.  Vector Register Options

Option Type Number Used Description

VB 2

Provide read/write address and control  
(VB0 pipe 0)  
(VB1 pipe 1)
Vector length register
Functional unit release

VE 4
Pipe control  
(VE0,VE1 for pipe 0)                
(VE2,VE3 for pipe 1)

VN 16

Data multiplexing (VN0 – VN7 pipe 0)         
(VN8 – VN15 pipe 1)     
Vector add functional unit
Vector logical functional unit

VQ 16
Data multiplexing and storage                       
(VQ0 – VQ7 pipe 0)                                   
(VQ8 – VQ15 pipe 1)



Vector Registers CPU Module (CPE1)

62 Cray Research Proprietary HTM-300-0

VB Option

The two VB options on a CPU module provide vector read and write
control.  VB0 provides address and control for the even elements of the
vector registers, and VB1 provides the address and control for the odd
elements.  Both VB options have the following common functions:

• Vector read and write address
• Vector read and write length
• Vector chaining control

Each VB option also has the following unique features:

• VB0

• Release vectors for write operations

• Functional unit release for:
Vector logical #1
Vector shift
Vector floating-point multiply
Vector divide

• Even-element addressing

• VB1

• Release vectors for read operations

• Functional unit release for:
Vector logical #2
Vector adder
Vector floating-point add
Vector matrix multiply

• Odd-element addressing

Vector Length Register

The vector length register is located on the VB option.  There are two VB
options, one for each pipe.  Both vector length registers are loaded with
Ak data bits 00 through 06 from the AV000 option.  These bits are needed
to form values from 0 to 1778.  If a value of all 0’s is entered, the VL
register is forced to a value of 2008.



CPU Module (CPE1) Vector Registers

63Cray Research ProprietaryHTM-300-0

A vector length value enters a countdown (decrementing) register.  VL
bit 0 is removed (pseudo right shifted so that a VL value of 200 becomes a
value of 100 in the active register) because each pipe can handle only 100
elements.  Every time VL decrements, it generates 
the Advance Address signal.  The VB option also checks VL bit 0 to
determine whether the vector length is odd or even in order to enable
either pipe 0 for odd vector lengths or pipe 1 for even vector lengths, on
the last operation.

Chaining

If V i, j, or k is reserved as a destination register and the next instruction
tries to use the same vector register as an operand, the next instruction is
allowed to issue.  This is referred to as chaining.

Chain slot time is the time required for the result of a previous instruction
to be presented to the inputs on the VQ options.  If another instruction is
waiting for these results or is addressing the same element, the VQ option
passes the results directly to the read-out register.  The VB option controls
vector chaining by controlling the issuing of the Go Write  signal.

Chaining to common memory read operations occurs on 8-word
boundaries.  Vector control waits for 8 contiguous words to become valid
before the read of that group is allowed.

VE Option

There are four VE options on the CP module.  VE0 and VE1 control
fanout for pipe 0; VE2 and VE3 control fanout for pipe 1.  The VE
options perform the following functions.

• Instruction parcel data fanout to VQ options
• Vector add carry and enable summations and bit toggles
• Vector register parity error information
• Vector functional unit delay chains
• Vector functional unit data valids
• Vk address buffering for common memory
• Release of Vi for write operations



Vector Registers CPU Module (CPE1)

64 Cray Research Proprietary HTM-300-0

VN Option

The VN options perform write data multiplexing on an 8-bit slice of all
functional unit data.  There are 16 VN options.  VN000 to VN007 are for
even-element steering, and VN008 to VN015 are for odd-element
steering.

The VN option performs the following functions:

• Read and write data steering
• Vector read-out control
• Vector add functional unit
• Both vector logical functional units

VQ Option

Sixteen VN and VQ options reside on the CP module as illustrated in
Table 14.  Each option performs read data steering and vector data storage.
The read data steering is done on 4-bit slices.  The contents of the selected
vector register are gated to one of the following destinations:

• Floating-point add
• Floating-point multiply
• Reciprocal, pop, parity, LZ
• Shift
• Common memory port A
• Common memory port B
• Common memory port C
• Common memory write data
• V data to scalar
• Bit matrix multiply

The VN and VQ options contain four high-speed register (HSR) storage
arrays that are 18 bits wide by 64 elements deep.  Sixteen of the bits are
data and 2 bits are for parity.  VQ000 through VQ007 store vector data for
the even elements (pipe 0), and VQ008 through VQ015 store data for the
odd elements (pipe 1).

NOTE: VN/VQ options 12 through 15 do not handle exchange data.



CPU Module (CPE1) Vector Registers

65Cray Research ProprietaryHTM-300-0

Table 14.  VN/VQ Data Steering

Option Pipe 0/Pipe 1 VN3/11 VQ3/11 VN2/10 VQ2/10 VN1/9 VQ1/9 VN0/8 VQ0/8

Read Bits 28 – 31 24 – 27 20 – 23 16 – 19 12 – 15 8 – 11 4 – 7 0 – 3

Write Bits 24 – 31 – 16 – 23 – 8 – 15 – 0 – 7 –

Exchange Bits 60 – 63 55 – 59 52 – 55 48 – 51 44 – 47 40 – 43 36 – 39 32 – 35

Option Pipe 0/Pipe 1 VN7/15 VQ7/15 VN6/14 VQ6/14 VN5/13 VQ5/13 VN4/12 VQ4/12

Read Bits 60 – 63 56 – 59 52 – 55 48 – 51 44 – 47 40 – 43 36 – 39 32 – 35

Write Bits 56 – 63 – 48 – 55 – 40 – 47 – 32 – 39 –

Exchange Bits 28 – 31 24 – 27 20 – 23 16 – 19 12 – 15 8 – 11 4 – 7 0 – 3

Each VQ option has an input that is used to force parity errors into the
HSR arrays.  The maintenance channel provides the following two
features:

• force RAM parity error internal (code 100)
• force RAM parity error external (code 140)

Through the use of the maintenance channel, a specific loop controller and
a specific chip can be given a maintenance function such as force parity
error.

Write Data Steering

The VN options receive the i instruction field from the VE options.  This
field performs internal gating of data to the correct register.  The i field
and the instruction decode enable separate write paths for each vector.
This path stays selected until a new instruction issue changes it.  All the
write paths are separate and all can be active at the same time.  Refer to
Figure 35 for an illustration of the write data path.



Vector Registers CPU Module (CPE1)

66 Cray Research Proprietary HTM-300-0

Figure 35.  Write Data Path

RAM 0 RAM 1

RAM 2 RAM 3

VQ000

Bits 
0 – 15

Bits 
16 – 31

Bits 
32 – 47

Bits 
48 – 63

VQ001

VQ002

VQ003

VQ004

VQ005

VQ006

VQ007

VQ008

VQ009

VQ010

VQ011

VQ012

VQ013

VQ014

VQ015

Odd Element
Storage

RAM 0 RAM 1

RAM 2 RAM 3

Bits 
0 – 15

Bits 
16 – 31

Bits 
32 – 47

Bits 
48 – 63

VN000

VN001

VN002

VN003

VN004

VN005

VN006

VN007

VN008

VN009

VN010

VN011

VN012

VN013

VN014

VN015

Bits 
0 – 7

Bits 
8 – 15

Bits 
16 – 23

Bits 
24 – 31

Bits 
32 – 39

Bits 
40 – 47

Bits 
48 – 55

Bits 
56 – 63

Bits 
0 – 7

Bits 
8 – 15

Bits
16 – 23

Bits 
24 – 31

Bits 
32 – 39

Bits 
40 – 47

Bits 
48 – 55

Bits 
56 – 63

V0

V1

V2

V3

V4

V5

V6

V7

V1

V2

V3

V4

V5

V6

V7

V0

Elements
0 – 62

Elements
0 – 62

Elements
0 – 62

Elements
0 – 62

Elements
1 – 63

Elements
1 – 63

Elements
1 – 63

Elements
1 – 63

Even Element
Storage



CPU Module (CPE1) Vector Registers

67Cray Research ProprietaryHTM-300-0

Read Data Steering

The VN and the VQ options are responsible for read data steering.  Each
VN and VQ option steers 4 bits for all eight vector registers to one of the
following destinations:

• Floating-point add
• Floating-point multiply
• Reciprocal, pop, parity, leading zero
• Shift
• Common memory port A, B, C
• V data to scalar

The VN and VQ options receive the j and k fields of the instruction from
the VE option along with the instruction; this enables one of eight vector
paths to which data is steered.  These paths stay selected until another
instruction changes them.  All the read paths are separate and all can be
active at the same time.  Figure 36 shows the read data path for pipe 0 and
pipe 1 (even elements), and Figure 37 shows the read data path for pipe 0
and pipe 1 (odd elements).  Also refer to the following diagrams for
additional related vector register information:

• Figure 38 – vector register write block diagram (pipe 0)
• Figure 39 – vectors 0 through 3 pipe 0/1 read data path
• Figure 40 – vectors 4 through 7 pipe 0/1 read data path
• Figure 41 – vectors 0 through 3 pipe 0/1 write data path
• Figure 42 – vectors 4 through 7 pipe 0/1 write data path
• Figure 43 – vector register decode bit fanout (pipe 0 and 1 path 1)
• Figure 44 – vector register decode bit fanout (pipe 0 and 1 path 2)
• Figure 45 – S register to vectors
• Figure 46 – memory data to vectors (even elements)
• Figure 47 – memory data to vectors (odd elements)



Vector Registers CPU Module (CPE1)

68 Cray Research Proprietary HTM-300-0

Figure 36.  Read Data Path for Pipe 0, Even Elements

VQ007

VQ006

VQ005

VQ004

VQ003

VQ002

VQ001

VQ000

VQ001

VQ002

VQ003

VQ004

VQ005

VQ006

VQ007

VN000

VN001

VN002

VN003

VN004

VN005

VN006

VN007

Bits 0 – 3

Bits 8 – 11

Bits 16 – 19

Bits 24 – 27

Bits 32 – 35

Bits 40 – 43

Bits 48 – 51

Bits 56 – 59

Bits 4 – 7

Bits 12 – 15

Bits 20 – 23

Bits 28 – 31

Bits 36 – 39

Bits 44 – 47

Bits 52 – 55

Bits 60 – 63

VQ000 Vector 0

Vector 1

Vector 2

Vector 3

Vector 4

Vector 5

Vector 6

Vector 7

Elements 0 – 62

Elements 0 – 62

Bits
0 – 15

Bits
16 – 31

Bits
32 – 47

Bits
48 – 63

Array 0 Array 1

Array 2 Array 3



CPU Module (CPE1) Vector Registers

69Cray Research ProprietaryHTM-300-0

Figure 37.  Read Data Path for Pipe 1, Odd Elements

VQ015

VQ014

VQ013

VQ012

VQ011

VQ010

VQ009

VQ008

VQ009

VQ010

VQ011

VQ012

VQ013

VQ014

VQ015

VN008

VN009

VN010

VN011

VN012

VN013

VN014

VN015

Bits 0 – 3

Bits 8 – 11

Bits 16 – 19

Bits 24 – 27

Bits 32 – 35

Bits 40 – 43

Bits 48 – 51

Bits 56 – 59

Bits 4 – 7

Bits 12 – 15

Bits 20 – 23

Bits 28 – 31

Bits 36 – 39

Bits 44 – 47

Bits 52 – 55

Bits 60 – 63

VQ008 Vector 0

Vector 1

Vector 2

Vector 3

Vector 4

Vector 5

Vector 6

Vector 7

Elements 1 – 63

Elements 1 – 63

Bits
0 – 15

Bits
16 – 31

Bits
32 – 47

Bits
48 – 63

Array 0 Array 1

Array 2 Array 3



CPU Module (CPE1) Vector Registers

71Cray Research ProprietaryHTM-300-0

VQ000
VQ008 ICA –

ICD

IEA –
IED

OAA –
OAD

OAE –
OAH

ICA –
ICD

IEA –
IED

OAI –
OAL

OAM –
OAP

ICA –
ICD

IEA –
IED

OBA –
OBD

OBE –
OBH

ICA –
ICD

IEA –
IED

OBI –
OBL

OBM –
OBP

ICA –
ICD

IEA –
IED

OCA –
OCD

OCE –
OCH

ICA –
ICD

IEA –
IED

OCI –
OCL

OCM –
OCP

ICA –
ICD

IEA –
IED

ODA –
ODD

ODE –
ODH

ICA –
ICD

IEA –
IED

ODI –
ODL

ODM –
ODP

Vector 0

VQ001
VQ009

Vector 1

VQ002
VQ010

Vector 2

VQ003
VQ012

Vector 3

VQ000/8

   Bits 0 – 3

   Bits 4 – 7

  Bits 8 – 11

 Bits 12 – 15

 Bits 16 – 19

 Bits 20 – 23

 Bits 24 – 27

 Bits 28 – 31

 Bits 32 – 35

 Bits 36 – 39

 Bits 40 – 43

 Bits 48 – 51

 Bits 52 – 55

 Bits 56 – 59

 Bits 60 – 63

 Bits 44 – 47

VM000/8

IEA –
IED

VN000/8

VQ001/9

VN001/9

VN001/9

VQ002/10

VN002/10

VN002/10

VQ003/11

VN003/11

VN003/11

VQ004/12

VN004/12

VN004/12

VQ005/13

VN005/13

VN005/13

VQ006/14

VN006/14

VN006/14

VQ007/15

VN007/15

VN007/15

IEA –
IED

IEA –
IED

IEA –
IED

IEA –
IED

IEA –
IED

IEA –
IED

IEA –
IED

ICE –
ICH

OAA –
OAD

OAE –
OAH

OAI –
OAL

OAM –
OAP

OBA –
OBD

OBE –
OBH

OBI –
OBL

OBM –
OBP

OCA –
OCD

OCE –
OCH

OCI –
OCL

OCM –
OCP

ODA –
ODD

ODE –
ODH

ODI –
ODL

ODM –
ODP

VQ000/8

   Bits 0 – 3

   Bits 4 – 7

  Bits 8 – 11

 Bits 12 – 15

 Bits 16 – 19

 Bits 20 – 23

 Bits 24 – 27

 Bits 28 – 31

 Bits 32 – 35

 Bits 36 – 39

 Bits 40 – 43

 Bits 48 – 51

 Bits 52 – 55

 Bits 56 – 59

 Bits 60 – 63

 Bits 44 – 47

VN000/8

IEE –
IEH

VN000/8

VQ001/9

VN001/9

VN001/9

VQ002/10

VN002/10

VN002/10

VQ003/11

VN003/11

VN003/11

VQ004/12

VN004/12

VN004/12

VQ005/13

VN005/13

VN005/13

VQ006/14

VN006/14

VN006/14

VQ007/15

VN007/15

VN007/15

IEE –
IEH

ICE –
ICH

IEE –
IEH

IEE –
IEH

ICE –
ICH

IEE –
IEH

IEE –
IEH

ICE –
ICH

IEE –
IEH

IEE –
IEH

ICE –
ICH

IEE –
IEH

ICE –
ICH

IEE –
IEH

ICE –
ICH

IEE –
IEH

IEE –
IEH

ICE –
ICH

IEE –
IEH

IEE –
IEH

ICI –
ICL

OAA –
OAD

OAE –
OAH

OAI –
OAL

OAM –
OAP

OBA –
OBD

OBE –
OBH

OBI –
OBL

OBM –
OBP

OCA –
OCD

OCE –
OCH

OCI –
OCL

OCM –
OCP

ODA –
ODD

ODE –
ODH

ODI –
ODL

ODM –
ODP

VQ000/8

   Bits 0 – 3

   Bits 4 – 7

  Bits 8 – 11

 Bits 12 – 15

 Bits 16 – 19

 Bits 20 – 23

 Bits 24 – 27

 Bits 28 – 31

 Bits 32 – 35

 Bits 36 – 39

 Bits 40 – 43

 Bits 48 – 51

 Bits 52 – 55

 Bits 56 – 59

 Bits 60 – 63

 Bits 44 – 47

VN000/8

IEI –
IEL

VN000/8

VQ001/9

VN001/9

VN001/9

VQ002/10

VN002/10

VN002/10

VQ003/11

VN003/11

VN003/11

VQ004/12

VN004/12

VN004/12

VQ005/13

VN005/13

VN005/13

VQ006/14

VN006/14

VN006/14

VQ007/15

VN007/15

VN007/15

IEI –
IEL

ICI –
ICL

IEI –
IEL

IEI –
IEL

ICI –
ICL

IEI –
IEL

IEI –
IEL

ICI –
ICL

IEI –
IEL

IEI –
IEL

ICI –
ICL

IEI –
IEL

IEI –
IEL

ICI –
ICL

IEI –
IEL

IEI –
IEL

ICI –
ICL

IEI –
IEL

IEI –
IEL

ICI –
ICL

IEI –
IEL

IEI –
IEL

ICM –
ICP

OAA –
OAD

OAE –
OAH

OAI –
OAL

OAM –
OAP

OBA –
OBD

OBE –
OBH

OBI –
OBL

OBM –
OBP

OCA –
OCD

OCE –
OCH

OCI –
OCL

OCM –
OCP

ODA –
ODD

ODE –
ODH

ODI –
ODL

ODM –
ODP

VQ000/8

   Bits 0 – 3

   Bits 4 – 7

  Bits 8 – 11

 Bits 12 – 15

 Bits 16 – 19

 Bits 20 – 23

 Bits 24 – 27

 Bits 28 – 31

 Bits 32 – 35

 Bits 36 – 39

 Bits 40 – 43

 Bits 48 – 51

 Bits 52 – 55

 Bits 56 – 59

 Bits 60 – 63

 Bits 44 – 47

VN000/8

IEM –
IEP

VN000/8

VQ001/9

VN001/9

VN001/9

VQ002/10

VN002/10

VN002/10

VQ003/11

VN003/11

VN003/11

VQ004/12

VN004/12

VN004/12

VQ005/13

VN005/13

VN005/13

VQ006/14

VN006/14

VN006/14

VQ007/15

VN007/15

VN007/15

IEM –
IEP

ICM –
ICP

IEM –
IEP

IEM –
IEP

ICM –
ICP

IEM –
IEP

IEM –
IEP

ICM –
ICP

IEM –
IEP

IEM –
IEP

ICM –
ICP

IEM –
IEP

IEM –
IEP

ICM –
ICP

IEM –
IEP

IEM –
IEP

ICM –
ICP

IEM –
IEP

IEM –
IEP

ICM –
ICP

IEM –
IEP

IEM –
IEP

IEE –
IEH

IEE –
IEH

Figure 38.  Vectors 0 through 3, Pipe 0/1, Read Data Path



Vector RegistersCPU Module (CPE1)

73Cray Research ProprietaryHTM-300-0

VQ004
VQ012 IFA – 

IFD

IDA – 
IDD

OAA –
OAD

OAE –
OAH

OAI –
OAL

OAM –
OAP

OBA –
OBD

OBE –
OBH

OBI –
OBL

OBM –
OBP

OCA –
OCD

OCE –
OCH

OCI –
OCL

OCM –
OCP

ODA –
ODD

ODE –
ODH

ODI –
ODL

ODM –
ODP

Vector 4

VQ005
VQ013

Vector 5

VQ006
VQ014

Vector 6

VQ007
VQ015

Vector 7

VQ000/8

   Bits 0 – 3

   Bits 4 – 7

  Bits 8 – 11

 Bits 12 – 15

 Bits 16 – 19

 Bits 20 – 23

 Bits 24 – 27

 Bits 28 – 31

 Bits 32 – 35

 Bits 36 – 39

 Bits 40 – 43

 Bits 48 – 51

 Bits 52 – 55

 Bits 56 – 59

 Bits 60 – 63

 Bits 44 – 47

VN000/8

IDA – 
IDD

VN000/8

VQ001/9

VN001/9

VN001/9

VQ002/10

VN002/10

VN002/10

VQ003/11

VN003/11

VN003/11

VQ004/12

VN004/12

VN004/12

VQ005/13

VN005/13

VN005/13

VQ006/14

VN006/14

VN006/14

VQ007/15

VN007/15

VN007/15

IFE –
IFH

OAA –
OAD

OAE –
OAH

OAI –
OAL

OAM –
OAP

OBA –
OBD

OBE –
OBH

OBI –
OBL

OBM –
OBP

OCA –
OCD

OCE –
OCH

OCI –
OCL

OCM –
OCP

ODA –
ODD

ODE –
ODH

ODI –
ODL

ODM –
ODP

VQ000/8

   Bits 0 – 3

   Bits 4 – 7

  Bits 8 – 11

 Bits 12 – 15

 Bits 16 – 19

 Bits 20 – 23

 Bits 24 – 27

 Bits 28 – 31

 Bits 32 – 35

 Bits 36 – 39

 Bits 40 – 43

 Bits 48 – 51

 Bits 52 – 55

 Bits 56 – 59

 Bits 60 – 63

 Bits 44 – 47

VN000/8

IDE –
IDH

VN000/8

VQ001/9

VN001/9

VN001/9

VQ002/10

VN002/10

VN002/10

VQ003/11

VN003/11

VN003/11

VQ004/12

VN004/12

VN004/12

VQ005/13

VN005/13

VN005/13

VQ006/14

VN006/14

VN006/14

VQ007/15

VN007/15

VN007/15

IDE –
IDH

IFI –
IFL

OAA –
OAD

OAE –
OAH

OAI –
OAL

OAM –
OAP

OBA –
OBD

OBE –
OBH

OBI –
OBL

OBM –
OBP

OCA –
OCD

OCE –
OCH

OCI –
OCL

OCM –
OCP

ODA –
ODD

ODE –
ODH

ODI –
ODL

ODM –
ODP

VQ000/8

   Bits 0 – 3

   Bits 4 – 7

  Bits 8 – 11

 Bits 12 – 15

 Bits 16 – 19

 Bits 20 – 23

 Bits 24 – 27

 Bits 28 – 31

 Bits 32 – 35

 Bits 36 – 39

 Bits 40 – 43

 Bits 48 – 51

 Bits 52 – 55

 Bits 56 – 59

 Bits 60 – 63

 Bits 44 – 47

VN000/8

IDI –
IDL

VN000/8

VQ001/9

VN001/9

VN001/9

VQ002/10

VN002/10

VN002/10

VQ003/11

VN003/11

VN003/11

VQ004/12

VN004/12

VN004/12

VQ005/13

VN005/13

VN005/13

VQ006/14

VN006/14

VN006/14

VQ007/15

VN007/15

VN007/15

IDI –
IDL

IFM –
IFP

OAA –
OAD

OAE –
OAH

OAI –
OAL

OAM –
OAP

OBA –
OBD

OBE –
OBH

OBI –
OBL

OBM –
OBP

OCA –
OCD

OCE –
OCH

OCI –
OCL

OCM –
OCP

ODA –
ODD

ODE –
ODH

ODI –
ODL

ODM –
ODP

VQ000/8

   Bits 0 – 3

   Bits 4 – 7

  Bits 8 – 11

 Bits 12 – 15

 Bits 16 – 19

 Bits 20 – 23

 Bits 24 – 27

 Bits 28 – 31

 Bits 32 – 35

 Bits 36 – 39

 Bits 40 – 43

 Bits 48 – 51

 Bits 52 – 55

 Bits 56 – 59

 Bits 60 – 63

 Bits 44 – 47

VN000/8

IDM –
IDP

VN000/8

VQ001/9

VN001/9

VN001/9

VQ002/10

VN002/10

VN002/10

VQ003/11

VN003/11

VN003/11

VQ004/12

VN004/12

VN004/12

VQ005/13

VN005/13

VN005/13

VQ006/14

VN006/14

VN006/14

VQ007/15

VN007/15

VN007/15

IDM –
IDP

IFA – 
IFD

IDA – 
IDD

IDA –
IDD

IFA – 
IFD

IDA – 
IDD

IDA – 
IDD

IFA – 
IFD

IDA – 
IDD

IDA – 
IDD

IFA – 
IFD

IDA – 
IDD

IDA – 
IDD

IFA – 
IFD

IDA – 
IDD

IDA – 
IDD

IFA – 
IFD

IDA  –
IDD

IDA – 
IDD

IFA – 
IFD

IDA – 
IDD

IDA – 
IDD

IFE –
IFH

IDE –
IDH

IDE –
IDH

IFE –
IFH

IDE –
IDH

IDE –
IDH

IFE –
IFH

IDE –
IDH

IDE –
IDH

IFE –
IFH

IDE –
IDH

IDE –
IDH

IFE –
IFH

IDE –
IDH

IDE –
IDH

IFE –
IFH

IDE –
IDH

IDE –
IDH

IFE –
IFH

IDE –
IDH

IDE –
IDH

IFI –
IFL

IDI –
IDL

IDI –
IDL

IFI –
IFL

IDI –
IDL

IDI –
IDL

IFI –
IFL

IDI –
IDL

IDI –
IDL

IFI –
IFL

IDI –
IDL

IDI –
IDL

IFI –
IFL

IDI –
IDL

IDI –
IDL

IFI –
IFL

IDI –
IDL

IDI –
IDL

IFI –
IFL

IDI –
IDL

IDI –
IDL

IFM –
IFP

IDM –
IDP

IDM –
IDP

IFM –
IFP

IDM –
IDP

IDM –
IDP

IFM –
IFP

IDM –
IDP

IDM –
IDP

IFM –
IFP

IDM –
IDP

IDM –
IDP

IFM –
IFP

IDM –
IDP

IDM –
IDP

IFM –
IFP

IDM –
IDP

IDM –
IDP

IFM –
IFP

IDM –
IDP

IDM –
IDP

Figure 39.  Vectors 4 through 7, Pipe 0/1, Read Data Path



Vector RegistersCPU Module (CPE1)

75Cray Research ProprietaryHTM-300-0

VB001

VN000

VN001

VN002

VN003

VN004

VN005

VN006

VN007
VQ0

VQ1

VQ2

VQ3

VQ4

VQ5

VQ6

VQ7
Bits
0 – 7

Bits
8 – 15

Bits
16 – 23

Bits
24 – 31

Bits
56 – 63

Bits
32 – 39

Bits
40 – 47

Bits
48 – 55

V Write DataOAA – ODP

VB000

V Write Address IJA – IJFO_I – O_N

Go Write IJHOAQ

ONE

Advance Vi Write Address (Expand)

INJ

VL RegisterAV000 IHA, IHGAk Data

JB000

OPA, OPG

IAA, IAP
Instruction
ParcelOCA, OCP

Functional Units
Floating-point Add
Floating-point   
   Multiply
Divide/Sq Root
Vector Shift
BMM
Integer Multiply

IAA, IBX

VE000
IKA – IKPOWA – OWP Instruction Fields

Pipe 0

OWQ Issue

OAQ Parcel 0
OBQ Parcel 1
OCQ Parcel 2
ODQ Parcel 3

OAA – OAP
OBA – OBP
OCA – OCP
ODA – ODP

V Write Data

Go Write OMA – OMHIXA – IXH

IssueODA, ODC

Common Memory
Data Path 1

Common Memory
Data Path 2

CH000 – CH014

CH001 – CH015

OIA, OIH

IIA, IIH

IIA, IIH

IGA, IGH

AV, AW, AX, AY

Scalar Data

OEA,OEH

Common Memory
Path 1 Code

(Fanout from CK)

VQ1, VQ3, VQ5,
VQ6

IMA, IMD

Common Memory
Path 2 Code

(Fanout from CK)

VQ1, VQ3 ,VQ5,
VQ6

OYM, OYP

IME, IMH

IMA, IMH

Vector Select
Code (Fanout

from CK)

VQ000 – VQ007

VE001 OMA, OMH ICA, ICHRelease

CK000 OGA, OGJ IDA, IDJPath 1 Code

CK002 OGA, OGJ IEA, IEJPath 2 Code

ILAIKA,
IKP

IAA – IDP

OIA, OIH

OYI, OYL

OYI, OYP

IBA, BB, IBD

Figure 40.  Vector Register Write Block Diagram, Pipe 0



Vector RegistersCPU Module (CPE1)

