CPU Module (CPE1)

(CRAY T90 Series)

HTM-300-0

Cray Research Proprietary

Cray Research, Inc.

-00€-
(T3dD) 8InpoiN NdD

Record of Revision

REVISION DESCRIPTION

May 1996. Original printing.

Any shipment to a country outside of the United States require$ a
letter of assurance from Cray Research, Inc.

Thisdocument is the property of Cray Research, Inc. The use of this document is subject to specific license rights
extended by Cray Research, Inc. to the owner or lessee of a Cray Research, Inc. computer system or other licensed
party according to the terms and conditions of the license and for no other purpose.

Cray Research, Inc. Unpublished Proprietary Information — All Rights Reserved

Autotasking, CF77, CRAY, CRAY-1, Cray Ada, CraySoft, CRAY Y-MP, CRInform, T&idcKiva, HSX, LibSci,

MPP Apprentice, SSD, SUPERCLUSTER, SUPERSERVER, UNICOS, and X-MP EA are federally registered
trademarks and Because no workstation is an island, CCIl, CCKBD, CFT, CFT2, CFT77,

ConCurrent Maintenance Tools, COS, CRAY-2, Cray Animation Theater, CRAY APP, CRAY C90, CRAY C90D,
Cray C++ Compiling System, CrayDoc, CRAL, CRAY J90, CRAY J90se, Cray NQS, Cray/REELlibrarian,

CRAY S-MP, CRAY SUPERSERVER 6400, CRAY T3D, CRAY T3E, CRAY T90, CrayTutor, CRAY X-MP,

CRAY XMS, CS6400, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR,
SMARTE, SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS,

UNICOS MAX, and UNICOS/mk are trademarks of Cray Research, Inc.

Requests for copies of Cray Research, Inc. publications should be directed to:

CRAY RESEARCH, INC.
Customer Service Logistics
1100 Lowater Road

P.O. Box 4000

Chippewa Falls, WI 54729-0078
USA

Comments about this publication should be directed to:

CRAY RESEARCH, INC.

Service Publications and Training
890 Industrial Blvd.

P.O. Box 4000

Chippewa Falls, WI 54729-0078
USA

CPU MODULE (CPE1)

CPE1 MODULE 1
CPE1 General Description oo 1
Module Assembly Components 2

ADDRESS AND SCALAR REGISTERS 7
Address Registers.o 7
Entry Codes. 9
A Register Memory References. 11
Special Register Values. 11
ScalarRegisters 13
InStruction ISSUEo 13
S Register Memory References. 13

Special Register Values. 14

Lower/Upper Scalar RegisterLoad 14
B AND T REGISTERS 15
ADDRESS AND SCALAR ADD 19
SCALAR LOGICAL 21

Addressand ScalarMask 23

Transmitnmto 9, S Upper, $SLower 25

HTM-300-0 Cray Research Proprietary iii

ADDRESS/SCALAR POP/PARITY AND LEADING ZERO 27

ADDRESS REGISTER SHIFT 31
Address Register Single Shift. 32
Address Register Double Shift. 32
Address Register Shift Count Description. 33
Address Register Left Single Shift. 34
Address Register Right Single Shift. 35
Address Register Left Double Shift 36
Address Register Right Double Shift. 37
Left Single-shift Instruction 38
Right Single-shift Instruction. 39
Left Double-shift Instruction. 40
Right Double-shift Instruction 41

SCALAR SHIFT 43
Scalar Single Shift 43
Scalar Double Shift. 44
Scalar Shift Count Description 44
Scalar Left Single Shift. 46
Scalar Right Single Shift 47
Scalar Left Double Shift., 48
Scalar Right Double Shift 49
Left Single-shift Instruction 50
Right Single-shift Instruction. 51
Left Double-shift Instruction. 52
Right Double-shift Instruction 53

ADDRESS MULTIPLY 55
Multiply Algorithm 56

Standard Binary Multiplication 57
Booth Recode Multiplication. 57

Cray Research Proprietary HTM-300-0

INTEGER MULTIPLY

59

VECTOR REGISTERS 61
VB OPLON ... 63
Vector Length Register. 63
Chaining.o 64
VEOPLON ... 64
VN OPLON . .. 65
VQ OPLON . . oo 65
Write Data Steeringt e 66
Read Data Steeringt 68
VECTOR LOGICAL 91
Vector Logical Instructions. 93
Vector Merge. Q3
Vector Mask.o 96
Compressed lota. i 98
REOPLON 99
VECTOR ADD 101
VECTOR SHIFT 105
Vector Shift Instructions. 105
Vector Shift Count Description 106
Vector Right Shift 005400 15D 108
Vector Right Double Shift 15 109
Vector Transfer 005400 1R 110
Vector Compress 005400 2B 110
Vector Expand 005400 183 111
VECTOR POP/POP PARITY AND LEADING ZERO 113
Pop/Parity/Leading Zero Functional Units. 115

HTM-300-0

Cray Research Proprietary %

Vector PopulationCount 194 115

Vector Population/Parity 1718 115
Vector Leading Zero Count 1i§8 115
Vector Population/Parity Instructions. 116
GATHER/SCATTER INSTRUCTIONS 117
Gather INStructions.o 117
Scatter InStructions. 118
IEEE FLOATING-POINT OVERVIEW 119
IEEE Floating-point Number Examples. 120
IEEE Terms. 120
Rules of Operationfor NaNs. 121
Deviations from the IEEE Standard. 123
Special Operand Values. 123
Floating-point Exception (Flags). 124
Rounding 125
IEEE Mathematical Functions. 126
Addition and SubtractionRules. 127
Multiplication, Division, and Square RootRules 127
IEEE FLOATING-POINT ADD AND COMPARE 129
Floating Point Addition / Subtraction..................... 130
Floating-point Add Functional Unit Instructions. 134
Floating-point Format. 134
Floating-point-to-Integer Conversion. 134
Integer-to-Floating-Point Conversion. 135
Floating-point Comparisons.c i 136
IEEE DIVIDE AND SQUARE ROOT 139
IEEE Divide. 139
Divide/Square Root Options oo 140

Vi Cray Research Proprietary HTM-300-0

RDoption. 140

REOPLON 141
Normalization 141
Rounding e 142
Floating Point Exception Flags. 142
Division and Square RootRules. 143
IEEE FLOATING-POINT MULTIPLY AND INTEGER MULTIPLY 147
Multiply Algorithm 148
Standard Binary Multiplication 148
Booth Recode Multiplication. 149
Integer Multiply Instructions. 149
Floating-point Multiply Instructions. 150
Multiply Functional Unit Options. 151
NE OpLioNno e 151
NF Option 152
NG Option e 152
NHOpPtoN 152
BIT MATRIX MULTIPLY 161
Bit Matrix Multiply Theory of Operation. 161
INSErUCHIONS. 165
INSTRUCTION BUFFERS 171
Fetch. . .. 171
Prefetch 172
INSTRUCTION ISSUE 183
Instruction Formats. 184
One-parcel Instructions 184
Three-parcel Instructions. 184
Four-parcel Instructions. 185
Instruction Decode 185

HTM-300-0 Cray Research Proprietary vii

P RegISter 186

CoINCIdENCE. 186
Reading the Instruction Buffer. 186
JBOPtON. 187
Parcel Data Distribution. 187
A/SIVIBIT RegisterRequests. 188
Functional UnitRequests. 188
ConstantDataRequests 189
Extended Instruction Set (EIS) Requests 189
Common Memory Requests. 189
Shared Resource Requests., 190
Branch Requests. 190
Exchange Requests. i, 190
Interrupt Requests 191
Control Signal Distribution. 192
Branch Instruction Control. 194
Conditional Branch Instructions 194
Unconditional Branch Instructions. 194
Issue Control. 195
EXCHANGE 205
Exchange Process i 205
SIPl 206
Interrupt Flag Set 207
Program EXit. 207
Exchange Sequence. i 207
Exchange Package Descriptions 208
PRegiSter 208
ModeS. . .. 208
StatuS. . .. 209
Interrupt Flags. 213
VectorLength. 216
Exchange Address. 216
EXit AdAress. 216
viii Cray Research Proprietary HTM-300-0

Cluster Number. 216
Processor Number. 217
Logical Address Translation 217
REAL-TIME CLOCK, PROGRAMMABLE CLOCK INTERRUPT ,
STATUS REGISTER, PERFORMANCE MONITOR 219
Real-time Clock. 219
Programmable Clock 220
RTCand PC Instructions.0 .. 221
Performance Monitor 221
Performance Monitor Instructions. 223
Clearing the Performance Counters. 223
Reading the Performance Monitor. 223
Performance Monitor Block Diagram. 224
Status Register 224
SCALAR CACHE 233
Cache Hit. 233
Cache Miss e 234
Cache AdAressing.t e 235
Potential Cache Problems. 235
CHOPLION . .. e 236
Scalar Cache Instructions 236
HTM-300-0 Cray Research Proprietary ix

Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.

Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.

Figure 20.
Figure 21.

Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.

Figure 30.

Figure 31.
Figure 32.

Cray Research Proprietary

CP Module Assembly Components 2
Option LayoutBoard 1. 3
Option LayoutBoard 2. 4
CPUBIlockDiagram 5
Address and Scalar Register Data Paths 8
A/ISControl Terms. i 10
Memory-to-A/S Register Block Diagram. 12
B and T Register Inputs and Outputs. 15
B/T-register-to-memory Block Diagram 17
Carry Bit and Enable Bit Fanouts. 20
Address/Scalar Logical Block Diagram
(Instructions 044k through O58k) 21
Scalar Mask Block Diagram 24
A/S Population/Parity/Leading Zero Count. 29
Shift Count Breakdown. 33
Address Register Left Single Shift. 34
Address Register Right Single Shift. 35
Address Register Left Double Shift 36
Address Register Right Double Shift. 37
Example of an A Register
Left Single-shift Instruction. 38
Example of an Address Register
Left Double-shift Instruction 40
Example of an Address Register Right Double-shift
Instruction 41
Address Register Shift. 42
Shift Count Breakdown. 45
Scalar Left Single Shift. 46
Scalar Right Single Shift 47
Scalar Left Double Shift. 48
Scalar Right Double Shift. 49

Example of a Scalar Left Single-shift Instruction. 50
Example of a Scalar Register

Left Double-shift Instruction 52
Example of a Scalar Register

Right Double-shift Instruction. 53
ScalarShift. 54
AN OptioN. 56

HTM-300-0

Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.

Figure 45.

Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.

Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.

HTM-300-0

C90 Integer Multiply Mode. 59
AMOptionInputs 60
Write DataPath. 67
Read Data Path for Pipe 0, Even Elements 69
Read Data Path for Pipe 1, Odd Elements. 70
Vectors 0 through 3, Pipe 0/1, Read Data Path . 71
Vectors 4 through 7, Pipe 0/1, Read Data Path . 73
Vector Register Write Block Diagram, Pipe.O. . . 75
SRegistertoVectors 77
Memory Data to Vectors, Even Elements 79
Memory Data to Vectors, Odd Elements. 81
Vector Register Decode Bit Fanout,

PipeOand 1,Path1Only.................... 83
Vector Register Decode Bit Fanout,

PipeOand 1,Path2Only.................... 85
Vectors 0 through 3, Pipe 0/1, Write Data Path . 87
Vectors 4 through 7, Pipe 0/1, Write Data Path . 89
Vector Logical Block Diagram. 92
Vector Merge Operation. 95

175 Instructions 97

Function of the 18 Instructions. 98
Function of the 1i{8 Instructions. 98
lotaPipeOand1l........................... 99
Function of the 0ifQ Instructions. 100
Vector Add Block Diagram. 103
Shift Count Breakdown. 106
Vector Shift Block Diagram 107
Vector Right Shift 108
Vector Right Double Shift. 109
Vector Transfer 110
Vector COmpress. . ..o 110
VectorExpand. 111
Vector Population/Parity/Leading Zero
Block Diagram. 114
IEEE Floating-point Format. 119
Floating Add Functional Unit. 133
IEEE Floating-point Format. 134
Serial Floating-point Status. 143
Divide Unit Block Diagram. 145

Cray Research Proprietary Xi

Xii

Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.
Figure 97.
Figure 98.
Figure 99.

Figure 100.
Figure 101.

Figure 102

Figure 103.
Figure 104.
Figure 105.

IEEE Floating-point Format. 150

NE Option Pyramid. 153
NFO Option Pyramid. 154
NF1 Option Pyramid. 155
NG Option Pyramid. 156
Multiply Data Paths. 157
Multiply Control Paths 159
Vector Storage of Bit Matrices. 162
Mathematical Representation of Matrices A and B 163
B Matrix and BMatrix Relationships 163
Multiplicationof AandB 164

Bit Matrix Multiply Block Diagram, Pipe O. 167
Bit Matrix Multiply Block Diagram, Pipe 1. 169
IC Options BitLayout. 174
ICBlock Diagram, 175
ICOptionTermst 176
Memory-to-instruction Buffers, Path 1. 177
Memory-to-instruction Buffers, Path 2. 178
Common Memory Path, Code 1 Fanouts 179
Common Memory Path, Code 2 Fanouts 181
Instruction Issue Block Diagram. 183
Format for a 1-parcel Instruction. 184
Format for a 3-parcel Instruction. 184
Format for a 4-parcel Instruction. 185
Bk (Exchange P) Fan-outBits. 196
JB-to-IC Parcel Data for Branches. 197
Path 1 CH-to-IC-to-JB Option. 198
Path 2 CH-to-IC-to-JB Option. 199
Instruction Data Distribution A/S/B/T/V Registers 200
CIP Distributionto HH Options. 201
CIP Distributionto HH Option. 202
JB Option Block Diagram. 203
Exchange Package. 212
RTC and PCI Block Diagram. 220
Performance Monitor Block Diagram. 225
Status Registers 227
Cachelayout i, 234
Memory Addresses. 235

Cray Research Proprietary HTM-300-0

Tables

HTM-300-0

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.

A/S Register Entry Codes 9
B/T Register Instructions 16
A/S Adder Instructions 19
Scalar Logical Functional Unit Instructions. 22
Address Logical Functional Unit Instructions . . . 23
Scalar Mask Instructions 23
Address Mask Instructions. 24
Transmibmto 3 Instructions. 25
Scalar Pop Count/Parity and Leading Zero Count
Instructions 28
Address Register Shift Instructions 31
Scalar Shift Instructions. 43
Recode Groups.o o i i 56
Vector Register Options. 62
VN/VQ Data Steering., 66
Vector Logical Instructions. 93
Vector Merge Instructions 94
Vector Mask Operations. 96
Vector Mask Test Operations 97
lota Instruction. 98
Vector Add Instructions. 101
Vector Shift Instructions. 105
Vector Population/Parity Instructions. 116
IEEE Floating-point Numbers. 120
NaNTagCodes................ .. 122
Effects of Rounding Modeon LSB............ 126
Addition and Subtraction Results. 127
Multiplication Results 128
DivisionResults. 128
Square RootResults. 128
RoundingModes. 131
Effects of Rounding Modeon LSB............ 132
Floating-point Add Functional Unit Instructions . 134
Floating-Point-to-Integer Conversion Instructions 135
Conversion Instructions 135
Compare Instructions. 136

Cray Research Proprietary Xiii

Xiv

Table 36.

Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.

Floating-point Divide and Square Root

UnitInstructions 140
Divide Options i 140
NaN Identifiers. 144
DivisionResults. 144
Square RootResults. 144
Recode Groups. 148
Integer Multiply Instructions. 150
Floating-point Multiply Instructions. 151
Multiply Options. 151
Bit Matrix Multiply Instructions 165
ICOPLIONS 171
Read-out PathCodes. 187
Interrupt Modes Register Bit Assignments 214
Flag Register Bit Assignments 215
LAT Fields. 217
RTC and PC Instructions. 221
Performance Monitor 222
Performance Monitor Instructions. 223
Status Register (SRO). 228
Status Register4 (SR4). 229
DestinationCodes. 230
Status Register 7 (SR7) Bit Definitions 231
CHOptionBIts. 236
Scalar Cache Instructions 236

Cray Research Proprietary HTM-300-0

CPU MODULE (CPE1)

CPEL1 General Description

HTM-300-0

The CPE1 module contains the central processing unit (CPU) for the
CRAY T90 series computer systems. There is one CPU per CPE1
module. This CPU uses the IEEE standard format for floating-point
arithmetic.

There have been many enhancements to the CRAY T90 series CPU, and
several new instructions have been added to increase the performance.
Figure 1 illustrates CP module components. Figure 2 and Figure 3 show
the basic functions and locations of all options on a CP module. Figure 4
shows a block diagram of the CPU.

The CP modules are arranged in stacks in the system. A CRAY T94
system contains one stack of as many as four modules. A CRAY T916
systems contains up to two stacks of as many as eight modules. A
CRAY T932 system contains up to four stacks of as many as eight
modules.

Each module in a stack functions independently; there are no
interconnections between modules in a stack. The CP modules connect
directly with either the memory modules, as in the CRAY T94 system, or
with the system interconnect board (SIB), as in larger systems.

Cray Research Proprietary 1

Module CPU Module (CPE1)

Module Assembly Components

Refer to Figure 1 for an illustration of the CP module assembly
components. This illustration is provided to show the basic components
that are part of all mainframe modules. The sizes of various components
differ between modules.

Figure 1. CP Module Assembly Components

A Flow Block, Board 1 H Fiber-optic Coupler
B Optical Receiver I Flow Block, Board 2
C PC Board Edge Shim J PC Logic Board 2

D Maintenance Connector Flex Assembly K Outer Rail

E Fiber-optic Spool Assembly L Inner Rail

F Voltage Regulator Board Assembly M PC Logic Board 1
G

Maintenance Connector

2 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Module
Figure 2. Option Layout Board 1
HBO0O
1/0
Control
NAOOO RC000 TZ000 HMO000 Mz000 TWO010 RCO001 NAOO1
Fit Mult Reci Clock Logic BS Fanout | Not Used Reci FIt Mult
u ecip oc Monitor anou ot Use ecip u
TWO000 NCO000 RB00O FA000 TWO006 FAO001 OA002 RB001 NCO001
BMM
. Flt Add Flt Add .
Not Used Flt Mult Recip Coeff Not Used Coeff and Recip Flt Mult
Parity
TWO002 VMO007 AU000 VMO006 SS000 OA000 0OA001 VM014 VMO015
Not Used | Vector Even A/S Reg Vector Even Shift BMM BMM Vector Odd | Vector Odd
R Bit 60 — 63 R Bit 52 — 55 Pop and and R Bit 52 — 55| R Bit 60 — 63
W Bit 56 — 63| Bits 48 — 55 |W Bit 48 — 55 Lz Parity Parity W Bit 48 — 55| W Bit 56 — 63
HDO00 VMO005 AT000 VMO004 JA000 VA000 CG000 VMO012 VMO013
Ccip Vector Even | A/SReg | Vector Even Issue Vector Check-bit | Vector Odd | Vector Odd
Exchange |R Bit 44 —47 R Bit 36 — 39 Control Control Generation |R Bit36 — 39| R Bit 44 — 47
Package |W Bit 40 — 47| Bits 32 —39 |W Bit 32 -39 W Bit 32 — 39| W Bit 40 — 47
VF000 VM003 AS001 VMO002 BT000 CDO000 CBO000 VMO010 VMO011
Vector Vector Even AJS Reg Vector Even | B/T/P Reg Ports E Vector Odd | Vector Odd
Control R Bit 28 — 31 R Bit 20 — 23 . Cache Ports C R Bit 20 - 23| R Bit 28 — 31
W Bit 24 — 31| gits 16 — 23 |W Bit 16 — 23| Bits0-15 il W Bit 16 — 23| W Bit 24 — 31
Bits 32 — 47
TW004 VMO001 ARO000 VMO000 CHO010 CHO008 CA000 VMO008 VMO009
Vector Even A/S Reg Vector Even Daé:cthX D?;ZCthX Vector Odd | Vector Odd
Not Used |RBIit12-15 RBit4-7 20— 23 16 - 19 Ports A, A RBit4-7 |RBIit12-15
W Bit 8 — 15 Bits 0 -7 WBIit0-7 50 _55 48— 51 WBIit0-7 | WBIit8 — 15
HAQ000 CCO000 1C000 CHO002 CHO014 CHo012 CHO000 1C002 VF002
Inst Data MUX Data MUX Data MUX Data MUX Inst
1/0 to Mem Ports Buffers Cache Cache Cache Cache Buffers Vector
SBCDBD D Bit0 -7 4-7 28 - 31 24 - 27 0-3 Bit 16 — 23 Control
Bit 32 — 39 36 -39 60 — 63 56 — 59 32-35 Bit 48 — 55
HA002 CF004 CF000 CKO000 CHO006 CHO004 CK002 CF002 TWO008
Data MUX Data MUX
/0 to Mem | Write Data | Write Data Data Cache Cache Data Write Data Not Used
SBCDBD Conflicts Conflicts Steering 12-15 8-11 Steering Conflicts ottse
44 — 47 40 - 43
HGO000 Clo00 CJooo Cloo4 CJoo4 Clo02 CJ002 Cl006 CJ006
Mai Section Section Section Section Section Section Section Section
aint - . : . - . : .
Channel Drlyer Recglver Drlyer Recelver Dnyer Rect_alver Dr|_ver Rect_awer
Section 0 Section 0 Section 4 Section 4 Section 2 Section 2 Section 6 Section 6
ZB008 | | ZB000 | | ZB004 | | ZB002 | | ZB006
HTM-300-0 Cray Research Proprietary 3

Module

Figure 3. Option Layout Board 2

CPU Module (CPE1)

HCO000
1/0 Relay
Data
NDO001 AMO001 TWO011 HMO001 AMO002 NDOO0O
Fit Mult Integer | ot Used Logic Integer Fit Mult
u Multi Monitor Multi u
NB0O1 RA001 OA005 FB0O1 TWO007 FB0OOO RA000 NBO0OO TWO001
BMM
. Flt Add Flt Add .
Flt Mult Recip and Exponent Not Used Exponent Recip FIt Mult Not Used
Parity
VRO15 VR014 OA004 OA003 VS000 VR006 AU001 VROO7 TWO003
Vector 7 Vector 6 Vector 6 A/S Reg Vector 7
BMM BMM
Odd Oodd and and Vgﬁti?tf Even Even Not Used
Bits 56— 59 | Bits 48 —51 | P&y Parity Bits 48 — 51 | Bits 56 — 63 | Bits 56 — 59
VRO013 VRO012 CG001 VA001 JA001 VR004 AT001 VRO05 HDO001
Vector 5 Vector 4 Vector 4 A/S Reg Vector 5 CIP
Odd Odd Check-bit Vector Issue Even Even
Generation Control Control Exchange
Bits 40 — 43 | Bits 32 — 35 Bits 32 — 35 | Bits 40 — 47 | Bits 40 — 43 Package
VRO11 VRO010 CB001 CDO001 BT001 VR002 AS002 VRO003 VF001
Vector 3 Vector 2 Port B/T/P Reg Vector 2 A/S Reg Vector 3
Odd Odd Port E Even Even Vector
C Cache Bits 16 — 31 Control
Bits 24 — 27 | Bits 16 — 19 Control Bits 48 — 63 | Bits 16 — 19 | Bits 24 — 31 | Bits 24 — 27
VRO009 VR008 CAO001 CHO009 CHo11 VRO000 AS000 VRO001 ANO00O
Vector 1 Vector 0 Data MUX Data MUX Vector 0 A/S Reg Vector 1
Odd Odd Port Cache Cache Even Even Address
B, B’ 16 -19 20 -23 Multi
Bits 8 — 11 Bits 0 — 3 48 - 51 52 -55 Bits 0 - 3 Bits 8 — 15 Bits 8 — 11
VF003 1C003 CHO01 CHO013 CHO015 CHO003 IC001 TWO005 HA001
Inst Data MUX Data MUX Data MUX Data MUX Inst
Vector Buffers Cache Cache Cache Cache Buffers Not Used 110
Control Bit 24 — 31 0-3 24 - 27 28 -31 4-7 Bit 8 — 15 SECDED
Bit 56 — 63 32-35 56 — 59 60 - 63 36 -39 Bit 40 — 47
TWO009 CF003 CKO003 CHO005 CHO007 CKO001 CF001 CF005 HA003
Data Data MUX | Data MUX Data
Not Used Write Data Steering Cache Cache Steering Write Data | Write Data Maint
Conflicts Cache 8-11 12 -15 Cache Conflicts Conflicts Channel
Control 40 — 43 44 — 47 Control
cloo7 CJoo7 Cl003 CJoo3 Cl005 CJ005 Cloo1 CJoo1 HF000
Section Section Section Section Section Section Section Section
; . - . - . - . Perf
Driver Receiver Driver Receiver Driver Receiver Driver Receiver Monitor
Section 7 Section 7 Section 3 Section 3 Section 5 Section 5 Section 1 Section 1
ZB007 | ZB003 | | ZB005 | | ZB001 | | ZB009
4 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

Figure 4. CPU Block Diagram

Module

| Comp/Exp | Comp/Exp

| Comp Index | Comp Index

| Int Multiply | Int Multiply

| Logical 2 | Logical 2
Vector Registers Vector Control |POp/PaI’Ity/LZIPOp/ParIty/LZl
|Vector MaskI Shift I Shift Ak
) SI' | Logical | Logical]
[(A0) + (AK)], [(A0) + (VK] ! Add Add _|J~
_[(A0) + (AK)], [(AO) + (VK)] Vj - Vector | . Vector |
- Vk | Functiona unctiona
[(A0) + (AK)], [(A0) + (VK] v Units Units
- Pipe 0 Pipe 1
Sj | Bit Matrix Multiply
00 ‘ | Recip Appr | Recip Appr
. i i Multiply Multiply
177 . Sj. v/ I I
Real-time Clock| Si Vk Add Add
. Vi Shared Shared
Status Si S/ Vector/Scalar| Vector/Scalar
I/0 Data to S/ Functional | Functional
«——» | OSP, HISP, Programmable | g; L Units Units
VHISP Channels Clock Interrupt Sk Pipe 0 Pipe 1
Performance Si
Log |P /Parity/LZ| Ai
T77 - op/Pari i
(A0) Scalar Registers Shift ‘m
Logical J
- Add
| Scalar
| Functional
Units
Common Exchange A
Memory | _[(Ah) + (pnm)]_[Data Control ~ Vector Ak
- "~ cache 1 Control
XA f
B77 A Vector -
(AO) I Length Multlply
. Add
o »| Address
hd _| Functional
@ o Units
A
4D|IE|<—J To A Registers < > Shared Resources
+1 1/0 Status and Control
+3 . SB and ST Registers
+4 To S Registers <—3 Semaphores
Instruction
Buffers
1 NIP] CIP
|_|||_|PI Execution
» LIP1 |
0
37
HTM-300-0 Cray Research Proprietary

Module CPU Module (CPE1)

This page intentionally left blank.

6 Cray Research Proprietary HTM-300-0

ADDRESS AND SCALAR REGISTERS

The address and scalar registers are located together on the same options.
The following subsections describe the address and scalar registers.

Address Registers

The address and scalar registers are contained on eight options: one AV
option, three AW options, two AX options, and two AY options. Each
CRAY T90 series CPU contains eight address registers designated A0
through A7. Each register is 64 bits wide (32 bits in C90 mode) and
performs the following functions:

* Determines addresses for memory references

* Provides memory reference indexing

* Provides loop control

e Determines shift counts

* Provides I/O channel set-up

e Determines I/O channel status

* Receives results from scalar leading zero and pop count

* Determines vector length

* Provides an exchange address (monitor mode only)

* Provides an index for shared registers and B and T instructions
* Provides operands and results for address add and address multiply
* Transfers data to and from scalar registers

* Provides integer-to-floating-point conversion

As illustrated in Figure 5, each AV000, AW000, AW001, AW002, AX000,
AX001, AY000, and AY001 option contains an 8-bit slice of the address
registers. Figure 5 also illustrates the input and output data paths for the
address and scalar registers.

HTM-300-0 Cray Research Proprietary 7

Address and Scalar Registers CPU Module (CPE1)

Figure 5. Address and Scalar Register Data Paths

AY001
Bits 56 — 63
AY000
Bits 48 — 55
AX001
Bits 40 — 47
AX000
Bits 32 — 39
AWO002
Bits 24 — 31
AWO001
Bits 16 — 23
AWO000
Bits 8 — 15
AV000
Bits0 -7))
Floating-point Add
(AN) Address Multiply Results 1AA — IAH OAA — OAH Operand (S)) > (FC)
Floating-point Add
(HH) Shared Data IBA — IBH OBA—OBH Operand (SK) .
Constant Data ICA—-ICH Floating-point Multiply
(JB) > OCA—-OCH Operand (S)) - (NN
(BU) B/T Register Data IDA — IDHV Floating-point Multiply '
- K
Floating-point Add Results 1EA — IEH ODA - ODH_ Operand (Sk) » (NE, NF)
(FC) - CM Address to Vector
ll\:/:ola_tlrllg-lgmntl OEA-OEH Pipe0 » (VN, VQ)
(NH) ultiply Results IFA—IFH _ CM Address to Vector
OEI — OEP Pipe 1
> (VN, VQ)
Divide Result: IGA - IGH — i i i
(RE) ivide Results - OFA - OFH Sjto Shift, Pop/Parlty/LZ/VM: (S9)
Shift Data, VM IHA — IHH — i i i
(SS) OFI| — OFP Ajto Shift, Pop/Panty/LZ/VM: (SS)
; Address Multiply
Vj (Even) Data to Scalar IIA —IIH
(vq) L(Even) OGA—OGH Operand (A)) -
Vj (Odd) Data to Scalar I — 1P Address Multiply
Q) OHA —OHH Operand (Ak) . AN
H Common Memory Path 1 IJA — IJH > (AN)
(CH) OIA - OIH Aito Shared Data Path > (HH
., Common Memory Path 2 IKA - IKH > (HH)
(CH) OJA-OJH__AitoBIT Registersand CM _
BMM ISA — ISH > (BY)
(OA) OMA — OMH Ah Address to CM Port E
> (CD)
ONA —ONH Constant Data to CM Port E
> (CD)
OPA - OPG Akto Vector Control > (VB)
OQA -OQH Akto Scalar Shift Count
Q Q ift Cou > (SS)
ORA -ORC A/S Zero Test > (JB)
OSA-OSD A/S Addres Carry
> (A)
OXA Enter Exchange VL > (VB)

8 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Address and Scalar Registers

Entry Codes

During the instruction decode on the JB option, the A/S register options
receive an A/S entry code from the the JB option. This code generates the
control that is necessary to complete the operations. The operand data is
then transmitted to the appropriate resources, and a destination delay chain
is entered on the option. Refer to Table 1 for the address/scalar (A/S)
register entry codes and to Figure 6 for an illustration of the A/S control
terms.

Table 1. A/S Register Entry Codes

Entry Code Instruction
0 020/ Constants
1 023j0 Sj
2 0231 VL data
3 024ijk B data
4 030,031jjk Add
5 026ij (0 —3), 027ij (0 — 1) pop/parl/iz
6 032ijk A multiply
7 022ijk, 04 (2 — 3) jkimask data
10 N/A
11 073i(2-3) 0 VM data
12 N/A
13 N/A
14 04 (4 - 7) ijk, 05 (0 — 1) jjk Logical
15 N/A
16 05 (2 - 5) ijk, 05 (6 — 7) ijk Shift
17 N/A

HTM-300-0 Cray Research Proprietary 9

Address and Scalar Registers

10

Figure 6. A/S Control Terms

AV000

(JB000) A/S Register Read-out Code ILA—ILB _ ﬁwggg

(JB000) Enter CPU VL ILC | Awoo2
(3B000) 2971012k ILD :
(SS000) Pop/Parity/LZ (AR0OO Only) IMA — IMG:
(JB00O) AJS Register Entry Code INA—INC _
(JB00O) AJS Entry Code Valid IOA 10D _
(JB000) A/S Entry Code Valid IOA - 10D
(JB00O) i, j, k, h Data IPA — IPL -
(V) Memory Path 1 Read Code IQA — IQE .