77Cray Research ProprietaryHTM-300-0

AV000

OEA –
OEH

VN000
IGA –
IGH

VN008
OEI –
OEP

IGA –
IGH

AW000

OEA –
OEH

VN001
IGA –
IGH

VN009
OEI –
OEP

IGA –
IGH

Bits 0 – 7 Bits 8 – 15

Bits 8 – 15

AW001

VN002

VN010
OEI –
OEP

IGA –
IGH

AW002

VN003

VN011
OEI –
OEP

IGA –
IGH

Bits 16 – 23

Bits 16 – 23

Bits 24 – 31

Bits 24 – 31

AX000

OEA –
OEH

VN004
IGA –
IGH

VN012
OEI –
OEP

IGA –
IGH

AX001

VN005

VN013

AY000

VN006

VN014

AY001

VN007

VN015

Bits 32 – 39 Bits 40 – 47

Bits 40 – 47

Bits 48 – 55

Bits 48 – 55

Bits 56 – 63

Bits 56 – 63

Pipe 0

Pipe 1

Pipe 0

Pipe 1

S Register to Vector

Bits 0 – 7

Bits 32 – 39

OEA –
OEH

OEA –
OEH

IGA –
IGH

IGA –
IGH

OEA –
OEH

IGA –
IGH

IGA –
IGH

IGA –
IGH

OEA –
OEH

OEA –
OEH

OEI –
OEP

IGA –
IGH

OEI –
OEP

IGA –
IGH

OEI –
OEP

IGA –
IGH

Figure 41.  S Register to Vectors



Vector RegistersCPU Module (CPE1)

79Cray Research ProprietaryHTM-300-0

CH000

OIA – OID VN000IIA – IID

VN004

OIE – OIH IIA – IID

CH002

OIA –
OID

IIE –
IIH

IIE –
IIH

OIE –
OIH

CH004

VN001

VN005

CH006

CH008

VN002

VN006

CH010

CH012

VN003

VN007

CH014

CH001

VN000
IJA – IJD

VN004

IIA – IID

CH003

OIA –
OID

IJE –
IJH

OIE –
OIH

IJE –
IJH

CH005

VN001

VN005

CH007

CH009

VN002

VN006

CH011

CH013

VN003

VN007

CH015

Common Memory Data to Vector Paths 1 and 2 Even Elements

Path 1

Path 2

OIA – OID

OIE – OIH

OIA – OID IIA – IID

OIA –
OID

IIE –
IIH

IIE –
IIH

OIE –
OIH

OIE – OIH IIA – IID

OIA – OID IJA – IJD

OIA –
OID

IJE –
IJH

OIE –
OIH

IJE –
IJH

OIE – OIH IIA – IID OIE – OIH IIA – IID

OIE –
OIH

IJE –
IJH

OIA –
OID

IJE –
IJH

OIA – OID IJA – IJD

OIE – OIH IIA – IID

IIE –
IIH

OIE –
OIH

OIA –
OID

IIE –
IIH

OIA – OID IIA – IID OIA – OID IIA – IID

OIA –
OID

IIE –
IIH

IIE –
IIH

OIE –
OIH

OIE – OIH IIA – IID

OIA – OID IJA – IJD

OIA –
OID

IJE –
IJH

OIE –
OIH

IJE –
IJH

OIE – OIH IIA – IID

Figure 42.  Memory Data to Vectors, Even Elements



Vector RegistersCPU Module (CPE1)

81Cray Research ProprietaryHTM-300-0

CH000

OJA – OJD VN008IIA – IID

VN012

OJE – OJH IIA – IID

CH002

OIA –
OID

IIE –
IIH

IIE –
IIH

OIE –
OIH

CH004

VN009IIA – IID

VN013

IIA – IID

CH006

OIA –
OID

IIE –
IIH

IIE –
IIH

OIE –
OIH

CH008

VN010IIA – IID

VN014

IIA – IID

CH010

OIA –
OID

IIE –
IIH

IIE –
IIH

OIE –
OIH

CH012

VN011IIA – IID

VN015

IIA – IID

CH014

OIA –
OID

IIE –
IIH

IIE –
IIH

OIE –
OIH

CH001

VN008IJA – IJD

VN012

IIA – IID

CH003

OIA –
OID

IJE –
IJH

OIE –
OIH

IJE –
IJH

CH005

VN009IJA – IJD

VN013

IIA – IID

CH007

OIA –
OID

IJE –
IJH

OIE –
OIH

IJE –
IJH

CH009

VN010IJA – IJD

VN014

IIA – IID

CH011

OIA –
OID

IJE –
IJH

OIE –
OIH

IJE –
IJH

CH013

VN011IJA – IJD

VN015

IIA – IID

CH015

OIA –
OID

IJE –
IJH

OIE –
OIH

IJE –
IJH

OJA – OJD

OJE – OJH

OJA – OJD

OJE –  OJH

OJA – OJD

OJE –  OJH

OJA – OJD

OJE – OJH

OJA – OJD

OJE –  OJH

OJA – OJD

OJE –  OJH

OJA – OJD

OJE –  OJH

Common Memory Data to Vector Paths 1 and 2 Odd Elements

Path 1

Path 2

Figure 43.  Memory Data to Vectors, Odd Elements



Vector RegistersCPU Module (CPE1)

83Cray Research ProprietaryHTM-300-0

CK000
CK002

VQ001
VQ009OFB IYB

OYI IMA

IMA

OYJ

OYK
OYL

IMA

IMA

IMA

IMA

IMA

IMA

VQ003
VQ011

OFC

IYB

OYI IMB

IMB

OYJ

OYK

OYL

IMB

IMB

IMB

IMB

IMB

IMB

VQ005
VQ013

OYI IMC

IMC

OYJ

OYK
OYL

IMC

IMC

IMC

IMC

IMC

IMC

VQ006
VQ015

OYI IMD

IMD

OYJ

OYK

OYL

IMD

IMD

IMD

IMD

IMD

IMD

OFD

OFA

IYB

IYC

IYB

IMD*  IMC  IMB  IMA

  1       0       0       0         V0

  1       0       0       1         V1

  1       0       1       0         V2

  1       0       1       1         V3

  1       1       0       0         V4

  1       1       0       1         V5

  1       1       1       0         V6

  1       1       1       1         V7

* Path 1 Valid

Vector Register Decode Bits

OYM

OYN

OYO

OYP

INA

INA

INA

INA

INA

INA

INA

INA

Path 1 Valid

Path 1 Valid

Path 1 Valid

Path 1 Valid

VN000
VN008

VN002
VN010

VN004
VN012

VN006
VN014

VN001
VN009

VN003
VN011

VN005
VN013

VN007
VN015

VN000
VN008

VN002
VN010

VN004
VN012

VN006
VN014

VN001
VN009

VN003
VN011

VN005
VN013

VN007
VN015

VN000
VN008

VN002
VN010

VN004
VN012

VN006
VN014

VN001
VN009

VN003
VN011

VN005
VN013

VN007
VN015

VN000
VN008

VN002
VN010

VN004
VN012

VN006
VN014

VN001
VN009

VN003
VN011

VN005
VN013

VN007
VN015

VQ000
VQ008

VQ002
VQ010

VQ004
VQ012

VQ006
VQ014

VQ001
VQ009

VQ003
VQ011

VQ005
VQ013

VQ007
VQ015

NOTES: The top option number represents pipe 0. 
The bottom number represents pipe 1.

Figure 44.  Vector Register Decode Bit Fanout, Pipe 0 and 1, Path 1 Only



Vector RegistersCPU Module (CPE1)

85Cray Research ProprietaryHTM-300-0

CK000
CK002

VQ001
VQ009OFB IYC

OYM IME

IME

OYN

OYO

OYP

IME

IME

IME

IME

IME

IME

VQ003
VQ011

OFC

IYB

OYI IMF

IMF

OYJ

OYK

OYL

IMF

IMF

IMF

IMF

IMF

IMF

VQ005
VQ013

OYM IMG

IMG

OYN

OYO
OYP

IMG

IMG

IMG

IMG

IMG

IMG

VQ007
VQ015

OYI IMH

IMH

OYJ

OYK

OYL

IMH

IMH

IMH

IMH

IMH

IMH

OFD

OFA

IYB

IYC

IYC

IMH*  IMG  IMF  IME

  1       0       0       0         V0

  1       0       0       1         V1

  1       0       1       0         V2

  1       0       1       1         V3

  1       1       0       0         V4

  1       1       0       1         V5

  1       1       1       0         V6

  1       1       1       1         V7

* Path 2 Valid

Vector Register Decode Bits

OYM

OYN

OYO

OYP

INB

INB

INB

INB

INB

INB

INB

INB

Path 2 Valid

Path 2 Valid

Path 2 Valid

Path 2 Valid

VN000
VN008

VN002
VN010

VN004
VN012

VN006
VN014

VN001
VN009

VN003
VN011

VN005
VN013

VN007
VN015

VN000
VN008

VN002
VN010

VN004
VN012

VN006
VN014

VN001
VN009

VN003
VN011

VN005
VN013

VN007
VN015

VN000
VN008

VN002
VN010

VN004
VN012

VN006
VN014

VN001
VN009

VN003
VN011

VN005
VN013

VN007
VN015

VN000
VN008

VN002
VN010

VN004
VN012

VN006
VN014

VN001
VN009

VN003
VN011

VN005
VN013

VN007
VN015

VQ000
VQ008

VQ002
VQ010

VQ004
VQ012

VQ006
VQ014

VQ001
VQ009

VQ003
VQ011

VQ005
VQ013

VQ007
VQ015

NOTES: The top option number represents pipe 0. 
The bottom number represents pipe 1.

Figure 45.  Vector Register Decode Bit Fanout, Pipe 0 and 1, Path 2 Only



Vector RegistersCPU Module (CPE1)

87Cray Research ProprietaryHTM-300-0

VQ000
VQ008

OAA –
OAH

VN000
VN008

VN001
VN009

VN002
VN010

VN003
VN011

VN004
VN012

VN005
VN013

VN006
VN014

VN007
VN015

IAA –
IAH

OAA –
OAH

IAI –
IAP

OAA –
OAH

IBA –
IBH

OAA –
OAH

IBI –
IBP

OAA –
OAH

ICA –
ICH

OAA –
OAH

ICI –
ICP

OAA –
OAH

IDA –
IDH

OAA –
OAH

IDI –
IDP

Vector 0

VQ001
VQ009

OAI –
OAP

VN000
VN008

VN001
VN009

VN002
VN010

VN003
VN011

VN004
VN012

VN005
VN013

VN006
VN014

VN007
VN015

IAA –
IAH

IAI –
IAP

IBA –
IBH

IBI –
IBP

ICA –
ICH

ICI –
ICP

IDA –
IDH

IDI –
IDP

Vector 1

OAI –
OAP

OAI –
OAP

OAI –
OAP

OAI –
OAP

OAI –
OAP

OAI –
OAP

OAI –
OAP

VQ002
VQ010

OBA –
OBH

VN000
VN008

VN001
VN009

VN002
VN010

VN003
VN011

VN004
VN012

VN005
VN013

VN006
VN014

VN007
VN015

IAA –
IAH

OBA –
OBH

IAI –
IAP

IBA –
IBH

IBI –
IBP

ICA –
ICH

ICI –
ICP

IDA –
IDH

IDI –
IDP

Vector 2

VQ003
VQ011

OBI –
OBP

VN000
VN008

VN001
VN009

VN002
VN010

VN003
VN011

VN004
VN012

VN005
VN013

VN006
VN014

VN007
VN015

IAA –
IAH

IAI –
IAP

IBA –
IBH

IBI –
IBP

ICA –
ICH

ICI –
ICP

IDA –
IDH

IDI –
IDP

Vector 3

OBA –
OBH

OBA –
OBH

OBA –
OBH

OBA –
OBH

OBA –
OBH

OBA –
OBH

OBI –
OBP

OBI –
OBP

OBI –
OBP

OBI –
OBP

OBI –
OBP

OBI –
OBP

OBI –
OBP

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 32 – 39

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 32 – 39

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 32 – 39

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 32 – 39

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63

Figure 46.  Vectors 0 through 3, Pipe 0/1, Write Data Path



Vector RegistersCPU Module (CPE1)

89Cray Research ProprietaryHTM-300-0

VQ004
VQ012

OCA –
OCH

VN000
VN008

VN001
VN009

VN002
VN010

VN003
VN011

VN004
VN012

VN005
VN013

VN006
VN014

VN007
VN015

IAA –
IAH

IAI –
IAP

IBA –
IBH

IBI –
IBP

ICA –
ICH

ICI –
ICP

IDA –
IDH

IDI –
IDP

Vector 4

VQ005
VQ013

OCI –
OCP

VN000
VN008

VN001
VN009

VN002
VN010

VN003
VN011

VN004
VN012

VN005
VN013

VN006
VN014

VN007
VN015

IAA –
IAH

IAI –
IAP

IBA –
IBH

IBI –
IBP

ICA –
ICH

ICI –
ICP

IDA –
IDH

IDI –
IDP

Vector 5

VQ006
VQ014

ODA –
ODH

VN000
VN008

VN001
VN009

VN002
VN010

VN003
VN011

VN004
VN012

VN005
VN013

VN006
VN014

VN007
VN015

IAA –
IAH

IAI –
IAP

IBA –
IBH

IBI –
IBP

ICA –
ICH

ICI –
ICP

IDA –
IDH

IDI –
IDP

Vector 6

VQ007
VQ015

ODI –
ODP

VN000
VN008

VN001
VN009

VN002
VN010

VN003
VN011

VN004
VN012

VN005
VN013

VN006
VN014

VN007
VN015

IAA –
IAH

IAI –
IAP

IBA –
IBH

IBI –
IBP

ICA –
ICH

ICI –
ICP

IDA –
IDH

IDI –
IDP

Vector 7

OCA –
OCH

OCI –
OCP

ODA –
ODH

OCA –
OCH

OCI –
OCP

ODA –
ODH

OCA –
OCH

OCI –
OCP

ODA –
ODH

OCA –
OCH

OCI –
OCP

ODA –
ODH

OCA –
OCH

OCI –
OCP

ODA –
ODH

OCA –
OCH

OCI –
OCP

ODA –
ODH

OCA –
OCH

OCI –
OCP

ODA –
ODH

ODI –
ODP

ODI –
ODP

ODI –
ODP

ODI –
ODP

ODI –
ODP

ODI –
ODP

ODI –
ODP

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 32 – 39

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 32 – 39

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 32 – 39

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 32 – 39

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63

Figure 47.  Vectors 4 through 7, Pipe 0/1, Write Data Path



Vector RegistersCPU Module (CPE1)

90Cray Research ProprietaryHTM-300-0

Delete this page when printing.



91Cray Research ProprietaryHTM-300-0

VECTOR LOGICAL

There are two independent vector logical units in a CRAY T90 series
system.  (Refer to Figure 48 for a block diagram of the vector logical
units.)  These functional units reside on 16 VN options.  VN000 through
VN007 handle pipe 0 (the even elements), and VN008 through VN015
handle pipe 1 (the odd elements).  Each VN option operates on a 4-bit
slice of all eight vector registers.

The vector logical units receive input data from the VQ options and send
the results to the vector registers.  The second vector logical unit is
enabled by setting mode bit 2 (ESL) in the mode field of the exchange
package.  When both logical units are enabled, data is processed first in
the second unit because only the first unit can process the 146 and 147
(vector merge) instructions.  For example, if a 140 instruction (logical
product) issues, the second unit processes the instruction in case a 146 or
147 issues next.  If the first unit processed the 140 instruction, it would be
busy and the 146 instruction would have to hold issue.

The vector logical unit performs the logical product (AND), logical sum
(OR), and logical difference [also called exclusive OR (XOR)] functions
using either scalar or vector registers.



Vector Logical CPU Module (CPE1)

92 Cray Research Proprietary HTM-300-0

Figure 48.  Vector Logical Block Diagram

Vectors 0 – 7
Pipe 0

VQ000 – 007

VN000
VN007

SS000

Vector Logical 1 and 2

Result Vector
Even Elements

Result Vector
Odd Elements

Vectors 0 – 7
Pipe 1

VN = 1
Vj = Neg

Vj = 0

VN = 1
Vj = Pos

Vj = 0VQ008 – 015

Unit 1

Unit 2
V Data

IC000 – IC003
Enable Vector

Logical 2

Unit 1

Unit 2

IC000 – IC003
Enable Vector

Logical 2

Sj Data

V Data

AV, AW, AX, AY

Vector Logical 1 and 2

Vector Mask Register

Pipe 0

Pipe 1

IGA –
IGH

IOA

IOA

OEI – OEP

VE000 –
001

Vj =  Neg
Vj =  0

VE002 –
003

INA,
IOH

ILC

ILC

OYU

OYU

OEA – OEH

VE000 – 001

IKA –
IKPInstruction Parcel

OAA –  OAP

VE002 – 003

OAA – OAP

VN008
VN015

IKA –
IKP

OEA – OEH

IGA –
IGH

OEI – OEP

INA,
IOH

Vj =  Neg
Vj =  0

OVA,
OVB

OVA,
OVB

Instruction
Parcel



CPU Module (CPE1) Vector Logical

93Cray Research ProprietaryHTM-300-0

Vector Logical Instructions

Table 15 lists the vector logical instructions.

Table 15.  Vector Logical Instructions 

Instruction CAL Description

140ijk Vi Sj&Vk Transmit logical product of (Sj) and (Vk elements) to Vi
elements

141ijk Vi Vj&Vk Transmit logical product of (Vj elements) and (Vk elements)
to Vi elements

142ijk Vi Sj!Vk Transmit logical sum of (Sj) and (Vk elements) to Vi
elements

143ijk Vi Vj!Vk Transmit logical sum of (Vj elements) and (Vk elements) to
Vi elements

144ijk Vi Sj\Vk Transmit logical differences of (Sj) and (Vk elements) to Vi
elements

145ijk Vi Vj\Vk Transmit logical differences of (Vj elements) and (Vk
elements) to Vi elements

Vector Merge

The 146 and 147 instructions merge the contents of the registers using the
vector mask register for control.  The 146 instruction merges the contents
of Sj with the contents of Vk; the 147 instruction merges the contents of
Vj and Vk.  If the vector mask bit is a 1, the Vj or Sj data is used; if the
vector mask bit is a 0, the Vk data is used.

The vector logical functional unit holds a copy of the S-register value.
Therefore, a subsequent instruction can change the S-register value and
not affect the results.  These instructions are confined to the second logical
unit.  Refer to Table 16 for the vector merge instructions, and refer to
Figure 49 for an example of a vector merge operation.

Table 16.  Vector Merge Instructions 

Instruction CAL Description

146ijk Vi Sj!Vk&VN Merge (Sj) and (Vk elements) to Vi elements using (VN) as
mask

146i0k Vi #VN&Vk Merge 0 and (Vk elements) to Vi elements using (VN) as
mask

147ijk Vi Vj!Vk&VN Merge (Vj elements) and (Vk elements) to Vi elements
using (VN) as mask



Vector Logical CPU Module (CPE1)

94 Cray Research Proprietary HTM-300-0

Figure 49.  Vector Merge Operation

Element 0

Element 1

Element 2

147ijk    Merge Sj and Vk elements to Vi elements using VN as mask

0 0

0

0

1

2

Vk Elements (VQ/VN) Vi Elements (VN/VQ)

0

1

Element 0

Element 1

Element 22

Element 3

Element 4

0 3

0 4

Element 3

Element 4

S2 0 7

Vector Mask (SS)

0 0 0 1 1 0 0 0
VL = 5

Elements 5 through
127 are unchanged.

Vk Element

Vk Element

Vk Element

Sj

Sj

NOTE:

Element 0

Element 1

Element 2

146ijk    Merge Vj elements and Vk elements to Vi elements using VN as mask

0 0

0

0

1

2

Vk Elements (VQ/VN) Vi Elements (VN/VQ)

0

1

Element 0

Element 1

Element 22

Element 3

Element 4

0 3

0 4

Element 3

Element 4

Vector Mask (SS)

0 0 0 1 1 0 0 0VL = 5

Elements 5 through
127 are unchanged.

Element 0

Element 1

Element 2

0 7

0

0

7

7

Vj Elements (VQ/VN)

Element 3

Element 4

0 7

0 7

Vk Element

Vk Element

Vk Element

Vj Element 0

Vj Element 1

NOTE:



CPU Module (CPE1) Vector Logical

95Cray Research ProprietaryHTM-300-0

Vector Mask Test OperationsVector Mask

VM0 and VM1 are vector mask registers.  Each register is 64 bits wide,
and the two registers are aligned to create a 128-bit register.  Each bit in
the register corresponds to an element in a vector register.  The vector
mask register stores the results of the test condition of an element in a
vector register.  For example, the mask register can indicate which
elements of a particular vector register contain positive values.

The vector mask register receives data either from the scalar registers or
from the result of comparing a condition within the elements of a vector.
The vector mask register is arranged so that mask bit 127 corresponds to
element 0 of the vector.

Refer to Table 17 and Table 18 for a list of the vector mask and vector
mask test operations, respectively.  Refer also to Figure 50 for an
illustration of the 1750j0 instructions.

Table 17.  Vector Mask Operations

Instruction CAL Description

0030j0 VM0 Sj Transmit (Sj) to VM0

0030j1 VM1 Sj Transmit (Sj) to VM1

*0030j2 VM0 Aj Transmit (Aj) to VM0

*0030j3 VM1 Aj Transmit (Aj) to VM1

070ij1 Vi CI,Sj&VM Transmit compressed index of (Sj) controlled by (VM) to Vi

073i00 Si VM0 Transmit (VM0) to Si

073i10 Si VM1 Transmit (VM1) to Si

*073i20 Ai VM0 Transmit (VM0) to Ai

*073i30 Ai VM1 Transmit (VM1) to Ai

* These instructions must be preceded by a 005400 (EIS) instruction.



Vector Logical CPU Module (CPE1)

96 Cray Research Proprietary HTM-300-0

Table 18.  Vector Mask Test Operations 

Instruction CAL Description

1750j0 VM Vj,Z Set VM bit if (Vj element) = 0

1750j1 VM Vj,N Set VM bit if (Vj element) �0

1750j2 VM Vj,P Set VM bit if (Vj element)�0

1750j3 VM Vj,M Set VM bit if (Vj element) �0

175ij4 Vi,VM Vj,Z Set VM bit if (Vj element) = 0 and store compressed
indices of Vj elements = 0 in Vi

175ij5 Vi,VM Vj,N Set VM bit if (Vj element) �0 and store compressed
indices of Vj elements � 0 in Vi

175ij6 Vi,VM Vj,P Set VM bit if (Vj element) �0 and store compressed
indices of Vj elements � 0 in Vi

175ij7 Vi,VM Vj,M Set VM bit if (Vj element) � 0 and store compressed
indices of Vj elements � 0 in Vi

Figure 50.  1750j0 Instructions

Element 0

Element 1

Element 2

Element 3

Element 4

Vector Mask Register  (SS)

Compare  VE

Vector Register (Vj)  (VQ/VN) Test Vj = 0

1750j0  Set VM bit if Vj element = 0

00000000000000000

00000001110000001

1111111111111111111

00000000000000000

1111111111111000000

Bit 127

Bit 126

Bit 125

Bit 124

Bit 123

Bit 122

0

1

0

1

0

0

Bit 00

VL = 5



CPU Module (CPE1) Vector Logical

97Cray Research ProprietaryHTM-300-0

Figure 51 illustrates the function of the 175ij4 instructions that use the
vector mask to create a compressed vector.

Figure 51.  Function of the 175ij4 Instructions

Element 0

Element 1

Element 2

175ij4   Set VM bit if Vj element = 0 and store compressed indices of Vj elements = 0 in Vi

0 0

0

0

1

0

Vj Elements (VQ/VN)

Test

Vj = 0

VL = 5

VM Reg 
(SS)

Index
Address (VE) Vi Elements (VN/VQ)

0

2

Element 0

Element 1

127

126

125

124

0 177

Element 23

Element 3

Element 4

0 0

0 0

1

1

Element 3

Element 4

4

VE

Unchanged

1

0

1

0

1

2

3

Bits

Compressed Iota

The iota function is performed on the RE options.  RE000 is used for pipe
0 and RE001 is used for pipe 1.  Table 19 lists the instruction used in iota
operations, and Figure 52 is a block diagram of iota pipe 0 and 1.

Table 19.  Iota Instruction

Instruction CAL Description

070ij1 Vi CI,Sj&VM Transmit compressed index of (Sj) controlled by (VM) to Vi

The 070ij1 instruction forms multiples of the contents of register Sj
starting with 0 (0, Sj, 2 x Sj, 3 x Sj, and so on).  It stores multiples that
correspond to each 1 bit set in the vector mask register in successive
elements of register Vi (beginning at element 0).  The instruction stops
when all unused bits of the vector mask are 0 or are used.



Vector Logical CPU Module (CPE1)

98 Cray Research Proprietary HTM-300-0

Figure 52.  Iota Pipe 0 and 1

OAA–
ODP  VN 8 – 15

Sj Data 0 – 63 IAA – IDP

RE000

RE001

Go Iota IGDBU001
OSC

OGD

IGDGo Iota

VM0 Element Valid IGASS000
OGA

IGB

VM = 0 IGCSS000
OGC

SS000
OGB

VM1 Element Valid

VM0 Element Valid IGA

IGBVM1 Element Valid

OGA

OGB

Sj Data 0 – 63 IAA – IDPVN/VQ
0 – 7

VN/VQ 
8 – 15

OAA – ODP Result to VN 0 – 7

OMA Iota Valid VB000
INH

OMA Iota Valid
VB001 INH

OMC End Iota VB000/VB001
INI

Figure 53 illustrates the function of the 070ij1 instructions that use the
vector mask to create a compressed vector.

RE Option

The RE000 receives the Go Iota signal from the BU001 option, makes a
copy of this signal, and sends it to the RE001 option.  The Sj data arrives
at both options along with a Element Valid signal.  After the operand has
been used and a pair of elements is ready to be written to the result vector,
the Iota Valid signal is sent to the VB option.  The two Iota Valid signals,



CPU Module (CPE1) Vector Logical

99Cray Research ProprietaryHTM-300-0

one from RE000 and on from RE001, are usually identical except when
there is an odd number of elements on Pipe 0.  The operation ends when
the VM=0 signal arrives from the SS option and causes the RE000 option
to send the Signal End Iota signal to both VB options.  The Signal End
Iota signal is sent concurrently with the last Element Valid signal.

Figure 53.  Function of the 070ij1 Instructions

070ij1  Transmit compressed index of (Sj) controlled by (VM) to Vi

Vi Elements (VM/VQ)

0

6

Element 0

Element 1

Element 28

Element 3

Element 4

Sj 0 2

Vector Mask (SS)

1 0 0 1 1 1 0 1 0 0 0

Functional
Unit

10

14

2 x 0
2 x 3
2 x 4
2 x 5
2 x 7

Sj x VM Bit



100 Cray Research Proprietary HTM-300-0

VECTOR ADD

The vector add functional unit is located on the VN and VE options.
(Refer to Figure 54 for a block diagram of vector add.)  The VN options
perform the actual addition of the input operands and then pass the group
carries and group enables to the VE for summation.  These bit toggles are
then returned to the VN option for final summation.  The functional unit
uses two’s complement arithmetic and does not detect any overflow
conditions.

Refer to Table 20 for a list of the vector add instructions.

Table 20.  Vector Add Instructions

Instruction CAL Description

154ijk Vi Sj+Vk Transmit integer sum of (Sj) and (Vk elements) to Vi elements

155ijk Vi Vj+Vk Transmit integer sum of (Vj elements) and (Vk elements) to 
Vi elements

156ijk Vi Sj–Vk Transmit integer difference of (Sj) and (Vk elements) to Vi 
elements

156i0k Vi –Vk Transmit two’s complement of (Vk elements) to Vi elements

157ijk Vi Vj–Vk Transmit integer difference of (Vj elements) and (Vk elements)
to Vi elements

The 154 and 156 instructions use the content of the Sj register as an input
operand.  The VN option keeps a copy of the Sj register, which enables a
subsequent instruction to proceed and change the content of Sj without
affecting the 154 or 156 instruction in progress.



Vector AddCPU Module (CPE1)

103Cray Research ProprietaryHTM-300-0

Figure 54.  Vector Add Block Diagram

VN000 Bits 0 – 7
OWA

OWC
  Carry

Enable

ILA

ILA

IMA

IMA

VE000

VE001

VN001  Bits 8 – 15
OWA

OWC
Carry

 Enable

ILB

ILB

IMB

IMB

VE000

VE001

VN002 Bits 16 – 23
OWA

OWC
Carry

 Enable

ILC

ILC

IMC

IMC

VE000

VE001

VN003 Bits 24 – 31
OWA

OWC
Carry

Enable

ILD

ILD

IMD

IMD

VE000

VE001

VE000

INA

INA

INA

INA

OIA

OIB

OIC

OID

Adder Bit Toggles

Adder Bit Toggles

Adder Bit Toggles

Adder Bit Toggles

Vector Data

Vector Data

Vector Data

Vector Data(VQ000
VQ007)

Result Data to Vectors

Result Data to Vectors

Result Data to Vectors

Result Data to Vectors

Summation

Adder

VN004 Bits 32 – 39
OWA

OWC

Carry

 Enable

ILE

ILE

IME

IME

VE000

VE001

VN005 Bits 40 – 47
OWA

OWC

Carry

 Enable

ILF

ILF

IMF

IMF

VE000

VE001

VN006 Bits 48 – 55
OWA

OWC

Carry

 Enable

ILG

ILG

IMG

IMG

VE000

VE001

VN007 Bits 56 – 63

Carry

Enable

VE001

INA

INA

INA

INA

OIA

OIB

OIC

OID

Adder Bit Toggles

Adder Bit Toggles

Adder Bit Toggles

Adder Bit Toggles

Vector Data

Vector Data

Vector Data

Vector Data(VQ000
VQ007)

Result Data to Vectors

Result Data to Vectors

Result Data to Vectors

Result Data to Vectors

Summation

Adder

(VQ000
VQ007)

(VQ000
VQ007)

(VQ000
VQ007)

(VQ000
VQ007)

(VQ000
VQ007)

(VQ000
VQ007)



Section TitleCPU Moduke (CPE1)

104Cray Research ProprietaryHTM-0300-0

Delete this page when printing.



105Cray Research ProprietaryHTM-300-0

VECTOR SHIFT

The vector shift functional unit is contained within the VS option.  Vector
shift is a dual-pipe functional unit; it accepts a pair of elements and
generates a pair of results.  If the vector length is odd, the last operand
generates a single result.  There is only one VS option for each CPU.

The vector shift functional unit is responsible for vector transfer
operations.  For example, it transfers the contents of one vector register to
another vector register; then the functional unit uses the Ak value as a
starting element number for the block move.

This unit also performs the vector compress and expand operations.  The
compress operation writes the elements of Vj to Vi if a corresponding bit
in the vector mask register sets.  The expand operation reads the elements
of Vj to Vi if a corresponding bit in the vector mask register sets.  These
operations are illustrated later in this section.

The 150 to 153 instructions use Ak as the shift count.  The 150 to 151
instructions, when preceded by a 005400 (EIS) instruction, use V0 for the
shift count.  In either case, if bit 7 or above is set, the result is 0’s.

Vector Shift Instructions

Refer to Table 21 for a list of the vector shift instructions.



Vector Shift CPU Module (CPE1)

106 Cray Research Proprietary HTM-300-0

Table 21.  Vector Shift Instructions

Instruction CAL Description

150ijk Vi Vj<Ak Shift (Vj elements) left (Ak) places to Vi elements

*150ij0 Vi Vj<V0 Shift (Vj elements) left (V0 elements) places to Vi elements

151ijk Vi Vj>Ak Shift (Vj elements) right (Ak) places to Vi elements

*151ij0 Vi Vj>V0 Shift (Vj elements) right (V0 elements) places to Vi elements

152ijk Vi Vj,Vj<Ak Double shift (Vj elements) left (Ak) places to Vi elements

*152ijk Vi Vj,Ak Transfer (Vj elements) starting at element (Ak) to Vi elements

153ijk Vi Vj,Vj>Ak Double shift (Vj elements) right (Ak) places to Vi elements

*153ij0 Vi Vj,{VN] Compress Vj by (VN) to Vi

*153ij1 Vi,[VN] Vj Expand Vj by (VN) to Vi

* These instructions must be preceded by a 005400 (EIS) instruction.

Vector Shift Count Description

The Ak shift count is sent to the VS option by the AV000 option, and all
eight A series options check the value of the 64-bit A register.  This test
determines if any bits above bit 6 have been set.  If any bits have been set,
the result is lost due to overshift.  If no overflow is detected, a No Ak
Overflow signal is sent from the SS to the VS.  AV000 sends bits 0
through 6 as the shift count.

To better understand this process, examine the composition of the shift
count.  For both single and double shifts, the shift count is similar except
that the double shift has 1 extra bit (bit 6).  Refer to Figure 55 for an
examination of the shift count and to Figure 56 for a block diagram of
vector shift.

Figure 55.  Shift Count Breakdown

Double
Shift
Only
6
64

5
32

4
16

3
8

2
4

1
2

0
1

Bit Position
Shift Value

Each bit position of the shift count represents a shift value.  The sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.  The maximum shift count that could be generated is 12710
or 1778.



CPU Vector Shift

107Cray Research ProprietaryHTM-300-0

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count.  Also,
a shift of 0 generates a maximum shift of 1778 places and clears
the result register.

If the jk field of a left single shift equals 278 and bits 4, 2, 1, and 0 are set,
the shift values are 16, 4, 2, and 1, respectively.  The sum of the shift
values is 23 (16 + 4 + 2 + 1).  Therefore, the instruction shifts left 2310
places.

The actual hardware that performs the shifts is the same for both left and
right shifts.  In fact, the hardware performs only left shifts.  Right shifts
are accomplished according to the way data is entered into the shifter and
the use of two’s complement shift counts for right shifts.

The vector shift unit also receives a shift count from V0 when performing
the 150 and 151 EIS instructions.  The shift count is sent to the VS option
from VQ0 for pipe 0 and from VQ8 for pipe 1.



V
ector S

hift
C

R
AY

 T
 S

eries C
P

U

108
C

ray R
esearch P

roprietary
P

ub N
um

ber and R
evision

P
relim

inary Inform
ation

VE003

VS000

VN/VQ

SS000

VQ000

VQ008

VE001

BU000

VB000

IAA, IDP

IEA, IHP

IIA, IIG

IIM

IMM

ILA, ILH

IKA, IKH

INC

ILM

IKM

INM

IMC

IME

INB

OHA, OHG

OHH

OID

OMA, OMH

OMA, OMH

ONB
IND

OMI

ONB

INA

OMI

OQB

OSG

ORA

Ak Shift Count 0 – 6

No Ak  Overflow

Vector Mask Bit = 1  (Even)

Vector Mask Bit = 1  (Odd)

Vector Shift Count (V0) Pipe 1

Vector Shift Count (V0) Pipe 0

V0 Overflow

V0  Overflow

Pipe 0 Valid

Pipe 1 Valid

End Vector Shift or k0 Field

EIS Bit

Go Vector Shift

Vector Shift Data Pipe 0

Vector Shift Data Pipe 1
Vector Shift Result Data Pipe 0

Vector Shift Result Data Pipe 1

OAA, ODP

OEA, OHP

OMA VB000INE

VB001

INEOMB

OMC

INF

INF

End Vector Shift

Shift Result Valid Pipe 0

Shift Result Valid Pipe 1

VN/VQ

OIE IMN

Figure 56.  Vector Shift Block Diagram



Vector ShiftCPU Module (CPE1)

109Cray Research ProprietaryHTM-300-0

Vector Right Shift 005400 151 ij0

Refer to Figure 57 for an illustration of a vector right shift using V0 for
the shift count.  Note that the shift count for element 0 is 0, which results
in an end-off shift for that element.  This instruction must be preceded by
the 054100 instruction in order to function as illustrated.  This process
continues for vector length.

Figure 57.  Vector Right Shift

Element 0

Element 1

Element 2

1 0

0

0

10

100

Vj Elements (VQ/VN) Pipe 0/1

VL = 5

Vi Elements (VN/VQ) Pipe 0/1

Element 0

Element 1

Element 2

Element 3

Element 4

0 1000

0 10000

Element 3

Element 4

0 0

0

0

1

1

0 1

Element 0

Element 1

Element 2

0 0

0

0 2

VL = 5

Element 3

Element 4

0

0

Vk Elements (VQ/VN) Pipe 0/1

VS

1

3

4

0 1

V0 Shift Count

Vector Shift
Functional

Unit



Vector Shift CPU Module (CPE1)

110 Cray Research Proprietary HTM-300-0

Vector Right Double Shift 153 ijk

Refer to Figure 58 for an illustration of a vector right double shift, using
Ak for the shift count.  This instruction concatenates two successive
elements of register Vj and right shifts the lower 64 bits to Vi.  The first
operation combines element 0 with a word of all 0’s.  Element 0 becomes
the lower 64 bits, and this value is then shifted right Ak places to Vi.

The next operation combines element 0 and element 1 of Vj, with element
1 containing the least significant bits, and shifts this value right to Vi.
This operation continues for vector length.  Note that the shift count for
element 0 is 0, which results in an end-off shift for that element.

Figure 58.  Vector Right Double Shift

Element 1

Element 3

Element 5

6 6

16

0

0

0

Vj Elements (VQ/VN) Pipe 1

Element 7

Element 9

0 0

0 0

Element 0

Element 2

Element 4

0 17

1

0 0

Element 6

Element 8

0

0

Vk Elements (VQ/VN) Pipe 0

VS

6

0

0

Vector Shift Functional Unit

Element 0

Element 0 Element 1

Element 1 Element 2

Element 2 Element 3

Element 3 Element 4

Word of 0’s

Element 0

Element 1

Element 2

0 1

166

15

0

0

Element 3

Element 4

156 0

0 0

Vi Elements (VQ/VN) Pipe 0/1

VL = 3

Shift Count from Ak



Vector ShiftCPU Module (CPE1)

111Cray Research ProprietaryHTM-300-0

Vector Transfer 005400 152 ijk

This instruction moves the contents of Vj to Vi starting with element Ak as
illustrated in Figure 59.  Note that this is an EIS instruction.

Figure 59.  Vector Transfer

Element 0

Element 1

Element 2

1 0

0

0

10

100

Vj Elements (VQ/VN) Pipe 0/1

VL = 5

Vi Elements (VN/VQ) Pipe 0/1

Element 0

Element 1

Element 2

Element 3

Element 4

0 1000

0 10000

Element 3

Element 4

0 100

0

0

0

VS

0 0

Vector Shift
Functional

Unit

1000

10000

0

Ak = 2

Vector Compress 005400 153 ij0

This instruction compresses a vector register using a vector mask and
transmits the results to Vi as shown in Figure 60.

Two element counters are initialized to 0, one for Vj and the other for Vi.
The vector mask is then scanned from right to left.  For every 1 bit set, an
element of Vj is written to Vi.  The element counters internal to the VS
option determine the element position within each register.

Figure 60.  Vector Compress

Element 0

Element 1

Element 2

0 0

0

0

10

100

Vj Elements (VQ/VN) Pipe 0/1

VL = 5

Vi Elements (VN/VQ) Pipe 0/1

Element 0

Element 1

Element 2

Element 3

Element 4

0 1000

0 10000

Element 3

Element 4

VS

0

Vector Shift
Functional

Unit

1000

10000

0

1 0 0 1 1 0

SS Vector Mask Register

0 0

0

0

0

0



Vector Shift CPU Module (CPE1)

112 Cray Research Proprietary HTM-300-0

Vector Expand 005400 153 ij1

This instruction expands a vector register using a vector mask and
transmits the results to Vi as shown in Figure 61.

Two element counters are initialized to 0, one for Vj and the other for Vi.
The vector mask is then scanned from right to left, and for every 1 bit set,
an element of Vj is written to Vi.  The element counters internal to the VS
option determine the element position within each register.  In this
instruction, the element counter for Vj falls behind the counter for Vi by
one position for each 0 bit in the vector mask register.

Figure 61.  Vector Expand

Element 0

Element 1

Element 2

0 0

0

0

10

100

Vj Elements (VQ/VN) Pipe 0/1

VL = 5

Vi Elements (VN/VQ) Pipe 0/1

Element 0

Element 1

Element 2

Element 3

Element 4

0 1000

0 10000

Element 3

Element 4

VS

Vector Shift
Functional

Unit

1 0 0 1 1 0

SS Vector Mask Register

0

10

100

Unchanged

Unchanged

0

0

0



113Cray Research ProprietaryHTM-300-0

VECTOR POP/ POP PARITY AND LEADING ZERO

The vector population/parity functional unit performs the population count
(174ij1) and parity for vector operations (174ij2) instructions.  This
functional unit shares logic with the Divide and Square Root functional
unit.  The k field of the instruction determines the type of operation to be
performed.  Refer to Figure 62 for a block diagram of the vector
population/parity functional unit.

The vector population/parity functional unit shares logic with the
divide/square root functional unit.  Therefore all vector operations reserve
the associated functional unit.  The divide/square root functional unit is
reserved when the vector population/parity functional unit is reserved and
vice versa.

Both scalar and vector register operations share the divide/square root
functional unit.  Therefore, when vector divide/square root, or vector
population/parity instructions are executed, a scalar divide/square root
instruction must wait until the vector operation is finished.

The 174ij1 instruction counts the number of 1 bits in each element of a
vector register specified by Vj.  Each element is counted individually, and
the result is stored in the corresponding element of Vi.  For example, the
count of 1 bits in element 0 of Vj is stored in element 0 of Vi; the count of
1 bits in element 1 of Vj is stored in element 1 of Vi; and so on.  This
process continues for the number of elements specified by the vector
length.

The 174ij2 instruction counts the number of 1 bits in each element of a
vector register specified by Vj and stores a 1-bit parity result in a vector
register specified by Vi.  The 174ij2 instruction uses the same logic as the
174ij1 but outputs only bit 0 of the result.  Bits 1 through 6 are forced to
0’s.  This instruction determines whether an odd or even number of bits is
set in each element of a vector register.  If the result equals 0, there is an
even number of bits.  If the result equals 1, there is an odd number of bits.



Vector Pop/Pop Parity and Leading Zero CPU Module (CPE1)

114 Cray Research Proprietary HTM-300-0

Figure 62.  Vector Population/Parity/Leading Zero Block Diagram

RE001

Pipe 1

OAA – OAG

ICA – ICP

RE000

Pipe 0

Vector Registers
Pipe 1

Vector Registers
Pipe 0

Vector Registers
Pipe 0

VQ009  Bits 8 – 11

VQ010  Bits 16 – 19

VQ011 Bits 24 – 27

VQ012  Bits 32 – 35

VQ013  Bits 40 – 43

VQ014  Bits 48 – 51

VQ015  Bits 56 – 59

VN008  Bits 4 – 7

VN009  Bits 12 – 15

VN010  Bits 20 – 23

VN011  Bits 28 – 31

VN012  Bits 36 – 39

VN013  Bits 44 – 47

VN014  Bits 52 – 55

VN015  Bits 60 – 63

VQ000  Bits 0 – 3

VQ001  Bits 8 – 11

VQ002  Bits 16 – 19

VQ003  Bits 24 – 27

VQ004 Bits 32 – 35

VQ005  Bits 40 – 43

VQ006  Bits 48 – 51

VQ007  Bits 56 – 59

VN000  Bits 4 – 7

VN001  Bits 12 – 15

VN002  Bits 20 – 23

VN003  Bits 28 – 31

VN004  Bits 36 – 39

VN005  Bits 44 – 47

VN006  Bits 52 – 55

VN007  Bits 60 – 63

IAA – IAP

IBA – IBP

IDA – IDP

ICA – ICP

IDA – IDP

IAA – IAP

IBA – IBP

OAA – OAG

IEB

IEC

IED

K0
(IC002)

(IC002)
K1

Go Vector
(BU000)

IEB

IEC

IED

K0
(IC000)

(IC000)
K1

Go Vector
(BU000)

VQ008  Bits 0 – 3

Vector Registers
Pipe 1



CPU Module (CPE1) Vector Pop/Pop Parity and Leading Zero

115Cray Research ProprietaryHTM-300-0

Pop/Parity/Leading Zero Functional Units

The RE options contain part of the divide/square root unit and the logic
for vector pop, vector pop parity, and vector leading zero.  There are two
RE options for each CPU.  RE000 handles pipe 0 (the even elements), and
RE001 handles pipe 1 (the odd elements).

The RE options receive data from the VN and VQ options; 4 bits come
from each VQ and VN.  Pop/parity/leading zero data uses the same wires
and terms as the divide/square root data.  The data is then sent to VN000
and VN008 on the same terms that the divide/square root output data uses.
Data is sent to only those two options because the pop functional unit
returns only a 7-bit value to the result register.

Vector Population Count 174 ij1

Vector pop counts the number of bits set in a vector element and reports
that count to a result vector.  The count ranges anywhere from 0 (no bits in
the element set) to 100 (all bits in the element set).  The functional unit
sends only bits 0 through 6 to the result vector; the remaining bits are
zeroed out.

Vector Population/Parity 174 ij2

This instruction counts the number of bits set in each element of a vector
and then determines whether this number of bits is an even or an odd
number.  If the result is an even number of bits, a 0 is written to the result
vector.  If the number of bits is odd, a 1 is written to the result vector.
Only bit 0 is written to the result vector; the rest of the bits in the element
are set to 0’s.

Vector  Leading Zero Count 174 ij3

This instruction counts the number of 0’s that precede the first bit set in
each element of a vector.  The count will be from 0 (bit 63 of the element
set) to 100 (no bits in the element set).



Vector Pop/Pop Parity and Leading Zero CPU Module (CPE1)

116 Cray Research Proprietary HTM-300-0

Vector Population/Parity Instructions

Refer to Table 22 for a list of the vector population/parity instructions.

Table 22.  Vector Population/Parity Instructions

Instruction CAL Description

174ij1 Vi PVj Population count (Vj) to Vi

174ij2 Vi QVj Parity of (Vj) to Vi

175ij3 Vi ZVj Transmit leading zero count of (Vj) to Vi



117Cray Research ProprietaryHTM-300-0

GATHER/SCATTER INSTRUCTIONS

The 176i1k and 1771jk instructions transfer blocks of data between
common memory and the vector registers.  The 176 instruction invokes
the gather, or read function; the 177 instruction invokes the scatter, or
write function.  When the 176i1k instruction is preceded by a 005400
instruction parcel, it performs a double gather function, which utilizes the
dual-pipe capability of the computer system.  The contents of the vector
length (VL) register determine the number of words transferred.

Gather Instructions

The 176i1k instruction transfers data from common memory to the Vi
register.  Register A0 contains the initial (base) address; the Vk register
contains the address indices.

For each element transferred to Vi, the memory address is the sum of (A0)
and the corresponding element of register Vk.  For example, during a
176213 instruction, V2[0] is loaded from address (A0) + (V3[0]); V2[1] is
loaded from address (A0) + (V3[1]); etc.

The 005400 176ijk instruction performs the double gather operation.  Data
is transferred from common memory to Vi and Vj in two separate data
transfers that occur simultaneously.  The A0 register contains the base
address for the transfer to Vi.  The Ak register contains the base address
for the transfer to Vj.  The Vk register contains the address indices for
both transfers.

For each element transferred to Vi, the memory address is the sum of (A0)
and the corresponding element of Vk.  For example, during a 005400
176213 instruction, V2[0] is loaded from address (A0) + (V3[0]); V2[1] is
loaded from address (A0) + (V3[1]); etc.  Simultaneously, V1[0] is loaded
from address (A3) + (V3[0]); V1[1] is loaded from address (A3) +
(V3[1]); etc.



Gather/Scatter Instructions CPU Module (CPE1)

118 Cray Research Proprietary HTM-300-0

Scatter Instructions

The 1771jk instruction transfers data from Vj to common memory.  The
A0 register contains the initial address.  Vk contains the address indices.

For each element transferred from register Vi, the memory address is the
sum of (A0) and the corresponding element of register Vk.  For example,
element 0 of Vi is stored to address (A0) + (Vk[0]); element 1 of Vi is
stored to address (A0) + (Vk[1]); etc.



119Cray Research ProprietaryHTM-300-0

IEEE FLOATING-POINT OVERVIEW

In general, the CRAY T90 series system CPE1 module conforms to the
IEEE standard for binary floating-point arithmetic.  It performs 64-bit
floating-point add, subtract, multiply, divide and square root calculations.
The CPE1 module also provides several new instructions that compare
and convert floating-point and integer numbers.

The number and distribution of bits in the coefficient and the exponent
(refer to Figure 63) are different than they are in the Cray proprietary
floating-point format.  (In the Cray proprietary floating-point format, the
coefficient comprises bit 0 through bit 47; the exponent comprises bit 48
through bit 63.)  Moreover, to ensure that the IEEE arithmetic results
provide additional precision, bit -1 through bit -10 are appended in the
logic to the right of the least significant bit of the coefficient.  These
supplemental bits are known as the Guard bit and the Sticky bits.

IEEE floating-point numbers are always represented as fractions – a
number such as .1xxxxxxx...x raised to a power.  The first bit in the
fraction (the 1 bit, also called “the hidden bit”) is always present in the
hardware.  Therefore all numbers in this computer system are considered
normalized numbers; it is impossible to submit a number to the system
that is not normalized.  This bit, although invisible to the user, is included
in the calculations.  Consequently, calculations are made on a 53-bit
fraction.  The result that the user sees is in the form illustrated in
Figure 63.

Figure 63.  IEEE Floating-point Format

Exponent Coefficient

Bits 63 52

0Sign Bit

51

151631324748
Parcel 0Parcel 1Parcel 2Parcel 3



Floating-point Overview CPU Module (CPE1)

120 Cray Research Proprietary HTM-300-0

The benefits of the IEEE format are:

• Greater precision with 4 more bits in the coefficient field

• Specific representation for infinity and non-numeric numbers

• Control of rounding mode

• Consistency in handling of end-cases

• Expanded exceptions

IEEE Floating-point Number Examples

Table 23 lists some examples of IEEE floating-point numbers.

Table 23.  IEEE Floating-point Numbers

Value 64-bit Word

+0 0000000000000000000000

–0 1000000000000000000000

+Greatest  number 0777577777777777777777

+Smallest number 0000200000000000000000

Infinity 0777600000000000000000

qNaN 07777xxxxxxxxxxxxxxxx1

sNaN 07776xxxxxxxxxxxxxxxx1

IEEE Terms

The following new terms are associated with IEEE floating-point:

Normal 0.  Defined as an exponent of all 0’s.  The sign of a normal
0 may be positive or negative.

Denormalized.  Defined as a minimum exponent in which the
leading bit of the coefficient is equal to 0.  The CRI implementation
of IEEE does not support denormalized numbers.  A denormalized
number input into a floating-point unit will be converted to a zero
before it is used.  This is a departure from the IEEE standard.



CPU Module (CPE1) Floating-point Overview

121Cray Research ProprietaryHTM-300-0

Unnormalized.  Defined as an unnormalized number in which the
value of the exponent is greater than the minimum value of the
format being used, and the leftmost bit of the significand is 0 (this
number represents an unnormalized 0).  Only normalized number
representations are supported.

Normalized.  Defined as a nonzero number in which the leftmost bit
of the significand is a 1. If the significand is a 0 then the number
becomes a normal 0.  Normalization does not change the sign of the
number.

NaN.  Defined as a symbolic entity encoded in floating-point format
and resulting from an operation that has no mathematical
interpretation.  For example, 0 divided by 0 produces a NaN
(Not A Number).

Rules of Operation for NaNs

• The sign of a NaN is never significant.

• When any floating-point unit receives a NaN, it generates an Invalid
(NVI) signal and returns a result of NaN.

• There are two different types of NaNs:  quiet and signaling.  If the
most significant bit of the coefficient is a 1, the NaN is considered
quiet.  When a single operand NaN is received by the floating add or
floating multiply unit, that NaN is returned as a result except that:
• A signaling NaN is converted to a quiet NaN.
• The sign is converted to positive.

• When two signaling NaNs or two quiet NaNs are received by the
floating add or floating multiply unit, the j operand is returned as a
result and modified in compliance with the single-operand NaN rule.

• When a signaling NaN and a quiet NaN are received by the floating
add or floating multiply unit, the signaling NaN is returned as a
result and modified according to the preceding rule.

• When either the divide or square root unit receives a NaN, it returns
a quiet NaN with all bits set in the coefficient.



Floating-point Overview CPU Module (CPE1)

122 Cray Research Proprietary HTM-300-0

• NaNs that are generated within a floating-point unit that were not
caused by receiving a NaN as an operand are given a tag code, which
is returned as part of the result.  The result returned will be all bits
set except for bits 48, 49, and 50.  These bits will show which
functional unit generated that result.  Table 24 lists the NaN tag
codes.

Table 24.  NaN Tag Codes

Functional Unit Bit 50 Bit 49 Bit 48

Add 0 0 1

Multiply 0 1 0

Divide 1 0 0

Square Root 1 0 1



CPU Module (CPE1) Floating-point Overview

123Cray Research ProprietaryHTM-300-0

• When NaNs are sent to the compare unit:
• NaNs never compare to another operand
• NaNs never compare to another NaN
• NaNs are not equal to another NaN
• NaNs always fail equality tests and pass inequality tests
• The unordered test returns true if either input is a NaN

Deviations from the IEEE Standard

In the following cases, CRI does not follow the IEEE standard:

• Only 64-bit format, no support for the 32-bit format
• No support for denormalized numbers
• Exception flags are not precise because of a lack of instruction

ordering

Special Operand Values

Three special operand cases that are considered in IEEE are as follows:

• Any floating-point operand with an exponent field of all 0’s is
considered a zero value.  The sign is significant.
• +nnn x –0 = –0
• –n x +0 = –0
• +nnn – +nnn = +0 (except if rounding down)
• Sqrt –0 = –0
• +0 result rounded down = –0
• Compare instructions +0 = –0

• When there is a maximum exponent and the coefficient is all 0’s, the
operand is considered to be infinite.  The sign is significant.  Infinite
values are generated when the exponent range required to represent
the number is exceeded.  The value is operated on and exceptional
results are generated (overflow).
• 0777600000000000000000 = positive infinity
• 1777600000000000000000 = negative infinity



Floating-point Overview CPU Module (CPE1)

124 Cray Research Proprietary HTM-300-0

• When there is a maximum exponent and the coefficient is not all 0’s,
the operand is not considered to be a real number (NaN).  The sign is
ignored.  There are two different types of NaNs:  quiet qNaN and
signaling sNaN.  If the most significant bit of the coefficient is a 1,
the NaN is considered quiet.  A qNaN is operated on like all other
operands; however, an exceptional input exception signal is
generated in the status register.  If an sNaN is received as an operand,
an invalid signal is generated.

• 077760xxxxxxxxxxxxxxxxx1 = Quiet NaN (qNaN)
• 077770xxxxxxxxxxxxxxxxx1 = Signaling NaN (sNaN)

Floating-point Exception (Flags)

Floating-point operations can generate several exception flags.  These
exceptions can be seen in Status register SR0.  Associated with these
exceptions are interrupt bits.  The interrupt bits can be enabled or disabled
by the user.  An interrupt will be generated if the exception is enabled, and
then a status register bit is set.  If an exception is set and then the user
enables the interrupt, no interrupt will be generated.  This is different
from previous Cray computer systems.

For instructions that can change interrupt mode bits, floating-point
instruction issue halts until all floating-point functional units are quiet.
All floating-point operations will complete with the same interrupt modes
that were set when they began.

There are six exceptions; they are:

• Invalid (NVI)   An attempt was made to generate a result that is not
a real number.  Invalid is signaled for the following reasons:
• A signaling NaN (sNaN) was received as an input operand
• Addition or subtraction of infinite operands in some cases
• +� – +� = invalid
• Multiplication of 0 x infinity
• Division of 0 / 0 or infinity / infinity
• Square root of any negative number
• Signed compare where one or both inputs are NaNs

(>, <=, <, >=)  Every NaN shall compare unordered



CPU Module (CPE1) Floating-point Overview

125Cray Research ProprietaryHTM-300-0

• Divide by 0 (DVI)  An attempt has been made to divide a finite
normal numerator by zero.

• Overflow (OVF)  A result larger than the greatest representable
number was generated.  A positive infinity is returned
(07776000000000000000000).  Overflow is handled differently than
the IEEE standard. Overflow is carried to positive or negative
infinity when rounding away from zero, and to the largest finite
number when rounding toward zero when the interrupt on overflow
is disabled.  The standard specifies that when interrupt on overflow
is enabled, the operation will deliver the result, with the exponent
biased toward zero by 30008.  Cray Research floating-point units
cannot detect whether the interrupts are enabled or disabled, and
therefore are unable to handle the two cases differently.

• Underflow (UNF)  A result smaller than the least representable
number was generated.  A coefficient of zero with the sign bit is
returned.  (00000000000000000000000).  This result is different
from the IEEE standard.  The IEEE standard returns the result
obtained after multiplying the infinitely precise result by 2α (where
2α is the bias adjust) and then rounding.

• Inexact (NX)  A result was generated that would be different if all
possible significant bits were returned or could be returned.  Inexact
is also signaled on both overflow and underflow when the returned
result is not exactly zero.  For example, 1 divided by 3 returns the
repeating decimal, 0.33333.......3, and signals Inexact.

• Exceptional Input (XI)   A floating-point unit received an operand
of infinity or NaN.  XI is a Cray feature, not an IEEE standard.

Rounding

Rounding is done by adding 1 to the least significant bit (LSB) of the
result if it is determined to be required by the rounding mode bits and any
bit of less significance than the LSB of the coefficient.