Memory Path 2 Read Code IRA — IRE
(VQ) »
(HHO00) Shared Data Code IUA - IUE _
(HHOO1) Enter Exchange VL (AR00O Only) IVA

(IC001) Exchange Active VB -
(VQ004) Exchange Path 2 Select IVE -

(JB001)
(JB001)
(JB001)

(JBOO1)
(JBOO1)
(JBOO1)
(JBOO1)

(VQ)

(VQ)
(HHOO01)

(1C002)

(VQ004)

CPU Module (CPE1)

AX000
AX001

~] AY000

A/S Register Read-out Code ILA—ILB
Enter CPU VL ILC -
Go 071i(0,1,2)k ILD .
A/S Register Entry Code INA — INC -
A/S Entry Code Valid 10A — IOD:
A/S Entry Code Valid 10A — IOD:
i, j, k, h Data IPA — IPL -
Memory Path 1 Read Code 1QA — IQE:
Memory Path 2 Read Code IRA — IRE -
Shared Data Code IUA — IUE -
Exchange Active IVB -
Exchange Path 2 Select IVE .

Cray Research Proprietary

AY001

HTM-300-0

CPU Module (CPE1) Address and Scalar Registers

A Register Memory References

Referto Figure 7 for a memory-to-A/S-register block diagram. The

address registers read or write one word of memory during each

instruction. The B registers provide intermediate storage for the address
registers and perform memory block references; one B register instruction
can access a group of operands from memory. The A registers use these
operands to generate results that are sent back to the B registers and stored
in memory. Using the B registers as buffer storage, a block reference
requires fewer clock periods than if several individual address or scalar
references were issued.

The A registers also have an access path to cache memory, which provides
access to common memory data without having to reference memory
directly. If the requested address resides in cache, a “cache hit” is initiated
and the data is read from cache memory instead of from common memory

Special Register Values

The AO register has special features that the other A registers do not have.
The AO register holds the starting address for all block transfers for the

B, T, and V registers and branch control. AO is the only register that can
be tested for equal-to-zero, not-equal-to-zero, positive, or negative
conditions using A0 conditional branch instructions.

This register also has a special feature for reading data. If AO is specified
as an operand in the j, or k field of an instruction, it will not send the

actual contents of the register. Instead, the register sends a value of O if
A0 is used in th¢ or hfield, or it sends a value of 1 if AO is used in ke
field. If AO is used in the field, the actual contents of the AO register are
sent.

Because the A registers in CRAY T90 series systems are 64 bits wide,
special mode instructions have been implemented. These instructions are
part of the extended instruction set (EIS). These instructions make the A
registers functionally equal to S registers, enabling A registers to be
shifted and logical operations to be performed. To execute these special
mode instructions, an EIS 005400 instruction must precede the actual A
register instruction.

HTM-300-0 Cray Research Proprietary 11

Address and Scalar Registers CPU Module (CPE1)

Figure 7. Memory-to-A/S Register Block Diagram

7!

CHO002
CHO000 CM Left (Path 1)
Read Data BUOOO
ICA—ICP I Bits0-15,32-47
IDA — IDP OAA — OAP,
iﬂﬂ- > OAA - 0AP
i CHO10 IEA — IEP
IFA — IFP
CHO008
CM Left B/T Registers
Read Data
Read Data)
CM Right BUOOL AJS Registers
Bits 16 — 31, 48 — 63 AV000
CHO001 ICA—-ICP AW000
AX000
CHO003
h IDA—IDP AX001
IDA—IDH_
IEA — IEP
- OAA - OAP,
IFA—IFP _ OBA—OBP |DA — IDH ﬁwggé
Read Data B/T Registers AYO00
AY001
CHO009
CM Right (Path 2)
CHO11

Ir

[N

2 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

Scalar Registers

Address and Scalar Registers

Instruction Issue

The CPU contains eight 64-bit scalar registers that are designated SO
through S7. The scalar registers are contained on the AV, AW, AX, and
AY options (refer to Figure 5).

The scalar registers send operands to and receive results from the scalar
functional units and the floating-point functional units. The functional

units perform integer and floating-point arithmetic and logical operations.
The scalar registers read and write central memory through the T registers,
read and write the data cache, and provide paths to the vector registers,
vector mask, real-time clock, status register, programmable clock

interrupt, and the performance monitor.

When an instruction issues, the scalar register receiving the data is
reserved until the result is latched in the register. If an instruction in the
current instruction parcel (CIP) register requires the reserved result
register, that CIP instruction holds issue until the register is available.

The SO register is an exception. If the SO register is reserved as a result
register and is needed as gro6 operand in a following instruction, no

hold issue occurs because the SO register has special register values as an
operand.

The issue hardware also develops scalar functional unit codes. These
codes select the input terms to be gated from the proper functional unit
into the scalar register multiplexer.

S Register Memory References

HTM-300-0

Scalarregisters read or write one word of memory during each instruction.
The T registers provide intermediate storage for the scalar registers, and
can perform memory block references; a single instruction can access a
group of operands from memory. These operands are then used by the
scalar registers to generate results that can be sent back to the T registers
and stored in memory. Using the T registers as buffer storage, a block
reference requires fewer clock periods than if several individual address or
scalar references were issued.

Cray Research Proprietary 13

Address and Scalar Registers CPU Module (CPE1)

The S registers also have an access path to cache memory, which provides
access to common memory data without having to reference memory
directly. If the requested address resides in cache, a “cache hit” is initiated
and the data is read from cache instead of from common memory

Special Register Values

SO0 has special register values whewiSX is used as an operand. When
thej field equals 0, a value of 0 is sent out regardless of the actual value
stored in SO. When tHefield equals 0, bit 63 is set to a 1.

Lower/Upper Scalar Register Load

It is possible to load either the lower- or upper-half of a scalar register
with a 32-bit quantity. The following four instructions load constants into
scalar registers.

e 04000nm S exp loads the quantitgminto the lower 32 bits of
register & The upper 32 bits are cleared.

e 04100nm S exp loads the one’s complementrohinto the lower
32 bits of registeriS The upper 32 bits are all 1's.

e 04020nm S exp loads the quantityminto the lower 32 bits of
register & The upper 32 bits are unchanged.

e 04040 Sexp loads the quantityminto the upper 32 bits of
register & The lower 32 bits are unchanged.

14 Cray Research Proprietary HTM-300-0

B AND T REGISTERS

Each CPU contains 64 (1§)B registers and 64 T registers. The Band T
registers act as intermediate registers for the address and scalar registers,
respectively. Each B and T register is 64 bits wide.

Two BU options, BUOOO and BUOO1, compose the B and T registers.
Each option contains 32 bits of each register. BUOOO contains bits 00
through 15 and bits 32 through 47. BUOO1 contains bits 16 through 31
and bits 48 through 63. As shown in Figure 8, the B and T registers can
be loaded from the address and scalar registers, common memory, and
branch control.

Figure 8. B and T Register Inputs and Outputs

AilLength (BU0OO1 Only) 1IA—1IG_|BU0O1
Bits 16 — 31,
48 — 63
IAA — IAP,
From Ajor Si IBA—IBP BUO0O
>1 Bits0- 15,
32-47
ICA —ICP,
CM Path 1 IDA — IDP_
OAA - OAP,
OBA-OBP ToAijorSi
IEA - IEP, >

CM Path 2 IFA—IFP

OCA - OCP,
ODA - ODP Aj, Si,Bor T CM Data

P Entry on Branch IGA —IGP_

OEA — OEP Bjkto Branch Control

TheB and T registers are used primarily for block transfers to and from
common memory. Refer to Table 2 for a list of the B and T register
instructions. Refer also to Figure 9 for a B/T-register-to-memory block
diagram.

HTM-300-0 Cray Research Proprietary 15

B and T Registers CPU Module (CPE1)

Table 2. B/T Register Instructions

Instruction CAL Description

0050k J Bjk Jump to Bjk

0051jk* JINV Bjk |Jump to Bjk (invalidate instruction buffers)

024ijk Ai Bjk Transmit (Bjk) to Ai

025ijk Bjk Ai Transmit (Al) to Bjk

034ijk Bjk Ai, AO | Transmit (Aj)) words from common memory starting at
address (A0) to B registers starting at register jk

035jjk ,AO Bjk,Ai | Transmit (Aj) words from B registers starting at register jk to
memory starting at address (AO)

036ijk Tjk Ai, AO | Transmit (Aj) words from memory starting at address (A0) to
T register starting at register jk

037ijk JAO Tjk,Ai | Transmit (AJ) words from T registers starting at register jk to
memory starting at address (AO)

074ijk Si Tjk Transmit (T/k) to Si

075ijk Tjk Si Transmit (S)) to Tjk

* Denotes a maintenance mode instruction only.

16 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

=

Figure 9. B/T-register-to-memory Block Diagram

BUOOO
Bits 0 — 15, 32 - 47

B/T Registers

OCA - OCP,
ODA - ODP

B and T Registers

CG000

Memory
Write Data

HTM-300-0

CHO002
CHO000
CM Left
Read Data
ICA - ICP
CHO14 IDA — IDP
IEA — IEP
IFA — IFP
CM Left
Read Data
Read Data
CM Right
CHO001 ICA-ICP
CHO003
!m_ IEA - IEP
IFA — IFP
Read Data
CM Right
CHO009

BUOO1
Bits 16 — 31, 48 — 63

B/T Registers

OCA - OCP,
ODA — ODP

CGo0o1

Memory
Write Data

Cray Research Proprietary

17

B and T Registers

18

This page intentionally left blank.

Cray Research Proprietary

CPU Module (CPE1)

HTM-300-0

ADDRESS AND SCALAR ADD

The address and scalar registers are contained on eight options: one AV
option, three AW options, two AX options, and two AY options. Each

option contains 8 bits of the 64-bit address registers. These options also
contain the address and scalar add functional unit. Table 3 describes the

instructions that use the address and scalar add functional unit.

Table 3. A/S Adder Instructions

Instruction CAL Description
030ijk Ai Aj+Ak Transmit integer sum of (Aj) and (AK) to Aj
030/0k Ai AKS Transmit (AK) to Aj
030ij0 Ai Aj+1S | Transmit integer sum of (Aj) and 1 to A/
031ijjk Ai A-Ak Transmit integer difference of (Aj) and (AK) to Aj
0310k Ai —AkS Transmit inverse of (AK) to Ai
0310 Ai Aj-15 Transmit integer difference of (Aj) and 1 to Ai
060ijk Si Sj+Sk | Transmit integer sum of (Sj) and (Sk) to Si
061ijjk Si Sj-Sk | Transmit integer difference of (Sj) and (Sk) to Si
0610k Si =Sk Transmit inverse of (SK) to Si

D denotes a difference between Triton mode and C90 mode.

S denotes a special CAL syntax.

The address add and scalar functional units perform a 64-bit add; each
option performs the add function on the bits of the operands contained on
that option. Carry and enable bits generated during the add are passed on
to the next option, as shown in Figure 10. The 64-bit result is stored in the
destination register in 4 clock periods.

HTM-300-0

Cray Research Proprietary

19

Address and Scalar Add CPU Module (CPE1)

Figure 10. Carry Bit and Enable Bit Fanouts

AVO OSA ISA_
1 AWO0 NOTE: ISA —ISG and OSA — OSC terms are
Bits adder carries. ITA—ITF and OTA-OTC
0-7 terms are adder enables.
0SB ISA AW1
AW2
ISA
0sc 1—> AXO0
| > ISD
AX1
AW2 OSA AXO
0sD ISAL Avo Bits |OTA
24 - 31 ITC AX1
AY1
ISD
OSB AYO
ISB OTB
> AY1
AWO OSA AW1 ITC
OTA >
AW?2
Bits ITA
8-15 — OSA ISE
| Axa
osE ISB_ OTA ITD_
| AXo Bits o
- 32 -39
B >
© ISE_
ITA AX1 0SB AYO
oTB >
ISB_ o | A
0OsC AYO0 >
oTC >
ITA_ AY1
AWL OSA ISC: A ISF_
OTA ITB_ AX1 | osA AYO
. - Bits >
1, 40 - 47 | OTA
ISC: ITE AY1
0SB AXO
oTB >
AX1
ITB_
ISC AYO OSA ISG
- _ AY1
osc AYO Bits | OTA ITF
> 48 — 55
oTC >
e | AYL

20 Cray Research Proprietary HTM-300-0

SCALAR LOGICAL

The scalar logical functional unit performs logical operations on the scalar
registers. Logical operations include OR, AND, and XOR and merges.

Refer to Figure 11 for an illustration of the address and scalar registers.
The scalar registers are contained on eight options: one AV option, three
AW options, two AX options, and two AY options. Each option contains

8 bits of the 64-bit address registers. These options also contain the scalar
logical functional unit. The operands are latched and the logical operation
is completed in 1 clock period. The result is then entered into the proper
destination register.

Figure 11. Address/Scalar Logical Block Diagram (InstructionsjK4drough 05ik)

(JBO)

(CHO)

(CHO)

(JBO)

(JBO)

HTM-300-0

AY001 Bits 56 — 63
AY000 Bits 48 — 55
AX001 Bits 40 — 47
AX000 Bits 32 — 39
AW002 Bits 24 — 31
AWO001 Bits 16 — 23
AWO000 Bits 8 — 15
AV000 Bits0—7
Address/Scalar Register |

hijk Instruction Data IPA — IPL - A/SO N
A/S Register St LAIS) —
Data Path 1 JA-1H o NS2 LAKISK

AilSi 253 -
A/S Register
Data Path 2 IKA = IKH _ AIS4 y |

- — AIS5 Operand
Ai/Si A/S6 Select
FU —

A/S Entry Code INA—INC | | select _l As7 |4

] -
A/S Entry Code Valid I0A —10D

> Logical [||
Functional Unit
Cray Research Proprietary 21

Scalar Logical CPU Module (CPE1)

Table 4 and Table 5 list the instructions used in the address and scalar
logical functional unit. The instructions listed in NO TAG must be
preceded by a 005400 instruction.

Table 4. Scalar Logical Functional Unit Instructions

Instruction CAL Description
044ijk SiSj&Sk Logical product of (Sj) and (Sk) to S/
0440 SiSj&SB Sign bit of (S)) to Si
0440 Si SB&Sj Sign bit of (S)) to Si (Sj# 0)
045ijk Si#Sk&Sj Logical product of (Sj) and one’s complement of (Sk) to S/
045jj0 Si#SB&Sj | (S)) with sign bit cleared to Si
046ijk SiSASk Logical difference of (Sj) and (SK) to Si (Sj # 0)
0460 SiS\SB Transmit (Sj) with sign bit toggled to Si
0460 Si SB\Sj Transmit (Sj) with sign bit toggled to Si (Sj # 0)
047ijk Si#S\Sk Logical equivalence of (Sk) and (Sj) to Si
0470k Si#Sk Transmit one’s complement of (Sk) to Si
047ij0 Si#SASB Logical equivalence of (Sj) and sign bitto Si
0470 Si#SB\Sj Logical equivalence of (Sj) and sign bit to Si (Sj # 0)
047/00 Si#SB Enter one’s complement of sign bit into Si
050ijk SiSjISi&Sk | Logical product of (Si) and (Sk) complement ORed with
logical product of (Sj) and (Sk)
050j0 SiSj!Si&SB | Scalar merge of (Si) and sign bit of (Sj) to Si
051jjk Si SISk Logical sum of (Sj) and (Sk) to S/
0510k SiSk Transmit (Sk) to Si
051j0 SiSjISB Logical sum of (Sj) and sign bit to Si (Sj # 0)
051/00 SiSB Enter sign bit into S/

22 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

Scalar Logical

Table 5. Address Logical Functional Unit Instructions

Instruction CAL Description
044ijk Ai Aj&Ak Logical product of (Aj) and (AK) to Ai
045ijk Al #AK&A] Logical product of (Aj) and one’s complement of (AK) to Ai
046ijk Ai ANAK Logical difference of (Aj) and (AK) to Ai (Aj# 0)
047ijk Ai #ANAK Logical equivalence of (Ak) and (Aj) to Ai
0470k Al #Aj Transmit one’s complement of (AK) to Ai
050ijk Ai AjflAi&Ak | Logical product of (Aj) and (Ak) complement ORed with
logical product of (Aj) and (AK)
051jjk Ai A Ak Logical sum of (A)) and (AK) to Aj

Address and Scalar Mask

The address mask and scalar mask functions are not scalar logical
operations, but are included in this section. Address and scalar mask
functions use instructions Ok and 048k. Refer to Table 6 and Table 7
for the scalar and address mask instruction formats, respectively.

Table 6. Scalar Mask Instructions

Instruction CAL Description

042ijk Sikexp Form ones mask in Si exp bits from the right; jk
field = 100 — exp

04277 Sil Enter 1 into Si

042i00 Si-1 Enter -1into Si;
(Si= 177777 177777 177777 177777)

043ijk Si>exp Form ones mask in Si exp bits from the left:
Jk field = exp

043ijk Si#<exp Form zeroes mask in Si exp bits from the right:
Jjk field gets 100g= exp

043i00 Si0 Clear Si

HTM-300-0

Cray Research Proprietary 23

Scalar Logical

CPU Module (CPE1)

Table 7. Address Mask Instructions

Instruction CAL Description

042ijk Aiexp Form ones mask in Ai exp bits from the right;
jk field = 100 — exp

04277 Ail Enter 1 into Ai

042i00 A-1 Enter -1 into A/,
(Ai= 177777 177777 177777 177777)

043jjk Ai>exp Form ones mask in Ai exp bits from the left:
jk field = exp

043ijk Al #<exp Form zeroes mask in Ai exp bits from the right:
Jjk field gets 100g = exp

043i00 Ai0 Clear Ai

The address and scalar mask functional unit is located on the SS options.
When the 04&k or 043jk instruction issues, th& field is sent from the

BUO option. Thgk field determines how many 1 bits are set, anchthe

field bit 0 determines whether the mask should be formed from the left or
the right. Figure 12 is a block diagram of the scalar mask functional unit.

Figure 12. Scalar Mask Block Diagram

Sji
(AV, AW, AX, AY)

)

(1)

24

SS000
Scalar
Shift
IAA — IDP_ [Vector [Avoo1 Bits 56 - 63
Mask [|AY000 Bits 48 — 55
Upper -
MUX |Ax001 Bits 40 — 47
Lower |— [Ax000 Bits 32 -39
|AW002 Bits 24 — 31
|Aw001 Bits 16 — 23
|Awooo Bits 8 — 15
LS IGA _IGF,, Address/ AVO00 Bits 0 — 7
- ress -
IEE o1 M| scalar Mask > ORed .
Address/Scalar
Registers

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Scalar Logical

Transmit nm to S/, Si Upper, S/ Lower

Constant data can be transmitted to an S register by four different
instructions. Refer to Table 8 for a list of these instructions.

Table 8. Transmihmto 9 Instructions

Instruction CAL Description

040/00nm Siexp Transmit expression = nmto Si, bits
0 through 31 (bits 32 through 63 = 0)

040i20nm SiSiexp Transmit expression = nmto Si, bits 0 through
31 (bits 32 through 63 unchanged) (2 = 0)

040/40nm Siexp:Si Transmit expression = nmto Si, bits 32
through 63 (bits 0 through 31 unchanged)
(2=1)

041/00nm Siexp Transmit expression = one’s complement of
nmto Si, bits 0 through 31 (Si bits 32 through
63=1)

HTM-300-0 Cray Research Proprietary 25

Scalar Logical

26

This page intentionally left blank.

Cray Research Proprietary

CPU Module (CPE1)

HTM-300-0

ADDRESS/SCALAR POP/PARITY AND LEADING ZERO

HTM-300-0

The address/scalar population count functional unit counts the number of
1 bits in the scalar (S) register or address (A) register as designated by the
k field of instruction 028k (k=0 or 1 for S registers, amkd= 2 or 3 for A
registers). The maximum count is 3d64,) for the corresponding

number of 1 bits set in the A or S register. The smallest count is zero,
which occurs when no bits are set in the A or S register.

Thek field of the instruction determines whether or not the entire
population count is recorded in Alf the instruction is 02f0/2, all 7 bits

of the final population count are sent to the A register. Whenigld26
instruction is issued, the entire S or A register is counted for the number of
1 bits set, but only bit 0 of the count is sent to the A register. If bit O of the
count equals 0, then the count has even parity, indicating an even number
of bits set. If bit O of the count equals 1, then the count has odd parity

Starting from bit position 63, the address/scalar leading zero count
functional unit counts the number of 0’s preceding the first bit setto a 1 in
a specified address or scalar register. The number of leading O’s is then
transferred to the lower 7 bits of the #egister. To use the address/scalar
leading zero count functional unit, a @@rinstruction is issued wher¢ S

is the operand andiAs the result register. The QRFinstruction is issued
when A is the operand andiAs the result register.

The SS option performs scalar pop/parity and leading zero functions.
Population count/parity and leading zero functions are performed on either
a scalar or an address register operand, and the result is sent to an address
register. Table 9 describes the instructions that use the pop/parity and
leading zero functional unit, and Figure 13 illustrates the A/S
population/parity/leading zero count.

Cray Research Proprietary 27

Address/Scalar Pop/Parity and Leading Zero CPU Module (CPE1)

Table 9. Scalar Pop Count/Parity and Leading Zero Count Instructions

Instruction CAL Description
02640 Ai PSj Transmit population count of (Sj) to Ai
0261 Ai QSj Transmit population count parity of (Sj) to Aj
026if2 Ai PAj Transmit population count of (A)) to Aj
02643 Ai QAJj Transmit population count parity of (A)) to Ai
027i/0 Ai ZSj Transmit leading zero count of (Sj) to Ai
027i1 Ai ZAj Transmit leading zero count of (Aj) to Ai

Figure 13. A/S Population/Parity/Leading Zero Count

AVO000
Bits 0 — 7
AWO000
SS000
SjISiBits0—15 IAA — IAP
Bits 8 — 15 AJAiBits 0-15 IJA-1IP__ 4-bit Sum
AWOOL Sj/SiBits 16 —31 IBA — IBP
AJAIBits 16 —31 IKA—IKP _
Sj/SiBits 32 —47 ICA—ICP Y
Bits 16 — 23 AJAIBits 32 47 ILA—ILP 8-bit SUm
AWO002 Sj/SiBits 48 — 63 IDA — IDP t
AJIAiBits 48 — 63 IMA— IMP _|
16-bit Sum
Bits 24 — 31 }
| D
AX000 Go 026ijx |IED s e
(JB000) 02710 ™ . 32-bit Sum
t o 7
' - hO Bit IEE d
Bits 32 — 39 (1C000) i i l: d AV000
; . OFA - OFG ResultBits0 -6
AX001 (BUOO1) jbata IGA-IGC | _ <t; 64-bit Sum -
kData IGD-IGF [Bits 0 — 7
(BUO0O) el
Bits 40 — 47 n
AY000
Bits 48 — 55
AY001
Bits 56 — 63

28 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Address/Scalar Pop/Parity and Leading Zero

This page intentionally left blank.

HTM-300-0 Cray Research Proprietary 29

ADDRESS REGISTER SHIFT

30

The address register shift function is performed on the SS option (refer to
Figure 22 for a block diagram of address register shift). This functional
unit performs both left and right single-register shifts and left and right
double-register shifts (also referred to as “long shifts”). All shifts are
end-of with zero fill. For example, if data is shifted more thang4

places in a single shift, or more than i@glaces in a double-register

shift, the data is shifted completely off the register, leaving the register
cleared.

The shift unit performs only left shifts. The shift count for a right shift
must be in the two’s complement form; the unit then performs a left shift.
Refer to Table 10 for a list of the address register shift instructions.

NOTE: To issue A-register-shift instructions, a 005400 (EIS) instruction
must precede the shift instruction.

Table 10. Address Register Shift Instructions

Instruction CAL Description
052ijk A0 Ai<exp | Shift (AJ) left exp = jk places to AO
053jjk A0 Ai>exp | Shift (Aj) right exp = 100g—jk places to AO
054ijk Ai Aiexp Shift (A)) left exp = jk places to Ai
055ijk Ai A>exp Shift (AJ) right exp = 100g—jk places to Ai
056ijk Ai Ai, A<Ak | Shift (A) and (A)) left (Ak) places to Ai
0560 Ai Ai, Aj<1 | Shift (A)) and (A)) left one place to Ai
0560k Ai Ai<Ak Shift (AJ) left (AK) places to Aj
057ijk Ai Aj, Ai>Ak | Shift (Aj) and (AJ) right (AKk) places to Aj
057j0 Ai Aj, A>1 | Shift (Aj) and (AJ) right one place to Aj
0560k Ai A>Ak Shift (AJ) right (AK) places to Ai

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Address Register Shift

Address Register Single Shift

The address register single-shift instructions arejloB2rough 054Kk.

The first two instructions perform left single shifts (§kRand right

single shifts (05i) on the content of theiAegister and always store the
result in AO. The shift count is obtained from {kdield of the

instruction. The value placed in thefield for the single-shift

instructions depends on whether it is a left or right shift. For a single left
shift, the value in thgk field is the number of octal places desired to shift
Ai. This allows a shift left of 0 to gplaces. For a right shift, thie field

is equal to the two’s complement of the actual number of places desired to
shift right. If a shift of 24 places were required, 54 would be entered in
thejk field (two’s complement of 24 is 54).

When instructions are written in machine code, this operation must be
done by the person writing the code. However, when instructions are
written in CAL, this is done by the assembler. In the CAL instruction, you
would simply enter the shift count. This allows a shift right of 1 tgs100
places. Because the two’s complement of the shift count is used for a
single shift, a shift right O places is not possible.

The 054k and 055k instructions perform single shifts left or right on the
contents of A However, these instructions store the result of the shift
back in A. These shifts overwrite the original contents iofvih the new
results from the shifter.

Address Register Double Shift

Double shifts work similarly to single shifts and are end-off with zero fill.
The difference is that a double shift concatenates two S registers, forming
a 128-bit register. The arrangement of the two registers is determined by
the shift direction.

Double shifts always shift data intd. SThe two instructions associated
with double shifts are 05& (left double shift) and 05jk (right double
shift). The double shifts use thandj fields to specify the two operand
registers; the field also specifies the result register. Kfeld of the
instructions specifies the A register used for the shift count.

Because a double shift uses a 128-bit operand and shifts are end-off with
zero fill, a shift equal to or greater than 1g280Qs) produces a result of

zero. The A register bits 0 through 6 are used as a shift count, providing a
shift of 0 to 173§. Bit 7 is checked, and if this bit is set to a 1, it causes the
double shift result to equal zero. For right double shifts, the shift count
does not need to be entered into the A register in two’s complement form;
the hardware performs this function.

HTM-300-0 Cray Research Proprietary 31

Address Register Shift CPU Module (CPE1)

Address Register Shift Count Description

The AV option sends 7 bits of shift count to the SS option. With both
single and double shifts, the breakdown of the shift count is nearly the
same, except that the double shift has 1 extra bit (bit 6). Refer to
Figure 14 for a breakdown of the shift count.

Figure 14. Shift Count Breakdown

Double

Shift

Only

6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: All references to shift counts in this documentation are in
decimal notation.

If the jk field of a left single shift equals g and bits 4, 2, 1, and 0 are set,
the shift values are 16, 4, 2, and 1, respectively. The sum of the shift
values is 23 (16 + 4 + 2 + 1) and the unit shifts the data lgftd&ces.

The hardware that performs the shifts is the same for both left and right
shifts. In reality, the hardware can perform only left shifts. Right shifts
are accomplished by the way in which data is entered into the shifter,
hence the use of two’s complement for right shifts.

32 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Address Register Shift

Address Register Left Single Shift

Figure 15 illustrates how a left single shift is performed for a 054220
instruction. (A Ai<exp), shift A2 leftjk places (2g) with data bit 10 set.

Figure 15. Address Register Left Single Shift

- Bit

Address Shift Functional Unit

Bit 10 <

Shift A2 16, places
to the left, moving bit
26 to bit position 10

Bit 26 A2 Final Results

HTM-300-0 Cray Research Proprietary 33

Address Register Shift CPU Module (CPE1)

Address Register Right Single Shift

Figure 16 illustrates how a right single shift is performed using left shifts
and a two’s complement shift count. This example uses a 055254
instruction (A>Ai exp that shifts Arightexp= 100 —jk places to A In

this example, data bit 45 shifts to the righg 220,0) places. Notice that
thejk field of the instruction 055254 containsgb#vhich is the two’s
complement of 24 The content of A2 is shifted to the leftgggdlaces to

set bit 25 of the result.

Figure 16. Address Register Right Single Shift

A2 = Bit 45

Address Shift Functional Unit

Bit 63 0 63 0

———— e
: Bit 45 -
L

_l—_f____—__Sh_ift 545

Bit 25

» A2 = Bit 25

NOTE: Ona right shift, the programmer is responsible for converting
the shift count to a two’s complement value and supplying that
value to the functional unit.

34 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Address Register Shift

Address Register Left Double Shift

Double shift instructions execute in the same manner as single shifts
except that the double shift concatenates two 64-bit registers to form a
value. Figure 17 illustrates a left double shift using a 056123 instruction
(Ai Al, Aj<AK). In this example, (A and (A) left shift (Ak) places to

Ai. A3 =4 (3210), Al has bit 30 set, and S2 has bit 10 set. When a left
double shift occurs, the content of & moved into A and the two

registers are positioned as shown witihaAead of A

Figure 17. Address Register Left Double Shift

A2 (A)) = Bit 10
Al (Aj) = Bit 30
A3 = 40 — Shift Control

Address Shift Functional Unit

Al (A1) y Al (A2) \

Bit . Bit .
@ Bit 30 @ Bit 10

| Shift 32 I | Shift 32 I
Y

Bit 62

> Bit 62 = Al Final Result

Shifting Ai and A to the left 32 places puts bit 30 of A1l at bit position 62
and bit 10 of A2 at bit position 41. Because bit 41 of A2 does not transfer
to the result register (Al), it is lost. The result bit (bit 62) is sent toithe A
(A1) register. The A(A2) register remains unchanged.

HTM-300-0 Cray Research Proprietary 35

Address Register Shift CPU Module (CPE1)

Address Register Right Double Shift

To perform an address register right double shift, &lOHAI Aj, Al
>Ak), shift (A)) and (A) right (Ak) places to A instruction is used.
Figure 18 illustrates a 057123 instruction with the indicated parameters.

Figure 18. Address Register Right Double Shift

Al = Bit 20
A2 = Bit 40
A3 = 60 — Shift Control

Address Shift Functional Unit

Aj (A2) Ai (A1)
<" ,

. Bit .
| @ Bit 40 5g Bit 20

______]
II Shift 80 Shift 80

»| Bit 56 = Al Final Result

To right shift A and A using left shifts, the two’s complement is first
performed on A3, which currently equalsg@@8;0). Because the two’s
complement is 120(or 1010008 or 80,¢), the required shift can be
accomplished through successive shifts giy@hd 16 for a total shift of
8010 places. A left shift of 8@ moves bit 40 of A2 to bit position 56
inside the dotted box and bit 20 of Al to bit position 36 of A2. Because
bit 36 does not transfer into the result register (indicated by the dotted
box), it is lost. Bit 56 is sent to the final result register (Al).

36 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Address Register Shift

Left Single-shift Instruction

Referto Figure 19 when reading the following two examples of the
address register left single-shift instruction.

Figure 19. Example of an A Register Left Single-shift Instruction

Bis|2 1 0|2 1 0 |=jkField

32 16 8 4 2 1 = Shift Values Decimal

052jjk Results to AO
054ijk Results to A/

Example 1: Write the instruction to shift the contents of A2 left
20,0 places and put the result into AO.

Steps: 1. 050k — left shift instruction result goes to A0
2. jk field — shift count 2¢y = 24g = jk field
3. 052224 — final instruction

Example 2: Write the instruction to shift A4 left3®laces and put the
result into A4.

Steps: 1. 054k — left shift instruction result goes td A
2. jk field — shift count 3y = 43

3. 054443 — final instruction

HTM-300-0 Cray Research Proprietary 37

Address Register Shift CPU Module (CPE1)

Right Single-shift Instruction

The right single-shift count is thke field of the instruction, which must
either be in the two’s complement form or $@0inus the number of
places to right shift. The following two examples show an address
register right single-shift instruction.

* 053jk results to AO
e 055jk results to A

Example 1: Write the instruction to shift A5 right;3@laces and put
the result into AO.

Steps: 1. 05K — right shift instruction results to AO
2. jk field — shift count in two’s complement equals; 66
1050 = 12 = 001010
two’s complement = 110101

+1

110110 =060
3. 053566 — final instruction
Example 2. Write the instruction to shift A7 right3®laces.
Steps: 1. 058K right shift instruction results toiA
2. jk field — shift count in two’s complement equals
2810 =343 = 011100

two’s complement = 100011

+1
100100 = 44
or 10Q — 34; = 44

3. 055744 —final instruction

38 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Address Register Shift

Left Double-shift Instruction

Refer to Figure 20 when reading the following example of an address
register left double-shift instruction.

Figure 20. Example of an Address Register Left Double-shift Instruction

056ijk Shift Aiand Aj left by Ak places to Aj

Ai Aj

e

Ak contains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any bits from 7 through 63 are set, the results of Ai are zeroed.

Bits | 63 7 65 4 3 2 1 0 =Ak

Zero Results 64 3216 8 4 2 1 = Valid Decimal Shifts

On a left double shift, the contents of Aj are always shifted into Ai. This shift is done
inside the address shift functional unit.

Example 1: Write the instruction to double shift A2 and A3 lefig64
places and put the results into A2.

056234 — final instruction, where A4 — 00

NOTE: A 056 instruction with =j and (A)< 64 effects a circular left
shift.

HTM-300-0 Cray Research Proprietary 39

Address Register Shift CPU Module (CPE1)

Right Double-shift Instruction

Referto Figure 21 when reading the following example of a scalar right
double-shift instruction.

Figure 21. Example of an Address Register Right Double-shift Instruction

057ijk Shift Ajand Ajright by Ak places to Aj

Aj Ai
Ai
Bits | 63 7 6|/5 4 3 2 1 0 =Ak
Zero Results
Two’s Complement = During Right Double Shift
64 3216 8 4 2 1 = Valid Decimal Shifts

Ak contains the shift count, and address (A) register bits O through 6
contain the valid shift counts. If any bits from 7 through 63 are set, the
results of A are zeroed. Also, the hardware generates the two’s
complement of the shift countkAegister bits 0 through 6 on a right
double shift.

On a right double shift, the contents gfae always shifted intoiA This
operation and the two’s complement of the shift count occur inside the
address shift functional unit.

Example 1. Write the instruction to double shift right A4 and A5
3210 places and put the result into A4.

057454 — final instruction, where A4 =40
hardware generates a shift count of g4@ide
the functional unit.

NOTE: Issue a 057 instruction with=j and (A)< 64 to effect a
circular right shift.

40 Cray Research Proprietary HTM-300-0

0-00g-W1H

Arelandold yoreasay Aeid

v

Figure 22. Address Register Shift

OAA — OAP

AiBits 0 — 15

AV000

Bits 0 -7

AWO000

Bits 8 — 15

OBA — OBP

AiBits 16 — 31

OCA - OCP

Ai Bits 32 — 47

ODA — ODP

Ai Bits 48 — 63

AWO001

Bits 16 — 23

OHA — OHG

Ak Shift Count

OHH

(VS)

No Ak Overflow

AV000
Bits 0 — 7
AWO000
i Ai Result
Bits 8 — 15 Aj/Ai Bits 0 — 15 1JA— 1P
AW00L AjIA Bits 16 — 31 IKA — IKP__
AJIAT Bits 32 — 47 ILA—ILP _
Bits 16 — 23 > '
AJIA Bits 48 — 63 IMA — IMP_ AiData
AW002 >)
JA001 via BT
Jjk Shift Count IGA — IGF_
Bits 24 — 31 >
AX000 Go A Type
Gate A Dat IEF
(38000) {CAE A Data) -
hO Bit
, 1 = Right Shift IEE
Bits 32 — 39 (Icoop) {L=Right Shift -
AX001
(AV000) Ak Shift Count IHA — IHH: Shift Count (AK)
Bits 40 — 47
AK=0 IIA—IIG
000 (AV, AW, AX, AY) - (AK) 7—63=0
Bits 48 — 55
AY001
Bits 56 — 63

(VS)

AW002

Bits 24 — 31

AX000

Bits 32 — 39

AX001

Bits 40 — 47

AY000

Bits 48 — 55

AY001

Bits 56 — 63

(T3d42) 8inpow Ndo

YIYS 815168y SSaIppy

SCALAR SHIFT

The scalar shift function is performed on the SS option (refer to Figure 31
for a block diagram of a scalar shift). This functional unit performs both
left and right single-register shifts, and left and right double-register shifts
(also referred to as “long shifts”). All shifts are end-off with zero fill. For
example, if data is shifted more thamgplaces in a single shift, or more
than 128 places in a double-register shift, the data is shifted off the
register. The data is then lost, and the register is filled with O’s.

The shift unit performs only left shifts. The shift count for a right shift
has to be in the two’s complement form; the unit then performs a left shift.
Refer to Table 11 for a list of the scalar shift instructions.

Table 11. Scalar Shift Instructions

Instruction CAL Description
052jjk S0 Si<exp | Shift (Si) left exp = jk places to SO
053jjk S0 Si>exp | Shift (Si) right exp = 100g — jk places to SO
054ijk SiSikexp Shift (S)) left exp = jk places to Si
055ijk SiSi>exp Shift (Si) right exp = 100g — jk places to Si
056k S1 Si, Sj<Ak | Shift (Si) and (S)) left (Ak) places to S/
05640 T S1 Si, Sj<1 | Shift (Si) and (S)) left 1 place to Si
056i0k * S1 SikAk | Shift (Si) left (AK) places to Si
057ijk SiSj, S>Ak | Shift (Sj) and (S)) right (AK) places to Si
0570 ¥ S1Sj, S~1 | Shift (S)) and (Si) right 1 place to Si
057i0k * S1 Si>Ak | Shift (Si) right (AK) places to Si

t1fj=0, then (S)) =0.
tIf k=0, then (AK) = 1.

Scalar Single Shift

42

The scalar single-shift instructions are Po2hrough 058k. The first
two instructions perform single shifts left (O} and right (058k) on the
contents of the iSegister and always store the result in SO. The shift
count is obtained from th& field of the instruction. How the value is

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

Scalar Shift

represented in thi& field for single-shift instructions depends on whether
the shift is left or right. For a single left shift, the value injkhield
represents the number of octal places (in the range of Golaces) to
shift S. For a right shift, th¢k field is equal to the two’s complement of
the actual number of places to shift right. If a shift of @lces were
required, 54 would be entered in fjRdield (the two’s complement of 24

is 54).

When instructions are written in machine code, the programmer is
responsible for complementing the shift count. However when
instructions are written in CAL, the assembler performs this operation
automatically; that is, in the CAL instruction, simply enter the shift count
in the range of 1 to 1@(laces. Because the two’s complement of the

shift count is used for a single shift, a right shift of O places is not possible.

The 054k and 055k instructions perform single shifts left or right on the
contents of 5 However, these instructions store the result of the shift
back in $. These shifts overwrite the original contents ioivih the new
results from the shifter.

Scalar Double Shift

Double shifts are similar to single shifts; all shifts are end-off with zero
fill. However, a double shift concatenates two S registers, forming a
128-bit register. The arrangement of the two registers is determined by
the shift direction.

Double shifts always shift data intd. SThe two instructions associated
with double shifts are 05& (double left shift) and 05jk (double right
shift). The double shifts use thandj fields to specify the two operand
registers; the field also specifies the result register. Kfeld of the
instructions specifies the A register used for the shift count.

A double shift uses a 128-bit operand and shifts are end-off with zero fill.
Therefore a shift equal to or greater than,3420Qs) produces a result of
zero. The shift count is determined by bits 0 through 6 of theedister,
providing a shift range of 0 to 14.7 For right double shifts, the shift

count does not need to be entered into the A register in two’s complement;
the hardware performs this function.

Scalar Shift Count Description

HTM-300-0

The AV00O0 option sends the shift count to the SS option. All eight
A-series options check the value of the 64-bit A register to determine if
any bits greater than bit 6 have been set. If any of these bits are set, the

Cray Research Proprietary 43

Scalar Shift

44

CPU Module (CPE1)

result is lost due to overshift. If each A-series option reports that its bits
are zero, the shift count is valid and a signal callk&A is sent to the SS
option.

The AR option sends 7 bits of shift count to the SS option. For both
single and double shifts, the breakdown of the shift count is similar,
except that the double shift has 1 extra bit (bit 6). Refer to Figure 23 for a
breakdown of the shift count.

Figure 23. Shift Count Breakdown

Double
Shift
Only
6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in this document refer to a decimal count.

If the jk field of a left single shift equals gand bits 4, 2, 1, and 0 are set,
the shift values are 16, 4, 2, and 1, respectively. The sum of the shift
values is 23 (16 + 4 + 2 + 1), and the instruction shifts the data lgft 23
places.

The hardware that performs the shifts is the same for both left and right
shifts. (Actually, the physical hardware can perform only left shifts.)
Right shifts are achieved by the way in which the data is entered into the
shifter and by the use of two’s complement values for shift counts.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Scalar Shift

Scalar Left Single Shift

Figure 24is an illustration of how a left single shift is performed for a
054220 instruction (SSi<exp. In the following example, the contents of
S2 (data bit 10 set) are shifted I12@g places (16y), and the result is
returned to S2.

Figure 24. Scalar Left Single Shift

S2= Bit 10

Scalar Shift Functional Unit

Bit 10 -
/ Shift S2 16,9
places to the left,

Bit moving bit 10 to
26 bit position 26

> Bit 26 S2 Final Result

HTM-300-0 Cray Research Proprietary 45

Scalar Shift CPU Module (CPE1)

Scalar Right Single Shift

Figure 25 illustrates how a right single shift is performed using left shifts
and a two’s complement shift count. This example uses a 055254
instruction ($>S exp that shifts $right exp = 100 4k places to &

In this example, data bit 45 shifts to the righg 220,0) places. Notice
that thejk field of the instruction 055254 containsgb#vhich is the two’s
complement of 24 causing S2 to be shifted to the lefgfaces to set bit
25 of the result.

Figure 25. Scalar Right Single Shift

S2= Bit 45

Scalar Shift Functional Unit

Bit 63 0 63 0

63—
: @ Bit 45 -
[

» S2 = Bit 25

NOTE: Itis the programmer’s responsibility to perform the two’s
complement of the shift count and supply that value to the
functional unit.

46 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Scalar Shift

Scalar Left Double Shift

Double shifts are similar to single shifts except that they concatenate two
64-bit registers to form a value. Figure 26 illustrates a left double shift
using a 056123 instructioni(S§ < AK). In this example, S {(Fand ($)

shift left (Ak) places to 5 Ak = A3 = 4G (32;9). Initially, bit 30 is set in

S1, and bit 10 is set in S2. During a left double shift, the content of S
moves into § The two registers are concatenated as illustrated, with S

ahead of
Figure 26. Scalar Left Double Shift
S2(S) = Bit 10
S1(Si) = Bit 30
A3 = 40 — Shift Control

Scalar Shift Functional Unit

Si (S1) g Sj (S2)]

Bit . Bit .
<62 Bit 30 <41> Bit 10

| Shift 32 | |Shift32 I

»| Bit 62 = S1 Final Result

Shifting S and $ to the left 32 places puts bit 30 of S1 at bit position 62
and bit 10 of S2 at bit position 41. Bit 41 of S2 does not enter the result
register S1 and is lost. The result bit (bit 62) is then sent tol {&1p
register. The content of registgr(S2) remains unchanged.

HTM-300-0 Cray Research Proprietary 47

Scalar Shift

CPU Module (CPE1)

Scalar Right Double Shift

S1=

S2=

A3 =

A 057k instruction (35, S > AK) shifts ($) and ($) right (Ak) places to
Si. Figure 27 illustrates a 057123 instruction with the indicated
parameters.

Figure 27. Scalar Right Double Shift

Bit 20

Bit 40

60 — Shift Control

Scalar Shift Functional Unit

Sj (S2) Si (S1)
<" ,

. Bit .
| @ Bit 40 5g Bit 20

______]
T Shift 80 Shift 80

48

»| Bit 56 = S1 Final Result

To right shift $ and $ using left shift operations, the content of A3, which
currently equals 6(48;0) is converted into a two’s complemented value.
The two’s complement of @ds 12@ (or 1010009 or 80,g). The required
shift can be accomplished through successive shifts@fe&d®l 160 A

left shift of 80,9 moves bit 40 in S2 to bit position 56 inside the dotted box
and bit 20 of S1 to bit position 36 of S2. Because bit 36 does not enter
the intermediate result register (indicated by the dotted box), it is lost, and
bit 56 is sent to the final result register (S1).

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Scalar Shift

Left Single-shift Instruction

Referto Figure 28 while reading the following two examples of the scalar
left single-shift instruction:

e 053jk, results to SO
* 054k, results to S1

Figure 28. Example of a Scalar Left Single-shift Instruction

Bits | 2 1 0] 2 1 0 |=jkField

32 16 8 4 2 1 = Shift Values Decimal

Example 1: Write the instruction that shifts S2 lefi@places, and
places the results into SO.

Steps: 1. 05k — left shift instruction result goes to SO
2. jk field— shift count 2@y = 24 = jk field
3. 052224 —final instruction

Example 2: Write the instruction that shifts S4 lefigplaces, and
places the results into S4.

Steps: 1. 054k — left shift instruction result goes to S
2. jk field— shift count 3pg =43

3. 054443 —final instruction

HTM-300-0 Cray Research Proprietary 49

Scalar Shift

CPU Module (CPE1)

Right Single-shift Instruction

50

The right single-shift count is thk field of the instruction, which must be
either in the two’s complement form or equal to g60nus the number of

places to right shift. Two examples of a scalar right single-shift
instruction follow:

* 053jk, results to SO
* 055jk, resultsto

Example 1. Write the instruction that shifts S5 rightgliflaces, and
places the results into SO.

Steps: 1. 05K — right shift instruction results to SO
2. jk field — shift count in two’s complement equals; 66
100=12% = 001010

one’s complement = 110101
+1

two’s complement = 110110 = §6

3. 053566 — final instruction

Example 2: Write the instruction to shift S7 right;g@laces.

Steps: 1. 058k right shift instruction results toi S
2. jk field — shift count in two’s complement equals
2810= 34 =011100

one’s complement = 100011
+1

two’s complement = 100100 = ¢4

or 10Q — 34; = 44

3. 055744 —final instruction

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Scalar Shift

Left Double-shift Instruction

Referto Figure 29 while reading the following example of a scalar left
double-shift instruction: 05f, Shift 3 and $ left Ak places to B

Figure 29. Example of a Scalar Register Left Double-shift Instruction

056ijk Shift Siand Sjleft by Ak places to Si

Si sj

e

Si

Ak contains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any of bits 7 through 63 are set, the results of Si are zeroed.

Bits | 63 716 5 4 3 2 1 0]|=Ak

Zero Results 64 32 16 8 4 2 1 =Valid Decimal Shifts

On a left double shift, the contents of Sj are always shifted into Si. This shift is done
inside the scalar shift functional unit.

Example 1: Write the instruction that left double shifts S2 and $3 6
places, and places the result into S2.

Step 1. 056234 — final instruction, where (A4) =400

NOTE: A circular left shift can be achieved by issuing a 056 instruc
with i =j and (A) < 64.

HTM-300-0 Cray Research Proprietary 51

Scalar Shift CPU Module (CPE1)

Right Double-shift Instruction

Referto Figure 30 while reading the following example of a scalar right
double-shift instruction.

Figure 30. Example of a Scalar Register Right Double-shift Instruction

057jjk Shift Sjand Siright by Ak places to Si

Sj Si

Si

Bits | 63 716 5 4 3 2 1 O

Zero Results

Y

Two’s Complement = During Right Double Shift

64 32 16 8 4 2 1 =Valid Decimal Shifts

Ak contains the shift count, and address (A) register bits O through 7
contain the valid shift counts. If any bit in the range from bit 7 through
bit 63 is set, the result from & zeroed. Also, the hardware generates the
two’s complement of the shift count on th& Begister bits O through 7 for

a right double shift.

During a right double shift, the contents ¢faBe always shifted intoi S
This operation and the two’s complement of the shift count occur inside
the scalar shift functional unit.

Example 1: Write an instruction to right double shift S4 and S5
320 places, and place the result into S4.

057454 — final instruction, where (A4) =40
hardware generates a shift count of d#Bide the
functional unit.

NOTE: A circular right shift can be effected by issuing a 057 instruction
with i =j and (A) < 64.

52 Cray Research Proprietary HTM-300-0

0-00g-W1H

Arelandold yoreasay Aeid

€9

OAA — OAP SiBits 0 — 15

AV000

Bits0 -7

OBA — OBP SiBits 16 — 31

AWO000

Bits 8 — 15

OCA - OCP SiBits 32 — 47

ODA — ODP S Bits 48 — 63

AWO001

Bits 16 — 23

OHA — OHG Ak Shift Count

OHH No Ak Overflow

> (VS)

AV000
Bits0 -7
AW000
SS000
SiResult
Bits 8 — 15 Sj/SiBits 0 — 15 IAA—IAP
AWOO0L Sj/Si Bits 16 — 31 IBA—IBP _
SjiSi Bits 32 — 47 ica-icp | /" sjDaa
Bits 16 — 23 > :
SjiSi Bits 48 — 63 IDA—IDP _ SiData
AW002 - '}
Bits 24 — 31
Go 056ijk/0571jk IED
AX000 (JB0OL) o >
ho Bit
1= Right Shift) IEE
Bits 32 — 39 (Icoop) =R) -
AX001
Ak Shift Count _
(AV000) meount HAZTIHH 1 | Shift count (AK)
Bits 40 — 47
AK=0 IIA—IIG Z
7000 (AV, AW, AX, AY) | (A 7-63=0
Bits 48 — 55 Scalar Shift
AY001
Bits 56 — 63

Figure 31. Scalar Shift

(VS)

AWO002

Bits 24 — 31

AX000

Bits 32 — 39

AX001

Bits 40 — 47

AY000

Bits 48 — 55

AY001

Bits 56 — 63

(T3d42) 8inpow Ndo

YIS 1efeos

ADDRESS MULTIPLY

54

The AN option performs the address multiply operation (ajk32
instruction). The AN option also distributes (fans out) thewd Ak
operands used for other A register operations.

In Triton mode, two 48-bit operands are presented to the functional unit to
produce a 48-bit result. The AN option then does a sign extension to bit
63 and a leading zero count on the operands to determine whether the
result will fit within 48 bits. If the result exceeds 48 bits, the 64-bit
incompatibility signal sets, which sets the Address Multiply Interrupt

(AMI) flag in the exchange package.

The AN option does not use a standard pyramid formation multiply
algorithm. Instead, it uses a variation of the Booth Recode algorithm.
This algorithm enables the address multiply unit to reside on a single
option.

Half of the recode groups form as soon as the data arrives at the AN
option (namely, those groups that are centered on bits 0, 4, 8, 12, 16, etc).
One clock period later, using the same logic, those groups centered on bits
2, 6, 10, and 14 are recoded. This method enables a multiply operation to
execute on about one-fourth of the logic used in a standard pyramid
multiply. Because this method holds thke @perand for 2 clock periods,

the AN operand can accept data only every other clock period. Refer to
Figure 32 for an illustration of the AN option.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Address Multiply

Figure 32. AN Option

IHA — IHB _ Go 032

OAA — OBV A Register Data

IAA - ICP Aj
. - OIA—-OIH Sign Extend Bits
A Registers Multiply >

IDA — IFP Ak

OCA - ODP,
OEA - OFP
Fanout o
AkBits 0 —7to VL _
OGA - OGT,
IGF - 1GJ g Data OHA — OHP

Multiply Algorithm

The multiplier is partitioned into 3-bit recode groups centered on the even
bits (0 to 46); a forced zero is added to the first recode group. The recode
groups are formed as shown in Table 12. The following subsections
provide examples of standard and Booth Recode multiplication.

Table 12. Recode Groups

Odd Bit Even Bit i-1 Recode Value Recode Product

0 0 0 +0 0
0 0 1 +1 X47 — X0
0 1 0 +1 X47 — X0
0 1 1 +2 2(X47 — X0)
1 0 0 -2 {2(X47 — X0y +1
1 0 1 -1 (X47 — X0)'+1
1 1 0 -1 (X47 — X0)'+1
1 1 1 -0 0

i— 1 = Bit to right of recode X47 — X0 = Multiplicand

group

HTM-300-0 Cray Research Proprietary 55

Address Multiply CPU Module (CPE1)

Standard Binary Multiplication

Referto the following example of standard binary multiplication.

000011 (3)
011101 (35)
000011
000000
000011
000011
000011
000000
0000001010111

Booth Recode Multiplication

Refer to the following example of Booth Recode multiplication.

000011 (3)
011101 (35)
000000000011
11111111010
00000110
1 000001010111

In the previous example, the multiplier is recoded into bit groups centered
on the even bit. A forced zero is appended to the first recode group.

As shown in Table 12, the first recode of the multiplier, bits 1 and 0 and
the forced zero, produces a recode value of 010, or +1. The multiplicand
is brought down to form the first partial product.

The second recode, bits 3, and 2, and 1, produces a recode value of =1. In
this case, the multiplicand is two’s complemented and left shifted 1 place.

The final recode, bits 5, 4, and 3 produces a recode value of +2. The
multiplicand is left shifted 1 place.

56 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Address Multiply

This page intentionally left blank.

HTM-300-0 Cray Research Proprietary 57

INTEGER MULTIPLY

Bits 63

The AM option performs the scalar vector integer multiply operation
(166jk). In Triton mode, the AA option receiveg &d \k operands and
sends a 40-bit output ta Yor VL length. In C90 mode, the AA option
produces a 32-bit result. To produce the 32 bit result,jtopeSand must
be left shifted 3} places, and theRoperand must be left shifted by,16
places before executing the 1jg@nstruction. (Refer to Figure 33.)

Figure 33. C90 Integer Multiply Mode

48 47 32 31 16 15 0

C90 32-bit Mode

Bits 63

Bits 63

48 47 32 31 16 15 0

Sj bits 0 through 31 are gated into bit
positions 32 through 63 for Triton mode.

48 47 32 31 16 15 0

C90 32-bit Mode

Bits 63

58

48 47 32 31 16 15 0

Vk bits 0 through 31 are gated into bit
positions 15 through 47 for C90 mode.

Cray Research Proprietary HTM-300-0

CPU

Integer Multiply

The AM option, like the AN option (refer to the “Address Multiply”
section), also uses the Booth Recode algorithm for the multiply operation.
The AN option performs a leading zero count on the operands to
determine whether the results will fit within 40 bit positions. The input
operands pass through the floating-point multiply unit before they arrive at
the AM option, as shown in Figure 34.

Figure 34. AM Option Inputs

AM
OGA-OGT §SjBits0-19 IAA — IAT
NB OGU—OHN SjBits20-39 IBA—IBT
OIA — OIF Vk Bits 42 - 47 1GC —IGH_
OJA Go V 166 IEC _ ViBits 0 — 25 to
OAA, OAZ Result Register
NA ODA-ODH SjBits40-47 IFA-IFH ViBits 26 — 51 to
OEA—OET VkBits0-19 ICA—ICT OBA, OBZ Result Register
OEU - OFT VkBIts 20—-39 IDA - IDT
OHQ, OHR 40-bit Mode
OFO -OFP VkBIits40-41 IGA-IGB o
NC s
OGA-0GO SjBits48—-62 IFlI—IFW
OHA Valid IED
IC
oYQ Triton Mode IEA
HTM-300-0 Cray Research Proprietary 59

VECTOR REGISTERS

A CRAY T90 series computer system contains eight vector (V) registers,
which are designated VO through V7. Each register containg 128
elements; each element is;gbits wide. The 128, elements are divided
into two pipes of even and odd elements.

The vector registers have their own integer functional units, which include
vector add, vector logical 1, vector logical 2, vector shift, vector
population, vector leading zero count, and 32-bit integer multiphe

vector registers share the floating-point functional units with the scalar
registers. These floating-point functional units include floating-point add,
floating-point multiply, floating-point divide/square root and bit matrix
multiply.

The vector registers can send data to memory or load data from memory
The number of elements sent to a functional unit (including memory)
depends on the value contained in the vector length (VL) regikter

element of a vector register can be loaded into a scalar register, and any
scalar register can be loaded into any element of a vector register by using
the 076k and 077k instructions.

The vector registers use 1-parcel instructions. In a 1-parcel instruction,
theghfield contains the instruction decode, andijkdield contains the
operands and destination. Tgtefield of the instruction indicates the
functional unit needed, and tljk field indicates the vector registers used.
Usually, thek field of the instruction selects the vector operand registers,
VO through V7. The field of the instruction indicates eithey & Vj,
depending on the instruction. Theeld of the instruction points to the
destination or result register.

When preceded by a 005400 instruction, some vector instructions execute
differently. For example, an instruction sequence of 005403 ues,

a left shift of \j VO places to Vis performed. Without the preceding
005400 instruction, a 150 instruction performs a left shift ofj\AO

places to V.

60 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

HTM-300-0

Vector Registers

The vector registers in the CRAY T90 series system contain a dual set of
functional unit pipes. Each functional unit has an identical twin functional
unit. For example, the vector add functional unit is duplicated so that all
the even elements go to one of the vector add functional units, while all
the odd elements go to the other vector add functional unit. The even and
odd elements are sent to the functional unit simultaneously, and the two
results are loaded back into the result vector register simultaneously.

If the vector add functional unit fails in the even elements, the cause of the
failure is the pipe 0 vector add. Pipe 1 handles the odd vector elements. If
the vector length register is an even value, the results are written into the
vector register simultaneously using pipe 0 and pipe 1, until the last
element specified by the vector length is used. Refer to Table 13 for a list
of the vector register options.

Table 13. Vector Register Options

Option Type | Number Used Description
Provide read/write address and control
(VBO pipe 0)
VB 2 (VB1 pipe 1)

Vector length register
Functional unit release

Pipe control
VE 4 (VEO,VEL1 for pipe 0)
(VE2,VES3 for pipe 1)

Data multiplexing (VNO — VN7 pipe 0)
(VN8 — VN15 pipe 1)

Vector add functional unit

Vector logical functional unit

VN 16

Data multiplexing and storage
VQ 16 (VQO — VQY7 pipe 0)
(VQ8 — VQ15 pipe 1)

Cray Research Proprietary 61

Vector Registers CPU Module (CPE1)

VB Option

The two VB options on a CPU module provide vector read and write
control. VBO provides address and control for the even elements of the
vector registers, and VB1 provides the address and control for the odd
elements. Both VB options have the following common functions:

* \ector read and write address
* \ector read and write length
e Vector chaining control

Each VB option also has the following unique features:
* VBO
* Release vectors for write operations

* Functional unit release for:
Vector logical #1
Vector shift
Vector floating-point multiply
Vector divide

 Even-element addressing

* Release vectors for read operations

* Functional unit release for:
Vector logical #2
Vector adder
Vector floating-point add
Vector matrix multiply

* Odd-element addressing

Vector Length Register

Thevector length register is located on the VB option. There are two VB
options, one for each pipe. Both vector length registers are loaded with
Ak data bits 00 through 06 from the AVO0O option. These bits are needed
to form values from 0 to 17 If a value of all O’s is entered, the VL

register is forced to a value of 200

62 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

Chaining

VE Option

Vector Registers

A vector length value enters a countdown (decrementing) reghter

bit O is removed (pseudo right shifted so that a VL value of 200 becomes a
value of 100 in the active register) because each pipe can handle only 100
elements. Every time VL decrements, it generates

the Advance Addresssignal. The VB option also checks VL bit O to
determine whether the vector length is odd or even in order to enable
either pipe 0 for odd vector lengths or pipe 1 for even vector lengths, on
the last operation.

If Vi, j, orkis reserved as a destination register and the next instruction
tries to use the same vector register as an operand, the next instruction is
allowed to issue. This is referred to as chaining.

Chain slot time is the time required for the result of a previous instruction
to be presented to the inputs on the VQ options. If another instruction is
waiting for these results or is addressing the same element, the VQ option
passes the results directly to the read-out register. The VB option controls
vector chaining by controlling the issuing of e Write signal.

Chaining to common memory read operations occurs on 8-word
boundaries. Vector control waits for 8 contiguous words to become valid
before the read of that group is allowed.

HTM-300-0

Thereare four VE options on the CP module. VEO and VE1 control
fanout for pipe 0; VE2 and VE3 control fanout for pipe 1. The VE
options perform the following functions.

* Instruction parcel data fanout to VQ options

* Vector add carry and enable summations and bit toggles
* \ector register parity error information

* Vector functional unit delay chains

* Vector functional unit data valids

* Vkaddress buffering for common memory

* Release of Wfor write operations

Cray Research Proprietary 63

Vector Registers

CPU Module (CPE1)

VN Option
The VN options perform write data multiplexing on an 8-bit slice of all
functional unit data. There are 16 VN options. VNOOO to VNOO7 are for
even-element steering, and VNOO8 to VNO15 are for odd-element
steering.
The VN option performs the following functions:
* Read and write data steering
* \ector read-out control
* Vector add functional unit
* Both vector logical functional units
VQ Option
Sixteen VN and VQ options reside on the CP module as illustrated in
Table 14. Each option performs read data steering and vector data storage.
The read data steering is done on 4-bit slices. The contents of the selected
vector register are gated to one of the following destinations:
* Floating-point add
* Floating-point multiply
* Reciprocal, pop, parity, LZ
e Shift
e Common memory port A
¢« Common memory port B
« Common memory port C
¢ Common memory write data
* V data to scalar
« Bit matrix multiply
The VN and VQ options contain four high-speed register (HSR) storage
arrays that are 18 bits wide by 64 elements deep. Sixteen of the bits are
data and 2 bits are for parity. VQO0O0O through VQOO7 store vector data for
the even elements (pipe 0), and VQO008 through VQO015 store data for the
odd elements (pipe 1).
NOTE: VN/VQ options 12 through 15 do not handle exchange data.
64 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

Vector Registers

Table 14. VN/VQ Data Steering

Option Pipe 0/Pipe 1

VN3/11 | VQ3/11 | VN2/10 | VQ2/10 | VN1/9 | VQ1/9 | VNO/8 | VQO/8

Read Bits

28-31 | 24-27 | 20-23 |16-19|12-15 | 8-11 4-7 0-3

Write Bits

24 -31 - 16 - 23 - 8-15 - 0-7 -

Exchange Bits

60-63 | 55-59 | 52 -55 |48—-51]|44—-47 [40-43 | 36-39 |32-35

Option Pipe 0/Pipe 1

VN7/15 | VQ7/15 | VN6/14 | VQ6/14 | VN5/13 | VQ5/13 | VN4/12 | VQ4/12

Read Bits

60—-63 | 56 -59 | 52 -55 |48 -51]|44—-47 [40-43 | 36-39 |32-35

Write Bits

56 — 63 - 48 — 55 - 40 - 47 - 32-39 -

Exchange Bits

28—-31 | 24-27 | 20-23 |16-19|12-15 | 8-11 4-7 0-3

Each VQ option has an input that is used to force parity errors into the
HSR arrays. The maintenance channel provides the following two
features:

* force RAM parity error internal (code 100)
e force RAM parity error external (code 140)

Through the use of the maintenance channel, a specific loop controller and
a specific chip can be given a maintenance function such as force parity
error.