The first bit to the right of the LSB is called the guard bit; all the bits to
the right of the guard bit are “ORed” together into a “sticky” bit.  If the
guard bit and the sticky bits are all 0’s, then the results are exact and no
rounding occurs.  If either bit is a 1, then inexact is signaled and a 1 is
added to the LSB, depending on the rounding mode.



Floating-point Overview CPU Module (CPE1)

126 Cray Research Proprietary HTM-300-0

There are four rounding modes that apply to the floating-point units:

• Round to the nearest.  The result closest to infinitely precise is
returned.  If the bits to the right of the LSB are greater than half the
value of the LSB, a 1 is added to the results.   If the bits to the right
of the LSB are exactly half the value of the LSB, a 1 is added to the
results if the LSB=1.

• Round up.  The more positive result closest to infinitely precise is
returned.

• Round to zero.  The result closest to zero is returned.

• Round down.  The more negative result is returned.

Table 25 shows the effect of the sign bit, guard bit and sticky bit on the
LSB, depending on the rounding mode selected.

Table 25.  Effects of Rounding Mode on LSB

Result Bits Rounding Mode

Sign Bit Guard Bit Sticky Bit Round to
Nearest

Round to
Zero

Round Up Round Down

x 0 0 No No No No

0 0 1 No No Yes No

0 1 0 Yes if LSB=1 No Yes No

0 1 1 Yes No Yes No

1 0 1 No No No Yes

1 1 0 Yes if LSB=1 No No Yes

1 1 1 Yes No No Yes

IEEE Mathematical Functions

With the inclusion of NaN and infinity operands, more exceptional results
are possible.  Table 26 through Table 28 show the results from different
combinations of operands and different operations.  Remember to consider
the state of the rounding mode when you calculate the final results.



CPU Module (CPE1) Floating-point Overview

127Cray Research ProprietaryHTM-300-0

Addition and Subtraction Rules

Addition of equal operands with opposite signs produces a zero result.  A
positive zero results if rounding mode is set to round to nearest or round
up or round to zero. A negative zero results if the round down mode is
used.  A zero value is also returned if the operation underflows; the sign of
the result is the sign determined before underflow occurs.  If the operation
signals overflow and the rounding mode is set to round to nearest or round
up, the result returned is a +� (077760000000000000000).  If the round
mode is set to round to zero or round down, the result rounds to the
greatest representable value (0777577777777777777777).

Table 26.  Addition and Subtraction Results

k operand
j operand

k operand
j operand

k operand
n 0 � NaN

n 0, n, � n � NaN

0 n 0 � NaN

� � � �, NaN* NaN

NaN NaN NaN NaN NaN

*  A NaN is returned when adding two � of different signs.
   Subtracting two � of different signs results in a result of � with the sign of the minuend.

Multiplication,  Division, and Square Root Rules

Multiplication or division of two nonzero numbers results in zero only if
the operation detects underflow.  If an overflow occurs, a
��� (0777600000000000000000) or the greatest representable value
(0777577777777777777777) is returned, depending on the rounding
mode.



Floating-point Overview CPU Module (CPE1)

128 Cray Research Proprietary HTM-300-0

Table 27.  Multiplication Results

k operand
j operand

k operand
j operand

k operand
n 0 � NaN

n 0, n, � 0 � NaN

0 0 0 NaN NaN

� � NaN � NaN

NaN NaN NaN NaN NaN

Table 28.  Division Results

k operand
j operand

k operand
j operand

k operand
n 0 � NaN

n 0, n, � 0 � NaN

0 � NaN � NaN

� 0 0 NaN NaN

NaN NaN NaN NaN NaN

Table 29.  Square Root Results

j operand +n � 0 –n NaN

Results +n � 0 NaN NaN



129Cray Research ProprietaryHTM-300-0

IEEE FLOATING-POINT ADD AND COMPARE

The floating-point add unit is contained on the FC options. The FC
options perform the following four types of operations:

• IEEE floating add and subtract
• IEEE floating point-to-integer conversion
• IEEE integer-to-floating point conversion
• IEEE compare instructions

There are three FC options in each CPU.  Each FC option has a specific
function.

• FC000

• Performs all scalar-to-scalar floating add functions
• Performs all scalar-to-scalar compare functions
• Performs all scalar-to-scalar conversions
• Passes all pipe 0 vector data

• FC001

• Performs all pipe 0 floating add functions
• Performs all scalar-to-vector (Sj Vk) compare functions
• Performs all vector-to-vector (Vj Vk) compare functions
• Performs all vector-to-vector conversions for pipe 0
• Passes all output data to FC000

• FC002

• Performs all pipe 1 floating add functions
• Performs all scalar-to-vector (Sj Vk) compare functions
• Performs all vector-to-vector (Vj Vk) compare functions
• Performs all vector-to-vector conversions for pipe 1



Floating-point Add and Compare CPU Module (CPE1)

130 Cray Research Proprietary HTM-300-0

Floating Point Addition / Subtraction

The floating add functional unit, like the floating-point multiply unit,
receives normalized numbers as inputs.  Because of the hidden bit, all
numbers are normalized.  An input number that contains an exponent of
0’s will clear the coefficient to 0 before using it as an operand in the
functional unit.  NaN operands are handled in accordance with the IEEE
standard. Performing an add or subtract operation on a NaN results in a
NaN being produced and a flag set.

Four IEEE standard flags and one non-IEEE standard flag are used in the
floating-point add unit.  They are:

• Invalid (NVI)   An attempt was made to generate a result that is not a
number.  NVI is signaled for the following conditions:

• A NaN as an input operand
• Addition or subtraction of infinity
• Signed compare with at least one NaN input
• Attempt to convert an out-of-range number

• Overflow (OVF)  A result larger than the greatest representable
number has been generated.  Positive infinity
(0777600000000000000000) is returned.  The CRAY T90 series
version of IEEE treats OVF differently than the IEEE standard. In
the CRAY T90 series application, overflow is carried to positive or
negative infinity when rounding away from zero.  Overflow is
carried to the largest finite number when rounding towards zero,
when the interrupt on overflow is disabled.  The IEEE standard
specifies that the operation will deliver the result, with the exponent
biased toward zero by 3000 when interrupt on overflow is enabled.
The floating-point units have no way to detect whether the traps are
enabled or disabled, and therefore are unable to handle the two cases
differently.

• Underflow (UNF)  A result smaller then the least representable
number was generated.  A value of zero with the sign bit
� (0000000000000000000000) is returned.

• Inexact (NX)  A result was generated whose value would be
different if all possible significant bits were returned or could be
returned.  Inexact is also signaled on both overflow and underflow
when the result is not exactly 0.  Some examples of inexact numbers
are repeating decimals and pi.



Floating-point Add and CompareCPU Module (CPE1)

131Cray Research ProprietaryHTM-300-0

• Exceptional Input (XI)   A floating-point unit received either an
infinite or NaN operand.  XI is a CRI feature that is not an IEEE
standard.

Figure 64 is a diagram of the floating add functional unit.  The functional
unit uses 2 round mode bits to select one of four rounding modes.
Table 30 shows the four rounding modes used by the FC options.

Table 30.  Rounding Modes

Round Mode (RM0) (RM1)

Nearest 0 0

Up infinity 1 0

To zero 0 1

Down infinity 1 1

You can set the rounding modes either by issuing an instruction or by
setting a bit in the exchange package.  The 003004 through 003007
instructions set the rounding mode directly; the 005400 073i05 instruction
sets the rounding mode from the contents of Si.  A change to the rounding
mode affects all floating-point instructions issued thereafter, but it has no
effect on instructions issued previously.  The two exchange package bits,
RM0 and RM1, determine the rounding modes (as illustrated in Table 30).

Rounding is determined by the choice of rounding mode and the values of
the guard bit, the sign bit, the sticky bits, and the least significant bit
(LSB).  Table 31 defines when a 1 bit is added to the LSB of the results.



Floating-point Add and Compare CPU Module (CPE1)

132 Cray Research Proprietary HTM-300-0

Table 31.  Effects of Rounding Mode on LSB

Result Bits Rounding Mode

Sign Bit Guard Bit Sticky Bit Round to
Nearest

Round to
Zero

Round Up Round Down

x 0 0 No No No No

0 0 1 No No Yes No

0 1 0 Yes if LSB=1 No Yes No

0 1 1 Yes No Yes No

1 0 1 No No No Yes

1 1 0 Yes if LSB=1 No No Yes

1 1 1 Yes No No Yes



Floating-point Add and CompareCPU Module (CPE1)

133Cray Research ProprietaryHTM-300-0

Figure 64.  Floating Add Functional Unit

FC000

FC001

FC002

AV, AW, AX, AY
IAA – IDP

IEA – IHP

OAA – OAH

OBA – OBH

Sj

Sk

HH000

INA – INB

OGE – OGF
Rounding Mode

IIA – ILP

IMA – IME

MUX Vi Data

IEEE Flags

OAA – ODP

OEA – OEE

VQ/VN 0 – 7 IAA – IDP

IEA – IHP

OEA – OED

OEE – OEH

Sj/Vj

Vk

VQ/VN 8 – 15 IAA – IDP

IEA – IHP

OEA – OED

OEE – OEH

Sj/Vj

Vk

AY000/1

INA – INB

OYF – OYG
Rounding Mode

INA – INB

OYF – OYG

Pipe 1

Pipe 0

Scalar

IXA = 0
IXB = 1

IXA = 1
IXB = 1

IXA = 1
IXB = 0

IXA = Vector position
IXB = Pipe 0 position contant

AV, AW, AX, AY

VN0 – 7

IEA – IEH

OAA – ODP Vi IAA – IAH

Si

OEI IYASi Vi Flags

JB0/1

OFA

IKH

S0 Jump Sign

VE000

OGA IVASet VM

VN8 – 15

OAA – ODP Vi IAA – IAH

VE002OGA IVASet VM

AY001

OEI Vi Flags IYA

IRA

JB001 OEA Go Scalar FA

IRI

OEQ Go S Compare

BU001
ORB ISA

OSI ISIGo V-S Compare

Go Vector FA

OSJ ISQGo V-V Compare

BU001 ORB ISA

OSI ISIGo V-S Compare

Go Vector FA

OSJ ISQGo V-V Compare

OWD – OWF IQA – IQC
K0, K1, K2

OWD – OWF IQA – IQC
K0, K1, K2

BU000

OWD – OWF

IQA – IQC

K0, K1, K2

BU000

ONAITA Vector Valid

ONAITA Vector Valid

IC000
OXA – OXC
h0, H1, H2

IPA – IPC

IPA – IPC

IC002

h0, H1, H2
OXD – OXF IPA – IPC



Floating-point Add and Compare CPU Module (CPE1)

134 Cray Research Proprietary HTM-300-0

Floating-point Add Functional Unit Instructions

Refer to Table 32 for a list of the floating-point add functional unit
instructions.

Table 32.  Floating-point Add Functional Unit Instructions

Instruction CAL Description

062ijk Si Sj + FSk Scalar floating-point sum of (Sj) and (Sk) to Si

063ijk Si Sj – FSk Scalar floating-point difference of (Sj) minus (Sk) to Si

170ijk Vi Sj + FVk Vector floating-point sum of (Sj) and (Vk elements) to Vi

171ijk Vi Vj + FVk Vector floating-point sum of (Vi elements) and (Vk elements) to
Vi

172ijk Vi Sj – FVk Vector floating-point difference of (Sj) minus (Vk) to Vi

173ijk Vi Vj – FVk Vector floating-point difference of (Vj elements) minus (Vk
elements) to Vi

Floating-point Format

Refer to Figure 65 for an illustration of floating-point format.  Consider a
floating-point number normalized when the most significant bit of the
coefficient (bit 51) is set.

Figure 65.  IEEE Floating-point Format

Exponent Coefficient

Bits 63 52 0

Sign Bit

62 51

Floating-point-to-Integer Conversion

Floating-point-to-integer conversion takes place on the FC options.  This
operation converts a floating-point number to a signed 64-bit integer.
There are two cases of this conversion instruction.  One case converts



Floating-point Add and CompareCPU Module (CPE1)

135Cray Research ProprietaryHTM-300-0

without rounding and is not IEEE standard.  The other case enables
rounding.  Table 33 describes the floating-point-to-integer conversion
instructions.

Table 33.  Floating-Point-to-Integer Conversion Instructions

Instruction CAL Description

070ij2 Si int, Sj Floating-point Sj to integer Si

070ij3 Si rint, Sj Floating-point Sj to rounded integer Si

167ij0 Vi int, Vj Floating-point Vj to integer Vi

167ij1 Vi rint, Vj Floating-point Vj to rounded integer Vi

There are some notable special cases that involve the instructions listed in
Table 33.  The invalid signal is sent:

• If the j field of the instruction is a 0, then (Sj) or (Vj) is 0.  The
result is +0 (0000000000000000000000).

• If the floating-point number has a value greater than 264 –1,
then the unit will return � 0777577777777777777777.  This
value is the largest number that can be represented.

• If the input is a NaN, then +0777777777777777777777 is
returned and invalid  is signaled.

• If the input value is less than 1, a 0 or a 1 is returned, depending
on the rounding mode.  The inexact signal will be sent unless
the input operand was exactly 0.

Integer-to-Floating-Point Conversion

Integer-to-floating-point conversions occur on the FC options.  Two
instructions can convert a signed 64 bit integer into a floating-point
number.  The result will be exact if the absolute value of the source
operand is less than 254.  Otherwise the result is rounded, using the current
rounding mode.  Refer to Table 34 for a description of the two
integer-to-floating-point conversion instructions.



Floating-point Add and Compare CPU Module (CPE1)

136 Cray Research Proprietary HTM-300-0

Table 34.  Conversion Instructions

Instruction CAL Description

070ij4 Si flt, Sj Integer Sj to floating-point Si

167ij2 Vi flt, Vj Integer Vj to floating-point Vi

Floating-point Comparisons

The IEEE standard supports a full set of floating-point comparison
instructions.  There are four mutually exclusive operations that are
possible, they are:

• Less than
• Greater than
• Equal
• Unordered

Comparisons are always exact.  They never overflow, underflow, or signal
inexact exceptions.  If a signaling NaN (bit 51 of the fraction is 0) is
received as an input, it will generate an exception (XI) interrupt and also
an invalid (NVI) interrupt for signed compare tests (>, >=, <, <=).  An
invalid also occurs if a quiet NaN (bit 51 of the fraction is 1) is received in
a signed compare test (>, >=, <, <=).  Note that a NaN will always fail an
equal test (NaNs are equal to nothing) and always pass the Not equal test.

For compare functions, the sign of a zero value is ignored.  Therefore a
positive zero will equal a negative zero, and a positive zero is not greater
than a negative zero.

When a scalar compare instruction tests true for a condition, all of the bits
in the result register are set.  If the test fails, the result register will contain
0’s.  For vector operations, passing a test sets a bit in the mask register and
failing a test clears the corresponding bit in the mask register.  Table 35
lists the instructions used in the compare function.



Floating-point Add and CompareCPU Module (CPE1)

137Cray Research ProprietaryHTM-300-0

Table 35.  Compare Instructions 

Instruction CAL Description

005501 164ijk Si Sj,EQ,Sk Floating-point compare equal

005502 164ijk Si Sj,NQ,Sk Floating-point compare not equal

005503 164ijk Si Sj,GT,Sk Floating-point compare greater than

005504 164ijk Si Sj,LE,Sk Floating-point compare less than or equal

005505 164ijk Si Sj,LT,Sk Floating-point compare less than

005506 164ijk Si Sj,GE,Sk Floating-point compare greater than or equal

005507 164ijk Si Sj,UN,Sk Floating-point compare unordered

005521 1640jk VM Sj,EQ,Vk Floating-point compare equal

005522 1640jk VM Sj,NQ,Vk Floating-point compare not equal

005523 1640jk VM Sj,GT,Vk Floating-point compare greater than

005524 1640jk VM Sj,LE,Vk Floating-point compare less than or equal

005525 1640jk VM Sj,LT,Vk Floating-point compare less than

005526 1640jk VM Sj,GE,Vk Floating-point compare greater than or equal

005527 1640jk VM Sj,UN,Vk Floating-point compare unordered

005541 1640jk VM Vj,EQ,Vk Floating-point compare equal

005542 1640jk VM Vj,NQ,Vk Floating-point compare not equal

005543 1640jk VM Vj,GT,Vk Floating-point compare greater than

005544 1640jk VM Vj,LE,Vk Floating-point compare less than or equal

005545 1640jk VM Vj,LT,Vk Floating-point compare less than

005546 1640jk VM Vj,GE,Vk Floating-point compare greater than

005547 1640jk VM Vj,UN,Vk Floating-point compare unordered



Floating-point Add and Compare CPU Module (CPE1)

138 Cray Research Proprietary HTM-300-0

This page intentionally left blank.



139Cray Research ProprietaryHTM-300-0

IEEE DIVIDE AND SQUARE ROOT

IEEE Divide

The vector and scalar registers share the divide and square root functional
unit.  The divide functional unit also handles the iota instructions and the
pop, parity, and leading zero operations.  (These functions are discussed in
the Vector Logical and in the Vector Pop/Parity sections.)  There are two
divide and square root pipes; each pipe consists of one RE option and two
RD options.  (Refer to Figure 67 at the end of this section for a block
diagram of the divide functional unit.)

All input data from the vector and scalar registers arrives at the functional
unit from the vector options.  Scalar data is also routed through the vector
options, using the same path to the RE options.

NOTE: The divide unit operates in either full- or half-precision mode.
Although the hardware for half-precision is on the module, there
is no compiler or software support for the half-precision
instructions.

In half-precision mode, the divide unit stops iterating after 16 iterations
and produces 32-bit results. In full-precision mode, the divide unit
performs 28 iterations.  The top bit of the result is generally a 0, but it can
be 1 if the ratio of the mantissa to the radicand is approximately 2:1.  The
next bit is the hidden bit if no left shift is required.  The hidden bit is 2 bits
below the top bit if a left shift is required, which leaves 29 or 30 bits to the
right of the hidden bit.  The remaining (unused) 22 or 23 bits are set to 0’s.

Table 36 lists the IEEE floating-point divide and square root instructions
that are available on CRAY T90 series systems.



IEEE Divide and Square Root CPU Module (CPE1)

140 Cray Research Proprietary HTM-300-0

Table 36.  Floating-point Divide and Square Root Unit Instructions

Instruction CAL Description

065ijk Si Sk/FSj Floating-point Sk divided by Sj to Si.

065ijk * Si Sk/HSj Half precision floating-point Sk divided by Sj to Si.

070ij0 Si SQR Sj Floating-point square root of Sj to Si.

070ij0* Si SQRH Sj Half precision floating-point square root of Sj to Si.

162ijk Vi Vk/FSj Floating-point Vk divided by Sj to Vi.

162ijk* Vi Vk/HSj Half precision floating-point Vk divided by Sj to Vi.

163ijk Vi Vk/FVj Floating-point Vk divided by Vj to Vi.

163ijk* Vi Vk/HVj Half precision floating-point Vk divided by Vj to Vi.

174ijk0 Vi SQR Vj Floating-point square root of Vj to Vi.

174ijk0* Vi SQRH Vj Half precision floating-point square root of Vj to Vi.

*  Must be preceded by a 005400 instruction

Divide/Square Root Options

There are two sets of options because this functional unit has two pipes.
The even elements are processed by pipe 0,  and the odd elements are
processed by pipe 1. Table 37 shows the options used for each pipe.

Table 37.  Divide  Options

Pipe 0 Pipe 1

RE000 RE001

RD000 RD002

RD001 RD003

RD option

The RD option communicates only with the RE option; there are two RD
options for each RE option.  The RD receives input operands from the RE
option:  first the j operand, then the k operand.  The RD option sends the
mantissa serially to the RE option.



IEEE Divide and Square RootCPU Module (CPE1)

141Cray Research ProprietaryHTM-300-0

Each RD option contains four identical divide/square root cores.  There
are a total of eight cores in each unit.  Divide and square root operands are
sent to the RD options so that each RD option receives operands at a
maximum rate of one every 4 clock periods (CPs) in half-precision mode
or one every 8 CPs in full-precision mode.  Operands are always sent to
the even-numbered RD option first.  If a new divide operation is starting
and it has been at least 16 CPs since the last operation, the unit will reset
the pipe back to the even-numbered RD option.  This feature allows a
failure to be isolated to a particular RD option.

The input data is received at the RE option and sent to the RD option
along with the Yugo signal.  The Yugo signal causes the RD option to
assign one of the divide cores to begin calculation.

RE Option

There is one RE option for each pipe.  The RE option is responsible for:

• Iota (See the “Vector Logical” section for a description of Iota)

• Vector Pop/Pop Parity and Leading Zero instructions (See the
“Vector Pop/Pop Parity and Leading Zero” section for a
description of these instructions)

• Exponents calculation

• Exceptions

• Normalization

• Rounding

All communication with the CPU occurs through the RE options.  There is
only one 64-bit operand path into the divide unit.  The divide unit receives
data from the VN and VQ options and passes it on to the RD option.  The j
and k operands for divide are multiplexed; first j arrives and then k.  Scalar
data is also routed through the VN and VQ options.

Normalization

A floating-point divide operation may be normalized at most by one
position.  If the divisor is greater then the mantissa, then the most
significant bit of the result is 0 and a left shift of one position is
preformed.  Otherwise, the most significant bit of the result is always a 1.



IEEE Divide and Square Root CPU Module (CPE1)

142 Cray Research Proprietary HTM-300-0

Square root operations should never require normalization.  The radicand
is shifted left one position before the operation is started.  There is one
exception.  Although it is mathematically impossible for the ratio of two
mantissas to be equal to 2, or the square root of n<4 to be 2, it is possible,
in half-precision mode, for this result to be produced.  Also if rounding
away from zero, the square root of the largest possible n<4 must be
rounded up to 2.  In all these cases, the bit above the most significant bit is
set and all other bits are forced to 0’s.  For square root, this case is
detected and the exponent is adjusted accordingly.  For divide, the
exponent is left unjustified and the mantissa is forced to 0.

Rounding

Two rounding mode bits are received at the RE option and held for vector
length.  The 2 rounding mode bits select one of following four rounding
modes:

• 00 = Round to nearest
• 01 = Round toward positive
• 10 = Round toward zero
• 11 = Round toward negative

Rounding occurs by adding one to the least significant bit (LSB) of the
results.  (Rounding is determined to be required by the rounding mode bits
and any bit of less significance than the LSB of the coefficient and
possibly the sign bit and the LSB.)

In rounding, the first bit to the right of the LSB is called the guard bit, all
the bits to the right of the guard bit are “ORed” together into a “sticky”
bit.  If the guard bit and the sticky bit are 0’s, then the results are exact and
no rounding will take place.  If either bit is a 1, then Inexact is signaled
and a 1 is added to the LSB, depending on the rounding mode.

Floating Point Exception Flags

The divide square root unit has six exception flags:

• Invalid (NVI)   An attempt has been made to generate a result that is
not a real number.  Invalid is signaled for the following conditions:
• A signaling NaN (sNaN) was received as an input operand
• Division of 0 by 0 or infinity by infinity
• Square root of a negative number



IEEE Divide and Square RootCPU Module (CPE1)

143Cray Research ProprietaryHTM-300-0

• Divide by 0 (DVI)  An attempt has been made to divide a finite
normal numerator by zero.

• Overflow (OVF)  A  result that is larger than the largest
representable number was generated.

• Underflow (UNF)  A nonzero result that is smaller than the smallest
representable number was generated.

• Inexact (NX)  A result was generated whose value would be
different if all possible significant bits were returned or could be
returned.  Inexact is also signaled on both overflow and underflow
when the result is not exactly 0.  For example, 1 divided by 3 returns
the repeating decimal, 0.33333.......3, and signals Inexact.

• Exceptional Input (XI)   A floating-point unit received an operand
of infinity or NaN.  XI is a CRI feature, not an IEEE standard.

Exception flags and other generated information about the operation are
sent serially to the AY option and onward to the status registers of the HH
options.  The information is recoded and staged as shown in Figure 66.

Figure 66.  Serial Floating-point Status

Xsign inf

0Bit

XXsNaNqNaNzeroovfunddbzinvRM0RM10iSclrSqrt

123456789101112131417-151819

Division and Square Root Rules

If  either operand of a divide is a NaN, or if the operand in a square root is
a NaN, or if the operation is invalid, then the result must be a NaN.  If one
of the operands is a NaN, the result will be a positive value quiet NaN,
with a mantissa of all 1’s.  If a NaN is generated because of an invalid
operation, the result will be a positive value quiet NaN, but 1 or 2 bits of
the mantissa will be set to identify which unit generated the NaN.  These
identifier bits are shown in Table 38.



IEEE Divide and Square Root CPU Module (CPE1)

144 Cray Research Proprietary HTM-300-0

Table 38.  NaN Identifiers 

Unit Bit 50 Bit 49 Bit 48

Divide 1 0 0

Square Root 1 0 1

Division of two nonzero numbers results in a 0, only when an underflow
operation occurs.  If overflow occurs, a ��  (0777600000000000000000)
or the greatest representable value (0777577777777777777777) is
returned.  Table 39 lists the characteristics of floating divide input
operands and how they affect the quotient.  Table 40 contains a list for
square root calculations.

Table 39.  Division Results

k operand
j operand

k operand
j operand

k operand
n 0 � NaN

n 0, n, � 0 � NaN

0 � NaN � NaN

� 0 0 NaN NaN

NaN NaN NaN NaN NaN

Table 40.  Square Root Results

j operand +n � 0 –n NaN

Results +n � 0 NaN NaN



CPU Module (CPE1) IEEE Divide and Square Root

145Cray Research ProprietaryHTM-300-0

Figure 67.  Divide Unit Block Diagram

RE000

RD000

RD001

IAA – IAP

IBA – IBP

ICA – ICP

IDA – IDP

j / k Bits 0 – 15

j / k Bits 16 – 31

j / k Bits 32 – 47

j / k Bits 48 – 63

IIA – IIP

IJA – IJP

IKA – IKP

ILA – ILP

IIA – IIP

IJA – IJP

IKA – IKP

ILA – ILP

Bits 0 – 15

Bits 16 – 31

Bits 32 – 47

Bits 48 – 63

OAA – OAP

OBA – OBP

OCA – OCP

ODA – ODP

OIA – OIP

OJA – OJP

OKA – OKP

OLA – OLP

RE000

Result Bits 0 – 15 to S/V Register

Result Bits 16 – 31 to S/V Register

Result Bits 32 – 47 to S/V Register

Result Bits 48 – 63 to S/V Register

OQA – OQC

IQA – IQC

IRA – IRC

ISA – ISC

ITA – ITC

ORA – ORC

OSA – OSC

OTA – OTC

OQA – OQC

ORA – ORC

OSA – OSC

OTA – OTC

IUA – IUC

IVA – IVC

IWA – IWC

IXA – IXC

Serial Quotient to RE

IEAGo Scalar Divide/Sqrt(JB)

(V-)

(V-)

(V-)

(V-)

IEB – IECk 0 – 1(IC)

IEDGo Vector Divide/Sqrt(BU)

IEEVector Element Valid(VE)

IEHEIS(BU)

IEK – IEM
i Bits (Which Si to Write)

(AY)

IEP – IEQh 0 – 1(IC)

IFA – IFBRounding Mode(AY)

IYB

IYA

OYA

OYB

Remainder Zero

Remainder Negative

IYD

IYC

OYA

OYB

Remainder Zero

Remainder Negative

OEA

IAAValid Divide/Sqrt (Yugo)

OEB

IAAValid Divide/Sqrt (Yugo)

OHA

OHB

OHC

OHJ

IHA

IHB

IHC

IHJ

IHA

IHB

IHC

IHJ

Sqrt

Odd Exponent

Half Precision

Hold J Operand
OSA – OSB Divide Si Release

(JB)
OSA = Valid, i Bit 1
OSB = Bits  0, 2

OSC – OSD Divide Si Release
(AV, AW)

OSC = Valid, i Bit 1
OSD = Bits 0, 2

OSE – OSF Divide Si Release
(AW)

OSE = Valid, i Bit 1
OSF = Bits  0, 2

OSG – OSH Divide Si Release
(AX)

OSG = Valid, i Bit 1
OSH = Bits  0, 2

OSI – OSJ Divide Si Release
(AY)

OSI = Valid, i Bit 1
OSJ = Bits  0, 2

Core A

Core B

Core D

Core Select

Output MUX

Check for
Illegal inputs

Input
Data
J  First
then K

Exponent Calculation

Normalization

Rounding

AY000
AY001

Rounding Mode IFA – IFB

OFA Status Flags to HH000 via AY000

Core A

Core B

Core C

Core D

Core Select

Output MUX

Input
Data
J  First
then K

Core C



CPU Module with IEEE IEEE Divide and Square Root

146Cray Research ProprietaryModule Pub Number
Preliminary Information

Delete this page when printing.