Write Data Steering

HTM-300-0

The VN options receive thenstruction field from the VE options. This
field performs internal gating of data to the correct regisiéei field

and the instruction decode enable separate write paths for each vector.
This path stays selected until a new instruction issue changes it. All the
write paths are separate and all can be active at the same time. Refer to
Figure 35 for an illustration of the write data path.

Cray Research Proprietary 65

Vector Registers CPU Module (CPE1)

Figure 35. Write Data Path

V7 VQO007
V6 VQO006
Even Element
Storage V5 VQ005
V4 VQO004
V3 VQO003
V2 VQ002
~ Q
VNOOO VNO004
\Val VQO001
Bits Bits VO VQO000
0-7 32-39
RAM 0O RAM 1
VNOO1 VNOO5 . .
Bits Bits
0-15 16 - 31
Bits Bits
Elements| |Elements
8-15 40 - 47 0—62 0—62
VNO002 VNOO06 RAM 2 RAM 3
Bits Bits
Bits Bits 32-47 48 — 63
16 — 23 48 — 55
Elements| |Elements v7 vQo15
0-62 0-62
VNO0O03 VNO0O07 V6 vQo14
_ _ V5 VQO013
Bits Bits
24 - 31 56 — 63 V4 VOO012
J Q
V3 VQO011
\
VNO0O08 VNO012 V2 VQ010
Bits Bits Vi VQO009
0-7 32-39
VO VQO008
VNO009 VNO13
RAM 0 RAM 1
: . Bits Bits
Bits Bits
8-15 40 - 47 0-15 1 (16-31
Elements| |Elements
VNO10 VNO14 1-63 1-63
. . RAM 2 RAM 3
Bits Bits Bits Bits
16 - 23 48 — 55
32-47 48 -63 Odd Element
Elements| |Elements Storage
VNO11 VNO15 1-63 1-63 g
Bits Bits
24 -31 56 — 63
/
66 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Vector Registers

Read Data Steering

The VN and the VQ options are responsible for read data steering. Each
VN and VQ option steers 4 bits for all eight vector registers to one of the
following destinations:

* Floating-point add

* Floating-point multiply

* Reciprocal, pop, parity, leading zero
e Shift

e Common memory port A, B, C

* V data to scalar

The VN and VQ options receive thandk fields of the instruction from

the VE option along with the instruction; this enables one of eight vector
paths to which data is steered. These paths stay selected until another
instruction changes them. All the read paths are separate and all can be
active at the same time. Figure 36 shows the read data path for pipe 0 and
pipe 1 (even elements), and Figure 37 shows the read data path for pipe O
and pipe 1 (odd elements). Also refer to the following diagrams for
additional related vector register information:

* Figure 38 — vector register write block diagram (pipe 0)

* Figure 39 — vectors 0 through 3 pipe 0/1 read data path

* Figure 40 — vectors 4 through 7 pipe 0/1 read data path

* Figure 41 — vectors 0 through 3 pipe 0/1 write data path

* Figure 42 — vectors 4 through 7 pipe 0/1 write data path

e Figure 43 — vector register decode bit fanout (pipe 0 and 1 path 1)
* Figure 44 — vector register decode bit fanout (pipe 0 and 1 path 2)
* Figure 45 — S register to vectors

* Figure 46 — memory data to vectors (even elements)

* Figure 47 — memory data to vectors (odd elements)

HTM-300-0 Cray Research Proprietary 67

Vector Registers CPU Module (CPE1)

Figure 36. Read Data Path for Pipe 0, Even Elements

VQ007 Bits 56 — 59

VQO006 Bits 48 — 51
VQO007 Vector 7
VQO006 Vector 6 VQO005 Bits40-43
VQO005 Vector 5 -
VQO004 Bits32-35 |
VQO004 Vector 4
VQO003 Vector 3 VQO003 Bits 24 — 27 |
vQooz Vector 2 VQOO02 Bits 16 — 19 ||
VQO001 Vector 1
VQ001 Bits8-11
VQO000 Vector 0 —
VQO000 Bits 0 -3 |
Array O Array 1
Bits Bits
0-15 16 - 31

Elements 0 — 62

Array 2 Array 3
Bits Bits _—
32-47 48 - 63

VNOOO Bits 4 -7

Elements 0 — 62

VNOO1 Bits12-15

VN002 Bits 20 — 23

VNOO3 Bits 28 — 31

VNO0O4 Bits 36 — 39

VNOO5 Bits 44 — 47

VNOO6 Bits 52 — 55

VNOO7 Bits 60 — 63

68 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Vector Registers
Figure 37. Read Data Path for Pipe 1, Odd Elements
VQO15 Bits 56 — 59
VQO014 Bits 48 —51
VQO015 Vector 7
VQO014 Vector 6 VQO013 Bits 40 —43
VQO013 Vector 5 -
VQO012 Bits 32 -35 |
VQO012 Vector 4
VQO11 Vector 3 VQO11l Bits 24 —27 -
VQo10 Vector 2 VQO10 Bits 16 — 19 H
VQO009 Vector 1
VQO09 Bits 8 — 11
VQO008 Vector 0 [
VQ008 Bits0-3 [
Array O Array 1
Bits Bits
0-15 16 - 31
Elements 1 — 63
Array 2 Array 3
Bits Bits _—
3247 48 — 63
VNO08 Bits4—7 |
Elements 1 — 63
VNOO9 Bits 12 — 15 |
VNO10 Bits 20 — 23]
VNO11 Bits 28 — 31]
VNO12 Bits 36 — 39]
VNO13 Bits 44 — 47
VNO14 Bits 52 — 55
VNO15 Bits 60 — 63
HTM-300-0 Cray Research Proprietary 69

CPU Module (CPE1)

Vector Registers

Vector O Vector 1 Vector 2 Vector 3
IEA— IEE — IEl - IEM —
VQ000 IED _ | vQooo/s VQ001 IEH _ | vQooo/s VQ002 IEL _| vQooors VQ003 IEP _ | vQooors
VQO008 OAA - ICA— VQO009 OAA— ICE — VQO10 OAA - ICl— VQO12 OAA - ICM —
OAD Bits 0 — 3 ICD _ | vNO0OO/8 OAD Bits 0 —3 ICH | VvNO000/8 OAD Bits 0 — 3 ICL | VvNO00/8 OAD Bits 0 — 3 ICP | vNOOO/8
OAE - IEA— OAE - IEE — OAE — IEl - OAE - IEM —
OAH Bits4—7 IED _ VMoo0/8 OAH Bits4—7 IEH _ VNO0O/8 OAH Bits4-7 IEL _ VNO0O/8 OAH Bits4a—7 IEP _ VN00O/8
IEA— IEE — IEl - IEM —
IED _| vQ001/9 IEH _ | vQo001/9 IEL | vQoo1/9 IEP__ | vQo01/9
OAI — ICA— OAI — ICE — OAIl - ICl — OAIl - ICM —
OAL Bits 8 — 11 ICD - VNO0O01/9 OAL Bits 8 — 11 ICH - VNO0O01/9 OAL Bits 8 — 11 ICL - VNO001/9 OAL Bits 8 — 11 ICP - VNO001/9
OAM — IEA- OAM — IEE — OAM — IEl - OAM — IEM —
OAP Bits12-15 IED _[VNOO9 OAP Bits12-15 IEH _[VNOO9 OAP Bits12-15 IEL _[VNOOS OAP _ Bits12-15 IEp _|VNOOO
IEA- IEE — IEl - IEM —
IED _| vQoo2/10 IEH _ | vQoo2/10 IEL__|vqoo2/10 IEP | vQoo2/10
OBA - ICA— OBA - ICE — OBA - ICl — OBA - ICM —
OBD Bits 16 — 19| ICD »| vNo02/10 OBD Bits 16 — 19| ICH »| vNO02/10 OBD Bits 16 —19] ICL »| vNO002/10 OBD Bits 16 — 19| ICP »| vNo02/10
OBE - IEA- OBE - IEE — OBE - IEl - OBE - IEM —
OBH Bits20-23 IED _|VN002/10 OBH Bits20—23 IEH _|VN002/10 OBH Bits20-23 IEL _|VN002/10 OBH Bits20-23 IEP _|VN0O02/10
IEA- IEE — IEl - IEM —
IED _I'vQooa/11 IEH _[voooz1 IEL__['vQoo3/11 IEP__['voooa/11
OBI - ICA— OBI - ICE — OBI - ICl - OBI - ICM —
OBL__ Bits24-27] 1CD | oo, OBL__ Bits24—-27) ICH |\ oo OBL__ Bits24—27) ICL | o000 OBL__ Bits24-27 ICP | 0000
OBM — IEA— OBM — IEE — OBM — = OBM — IEM —
OBP Bits28-31 IED _| VN003/11 OBP Bits28-31 IEH _|VN0O03/11 OBP Bits28-31 IEL _|VN003/11 OBP Bits28-31 IEP _|VN003/11
IEA - IEE — IEl - IEM —
IED _ | vQo04/12 IEH _ [vQoo4/12 IEL | vQoo4/12 IEP__ | vQoo04/12
OCA-— ICA - OCA-— ICE — OCA- ICI — OCA- ICM —
OCD Bits 32 -35] ICD _ | vNO004/12 OCD Bits 32 -35] ICH | vN004/12 OCD Bits 32 -35) ICL | vN0O4/12 OCD Bits 32 - 35] ICP _ | vNOO4/12
OCE - IEA— OCE - IEE — OCE - IEIl - OCE — IEM —
OCH Bits36-39 IED _|VN004/12 OCH _ Bits36-39 IEH _[VNO04/12 OCH Bits36-39 IEL _|VN004/12 OCH _ Bits36—39 IEP | VNO04/12
IEA— IEE — IEl - IEM —
IED _[VQoo5/13 IEH _/Qoos/13 IEL__[VQoos/13 IEP _[VQoo5/13
ocl - ICA - ocl - ICE — ocCl - ICI — ocCl - ICM —
OCL__ Bits40-43] 1CD |\ oco OCL__ Bits40-43] ICH [\ 0ocis OCL__ Bits40-43] ICL |\, 00513 OCL__ Bits40-43[ICP [0 s
OCM — IEA— OCM — IEE — OCM — IEl - OCM — IEM —
OCP Bits44—47 IED | VN005/13 OCP Bits44—47 IEH _|VNO005/13 ocP Bits 44 —47 IEL _| VN005/13 ocP Bits 44 — 47 |IEP | VN005/13
IEA— IEE — IEl - IEM —
IED _ | vQoo6/14 IEH _ | vQoo6/14 IEL _ | vQooer14 IEP _ | vQoo6/14
ODA-— ICA - ODA-— ICE — ODA - ICI — ODA- ICM —
OoDD Bits 48 —51] ICD _ | vNOO6/14 OoDD Bits 48 —51] ICH | vNOO6/14 ODD Bits 48 — 51| ICL | vN0OO6/14 OoDbD Bits 48 —51] ICP _ | vNOO6/14
ODE — IEA— ODE — IEE — ODE — IEl— ODE — IEM —
ODH pits52-55 IED | VNOOG/L4 ODH Bits52—55 IEH | VNOOG/L4 ODH Bis52—55 IEL | /NOO6/14 ODH Bis52-55 IEp | /NO0®/4
IEA— IEE — IEl - IEM —
IED _| vQo07/15 IEH _| vQoo7/15 IEL__ | vQoo7/15 IEP__ | vQoo7/15
oDI - ICA— oDI - ICE — oDl - ICl - oDl - ICM —
ODL _ Bits 5659 ICD _|\noo7/15 ODL _ Bits56-59] ICH _|\noo7/15 ODL__ Bits56-59) ICL _|\Noo7/15 ODL _ Bits56-59) ICP [\Noo7/15
ODM — IEA- y ODM — IEE — . ODM — IEl - y ODM — IEM — .
ODP Bits60-63 IED _[VNOO7/15 ODP Bits 6063 IEH _|VNOO7/15 ODP Bits60-63 IEL _[|VYNOO7/15 ODP Bits60-63 IEP | VNOO7/15
Figure 38. Vectors 0 through 3, Pipe 0/1, Read Data Path
HTM-300-0 Cray Research Proprietary 71

CPU Module (CPE1) Vector Registers
Vector 4 Vector 5 Vector 6 Vector 7
IDA — IDE — IDI - IDM —
VQO04 IDD | VQO000/8 VQO05 IDH | vQO000/8 VQO06 IDL | VQO000/8 VQ007 IDP | VQO000/8
VQO012 OAA - IFA = VvQO013 OAA - IFE — VQO14 OAA - IFI - VQO15 OAA - IFM —
OAD Bits 0 — 3 IFD | VNOOO/8 OAD Bits0—3 | IFH | VN0O0O/8 OAD Bits0—3 | IFL | VNOOO/8 OAD Bits0—3 | IFP | VNOOO/8
OAE — IDA — OAE — IDE — OAE — IDI— OAE — IDM —
OAH Bits4—7 IDD _ VN0OO/8 OAH Bits4—7 IDH | NOOO/8 OAH Bits4—7 IDL _ VN0oO/8 OAH Bits4—7 IDP VN0oO/8
IDA — IDE — IDI - IDM —
IBD | vQoo1/9 IDH _ | voo01/9 IBL__| vQoo1/9 IDP__ | vQoo1/9
OAIl - IFA — OAIl - IFE — OAl - IFl - OAIl - IFM —
OAL Bits 8 — 11 IFD | VNOO1/9 OAL Bits 8 — 11 IFH ~ 1 VNOO1/9 OAL Bits 8 — 11 IFL | VNOO1/9 OAL Bits 8 — 11 IFP | VNOO1/9
OAM — IDA — OAM — IDE — OAM — IDI - OAM — IDM —
OAP Bits12-15 DD | YNOO/® OAP Bits12-15 IpH | VYNOOL® OAP Bits12-15 DL | YNOO/® OAP Bits12-15 pp | VNOOL/®
IDA — IDE — IDI - IDM —
IBD _I'vQo02/10 IDH ' vQ002/10 IBL__I'vQo02/10 IDP__ I vQoo2/10
OBA - IFA — OBA- IFE — OBA- IFl - OBA - IFM —
OBD _Bits16-19) IFD _|\\oo2/10 OBD _ Bits 16—19] IFH _|\/\oo2/10 OBD _ Bits16-19] IFL _|\no02/10 OBD _ Bits16-19] IFP I\ 00010
OBE — IDA — OBE — IDE — OBE — IDI - OBE — IDM —
OBH Bits20-23 IDD _| VN002/10 OBH Bits20—23 IDH _|VN002/10 OBH Bits20-23 IDL _|VN002/10 OBH Bits20—23 [DP _ | VN002/10
IDA — IDE — IDI - IDM —
IDD _I'vooz/i1 IDH _TvQoo3/11 IDL _'voooz/11 IDP _['voooa/it
OBI - IFA — OBI - IFE — OBl - IFl - OBI - IFM —
OBL _Bits24-27) IFD |\ \0anq OBL _ Bits24—270 IFH |\ /1021 OBL _ Bits24-27] IFL | o000y OBL _ Bits24-27 IFP I\ 0000
OBM — IDA — OBM — IDE — OBM — IDI - OBM — IDM —
OBP Bits28—-31 IDD | VN003/11 OBP Bits28-31 IDH |VNO003/11 OBP Bits28—31 IDL | VN003/11 OBP Bits28-31 IDP | VN003/11
IDA — IDE — IDI - IDM —
IDD _ | vQ004/12 IDH _ | vQ004/12 IDL | vQ004/12 IDP__ | vQ004/12
OCA-— IFA — OCA- IFE — OCA-— IFl— OCA- IFM —
OCD Bits 32 — 35 IFD | vNOO4/12 OCD Bits 32 - 35| IFH VNO004/12 OCD Bits 32 -35] IFL | vNOO4/12 OCD Bits 32 - 35] IFP | vNOO4/12
OCE - IDA — OCE - IDE — OCE - IDI - OCE - IDM —
OCH Bits36-39 (DD | YNOO4/12 OCH Bits36-39 IDH | VN004/12 OCH Bits36-39 IDL | VN004/12 OCH _ Bits36-39 IDP | VNO004/12
IDA — IDE — IDI - IDM —
IDD _I'vQoos/13 IDH _I'vQoos/13 IBL _'vQoos/13 IDP__[vQoos/13
ocl - IFA — ocCl - IFE — ocClI - IFl - ocCl - IFM —
OCL _Bits40-43] IFD |\ 10e13 OCL__ Bits40-430 IFH |\ \ ociis OCL__ Bits40-43] IFL |\ 0osn3 OCL _ Bits40-43) IFP |\ 0ocis
OCM — IDA — OCM — IDE — OCM — IDI — OCM — IDM —
OCP Bits44-47 IDD | vN005/13 OocCpP Bits 44 — 47 IDH | vN005/13 OCP Bits 44 — 47 IDL | vNOO5/13 OocCpP Bits 44 — 47 IDP | vN0OO5/13
IDA — IDE — IDI - IDM —
IDD _ | vQoo6/14 IDH _ | vQo06/14 IDL _ | vQoo6/14 IDP _ | vQo06/14
ODA - IFA — ODA- IFE - ODA - IFl— ODA - IFM —
OoDD Bits 48 — 51 IFD | VNOO6/14 OoDD Bits 48 —51] IFH VNO0O06/14 ODD Bits 48 -51] IFL | vN0O6/14 OoDD Bits 48 —51] IFP | vNOO06/14
ODE — IDA — ODE - IDE — ODE - IDI - ODE - IDM —
ODH _ Bits52-55 (DD _| YNOOO/4 ODH _ Bits52-55 IDH [VN0 ODH _ Bits52-55 IpL _|VNOO®/14 ODH _ Bits52-55 IDP | YN0OO/14
IDA — IDE — IDI - IDM —
IBD _{ vQ007/15 IDH _ | vQ007/15 IBL__| vQoo7/15 IDP__ | vQoo7/15
oDI - IFA — oDI — IFE — oDI - IFl - oDI — IFM —
ODM — IDA — ODM — IDE — ODM — IDI - ODM — IDM —
ODP Bits60—63 IDD_|VYNOO7/15 ODP Bits 6063 IDH _|VN0OO7/15 ODP Bits 6063 IDL _|VNOO7/15 ODP Bits 6063 IDP | YNOO7/15
Figure 39. Vectors 4 through 7, Pipe 0/1, Read Data Path
HTM-300-0 Cray Research Proprietary 73

CPU Module (CPE1) Vector Registers

Functional Units VNOOO VNO004
Floating-point Add Bits Bits
Floating-point 0-7 32 _ 39
Multiply V Write Data IAA, IBX
Vector Shift IGA, IGH Bits Bits
BMM . > 8-15 40 - 47
Integer Multiply A IIH OAA — ODP V Write Data IAA — IDP
- VNO002 VNOO6 2
:) vQ
AV, AW, AX, AY A, IIH Bits Bits VQ]_ —
OEA.OEH > 16-23 | | 48-55 o
Scalar Data IMA, IMH VNOO3 VNOO7 VQO |
IMA. IMD Bits Bits f—
] > 24 -31 56 — 63
CHO00 — CHO014 - —
Common Memory |OIA, OIH IME, IMH —
Data Path 1 = -
CHO001 — CHO015 VB001 I
Common Memory [9!A OIH VB000
Data Path 2
IHA, IH _ - _
AV000 OPA, OPG __ AkData , IHG :I VL Registerl O_I-ON V Write Address 1JA — 1JF
VQO00 — VQO07 > .
Vector Select |OYI, OYP OAQ Go Write 1JH .
Code (Fanout Instruction
from CK) JB000 OCA, OCP Parcel IAA, IAP
VQ1, VQ3, VQ5, L’ [[
vQse IKA,‘ ILA‘
Common Memory [OY!. OYL ODA, ODC __Issue IBA, BB, IBD IKP
Path 1 Code |
(Fanout from CK)
00 OAA — OAP
VQL, VQ3 ,VQ5, VEOOL OMA, OMH _ Release ICA, ICH OBA — OBP
VQ6 VEOOO OCA -0OCP
Cog]mr?g geénory OYM, OYP > OWA — OWP_Instruction Fields IKA—-IKP | ODA — ODP
at ode OAQ Parcel 0
(Fanout from CK) OBQ Parcel 1
Ckooa OGA,0GJ _ Path 1 Code IDA, IDJ oo eue 888 Eg;gg: g
_IXA - IXH Go Write OMA — OMH
K002 OGA, OGJ _ Path2 Code IEA, IEJ
Pipe 0
INJ o ONE

Advance Vi Write Address (Expand)

Figure 40. Vector Register \Wte Block Diagram, Pipe 0

HTM-300-0 Cray Research Proprietary 75

CPU Module (CPE1) Vector Registers

AV000 AWO000 AWO001 AWO002
VNOO0O VNO0O1 VNO002 VNO003
OEA - IGA - OEA - IGA - OEA- IGA - OEA - IGA-—
OEH Bits 0 — 7 IGH OEH Bits 8 — 15 IGH OEH Bits 16 — 23 IGH OEH Bits 24-31 IGH
Pipe 0
Pipe 1
VNO0O08 VNO009 VNO010 VNO11
OEI - IGA - OEl - IGA - OEl - IGA — OEIl - IGA —
OEP Bits 0 — 7 IGH OEP Bits 8 — 15 IGH OEP Bits 16 — 23 IGH OEP Bits24-31 IGH

S Register to Vector

AX000 AX001 AY000 AY001
VNOO4 VNOO5 VNOO6 VNOO7
OEA - IGA— OEA - IGA - OEA - IGA— OEA - IGA -
OEH Bits 32 — 39 IGH OEH Bits 40 — 47 IGH OEH Bits 48 — 55 IGH OEH Bits 56 — 63 IGH
Pipe 0
Pipe 1
VNO12 VNO13 VNO14 VNO15
OEl — IGA - OEIl - IGA— OEl - IGA - OEIl - IGA -
OEP Bits 32 — 39 IGH OEP Bits 40 — 47 IGH OEP Bits 48 — 55 IGH OEP Bits 56 — 63 IGH

Figure 41. S Register to &ttors

HTM-300-0 Cray Research Proprietary 77

CPU Module (CPE1)

Path 1
CHO00
OIA-0ID IA—1ID__|VNOOO
OIA- IIE-
CHO02 oD IH_
OIE- IE-
OIH _ lIH _]VvNoo4
OIE - OIH HA-IID
Path 2
CHo01
OIA-0OID IJA=1JD_ VN00O
OIA- IJE-
CHO03 oD WH_
OIE- IJE-
OIH IJH _|VN0o4
OIE - OIH HA-IID _
HTM-300-0

CH004 CH008
OIA—OID IIA—1ID _ | VNOO1 OIA—OID IIA— 1D _ | VNOO2
OIA-— IlE- OIA- IlIE-
CHO006 oIb H CHO10 oIb H
OE- lE- OE- IlE-
OIH IIH | VNOO5 OIH IIH _ | VNOO6
OIE — OIH IIA—IID OIE — OIH HA—IID
Common Memory Data to Vector Paths 1 and 2 Even Elements
CH005 CHO009
VNO001 VN002
OIA—OID 1JA— 1JD OIA—OID 1JA— 1JD
OA- JE- OIA- IE-
CHO007 OID 1IJH CHO11 OID IJH
OIE- 1JE- OE- WE-
OH 1H_|VYNOOS oH 1H_|VN006
OIE - OIH IIA —1ID OIE — OIH IIA —1ID

Figure 42. Memory Data to ¥ctors, Even Elements

Cray Research Proprietary

Vector Registers
CHO012
OIA - 0OID HA—1ID _ | VNOO3
OIA- lIE-
ey oID H
OIE- lE-
OIH IIH | vNoO7
OIE — OIH HA—IID
CHO013
VN003
OIA—OID IJA—1JD_
OIA- JE-
CHO015 OID 1IJH
OE- JE-
OIH 13 | VNOO7
OIE — OIH IIA — IID
79

CPU Module (CPE1)

Path 1
CH000
OJA— 0JD nA—np | VvNOO8
OlA- IE-
chooz | H
OIE- IE-
OH IIH | VNO12
OJE — OJH A — 1ID
Path 2
CH001
0JA - 0JD IJA— 13D _ | VNOO8
OIA- IJE-
CHO003 Oob NH
OIE- 1JE-
OH IJH | VNO12
OJE — OJH NA—1ID _
HTM-300-0

VNO009
OJA—0JD NA-1ID _ OJA—0JD A—1p _|VNO10
OIA- lIE- OIA- lE-
OID IIH
CHO06 > CHO10 OID H
OIE- lE- OE- IE-
OH 1H _JVNOI3 oH 1H_[vNo14
Common Memory Data to Vector Paths 1 and 2 Odd Elements
Choos CHO009
OJA-0JD 1JA— 13D _ | VNO10
OJA— 0JD 1JA— 1JD_ | YNOO9 >
OIA e OIA- IE-
- - OID 1JH
ChHoo7 OID DH CHo11 >
Ol e OIE- WE-
- - H 1IJH | VNO14
OIH IJH | VNO13 ° J >
E- OJH 1A —IID
OJE — OJH HA—IID _ OJE - O >

Figure 43. Memory Data to ¥ctors, Odd Elements

Cray Research Proprietary

Vector Registers
CHO12
0OJA - 0JD na-np _ | vNoil
OIA- IIE-
CHola |2D0___IH
OIE- IE-
OIH IIH _| VNO15
OJE — OJH A — 1ID
CHO13
OJA— 0ID 1JA—13D_ | VNO11
OIA- 1JE-
T WH
OIE- 1E-
OIH IJH | VNO15
OJE - OJH A - 1ID
81

CPU Module (CPE1) Vector Registers

CKO000 OFD IYB _ | vQoos ovI IMC VNOOD Vector Register Decode Bits
CK002 > vQo13 ov) VNOOS
VQO001 ovl IMA__I'vNOOO OvK IMD* IMC IMB IMA
OFB IyB _|vQoo9 oYJ VNOO8 NO0D
. oYL IMC
OYK »{ \/N010 1 0 0 0 VO
OFC oYL Ma | vN0o2
1 0 0 1 V1
»{ VNO10 IMC _ | vNoO4
> vNo12
OFA MA [VNooa o102
VNO12 IMC | VNOO6 1 0 1 1 V3
VNO14
IMA | VNOO6 1 1 0 0 V4
VNO14 IMC | VNOO1
7| VNO09 1 1 0 1 Vs
IMA VNOO1
> VNO11
ma [VNoo3 1 1 1 1 V7
VNO11 iIMc _ | VNOOS
> VNO13 * Path 1 Valid
IMA _ | VNOO5
= VNO13 IMC VNOO7
> VNO15
IMA VNOO7 NOTES: The top option number represents pipe 0.
> oVl IMD The bottom number represents pipe 1.
*>1 VNO15 VQO06 »1 \VN0OOO P PP
VQO15 VNOO8
ovI IMB Q ovJ
VQ003 »{ \VNOOO
IYB _|vQo11 ovJ VN008 OYK mp [VNoo2
OYK oYL ~| VNO10
oYL IMB__| VNOO2 VQ000
VNO010 oYM IMD __ | VNOO4 A V8008
OYN > vNo12
IMB _ | VNOO4 IYB
> > INA | vQoo2
VNO12 > oYo iMD _ | vNOOB v8010
IYC . VNO14
IMB VNOO06
> VNO14 mp [VNooL INA | V002
>| VN009 Q
IMB__| VNOO INA _ [VvQooe
VN009 IMD _ | VNOO3 > vQ014
> vNo11 Q
IMB VNOO3 VOO0O1
VNO11 IMD _ | vNOO5 INA . V8009
> vNo13
IMB | VNOO5
VQ003
VNO013 IMD__ | VNOO7 o v8011
> vNo15
VNOO7
IMB o1 /No1s Path 1 Valid INA | VQOo05
»| VQ013
Path 1 Valid Q
Path 1 Valid VQ007
Path 1 Valid INA | VQO15

Figure 44. Vector Register Decode Bit Fanout, Pipe 0 and 1, Path 1 Only

HTM-300-0 Cray Research Proprietary 83

CPU Module (CPE1) Vector Registers

CKO000 OFD IYC VO005 Vector Register Decode Bits
CK002 > V8013 oYM IMG_I'vN00O
VQO01 oYM IME _{'vNo0O OYN VNO08 IMH* IMG IMF IME
OFB Iyc _|vQoo9 OYN VN008 oYo
0oYO oYP IMG_ mg% 1 0 0 0 Vo
OFC oYP ve | vN002
»1 VNO10 1 0 0 1 Vil
IMG_ | VNOO4
OFA -
IME | VNOO4 VNO12 1 0 1 0 V2
> VNO12
Mc | vNoo6 1 0 1 1 V3
> VNO14
IME | VNOO6
> VNO14 1 1 0 o© V4
VNOO1
IMG— VNO009 1 1 0 1 V5
IME | VNOO1
VNO009 1 1 1 o0 V6
IMG _ VNOO3
IME | VNOO3 VNOLL 1 1 1 1 V7
> VNO11
VNOO5
IMGV VNO13 * Path 2 Valid
IME | VNOO5
>1 VNO13
IMG_ | VNOO7
IME | VNOO7 T YNO15 NOTES: The top option number represents pipe 0.
> VNO15 oyl IMH The bottom number represents pipe 1.
VQ007 »| VNOOO
ovI IMF
VQO003 »! \VNOOO VQO015 | OYJ VNO008
IYB | vQo11 oYJ VNOO8 oYK
IMH | VNoO2
oK o VNO010
oYL IMF _ | VN0OO2 IYB L
> VNO10 > VQ000
oYM INB Q
IYC IMH mgg‘z‘r > VQ008
IMF _ | VN0O4 OYN
> VNO12 Vo002
ovo IMH | VNOO6 INB > VSOlO
IMF _ | VNOO6 OoYP VNO14
> VNO14
IMH | VNoO1 INB | vQo04
> vNOO9 | VQo12
IMF_ | YNOO1
> VNO09 NE Vo008
IMH | VNOO3 Vo014
>l vNO11 Q
IMF _| VNOO3
> vNo11 VQ001
iMH_ [VN0O5 INB__ V8009
> VNO1
e [vNoos 013
> VNO013
INB VQO003
IMH _ | VNOO7 > vQo11
> VNO15
IMF _ | VNOO7
>l VNO15 Path 2 Valid INB | VQO05
. »| vQ013
Path 2 Valid
Path 2 Valid VQ007
Path 2 Valid INB VQO015

Figure 45. Vector Register Decode Bit Fanout, Pipe 0 and 1, Path 2 Only

HTM-300-0 Cray Research Proprietary 85

CPU Module (CPE1) Vector Registers

Vector O Vector 1 Vector 2 Vector 3
VQO000 VQO001 VQ002 VQO003
VQO08 VQ009 VQO010 VQO11
VNOOO OAA — JAA — VNOOO OAIl — 1AA — VNOOO OBA — 1AA — VNOOO OBl - IAA —
VNOO8 OAH _ Bits0-7 IAH _ VNO0O8 OAP Bits0-7 IAH VNO0O8 OBH Bits0-7 IAH VNOO8 OBP Bits0—7 IAH
mggé OAA-— Al - mggé OAI - Al - mggé OBA- Al - mggé OBI — Al -
OAH Bits 8 — 15 IAP OAP Bits 8 — 15 IAP | OBH Bits 8 — 15 IAP OBP Bits 8 — 15 IAP
VNO002 VNO0O02 VNO002 VNO0O02
VN(0)20 OAA - IBA — VNggo OAI — IBA — VN820 OBA - IBA — VNggo OBI - IBA—
OAH Bits 16 — 23 IBH OAP Bits 16 — 23 IBH OBH Bits 16 —23 IBH _ OBP Bits 16 — 23 IBH _
VNO0O03 VNO0O03 VNO0O03 VNO0O03
VNO11 OAA - IBI — VNO11 OAI — 1Bl — VNO11 OBA - 1Bl — VNO11 OBI - IBI —
OAH Bits24-31 IBP _ OAP Bits24—-31 IBP _ OBH Bits24—-31 IBP _ OBP Bits24—-31 IBP
xmggg OAA - ICA - \\5“823 OAI — ICA - xmggg OBA - ICA - x“ggg OBI - ICA -
OAH Bits 32 — 39 ICH OAP Bits 32 — 39 ICH OBH Bits 32-39 ICH OBP Bits 32 — 39 ICH
VNOO05 VNOO5 VNO0O05 VNOO05
VNO13 OAA - ICI - VNO13 OAl — ICI - VNO13 OBA - ICI - VNO13 OBI - ICI -
OAH Bits 40 — 47 ICP OAP Bits 40 — 47 ICP OBH Bits 40— 47 ICP OBP Bits 40 — 47 ICP
VNOO6 VNO0O06 VNOO06 VNOO6
VNO014 OAA - IDA — VNO014 OAI — IDA — VNO014 OBA - IDA — VNO14 OBI - IDA —
OAH Bits 48 — 55 IDH OAP Bits 48 — 55 IDH OBH Bits 48 —55 IDH OBP Bits 48 — 55 IDH
VNOO7 VNOO7 VNOO7 VNOO7
VNO15 OAA - IDI — VNO15 OAI — IDI — VNO15 OBA - IDI — VNO15 OBI - IDI —
OAH Bits 56 — 63 IDP OAP Bits 56 — 63 IDP OBH Bits 56 — 63 IDP OBP Bits 56 — 63 IDP

Figure 46. Vectors 0 through 3, Pipe 0/1,ri¢ Data Path

HTM-300-0 Cray Research Proprietary 87

CPU Module (CPE1) Vector Registers

Vector 4 Vector 5 Vector 6 Vector 7
VQO004 VQO005 VQO006 VQO007
VQO012 VQO013 VQO014 VQO015
VNOOO OCA - IAA — VNOOO ocCl - IAA — VNOOO ODA - IAA — VNOOO ODI — IAA —
VN008 OCH Bits0-7 IAH VN008 OCP Bits0-7 IAH VN008 ODH Bits0-7 IAH VN008 ODP Bits0—7 IAH
mggé OCA - IAl mggé oCI - IAl - mggé ODA - IAl mggé ODI - IAl
OCH Bits8-15 IAP OCP Bits8—15 IAP ODH Bits8-15 IAP ODP Bits 8- 15 IAP
mg% OCA - IBA— mg% ocl - IBA— mg% ODA- IBA— mg% oDI - IBA—
OCH Bits16-23 IBH OCP Bits16-23 IBH ODH Bits16—-23 IBH ODP Bits16—-23 IBH _
mgcl)f OCA - IBI — mgﬁ’ ocCl - 1Bl — mgcl)f ODA-— IBI — mggf oDl — IBI —
OCH Bits24-31 IBP _ OCP Bits24—-31 IBP _ ODH Bits24—31 IBP _ ODP Bits24-31 IBP _
mggg OCA - ICA— \mg?‘z‘ ocCl - ICA— mggg ODA - ICA— mggg oDl — ICA—
OCH Bits32-39 ICH OCP Bits32-39 ICH ODH Bits32-39 ICH _ ODP Bits32—-39 ICH _
VNO005 VN0O5 VNO005 VNO005
OCH Bits40-47 ICP _ OCP Bits40-47 ICP _ ODH Bits40-47 ICP ODP Bits40-47 ICP
VN006 VNO006 VNO006 VNO006
VNO14 OCA- IDA — VNO14 OCI - IDA — VNO14 ODA - IDA — VNO14 ODI - IDA —
OCH Bits48—55 IDH OCP Bits48—55 IDH ODH Bits48-55 IDH ODP Bits48-55 IDH
VNO007 VNO007 VNO007 VNO0O7
VNO15 OCA- IDI — VNO15 oCl — IDI — VNO15 ODA-— IDI — VNO15 oDl — IDI —
OCH Bits56-63 IDP OCP Bits56—63 IDP ODH Bits56—63 IDP _ ODP Bits56—-63 IDP _

Figure 47. Vectors 4 through 7, Pipe 0/1 ¢ Data Path

HTM-300-0 Cray Research Proprietary 89

CPU Module (CPE1) Vector Registers

Delete this page when printing.

HTM-300-0 Cray Research Proprietary 90

VECTOR LOGICAL

HTM-300-0

There are two independent vector logical units in a CRAY T90 series
system. (Refer to Figure 48 for a block diagram of the vector logical
units.) These functional units reside on 16 VN options. VNOOO through
VNOO7 handle pipe 0 (the even elements), and VNOO8 through VN015
handle pipe 1 (the odd elements). Each VN option operates on a 4-bit
slice of all eight vector registers.

The vector logical units receive input data from the VQ options and send
the results to the vector registers. The second vector logical unit is
enabled by setting mode bit 2 (ESL) in the mode field of the exchange
package. When both logical units are enabled, data is processed first in
the second unit because only the first unit can process the 146 and 147
(vector merge) instructions. For example, if a 140 instruction (logical
product) issues, the second unit processes the instruction in case a 146 or
147 issues next. If the first unit processed the 140 instruction, it would be
busy and the 146 instruction would have to hold issue.

The vector logical unit performs the logical product (AND), logical sum

(OR), and logical difference [also called exclusive OR (XOR)] functions
using either scalar or vector registers.

Cray Research Proprietary 91

Vector Logical CPU Module (CPE1)

Figure 48. Vector Logical Block Diagram

VEO0O00 — 001 Vector Logical 1 and 2
Vectors 0 — 7 VNOOO
Pipe 0 VNOO7
:I_l OAA— OAP —
——— IKA -
Instruction Parcel IKP o —
VQO000 - 007
Result Vector
Even Elements
V Data -
- Unit 2
IGA -
IGH
ILC _
= OVA, Vj= Neg INA, Fo=oms
— - Vj=Neg [JOVB Vj=0 IOH -
UN=1 Vj=0 ! »{ 001
A
oYU
IC000 — 1C003 IOA
Enable Vector
Logical 2
OEA - OEH
OEA - OEH)
SS000 Pipe 0
—— — — AV, AW, AX, AY S/ Data —————— Vector Mask Register ————————————
OEI - OEP Pipe 1
VEO002 - 003 OEl — OEP
Vectc_)rs 0-7
Pipe 1 OAA — OAP I0A
VNO0O08
. VNO015
Instruction 1KA — OVA Vi= N INA
Parcel IKP , ' = Neg , —
> _ vj=pos | love" vj=0 10K |VE00?
VN=1 Vi=0 003
VQO008 — 015 /=
IGA — Unit 1
IGH _
L * Result Vector
— L1 L Odd Elements
L V Data Unit 2
1C000 — 1C003 —
Enable Vector ovu ILC >
Logical 2

Vector Logical 1 and 2

92 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Vector Logical

Vector Logical Instructions

Table 15 lists the vector logical instructions.

Table 15. Vector Logical Instructions

Instruction CAL Description

140jk ViSj&Vk Transmit logical product of (Sj) and (Vk elements) to Vi
elements

141jjk ViVj&Vk Transmit logical product of (V) elements) and (Vk elements)
to Vielements

142jjk ViSj\Vk Transmit logical sum of (Sj) and (Vk elements) to Vi
elements

143ijk ViVj\Vk Transmit logical sum of (Vj elements) and (Vk elements) to
Vielements

144jjk Vi SA\Vk Transmit logical differences of (S)) and (Vk elements) to Vi
elements

145ijk ViVAVK Transmit logical differences of (Vj elements) and (Vk

elements) to Vi elements

Vector Merge

The 146 and 147 instructions merge the contents of the registers using the
vector mask register for control. The 146 instructiongegthe contents

of § with the contents of kK the 147 instruction merges the contents of

Vj and \k. If the vector mask bit is a 1, thg ®r § data is used; if the

vector mask bit is a 0, thek\data is used.

The vector logical functional unit holds a copy of the S-register value.
Therefore, a subsequent instruction can change the S-register value and
not affect the results. These instructions are confined to the second logical
unit. Refer to Table 16 for the vector merge instructions, and refer to
Figure 49 for an example of a vector merge operation.

Table 16. Vector Merge Instructions

Instruction CAL Description
146ijk Vi Sj\Vk&VN | Merge (Sj) and (Vk elements) to Vi elements using (VN) as
mask
1460k Vi#VN&Vk |Merge 0 and (Vk elements) to Vielements using (VN) as
mask
147ijk ViVjWk&VN | Merge (V) elements) and (Vk elements) to Vi elements
using (VN) as mask

HTM-300-0 Cray Research Proprietary 93

Vector Logical

CPU Module (CPE1)

Figure 49. Vector Merge Operation

147ijk Merge Sjand Vk elements to Vielements using VN as mask

Vector Mask (SS)

VL=5 0001100 — 0
Vk Elements (VQ/VN) Vi Elements (VN/VQ)
Element0| 0 ——— 0 »| Vk Element O | Element O
Element1| O 1 »| VkElement 1 | Element 1
Element2| 0O 2 Vk Element 2 | Element 2
Element3| 0 3 > Sj Element 3
Element4| O 4 Sj Element 4
S2 0 —mm 7 NOTE: Elements 5 through
127 are unchanged.

146ijk Merge Vjelements and Vk elements to Vi elements using VN as mask
Vector Mask (SS)

VL=5 0001100 —— O
Vk Elements (VQ/VN) Vi Elements (VN/VQ)
ElementO| O 0 »| Vk Element O | Element O
Element1| 0 —m8 — 1 » VkElement 1 | Element 1
Element2| 0 m—,08 2 Vk Element 2 | Element 2
Element3| 0 ——— 3 »| VjElement0 | Element 3
Element4| 0 — 4 VjElement1 | Element4

Vj Elements (VQ/VN)

Element 0 0 7
Element 1 0 7
Element 2 0O—7
Element3] 0 —m8 —7
NOTE: Elements 5 through
Element 4 0O—7

94

127 are unchanged.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

Vector Logical

Vector Mask Test OperatioWector Mask

VMO and VM1 are vector mask registers. Each register is 64 bits wide,
and the two registers are aligned to create a 128-bit register. Each bit in
the register corresponds to an element in a vector register. The vector
mask register stores the results of the test condition of an element in a
vector register. For example, the mask register can indicate which
elements of a particular vector register contain positive values.

The vector mask register receives data either from the scalar registers or
from the result of comparing a condition within the elements of a vector
The vector mask register is arranged so that mask bit 127 corresponds to
element O of the vector.

Refer to Table 17 and Table 18 for a list of the vector mask and vector

mask test operations, respectively. Refer also to Figure 50 for an
illustration of the 175 instructions.

Table 17. Vector Mask Operations

Instruction CAL Description
0030,0 VMO Sj Transmit (Sj) to VMO
003041 VM1 Sj Transmit (Sj) to VM1
*0030/2 VMO Aj Transmit (A)) to VMO
*0030/3 VM1 Aj Transmit (A)) to VM1
070i1 ViCl,Sj&VM | Transmit compressed index of (Sj) controlled by (VM) to Vi
073/00 SiVMO Transmit (VMO) to S/
073/10 SiVM1 Transmit (VM1) to S/
*073i20 AiVMO Transmit (VMO) to Aj
*073/30 AiVM1 Transmit (VM1) to Aj

* These instructions must be preceded by a 005400 (EIS) instruction.

HTM-300-0

Cray Research Proprietary 95

Vector Logical

CPU Module (CPE1)

Table 18. Vector Mask Test Operations

Instruction CAL Description

175040 VM Vj,Z Set VM bit if (Vj element) =0

175041 VM VN Set VM bit if (Vj element) =0

17502 VM Vj,P Set VM bit if (Vj element)=0

17503 VM Vj,M Set VM bit if (Vj element) <0

175ij4 ViVM Vj,Z | Set VM bit if (Vj element) = 0 and store compressed
indices of Vjelements =0 in Vi

175i5 ViVM Vj,N | Set VM bit if (Vjelement) =0 and store compressed
indices of Vjelements = 0 in Vi

175i6 ViVM Vj,P | Set VM bit if (Vj element) =0 and store compressed
indices of Vjelements = 0in Vi

175ij7 ViVM VjM | Set VM bit if (Vj element) < 0 and store compressed
indices of Vjelements < 0in Vi

VL=5

Element O

Element 1
Element 2
Element 3

Element 4

96

Figure 50. 1750 Instructions

1750/0 Set VM bit if Vjelement =0

Compare VE
P Vector Mask Register (SS
Vector Register (V) (VQ/VN) TestVj=0 g (S3)
00000000000000000 - > 0 Bit127
00000001110000001 > 1 Bit 126
11111111112211111211 > 0 Bit 125
00000000000000000 > 1 Bit 124
1111111111111000000 > 0 Bit 123
0 Bit 122
L]
L]
0 Bit 0

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Vector Logical

Figure 51 illustrates the function of the ijASnstructions that use the
vector mask to create a compressed vector.

Figure 51. Function of the 1i{8 Instructions

175i4 Set VM bit if Vj element = 0 and store compressed indices of Vj elements = 0 in Vi

VM Reg Index
Vj Elements (VQ/VN) VE (SS) Bits Address (VE) ViElements (VN/VQ)
Element0 | O 0 > > 1 @—» 0 > 0 Element 0
Test
Element1l | O 1 > > 0 126 1 _|" 2 Element 1
Element 2 0 0 > > 1 @ 2 3 Element 2
Element3 | 0 ——— 0 , 1 | 134 3 4 Element 3
Vj=0 : o
Element 4 0O— 0 1 1§7 Unchanged | Element 4
0

VL=5

Compressed lota

Theiota function is performed on the RE options. REOQOO is used for pipe
0 and REOOL is used for pipe 1. Table 19 lists the instruction used in iota
operations, and Figure 52 is a block diagram of iota pipe 0 and 1.

Table 19. lota Instruction

Instruction CAL Description

070i1 ViCl,Sj&VM | Transmit compressed index of (Sj) controlled by (VM) to Vi

The 0701 instruction forms multiples of the contents of regisfer S
starting with 0 (0, §2x §, 3x §, and so on). It stores multiples that
correspond to each 1 bit set in the vector mask register in successive
elements of registeri\(beginning at element 0). The instruction stops
when all unused bits of the vector mask are 0 or are used.

HTM-300-0 Cray Research Proprietary 97

Vector Logical CPU Module (CPE1)

Figure 52. lota Pipe 0 and 1

REOOO
ss000 VMO Element Valid IGA
OGA o
sSS000 VM1 Element Valid 1GB -
OGB OAA — ODP Resultto VNO —7_
sSs000 VM =0 IGC -
0OGC o .
OMA lota Valid
BU0O1 Go lota IGD ola val > :{\ﬁ_?oo
oscC oMC End lota » VB000/VBOO1
INI
OGA
OGB
E)/lj/;/Q SjData 0 — 63 IAA — IDF’: 0GD
REO01
VMO Element Valid IGA
VM1 Element Valid IGB -
Go lota IGD
OAA-
ODP VN8-15_
OMA lota Valid
VBO0O01 INH
VN/VQ SjData0-63 IAA — IDP
8-15
Figure 53 illustrates the function of the @40instructions that use the
vector mask to create a compressed vector.
RE Option

The REOOO receives the Go lota signal from the BUOO1 option, makes a
copy of this signal, and sends it to the REOO01 option. Thiat& arrives

at both options along with a Element Valid signal. After the operand has
been used and a pair of elements is ready to be written to the result vector
the lota Valid signal is sent to the VB option. The two lota Valid signals,

98 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

HTM-300-0

Vector Logical

one from REOOO and on from REO0O1, are usually identical except when
there is an odd number of elements on Pipe 0. The operation ends when
the VM=0 signal arrives from the SS option and causes the RE0O0O option
to send the Signal End lota signal to both VB options. The Signal End
lota signal is sent concurrently with the last Element Valid signal.

Figure 53. Function of the Oif@ Instructions

0701 Transmit compressed index of (Sj) controlled by (VM) to Vi

Vector Mask (SS)

1001110100———— O
Vi Elements (VM/VQ)
Functional
unUcnlictJna 0 Element 0
> Sjx VM Bit 6 Element 1
2x0 _
2% 3 > 8 Element 2
> 2x4
2% 5 10 Element 3
2x1 14 Element 4
Sj 0O —— 2

Cray Research Proprietary 99

VECTOR ADD

The vector add functional unit is located on the VN and VE options.

(Refer to Figure 54 for a block diagram of vector add.) The VN options
perform the actual addition of the input operands and then pass the group
carries and group enables to the VE for summation. These bit toggles are
then returned to the VN option for final summation. The functional unit
uses two’s complement arithmetic and does not detect any overflow
conditions.

Refer to Table 20 for a list of the vector add instructions.

Table 20. Vector Add Instructions

Instruction CAL Description

154k ViSj+Vk Transmit integer sum of (Sj) and (Vk elements) to Vi elements

155ijk ViVi+Vk Transmit integer sum of (Vj elements) and (Vk elements) to
Vielements

156ijk Vi SVk Transmit integer difference of (Sj) and (Vk elements) to Vi
elements

156/0k Vi-Vk Transmit two's complement of (Vk elements) to Vi elements

157ijk ViVi~Vk Transmit integer difference of (Vj elements) and (Vk elements)
to Vielements

The 154 and 156 instructions use the content of thedsster as an input
operand. The VN option keeps a copy of theegister, which enables a
subsequent instruction to proceed and change the contgnividh8ut
affecting the 154 or 156 instruction in progress.

100

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

VEOQ00

OIA Adder Bit Toggles INA

(VQO000 Vector Data

VQO07)

OIB Adder Bit Toggles INA

Figure 54. ¥ctor Add Block Diagram

Summation

(VQO00 Vector Data
—_—

VQ007)

OIC Adder Bit Toggles INA

(VQO00 Vector Data
—_—

VQO007)

OID Adder Bit Toggles INA

ILA
Adder VEO0O00
VNOOO _ Bits 0—7 IMA
OWA
Carry
Enable owe
VEOO1
ILA
IMA
» Result Data to Vectors
ILB__lvEooO
VNOOL _ Bits 8 - 15 IMB
OWA
Carry
Enable owc
VEOO1
ILB _
IMB _
> Result Data to Vectors
ILC _IvEooo
VNOO2 Bits 16 — 23 IMC
OWA
Carry
owcC
Enable
VEOO1
ILC
IMC _

HTM-300-0

(VQO00 Vector Data
—_—

VQ007)

VNOO3 Bits 24 — 31
Carry

Enable

— Result Data to Vectors

ILD _IvEO0O
IMD
OWA
owc
VEOO1
ILD
IMD

— Result Data to Vectors

VEOO1

OIA Adder Bit Toggles INA

(vQooo Vector Data
VQO007)

OIB Adder Bit Toggles INA

Summation

Vector Add

Adder ILE _|VEOOO
VNOO4 Bits 32 -39 IME >
Carry |OWA
Enable | OWC
VEOO1
ILE
IME

(VQ000 Vector Data

VQ007)

OIC Adder Bit Toggles INA

VNOO5 Bits 40 — 47
Carry

Enable

— Result Data to Vectors

ILF__[VvEOOO
IMF
OWA
owc
VEOO01
ILF
IMF _

(VQO00 Vector Data

VQO007)

OID Adder Bit Toggles INA

Y

VNOO6 Bits 48 — 55
Carry

Enable

— Result Data to Vectors

ILG _|vEo0O
IMG
OWA
owc
VEO01
ILG
IMG _

Cray Research Proprietary

(vQooo _Vector Data

VQ007)

VNOO7 Bits 56 — 63
Carry
Enable

—— Result Data to Vectors

——— Result Data to Vectors

103

CPU Moduke (CPE1) Section Title

Delete this page when printing.

HTM-0300-0 Cray Research Proprietary 104

VECTOR SHIFT

The vector shift functional unit is contained within the VS optiorectdr
shift is a dual-pipe functional unit; it accepts a pair of elements and
generates a pair of results. If the vector length is odd, the last operand
generates a single result. There is only one VS option for each CPU.

The vector shift functional unit is responsible for vector transfer
operations. For example, it transfers the contents of one vector register to
another vector register; then the functional unit uses kweahie as a

starting element number for the block move.

This unit also performs the vector compress and expand operations. The
compress operation writes the elements jofoM if a corresponding bit

in the vector mask register sets. The expand operation reads the elements
of Vj to M if a corresponding bit in the vector mask register sets. These
operations are illustrated later in this section.

The 150 to 153 instructions usd As the shift count. The 150 to 151
instructions, when preceded by a 005400 (EIS) instruction, use VO for the
shift count. In either case, if bit 7 or above is set, the result is 0’s.

Vector Shift Instructions

HTM-300-0

Refer to Table 21 for a list of the vector shift instructions.

Cray Research Proprietary 105

Vector Shift

CPU Module (CPE1)

Table 21. Vector Shift Instructions

Instruction CAL Description
150ik ViVj<Ak Shift (Vj elements) left (AK) places to Vielements
*15040 ViVj<VO0 Shift (Vj elements) left (VO elements) places to Vielements
151jjk ViVj>Ak Shift (Vj elements) right (AK) places to Vi elements
*151j0 ViV>VO0 Shift (Vj elements) right (VO elements) places to Vi elements
152jjk ViVjVj<Ak | Double shift (Vjelements) left (Ak) places to Vielements
*152ijk ViVjAk Transfer (Vj elements) starting at element (AK) to Vi elements
153jjk ViVjV>Ak | Double shift (Vjelements) right (AK) places to Vi elements
*153ij0 ViVj{VN] Compress Vjby (VN) to Vi
*153ij1 Vi[VN] Vj |Expand Vjby (VN) to Vi

* These instructions must be preceded by a 005400 (EIS) instruction.

Vector Shift Count Description

106

The Ak shift count is sent to the VS option by the AV000 option, and all
eight A series options check the value of the 64-bit A register. This test
determines if any bits above bit 6 have been set. If any bits have been set,
the result is lost due to overshift. If no overflow is detected, &Ko

Overflow signal is sent from the SS to the VS. AV000 sends bits O

through 6 as the shift count.

To better understand this process, examine the composition of the shift
count. For both single and double shifts, the shift count is similar except
that the double shift has 1 extra bit (bit 6). Refer to Figure 55 for an
examination of the shift count and to Figure 56 for a block diagram of
vector shift.

Figure 55. Shift Count Breakdown

Double
Shift
Only
6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Each bit position of the shift count represents a shift value. The sum of
the shift value for each bit set in the shift count equals the total number of
places shifted. The maximum shift count that could be generated,ig 127
orl17%.

Cray Research Proprietary HTM-300-0

CPU

HTM-300-0

Vector Shift

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count. Also,
a shift of 0 generates a maximum shift of 4 places and clears
the result register.

If the jk field of a left single shift equals gand bits 4, 2, 1, and 0O are set,
the shift values are 16, 4, 2, and 1, respectively. The sum of the shift
values is 23 (16 + 4 + 2 + 1). Therefore, the instruction shifts lgft 23
places.

The actual hardware that performs the shifts is the same for both left and
right shifts. In fact, the hardware performs only left shifts. Right shifts
are accomplished according to the way data is entered into the shifter and
the use of two’s complement shift counts for right shifts.

The vector shift unit also receives a shift count from VO when performing
the 150 and 151 EIS instructions. The shift count is sent to the VS option
from VQO for pipe 0 and from VQ8 for pipe 1.

Cray Research Proprietary 107

uonewloju| Areulwiaid
Arelandold yoleasay Aeid

80T

UOISIASY pue JaquinN qnd

VN/VQ Vector Shift Data Pipe 0 IAA, IDP
Vector Shift Data Pipe 1 IEA, IHP
OHA, OHG Ak Shift Count0—6 A, 11G
SS000 >
OHH No Ak Overflow 1IM
OID Vector Mask Bit =1 (Even) IMM
OIE Vector Mask Bit =1 (Odd) IMN _
VQO00 OMA, OMH Vector Shift Count (VO) Pipe 0 IKA, IKH
OMI VO Overflow IKM
VQO008 OMA, OMH Vector Shift Count (VO) Pipe 1 ILA, ILH
OMI VO Overflow ILM
VE001 INA
ONB Pipe 0 Valid INB |
IND
VB000 oQB End Vector Shift or kO Field INM
BU000 0SG EIS Bit IMC
ORA Go Vector Shift IME

VS000

OAA, ODP

Vector Shift Result Data Pipe 0

VN/VQ
OEA, OHP Vector Shift Result Data Pipe 1
OMA Shift Result Valid Pipe O INE | vBOOO
INF
OMC End Vector Shift
INF
VB001
OMB Shift Result Valid Pipe 1 INE

Figure 56. Vector Shift Block Diagram

YIYS 10193\

Nnd9o s8lds 1 AVHO

CPU Module (CPE1) Vector Shift

Vector Right Shift 005400 151 Jj0

Referto Figure 57 for an illustration of a vector right shift using VO for
the shift count. Note that the shift count for element 0 is 0, which results
in an end-off shift for that element. This instruction must be preceded by
the 054100 instruction in order to function as illustrated. This process
continues for vector length.

Figure 57. Vector Right Shift

Vk Elements (VQ/VN) Pipe 0/1

Element O 0 0
Element 1 0 1
VO Shift Count

Element 2 0 2

Element 3 0 3

Element4 | 0 4 VL=5

Vj Elements (VQ/VN) Pipe 0/1 VS y Vi Elements (VN/VQ) Pipe 0/1
Element 0 1 0 > »{ O 0 | Element0
Element 1 0 10 »| Vector Shift » 0 1 | Element1
Functional
Element 2 0 100 > Unit > 0 1 | Element 2
Element 3 0 1000 > > 0 1 | Element 3
Element 4 0 10000 > » 0 ——— 1 | Element4
VL=5
HTM-300-0 Cray Research Proprietary 109

Vector Shift CPU Module (CPE1)

Vector Right Double Shift 153 jjk

Referto Figure 58 for an illustration of a vector right double shift, using
Ak for the shift count. This instruction concatenates two successive
elements of registerj\and right shifts the lower 64 bits ta.VThe first
operation combines element 0 with a word of all 0's. Element 0 becomes
the lower 64 bits, and this value is then shifted rigkpkaces to V

The next operation combines element 0 and element 1, @fith element

1 containing the least significant bits, and shifts this value right.to V
This operation continues for vector length. Note that the shift count for
element 0 is 0, which results in an end-off shift for that element.

Figure 58. Vector Right Double Shift

Vk Elements (VQ/VN) Pipe 0

Element O 0 —m8 ™ 17 VL = 3
Element 2 1 6 Shift Count from Ak
Element 4 0 0 VS Vector Shift Functional Unit
Element 6 0 0 Word of 0's Element O
Element 8 00— 0 Element O Element 1
> Element 1 Element 2
Vj Elements (VQ/VN) Pipe 1
Element 2 Element 3
Element 1 6——————————— 6
Element 3 Element 4
Element3 |16 0
Element 5 0 0
Element 7 0 0
Element9 | 0 — 0 Vi Elements (VQ/VN) Pipe 0/1
0 —— 1 | ElementO
166 0 | Element1
»| 15 0 | Element2
156 0 | Element3
0 ——— 0 | Element4

110 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Vector Shift

Vector Transfer 005400 152 jk

This instruction moves the contents gfty' Vi starting with element kas
illustrated in Figure 59. Note that this is an EIS instruction.

Figure 59. Vector Transfer

Ak=2
VL=5
Vj Elements (VQ/VN) Pipe 0/1 VS Vi Elements (VN/VQ) Pipe 0/1
Element O 1 0 > » O 100 | Element0
Elementl | O 10 »| Vector Shift » 0 1000 | Element 1
Functional
Element 2 0 100 > Unit > 0 ——— 10000 | Element 2
Element 3 0 1000 > > 0 0 | Element3
Element4 | 0 ——— 10000 > » 0 0 | Element 4

Vector Compress 005400 153 jj0

This instruction compresses a vector register using a vector mask and
transmits the results toi ¥s shown in Figure 60.

Two element counters are initialized to 0, one fpaNd the other for V

The vector mask is then scanned from right to left. For every 1 bit set, an
element of Y is written to \. The element counters internal to the VS
option determine the element position within each register.

Figure 60. Vector Compress

SS Vector Mask Register

10011 o | VL=5

Vj Elements (VQ/VN) Pipe 0/1 VS y Vi Elements (VN/VQ) Pipe 0/1
Element O 0 0 > » O—— 0 | ElementO
Element 1 0 10 Vector Shift = 0 1000 | Element 1

Functional

Element 2 0 —— 100 Unit > 0 10000 | Element 2
Element 3 0 1000 > > 0 0 | Element 3
Element4 | 0 ——— 10000 > = 0 0 | Element 4

HTM-300-0 Cray Research Proprietary 111

Vector Shift CPU Module (CPE1)

Vector Expand 005400 153 1

This instruction expands a vector register using a vector mask and
transmits the results toi s shown in Figure 61.

Two element counters are initialized to 0, one fpakd the other for V

The vector mask is then scanned from right to left, and for every 1 bit set,
an element of Vis written to \. The element counters internal to the VS
option determine the element position within each register. In this
instruction, the element counter foy félls behind the counter fori by

one position for each 0 bit in the vector mask register.

Figure 61. Vector Expand

SS Vector Mask Register

10011 o | VL=5

Vj Elements (VQ/VN) Pipe 0/1 E Vi Elements (VN/VQ) Pipe 0/1
Element 0 0 0 > »> 00— 0 | ElementO
Elementl | 0 10 »| Vector Shift Unchanged Element 1

Functional

Element2 | O 100 > Unit Unchanged Element 2
Element3 | 0 1000 » 0 ——— 10 | Element 3
Element 4 0 — 10000 > 0 100 | Element 4

112 Cray Research Proprietary HTM-300-0

VECTOR POP/ POP PARITY AND LEADING ZERO

The vector population/parity functional unit performs the population count
(174ij1) and parity for vector operations (1j2) instructions. This
functional unit shares logic with the Divide and Square Root functional
unit. Thek field of the instruction determines the type of operation to be
performed. Refer to Figure 62 for a block diagram of the vector
population/parity functional unit.

The vector population/parity functional unit shares logic with the
divide/square root functional unit. Therefore all vector operations reserve
the associated functional unit. The divide/square root functional unit is
reserved when the vector population/parity functional unit is reserved and
vice versa.