147Cray Research ProprietaryHTM-300-0

IEEE FLOATING-POINT MULTIPLY AND INTEGER
MULTIPLY

The scalar and vector registers share the floating-point multiply functional
unit.  Two floating-point operands arrive at the multiply functional unit
from either the scalar or the vector registers.  The signs of the two
operands are combined through an exclusive OR operation, the exponents
are added together, and the two 51-bit coefficients are multiplied.

The floating-point multiply functional unit also performs the integer
multiply operation.  Two 64-bit operands arrive at the functional unit and
a 128-bit result is generated.  With the EIS instruction set, the user can
select either the upper 64 bits or the lower 64 bits of the result.

The multiply unit is a dual pipe unit.  Each unit consists of five options:
the NE option, two NF options, an HG option, and an NH option.  Refer to
the block diagrams of the multiply functional unit in Figure 73 and
Figure 74.



Floating-point Multiply CPU Module (CPE1)

148 Cray Research Proprietary HTM-300-0

Multiply Algorithm

The multiply functional unit uses a type of recode multiplication algorithm
known as Booth’s Algorithm.

The multiplier, in this case the j operand, is partitioned into 3-bit recode
groups centered on the even bits.  A forced zero is added to the first
recode group.  The recode groups are formed as shown in Table 41.  The
following subsections provide examples of standard and Booth Recode
multiplication.

Table 41.  Recode Groups

Odd Bit Even Bit i –1 Recode Value Recode Product

0 0 0 +0 0

0 0 1 +1 X

0 1 0 +1 X

0 1 1 +2 2X

1 0 0 –2 (2X)’+1

1 0 1 –1 (X)’+1

1 1 0 –1 (X)’+1

1 1 1 –0 (0)‘ +1

i – 1 = Bit to right of recode
group

X = Multiplicand

Standard Binary Multiplication

Refer to the following example of standard binary multiplication:

000011  (3)
    011101  (35)

000011
    000000
 000011

     000011
  000011

     000000
 0000001010111  (127)



CPU Module (CPE1) Floating-point Multiply

149Cray Research ProprietaryHTM-300-0

Booth Recode Multiplication

Refer to the following example of Booth Recode multiplication:

   000011   (3)
   011101  (35)

   000000000011
                11111111010
               00000110
         1    000001010111  (127)

In the previous example, the multiplier is recoded into bit groups centered
on the even bit.  A forced zero is appended to the first recode group.

As shown in Table 41, the first recode of the multiplier, bit 1, bit 0, and the
forced zero, produces a recode value of 010, or +1.  In this case, the
multiplicand is brought down to form the first partial product.

The second recode, bit 3, bit 2, and bit 1, produces a recode value of –1.
In this case, a two’s complement and a shift of 1 are performed on the
multiplicand, which forms the second partial product.

The final recode, bits 5, 4, and 3 produces a recode value of +2, which
results in a shift of 1 on the multiplicand and forms the third partial
product.

Integer Multiply Instructions

The floating-point multiply functional unit also performs the integer
multiply operation.  Two 64-bit operands are presented to the unit and a
128-bit result is generated.  The EIS instruction set allows the user to
select either the upper 64 bits or the lower 64 bits of the 128-bit result.
Refer to Table 42 for a list of the integer multiply instructions.



Floating-point Multiply CPU Module (CPE1)

150 Cray Research Proprietary HTM-300-0

Table 42.  Integer Multiply Instructions

Instruction CAL Description

066ijk SiSj*LSk Integer product, (Sj) times (Sk) to Si, returning lower

066ijk * SiSj*USk Integer product, (Sj) times (Sk) to Si, returning upper

165ijk ViVj*LVk Integer product, (Vj elements) times (Vk elements) to Vi,
returning lower

165ijk * ViVj*UVk Integer product, (Vj elements) times (Vk elements) to Vi,
returning upper

166ijk ViSj*LVk Integer product, (Sj) times (Vk elements) to Vi, returning lower

166ijk * ViSj*UVk Integer product, (Sj) times (Vk elements) to Vi, returning upper

*  Must be preceded by a 005400 instruction

Floating-point Multiply Instructions

The floating point-multiply unit uses the IEEE standard for multiplication.
There are 11 exponent bits and 52 coefficient bits.  Refer to Figure 68 for
the IEEE format.

Figure 68.  IEEE Floating-point Format

Exponent Coefficient

Bits 63 52 0

Sign Bit

62 51

When two operands are presented to the unit, a pyramid is formed.  The
least significant bits are captured by the NE option (NE000 for pipe 0 and
NE001 for pipe 1).  These bits are the sticky bits when rounding modes
are in operation, and they are also the lower bits of the integer multiply
results.  The two NF options, (NF000 and NF001 for pipe 0 and NF002
and NF003 for pipe 1) form the middle of the pyramid.

Refer to Table 43 for a list of the floating-point multiply instructions.



CPU Module (CPE1) Floating-point Multiply

151Cray Research ProprietaryHTM-300-0

Table 43.  Floating-point Multiply Instructions

Instruction CAL Description

064ijk SiSj*FSk Scalar floating-point product of (Sj) times (Sk) to (Si)

160ijk ViSj*FVk Vector floating-point product (Sj) times (Vk elements) to Vi

161ijk ViVj *FVk Vector floating-point product (Vj elements) times (Vk elements)
to Vi

Multiply Functional Unit Options

There are two sets of options because the multiply functional unit is a
dual-pipe functional unit.  The even elements are processed by pipe 0,
and the odd elements are processed by pipe 1.  Table 44 shows the options
used for each pipe.

Table 44.  Multiply Options

Pipe 0 Pipe 1

NE000 NE001

NF000 NF002

NF001 NF003

NG000 NG001

NH000 NH001

NE Option

The NE option forms the rightmost (least significant) portion of the
pyramid.  (Refer to Figure 69.)  The NE option receives Sk and Vk
operand bits 0 through 49 and Sj and Vj bits 0 through 50.  During a
floating multiply operation, this portion of the pyramid is used mainly to
create the sticky bits; however, during an integer multiply, the results will
be used to produce the full 128-bit result.  The NE option receives very
little control from the rest of the unit.  It cannot distinguish whether the
operands are to be used as floating point or integer.



Floating-point Multiply CPU Module (CPE1)

152 Cray Research Proprietary HTM-300-0

NF Option

There are two NF options per pipe.  NF000 and NF001 are used for
pipe 0, and NF002 and NF003 are used for pipe 1.  A particular input may
be used on one option and not the other, depending on its position.  The
NF option may receive control signals from the NG option with
information that an invalid operand was received and instructions to abort
further calculations.

NF000 receives Sk and Vk operands bit 33 through bit 65 (bit 64 and bit
65 are forced to 0’s) and Sj and Vj bit –1 through bit 47 (bit –1 is forced to
a zero).  NF000 generates the upper-middle portion of the pyramid. (Refer
to Figure 70).

NF001 receives Sk and Vk operand bit –1 through bit 33, (bit –1 is forced
to zero) and Sj and Vj bit 17 through bit 65 (bit 64 and bit 65 are forced to
0’s).  NF001 generates the lower-middle portion of the pyramid.  (Refer to
Figure 71.)

NG Option

The NG option forms the left portion of the pyramid.  (Refer to
Figure 72.)  The NG option receives Sk and Vk operand bit 17 through bit
65 (bit 64 and bit 65 are forced to 0’s) and Sj and Vj bit 17 through bit 65
(bit 64 and bit 65 are forced to a 0’s).

The NG option also detects exceptional inputs such as:
• Zero j exponent/fraction
• Zero k exponent/fraction
• Signaling NAN j operand
• Signaling NAN k operand
• Quiet NAN j operand
• Quiet NAN k operand
• Infinite NAN j operand
• Infinite NAN k operand

and communicates the presence of these inputs to the NF options and the
NH option.

NH Option

The NH option performs the final summation for the floating-point
multiply pyramid and sends the final coefficient and exponent to the result
registers.  The NH also transmits the interrupt signal to the AY option
where it is relayed to the HH option for use in the exchange package.



F
loating-point M

ultiply
C

P
U

 M
odule (C

P
E

1)

153
C

ray R
esearch P

roprietary
H

T
M

-300-0

Figure 69.  NE Option Pyramid

0001020304050607080910111213141516171819202122232425262728293031323334353637383940414243444546474849
–1, 00, 01
01, 02, 03

03, 04, 05
05, 06, 07

07, 08, 09
09, 10, 11

11, 12, 13
13, 14, 15

15, 16, 17
17, 18, 19

19, 20, 21
21, 22, 23

23, 24, 25
25, 26, 27

27, 28, 29
29, 30, 31

31, 32, 33
33, 34, 35

35, 36, 37
37, 38, 39

39, 40, 41
41, 42, 43

43, 44, 45
45, 46, 47

47, 48, 49

NE

k Operand

j Operand



F
loating-point M

ultiply
C

P
U

 M
odule (C

P
E

1)

154
C

ray R
esearch P

roprietary
H

T
M

-300-0

Figure 70.  NF0 Option Pyramid

XX, XX, XX
XX, XX, XX
XX, XX, XX
XX, XX, XX
XX, XX, XX
XX, XX, XX
XX, XX, –1

65, 64
63, 62
61, 60
59, 58
57, 56
55, 54
53, 52
51, 50
49, 48
47, 46
45, 44
43, 42
41, 40
39, 38
37, 36
35, 34
XX, XX

–1, 00, 01
01, 02, 03
03, 04, 05
05, 06, 07
07, 08, 09
09, 10, 11
11, 12, 13
13, 14, 15
15, 16, 17
17, 18, 19
19, 20, 21

21, 22, 23
23, 24, 25

25, 26, 27
27, 28, 29

29, 30, 31
31, 32, 33

33, 34, 35
35, 36, 37

37, 38, 39
39, 40, 41

41, 42, 43
43, 44, 45

45, 46, 47

NF0

Î
Î
Î
Î



F
loating-point M

ultiply
C

P
U

 M
odule (C

P
E

1)

155
C

ray R
esearch P

roprietary
H

T
M

-300-0

Figure 71.  NF1 Option Pyramid

33, 32
31, 30
29, 28
27, 26
25, 24
23, 22
21, 20
19, 18
17, 16
15, 14
13, 12
11, 10
09, 08
07, 06
05, 04
03, 02
01, 00

65, XX, XX

NF1

17, 18, 19
19, 20, 21
21, 22, 23
23, 24, 25
25, 26, 27
27, 28, 29
29, 30, 31
31, 32, 33
33, 34, 35
35, 36, 37
37, 38, 39
39, 40, 41
41, 42, 43
43, 44, 45
45, 46, 47
47, 48, 49
49, 50, 51
51, 52, 53

53, 54, 55
55, 56, 57

57, 58, 59
59, 60, 61

61, 62, 63
63, 64, 65

XX, XX, XX
XX, XX, XX

XX, XX, XX
XX, XX, XX

XX, XX, XX
XX, XX, XX

XX, XX, XX



F
loating-point M

ultiply
C

P
U

 M
odule (C

P
E

1)

156
C

ray R
esearch P

roprietary
H

T
M

-300-0

Figure 72.  NG Option Pyramid

65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18

17, 18, 19
19, 20, 21
21, 22, 23
23, 24, 25
25, 26, 27
27, 28, 29
29, 30, 31
31, 32, 33
33, 34, 35
35, 36, 37
37, 38, 39
39, 40, 41
41, 42, 43
43, 44, 45
45, 46, 47
47, 48, 49
49, 50, 51
51, 52, 53
53, 54, 55
55, 56, 57
57, 58, 59
59, 60, 61
61, 62, 63
63, 64, 65

NG



C
P

U
 M

odule (C
P

E
1)

F
loating-point M

ultiply

157
C

ray R
esearch P

roprietary
H

T
M

-300-0

Figure 73.  Multiply Data Paths

Result Bits 32, 34, 36, 38, 40

NE000

NF000

NH000

NG000

IAA – IAYSj 0 – 24

IBA – IBYSj 25 – 49

ICA – ICYVj 0 – 24

IDA – IDYVj 25 – 49

IGA – IGXVk 0 – 23

IHA – IHZVk 24 – 49

IEA – IEXSk 0 – 23

IFA – IFZSk 24 – 49

OAA – OCB

OCC – OCI

OCJ – OCN

OCO – OCZ

IAA – ICB

ICJ – ICN

ICC – ICI

ICO – ICZ

Result Bits 0 – 53

Result Bits 11, 15, 19, 23, 27, 28, 30

Result Bits 42 – 53

IAB – IAXSj 0 – 22

IAASj Forced 0

IBA – IBYSj 23 – 47

ICAVj Forced 0

ICA – ICXVj 0 – 22

IDA – IDYVj 23 – 47

IEA – IEBSk Forced 0

IEC – IERSk 33 – 48

IFA – IFOSk 49 – 63

IFP – IFQSk Forced 0

IGA – IGBVk Forced 0

IGC – IGRVk 33 – 48

IHA – IHOVk 49 – 63

IHP – IHQVk Forced 0

NF001
IAA – IAXSj 17 – 40

IAX – IBYSj Forced 0

IBA – IBWSj 41 – 63

IDX – IDYVj Forced 0

ICA – ICXVj 17 – 40

IDA – IDWVj 41 – 63

IEASk Forced 0

IEB – IERSk 0 – 16

IFA – IFQSk 17 – 33

IGAVk Forced 0

IGB – IGRVk 0 – 16

IHR – IHYVk 17 – 33

IAA – IAXSj 17 – 40

IAX – IBYSj Forced 0

IBA – IBWSj 41 – 63

IDX – IDYVj Forced 0

ICA – ICXVj 17 – 40

IDA – IDWVj 41 – 63

Sk Forced 0

IEA – IEXSk 17 – 40

IFX – IFY

Vk Forced 0

IGA – IGXVk 17 – 40

IHA – IHWVk 41 – 63

IFA – IFWSk 41 – 63

IHX – IHY

OAA – OBK Result Bits 50 – 86 IDA – IEK

OAA – OBK Result Bits 50 – 86 IFA – IGK

OCA – OBT Result Bits 82 – 127 IHA – IIT

OCA – OCH Result Bits 83,86,88 – 93 IJA – IJH

OCI – OCO Result Bits 95,97,99,101,103,105,107 IJI – IJO

OCP – OCU Result Bits 112,116,120,124,127 IJP – IJU

Sj Captured for Use
with Sj Vk Operations

Sj Captured for Use
with Sj Vk Operations

Sj Captured for Use
with Sj and Vk
Operations

Sk and Vk Bits 0 – 49
Sj and Vj Bits 0 – 50

Sk and Vk Bits 33 – 65
Sj and Vj Bits -1 – 47

Sk and Vk Bits -1 – 33
k bit 64, 65 Forced 0

Sj and Vj Bits 17 – 65
k Bit -1 Forced 0
j Bit 64, 65 Forced 0

k Bit 64, 65 Forced 0
j Bit -1 Forced 0

Sj Captured for Use
with Sj and Vk
Operations

Final Summation

OAA – OCL



C
P

U
 M

odule (C
P

E
1)

F
loating-point M

ultiply

159
C

ray R
esearch P

roprietary
H

T
M

-300-0

Figure 74.  Multiply Control Paths

Go  Scalar IQA – IQB
(JB)

Go  Vector IQC
(BU)

IQC

NE000

NF000

NF001

NG000

OQG Go  FP Mode

IQG

OQA – OQC

J Operand Zero

IQG

Go  Scalar

Go  Vector

NH000

IQH

IQI

OQH

OQI

IQF

h Bit 2

IQFh Bit 2(NF000) OQK NF002
OQL NF002

h Bit 2

h Bit 2

OQN NG001h Bit 2

OQJ
OQM

IQF

h Bit 2

h Bit 2

j Operand Zero

OQA

OQB

OQC

OQD

OQE

OQF

OQG

OQH

Zero j Exponent/Fraction

Zero k Exponent/Fraction

Signaling NaN j Operand

Signaling NaN k Operand

Quiet NaN j Operand

Quiet NaN k Operand

Infinite NaN k Operand

Infinite NaN k Operand

IQG

IQH

IQI

IQJ

IQK

IQL

IQM

IQN

To NF000
ALSO

ODB Invalid Input

ODC Exceptional Input

IQC

IQD

ODA Sign Bit to Branch Control
(JB)

k Operand ZeroOQD – OQF
(NG000)



C
P

U
 M

odule (C
P

E
1)

F
loating-point M

ultiply

160
C

ray R
esearch P

roprietary
H

T
M

-300-0

Delete this page when printing.



161Cray Research ProprietaryHTM-300-0

BIT MATRIX MULTIPLY

The OA option performs the bit matrix multiply operation.  The functional
unit consists of six OA options.

The OA option performs two functions related to bit matrix multiply.  The
first function loads the B array with the Vj operand.  The second function
performs the A x BT operation where A is either the Sj or Vj operand and
BT is the B array transposed.  The scalar operation produces a scalar
result, and the vector operation produces a vector result.

Each OA option receives 22 bits of the operand.  OA002 and OA005
receive 20 bits, and the last two inputs are forced to zero.  Each OA option
holds 32 elements x 22 bits.  When performing the A x BT  operation,
each OA produces a partial result for each of the 32 elements.  The partial
results are then sent to the appropriate OA option to complete the final
results.  There is only one copy of each control bit coming into the
functional unit, so OA001 and OA004 relay the control bits to the other
options.

Bit Matrix Multiply Theory of Operation

The bit matrix multiply (BMM) functional unit performs a logical
multiplication of two matrices, designated A and B, which results in a
single-bit result for each pair of elements multiplied.  The matrices, which
are held in vector registers, may vary in size from 1 bit x 1 bit (1 x 1) to
64 x 64 bits.  The size of the matrix is specified by the vector length (VL)
register (example: VL = 20 specifies 20 x 20 matrices).

The following conditions are necessary to obtain valid results:

• The two matrices must be square and of equal size.

• The two matrices must be left-justified in the vector registers to
element 0, bit 63.

• Unused bits of each element that contain part of the matrix must be
zeroed.

Elements not containing parts of a matrix are unaffected.



Bit Matrix Multiply CPU Module (CPE1)

162 Cray Research Proprietary HTM-300-0

Result matrix C is the product of matrix A and matrix B transposed (Bt).
Bt is formed from matrix B by interchanging its rows and columns.

In addition to performing full 64 x 64 matrix multiply operations, the
BMM functional unit performs a scalar-vector multiply operation and
stores the result in an S register.

Figure 75 is an illustration of 20 x 20 and 50 x 50 matrices stored in vector
registers.

Figure 75.  Vector Storage of Bit Matrices

Valid
Data Zeroes

Don’t Care

Don’t Care

ZeroesValid Data

Bits 63 44 43 0 14 13 0
Element 0

.

.

.
Element 19
Element 20

.

.

.

.

.

.

.
Element 63

Element 0

.

.

.

Element 49
Element 50

.

.

.

.

.

.

.

Element 63

VL = 5010VL = 2010

Bits 63

In this section, the notation used to represent individual bits of a matrix is
a lower-case letter followed by a subscripted numeric field.  The letter
represents the name of the matrix; the numerics denote, respectively, the
element and bit of the vector register data.  Elements and bits numbered
from 1 to 9 are represented as a 2-digit number; elements and bits
numbered upward from 10 are separated by a comma.  For example:

a3, 7 represents matrix A, element 3, bit 7

b15,43 represents matrix B, element 15, bit 43

a3,12 represents matrix A, element 3, bit 12



CPU Module (CPE1) Bit Matrix Multiply

163Cray Research ProprietaryHTM-300-0

Matrices A and B can be represented mathematically as illustrated in
Figure 76.  Note that the ultimate degree of both element and bit can be
represented by n because matrices must be square.  Each row of a matrix
corresponds to an element of a vector register.

Figure 76.  Mathematical Representation of Matrices A and B

a11 a12 a13 . . . a1n b11 b12 b13 . . . b1n
a21 a22 a23 . . . a2n b21 b22 b23 . . . b2n

A = . . . . B = . . . .
. . . . . . . .
. . . . . . . .
an1 an2 an3 . . . ann bn1 bn2 bn3 . . . bnn

The BMM functional unit transposes matrix B as it is loaded into the
BMM storage area.  The elements (rows) of the B matrix data are
interchanged with the bit positions (columns) as illustrated in Figure 77.

Figure 77.  B Matrix and Bt Matrix Relationships

b11 b12 b13 . . . b1n b11 b21 b31 . . . bn1
b21 b22 b23 . . . b2n b12 b22 b32 . . . bn2

B = b31 b32 b33 . . . b3n Bt = b13 b23 b33 . . . bn3
. . . . . . . .
. . . . . . . .
bn1 bn2 bn3 . . . bnn b1n b2n b3n . . . bnn



Bit Matrix Multiply CPU Module (CPE1)

164 Cray Research Proprietary HTM-300-0

The operation, C = ABt, is illustrated in Figure 78.

Figure 78.  Multiplication of A and Bt

a11 a12 a13 . . . a1n b11 b21 b31 . . . bn1 c11 c12 c13 . . . c1n
a21 a22 a23 . . . a2n b12 b22 b32 . . . bn2 c21 c22 c23 . . . c2n
a31 a32 a33 . . . a3n b13 b23 b33 . . . bn3 c31 c32 c32 . . . c3n

ABt = . . . . . . . . = . . . .
. . . . . . . . . . . .
. . . . . . . . . . . . .
an1 an2 an3 . . . ann b1n b2n b3n . . . bnn cn1 cn2 cn2 . . . cnn

A Bt C

where:
C11=a11b11�a12b12�a13b13� . . . �a1nb1n �

C12=a11b21�a12b22�a13b23� . . . �a1nb2n

C13=a11b31�a12b32�a13b33� . . . �a1nb3n
.
.
C21=a21b11�a22b12�a23b13� . . . �a2nb1n
.
.
C32=a31b21�a32b22�a33b23� . . . �a3nb2n
.
.

� � indicates an exclusive OR operation.



CPU Module (CPE1) Bit Matrix Multiply

165Cray Research ProprietaryHTM-300-0

Instructions

Refer to Table 45 for a list of the bit matrix multiply instructions.

Table 45.  Bit Matrix Multiply Instructions

Instruction CAL Description

1740j4 BMM   LVj Transmit Vj elements 0 – 63 to B matrix

  1740j5 † BMM   UVj Transmit Vj elements 64 – 127 to B matrix

174ij6 Vi   Vj * BT Transmit the value of Vj multiplied by the transposed B matrix
to Vi

070ij6 Si   Sj * BT Transmit the value of Sj multiplied by the transposed B matrix
to Si

002210 CBL Clear the bit matrix loaded (BML) flag

† New instruction

Refer to Figure 79 for a BMM block diagram for pipe 0 and to Figure 80
for a BMM block diagram for pipe 1.



Bit Matrix Multiply CPU Module (CPE1)

166 Cray Research Proprietary HTM-300-0

This page intentionally left blank.



Bit Matrix MultiplyCPU Module (CPE1)

167Cray Research ProprietaryHTM-300-0

Figure 79.  Bit Matrix Multiply Block Diagram, Pipe 0

VR000      Bits 0 – 3

OA002

OA001

OA000

Bits 44 – 63

Bits 22 – 43

Bits 0 – 21

Partial Results

OA002

OA001

OA000

OA005

OA004

OA003

Partial Results

OA005

OA004

OA003

VM000     Bits 4 – 7

VR001      Bits 8 – 11

VM001    Bits 12 – 15

VR002     Bits 16 – 19

VM002      Bits 22 – 23
VR003       Bits 24 – 27

VM003      Bits 28 – 31
VR004       Bits 32 – 35

VM004      Bits 36 – 39

VR005      Bits 40 – 43

VM005        Bits 44 – 47
VR006        Bits 48 – 51

VM006       Bits 52 – 55

VR007       Bits 56 – 59

VM007       Bits 60 – 63

VM002     Bits 20 – 21

Bits 0 – 21

Bits 44 – 63

Bits 22 – 43

IAA – IAV

IAA – IAV

IAA – IAU

IAA – IAV

IAA – IAV

IAA – IAU

ICA – ICKOCV – ODF

Bits 42, 44 – 62

OCK – OCU

OCA – OCJ

ICA – ICK

ICA – ICJ

Bits 20, 22 – 40

Bits 0, 2 – 18

OCA – OCJ

OCK – OCU

OCV – ODF

IDA – IDK

IDA – IDJ

IDA – IDK

OCA – OCJ IEA – IEJ

OCK – OCU

IEA – IEK

OCV – ODF

IEA – IEK

OCV – ODF

OCK – OCU

OCA – OCJ

OCA – OCJ

OCK – OCU

OCV – ODF

OCA – OCJ

OCK – OCU

OCV – ODF

ICA – ICK

ICA – ICK

ICA – ICJ

IDA – IDK

IDA – IDJ

IDA – IDK

IEA – IEJ

IEA – IEK

IEA – IEK Bits 43, 45 – 63

Bits 21, 23 – 41

Bits 1, 3 – 19

VM000/AR000

VM001/AS000

VM002/AS001

VM003/AS002

VM004/AT000

VM005/AT001

VM006/AU000

VM007/AU001

VM002/AS001

VM005/AT001

Partial Results

Partial Results

Partial Results

Partial Results

OAA – OAK Final Result Bits

OAA – OAK Final Result Bits

Final Result BitsOAA – OAJ

Final Result Bits

Final Result Bits

OAA – OAK

OAA – OAK

OAA – OAJ Final Result Bits

Even Bits 22 – 42

Even Bits 0 – 20

Odd Bits 45 – 63

Odd Bits 23 – 43

Odd Bits 1 – 21

Even Bits 44 – 62



Bit Matrix MultiplyCPU Module (CPE1)

169Cray Research ProprietaryHTM-300-0

Figure 80.  Bit Matrix Multiply Block Diagram, Pipe 1

VR008       Bits 0 – 3

OA002

OA001

OA000

Bits 44 – 63

Bits 22 – 43

Bits 0 – 21

Partial Results

OA002

OA001

OA000

OA005

OA004

OA003

Partial Results

OA005

OA004

OA003

VM008       Bits 4 – 7

VR009        Bits 8 – 11

VM009      Bits 12 – 15

VR010     Bits 16 – 19

VM010      Bits 22 – 23

VR011       Bits 24 – 27

VM011      Bits 28 – 31

VR012      Bits 32 – 35

VM012       Bits 36 – 39

VR013     Bits 40 – 43

VM013       Bits 44 – 47

VR014       Bits 48 – 51

VM014      Bits 52 – 55

VR015      Bits 56 – 59

VM015      Bits 60 – 63

VM010       Bits 20 – 21

Bits 0 – 21

Bits 44 – 63

Bits 22 – 43

IBA – IBV

IBA – IBV

IBA – IBU

IBA – IBV

IBA – IBV

IBA – IBU

IFA – IFKOEV – OEF

Bits 42, 44 – 62

OEK – OEU

OEA – OEJ

IFA – IFK

IFA – IFJ

Bits 20, 22 – 40

Bits 0, 2 – 18

OEA – OEJ

OEK – OEU

OEV – OEF

IGA – IGK

IGA – IGJ

IGA – IGK

OEA – OEJ IHA – IHJ

OEK – OEU

IHA – IHK

OEV – OEF

IHA – IHK

OEV – OEF

OEK – OEU

OEA – OEJ

OEA – OEJ

OEK – OEU

OEV – OEF

OEA – OEJ

OEK – OEU

OEV – OEF

IFA – IFK

IFA – IFK

IFA – IFJ

IGA – IGK

IGA – IGJ

IGA – IGK

IHA – IHJ

IHA – IHK

IHA – IHK
Bits 43, 45 – 63

Bits 21, 23 – 41

Bits 1, 3 – 19

VM008

VM010

VM011

VM012

VM013

VM014

VM015

VM013

Partial Results

Partial Results

Partial Results

Partial Results

OBA – OBK Final Result Bits

OBA – OBK Final Result Bits

Final Result BitsOBA – OBJ

Final Result Bits

Final Result Bits

OBA – OBK

OBA – OBK

OBA – OBJ Final Result Bits

Even Bits 22 – 42

Even Bits 0 – 20

Odd Bits 45 – 63

Odd Bits 23 – 43

Odd Bits 1 – 21

Even Bits 44 – 62

VM010

VM009



171Cray Research ProprietaryHTM-300-0

INSTRUCTION BUFFERS

The instruction buffers are distributed across four IC options.  (Table 46
illustrates how the four IC options are partitioned.)  Each IC option
contains 8 buffers, and each buffer holds 32 16-bit words.  The IC options
also hold data for the functions listed in Table 46.