Both scalar and vector register operations share the divide/square root
functional unit. Therefore, when vector divide/square root, or vector
population/parity instructions are executed, a scalar divide/square root
instruction must wait until the vector operation is finished.

The 174j1 instruction counts the number of 1 bits in each element of a
vector register specified byjV Each element is counted individually, and
the result is stored in the corresponding element ofFfdr example, the
count of 1 bits in element 0 ofj\Vs stored in element 0 ofiMhe count of

1 bits in element 1 of Ms stored in element 1 ofivand so on. This
process continues for the number of elements specified by the vector
length.

The 174j2 instruction counts the number of 1 bits in each element of a
vector register specified byj\énd stores a 1-bit parity result in a vector
register specified by iV The 1742 instruction uses the same logic as the
174ij1 but outputs only bit O of the result. Bits 1 through 6 are forced to
0’s. This instruction determines whether an odd or even number of bits is
set in each element of a vector register. If the result equals 0, there is an
even number of bits. If the result equals 1, there is an odd number of bits.

HTM-300-0 Cray Research Proprietary 113

Vector Pop/Pop Parity and Leading Zero CPU Module (CPE1)

Figure 62. ¥ctor Population/Parity/Leading Zero Block Diagram

VNO11 Bits 28 — 31
VQOLL Bits 24 — 27 \
VNO10 Bits 20 — 23 |
VQO10 Bits 16 — 19
VN009 Bits 12 — 15

VQO009 Bits 8 — 11
VNOO8 Bits 4 — 7

VQO008 Bits 0 — 3 RE001
IBA — IBP
Vector Registers
Pipe 1
VNO15 Bits 60 — 63 IAA — IAP
i OAA — OAG
VQO15 Bits 56 —59 | DA — 1P
VNO14 Bits 52 — 55 | A 1oh
VQO014 Bits 48 — 51
VNO13 Bits 44 — 47
VQO13 Bits 4043 |
KO IEB .
VNO12 Bits 36 — 39 | (1C002) — > Pipe 1
K1 IEC
VQO012 Bits 32 — 35 (IC002) ——»
Go Vector |IED
. 50 vector ED
Vector Registers (BU00O)
| Pipe 1

VQOO7 Bits 56 —59 |———
VQOO6 Bits 48 —51 |

VQOO05 Bits 40 — 43 |
VQO04 Bits 32 — 35
VQOO3 Bits 24 — 27
VQO02 Bits 1619 |
VQoo1 Bits8—11 |
VQOO00 Bits 03

REOQ00

Vector Registers IBA — IBP
Pipe 0

VNOO7 Bits 60 — 63 IAA- AP OAA — OAG
VNOO6 Bits 5255 | IDA — IDP

VNOO5 Bits 44 — 47

ICA—ICP _
VNOO4 Bits 36 — 39 -
VNOO3 Bits 28 — 31
VNOO2 Bits 20 — 23 KO IEB i
I (1C000) ——————— = Pipe 0

VNOO1 Bits 1215 |
VNOOO Bits 4 — 7

K1 IEC
(IC000) —————»

Go Vector |IED
(BUOOQ) —— >

Vector Registers
Pipe 0

114 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Vector Pop/Pop Parity and Leading Zero

Pop/Parity/Leading Zero Functional Units

The RE options contain part of the divide/square root unit and the logic

for vector pop, vector pop parity, and vector leading zero. There are two
RE options for each CPU. REO00 handles pipe O (the even elements), and
REOO1 handles pipe 1 (the odd elements).

The RE options receive data from the VN and VQ options; 4 bits come
from each VQ and VN. Pop/parity/leading zero data uses the same wires
and terms as the divide/square root data. The data is then sent to VNOOO
and VNOO8 on the same terms that the divide/square root output data uses.
Data is sent to only those two options because the pop functional unit
returns only a 7-bit value to the result register.

Vector Population Count 174 jj1

Vector pop counts the number of bits set in a vector element and reports
that count to a result vector. The count ranges anywhere from 0 (no bits in
the element set) to 100 (all bits in the element set). The functional unit
sends only bits 0 through 6 to the result vector; the remaining bits are
zeroed out.

Vector Population/Parity 174 jj2

This instruction counts the number of bits set in each element of a vector
and then determines whether this number of bits is an even or an odd
number If the result is an even number of bits, a 0 is written to the result
vector If the number of bits is odd, a 1 is written to the result vector
Only bit O is written to the result vector; the rest of the bits in the element
are set to O’s.

Vector Leading Zero Count 174 jj3
This instruction counts the number of 0’s that precede the first bit set in

each element of a vector. The count will be from O (bit 63 of the element
set) to 100 (no bits in the element set).

HTM-300-0 Cray Research Proprietary 115

Vector Pop/Pop Parity and Leading Zero

Vector Population/Parity Instructions

CPU Module (CPE1)

116

Refer to Rble 22 for a list of the vector population/parity instructions.

Table 22. Vector Population/Parity Instructions

Instruction CAL Description
174i1 ViPVj Population count (V)) to Vi
174i2 ViQVj Parity of (V)) to Vi
175i3 VizZVj Transmit leading zero count of (V)) to Vi

Cray Research Proprietary

HTM-300-0

GATHER/SCATTER INSTRUCTIONS

The 1761k and 177§k instructions transfer blocks of data between
common memory and the vector registers. The 176 instruction invokes
the gather, or read function; the 177 instruction invokes the scatter, or
write function. When the 178k instruction is preceded by a 005400
instruction parcel, it performs a double gather function, which utilizes the
dual-pipe capability of the computer system. The contents of the vector
length (VL) register determine the number of words transferred.

Gather Instructions

The 1761k instruction transfers data from common memory to the V
register. Register AO contains the initial (base) address;kegister
contains the address indices.

For each element transferred tp e memory address is the sum of (AO)
and the corresponding element of registkr ¥or example, during a
176213 instruction, V2[0] is loaded from address (A0) + (V3[0]); V2[1] is
loaded from address (A0) + (V3[1]); etc.

The 005400 17§k instruction performs the double gather operation. Data
is transferred from common memory todnd V in two separate data
transfers that occur simultaneously. The AO register contains the base
address for the transfer ta.VThe A register contains the base address
for the transfer to / The \k register contains the address indices for

both transfers.

For each element transferred tg e memory address is the sum of (A0)
and the corresponding element d€ \iFor example, during a 005400
176213 instruction, V2[0] is loaded from address (A0) + (V3[0]); V2[1] is
loaded from address (A0) + (V3[1]); etc. Simultaneaugly{O] is loaded
from address (A3) + (V3[0]); V1[1] is loaded from address (A3) +
(V3[1]); etc.

HTM-300-0 Cray Research Proprietary 117

Gather/Scatter Instructions CPU Module (CPE1)

Scatter Instructions

118

The 1773k instruction transfers data fronj Yo common memory. The
AO register contains the initial addressk dbntains the address indices.

For each element transferred from registerthe memory address is the
sum of (AOQ) and the corresponding element of register Kor example,
element O of Vis stored to address (AO) +KN]); element 1 of Vis
stored to address (A0) + KJ4]); etc.

Cray Research Proprietary HTM-300-0

IEEE FLOATING-POINT OVERVIEW

In general, the CRAY T90 series system CPE1 module conforms to the
IEEE standard for binary floating-point arithmetic. It performs 64-bit
floating-point add, subtract, multiply, divide and square root calculations.
The CPE1 module also provides several new instructions that compare
and convert floating-point and integer numbers.

The number and distribution of bits in the coefficient and the exponent
(refer to Figure 63) are different than they are in the Cray proprietary
floating-point format. (In the Cray proprietary floating-point format, the
coefficient comprises bit 0 through bit 47; the exponent comprises bit 48
through bit 63.) Moreover, to ensure that the IEEE arithmetic results
provide additional precision, bit -1 through bit -10 are appended in the
logic to the right of the least significant bit of the coefficient. These
supplemental bits are known as the Guard bit and the Sticky bits.

IEEE floating-point numbers are always represented as fractions — a
number such as .1xxxxxxx...X raised to a power. The first bit in the
fraction (the 1 bit, also called “the hidden bit") is always present in the
hardware. Therefore all numbers in this computer system are considered
normalized numberst is impossible to submit a number to the system

that is not normalized. This bit, although invisible to the user, is included
in the calculations. Consequently, calculations are made on a 53-bit
fraction. The result that the user sees is in the form illustrated in

Figure 63.

Figure 63. IEEE Floating-point Format

Bits 63 52| 51
Exponent Coefficient
Sign Bit 48 | 47 3231 16] 15 0
Parcel 3 Parcel 2 Parcel 1 Parcel 0
HTM-300-0 Cray Research Proprietary 119

Floating-point Overview

CPU Module (CPE1)

The benefits of the IEEE format are:

* Greater precision with 4 more bits in the coefficient field

* Specific representation for infinity and non-numeric numbers
e Control of rounding mode

e Consistency in handling of end-cases

* Expanded exceptions

IEEE Floating-point Number Examples

IEEE Terms

Table 23 lists some examples of IEEE floating-point numbers.

Table 23. IEEE Floating-point Numbers

Value 64-bit Word
+0 0000000000000000000000
-0 1000000000000000000000
+Greatest number O777577777777777777777
+Smallest number 0000200000000000000000
Infinity 0777600000000000000000
gNaN O7 777 XXXXXXXXXXXXXXXX L
sNaN 0777 BXXXXXXXXXXXXXXXX L

120

Thefollowing new terms are associated with IEEE floating-point:

Normal 0. Defined as an exponent of all 0’s. The sign of a normal
0 may be positive or negative.

Denormalized. Defined as a minimum exponent in which the
leading bit of the coefficient is equal to The CRI implementation
of IEEE does not support denormalized numbéslenormalized
number input into a floating-point unit will be converted to a zero
before it is used. This is a departure from the IEEE standard.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

Floating-point Overview

Unnormalized. Defined as an unnormalized number in which the
value of the exponent is greater than the minimum value of the
format being used, and the leftmost bit of the significand is 0 (this
number represents an unnormalized Only normalized number
representations are supported.

Normalized. Defined as a nonzero number in which the leftmost bit
of the significand is a 1. If the significand is a 0 then the number
becomes a normal 0. Normalization does not change the sign of the
number.

NaN. Defined as a symbolic entity encoded in floating-point format
and resulting from an operation that has no mathematical
interpretation. For example, 0 divided by O produces a NaN

(Not A Number).

Rules of Operation for NaNs

HTM-300-0

The sign of a NaN is never significant.

When any floating-point unit receives a NaN, it generates an Invalid
(NVI) signal and returns a result of NaN.

There are two different types of NaNs: quied signaling. If the

most significant bit of the coefficient is a 1, the NaN is considered
quiet. When a single operand NaN is received by the floating add or
floating multiply unit, that NaN is returned as a result except that:

* Asignaling NaN is converted to a quiet NaN.

* The sign is converted to positive.

When two signaling NaNs or two quiet NaNs are received by the
floating add or floating multiply unit, theoperand is returned as a
result and modified in compliance with the single-operand NaN rule.

When a signaling NaN and a quiet NaN are received by the floating
add or floating multiply unit, the signaling NaN is returned as a
result and modified according to the preceding rule.

When either the divide or square root unit receives a NaN, it returns
a quiet NaN with all bits set in the coefficient.

Cray Research Proprietary 121

Floating-point Overview

122

CPU Module (CPE1)

NaNs that are generated within a floating-point unit that were not
caused by receiving a NaN as an operand are given a tag code, which
is returned as part of the result. The result returned will be all bits

set except for bits 48, 49, and 50. These bits will show which
functional unit generated that result. Table 24 lists the NaN tag
codes.

Table 24. NaN Tag Codes

Functional Unit Bit 50 Bit 49 Bit 48
Add
Multiply
Divide
Square Root

| k| O] O
ol o] »| ©
| O] o] +

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Floating-point Overview

* When NaNs are sent to the compare unit:
* NaNs never compare to another operand
* NaNs never compare to another NaN
 NaNs are not equal to another NaN
* NaNs always fail equality tests and pass inequality tests
* The unordered test returns true if either input is a NaN

Deviations from the IEEE Standard

In the following cases, CRI does not follow the IEEE standard:

* Only 64-bit format, no support for the 32-bit format
* No support for denormalized numbers

* Exception flags are not precise because of a lack of instruction
ordering

Special Operand Values

Three special operand cases that are considered in IEEE are as follows:

* Any floating-point operand with an exponent field of ai &
considered a zero value. The sign is significant.
e +nnNnx-0=-0
e —nx+0=-0
e +nnn- +nn= +0 (except if rounding down)
e Sqrt-0=-0
 +0 result rounded down = -0
e Compare instructions +0 = -0

* When there is a maximum exponent and the coefficient is all 0’s, the
operand is considered to be infinite. The sign is significant. Infinite
values are generated when the exponent range required to represent
the number is exceeded. The value is operated on and exceptional
results are generated (overflow).

« 0777600000000000000000 = positive infinity
e 1777600000000000000000 = negative infinity

HTM-300-0 Cray Research Proprietary 123

Floating-point Overview CPU Module (CPE1)

* When there is a maximum exponent and the coefficiemitiall O’s,
the operand is not considered to be a real number (NaN). The sign is
ignored. There are two different types of NaNs: ggi#Nand
signalingsNaN. If the most significant bit of the coefficientis a 1,
the NaN is considered quiet. A gNaN is operated on like all other
operands; however, an exceptional input exception signal is
generated in the status register. If an sNaN is received as an operand,
an invalid signal is generated.

o O77760XXXXXXXXXXXXXXXXX1 = Quiet NaN (qNaN)
o O7777TOXXXXXXXXXXXXXXXXX1 = Signaling NaN (sNaN)

Floating-point Exception (Flags)

124

Floating-point operations can generate several exception flags. These
exceptions can be seen in Status register SR0O. Associated with these
exceptions are interrupt bits. The interrupt bits can be enabled or disabled
by the user. An interrupt will be generated if the exception is enabled, and
then a status register bit is séftan exception is set and then the user
enables the interrupt, no interrupt will be generatdthis is different

from previous Cray computer systems.

For instructions that can change interrupt mode bits, floating-point
instruction issue halts until all floating-point functional units are quiet.
All floating-point operations will complete with the same interrupt modes
that were set when they began.

There are six exceptions; they are:

* Invalid (NVI) An attempt was made to generate a result that is not
a real number. Invalid is signaled for the following reasons:
* Assignaling NaN (sNaN) was received as an input operand
« Addition or subtraction of infinite operands in some cases
* +oo— +oo = invalid
e Multiplication of O x infinity
» Division of 0/ 0 or infinity / infinity
e Square root of any negative number
e Signed compare where one or both inputs are NaNs
(>, <=, <, >=) Every NaN shall compare unordered

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

Rounding

Floating-point Overview

Divide by O (DVI) An attempt has been made to divide a finite
normal numerator by zero.

Overflow (OVF) A result larger than the greatest representable
number was generated. A positive infinity is returned
(07776000000000000000000). Overflow is handled differently than
the IEEE standard. Overflow is carried to positive or negative
infinity when rounding away from zero, and to theyést finite

number when rounding toward zero when the interrupt on overflow
is disabled. The standard specifies that when interrupt on overflow
is enabled, the operation will deliver the result, with the exponent
biased toward zero by 30§0Cray Research floating-point units
cannot detect whether the interrupts are enabled or disabled, and
therefore are unable to handle the two cases differently.

Underflow (UNF) A result smaller than the least representable
number was generated. A coefficient of zero with the sign bit is
returned. (00000000000000000000000). This resultfesreift
from the IEEE standard. The IEEE standard returns the result
obtained after multiplying the infinitely precise result By(@here
2%is the bias adjusgnd then rounding.

Inexact (NX) A result was generated that would be different if all
possible significant bits were returned or could be returned. Inexact
is also signaled on both overflow and underflow when the returned
result is not exactly zero. For example, 1 divided by 3 returns the
repeating decimal, 0.33333....... 3, and signals Inexact.

Exceptional Input (XI) A floating-point unit received an operand
of infinity or NaN. Xl is a Cray feature, not an IEEE standard.

HTM-300-0

Rounding is done by adding 1 to the least significant bit (LSB) of the

result if it is determined to be required by the rounding mode bits and any

bit of less significance than the LSB of the coefficient.

The first bit to the right of the LSB is called the guard bit; all the bits to
the right of the guard bit are “ORed” together into a “sticky” bit. If the
guard bit and the sticky bits are all 0’s, then the results are exact and no
rounding occurs. If either bit is a 1, then inexact is signaled and a 1 is
added to the LSB, depending on the rounding mode.

Cray Research Proprietary 125

Floating-point Overview CPU Module (CPE1)

There are four rounding modes that apply to the floating-point units:

* Round to the nearest.The result closest to infinitely precise is
returned. If the bits to the right of the LSB are greater than half the
value of the LSB, a 1 is added to the results. If the bits to the right
of the LSB are exactly half the value of the LSB, a 1 is added to the
results if the LSB=1.

* Round up. The more positive result closest to infinitely precise is
returned.

* Round to zero. The result closest to zero is returned.
* Round down. The more negative result is returned.

Table 25 shows the effect of the sign bit, guard bit and sticky bit on the
LSB, depending on the rounding mode selected.

Table 25. Effects of Rounding Mode on LSB

Result Bits Rounding Mode
Sign Bit Guard Bit Sticky Bit Round to Round to Round Up | Round Down
Nearest Zero
X 0 0 No No No No
0 0 1 No No Yes No
0 1 0 Yes if LSB=1 No Yes No
0 1 1 Yes No Yes No
1 0 1 No No No Yes
1 1 0 Yes if LSB=1 No No Yes
1 1 1 Yes No No Yes

IEEE Mathematical Functions

With the inclusion of NaN and infinity operands, more exceptional results
are possible. Table 26 through Table 28 show the results from different
combinations of operands and different operations. Remember to consider
the state of the rounding mode when you calculate the final results.

126 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Floating-point Overview

Addition and Subtraction Rules

Addition of equal operands with opposite signs produces a zero result. A
positive zero results if rounding mode is setaiond to nearesbr round

up or round to zeroA negative zero results if theund dowmmode is

used. A zero value is also returned if the operation underflows; the sign of
the result is the sign determined before underflow occurs. If the operation
signals overflow and the rounding mode is sebtod to nearesor round

up, the result returned is ad(077760000000000000000). If the round
mode is set toound to zerar round down the result rounds to the

greatest representable value (0777577777777777777777).

Table 26. Addition and Subtraction Results

Joperand
k operand
n 0 Io%) NaN
0,n, co n o NaN
0 n 0 1o%) NaN
0 o o oo, NaN* NaN
NaN NaN NaN NaN NaN

* A NaN is returned when adding two oo of different signs.
Subtracting two co of different signs results in a result of co with the sign of the minuend.

Multiplication, Division, and Square Root Rules

Multiplication or division of two nonzero numbers results in zero only if
the operation detects underflow. If an overflow occurs, a

oo (0777600000000000000000) or the greatest representable value
(O777577777777777777777) is returned, depending on the rounding
mode.

HTM-300-0 Cray Research Proprietary 127

Floating-point Overview

Table 27. Multiplication Results

CPU Module (CPE1)

joperand
k operand
n o NaN
0,n, co o NaN
0 0 NaN NaN
0 o NaN o NaN
NaN NaN NaN NaN NaN
Table 28. Division Results
Jjoperand
k operand
n 0 o NaN
n 0,n, o 0 Io'e) NaN
0 1) NaN 1SS NaN
co 0 0 NaN NaN
NaN NaN NaN NaN NaN
Table 29. Square Root Results
j operand +n -n NaN
Results +n NaN NaN
128 Cray Research Proprietary HTM-300-0

IEEE FLOATING-POINT ADD AND COMPARE

The floating-point add unit is contained on the FC options. The FC
options perform the following four types of operations:

* |EEE floating add and subtract

* |EEE floating point-to-integer conversion
* |EEE integer-to-floating point conversion
e |EEE compare instructions

There are three FC options in each CPU. Each FC option has a specific
function.

e FCO000

» Performs all scalar-to-scalar floating add functions
* Performs all scalar-to-scalar compare functions

» Performs all scalar-to-scalar conversions

* Passes all pipe 0 vector data

« FCO001

« Performs all pipe 0 floating add functions

» Performs all scalar-to-vectorj(8k) compare functions
» Performs all vector-to-vector {Wk) compare functions
« Performs all vector-to-vector conversions for pipe 0

» Passes all output data to FC000

* FCO002

 Performs all pipe 1 floating add functions

* Performs all scalar-to-vectorj(8k) compare functions
* Performs all vector-to-vector (WKk) compare functions
« Performs all vector-to-vector conversions for pipe 1

HTM-300-0 Cray Research Proprietary 129

Floating-point Add and Compare CPU Module (CPE1)

Floating Point Addition / Subtraction

130

Thefloating add functional unit, like the floating-point multiply unit,
receives normalized numbers as inputs. Because of the hidden bit, all
numbers are normalized. An input number that contains an exponent of
0’s will clear the coefficient to 0 before using it as an operand in the
functional unit. NaN operands are handled in accordance with the IEEE
standard. Performing an add or subtract operation on a NaN results in a
NaN being produced and a flag set.

Four IEEE standard flags and one non-IEEE standard flag are used in the
floating-point add unit. They are:

Invalid (NVI) An attempt was made to generate a result that is not a
number. NVI is signaled for the following conditions:

* A NaN as an input operand

e Addition or subtraction of infinity

e Signed compare with at least one NaN input
* Attempt to convert an out-of-range number

Overflow (OVF) A result larger than the greatest representable
number has been generated. Positive infinity
(0777600000000000000000) is returned. The CRAY T90 series
version of IEEE treats OVF differently than the IEEE standard. In
the CRAY T90 series application, overflow is carried to positive or
negative infinity when rounding away from zero. Overflow is
carried to the largest finite number when rounding towards zero,
when the interrupt on overflow is disabled. The IEEE standard
specifies that the operation will deliver the result, with the exponent
biased toward zero by 30@hen interrupt on overflow is enabled.
The floating-point units have no way to detect whether the traps are
enabled or disabled, and therefore are unable to handle the two cases
differently.

Underflow (UNF) A result smaller then the least representable
number was generated. A value of zero with the sign bit
(0000000000000000000000) is returned.

Inexact (NX) A result was generated whose value would be

different if all possible significant bits were returned or could be
returned. Inexact is also signaled on both overflow and underflow
when the result is not exactly 0. Some examples of inexact numbers
are repeating decimals and pi.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Floating-point Add and Compare

* Exceptional Input (XI) A floating-point unit received either an
infinite or NaN operand. Xl is a CRI feature that is not an IEEE
standard.

Figure 64 is a diagram of the floating add functional unit. The functional

unit uses 2 round mode bits to select one of four rounding modes.
Table 30 shows the four rounding modes used by the FC options.

Table 30. Rounding Modes

Round Mode (RMO) (RM1)
Nearest 0 0
Up infinity 1 0
To zero 0 1
Down infinity 1 1

You can set the rounding modes either by issuing an instruction or by
setting a bit in the exchange package. The 003004 through 003007
instructions set the rounding mode directly; the 0054000®/iBstruction

sets the rounding mode from the contentsiofAchange to the rounding
mode affects all floating-point instructions issued thereafter, but it has no
effect on instructions issued previously. The two exchange package bits,
RMO and RM1, determine the rounding modes (as illustrated in Table 30).

Rounding is determined by the choice of rounding mode and the values of
the guard bit, the sign bit, the sticky bits, and the least significant bit
(LSB). Table 31 defines when a 1 bit is added to the LSB of the results.

HTM-300-0 Cray Research Proprietary 131

Floating-point Add and Compare CPU Module (CPE1)
Table 31. Effects of Rounding Mode on LSB
Result Bits Rounding Mode
Sign Bit Guard Bit Sticky Bit Round to Round to Round Up | Round Down
Nearest Zero
X 0 0 No No No No
0 0 1 No No Yes No
0 1 0 Yes if LSB=1 No Yes No
0 1 1 Yes No Yes No
1 0 1 No No No Yes
1 1 0 Yes if LSB=1 No No Yes
1 1 1 Yes No No Yes
132 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

Floating-point Add and Compare

Figure 64. Floating Add Functional Unit

AV, AW, AX, AY) FC000
OAA—OAH _Sj IAA — IDP
OBA—OBH Sk I[EA - IHP _|
VNO — 7
INA — INB OAA-ODP_ Vi IAA—IAH
HHO00
OGE — OGF IRA
Rounding Mode RI >
OEA Go Scalar FA
JB001
OEQ Go S Compare
. AV, AW, AX, AY
IPA — IPC Si___IEA-IE
IQA — 1QC_ IXA=0 OEI SiViFlags IYA
1C000 > =
OXA — OXC NA—ILP IXB=1
ho, H1, H2 IMA — IME OFA SO Jump Sign
Scalar
BU0O0O
OWD — OWF IEEE Flags JB0/L
KO, K1, K2 MUX Vi Data IKH
e IPA - IPC _I"F o001
ORB Go Vector FA ISA -
0S| __Go V-S Compare ISI _ OAA — ODP
0SJ Go V-V Compare 1SQ o
OEA — OEE
BU00O OWD — OWF IQA - 10C_
KO, K1, K2 7 VE000
VONNO—7 OEA-OED__SjVj IAA — IDP A1 OGA SetVM VA
OEE —OEH _ Vk IEA — IHP IXB =1
ITA Vector Valid ONA
INA — INB -
AY000/1 OYF - OYG I Pipe 0
Rounding Mode
OYF-0YG
VN8 - 15
INA—INB _| FC002
BU001 ORB_Go Vector FA ___ISA N OAA — ODP Vi IAA — IAH
OS| Go V-S Compare |SI |
0SJ Go V-V Compare 1SQ
> AY001
OWD — OWE IQA—10C _
KO, K1, K2 OEl ViFlags IYA
1C002 OXD — OXE IPA—IPC _
ho, H1, H2 o
A1 OGA _ SetVM IVA VE0O2
VQVNE8-15 1oEa_oED sjvj IAA—IDP | 1xB=0
OEE —OEH _ Vk IEA—IHP | TA Vector Valid ONA
Pipe 1
IXA = Vector position
IXB = Pipe 0 position contant
HTM-300-0 Cray Research Proprietary 133

Floating-point Add and Compare CPU Module (CPE1)

Floating-point Add Functional Unit Instructions

Refer to Rble 32 for a list of the floating-point add functional unit
instructions.

Table 32. Floating-point Add Functional Unit Instructions

Instruction CAL Description

062ijk SiSj+ FSk |Scalar floating-point sum of (Sj) and (Sk) to S/

063ijk SiSj— FSk | Scalar floating-point difference of (Sj) minus (Sk) to Si

170ijk ViSj+ FVk | Vector floating-point sum of (S)) and (Vk elements) to Vi

171ijk ViVj+ FVk |Vector floating-point sum of (Vi elements) and (Vk elements) to
Vi

172ijk ViSj— FVk | Vector floating-point difference of (Sj) minus (VK) to Vi

173ijk ViVj—FVk | Vector floating-point difference of (Vj elements) minus (Vk
elements) to Vi

Floating-point Format

Referto Figure 65 for an illustration of floating-point format. Consider a
floating-point numbenormalizedwhen the most significant bit of the
coefficient (bit 51) is set.

Figure 65. IEEE Floating-point Format

Bits 63| 62 52| 51 0

Exponent Coefficient

Sign Bit

Floating-point-to-Integer Conversion

Floating-point-to-integer conversion takes place on the FC options. This
operation converts a floating-point number to a signed 64-bit integer
There are two cases of this conversion instruction. One case converts

134 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Floating-point Add and Compare

without rounding and is not IEEE standard. The other case enables
rounding. Table 33 describes the floating-point-to-integer conversion
instructions.

Table 33. Floating-Point-to-Integer Conversion Instructions

Instruction CAL Description
070i2 Siint, Sj Floating-point Sjto integer Si
070i3 Sirint, Sf Floating-point Sjto rounded integer S/
167ij0 Viint, Vj Floating-point Vj to integer Vi
167i1 Virint, Vj Floating-point Vjto rounded integer Vi

There are some notable special cases that involve the instructions listed in
Table 33. The invalid signal is sent:

« Ifthej field of the instruction is a 0, thenjj%r (Vj) is 0. The
result is +0 (0000000000000000000000).

« If the floating-point number has a value greater tHn-2,
then the unit will return O777577777777777777777. This
value is the largest number that can be represented.

o Ifthe inputis a NaN, then +0777777777777777777777 is
returned andhvalid is signaled.

« Ifthe input value is less than 1, a 0 or a 1 is returned, depending
on the rounding mode. Theexact signal will be sent unless
the input operand was exactly 0.

Integer-to-Floating-Point Conversion

Integer-to-floating-point conversions occur on the FC options. Two
instructions can convert a signed 64 bit integer into a floating-point
number. The result will be exact if the absolute value of the source
operand is less thai?®2 Otherwise the result is rounded, using the current
rounding mode. Refer to Table 34 for a description of the two
integer-to-floating-point conversion instructions.

HTM-300-0 Cray Research Proprietary 135

Floating-point Add and Compare CPU Module (CPE1)

Table 34. Conversion Instructions

Instruction CAL Description
070i/4 Siflt, Sj Integer Sjto floating-point Si
167i2 Viflt, Vj Integer Vj to floating-point Vi

Floating-point Comparisons

The IEEE standard supports a full set of floating-point comparison
instructions. There are four mutually exclusive operations that are
possible, they are:

e Lessthan

e Greater than
« Equal
 Unordered

Comparisons are always exact. They never overflow, underflow, or signal
inexact exceptions. If a signaling NaN (bit 51 of the fraction is 0) is
received as an input, it will generate an exception (XI) interrupt and also
an invalid (NVI) interrupt for signed compare tests (>, >=, <, <=). An
invalid also occurs if a quiet NaN (bit 51 of the fraction is 1) is received in
a signed compare test (>, >=, <, <=). Note that a NaN will always fail an
equal test (NaNs are equal to nothing) and always pass the Not equal test.

For compare functions, the sign of a zero value is ignored. Therefore a
positive zero will equal a negative zero, and a positive zero is not greater
than a negative zero.

When a scalar compare instruction tests true for a condition, all of the bits
in the result register are set. If the test fails, the result register will contain
0’s. For vector operations, passing a test sets a bit in the mask register and
failing a test clears the corresponding bit in the mask register. Table 35
lists the instructions used in the compare function.

136 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

HTM-300-0

Floating-point Add and Compare

Table 35. Compare Instructions

Instruction CAL Description
005501 164ijk SiSj,EQ,Sk |Floating-point compare equal
005502 164ijk SiSj,NQ,Sk |Floating-point compare not equal
005503 164ijk SiSj,GT,Sk |Floating-point compare greater than
005504 164ijk SiSjLE,Sk |Floating-point compare less than or equal
005505 164ijk SiSjLT,Sk |Floating-point compare less than
005506 164ijk SiSj,GE,Sk | Floating-point compare greater than or equal
005507 164ijk SiSj,UN,Sk | Floating-point compare unordered
005521 1640jk | VM Sj,EQ,Vk |Floating-point compare equal
005522 1640jk | VM Sj,NQ,Vk | Floating-point compare not equal
005523 1640jk | VM Sj,GT,Vk |Floating-point compare greater than
005524 1640jk | VM Sj,LE,Vk |Floating-point compare less than or equal
005525 1640jk VM Sj,LT,Vk |Floating-point compare less than
005526 1640jk | VM Sj,GE,Vk | Floating-point compare greater than or equal
005527 1640jk | VM Sj,UN,Vk | Floating-point compare unordered
005541 1640jk | VM Vj,EQ,Vk |Floating-point compare equal
005542 1640jk | VM Vj,NQ,Vk | Floating-point compare not equal
005543 1640jk | VM Vj,GT,Vk |Floating-point compare greater than
005544 1640jk | VM VjLE,Vk |Floating-point compare less than or equal
005545 1640jk VM VjLTVk |Floating-point compare less than
005546 1640jk | VM V[,GE,Vk |Floating-point compare greater than
005547 1640jk | VM Vj,UN,Vk | Floating-point compare unordered

Cray Research Proprietary

137

Floating-point Add and Compare CPU Module (CPE1)

This page intentionally left blank.

138 Cray Research Proprietary HTM-300-0

|IEEE DIVIDE AND SQUARE ROOT

|IEEE Divide

The vector and scalar registers share the divide and square root functional
unit. The divide functional unit also handles the iota instructions and the
pop, parity, and leading zero operations. (These functions are discussed in
the Vector Logical and in the Vector Pop/Parity sections.) There are two
divide and square root pipes; each pipe consists of one RE option and two
RD options. (Refer to Figure 67 at the end of this section for a block
diagram of the divide functional unit.)

All input data from the vector and scalar registers arrives at the functional
unit from the vector options. Scalar data is also routed through the vector
options, using the same path to the RE options.

NOTE: The divide unit operates in either full- or half-precision mode.
Although the hardware for half-precision is on the module, there
is no compiler or software support for the half-precision
instructions.

In half-precision mode, the divide unit stops iterating after 16 iterations
and produces 32-bit results. In full-precision mode, the divide unit
performs 28 iterations. The top bit of the result is generally a 0, but it can
be 1 if the ratio of the mantissa to the radicand is approximately 2:1. The
next bit is the hidden bit if no left shift is required. The hidden bit is 2 bits
below the top bit if a left shift is required, which leaves 29 or 30 bits to the
right of the hidden bit. The remaining (unused) 22 or 23 bits are set to 0’

Table 36 lists the IEEE floating-point divide and square root instructions
that are available on CRAY T90 series systems.

HTM-300-0 Cray Research Proprietary 139

IEEE Divide and Square Root CPU Module (CPE1)

Table 36. Floating-point Divide and Square Root Unit Instructions

Instruction CAL Description
065ijk Si SKIFSj Floating-point Sk divided by Sjto Si.
065ijk * SiSKIHSj | Half precision floating-point Sk divided by Sjto Si.
070j0 SiSQR Sj | Floating-point square root of Sjto Si.
070jjo* SiSQRH Sj | Half precision floating-point square root of Sjto Si.
162ijk ViVKIFSj Floating-point Vk divided by Sjto Vi.
162ijk* ViVKIHSj | Half precision floating-point Vk divided by Sjto Vi.
163jjk ViVKIFVj Floating-point Vk divided by Vjto Vi.
163jjk* ViVKkIHVj | Half precision floating-point Vk divided by Vjto Vi.
174ijk0 ViSQR Vj |Floating-point square root of Vjto Vi.
174ijk0* Vi SQRH Vj | Half precision floating-point square root of Vjto Vi.

* Must be preceded by a 005400 instruction

Divide/Square Root Options

There are two sets of options because this functional unit has two pipes.
The even elements are processed by pipe 0, and the odd elements are
processed by pipe 1. Table 37 shows the options used for each pipe.

Table 37. Divide Options

Pipe 0 Pipe 1
REO00 REO001
RD000 RDO002
RDO001 RDO003

RD option

The RD option communicates only with the RE option; there are two RD
options for each RE option. The RD receives input operands from the RE
option: first thg operand, then thieoperand. The RD option sends the
mantissa serially to the RE option.

140 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

RE Option

Normalization

HTM-300-0

IEEE Divide and Square Root

EachRD option contains four identical divide/square root cores. There

are a total of eight cores in each unit. Divide and square root operands are
sent to the RD options so that each RD option receives operands at a
maximum rate of one every 4 clock periods (CPs) in half-precision mode

or one every 8 CPs in full-precision mode. Operands are always sent to
the even-numbered RD option first. If a new divide operation is starting
and it has been at least 16 CPs since the last operation, the unit will reset
the pipe back to the even-numbered RD option. This feature allows a
failure to be isolated to a particular RD option.

The input data is received at the RE option and sent to the RD option
along with the Yugasignal. The Yugaignal causes the RD option to
assign one of the divide cores to begin calculation.

Thereis one RE option for each pipe. The RE option is responsible for:

» |ota (See the “Vector Logical” section for a description of lota)

» Vector Pop/Pop Parity and Leading Zero instructions (See the
“Vector Pop/Pop Parity and Leading Zero” section for a
description of these instructions)

» Exponents calculation

* Exceptions

* Normalization

* Rounding

All communication with the CPU occurs through the RE options. There is
only one 64-bit operand path into the divide unit. The divide unit receives
data from the VN and VQ options and passes it on to the RD option;, The
andk operands for divide are multiplexed; fijsrrives and thek. Scalar
data is also routed through the VN and VQ options.

A floating-point divide operation may be normalized at most by one
position. If the divisor is greater then the mantissa, then the most
significant bit of the result is 0 and a left shift of one position is
preformed. Otherwise, the most significant bit of the result is always a 1.

Cray Research Proprietary 141

IEEE Divide and Square Root CPU Module (CPE1)

Squareroot operations should never require normalization. The radicand
is shifted left one position before the operation is started. There is one
exception. Although it is mathematically impossible for the ratio of two
mantissas to be equal to 2, or the square root of n<4 to be 2, it is possible,
in half-precision mode, for this result to be produced. Also if rounding
away from zero, the square root of the largest possible n<4 must be
rounded up to 2. In all these cases, the bit above the most significant bit is
set and all other bits are forced to 0’s. For square root, this case is
detected and the exponent is adjusted accordingly. For divide, the
exponent is left unjustified and the mantissa is forced to O.

Rounding

Two rounding mode bits are received at the RE option and held for vector
length. The 2 rounding mode bits select one of following four rounding
modes:

e« 00 =Round to nearest

01 = Round toward positive
e 10 =Round toward zero

e 11 = Round toward negative

Rounding occurs by adding one to the least significant bit (LSB) of the
results. (Rounding is determined to be required by the rounding mode bits
and any bit of less significance than the LSB of the coefficient and
possibly the sign bit and the LSB.)

In rounding, the first bit to the right of the LSB is called the guard bit, all
the bits to the right of the guard bit are “ORed” together into a “sticky”

bit. If the guard bit and the sticky bit are 0’s, then the results are exact and
no rounding will take place. If either bit is a 1, then Inexact is signaled

and a 1 is added to the LSB, depending on the rounding mode.

Floating Point Exception Flags

The divide square root unit has six exception flags:

* Invalid (NVI) An attempt has been made to generate a result that is
not a real number. Invalid is signaled for the following conditions:
» Asignaling NaN (sNaN) was received as an input operand
» Division of 0 by 0 or infinity by infinity
e Square root of a negative number

142 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

IEEE Divide and Square Root

Divide by O (DVI) An attempt has been made to divide a finite
normal numerator by zero.

Overflow (OVF) A result that is larger than the largest
representable number was generated.

Underflow (UNF) A nonzero result that is smaller than the smallest
representable number was generated.

Inexact (NX) A result was generated whose value would be
different if all possible significant bits were returned or could be
returned. Inexact is also signaled on both overflow and underflow
when the result is not exactly 0. For example, 1 divided by 3 returns
the repeating decimal, 0.33333....... 3, and signals Inexact.

Exceptional Input (XI) A floating-point unit received an operand
of infinity or NaN. Xl is a CRI feature, not an IEEE standard.

Exception flags and other generated information about the operation are
sent serially to the AY option and onward to the status registers of the HH
options. The information is recoded and staged as shown in Figure 66.

Figure 66. Serial Floating-point Status

Bit 19 18 17-1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Sqrt

Sclr

i

0' RM1| RMO | sign| X | inv |dbz |und | ovf | zero |inf | gqNaN |sNaN | X [X

Division and Square Root Rules

HTM-300-0

If either operand of a divide is a NaN, or if the operand in a square root is
a NaN, or if the operation is invalid, then the result must be a NaN. If one
of the operands is a NaN, the result will be a positive value quiet NaN,
with a mantissa of all 1's. If a NaN is generated because of an invalid
operation, the result will be a positive value quiet NaN, but 1 or 2 bits of
the mantissa will be set to identify which unit generated the NaN. These
identifier bits are shown in Table 38.

Cray Research Proprietary 143

IEEE Divide and Square Root

Table 38. NaN Identifiers

CPU Module (CPE1)

Unit Bit 50 Bit 49 Bit 48
Divide 1
Square Root 1

Division of two nonzero numbers results in a 0, only when an underflow

operation occurs. If overflow occurspa (0777600000000000000000)
or the greatest representable value (0777577777777777777777) is
returned. Table 39 lists the characteristics of floating divide input

operands and how they affect the quotient. Table 40 contains a list for

square root calculations.

Table 39. Division Results

Joperand
k operand
n 0) NaN
n 0,n, co 0 o NaN
0 o) NaN o NaN
©0 0 0 NaN NaN
NaN NaN NaN NaN NaN
Table 40. Square Root Results
j operand +n 0 -n NaN
Results +n 0 NaN NaN
144 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

(v-) 1/ kBits 0~ 15 IAA - IAP
) jl kBits 16 — 31 IBA - 1BP
(v-)LLk Bits 32 — 47 ICA - ICP_
(v-) [] k Bits 48 — 63 IDA — IDP_

(aB) Go Scalar Divide/Sqrt IEA

(IC) k0o-1 IEB — IEC

(BU) Go Vector Divide/Sqrt IED

(vE) Mector Element Valid IEE

@®u) EIS IEH

(AY) IEK — IEM
i Bits (Which Sito Write)

(IC) ho-1 IEP - IEQ

(AY) Rounding Mode IFA — IFB

HTM-300-0

REOQ00

Check for
lllegal inputs

Figure 67. Divide Unit Block Diagram

RDO000
Core Select
Valid Divide/Sqrt (Yugo) I[AA
Core A)
OYA Remainder Zero
IHJ . .
oyB
Output MUX Remainder Negative
IHC Core B
Input
e Data OQA — 0QC
J First
then K ORA - ORC
IHA > Core C OSA — OSC
A —1IP__ OTA - OTC YA >
1YB
OEA IJA-1JP Core D
IQA —1QC_
IKA —IKP _ >
OIA - OIP Bits0—15 o IRA — IRC
OJA - OJP Bits 16 — 31 ILA=ILP ISA —1SC
OKA — OKP Bits 32 — 47 ITA—ITC
OLA —OLP Bits 48 — 63 Serial Quotient to RE
IUA — IUC
OHA Sart
IVA—IVC _
OHB Odd Exponent RD001 >
ILA — ILP| IWA — W
OHC Half Precision > S
IXA — IXC
OHJ Hold J Operand IKA — IKP Core Select >
1YC
1JA — 1JP |
1YD
OEB O0QA — 0QC
IIA — 1IP ORA — ORC
Core A
IHA - OSA - 0OSC
IHB Output MUX OTA - OTC
IHC Input Core B OYA Remainder Zero
Data . .
IHJ J First OYB Remainder Negative
then K
Core C
AYoo0o Rounding Mode IFA —IFB
AY001
Valid Divide/Sqrt (Yugo) 1AA o
Core D

Cray Research Proprietary

RE000

Exponent Calculation
Normalization

Rounding

IEEE Divide and Square Root

OAA — OAP Result Bits 0 — 15 to S/V Register
OBA — OBP Result Bits 16 — 31 to S/V Register
OCA — OCP Result Bits 32 — 47 to S/V Register
ODA — ODP Result Bits 48 — 63 to S/V Register
OFA Status Flags to HH00O0 via AY000
OSA — OSB Divide SiRelease _ (9B)

OSA = Valid, iBit 1

OSB =Bits 0, 2
OSC — OSD Divide SiRelease _

OSC = vaiid, iBit . AV AW)

OSD =Bits 0, 2
OSE — OSF Divide SiRelease _

OSE = Valid, iBit 1 (AW)

OSF =Bits 0, 2
OSG — OSH Divide Si R.ele.as.e > (AX)

OSG = Valid, iBit 1

OSH =Bits 0, 2
0S| - 0SJ Divide SiRelease _ (AY)

OSl = Valid, iBit1
0SJ = Bits 0, 2

145

CPU Module with IEEE IEEE Divide and Square Root

Delete this page when printing.

Module Pub Number Cray Research Proprietary 146
Preliminary Information

IEEE FLOATING-POINT MULTIPLY AND INTEGER

MULTIPLY

HTM-300-0

The scalar and vector registers share the floating-point multiply functional
unit. Two floating-point operands arrive at the multiply functional unit

from either the scalar or the vector registers. The signs of the two
operands are combined through an exclusive OR operation, the exponents
are added together, and the two 51-bit coefficients are multiplied.

The floating-point multiply functional unit also performs the integer
multiply operation. Two 64-bit operands arrive at the functional unit and
a 128-bit result is generated. With the EIS instruction set, the user can
select either the upper 64 bits or the lower 64 bits of the result.

The multiply unit is a dual pipe unit. Each unit consists of five options:
the NE option, two NF options, an HG option, and an NH option. Refer to
the block diagrams of the multiply functional unit in Figure 73 and

Figure 74.

Cray Research Proprietary 147

Floating-point Multiply CPU Module (CPE1)

Multiply Algorithm

The multiply functional unit uses a type of recode multiplication algorithm
known as Booth’s Algorithm.

The multiplier, in this case theoperand, is partitioned into 3-bit recode
groups centered on the even bits. A forced zero is added to the first
recode group. The recode groups are formed as shovabia 1. The
following subsections provide examples of standard and Booth Recode
multiplication.

Table 41. Recode Groups

Odd Bit Even Bit i-1 Recode Value Recode Product
0 0 0 +0 0
0 0 1 +1 X
0 1 0 +1 X
0 1 1 +2 2X
1 0 0 -2 (2X)'+1
1 0 1 -1 (X)+1
1 1 0 -1 (X)+1
1 1 1 -0 (0) +1
i—1 = Bit to right of recode X = Multiplicand
group

Standard Binary Multiplication

Referto the following example of standard binary multiplication:

000011 (3)
011101 (35)
000011
000000
000011
000011
000011
000000
0000001010111 (127)

148 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Floating-point Multiply

Booth Recode Multiplication

Refer to the following example of Booth Recode multiplication:

000011 (3)
011101 (35)
000000000011
11111111010
00000110
1 000001010111 (127)

In the previous example, the multiplier is recoded into bit groups centered
on the even bit. A forced zero is appended to the first recode group.

As shown in Table 41, the first recode of the multiplier, bit 1, bit O, and the
forced zero, produces a recode value of 010, or +1. In this case, the
multiplicand is brought down to form the first partial product.

The second recode, bit 3, bit 2, and bit 1, produces a recode value of —1.
In this case, a two’s complement and a shift of 1 are performed on the
multiplicand, which forms the second partial product.

The final recode, bits 5, 4, and 3 produces a recode value of +2, which
results in a shift of 1 on the multiplicand and forms the third partial
product.

Integer Multiply Instructions

The floating-point multiply functional unit also performs the integer
multiply operation. Two 64-bit operands are presented to the unit and a
128-bit result is generated. The EIS instruction set allows the user to
select either the upper 64 bits or the lower 64 bits of the 128-bit result.
Refer to Table 42 for a list of the integer multiply instructions.

HTM-300-0 Cray Research Proprietary 149

Floating-point Multiply CPU Module (CPE1)

Table 42. Integer Multiply Instructions

Instruction CAL Description

066k SIS*LSk Integer product, (Sj) times (SkK) to S, returning lower

066ijk * SiSFUSk Integer product, (Sj) times (SK) to S, returning upper

165ijk VVFLVK Integer product, (Vj elements) times (Vk elements) to Vi,
returning lower

165ijk * VN*UVk Integer product, (Vj elements) times (Vk elements) to Vi,
returning upper

166k VISFLVk Integer product, (Sj) times (Vk elements) to Vi, returning lower

166ijk * VIiSFUVk Integer product, (Sj)) times (Vk elements) to Vi, returning upper

* Must be preceded by a 005400 instruction

Floating-point Multiply Instructions

Thefloating point-multiply unit uses the IEEE standard for multiplication.
There are 11 exponent bits and 52 coefficient bits. Refer to Figure 68 for
the IEEE format.

Figure 68. IEEE Floating-point Format

Bits 63| 62 52| 51 0

Exponent Coefficient

Sign Bit

Whentwo operands are presented to the unit, a pyramid is formed. The
least significant bits are captured by the NE option (NEOQO for pipe 0 and
NEOO1 for pipe 1). These bits are the sticky bits when rounding modes
are in operation, and they are also the lower bits of the integer multiply
results. The two NF options, (NFOOO and NF0O1 for pipe 0 and NF002
and NFO0O03 for pipe 1) form the middle of the pyramid.

Refer to Rble 43 for a list of the floating-point multiply instructions.

150 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Floating-point Multiply

Table 43. Floating-point Multiply Instructions

Instruction CAL Description
064ijk SiISfFFSk Scalar floating-point product of (Sj) times (SK) to (Si)
160ijk VISRV kK Vector floating-point product (Sj) times (Vk elements) to Vi
161ijk VNj*FVk | Vector floating-point product (V) elements) times (Vk elements)
to Vi

Multiply Functional Unit Options

NE Option

HTM-300-0

There are two sets of options because the multiply functional unit is a
dual-pipe functional unit. The even elements are processed by pipe 0,

and the odd elements are processed by pipe 1. Table 44 shows the options
used for each pipe.

Table 44. Multiply Options

Pipe 0 Pipe 1
NEOOO NEOO1
NF000 NF002
NF001 NF003
NGO000 NGO001
NH000 NHO001

The NE option forms the rightmost (least significant) portion of the
pyramid. (Refer to Figure 69.) The NE option receiveargl \k

operand bits 0 through 49 angéd \f bits O through 50. During a
floating multiply operation, this portion of the pyramid is used mainly to
create the sticky bits; however, during an integer multiply, the results will
be used to produce the full 128-bit result. The NE option receives very
little control from the rest of the unit. It cannot distinguish whether the
operands are to be used as floating point or integer.

Cray Research Proprietary 151

Floating-point Multiply

NF Option

NG Option

NH Option

152

CPU Module (CPE1)

There are two NF options per pipe. NFOOO and NFOO1 are used for

pipe 0, and NFO02 and NFOO03 are used for pipe 1. A particular input may
be used on one option and not the other, depending on its position. The
NF option may receive control signals from the NG option with
information that an invalid operand was received and instructions to abort
further calculations.

NFO0O0O receivesSand \k operands bit 33 through bit 65 (bit 64 and bit

65 are forced to 0’s) and &nd \f bit —1 through bit 47 (bit —1 is forced to

a zero). NFOOO generates the upper-middle portion of the pyramid. (Refer
to Figure 70).

NFO0O01 receivessand \k operand bit —1 through bit 33, (bit -1 is forced

to zero) and Sand V\ bit 17 through bit 65 (bit 64 and bit 65 are forced to
0's). NFOO1 generates the lower-middle portion of the pyramid. (Refer to
Figure 71.)

The NG option forms the left portion of the pyramid. (Refer to

Figure 72.) The NG option receivek &d \k operand bit 17 through bit
65 (bit 64 and bit 65 are forced to 0’s) arjda8d \f bit 17 through bit 65
(bit 64 and bit 65 are forced to a 0’s).

The NG option also detects exceptional inputs such as:
e Zeroj exponent/fraction
» Zerok exponent/fraction
« Signaling NANj operand
» Signaling NANk operand
* Quiet NANj operand
* Quiet NANk operand
* Infinite NAN j operand
e Infinite NAN k operand

and communicates the presence of these inputs to the NF options and the
NH option.

The NH option performs the final summation for the floating-point

multiply pyramid and sends the final coefficient and exponent to the result
registers. The NH also transmits the interrupt signal to the AY option
where it is relayed to the HH option for use in the exchange package.

Cray Research Proprietary HTM-300-0

0-00€-WL1H

Arelandold yoreasay Aeid

€4qT

Figure 69. NE Option Pyramid

k Operand

494847464544 434241403938 3736353433323130292827262524232221201918171615141312 11 10 09 08 07 06 0504 03 02 01 00

-1, 00, 01

07, 08, 09

09, 10, 11

11,12, 13

13, 14, 15

15, 16, 17

17, 18, 19

25, 26, 27

27,28, 29

29, 30, 31

31, 32, 33

33, 34, 35

35, 36, 37

37, 38, 39

39, 40, 41

41, 42, 43

43, 44, 45

45, 46, 47

47,48, 49

| J19,20,21
21,22, 23

23, 24, 25

Jj Operand

|_Jo1,02,03
03, 04, 05

05, 06, 07

(13d2) 8inpow Ndo

Aldiny juiod-6uieoj4

ST

Arelandold yoleasay Aeid

0-00€-W1H

65, 64
63, 62
61, 60
59, 58
57,56
55, 54
53, 52
51, 50
49, 48
47, 46
45, 44
43, 42
41, 40
39, 38
37,36
35, 34
XX, XX

Figure 70. NFO Option Pyramid

NFO

35, 36, 37

37, 38, 39

39, 40, 41

41, 42, 43
43, 44, 45
45, 46, 47

29, 30, 31
31, 32,33

23,24, 25

XX, XX, XX
XX, XX, XX
XX, XX, XX
XX, XX, XX
XX, XX, XX
XX, XX, XX
XX, XX, -1
-1, 00, 01
01, 02, 03
03, 04, 05
05, 06, 07
07, 08, 09
09, 10,11
11,12, 13
13, 14, 15
15, 16, 17
17,18, 19
19, 20, 21

21,22, 23

Ajdinin juiod-6uneoj4

(13d2) 8inpon Ndo

0-00€-W1H

Arelandold yoreasay Aeid

GST

33,32
31,30
29, 28
27,26
25,24
23,22
21,20
19, 18
17,16
15, 14
13,12
11,10
09, 08
07, 06
05, 04
03, 02
01, 00

Figure 71. NF1 Option Pyramid

NF1

55, 56, 57

57, 58, 59

59, 60, 61

61, 62, 63

63, 64, 65

65, XX, XX

XX, XX, XX

XX, XX, XX

XX, XX, XX

XX, XX, XX

XX, XX, XX
XX, XX, XX
XX, XX, XX

17,18, 19
19, 20, 21
21, 22,23
23,24, 25
25, 26, 27
27,28, 29
29, 30, 31
31, 32, 33
33, 34, 35
35, 36, 37
37, 38, 39
39, 40, 41
41,42, 43
43, 44, 45
45, 46, 47
47, 48, 49
49, 50, 51
51, 52,53

53, 54,55

(13d2) 8inpow Ndo

Aldiny juiod-6uieoj4

94T

Arelandold yoleasay Aeid

0-00€-W1H

Figure 72. NG Option Pyramid

NG

6564 6362 6160595857 56 5554 535251504948 47 4645444342414039383736353433323130292827262524232221201918

17,18, 19
19,20, 21
21, 22,23
23, 24,25
25, 26, 27
27, 28, 29
29, 30,31
31, 32,33
33, 34,35
35, 36, 37
37, 38, 39
39, 40, 41
41,42, 43
43, 44, 45
45, 46, 47
47, 48, 49
49, 50, 51
51, 52, 53
53, 54, 55
55, 56, 57
57, 58, 59
59, 60, 61
61, 62, 63
63, 64, 65

Ajdinin juiod-6uneoj4

(13d2) 8inpon Ndo

0-00€-IN1H

Arejaudold yoleasay Aeid

,ST

NEOOO

Sj Captured for Use
with Sj Vk Operations

Sk and Vk Bits 0 — 49
Sjand Vj Bits 0 — 50

Figure 73. Multiply Data Paths

OAA —OCB

OCcCc -0OcCl

OCJ-0OCN

OCoO-0Cz

NFO000

Sj Captured for Use
with SjVk Operations

Sk and Vk Bits 33 — 65
Sjand Vj Bits -1 — 47

k Bit 64, 65 Forced 0
JBit-1 Forced O

Result Bits 0 — 53

IAA—IC

Result Bits 11, 15, 19, 23, 27, 28, 30ICC — IC|

NF001

Sj Captured for Use
with Sjand Vk
Operations

Sk and Vk Bits -1 — 33
k bit 64, 65 Forced 0

Sjand Vj Bits 17 — 65
k Bit -1 Forced 0
J Bit 64, 65 Forced 0

Sj0-24 IAA — IAY
Sj25-49 IBA-IBY
Vj0-24 ICA—ICY,
Vj25-49 IDA - IDY,
Sk0—-23 IEA — IEX
Sk24-49 IFA-IFZ
VkO—23 IGA-IG
Vk24-49 IHA-IHZ
SjForced 0 IAA
Sj0—22 IAB — IAX
Sj23-47 IBA — IBY
Vj Forced 0 ICA
Vj0—22 ICA-IC
Vj23 - 47 IDA — IDY,
SkForced 0 IEA—IEB
Sk33-48 IEC — IER
Sk49 — 63 IFA — IFO
SkForced 0 IFP —IFQ
Vk Forced 0 IGA —IGB,
Vk 3348 IGC—IG
Vk 49 — 63 IHA — IHO,
Vk Forced 0 IHP — IHQ
Sj17-40 1AA — IAX
Sj41 - 63 IBA — IBW,
SjForced 0 IAX —IBY
Vj17 — 40 ICA — ICX
Vj41 - 63 IDA — IDW.
VjForced 0 IDX - IDY
SkForced 0 IEA
Sk0-16 IEB — IER
Sk17 -33 IFA — IFQ
Vk Forced 0 IGA
VkO—-16 IGB — IGR
Vk17 — 33 IHR — IHY
Sj17-40 1AA — IAX
Sj41 - 63 IBA — IBW,
SjForced 0 IAX - IBY
Vj17 — 40 ICA —ICX
Vj41 - 63 IDA — IDW.
VjForced 0 IDX —IDY
Sk17-40 IEA — IEX
Sk41 - 63 IFA — IFW
SkForced 0 IEX—IFY
Vk 17 — 40 IGA — 1IGX
Vk41 - 63 IHA — IHW.
Vk Forced 0 IHX — [HY

NGO000

Sj Captured for Use
with Sjand Vk
Operations

Result Bits 32, 34, 36, 38, 40 ICJ-IC

Result Bits 42 — 53 ICO-1IC
OAA — OBK Result Bits 50 — 86 IDA — IEK
OAA - OBK Result Bits 50 — 86 IFA —IGK
OCA — OBT_Result Bits 82 — 127 IHA —IIT
OCA — OCH Result Bits 83,86,88 — 93 IJA —IJH
OCI—0OCO_Result Bits 95,97,99,101,103,105,107 131 —1JO _
OCP — OCU_Result Bits 112,116,120,124,127 1JP —1JU

NHO000

Final Summation

OAA — OCL

(13d2) 8inpow Ndo

Ajdninw juiod-6uieol4

0-00€-IN1H

Arejaudold yoleasay Aeid

6ST

Figure 74. Multiply Control Paths

NEOO0O
38B) Go Scalar 1QA-1QB
(BU) Go_Vector 10C
NF000
0QG Go FP Mode
OQH Go Scalar
1QC (0]0]] Go Vector
(NFOOO) hBit2 IQF 1OOK _ hBit2 NF002
O0L h Bit 2 NF002
OON h Bit 2 > NGO0O1
0QJ
oM
OQA - 0QC
J Operand Zero
h Bit 2
h Bit 2 QG _,
NF001 IQH
IQF
10l
10G
™N -
IOH OQD - OQF Kk Operand Zero (NG000)
101
1QJ
>_ To NFOO0
IQK ALSO
0L
10M
ION | _J 1QC
IQD
Infinite NaN k Operand
Infinite NaN k Operand
Quiet NaN k Operand
Quiet NaN j Operand
Signaling NaN k Operand
Signaling NaN j Operand
Zero k Exponent/Fraction
Zero j Exponent/Fraction
NG000
O0QA
00B
0QC
0QD
OQE
OQF
00G
hBit2 IQF OQH
. ODB Invalid Input
jOperand Zero 1QG
ODC Exceptional Input
ODA Sign Bit to Branch Control > (JB)

NHO000

(13d2) 8inpow Ndo

Ajdninw juiod-6uieol4

CPU Module (CPE1) Floating-point Multiply

Delete this page when printing.

160 Cray Research Proprietary HTM-300-0

BIT MATRIX MULTIPLY

The OA option performs the bit matrix multiply operation. The functional
unit consists of six OA options.

The OA option performs two functions related to bit matrix multiphre
first function loads the B array with thg ¥perand. The second function
performs the A BT operation where A is either th¢ & Vj operand and
BT is the B array transposed. The scalar operation produces a scalar
result, and the vector operation produces a vector result.

Each OA option receives 22 bits of the operand. OA002 and OA005
receive 20 bits, and the last two inputs are forced to zero. Each OA option
holds 32 elements 22 bits. When performing the ABT operation,

each OA produces a partial result for each of the 32 elements. The partial
results are then sent to the appropriate OA option to complete the final
results. There is only one copy of each control bit coming into the
functional unit, so OA001 and OA004 relay the control bits to the other
options.

Bit Matrix Multiply Theory of Operation

The bit matrix multiply (BMM) functional unit performs a logical
multiplication of two matrices, designated A and B, which results in a
single-bit result for each pair of elements multiplied. The matrices, which
are held in vector registers, may vary in size from X Ritbit (1x 1) to

64 x 64 bits. The size of the matrix is specified by the vector length (VL)
register (example: VL = 20 specifies 220 matrices).

The following conditions are necessary to obtain valid results:
* The two matrices must be square and of equal size.

* The two matrices must be left-justified in the vector registers to
element O, bit 63.

* Unused bits of each element that contain part of the matrix must be
zeroed.

Elements not containing parts of a matrix are unaffected.

HTM-300-0 Cray Research Proprietary 161

Bit Matrix Multiply

162

Element O Element O

Element 19)
Element 20 . Valid Data Zeroes

Element 63 Element 63

CPU Module (CPE1)

Result matrix C is the product of matrix A and matrix B transpos8d (B
Btis formed from matrix B by interchanging its rows and columns.

In addition to performing full 64 64 matrix multiply operations, the
BMM functional unit performs a scalar-vector multiply operation and
stores the result in an S register.

Figure 75 is an illustration of 2020 and 56 50 matrices stored in vector
registers.

Figure 75. Vector Storage of Bit Matrices

Bits 63 44 43 0 Bits 63 14 13 0

Valid

Data Zeroes

Element 49
Element 50

Don’t Care

Don’t Care

VL = 2010 VL = 5010

In this section, the notation used to represent individual bits of a matrix is
a lowercase letter followed by a subscripted numeric field. The letter
represents the name of the matrix; the numerics denote, respectively, the
element and bit of the vector register data. Elements and bits numbered
from 1 to 9 are represented as a 2-digit number; elements and bits
numbered upward from 10 are separated by a comma. For example:

ag 7 represents matrix A, element 3, bit 7
b1s a3represents matrix B, element 15, bit 43

ag 12represents matrix A, element 3, bit 12

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Bit Matrix Multiply

Matrices A and B can be represented mathematically as illustrated in
Figure 76. Note that the ultimate degree of both element and bit can be
represented by because matrices must be square. Each row of a matrix
corresponds to an element of a vector register.

Figure 76. Mathematical Representation of Matrices A and B

a1 &2 X3 ... an P11 b1z b1z ... b

a1 2 @3 ... @n o1 b2 boz ... bpp
A=) B = .