Table 46.  IC Options

Bit Type IC000 IC001 IC002 IC003

Instruction data bits 0 – 7 and 
32 – 39

8 – 15 and 
40 – 47

16 – 23 and 
48 – 55

24 – 31 and 
56 – 63

B address bits 0 – 7 8 – 15 16 – 23 24 – 31

Fetch address bits 0 – 7 8 – 15 16 – 23 24 – 31

Logical address translation
(LAT) address bits

0 – 7 and 
32 – 39

8 – 15 and 
40 – 47

16 – 23 and 
48 – 55

24 – 31 and 
56 – 63

Exchange P address bits 0 – 7 and 
32 – 39

8 – 15 and 
40 – 47

16 – 23 and 
48 – 55

24 – 31 and 
56 – 63

Fetch destination code
fan-out bits

0, 1 2, 3 4, 5 6, 7

Fetch 

The IC options generate a deadstart fetch after the first 208 words (the
number of words in the exchange package) have been received.  The IC
option counts the number of common memory valid codes received, and
this count enables the generation of the deadstart fetch signal.

When data is fetched from memory, it is requested as a block of 32 words
(4 blocks of 8 words where the first word of this block is the first word
that is needed).  For example, if a branch is made to address 1005, that
address is requested first, followed by addresses 1006 to 1037, then
addresses 1000 to 1004.

When the common memory data arrives, the IC compares the incoming
code with the expected code.  This code tells the IC option where to put
the data in the buffer.  Data can arrive at the IC from memory in any order,
and because of the memory code, it is reordered inside the buffer.



Instruction Buffers CPU Module (CPE1)

172 Cray Research Proprietary HTM-300-0

A 9-bit code accompanies every 16 bits of memory data.  This code
specifies the buffer and the element in the buffer into which the word is to
be loaded.  The following illustration shows a breakdown of the code.

4  3   2   1   0  8     7   6   5

ElementBufferValid

Two words of data arrive together at the IC options.  As the data starts to
arrive, the IC options sense the first 4 words.  These words proceed
through a bypass path, to the read-out registers, and then to the JB options
for issue.

Two pointers are associated with bypass:  a read pointer and a write
pointer.  As long as the write pointer stays ahead of read issue, the first 4
words will issue.  The buffers will continue to fill while the first 4 words
are issuing.  If the first 4 words issue and the buffers are not full, issue
stops until the buffers fill and the buffer valid bit sets.  The instruction
parcels are then transmitted to the JB options from the buffers.

Prefetch

A prefetch begins when the buffer read-out pointer reaches address 308 in
the buffer or a branch occurs to addresses 30 to 378.

The prefetch determines if the next sequential buffer is already in-stack.
If it is not, a fetch accesses the next sequential common memory address.
When the count in the buffer reaches 378, the IC advances the buffer
pointer and ensures that the read data valid bit is set.  If the read data valid
bit is not set, the IC option enables the wait first word flag and waits for
the first word to be received from common memory.

NOTE: The prefetch will always occur, but it can be blocked or aborted
by any branch sequence in progress.

Prefetch can at times degrade performance.  For example, if the first word
of the next sequential instruction block is needed while the current
instruction block is being fetched, a delay occurs.  In this case, issue stops
until the last word of the next block is fetched.

If an out-of-stack branch occurs while the next sequential block is
awaiting prefetch, the prefetch is aborted and the block containing the
branch address is fetched instead.  Issue of instructions at the branch
address are delayed until the fetch of the current block is completed and a
fetch of the current block containing the branch address begins.



CPU Module (CPE1) Instruction Buffers

173Cray Research ProprietaryHTM-300-0

Another problem with prefetch occurs when executing an instruction at
the top of logical address translation (LAT) space.  The program may
execute a branch to lower memory but the prefetch may try to initiate a
fetch from the next sequential memory location.  If the next sequential
memory location is out of the LAT range and the branch is within 8 words
of the last valid LAT address, a range error may occur.

Refer to Figure 81 for the IC options bit layout, to Figure 82 for an IC
block diagram, and to Figure 83 for the IC option terms.

Figure 84 is a block diagram of the memory-to-instruction buffers for path
1, and Figure 85 is a block diagram of the memory-to-instruction buffers
for path 2.  Figure 86 is a block diagram of the common memory path
code 1 fanouts, and Figure 87 is a block diagram of the common memory
path code 2 fanouts.



Instruction Buffers CPU Module (CPE1)

174 Cray Research Proprietary HTM-300-0

Figure 81.  IC Options Bit Layout

IC000

IC001

IC002

IC003

RAM  Array 0

Buffer 0 – 3
Even Words

0 – 30

RAM  Array 1

RAM  Array 2

RAM  Array 3

Buffer 4 – 7
Even Words

0 – 30

Buffer 4 – 7
Odd Words

0 – 30

Buffer 0 – 3
Odd Words

0 – 30

Instruction Data Bits 0 – 7 and 32 – 39

Instruction Data Bits 8 – 15 and 40 – 47

Instruction Data Bits 16 – 23 and 48 – 55

Instruction Data Bits 24 – 31 and 56 – 63

B Bits 0 – 7
Fetch Bits 0 – 7
LAT Address Bits 0 – 7 and 32 – 39
Exchange P Data Bits 0 – 7 and 32 – 39

B Bits 8 – 15
Fetch Bits 8 – 15
LAT Address Bits 8 – 15 and 40 – 47
Exchange P Data Bits 8 – 15 and 40 – 47

B Bits 16 – 23
Fetch Bits 16 – 23
LAT Address Bits 16 – 23 and 48 – 55
Exchange P Data Bits 16 – 23 and 48 – 55

B Bits 24 – 31
Fetch Bits 24 – 31
LAT Address Bits 24 – 31 and 56 – 63
Exchange P Data Bits 24 – 31 and 56 – 63



CPU Module (CPE1) Instruction Buffers

175Cray Research ProprietaryHTM-300-0

Figure 82.  IC Block Diagram

IC

  Array 0
Buffer

0 – 3 Even
Words
0 – 15

  Array 1

  Array 2

 Array 3

Buffer
4 – 7 Even

Words
0 – 15

Buffer
4 – 7 Odd

Words
0 – 15

Buffer
0 – 3 Odd

Words
0 – 15

Bypass

IAA – IAPPath 1 Data

IBA – IBPPath 2 Data

Inst Data to OAA – OAP

R
e
a
d
–
o
u
t

R
e
g

Parity Error to OUA
Path 1 Code

IAQ – IAX

Path 1 Code

IBQ – IBX
(Array Write/
Read Address)

(Array Write/
Read Address)

IAX
Path 1 Valid

IBX
Path 1 Valid

(Write Enable)

(Write Enable)

Fetch Address
Register

IDA – IDP
IEA – IEP

P Bits 0 – 15
P Bits 16 – 31 New P to OAA – OAH

Branch or LAT
Address

Branch Address
OEA – OEH

LAT Address OEI – OEP

 Parcel Data
P Reg Data

 Coincidence Buffer
IPA – IPP

Buffer Match

h, i, j, k Bits

OWA – OWC
OWD – OWE
OWI – OWK
OWQ – OWS
OXA – OXC
OXD – OXF

Fan-out Data
ICA – ICH

OCA – OCH
OCI – OCP Bjk/P Fanout

(CC)

(CC)

(OA)

(JB)

(BU)

(IC)

(HM)
(RE)
(HM)
(HH)
(NF, NG)
(VS, FC)

(JB)

(IC)

(IC)

(CH)

(CH)

(IC)

(IC)

(IC)
(IC)

(BU)

Fan-out Data



Instruction Buffers CPU Module (CPE1)

176 Cray Research Proprietary HTM-300-0

Figure 83.  IC Option Terms

IAA –
IAPCM Path 1 Data

IAQ –
IAYCM Path 1 Code

IBA –
IBPCM Path 2 Data

IBQ –
IBYCM Path 2 Code

ICA –
ICHBjk Exchange P to Fanout

IDA –
IDPBjk Exchange P Bit 0 – 15

IEA –
IEHBjk Exchange P Bit 16 – 31

IPA –
IPPParcel Data

IQAEnter Rank 1

(CH)

(CH)

(IC)

(IC)

(BU)

(BU)

(BU)

(JB)
(JB)

IQEEnter Rank 2
(JB)

IQAClear Rank 2
(JB)

IQMData Resume
(JB)

IQQBranch Issue
(JB)

IQRGo Branch
(JB)

IQSBranch Fall Through
(JB)

IQUInterrupt Request
(JB)

IRACPU MC to Fanout

IRBExchange Active to Fanout

IRCTriton Mode to Fanout

IRDVL2 or CM B to Fanout

IRECM MC to Fanout

ISAFetch Done

ITAMaint Mode

IUA
IUBIC Select

(HA)

(CC)

(Force 1)

(VB)

(HA)

(CC)
(HA)

(Force)
IVBEnter Exchange P

(CC)

IVC –
IVDCM Path 1 Code to Fanout

(CK)

IVE –
IVFCM Path 2 Code to Fanout

(CK)

OAA –
OAP Instruction Data

(JB)

OAQ Instruction Data Ready
(JB)

OCA –
OCH Bjk Exchange P to Fanout

(BU)
OCI –
OCP Bjk Exchange P to Fanout

(BU)
ODA –
ODH New P

(BU)

ODI Enter New P/Dump Mode
(BU)

ODJ Go Branch/Exchange Enable
(JB)

OEA –
OEH Branch Address

(CC)
OEI –
OEP Exchange LAT

(CC)

OEQ Fetch Requests
(CC)

OER Go Dump
(CB)

ODJ Buffer Load Pointers
(JB)

OVA –
OVD

(IC)
OVE –
OVH

(IC)

CM Path 1 Read Code Fanout

CM Path 2 Read Code Fanout

OWA –
OWC

(HM)
OWD –
OWE

(RE)
k0, k1 at Phase 2

k0, k1, k2 at Phase 3

OWI –
OWK

(HM)
i/j at Phase 3

OWQ –
OWS

(HI)
i/j at Phase 2

OXA –
OXC

(FC)
h0, h1, h2 at Phase 2

IC



CPU Module (CPE1) Instruction Buffers

177Cray Research ProprietaryHTM-300-0

Figure 84.  Memory-to-instruction Buffers, Path 1

IC000CH000

CH002

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IAA –
IAD

IAI –
IAL

IAE –
IAH

IAM –
IAP

Bits 0 – 3

Bits 32 – 35

Bits 4 – 7

Bits 36 – 39

IC001CH004

CH006

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IAA –
IAD

IAI –
IAL

IAE –
IAH

IAM –
IAP

Bits 8 – 11

Bits 40 – 43

Bits 12 – 15

Bits 44 – 47

IC002CH008

CH010

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IAA –
IAD

IAI –
IAL

IAE –
IAH

IAM –
IAP

Bits 16 – 19

Bits 48 – 51

Bits 20 – 23

Bits 52 – 55

IC003CH012

CH014

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IAA –
IAD

IAI –
IAL

IAE –
IAH

IAM –
IAP

Bits 24 – 27

Bits 56 – 59

Bits 28 – 31

Bits 60 – 63



Instruction Buffers CPU Module (CPE1)

178 Cray Research Proprietary HTM-300-0

Figure 85.  Memory-to-instruction Buffers, Path 2

IC000CH001

CH003

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IBA –
IBD

IBI –
IBL

IBE –
IBH

IBM –
IBP

Bits 0 – 3

Bits 32 – 35

Bits 4 – 7

Bits 36 – 39

IC001CH005

CH007

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IBA –
IBD

IBI –
IBL

IBE –
IBH

IBM –
IBP

Bits 8 – 11

Bits 40 – 43

Bits 12 – 15

Bits 44 – 47

IC002CH009

CH011

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IBA –
IBD

IBI –
IBL

IBE –
IBH

IBM –
IBP

Bits 16 – 19

Bits 48 – 51

Bits 20 – 23

Bits 52 – 55

IC003CH013

CH015

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IBA –
IBD

IBI –
IBL

IBE –
IBH

IBM –
IBP

Bits 24 – 27

Bits 56 – 59

Bits 28 – 31

Bits 60 – 63



Instruction BuffersCPU Module (CPE1)

179Cray Research ProprietaryHTM-300-0

Figure 86.  Common Memory Path, Code 1 Fanouts

IC000

IC001

IC002

IC003

CK000

IVC

IVD

IVC

IVC

IVC

IVD

IVD

IVD

ONF

ONG

ONH

ONI

ONJ

ONC

OND

ONE

Element Bit 0

Element Bit 1

Element Bit 2

Element Bit 3

Element Bit 4

Buffer Bit 0

Buffer Bit 1

Buffer Bit 2

IC000

OVA

OVC

IAQ

IAR

IAS

IAT

IAU

IAV

IAW

IAX

OVA

OVA

OVA

OVC

OVC

OVC

IC001

Element Bit 0

Element Bit 1

Element Bit 2

Element Bit 3

Element Bit 4

Buffer Bit 0

Buffer Bit 1

Buffer Bit 2

IC000

IC001

IC002

IC003

IC002

OVB

OVD

IAQ

IAR

IAS

IAT

IAU

IAV

IAW

IAX

OVB

OVB

OVB

OVD

OVD

OVD

IC003

ONA

Valid

IAY

ONB
IAY

Valid

Element Bit 0

Element Bit 1

Element Bit 2

Element Bit 3

Element Bit 4

Buffer Bit 0

Buffer Bit 1

Buffer Bit 2



Instruction BuffersCPU Module (CPE1)

181Cray Research ProprietaryHTM-300-0

Figure 87.  Common Memory Path, Code 2 Fanouts

IC000

IC001

IC002

IC003

CK001

IVC

IVD

IVC

IVC

IVC

IVD

IVD

IVD

ONF

ONG

ONH

ONI

ONJ

ONC

OND

ONE

IC000

OVE

OVG

IBQ

IBR

IBS

IBT

IBU

IBV

IBW

IBX

OVE

OVE

OVE

OVG

OVG

OVG

IC001

IC000

IC001

IC002

IC003

IC002

OVF

OVH

IBQ

IBR

IBS

IBT

IBU

IBV

IBW

IBX

OVF

OVF

OVF

OVH

OVH

OVH

IC003

ONA

Valid

IBY

ONB
IBY

Element Bit 0

Element Bit 1

Element Bit 2

Element Bit 3

Element Bit 4

Buffer Bit 0

Buffer Bit 1

Buffer Bit 2

Element Bit 0

Element Bit 1

Element Bit 2

Element Bit 3

Element Bit 4

Buffer Bit 0

Buffer Bit 1

Buffer Bit 2

Valid

Element Bit 0

Element Bit 1

Element Bit 2

Element Bit 3

Element Bit 4

Buffer Bit 0

Buffer Bit 1

Buffer Bit 2



183Cray Research ProprietaryHTM-300-0

INSTRUCTION ISSUE

In the CRAY T90 series computer system, a process called instruction
issue introduces instructions into the central processing unit (CPU).

The first instruction parcel is read from of one of eight instruction buffers
(IBs) and sent to the next instruction parcel (NIP) register where it is
partially decoded to determine whether it is a 1-, 3- or 4-parcel instruction.

Refer to Figure 88 for an instruction issue block diagram.  The program
address (P) register points to the next parcel to be read out of the
instruction buffer.  If it is a 1-parcel instruction, the NIP moves to the
current instruction parcel (CIP), the parcel from the instruction buffer
moves to NIP, and P is incremented by 1.  If it is a 3-parcel instruction, as
NIP moves to CIP, the second parcel moves into LIP0, the third parcel
moves into LIP1, and P is incremented by 3.  If it is a 4-parcel instruction,
as the first parcel moves from NIP to CIP, the second and third parcels
move to LIP0 and LIP1.  Then, the fourth parcel goes to NIP and on to
CIP as the other three parcels are leaving.  In the next clock period, the
fourth parcel leaves CIP, and the value in the P register increments by 4.

Figure 88.  Instruction Issue Block Diagram

IB 7

IB 6

IB 5

IB 4

IB 3

IB 2

IB 1

IB 0

NIP

P

+1, +3, +4

CIP

LIP0

LIP1



Instruction Issue CPU Module (CPE1)

184 Cray Research Proprietary HTM-300-0

Instruction Formats

There are three instruction formats:  1-, 3-, or 4- parcel instructions.  The
first parcel always contains the operation code.  The operation code is
examined in NIP to determine whether it is an exit instruction (000000 or
004000) or a 1-, 3-, or 4- parcel instruction.

One-parcel Instructions

The gh portion generally is the operation code, although some instructions
also use the i, j, or k fields.  The i field is usually the result designator, and
the jk portions are generally operand register designators.  Some
instructions use the i field or bit 2 of the j field to provide additional bits
for the operation code.

Some 1-parcel instructions are part of the extended instruction set (EIS)
and perform different operations when immediately preceded by the EIS
parcel (005400 or 0055jk).

Figure 89 illustrates the format of a 1-parcel instruction.

Figure 89.  Format for a 1-parcel Instruction

7 3 3 3 Bits/Parcel

g   h i j k

15 – 9 8 – 6 5 – 3 2 – 0 Bit Number

Three-parcel Instructions

In the 3-parcel instruction format, the nm fields hold the 32-bit address or
constant value.  Figure 90 illustrates a 3-parcel instruction format.

NOTE: The n portion holds the most significant bits, and the m portion
holds the least significant bits.

Figure 90.  Format for a 3-parcel Instruction
3 3 3 Bits/Parcel

h i j k

11 – 9 8 – 6 5 – 3 2 – 0

g

15 – 12

4 3 16 16

n m

15 – 0 15 – 0 Bit Number



CPU Module (CPE1) Instruction Issue

185Cray Research ProprietaryHTM-300-0

Four-parcel Instructions

In the 3-parcel instruction format, the instruction field mnemonic pmn
represents a 48-bit field of which the p portion is the most significant
parcel.  Figure 91 illustrates a 4-parcel instruction format.

Figure 91.  Format for a 4-parcel Instruction

3 3 3

h i j k

11 – 9 8 – 6 5 – 3 2 – 0

g

15 – 12

4 3 16

p

15 – 0

Bits/Parcel16 16

n m

15 – 0 15 – 0 Bit Number

Four-parcel instructions are used in A and S register memory references
that use extended addressing.  The h field selects an A register that
contains an address index.  The i field designates which A or S register is
the source or destination of the data.  During read references, bit 1 of the j
field disables or enables cache bypass.  Bit 2 of the j field must be set to a
1 to indicate a 4-parcel instruction.  The k field is not used.

Instruction Decode

When an instruction parcel is loaded into NIP, its size is determined.  If it
is a 1-parcel instruction, it moves to CIP for further decoding to determine
which registers, functional units, and memory ports are required.



Instruction Issue CPU Module (CPE1)

186 Cray Research Proprietary HTM-300-0

P Register

The P register is 32 bits wide and resides on the BU0 and BU1 options.
The P register indicates the relative memory address of the next
instruction to be read out of the instruction buffer read-out register (and
sent to either NIP or LIP0).  The lower 2 bits (bits –1 and –2) point to the
parcel, and the upper 30 bits (bits 8 through 29) point to the word address.
There are three ways to load the P register:

• Multiplex 8 bits at a time during an exchange sequence

• Load from Bjk as a result of a 005ijk instruction

• Load from the ijk or nm fields of a 006ijk, 007ijk, or 01xjk
instruction

Every time a parcel issues, the JB option sends an Advance P signal to the
BU options.  Advance P increments the P register by 1.

Coincidence

A condition called coincidence exists when the next needed parcel is in
one of the eight instruction buffers.  (Coincidence is checked only on
branch instructions.)  A coincidence check compares the upper 25 bits of
the P register to the 25-bit buffer address (A) register and determines
whether the buffer valid bit is set.  All 25 bits must match, and the buffer
valid bit must be set in order for a coincidence condition to exist.  If there
is no coincidence, a fetch operation is initiated.

Reading the Instruction Buffer

When a buffer read occurs, the even and odd words are read out of the
buffer to a read-out register.  Depending on the content of the P register,
the BU options direct one of these words to NIP or LIP for decoding.



CPU Module (CPE1) Instruction Issue

187Cray Research ProprietaryHTM-300-0

JB Option

The two JB options on the CP module provide the issue control signals for
the processor.  These options receive the instruction word from the IC
options, select and decode the correct parcels, and provide control to the
rest of the CPU.  The JB option also has all the resource reservations and
holds issue if a resource is busy.  The JB options are responsible for the
functions described in the following subsections.

Parcel Data Distribution

The JB option transmits parcel data to the AV, AW, AX, AY, BU, and VB
options and alters the j field going to the AV, AW, AX, and AY options for
certain instruction types during the following instructions:

• 10h, 11h, 12h, 13h; the Aj becomes the Ah field
• 0013j0; the Ai field becomes the Aj field

The JB option also transmits a read-out pointer code to the A and S
registers.  The read-out pointer code selects the read-out path.  Refer to
Table 47 for a list of these codes.

Table 47.  Read-out Path Codes 

Code Instruction Description

00 075, 13h Si to BU path

01 034, 036, 025, 11h Ai to BU path

11 035, 037 Ai to BU path

00 0013j0,  027ij2/3,  027ij6/7 Ai to SR path

01 073ij2, 073ij3, 073ij5, 073ij6 Si to SR path

10 0010jk, 0011jk Ak to SR path

11 0014j0, 0014j4 Sj to SR path

00 057, 0030j0/1, 026ij0/1, 027ij0 Sj to shift path

11 052 – 056 Si to shift path

00 Sj to vector pipe 0

01 176 A0 to vector pipe 0

10 034, 036 A0 to vector pipe 0

11 035, 037, 177 A0 to vector pipe 0

00 Sj to vector pipe 1



Instruction Issue CPU Module (CPE1)

188 Cray Research Proprietary HTM-300-0

Code DescriptionInstruction

01 176 Ak to vector pipe 1

10 034, 036 Ai to vector pipe 1

11 035, 037, 177 A0 to vector pipe 1

00 10h, 12h, 13h, 0017jk Ah (Aj) to CM port B/E

01 00200k Ak to CM port B/E

10 11h Ah (Aj) to CM port B/E

11 177 Ak  to CM port B/E

A/S/V/B/T Register Requests

The JB option checks for register conflicts and receives a register release
signal from the shared resource control and from common memory for the
A and S registers.  The JB option also receives a vector read/write (R/W)
release for V registers and a B/T read/write release.  The JB option also
transmits A and S register entry codes.  The A and S registers use these
codes, the ghijk field, the instruction, and the 2-bit register read-out code
to define the instruction to be performed and to reserve the needed path.

Functional Unit Requests

The JB option detects functional unit conflicts in the following functional
units:

• Logical #1:  140 – 147 / 175

• Logical #2:  140 – 145 if Logical #1 busy / Logical #2 enabled

• Vector Mask:  146 – 147 / 175 / 070ij1 / EIS 153ij0,1

• Vector Shift:  150 – 153

• Vector Add:  154 – 157

• Floating Multiply/Divide:  160 – 167

• Floating Add:  170 – 173

• Square Root: 070ij1, 174ij0 (V pop, parity, leading zero, iota:
174ij (1 – 3)



CPU Module (CPE1) Instruction Issue

189Cray Research ProprietaryHTM-300-0

• Matrix Multiply:  174ij (4 – 7) / 070ij (6 – 7)

Constant Data Requests

The JB option checks for the presence of constant data in multiple-parcel
instructions such as jumps, branches, and instructions that use the pmn
fields.  Each JB option handles 32 bits of the constant data distribution.
JB0 transmits data to the AV, AW, and CD options through the A series
options; and JB1 transmits data to the AX, AY, and CD options through
the A series options.  JB0 also provides the jk data on the constant path
when needed.

Extended  Instruction Set (EIS) Requests

When the JB option issues 005400 or 0055xx instructions, the parcel
following either of these instructions is defined by the extended
instruction set.  If an EIS-capable instruction is issued without a
preceeding 005400 or 0055xx instruction, the instruction issues and
performs its primary function.  For example:

044ijk Transmit the logical product of (Sj) and (Sk) to Si

044ijk In EIS mode, this instruction transmits the logical 
product of (Aj) and (Ak) to Ai

Common Memory Requests

The JB options receive the following external common memory control
signals:

• Release Port A

• Release Port B

• Release Port C

• Bidirectional Mode: (Mode = 1) Enables block reads and writes at
the same time

• Common Memory Quiet:  Indicates that all memory activity in the
CPU has been completed.  Requires that all ports are quiet, conflict
logic is quiet, memory sections are quiet, and all read and write
operations are complete.



Instruction Issue CPU Module (CPE1)

190 Cray Research Proprietary HTM-300-0

• Hold Common Memory Issue:  No more references can issue

• Cache Miss In Progress:  Indicates a cache miss is pending

• Read Quiet:  Read references have cleared all conflict checks

• Write Quiet:  Write references have cleared all conflict checks

• Exchange Active:  Indicates an exchange has not completed

Shared Resource Requests

The JB options receive the following external signals, which control the
shared resource path, from the HD option:

• A/S Register Shared Resource Release:  Releases a specific A or S
register (0 – 7) path

• Release Shared Resource:  Used in combination with Go Semaphore
Branch to cause issue to resume or P to advance

• Go Semaphore Branch:  Signals that the conditions of a semaphore
branch have been satisfied

Branch Requests

The JB options check the conditional branch test conditions to determine
whether the condition is satisfied; if it is, the JB option issues a Go Branch
signal to the IC options.

Exchange Requests

The JB options perform the following actions during an exchange
sequence:

• 000000 (error exit) issues.  Issue stops, P advances.

• 0040jk (exit k) issues.  Issue stops, P stops.

• The shared path is released.  The state of Go Semaphore Branch
determines whether P advances on a 0040jk.  One of two possible
results can occur:



CPU Module (CPE1) Instruction Issue

191Cray Research ProprietaryHTM-300-0

• A normal exit occurs and P advances when the shared path is
released and Go Semaphore Branch is a 0.

• An error exit occurs, P will not advance when the shared path is
released, and Go Semaphore Branch is a 1.

Interrupt Requests

An interrupt request can be generated in one of three ways:

• A 000000 (error exit) instruction issues
• A 0040jk (Exit k) instruction issues
• A hardware error condition occurs

Interrupt requests are processed in two phases.  In phase 1, the following
conditions are checked:

• No multiparcel instructions are in process
• No EIS type waiting for second parcel
• No branch sequence in progress

In phase 2, the following conditions are checked, and then the Go
Exchange signal is sent to the HH, IC, and CC options.

• No branch sequence in progress
• Shared path available
• All registers available
• Common memory quiet

When a hardware interrupt request occurs, the JB option performs the
phase 1 checks and stops issue.  If the phase 2 checks are all valid, the JB
option sends a Go Exchange signal to the IC options.  If any of the shared
type instructions have issued during this shut-down time, the HD option
must release the shared path and the following actions must occur:

• If a 0034 (test and set semaphore) has issued, a Release signal and a
Go Branch signal must be sent before Go Exchange can occur.

• If a 000000 (error exit) or a 0040jk (exit jk) has issued, a release path
must occur to clear the JB option control.

Issue will resume when Go Branch occurs.



Instruction Issue CPU Module (CPE1)

192 Cray Research Proprietary HTM-300-0

Control Signal Distribution

The JB option transmits the following control signals:

• Issue group 0, 1, and 2:  These signals are combined on the BU and
VA options to complete the issue signal.

• Issue:  Sent to the AN option for fanout.

• Enter Vector Length:  Sent to the AV option following the decode of
a 00200k (Ak to VL) instruction.

• Read Vector Mask:  Sent to the SS option during a 073i (0 – 3) 0
(VM0 or VM1 to Si or Ai) instruction.

• Enter Vector Mask:  Sent to the SS option during a 0030j (0 – 3) (Si
or Ai to VM0 or VM1) instruction.

• Go Scalar Pop/Parity/Lz:  Sent to the SS option during a 026ij (0 – 3)
or 027ij (0 – 1).

• Go Scalar Double Shift:  Sent to the SS option during a 056ijk Shift
(Si) and (Sj) left Ak places to Si.

• Go A Type:  Sent to the SS option when a 005400 (EIS) is issued
using A register data.

• Go Scalar Divide: Sent to the RE option during a 065ijk instruction.

• Go Scalar Floating Add:  JB1 sends this signal to the FC option
when a 062ijk (sum) or 063ijk (difference) issues.

• Go Scalar Floating Multiply:  Sent to the NG option when a 064ijk
instruction issues.

• Go Address Multiply:  Sent to the AV option when a 032ijk issues.

• Go Compare:  This signal is transmitted to the FC option from
JB001 when a 00550x 164ijk issues.

• Common Memory A or S Requests:  Sent to the CD options when a
memory load or store issues.  JB0 sends out an A register request,
and JB1 sends out S register requests.

• Common Memory A or S Writes:  Sent to the CD options when a
memory write 11hixxpnm or 13hixxpnm issues.  JB0 sends out A
register write requests, and JB1 sends out S register write requests.



CPU Module (CPE1) Instruction Issue

193Cray Research ProprietaryHTM-300-0

• CM Port B Enabled:  Sent to the VB option through the JB0 option
and to the BU option through the JB1 options to select the vector
read ports.

• Vector Logical #2 Enabled:  Sent to the VB options by JB0 to select
vector logical functional units.

• Data Resume:  Sent to the instruction stack (IC options) to indicate
that the JB option can accept another word.

• Go Exchange:  Sent to the IC options to indicate that an exchange is
required.  Another copy is sent to the HH option to clear the SIE bit
(taking I/O interrupt), and to the CC option to begin the swapping of
exchange packages in memory.

• Go Branch:  Sent to the IC options to indicate that a conditional
branch condition has been satisfied.

• Branch Fall Through:  Sent to the IC options to indicate that a
conditional branch has failed the condition test.

• Branch Issued:  Sent to the IC options to indicate that a branch has
issued.

• Enter Rank 1, Enter Rank 2, or Clear Rank 2:  Sent to the IC options
to move parcel data into or out of the ranks into issue.

• The following signals are transmitted to the performance (HI)
monitor to indicate a hold issue condition:

• Holding Issue on A Registers

• Holding Issue on S Registers

• Holding Issue on B/T Registers

• Holding Issue on V Registers

• Holding Issue on Common Memory

• Holding Issue on Functional Unit

• Holding Issue on Shared Resources

• Advance P:  Sent to the P register (BU options) to advance P by 1 as
each parcel is issued.



Instruction Issue CPU Module (CPE1)

194 Cray Research Proprietary HTM-300-0

Branch Instruction Control

The JB options decode and control the execution of branch instructions.
When a conditional branch passes or fails a test, it returns either the Go
Branch control signal or the Branch Fall Through control signal to the IC
options.  Issue is halted until the Go Branch signal is received by the IC
options.  Another signal, Branch Issued, is also sent to the ICs when a
branch is in progress.

Conditional Branch Instructions

Conditional branches use instructions 010ijk through 017ijk.  Once the
instruction issues, branch control logic examines either the A0 or S0
register for the condition defined by the operation code.  If the condition is
met, the value of the P register is replaced with the nm field, and program
flow is passed to the instruction specified by P.  If the condition is not met,
program flow drops through to the instruction that follows the branch.

Another type of conditional branch instruction for a CRAY T90 series
computer system is called test and set branch (0064jkmn).  If a specified
semaphore register equals 0, the bit is made a 1 and the next instruction
issues.  If the semaphore is a 1, the P register is replaced with the value in
the nm field.

Unconditional Branch Instructions

Unconditional branches use instructions 0050jk through 007ijkmn, and
each code operates differently, except that none of them depends on
satisfying a condition before the branch takes place.  In other words, they
always take the branch in the ijkm or nm fields.

The jump to Bjk instruction (0050jk) branches to the parcel address
specified by the contents of Bjk.  The unconditional jump instruction
(006000mn) branches to the nm field.  The unconditional jump instruction
(006100mn) branches to the address in nm field.

The return jump instruction (007000mn) jumps to the address in the
address field and places P + 3 (the address of the next instruction) into
B00.  The return jump allows a jump to a subroutine, the last instruction of
which must be a 005000 instruction, which is a jump to B00.

The 007100nm jump instruction is an indirect jump.  This instruction
stores the address of the next sequential instruction in the B00 register;
then the instruction uses the nm field to specify a common memory



CPU Module (CPE1) Instruction Issue

195Cray Research ProprietaryHTM-300-0

address.  The lower 32 bits of the contents of that address are transferred
to the P register, causing program execution to continue at that point.
When this instruction executes, the instruction buffers are set invalid.

Issue Control

The first parcel of the instruction leaves NIP and moves into all the CIPs
on options HI000, HH000, and HH001.  The CIP located on the HI
options is responsible for the instructions that affect the exchange package
and performance monitor.

The HH option CIP is used for A/S path release and provides A/Si
designators and shared path release.  The JB options determine whether
any register or functional unit reservation exists.  If not, these options send
the Issue signal to the HH and HI options.  The instruction issues,
reserving the appropriate registers and/or functional unit.  If resource
conflicts do exist, the JB option does not send the Issue signal, and the
instruction remains in CIP until the conflict is resolved.  This is called a
hold issue condition.

The JB options are responsible for providing issue control, and checking
and making functional unit and path reservations for the following items:

• Vector registers
• Vector functional units
• A/S shared resource control
• Memory ports
• CM path/cache
• A/S register entry codes
• B/T register

The functional units must send a release back to the JB options to indicate
that the units are available.

The JB options also send out the h, i, j, and k fields to the A/S registers for
further instruction decode.

Refer to Figure 92 through Figure 98 for related instruction issue block
diagrams.



Instruction Issue CPU Module (CPE1)

196 Cray Research Proprietary HTM-300-0

Figure 92.  Bjk (Exchange P) Fan-out Bits

IC000 IC000

IC001

IC002

IC003

OCA –
OCH

IDA –
IDH

IDA –
IDH

IDA –
IDH

IDA –
IDH

OCI –
OCP

IC001 IC000

IC001

IC002

IC003

OCA –
OCH

IDI –
IDP

IDI –
IDP

IDI –
IDP

IDI –
IDP

OCI –
OCP

IC002 IC000

IC001

IC002

IC003

OCA –
OCH

IEA –
IEH

IEA –
IEH

IEA –
IEH

IEA –
IEH

OCI –
OCP

IC003 IC000

IC001

IC002

IC003

OCA –
OCH

IEI –
IEP

IEI –
IEP

IEI –
IEP

IEI –
IEP

OCI –
OCP

BU000
OEA –
OEH

OEI –
OEP

ICA –
ICH

ICA –
ICH

Bits 0 – 7

Bits 8 – 15

Bits 0 – 7

Bits 0 – 7

Bits 8 – 15

Bits 8 – 15

BU001
OEA –
OEH

OEI –
OEP

ICA –
ICH

ICA –
ICH

Bits 16 – 23

Bits 24 – 31

Bits 16 – 23

Bits 16 – 23

Bits 24 – 31

Bits 24 – 31

BU000

BU001

ODA –
ODH

ODA –
ODH

ODA –
ODH

ODA –
ODH

IGA –
IGH

IGA –
IGH

IGI –
IGP

IGI –
IGP

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31



CPU Module (CPE1) Instruction Issue

197Cray Research ProprietaryHTM-300-0

Figure 93.  JB-to-IC Parcel Data for Branches

IC001

OKE – 
OKH

OKB – 
OKD

OKA

OKG – 
OKH

OKD – 
OKF

OKA – 
OKC

IPA – 
IPD

IPE – 
IPG

IPJ

IPH –
IPI

IPK – 
IPM

IPN – 
IPP

IC003

OKM – 
OKP

OKJ – 
OKL

OKI

OKO – 
OKP

OKL – 
OKN

OKI – 
OKK

IPA –
IPD

IPE –
IPG

IPJ

IPH –
IPI

IPK –
IPM

IPN –
IPP

g Field Bits 0 – 3

h Field Bits 0 – 2

i Field Bit 2

i Field Bits 0 – 1

j Field Bits 0 – 3

k Field Bits 0 – 3

g Field Bits 0 – 3

h Field Bits 0 – 2

i Field Bit 2

i Field Bits 0 – 1

j Field Bits 0 – 3

k Field Bits 0  – 3

JB001

JB000

JB001

JB000

IC000 IC002



Instruction Issue CPU Module (CPE1)

198 Cray Research Proprietary HTM-300-0

Figure 94.  Path 1 CH-to-IC-to-JB Option

IC000

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IAA –
IAD

IAI –
IAL

IAE –
IAH

IAM
IAP

Bits 0 – 3

Bits 4 – 7

IC001

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IAA –
IAD

IAI –
IAL

IAE –
IAH

IAM –
IAP

OAA –
OAH

IDA –
IDH

OAI –
OAP

IBA –
IBH

JB000

OAA –
OAH

IDI –
IDP

OAI –
OAP

IBI – 
IBP

IC002

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IAA –
IAD

IAI –
IAL

IAE –
IAH

IAM –
IAP

IC003

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IAA –
IAD

IAI –
IAL

IAE –
IAH

IAM –
IAP

OAA –
OAH

ICA – 
ICH

OAI –
OAP

IAA – 
IAH

OAA –
OAH

ICI –
ICP

OAI –
OAP

IAI –
IAP

JB001

Bits 40 – 43

Bits 0 – 7

Bits 8 – 11

Bits 12 – 15

Bits 44 – 47

Bits 16 – 19

Bits 48 – 51

Bits 20 – 23

Bits 52 – 55

Bits 24 – 27

Bits 56 – 59

Bits 28 – 31

Bits 60 – 63

Bits 56 – 63

Bits 24 – 31

Bits 48 – 55

Bits 16 – 23

Bits 40 – 47

Bits 8 – 15

Bits 32 – 39

Bits 32 – 35

Bits 36 – 39

CH000

CH002

CH004

CH006

CH008

CH010

CH012

CH014



CPU Module (CPE1) Instruction Issue

199Cray Research ProprietaryHTM-300-0

Figure 95.  Path 2 CH-to-IC-to-JB Option

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IBA –
IBD

IBI –
IBL

IBE –
IBH

IBM –
IBP

Bits 0 – 3

Bits 32 – 35

Bits 4 – 7

Bits 36 – 39

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IBA –
IBD

IBI –
IBL

IBE –
IBH

IBM –
IBP

Bits 8 – 11

Bits 40 – 43

Bits 12 – 15

Bits 44 – 47

OAA –
OAH

IDA –
IDH

OAI –
OAP

IBA –
IBH

Bits 16 – 23

Bits 48 – 55

OAA –
OAH

IDI –
IDP

Bits 56 – 63

OAI –
OAP

IBI –
IBP

Bits 24 – 31

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IBA –
IBD

IBI –
IBL

IBE –
IBH

IBM –
IBP

Bits 16 – 19

Bits 48 – 51

Bits 20 – 23

Bits 52 – 55

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IBA –
IBD

IBI –
IBL

IBE –
IBH

IBM –
IBP

Bits 24 – 27

Bits 56 – 59

Bits 28 – 31

Bits 60 – 63

OAA –
OAH

ICA –
ICH

Bits 32 – 39

OAI –
OAP

IBA –
IBH

Bits 0 – 7

OAA –
OAH

ICI –
ICP

Bits 40 – 47

OAI –
OAP

IBI –
IBP

Bits 8 – 15

JB001CH001

CH003

IC001CH005

CH007

JB000

IC002CH009

CH011

IC003CH013

CH015

IC000 JB001



Instruction Issue CPU Module (CPE1)

200 Cray Research Proprietary HTM-300-0

AW002
AW001

JB000

IPG – IPIOBA – OBC

IPD – IPFOBD – OBF

IPA – IPCOBG – OBI

IPJ – IPLOBJ – OBL

k Bits

j Bits

i Bits

h Bits

AW000
AV000IPG – IPIOAA – OAC

IPD – IPFOAD – OAF

IPA – IPCOAG – OAI

IPJ – IPLOAJ – OAL

k Bits

j Bits

i Bits

h Bits

VB001

VB000IPG – IPIOCA – OCC

IPD – IPFOCD – OCF

IPA – IPCOCG – OCI

IPJ – IPLOCJ – OCL

k Bits

j Bits

i Bits

h Bits

IPJ – IPLOCM – OCP g Bits

AY001
AY000

JB001

IPG – IPIOBA – OBC

IPD – IPFOBD – OBF

IPA – IPCOBG – OBI

IPJ – IPLOBJ – OBL

k Bits

j Bits

i Bits

h Bits

AX001

AX000IPG – IPIOAA – OAC

IPD – IPFOAD – OAF

IPA – IPCOAG – OAI

IPJ – IPLOAJ – OAL

k Bits

j Bits

i Bits

h Bits

BU001

BU000IPG – IPIOCA – OCC

IPD – IPFOCD – OCF

IPA – IPCOCG – OCI

IPJ – IPLOCJ – OCL

k Bits

j Bits

i Bits

h Bits

IPJ – IPLOCM – OCP g Bits

Figure 96.  Instruction Data Distribution A/S/B/T/V Registers



CPU Module with IEEE Instruction Issue

201Cray Research ProprietaryHTM-300-0

Figure 97.  CIP Distribution to HH Options

HH000

HH001

IEA – IEC

IED – IEF

IEG – IEI

IEJ – IEL

IEM – IEP

OWJ – OWL

OWQ – OWS

OWQ – OWS

OWA – OWC

OGI – OGL

AY000

AY000

IC001

IC000

AN000

k Bits

j Bits

i Bits

h Bits

g Bits

JB001

IPG – IPI

IPK – IPM

IPH – IPJ

IPJ – IPL

IGH – IGI

IGF – IGG

JB000

OMA – OMB

OMA – OMB

OBA – OBC

OKD – OKF

OBJ – OBL

IEQOLG Issue



Instruction Issue CPU Module (CPE1)

202 Cray Research Proprietary HTM-300-0

Figure 98.  CIP Distribution to HH Option

HH000

IDA – IDC

IDD – IDF

IDG – IDI

IDJ – IDL

IDM – IDP

OWJ – OWL

OWQ – OWS

OWQ – OWS

OWA – OWC

OGE – OGH

AY001

AY001

IC003

IC002

AN001

k Bits

j Bits

i Bits

h Bits

g Bits

JB000
JB001

IPG – IPI

IPK – IPM

IPH – IPI

IPJ – IPL

IGH – IGI

IGF – IGGOMA – OMB

OMA – OMB

OBA – OBC

OKL – OKN

OBJ – OBL

IDQODD Issue via AN000

JB001

JB001

JB001

JB000

JB000

IPJ

OKO – OKP

OKIJB001

JB000

JB000



Instruction IssueCPU Module (CPE1)

203Cray Research ProprietaryHTM-300-0

Figure 99.  JB Option Block Diagram

Decode
(NIP)

0 0

1 1

2 2

3 3

OGA – OGH

OHA – OHH

OKA – OKH

OKI – OKP

OIA – OIH

OJA – OJH

Instruction Data from ICs (64)

JB000 / JB001

V Reg Reservation

V FU Reservation

V Reg Read Release VB1 (8)

V Reg Write Release VB0 (8)

V FU Release VB0/VB1 (11)

IGA Vector Logical 1  VB0
IGB Vector Logical 2  VB1
IGC Vector Shift VB0
IGD Vector Add VB1
IGE Vector FP Mult VB0
IGF Vector FP Add VB1
IGG Vector  Recip VB0
IGH BMM VB1
IGI Vector Mask VB0
IGJ B Reg Release BU0
IGK T Reg Release BU1

Reg Translation

Conflict
 Check

ODA
ODA

ODB
ODB

ODC
ODC

Group 0:  V Registers, A Registers
Group 1:  S Registers, B/T Registers, 
Vector Logical, Vector Shift, Reciprocal, 
Vector Read Port A/Port B
Group 2:  Shared Resource, Memory Quiet,
A0/S0 Sign Test, Others (hold issue,
exchange, etc.)

Inst Translation

OAA – OAL

OBA – OBL

OCA – OCP

P
a
r
c
e
l

D
a
t
a

A/S Register (Shared Resource)
Shared ReservationA/S Path (Shared Resource)

Memory Port Reservation
Release Mem Port A, B, C

CM Path/Cache Reservation
CM Path/Cache Release (Even)

IKB, IKC

Sign Bit Test

FA (S0) Sign State

FM (S0) Sign State

A0 = 0

A0 Negative
S0 = 0

S0 Negative OQC to ICs

FA (S0) Test Valid

ODE

Issue

ODE

Go Exchange

ODF

OLG

ODD

g, h, i, j, k to CIP

To HDs via Fanout A/S Path Release

To HF via Fanout Shared Path Release/Exchange Data

Interrupt from HH

Exchange Active from CC

OOA – OOD

OFA – OFF

OPA, OPC

OPB, OPD

OQA to ICs

OQB to ICs

IEA – IEH

IFA – IFH

IGA – IGK

IIA – IIE

IIF

ILA – ILC

IJA – IJE
IJI – IJM(Odd)

IAA – IDP

Instruction Data Ready  IKA
Parcel Pointers Bit 0 and Bit 1

IKH

IKJ

INA – INH

INA – INJ
IOA – IOH

IOI

IKG

IKF

IPB

A/S Constant Bits to AV0 or AX0

A/S Constant Bits to AW0 or AX1

Parcel Data to Stack

Parcel Data to Stack

A/S Constant Bits to AW1 or AY0

A/S Constant Bits to AW2 or AY1

Issue Group 0 Valid VB0 and VB1 (JB0)
Issue Group 0 Valid BU0 and BU1 (JB1)

Issue Group 1 Valid VB0 and VB   (JB0)
Issue Group 1 Valid BU0 and BU1 (JB1)

Issue Group 2 Valid VB0 and VB1 (JB0)
Issue Group 2 Valid BU0 and BU1 (JB1)

h, i, j, k Field to A/S
Registers AV, AW, AX, AY

h, i, j, k Field to A/S
Registers AV, AW, AX, AY

g, h, i, j, k Field to VB/BU Registers

Go Branch

JB000 Advance P BU0, BU1

JB001 Go FP Multiply NF

Go Exchange to ICs

JB000 Issue CIP   HH0, HH1

JA000 Issue CIP HI0 via AN0

Hold Issues to Performance Monitor

A/S Entry Code Bit 0, 1, 2
to AV, AW, AX, AY

A/S Read-out Code Bit 0
to AV, AW, AX, AY

A/S Read-out Code Bit 1
to AV, AW, AX, AY

Branch Issued

Branch Fall Through

KEY

IKA



204 Cray Research Proprietary HTM-300-0

EXCHANGE

The exchange mechanism in a CRAY T90 series computer system has the
following features:

• Means of switching execution from program to program

• Exchange package – Block (408 words) of program parameters that:

• Must be present in order for any program to execute; defines
where and how the program runs

• Must be 408 words long

• Must reside in lower 2 MW of memory

• Must start on a 408 word boundary

Exchange Process

The exchange sequence is the process that deactivates the current
exchange package and puts it into memory, then loads a new exchange
package from memory and activates it.

In CRAY T90 series systems, a feature in the exchange package allows a
process to exchange to either the address specified by the exchange
address (XA) register or to one of five different addresses specified by one
of the five exit address (EA) registers.  With this capability, a user job can
exchange to another user job, or it can exchange to specific areas in the
kernel, without first exchanging to the monitor.

The CRAY T90 series system also incorporates another special feature.
When an exchange occurs, the CPU that exchanges out retains the cluster
number that was initially assigned to it unless the system is operating in
C90 mode or unless AutoBCD (automatic broadcast cluster detach) is
active.  Also, when a CPU is master cleared and then exchanged out, the
pending interrupt bits are retained so that the maximum amount of
information about the process is available.  A second exchange sequence
can retrieve this information.



CPU Module (CPE1) Exchange

205Cray Research ProprietaryHTM-300-0

If an exchange occurs and the program is in monitor mode, the monitor
needs to save the B registers, T registers, shared registers, scalar (S)
registers, and vector (V) registers.  If the vector not used (VNU) bit is a 1,
the V registers do not need to be saved.  If the exchange is to another user
job, the user is responsible for saving the register values.

Four conditions cause an exchange sequence:

• Deadstart sequence (SIPI)
• Interrupt flag set (F register)
• Program exit (004000, 000000 instruction)
• Hardware error that causes a flag to set, which causes an exchange

SIPI

A CRAY T90 series system does not use a deadstart signal or command.
Instead, the system uses Set Interprocessor Interrupt (SIPI) signals from
either a 0014j1 instruction [send inter-CPU interrupt to CPU (Aj)], or
during an initial deadstart, when a CPU loop controller function of 768,
issued by the maintenance channel, starts an exchange.

The following sequence lists the events that invoke the Mainframe
Maintenance Environment (MME):

 1. Set CPU Master Clear.

 2. Load data to memory address 0 via the maintenance channel.

 3. Issue a loop controller function of 1768 via the maintenance channel
to allow CPU maintenance instructions.

 4. Issue a loop controller function of 1418 via the maintenance channel
to allow CPU instruction exchange and halt.

The exchange package at memory location 0 loads into the CPU
registers, and what was in the CPU registers loads to memory
starting at location 0.  There is no fetch after this exchange.

 5. Drop CPU Master Clear via the maintenance channel.

 6. Issue the loop controller function of 768 via the maintenance
channel.

The dropping of CPU Master Clear works as an enable; the function
768 must be present along with the Master Clear signal before the
exchange can occur.



Exchange CPU Module (CPE1)

206 Cray Research Proprietary HTM-300-0

 7. Interrupted CPU exchanges to address 0, a fetch is done and issue
starts.

In this case, because I/O is handled by the maintenance channel, the return
path for output depends on how the sanity tree has been configured.  From
this point, the initially started CPU can issue SIPI commands to the other
CPUs.

Interrupt Flag Set

In the CRAY T90 series system, each interrupt flag has an enable interrupt
mode bit.  The interrupt modes are enabled by the enabled interrupt mode
(EIM) flag.  An exchange to nonmonitor mode sets the EIM flag.

An exchange to monitor mode clears the EIM flag.  While the program is
in monitor mode, a 001302 instruction sets the EIM flag, and an 001303
instruction clears the EIM flag.

Each CPU has an EIM flag.  In monitor mode, the EIM flag is cleared and
all interrupt modes are disabled except enable flag on normal exit (FNX),
enable flag on error exit (FEX), and enable interrupt on program range
error (IPR).  This scheme provides a stable environment within monitor
mode immediately following an exchange.

Program Exit

Program exit follows the decode of instructions 000000 and 004000.
Instruction 000000 is an error exit instruction; instruction 004000 is a
normal exit.

Exchange Sequence

Before a CPU can perform an exchange, the CPU must first finish all
active instructions.  If a test and set instruction (0034jk) is in the next
instruction parcel (NIP) or entering the current instruction parcel (CIP),
the program (P) register will hold the current value until the test and set
condition is true.  The JB option then waits until the condition is resolved
before it advances P.  Memory must also be quiet, and all memory writes
must be complete.

The processor that is performing the exchange clears the buffer valid bits
and buffer counter.  Clearing the buffer valid bits causes a fetch to occur
after the exchange has completed.  Clearing the instruction buffer address
register (IBAR) counter causes the data that was fetched from memory to



CPU Module (CPE1) Exchange

207Cray Research ProprietaryHTM-300-0

load into instruction buffer 0 first.  Also, issuing a 0051jk instruction
clears the buffer valid bits.  The 0051jk is a maintenance instruction that
loads the P register from Bjk and invalidates the instruction buffers if the
CPU is in maintenance mode (MM).

Exchange Package Descriptions

Figure 100 illustrates the exchange package.  The exchange parameters
are located on two options:  HH000 and HH001.  HH000 handles bits 0
through 31 for words 0 through 17, and HH001 handles bits 32 through 63
for words 0 through 17.

P Register

P register – Program register, word 10 bits 0 through 31.  The P register
contains 32 bits, the lower 2 bits of which are used for parcel selects.  P
register bits –2 through 29 enable the addressing of 1 gigaword of
memory.

Modes

Modes – MM, BDM, ESL, SCE, RM0, RM1, BDD word 11, bits 0
through 7.  Selectable interrupt modes enable the programmer to choose
the conditions under which the active program can be interrupted.

• MM – Monitor mode, word 11, bit 0

Certain operations are privileged to monitor mode:  controlling the
channel, setting the real-time clock, setting the programmable clock,
and so on.  Monitor mode instructions perform specialized functions
that are useful to the operating system.  A monitor mode instruction
that issues while the CPU is not in monitor mode is treated as a
no-operation instruction.  If a monitor mode instruction issues while
the IMI flag is set, the MII flag sets, and an exchange occurs.

• BDM – Bidirectional memory, word 11, bit 1

When BDM is set, block reads and writes may occur concurrently.



Exchange CPU Module (CPE1)

208 Cray Research Proprietary HTM-300-0

• ESL – Enable second vector logical, word 11, bit 2

If ESL is set and any 140ijk through 145ijk instructions issue, the
instruction is routed to the second vector logical unit.  If ESL = 0,
the second vector logical unit is not used.  The second vector logical
unit is used before the full vector logical unit if a choice exists.

• SCE – Scalar cache enabled, word 11, bit 4

If SCE is set to a 1, onboard scalar cache is enabled.

• RM0 – Rounding Mode Bit 0, word 11, bit 5

This is used to determine the rounding mode to be used for
floating-point operations.

• RM1 – Rounding Mode Bit 1, word 11, bit 6

This is used to determine the rounding mode to be used for
floating-point operations.

• BDD – Bidirectional memory disable, word 11, bit 7

When BDD is set to a 1, bidirectional block reads and writes are
disabled.

Status

Status (BML, WS, VNU,  SBU,  SBM) word 12, bit 0 through 7.
Status (NVS, DVS, OVS, UNS, NXS, XIS) word 13, bits 9 through 14.
The status register reflects the condition of the CPU at the time of an
exchange.  The bits in the status field are set during program execution
and are not user selectable.

• BML – Bit matrix loaded, word 12, bit 0

The BML bit indicates the Bt (B transposed) registers have been
successfully loaded by a 1740j4 instruction.

• WS – Waiting on semaphore, word 12, bit 1

The WS bit sets when a 0034jk instruction is in CIP and holding
issue.



CPU Module (CPE1) Exchange

209Cray Research ProprietaryHTM-300-0

• VNU – Vectors not used, word 12, bit 3

After a program has been exchanged into memory, the B and T
registers must be saved as well as the SB, ST, and SM registers of
the cluster that the program is using.  If the VNU bit is equal to 1,
then this indicates that the vector registers were not used so the
vector registers do not need to be saved.  However, if the VNU bit is
0, then the vector registers must be saved as well.  The VNU bit is
set when a 077xxx or a 140 through 177xxx instruction issues.

• SBU – Status Bit-user mode, word 12, bit 6

Indicates that the CPU is in user mode.

• SBM – Status Bit-monitor mode, word 12, bit 7

Indicates that the CPU is in monitor mode.

• NVS – Floating point invalid, word 13, bit 9

An attempt was made to generate a result that is not a real number.
Invalid is signaled in any of the following cases:

• An input operand is an sNAN
• Addition or subtraction of infinites
• Multiplication of 0 by infinity
• Division of 0 by 0 or infinity by infinity
• Division of a finite normal numerator by 0
• Square root of a negative number
• Signed compare where one or both inputs are NaNs

• DVS–Floating point divide by zero, word 13, bit 10

• OVS–Floating point overflow, word 13, bit 11

A result larger than the greatest representable number was generated.
Infinity (03777 000000000000000000) is returned.

• UNS–Floating point underflow, word 13, bit 12

A result smaller than the least representable number was generated.
Zero (00000 000000000000000000) with the sign bit is returned.



Exchange CPU Module (CPE1)

210 Cray Research Proprietary HTM-300-0

• NXS–Floating point not exact, word 13, bit 13

A result was generated that would be different if all possible
significant bits were returned.  Inexact is also signaled on both
overflow and underflow, but not if the returned result is exactly 0.

• 1 / 3 returns 0.33333.......3 and signals Inexact

• 0.5 / 2 returns .25 all bits returned.

• A floating-point unit received an operand of infinity or NaN.
This is a Cray Research feature not an IEEE standard.



CPU Module (CPE1) Exchange

211Cray Research ProprietaryHTM-300-0

Figure 100.  Exchange Package

LAT 1
Modes

RW X C

LAT 0
Modes

RW X C

LAT 2
Modes

RW X C

LAT 3
Modes

RW X C

LAT 4
Modes

RW X C

LAT 5
Modes

RW X C

LAT 6
Modes

RW X C

LAT 7
Modes

RW X C

LAT 0
Modes

RW X D

LAT 1
Modes

RW X D

LAT 2
Modes

RW X D

LAT 3
Modes

RW X D

LAT 4
Modes

RW X D

LAT 5
Modes

RW X D

LAT 6
Modes

RW X D

LAT 7
Modes

RW X D

39

39

39

39

39

39

39

39

37

37

37

37

37

37

37

37

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

39

39

39

39

39

39

39

39

14

14

14

14

14

14

14

14

–229

0

5

5

5

20

20

20

20

20

20

5

5

5

70607

LAT 0 Logical Limit

LAT 1 Logical Limit

LAT 2 Logical Limit

LAT 3 Logical Limit

LAT 4 Logical Limit

LAT 5 Logical Limit

LAT 6 Logical Limit

LAT 7 Logical Limit

LAT 0 Physical Bias

LAT 1 Physical Bias

LAT 2 Physical Bias

LAT 3 Physical Bias

LAT 4 Physical Bias

LAT 5 Physical Bias

LAT 6 Physical Bias

LAT 7 Physical Bias

LAT 0 Logical Base

LAT 1 Logical Base

LAT 2 Logical Base

LAT 3 Logical Base

LAT 4 Logical Base

LAT 5 Logical Base

LAT 6 Logical Base

LAT 7 Logical Base

P Register

Cluster
Number

Processor
Number

Vector
Length

Exit Address 3 Exit Address 4

Exit Address 2

Exit Address 0

Exit Address 1

Exchange Address

Status
V
N
U

–
W
S

B
M
L

Interrupt Modes

Interrupt Flags

Modes
B
D
D

S
C
E

–
E
S
L

B
D
M

M
M

R
M
1

I
R
P

I
U
M

–
I
O
R

F
E
X

I
B
P

I
C
M

I
M
C

I
R
T

I
I
P

I
I
O

I
P
C

I
D
L

I
M
I

F
N
X

I
A
M

I
P
R

R
P
E

M
E
U

–
O
R
E

P
R
E

E
E
X

B
P
I

M
E
C

M
C
U

R
T
I

I
C
P

I
O
I

P
C
I

D
L

M
I
I

N
E
X

A
M
I

0
63

15
48

16
47

31
32

32
31

47
16

48
15

63
0

Words 20 – 27: A Registers 0 – 7
Words 30 – 37: S Registers 0 – 7

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

I
X
I

I
N
X

I
U
N

I
O
V

I
D
V

I
N
V

R
M
0

X
I

N
X

U
N
F

O
V
F

D
I
V

N
V
I

S
B
M

–
S
B
U

–

X
I
S

N
X
S

U
N
S

O
V
S

D
V
S

N
V
S



Exchange CPU Module (CPE1)

212 Cray Research Proprietary HTM-300-0

Interrupt Flags

Interrupt modes, word 11, bits 9 through 31.  Refer to Table 48 for a list of
the bit assignments for the modes field in the exchange package.  All
modes except IPR, FEX, and FNX must be enabled by the EIM flag to be
effective.  The EIM flag sets on an exchange to nonmonitor mode and
clears on an exchange to monitor mode.  The EIM flag enables interrupt
modes if set.  The EIM bit can be set or cleared by a 001302 or a 001303
instruction, respectively.



CPU Module (CPE1) Exchange

213Cray Research ProprietaryHTM-300-0

Table 48.  Interrupt Modes Register Bit Assignments

Word
Binary

Exponent Acronym Name

11 31 IRP Interrupt on Register Parity Error

11 30 IUM Interrupt on Uncorrectable Memory Error

11 29 – Not Used

11 28 IOR Interrupt on Operand Range Error

11 27 IPR Interrupt on Program Range Error

11 26 FEX Enable Flag on Error Exit (does not disable
exchange)

11 25 IBP Interrupt on Breakpoint

11 24 ICM Interrupt on Correctable Memory Error

11 23 IMC Interrupt on MCU Interrupt

11 22 IRT Interrupt on Real-time Interrupt

11 21 IIP Interrupt on Interprocessor Interrupt

11 20 IIO Interrupt on I/O

11 19 IPC Interrupt on Programmable Clock

11 18 IDL Interrupt on Deadlock

11 17 IMI Interrupt on 001jk�0 or 033 instruction

11 16 FNX Enable Flag on Normal Exit (does not disable
exchange)

11 15 IAM Interrupt on Address Multiply Range Error

11 14 IXI Interrupt on floating-point exceptional input

11 13 INX Interrupt on floating-point not exact

11 12 IUN Interrupt on floating-point underflow

11 11 IOV Interrupt on floating-point overflow

11 10 IDV Interrupt on floating-point divide by zero

11 9 INV Interrupt on floating-point invalid



Exchange CPU Module (CPE1)

214 Cray Research Proprietary HTM-300-0

Refer to Table 49 for a list of the bit assignments for the
interrupt flags field in the exchange package.

Table 49.  Flag Register Bit Assignments

Word
Binary

Exponent Acronym Name

12 31 RPE Register Parity Error

12 30 MEU Uncorrectable Memory Error

12 29 – Not Used

12 28 ORE Operand Range Error

12 27 PRE Program Range Error

12 26 EEX Error Exit (000 issued)

12 25 BPI Breakpoint Interrupt

12 24 MEC Correctable Memory Error

12 23 MCU MCU Interrupt

12 22 RTI Real-time Interrupt

12 21 ICP Interrupt from Internal CPU

12 20 IOI I/O Interrupt (if IIO and SIE)�

12 19 PCI Programmable Clock Interrupt

12 18 DL Deadlock Interrupt

12 17 MII 001jk�0 or 033 Instruction Interrupt (if IMI
and not MM)

12 16 NEX Normal Exit (004 issued)

12 15 AMI Address Multiply Interrupt

12 14 XI Floating-point exceptional input interrupt

12 13 NX Floating-point not exact interrupt

12 12 UNF Floating-point underflow interrupt

12 11 OVF Floating-point overflow interrupt

12 10 DVI Floating-point divide by zero interrupt

12 9 NVI Floating-point invalid interrupt

� SIE = System I/O interrupt enabled.



CPU Module (CPE1) Exchange

215Cray Research ProprietaryHTM-300-0

Vector Length

VL – vector length, word 13, bits 0 through 7.  The VL register holds the
content of the VL register.  The 8-bit field contains the number of
elements to be operated on in the vector register.  In a CRAY T90 series
system, if VL = 000 or VL = 200, all 2008 vector elements are used within
the vector register.

Exchange Address

XA – exchange address, word 17, bits 16 through 31.  The 16-bit field
specifies the address of the first word of the next exchange package.  This
exchange package is loaded when any one of the following conditions
occurs:

• An interrupt occurs that sets any of the following flags:  RPE, MEU,
FPE, OPR, BPI, MEC, MCU, RTI, ICP, IOI, PCI, DL, MII, NEX, or
AMI

• A 000 is issued

• A 0040jk is issued with k being an illegal value (5, 6, or 7)

The XA field contains only bits 5 through 20.  The lower bits are assumed
to be 0’s.

Exit Address

EXIT Address 0 through 4, words 15, 16, 17 bits 0 through 31.  Each of
the five 16-bit fields specifies the starting address of a 32-word exchange
package.  The k field of the 0040jk instruction specifies the exchange
package to use.  Only k fields equal to 0 through 4 are valid; if an invalid
value is used, the exchange is to the XA address.  Exit Address (EA) 0 is
expected to be used for normal exits to maintain compatibility with
existing systems.

Each EA field contains only bits 5 through 20.  The lower bits are
assumed to be 0’s.

Cluster Number

CLN – cluster number, word 13, bits 24 through 31.  The CLN contains an
8-bit field.  There may be up to 368 clusters in the system, depending on
the system configuration.



Exchange CPU Module (CPE1)

216 Cray Research Proprietary HTM-300-0

Processor Number

PPN – Processor number, word 13, bits 16 through 22.  The contents of
the 7-bit field in the exchange packages show the logical number of the
CPU in which the exchange was executed.  The maximum number is 127.

Logical Address Translation

LAT – Logical address translation, words 0 through 17.  Refer to the
exchange package diagram for bit layouts.  Each LAT has four associated
fields; Table 50 identifies those fields.

Table 50.  LAT Fields

Field Name Description

Logical Base First logical address of this LAT

Logical Limit Last address +1 of this LAT

Physical Bias Physical bias = Physical base address – Logical base address

Modes The controlling bits for each LAT
R(ead), W(rite), X(ecute), C(achable), D(irty)

The use of LATs allows programs to share memory space.  For example,
two user jobs can reference the same library routine in memory while
keeping their local code private.



CPU Module (CPE1) Exchange

217Cray Research ProprietaryHTM-300-0

This page intentionally left blank.



218 Cray Research Proprietary HTM-300-0

REAL-TIME CLOCK,
PROGRAMMABLE CLOCK INTERRUPT ,
STATUS REGISTER,
PERFORMANCE MONITOR

Refer to the following subsections for information about the real-time
clock, programmable clock interrupt, status register, and the performance
monitor.

Real-time Clock 

A CRAY T90 series computer system contains one 64-bit real-time clock
(RTC) in each central processing unit (CPU).  The RTC is synchronized
when a CPU issues a 0014j0 instruction.  The 0014j0 instruction causes all
CPUs in the same cluster to be loaded with the contents of Sj.

The RTC is located on two HH options, each of which handles 32 bits.
The HH000 option handles bits 0 through 31; the HH001 option handles
bits 32 through 63.

HH000l detects a carry from the RTC, at a count of 37777777776 during
normal operation and increments the upper bits during the next clock
period.  HH000 suppresses any toggles.

The RTC is incremented each clock period.  The RTC enables
clock-period timing of program execution.  When the machine is
deadstarted, all RTCs must be loaded in order to synchronize all the CPUs.
Otherwise, each CPU will have a different RTC value.

The 0014j0 instruction writes to the RTC by sending a copy of the Sj
register from the CPU issuing the instruction to all RTC registers through
the issue paths of the shared registers.  The 072i00 instruction reads the
RTC register of the CPU that issued the 072i00 instruction and copies the
content into the scalar registers.

Refer to Figure 101 for an RTC and programmable clock interrupt (PCI)
block diagram.



CPU Module (CPE1) RTC, PCI, Status Register, Performance Monitor

219Cray Research ProprietaryHTM-300-0

Figure 101.  RTC and PCI Block Diagram

HH000

HH001

HI000
OAA – OCL

ICA – IDF

ICA – IDF

Shared Data Path
(RTC Data or PCI)

ONA

Carry to RTC

IKB

Sj Data from 
Shared Module

OAA – OBF
RTC to Si 
Bits 0 – 31

OAA – OBF
RTC to Si 
Bits 32 – 63

PCI Logic Used on
This Option Only

CIP from Issue IEA – IEP

IEA – IEP

Programmable Clock

Each CPU has one programmable clock (PC), which is a 32-bit counter.
The programmable clock decrements every clock period; the clock is
located on the HD000 option.

The programmable clock is loaded by the 0014j4 instruction when the
program is in monitor mode.  When the programmable clock equals zero,
an interrupt request (PCI) is generated.  To generate a PCI, the IPC mode
bit must be set.  In user mode, IPC must have been set in the user’s



RTC, PCI, Status Register, Performance Monitor CPU Module (CPE1)

220 Cray Research Proprietary HTM-300-0

exchange package.  If the CPU is in monitor mode, either IPC was set in
the monitor’s exchange package, or a 001406 instruction was issued.  The
interrupt request remains set until a 001405 instruction clears it.  If the
CPU is in monitor mode and if the interrupt request is not desired, use a
001407 instruction to disable the IPC mode bit.

The PCI request is enabled and disabled on the HI option, which contains
the exchange parameters.

RTC and PC Instructions

Refer to Table 51 for a list of the RTC and PC instructions.

Table 51.  RTC and PC Instructions

Instruction CAL Description

0014j0 � RT Sj Enter RTC register with Sj

072i00 Si RT Transmit RTC to Si

0014j4 � PCI Sj Transmit Sj to programmable clock

001405 � CCI Clear PCI request

001406 � ECI Enable PCI request

001407 � DCI Disable PCI request

� Monitor mode instruction.

Performance Monitor

The performance monitor (PM) is normally used to monitor software
performance.  With the results of the performance monitor, a programmer
can determine how efficiently a program is running in the system.  If, for
example, the program is performing too many instruction fetches or too
many hold issue conditions are occurring, the programmer can review the
program structure and modify it to minimize these occurrences.

Each CPU contains a performance monitor.  (Because each CPU is
identical, all references in this section pertain to a single CPU.)  Each
CPU contains 32 performance counters; each counter is 48 bits wide.
Table 52 shows which event each counter monitors.  Each counter
increments each time a particular event occurs in the CPU while the CPU
is not in monitor mode (IMI bit is not set).  The counters related to



CPU Module (CPE1) RTC, PCI, Status Register, Performance Monitor

221Cray Research ProprietaryHTM-300-0

memory references may increment as many as eight times per clock
period (CP).  Counters related to vector operations increment by the value
in the vector length register at the time the instruction issues.

Table 52.  Performance Monitor

   Counter Event Monitored Instructions Increments

Number of:

0 Clock periods monitored +1

1 Instructions issued +1
2 Clock periods holding issue +1
3 Instruction fetches +1
4 CPU memory references (ports A, B, C) +8
5 Clock periods for references (ports A, B, C) +2047
6 I/O memory references (port D, I/O only) +2
7 Cache misses +1

Holding issue on:

10 A registers and access conflicts +1
11 S registers and access conflicts +1
12 V registers +1
13 B/T registers +1
14 Functional units +1
15 Shared registers +1
16 Memory ports +1
17 Number of cache hits +1

Number of instructions:

20 Instructions 000000 through 004000 000 – 004 +1
21 Branches 005 – 017 +1
22 Address instructions 02x, 030 – 033, EIS 042 – 057,

073i20, 073i30
+1

23 B/T memory instructions 034 – 037 +1
24 Scalar instructions 040 – 043, 071 – 077 except

073i20, 073i30
+1

25 Scalar integer instructions 044 – 061, 070ij6 +1
26 Scalar floating-point instructions 062 – 070 +1
27 S/A memory instructions 10x – 13x +1

Number of operations:

30 Vector logical 070ij1, 140 – 147, 
1740j4 – 1740j6, 175

+VL

31 Vector shifts, pop., leading zero 150 – 153, 174xx (1 – 3) +VL
32 Vector integer adds 154 – 157 +VL
33 Vector floating-point multiplies 160, 161, 165, 166 +VL
34 Vector floating-point add/compare/converts 167 – 173 +VL
35 Vector floating-point divide/square root 162, 163, 174xj0 +VL
36 Vector memory reads 176 +VL
37 Vector memory writes 177 +VL



RTC, PCI, Status Register, Performance Monitor CPU Module (CPE1)

222 Cray Research Proprietary HTM-300-0

Performance Monitor Instructions

Table 53 lists all the instructions associated with the performance monitor.

Table 53.  Performance Monitor Instructions

Instruction CAL Description

001500 Clear all performance counters

073ij1 Si SRj Transmit (SRj) to Si (monitor mode only for 
j = 2 – 7)

073i05 SR0 Si Transmit (Si) bits 48 – 52 to SR0

073i25 SR2 Si Advance performance monitor pointer

073i75 SR7 Si Transmit (Si) to maintenance channel

Clearing the Performance Counters

Instruction 001500 clears all performance counters.  This instruction must
be issued while the CPU is in monitor mode in order for the instruction to
operate correctly.

Reading the Performance Monitor

The 073i21 and 073i31 instructions read the performance monitor.  Each
instruction reads half of the counters at a time, which requires that two
instructions be issued to read all the counters.  The 48 bits of the counter
read are stored in the Si register.  When the 073i21 instruction is issued,
counters 0 through 17 are sent to Si.  The 073i31 instruction, when issued,
reads counters 20 through 37 and sends the bits to Si.

The system hardware requires an interval of at least 3 clock periods
between 073ix1 instructions, and the PM Busy Status (PMBY) bit (bit 47
of SR0) must be cleared before reading the counters.  If the 3-CP wait is
not written into the program, an indeterminable corruption of performance
monitor data occurs.



CPU Module (CPE1) RTC, PCI, Status Register, Performance Monitor

223Cray Research ProprietaryHTM-300-0

Performance Monitor Block Diagram

Refer to Figure 102 for the performance monitor block diagram.  The
performance monitor is composed of the HI000, HH000, and HH001
options.  The HI000 option contains the lower bits (0 through 31) and the
HH000 and HH001 options contain the upper bits (32 through 47) for all
32 counters.  There is one counter for each event tracked by the
performance monitor.  These 48-bit counters increment as each event
occurs, as long as the CPU is not in monitor mode.



RTC, PCI, Status Register, Performance Monitor CPU Module (CPE1)

224 Cray Research Proprietary HTM-300-0

Status Register

A CRAY T90 series computer system has eight status registers, which are
located on the HH and HI options.  The status register is not part of the
exchange package in CRAY T90 series systems.  Figure 103 shows the
status register format and bit assignments of each register.  The status
registers are read by the 073ij1 instruction.



CPU Module (CPE1) RTC, PCI, Status Register, Performance Monitor

225Cray Research ProprietaryHTM-300-0

The eight status registers are further defined in Table 54 through Table 57.

Status register 0 (SR0) shows the status of several bits in the active
exchange package.

Table 54.  Status Register (SR0)

Bits Name Description

63 CLN≠0 Cluster number not equal to zero

57 BML Bit matrix loaded

47 PMBY Performance monitor busy

40 through 46 PN Processor number

32 through 39 CLN Cluster number

31 SMB � Interrupt on floating-point error

30 SMU � Interrupt on operand range error

20 IBP � Interrupt on breakpoint

19 IOR � Interrupt on operand range error mode

18 BDM � Bidirectional memory mode

17 SCE � Scalar cache enabled

16 XIS � Floating-point exceptional input

15 NXS � Floating-point not exact

14 UNS � Floating-point underflow

13 OVS � Floating-point overflow

12 DVS � Floating-point divide by zero

11 NVS � Floating-point invalid

9 IXI � Interrupt on floating-point exceptional
input

8 INX � Interrupt on floating-point not exact

7 IUN � Interrupt on floating-point underflow

6 IOV � Interrupt on floating-point overflow

5 IDV � Interrupt on floating-point divide by
zero

4 INV � Interrupt on floating-point invalid

2 RM1 � Floating-point round mode bit 1

1 RM0 � Floating-point round mode bit 0

� Designates that this was written by a 073i05 instruction.  All other bits of SR0 
are read-only.



RTC, PCI, Status Register, Performance Monitor CPU Module (CPE1)

226 Cray Research Proprietary HTM-300-0

Status register 1 (SR1) is not defined.

Status register 2 (SR2) bits 0 through 47 are bits of the performance
monitor counters 0 through 17.

Status register 3 (SR3) bits 0 through 47 are bits of the performance
monitor counters 20 through 37.

Status register 4 (SR4) bits are shown in Table 55.  SR4 contains the
correctable and uncorrectable memory error flags, port bits, and read
mode bits.  The error information stored in SR4 is latched into the register
and held until the register is read.  Once SR4 is read, the register is
cleared, and new error data can be stored in the register.  If multiple errors
occur, only the first error is held in SR4.  Bits 32 through 45 define the
destination code associated with the error.  Table 56 is a decode of these
destination bits.

Table 55.  Status Register 4 (SR4)

Bits Name Description

47 UME Uncorrectable memory error

46 CME Correctable memory error

32 through 45 CODE Destination code (refer to Table 56)



CPU Module (CPE1) RTC, PCI, Status Register, Performance Monitor

227Cray Research ProprietaryHTM-300-0

Table 56.  Destination Codes 

Destination

Bit

Destination 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cache read 1 1 1 – Word

V register read 1 1 0 Register – Element

S register read 1 0 1 Register 0 –

A register read 1 0 1 Register 1 –

T register read 1 0 0 – 0 – Register

B register read 1 0 0 – 1 – Register

Fetch read 0 1 1 Group Word

I/O read 0 1 0 Type Word

Exchange read 0 0 1 – Word

I/O write 0 0 0 Type 1

Processor write 0 0 0 – 0 1 0 A/S

Reconfigure 0 0 0 – 1 1 0 –

Memory error 0 0 0 – 0 0 0 –

Status register 5 (SR5) bits 32 through 43 contain the syndrome code of
the memory error.  The information is held until the status register is read.

Status register 6 (SR6) bits 32 through 44 contain the error address for
the memory error.  These bits are latched into the SR6 on a memory error.
The information is held until the status register is read.

Status register 7 (SR7) contains information on LAT faults, register
parity errors (RPE), and shared register errors (SRRE).  Bits 48 through
54 contain an LAT miss flag for each memory port.  Bits 55 through 61
contain an LAT multiple-hit flag for each memory port.  Bit 47 is the RPE
flag.  If this bit sets, then bits 32 through 43 contain the chip number.  Bit
46 is the SRRE flag and, if this flag is set, bits 24 through 31 contain the
chip number.



RTC, PCI, Status Register, Performance Monitor CPU Module (CPE1)

228 Cray Research Proprietary HTM-300-0

Table 57.  Status Register 7 (SR7) Bit Definitions

Bits Name Description

48 through 54 LAT fault LAT miss

55 through 61 LAT fault Multiple LAT hit

46 SRRE Shared register read error

24 through 31 Shared register chip number

47 RPE Register parity error

32 through 43 RPE chip number



RTC, PCI, Status Register, Performance MonitorCPU Module (CPE1)

229Cray Research ProprietaryHTM-300-0

Figure 102.  Performance Monitor Block Diagram

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

ÎÎÎÎÎ

Performance 
Counter

HH000 HH001

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎ

HI000

Registers 0 – 37
Bits 32 – 47

Select Pointers
OFA –
OFE

IKH –
IKL

IKH –
IKL

IKM

Carry Out IKM

OFK

OFA

 Carry

IKP

IKP BusyOFO

OFI

IKO

IKO Hold

Performance 
Counter

Registers 0 – 37
Bits 32 – 47

Registers 0 – 37
Bits 0 – 31

Performance
Counter

Performance Monitor
Increment Terms
(Registers 10 – 16)

IKA –
IKG

Cache Miss (Register 17) IKH

Cache Hit (Register  7) IKK

I/O Reference Requests
(Register 6)

IKL –
IKM

Shared Data
IAA –
ICL

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

S Register

OAA –
OBF

OMQ

Go Increment

IKI

Performance Monitor to Si Bits 0 – 31

OAA –
OBF

Performance Monitor
to Si Bits 32 – 47

ICA –
IDF

OBG –
OCL

ICA –
IDFShared Data Path

Shared Data Path

Vector Length
IAA –
IBF

ILA –
ILH

OMA –
OMH

Vector Length

ONB IJQ
IMI Allow Read
of HPM

OAA –
OBF



Section TitleModule Title

230Cray Research ProprietaryHTM-003-0

Delete this page when printing.



C
P

U
 M

odule (C
P

E
1)

R
T

C
, P

C
I, S

tatus R
egister, P

erform
ance M

onitor

231
C

ray R
esearch P

roprietary
H

T
M

-300-0

Performance Monitors 0 – 17

Performance Monitors 20 – 37

SR0

SR1

SR2

SR3

SR4

SR5

SR6

SR7

15 0163132474863

15 0163132474863

047

47 0

C
L
N
≠0

B
M
L

I
B
P

F
P
S

I
F
P

I
O
R

B
D
M

P
M
B
Y 6 0

Processor
Number

Cluster
Number

Error Type
Destination CodeU

M
E

C
M
E 13 0

Error Syndrome

Error Address

RPE Chip
Number

LAT Faults SRRE Chip
Number

Multiple Hit R
P
E

S
R
R
E 011 7 0

011

D C′ C B′ B A′ A

Miss

� SR0 bit 20 = monitor mode � maintenance mode � not (SR7 busy)

D C′ C B′ B A′ A

012

15163132

15163132

7

244655 54

57 52

436162

0

3940Bits

Bits

�
M
M
/

M
M

Figure 103.  Status Registers



232 Cray Research Proprietary HTM-300-0

SCALAR CACHE

Each CPU has a scalar data cache.  The data cache accelerates common
memory data access for address register and scalar register read requests.
Only address and scalar registers can access the data cache.

The data cache has the following features:

• The cache is organized into 8 pages of data.  Each page contains 8
lines of 16 words, which provides 1,024 words of data in the cache.
Figure 104 illustrates the logical layout of the cache.

• Cache is parity protected; each 8-bit byte has an associated parity bit.
If enabled, a parity error on a cache read will cause an interrupt.

• When an A or S register memory reference is made, one of two
things may occur:  a cache hit or a cache miss.

• A and S register store requests are write-through.  The cache word
will be updated if there is a hit; if a miss occurs, no cache lines are
requested.

• B, T, and V register store requests cause corresponding cache lines to
be set invalid on a cache hit.  Store requests on a cache miss have no
effect on the cache.  B, T, and V register load requests also have no
effect on the cache.

Cache Hit

A cache hit is determined using logical addresses, not physical addresses.
A cache hit occurs when the following conditions are met:

• A valid page address consisting of address bits 7 through 39, held
within the cache, matches the corresponding address bits of a
memory request.

• The cache line indicated by bits 4 through 6 of the requesting address
is valid within the cache.



CPU Module (CPE1) Scalar Cache

233Cray Research ProprietaryHTM-300-0

Figure 104.  Cache Layout

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Line 0

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Page 0

Words 0 – 15

Cache Miss

A cache miss occurs when a request from an A or S register load request
does not match a page address.  When this occurs, the corresponding line
is requested from memory and the previously valid page address is set to
the new page address.  All lines in the new page are set invalid.  As the
new requested line returns from memory, the new page address is set valid
as is the cache line that was requested.

Another type of miss occurs when a memory reference matches the page
but not any line in the page, or if the page is not valid.  When this occurs,
16 sequential words are requested from memory, and the line is set valid.



Scalar Cache CPU Module (CPE1)

234 Cray Research Proprietary HTM-300-0

Cache Addressing

Figure 105 shows how memory addresses are used to determine a cache
hit or miss.

Figure 105.  Memory Addresses

Word Select

39 9 6

Bank Select
Subsection

Select Section Select

5 3 2 0

Cache Page Cache Line Cache Word

8

Memory Address

Cache Address

7 4 Bits

Potential Cache Problems

Because no communication occurs between caches in different CPUs, two
or more CPUs can have data in their respective caches from the same
physical address in memory, and one of the CPUs can write data to that
memory address.  The CPU that writes the data will update its cache, and
the other CPUs will contain old data.  This problem can be managed in
several ways:

• There are load instructions that bypass cache.  These instructions
cause the cache line to be invalidated on a cache hit.

• LATs can be set up to define areas of memory that are not cache
enabled.

• If the SCE (scalar cache enable) bit is not set in the exchange
package, it will prevent the use of cache for that job.

Another problem that can occur is  thrashing memory with a stride value
of 128.  A stride of 128 uses 1 word of 1 line from each cache page.  Then
when you start replacing lines, you will get 16 words back from memory
to cache but will be using only 1 word.  This problem is avoided by
redesigning user code.



CPU Module (CPE1) Scalar Cache

235Cray Research ProprietaryHTM-300-0

CH Option

There are 16 CH options; these options contain all of the cache memory
RAMs.  The even-numbered CHs hold data from memory sections 0, 1, 6,
and 7; the odd-numbered CHs hold data from memory sections 2, 3, 4,
and 5.

On a memory write, each CH writes 4 bits to all memory sections.
Table 58 shows the bits in each option.

Table 58.  CH Option Bits

CH000 CH002 CH004 CH006 CH008 CH010 CH012 CH014

Read Data
Sect.  0,1,6,7

0 – 3
32 – 35

4 – 7
36 – 39

8 – 11
40 – 43

12 – 15
44 – 47

16 – 19
48 – 51

20 – 23
52 – 55

24 – 27
56 – 59

28 – 31
60 – 63

Write Data
Sect. 0 – 7

0 – 3
CB 0

4 – 7
CB 1

8 – 11
CB 2

12 – 15
CB 3

16 – 19
CB 4

20 – 23
CB 5

24 – 27
CB 6

28 – 31
CB 7

CH001 CH003 CH005 CH007 CH009 CH011 CH013 CH015

Read Data
Sect.  2,3,4, 5

0 – 3
32 – 35

4 – 7
36 – 39

8 – 11
40 – 43

12 – 15
44 – 47

16 – 19
48 – 51

20 – 23
52 – 55

24 – 27
56 – 59

28 – 31
60 – 63

Write Data
Sect. 0 – 7

32 – 35
CB 8

36 – 39
CB 9

40 – 43
CB 10

44 – 47
CB 11

48 – 51 52 – 55 56 – 59 60 – 63

Scalar Cache Instructions

Refer to Table 59 for a list of the scalar cache instructions.

Table 59.  Scalar Cache Instructions

Instruction CAL Description

002501 ESC Enable scalar cache

002601 DSC Disable and invalidate scalar cache

10hi20mn Ai exp,Ah,BC Load Ai from ((Ah)+exp) bypassing data cache and invalidating
cache line

10hi60pmn Ai exp,Ah,BC Load Ai from ((Ah)+exp) bypassing data cache and invalidating
cache line

12hi20mn Si exp,Ah,BC Load Si from ((Ah)+exp) bypassing data cache and invalidating
cache line

12hi60pmn Si exp,Ah,BC Load Si from ((Ah)+exp) bypassing data cache and invalidating
cache line


	htm300_1
	htm300_2
	htm300_3
	htm300_4
	htm300_5
	htm300_6
	htm300_7
	htm300_8