1 @2 83 ... an bh1 bn2 bnz ... b

The BMM functional unit transposes matrix B as it is loaded into the
BMM storage area. The elements (rows) of the B matrix data are
interchanged with the bit positions (columns) as illustrated in Figure 77.

Figure 77. B Matrix and BMatrix Relationships

b11 bi2 b1z ... hip P11 bp1 bzg ... Iy
bo1 bpo bp3 ... lpp b2 by bzp ... b2
B=|bgs bsz bzz ... byn| Bi=[biz bpz bzz ... Iy
bnl bn2 bn3 bm bln b2n b3n thn

HTM-300-0 Cray Research Proprietary 163

Bit Matrix Multiply

a1
a1
az1
ABt=|.
an1
164

a2
a2
az2

an2

The operation, C = ABis illustrated in Figure 78.

a13
a3
as3

an3

where:

an b1z bp1 bzg ... I

&n b2 by bzp ... Iho

&n b1z bpz bzz ... Ihs

chn bin bon ban ... hhn
Bt

Ci11=a11b11Pay b1 2Pagab13P . .
Ci=a1b21Pag JboPay 3023 P . .
Ciz=a1bz1Pag bzoPay 303z P . .

Cor=ap1b11Papb1oPapadi P . .

Car=ag1bp1PaghoPagabazd . .

T @ indicatesanexclusiveOR operation.

Cray Research Proprietary

Figure 78. Multiplication of A and B

C11
C21
C31

Ch1

C12
C22
C32

Ch2

.Dagnbint
.Dagnbon
.Daynban

.Dagnb1n

.Dagnbzn

C13
C23
C32

Ch2

CPU Module (CPE1)

Cln
@n
&n

Gin

HTM-300-0

CPU Module (CPE1) Bit Matrix Multiply

Instructions
Refer to Table 45 for a list of the bit matrix multiply instructions.
Table 45. Bit Matrix Multiply Instructions
Instruction CAL Description

17404 BMM LVj |Transmit Vjelements 0 — 63 to B matrix

17405 t BMM UVj |Transmit Vjelements 64 — 127 to B matrix

174ij6 Vi Vj*BT | Transmit the value of Vj multiplied by the transposed B matrix
to Vi

070ij6 Si Sj*BT | Transmit the value of Sj multiplied by the transposed B matrix
to Si

002210 CBL Clear the bit matrix loaded (BML) flag

T New instruction

Referto Figure 79 for a BMM block diagram for pipe 0 and to Figure 80
for a BMM block diagram for pipe 1.

HTM-300-0 Cray Research Proprietary 165

Bit Matrix Multiply CPU Module (CPE1)

This page intentionally left blank.

166 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

HTM-300-0

| VROOO Bits 03
| VM000O Bits4 -7
| VROO1 Bits 8—11
| VMOO1 Bits 12 — 15
| VROO2 Bits 16 - 19

VMO002 Bits 20-21

| VM002 Bits 22 — 23

| VRO0O3 Bits 24 — 27

| VM003 Bits 28 — 31

| VRO0O4 Bits32-35

| VM004 Bits 36 — 39

VRO05 Bits 40 — 43

IAA — IAV

Figure 79. Bit Matrix Multiply Block Diagram, Pipe O

IAA — IAV

OAOQ0O0 Bits 0 - 21

IAA — IAU

OAQO01 Bits 22 — 43

OA000

Bits 42, 44 — 62

Partial Results

Bit Matrix Multiply

| VM005 Bits 44 — 47
| VROO6 Bits 48 — 51
| VM006 Bits 52 — 55
| VROO7 Bits 56 - 59

VMO0O07 Bits 60 — 63

IAA — 1AV

OAO002 Bits 44 - 63

OAQ01

Bits 20, 22 — 40

Partial Results

IAA — IAV

OAO003 Bits 0 — 21

OAQ002

Bits 0,2 - 18

Partial Results

IAA — IAU_

OA004 Bits 22 - 43

OA003

Bits 43, 45 - 63

Partial Results

-/

OAQO5 Bits 44 — 63

OA004

Bits 21, 23 - 41

Partial Results

0K - 0CU IDA — IDK __
OCV — ODF ICA — ICK
OCK — OCU IDA — IDK
OCV - ODF ICA—ICK

IEA — IEK
OCA - OCJ

IDA - IDJ
OCV — ODF
OCK - OCU A 1C)
OCA - OCJ IEA — IEJ
OCK — OCU IDA—IDK

IEA - IEK _
OCA - OCJ
OCV — ODF ICA — ICK
OCK — OCU IDA — IDK
OCV — ODF

ICA — ICK
OCA - OCJ IEA — IEK
OCV — ODF

IDA — IDJ
OCK — OCU

ICA—ICJ
OCA — OCJ IEA— IEJ

Cray Research Proprietary

OA005

Bits 1,3 -19

Partial Results

/_ VMOO0O/AR0O00
OAA — OAK Final Result Bits -
Odd Bits 1 — 21 "/ | VMO01/AS000 J—
- VM002/AS001
[l
OAA — OAK Final Result Bits
Odd Bits 23 — 43
OAA — OAJ Final Result Bits
Odd Bits 45 — 63
VMO002/AS001
> VMO003/AS002
> VMO004/AT000
VMOO05/AT001
OAA — OAK Final Result Bits
Even Bits 0 — 20
OAA — OAK Final Result Bits
Even Bits 22 — 42 /_ VMOOS/ATOOJ.
7 VMO06/AU000
2 VMOO7/AU001
OAA — OAJ Final Result Bits

Even Bits 44 — 62

167

CPU Module (CPE1)

HTM-300-0

| VROO8 Bits0-3

| vM008 Bits4-7

| VROO9 Bits 8 — 11

| vM009 Bits 12— 15

| VRO10 Bits 16 — 19

VM010 Bits20-21

Figure 80. Bit Matrix Multiply Block Diagram, Pipe 1

OAO000 Bits 0 -21

IGA — IGK

| vM010 Bits 22 - 23

OAO001 Bits 22 - 43

OA000

Bits 42, 44 — 62

Partial Results

|VRO11 Bits 2427

| vM011 Bits 28 - 31

| VRO12 Bits 32 - 35

| vM012 Bits 36 — 39

VRO13 Bits 40 — 43

OAO002 Bits 44 — 63

OA0Q01

Bits 20, 22 - 40

Partial Results

Bit Matrix Multiply

| vM013 Bits 44 — 47
| VRO14 Bits 4851
| vM014 Bits 52 - 55
| VRO15 Bits 56 - 59

VMO15 Bits 60 — 63

OA003 Bits 0 - 21

OA002

Bits 0,2 - 18

Partial Results

IBA — IBV
IBA — IBV
IBA — IBU -
IBA — IBV -
IBA — IBV -
IBA — IBU

OA004 Bits 22 — 43

OA003

Bits 43, 45 — 63

Partial Results

/

OAO005 Bits 44 — 63

OA004

Bits 21, 23 - 41

Partial Results

OEK — OEU
OEA — OEJ IHA — IHK
OEV - OEF IFA — IFK
OEK — OEU IGA — IGK
OEV — OEF IFA — IFK
OEA _ OEJ IHA — IHK
OEV — OEF IGA-IG)
OEK — OEU IFA-IFJ _
OEA — OEJ IHA — IHJ
OEK — OEU GATIORS

IHA — IHK
OEA — OEJ o
OEV - OEF IFA—IFK _
OEK — OEU IGA — IGK
OEV - OEF

IFA — IFK
OEA - OEJ IHA — IHK
OEV - OEF

IGA — 1GJ
OEK — OEU

IFA - IFJ
OEA — OEJ

IHA —IHJ

Cray Research Proprietary

OAQ05

Bits 1,3 -19

Partial Results

OBA — OBK Final Result Bits _ /| YMO008
Odd Bits 1 - 21 VMO009
f VMO010
OBA — OBK Final Result Bits
Odd Bits 23 — 43
OBA - OBJ Final Result Bits
Odd Bits 45 — 63
VMO010
7/ VMO011
VMO012
VMO013
OBA - OBK Final Result Bits
Even Bits 0 — 20
OBA - OBK Final Result Bits
Even Bits 22 — 42
— VMO013
o
/ VMO14
/| vmo1s
OBA — OBJ Final Result Bits

Even Bits 44 — 62

169

INSTRUCTION BUFFERS

The instruction buffers are distributed across four IC options. (Table 46
illustrates how the four IC options are partitioned.) Each IC option
contains 8 buffers, and each buffer holds 32 16-bit words. The IC options
also hold data for the functions listed in Table 46.

Table 46. 1C Options

Bit Type IC000 IC001 1C002 IC003

Instruction data bits 0-7and 8 — 15 and 16 — 23 and 24 — 31 and

32-39 40 — 47 48 — 55 56 — 63
B address bits 0-7 8-15 16 - 23 24 - 31
Fetch address bits 0-7 8-15 16 — 23 24 -31
Logical address translation 0-7and 8 — 15 and 16 — 23 and 24 — 31 and
(LAT) address bits 32-39 40 — 47 48 — 55 56 — 63
Exchange P address bits 0-7and 8 — 15 and 16 — 23 and 24 — 31 and

32-39 40 - 47 48 — 55 56 — 63
Fetch destination code 0,1 2,3 4,5 6,7
fan-out bits

Fetch

The IC options generate a deadstart fetch after the figsv@@s (the
number of words in the exchange package) have been received. The IC
option counts the number of common memory valid codes received, and
this count enables the generation of the deadstart fetch signal.

When data is fetched from memory, it is requested as a block of 32 words
(4 blocks of 8 words where the first word of this block is the first word
that is needed). For example, if a branch is made to address 1005, that
address is requested first, followed by addresses 1006 to 1037, then
addresses 1000 to 1004.

When the common memory data arrives, the IC compares the incoming
code with the expected code. This code tells the IC option where to put
the data in the bufferData can arrive at the IC from memory in any qrder
and because of the memory code, it is reordered inside the buffer.

HTM-300-0 Cray Research Proprietary 171

Instruction Buffers

Prefetch

CPU Module (CPE1)

A 9-bit code accompanies every 16 bits of memory data. This code
specifies the buffer and the element in the buffer into which the word is to
be loaded. The following illustration shows a breakdown of the code.

Valid Buffer Element

8176 5143210

Two words of data arrive together at the IC options. As the data starts to
arrive, the IC options sense the first 4 words. These words proceed
through a bypass path, to the read-out registers, and then to the JB options
for issue.

Two pointers are associated with bypass: a read pointer and a write
pointer. As long as the write pointer stays ahead of read issue, the first 4
words will issue. The buffers will continue to fill while the first 4 words
are issuing. If the first 4 words issue and the buffers are not full, issue
stops until the buffers fill and the buffer valid bit sets. The instruction
parcels are then transmitted to the JB options from the buffers.

172

A prefetch begins when the buffer read-out pointer reaches addggss 30
the buffer or a branch occurs to addresses 3040 37

The prefetch determines if the next sequential buffer is already in-stack.

If it is not, a fetch accesses the next sequential common memory address.
When the count in the buffer reachesg,3ie IC advances the buffer

pointer and ensures that the read data valid bit is set. If the read data valid
bit is not set, the IC option enables the walit first word flag and waits for

the first word to be received from common memory

NOTE: The prefetch will always occur, but it can be blocked or aborted
by anybranch sequence in progress.

Prefetch can at times degrade performance. For example, if the first word
of the next sequential instruction block is needed while the current
instruction block is being fetched, a delay occurs. In this case, issue stops
until the last word of the next block is fetched.

If an out-of-stack branch occurs while the next sequential block is
awaiting prefetch, the prefetch is aborted and the block containing the
branch address is fetched instead. Issue of instructions at the branch
address are delayed until the fetch of the current block is completed and a
fetch of the current block containing the branch address begins.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

HTM-300-0

Instruction Buffers

Another problem with prefetch occurs when executing an instruction at
the top of logical address translation (LAT) space. The program may
execute a branch to lower memory but the prefetch may try to initiate a
fetch from the next sequential memory location. If the next sequential
memory location is out of the LAT range and the branch is within 8 words
of the last valid LAT address, a range error may occur.

Refer to Figure 81 for the IC options bit layout, to Figure 82 for an IC
block diagram, and to Figure 83 for the IC option terms.

Figure 84 is a block diagram of the memory-to-instructiofebsiffor path

1, and Figure 85 is a block diagram of the memory-to-instructidiersuf

for path 2. Figure 86 is a block diagram of the common memory path
code 1 fanouts, and Figure 87 is a block diagram of the common memaory
path code 2 fanouts.

Cray Research Proprietary 173

Instruction Buffers

174

Figure 81. IC Options Bit Layout

CPU Module (CPE1)

IC003

B Bits 24 — 31
Fetch Bits 24 — 31

Instruction Data Bits 24 — 31 and 56 — 63

LAT Address Bits 24 — 31 and 56 — 63
Exchange P Data Bits 24 — 31 and 56 — 63

1C002

Instruction Data Bits 16 — 23 and 48 — 55
B Bits 16 — 23

Fetch Bits 16 — 23

LAT Address Bits 16 — 23 and 48 — 55
Exchange P Data Bits 16 — 23 and 48 — 55

IC001

B Bits 8 — 15
Fetch Bits 8 — 15

Instruction Data Bits 8 — 15 and 40 — 47

LAT Address Bits 8 — 15 and 40 — 47
Exchange P Data Bits 8 — 15 and 40 — 47

IC000

Instruction Data Bits 0 — 7 and 32 — 39

BBits0—-7
Fetch Bits 0 — 7

LAT Address Bits 0 — 7 and 32 — 39
Exchange P Data Bits 0 — 7 and 32 — 39

RAM Array 0| RAM Array 2

Buffer 0 — 3 Buffer 0 — 3
Even Words Odd Words
0-30 0-

30

RAM Array 1| RAM Array 3

Buffer4 — 7 Buffer4 -7
Even Words Odd Words
0-30 0-

30

Cray Research Proprietary

HTM-300-0

CPU Module (CPE1) Instruction Buffers

Figure 82. IC Block Diagram

IC OWA - OWC
Fan-out Data OWD — OWE gHM))
— OWI — OWK RE
PA _ IPP Coincidence Buffer OWQ — OWS HM
(JIB) > Parcel Data OXA — OXC HH
Coen (NF'NG)
> P Reg Data h, i, j, k Bits | OXD — OXF (vs' FC)
Buffer Match Branch Address
OEA — OEH
»| Branch or LAT >(CC)
> Address LAT Address OE| — OEP: (c0)
Path 1 Code »| Array O
(Array Write/ > Buffer Parity Error to OUA
_ > (OA
(1c) Read Address) 1AQ - 1AX 10— 3 Even (©A)
_| Words
Path 1 Valid 1 0-15
Write Enable) IAX
(IC) () Array 1 R
Buffer €
(cHy Palh1Data IAA-IAP |47 Even a
|] Words d
0-15 - Inst Data to OAA — OAP
= o > (JB)
- Array 2 u
Buffer t
Path 2 Dat IBA - IBP
(CH) =222 > 0—30dd
Path 1 Valid Words
(Write Enable) IBX R
(IC) T »| 0-15 e
Path 1 Code -
(Array Write/ o 'gi:?f)érg’ 9
Read Address) IBQ —IBX
(o)) 1BQ » 4 -7 Odd
Words
0-15
§ Bypass
P Bits 0 — 15 IDA — IDP
(IC) pBits 16 -31 IEA—IEP Fetch Address New P to OAA — OAH
(IC) >) > (BU)
Register
OCA - OCH
- OCI — OCP Bjk/P Fanout
(BU) ICA — ICH » Fan-out Data 4 > (IC)

HTM-300-0 Cray Research Proprietary 175

Instruction Buffers

IAA —

(CH) CM Path 1 Data IAP -
IAQ —

(10) CM Path 1 Code IAY -
IVC —

(CK) CM Path 1 Code to Fanout 1VD -
IBA —

(CH) CM Path 2 Data IBP -
IBQ —

(I0) CM Path 2 Code IBY -
IVE —

(CK) CM Path 2 Code to Fanout IVF -
ICA —

(8U) Bjk Exchange P to Fanout ICH -
IDA —

BU) Bjk Exchange P Bit 0 — 15 IDP -
IEA —

(BU) Bjk Exchange P Bit 16 — 31 IEH -
IPA —

(3B) Parcel Data IPP -

(3B) Enter Rank 1 IQA -

38B) Enter Rank 2 IQE -

(38B) Clear Rank 2 1QA -

(B) Data Resume 1IOM -

(B) Branch Issue 1QQ -

(3B) Go Branch IQOR -

3B) Branch Fall Through 1QS -

38B) Interrupt Request 1QU -

(HA) CPU MC to Fanout IRA -

(cC) E%change Active to Fanout IRB -

(Force 1) Triton Mode to Fanout IRC -

(VB) VL2 or CM B to Fanout IRD -

(HA) CM MC to Fanout IRE -

(cc) Fet.ch Done ISA

(HA) Maint Mode ITA -

IUA
(Force) IC Select 1UB -
(cC) Enter Exchange P VB -
176

CPU Module (CPE1)

Figure 83. IC Option Terms

Cray Research Proprietary

OAA —
OAP Instruction Data
(IB)
OAQ Instruction Data Ready 38)
OCA -
OCH Bjk Exchange P to Fanout
(BU)
OCl -
OCP Bjk Exchange P to Fanout
(BU)
ODA -
ODH New P
(BU)
ODI Enter New P/Dump Mode BU)
ODJ Go Branch/Exchange Enable 9B)
OEA —
OEH Branch Address > (CC)
OEI —
OEP Exchange LAT (c0)
OEQ Fetch Requests > (CC)
Go D
OER Go Dump > (CB)
ODJ Buffer Load Pointers 38
OVA -
OVD CM Path 1 Read Code Fanout (I0)
OVE —
OVH CM Path 2 Read Code Fanout (10)
OWA -
owcC
kO, k1, k2 at Phase 3 (HM)
OWD —
OWE k1 at Ph 2
kO, k1 at Phase (RE)
OowWI —
OWK jlj
ilj at Phase 3 (HM)
owQ -
OWS j/j
ilj at Phase 2 > (HI)
OXA —
OXC hO, hl, h2 at Phase 2 > (FC)
HTM-300-0

CPU Module (CPE1) Instruction Buffers

Figure 84. Memory-to-instruction Buffers, Path 1

OMA — IAA —
CHO000 . 1C000 CHo08 | OMA — IAA - 11c002
OMD Bits0-3 IAD__ OMD Bits16-19 IAD _.
OME - 1Al - OME — 1Al —
OMH Bits32-35 AL _. OMH Bits48-51 IAL
OMA — IAE —
CH002 - CHo10 |OMA- IAE —
OMD Bits4—7 IAH OMD Bits20-23 IAH
OME — IAM — OME — 1AM —
OMH Bits36 -39 IAP _ OMH Bits 52 — 55 IAP
OMA — IAA —
. OMA — IAA —
CHO04 fomMp Bitss—11 1ap | '€0%t cHo12 | oun” mis2a—27 1mo | O
OME - IAl —
ME — IAl -
OMH Bits40-43 AL _ 8MH Bits 56 —59 IAL
OMA — IAE —
. OMA — IAE —
CHOO6 fomp Bits12-15 IAH _ CHO14 | oMp Bits28-31 IAH
OME — 1AM — OME — 1AM —
OMH Bits44—47 IAP _ OMH Bits60-63 IAP

HTM-300-0 Cray Research Proprietary 177

Instruction Buffers

CPU Module (CPE1)

Figure 85. Memory-to-instruction Buffers, Path 2
CHoo1 | OMA- IBA-Tcooo CH009 | omA - 1BA - | 1Cc002
OMD Bits 0 — 3 IBD _ OMD Bits 16 —19 IBD _
OME - IBI — OME — 1Bl —
OMH Bits32-35 IBL _ OMH Bits 48 —51 IBL
OMA — IBE —
CHO003 _ CHO11 | OMA-— IBE —
OMD Bits 4 -7 IBH _ OMD Bits 20— 23 IBH
OME — IBM — OME — IBM —
OMH Bits36-39 IBP _ OMH Bits 52 -55 IBP
OMA — IBA — 1C003
CHO005 . 1C001 CHO013 | OMA - IBA —
OMD Bits 8 — 11 IBD OMD Bits 24 —27 IBD
OME — IBI - OME — IBI —
OMH Bits40-43 IBL _ OMH Bits 56 —59 IBL
OMA — IBE —
CHO007 CHO015 | omMA - IBE —
OMD Bits 12—-15 IBH _ OMD Bits 28 —31 IBH
OME — IBM — OME — IBM —
OMH Bits 44 — 47 IBP OMH Bits 60 — 63 IBP
178 Cray Research Proprietary HTM-300-0

Instruction Buffers

CPU Module (CPE1)
Figure 86. Common Memory Path, Code 1 Fanouts
1C000 OVA
IC000
IVC: ovB
IVD ovC
> OoVvD
1C001
1C003
CKO000 1C000
. IC002
Element Bit 0 ONF 'AQ: Element Bit 0 IAQ
1C001 Element Bit 0
IC001
ONG
i IAR
Element Bit 1 » Element Bit 1 IAR
Element Bit 1
Element Bit 2 ONH lVC: OVA IAS)
> Element Bit 2 OVB IAS o Bita
ement Bi
Element Bit 3 | ON! IVD:
ovC IAT ,
» Element Bit 3 ovD IAT .
> Element Bit 3
1C002
OVA AU, Element Bit 4 €002 OVB
o 1AU
Element Bit 4 |- ve Element Bit 4
ovC 1AV .
»1 Buffer Bit 0
OvD 1AV »| Buffer Bit 0
Buffer Bit O ONC IVD: IAW= Buffer Bit 1 1AW
Buffer Bit 1
1AX
Buffer Bit 1 OnD >| Buffer Bit 2 IAX
»| Buffer Bit 2
. ONE
Buffer Bit 2 1C003
I1AY IC003
OVA OVB IAY
ONB ONA IVC
ovC
OoVvD
IVD
Valid
Valid
HTM-300-0 Cray Research Proprietary

179

Instruction Buffers

CPU Module (CPE1)
Figure 87. Common Memory Path, Code 2 Fanouts
1C000 OVE
IC000
Ve, OVF
IVD OoVG
- OVH
IC001
1C003
CKO001 IC000
IBO 1C002
Element Bit0 | ONF *>| Element Bit 0 IBQ
1C001 Element Bit 0
IC001
. ONG
Element Bit 1 IBR] Element Bit 1 IBR
Element Bit 1
Element Bit 2 ONH lVC: OVE IBS
»| Element Bit 2 OVF IBS Element Bit 2
Element Bit 3 | ON! 'VD:
OoVvG IBT .
»| Element Bit 3 OVH IBT Element Bit 3
1C002
OVE IBU . 1C002
»| Element Bit 4 OVE
Element Bit 4 ONJ lVC: IBY Element Bit 4
OoVG IBV .
»| Buffer Bit 0
OVH IBV, Buffer Bit 0
Buffer Bit 0 ONC lVD: IBW: Buffer Bit 1 IBW
Buffer Bit 1
Buffer Bit 1 |OND BX o Buffer Bit 2 IBX
> Buffer Bit 2
. ONE A
Buffer Bit 2 1C003)
IBY IC003
OVE OVE IBY
ONB ONA IVC
OoVG
OVH
IVD_
Valid
Valid
HTM-300-0 Cray Research Proprietary

181

INSTRUCTION ISSUE

In the CRAY T90 series computer system, a process called instruction
issue introduces instructions into the central processing unit (CPU).

The first instruction parcel is read from of one of eight instructiofetsf
(IBs) and sent to the next instruction parcel (NIP) register where it is
partially decoded to determine whether it is a 1-, 3- or 4-parcel instruction.

Refer to Figure 88 for an instruction issue block diagram. The program
address (P) register points to the next parcel to be read out of the
instruction buffer. If it is a 1-parcel instruction, the NIP moves to the
current instruction parcel (CIP), the parcel from the instructiofebuf
moves to NIP, and P is incremented by 1. If it is a 3-parcel instruction, as
NIP moves to CIP, the second parcel moves into LIPO, the third parcel
moves into LIP1, and P is incremented by 3. If itis a 4-parcel instruction,
as the first parcel moves from NIP to CIP, the second and third parcels
move to LIPO and LIP1. Then, the fourth parcel goes to NIP and on to
CIP as the other three parcels are leaving. In the next clock period, the
fourth parcel leaves CIP, and the value in the P register increments by 4.

Figure 88. Instruction Issue Block Diagram

LIP1

Y
\

\

HTM-300-0 Cray Research Proprietary 183

Instruction Issue CPU Module (CPE1)

Instruction Formats

Thereare three instruction formats: 1-, 3-, or 4- parcel instructions. The
first parcel always contains the operation code. The operation code is
examined in NIP to determine whether it is an exit instruction (000000 or
004000) or a 1-, 3-, or 4- parcel instruction.

One-parcel Instructions

Thegh portion generally is the operation code, although some instructions
also use thg j, ork fields. Thei field is usually the result designator, and
thejk portions are generally operand register designators. Some
instructions use thefield or bit 2of thej field to provide additional bits

for the operation code.

Some 1-parcel instructions are part of the extended instruction set (EIS)
and perform different operations when immediately preceded by the EIS
parcel (005400 or 0055.

Figure 89 illustrates the format of a 1-parcel instruction.
Figure 89. Format for a 1-parcel Instruction
7 3 3 3 Bits/Parcel

g h i Ji k
15-9 8-6 5-3 2 -0 Bit Number

Three-parcel Instructions

In the 3-parcel instruction format, thenfields hold the 32-bit address or
constant value. Figure 90 illustrates a 3-parcel instruction format.

NOTE: Then portion holds the most significant bits, and th@ortion
holds the least significant bits.

Figure 90. Format for a 3-parcel Instruction

4 3 3 3 3 16 16 Bits/Parcel
g A O |
15-12 11-9 8-6 5-3 2-0 15-0 15-0 Bit Number

184 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Instruction Issue

Four-parcel Instructions

In the 3-parcel instruction format, the instruction field mnempma
represents a 48-bit field of which tpegortion is the most significant
parcel. Figure 91 illustrates a 4-parcel instruction format.

Figure 91. Format for a 4-parcel Instruction

4 3 3 3 3 16 16 16 Bits/Parcel
g | n 1 i 1T i | « 1L~ Jr 1™
15-12 11-9 8-6 5-3 2-0 15-0 15-0 15-0 Bit Number

Four-parcel instructions are used in A and S register memory references
that use extended addressing. Ttield selects an A register that

contains an address index. Tilfeeld designates which A or S register is
the source or destination of the data. During read references, bit Jj of the
field disables or enables cache bypass. Bit 2 of tieéd must be set to a

1 to indicate a 4-parcel instruction. Tké&eld is not used.

Instruction Decode

When an instruction parcel is loaded into NIP, its size is determined. If it
is a 1-parcel instruction, it moves to CIP for further decoding to determine
which registers, functional units, and memory ports are required.

HTM-300-0 Cray Research Proprietary 185

Instruction Issue CPU Module (CPE1)

P Reqister

The P register is 32 bits wide and resides on the BUO and BU1 options.
The P register indicates the relative memory address of the next
instruction to be read out of the instruction buffer read-out register (and
sent to either NIP or LIPQ). The lower 2 bits (bits —1 and —2) point to the
parcel, and the upper 30 bits (bits 8 through 29) point to the word address.
There are three ways to load the P register:

* Multiplex 8 bits at a time during an exchange sequence
* Load from Bk as a result of a 0@k instruction

* Load from thdjk or nmfields of a 00§k, 007jk, or 01xjk
instruction

Every time a parcel issues, the JB option sends an Advance P signal to the
BU options. Advance P increments the P register by 1.

Coincidence

A condition calledcoincidencesxists when the next needed parcel is in
one of the eight instruction buffers. (Coincidence is checked only on
branch instructions.) A coincidence check compares the upper 25 bits of
the P register to the 25-bit buffer address (A) register and determines
whether the buffer valid bit is set. All 25 bits must match, and the buffer
valid bit must be set in order for a coincidence condition to exist. If there
IS no coincidence, a fetch operation is initiated.

Reading the Instruction Buffer

When a buffer read occurs, the even and odd words are read out of the
buffer to a read-out register. Depending on the content of the P register,
the BU options direct one of these words to NIP or LIP for decoding.

186 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

JB Option

Instruction Issue

The two JB options on the CP module provide the issue control signals for
the processor. These options receive the instruction word from the IC
options, select and decode the correct parcels, and provide control to the
rest of the CPU. The JB option also has all the resource reservations and
holds issue if a resource is busy. The JB options are responsible for the
functions described in the following subsections.

Parcel Data Distribution

HTM-300-0

The JB option transmits parcel data to the AV, AW, AX, AY, BU, and VB
options and alters thjdield going to the AV, AW, AX, and AY options for
certain instruction types during the following instructions:

e 10h, 11h, 12h, 13; the A becomes the Afield
* 00130; the A field becomes the jAfield

The JB option also transmits a read-out pointer code to the Aand S

registers. The read-out pointer code selects the read-out path. Refer to
Table 47 for a list of these codes.

Table 47. Read-out Path Codes

Code Instruction Description

00 075, 13h Sito BU path

01 034, 036, 025, 11h Aito BU path

11 035, 037 Aito BU path

00 00130, 027i2/3, 027ij6/7 Aito SR path

01 0732, 0733, 073i5, 073ij6 Sito SR path

10 0010jk, 0011k Akto SR path

11 00140, 00144 Sjto SR path

00 057, 0030,0/1, 026j0/1, 0270 | Sjto shift path

11 052 — 056 Sito shift path

00 Sjto vector pipe 0
01 176 A0 to vector pipe 0
10 034, 036 AO to vector pipe 0
11 035, 037, 177 AO to vector pipe 0
00 Sj to vector pipe 1

Cray Research Proprietary

187

Instruction Issue

CPU Module (CPE1)
Code Instruction Description
01 176 Ak to vector pipe 1
10 034, 036 Ajto vector pipe 1
11 035, 037, 177 AO to vector pipe 1
00 10h, 12h, 13h, 0017k Ah (Aj) to CM port B/E
01 00200k Akto CM port B/E
10 11h Ah (Aj) to CM port B/E
11 177 Ak to CM port B/E

A/SIVIBIT Register Requests

The JB option checks for register conflicts and receives a register release
signal from the shared resource control and from common memory for the
A and S registers. The JB option also receives a vector read/write (R/W)
release for V registers and a B/T read/write release. The JB option also
transmits A and S register entry codes. The A and S registers use these
codes, th@hijk field, the instruction, and the 2-bit register read-out code

to define the instruction to be performed and to reserve the needed path.

Functional Unit Requests

188

The JB option detects functional unit conflicts in the following functional
units:

* Logical #1: 140 -147/175

* Logical #2: 140 — 145 if Logical #1 busy / Logical #2 enabled
* \ector Mask: 146 — 147 /175/0yD/ EIS 1530,1

e \ector Shift: 150 — 153

* \ector Add: 154 — 157

* Floating Multiply/Divide: 160 — 167

* Floating Add: 170-173

e Square Root: 07, 1740 (V pop, parity, leading zero, iota:
174j(1 - 3)

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Instruction Issue

« Matrix Multiply: 174j(4 —7)/07§(6 - 7)

Constant Data Requests

The JB option checks for the presence of constant data in multiple-parcel
instructions such as jumps, branches, and instructions that ysarhe
fields. Each JB option handles 32 bits of the constant data distribution.
JBO transmits data to the AV, AW, and CD options through the A series
options; and JB1 transmits data to the AX, AY, and CD options through
the A series options. JBO also providesjkhéata on the constant path
when needed.

Extended Instruction Set (EIS) Requests

When the JB option issues 005400 or 00&5&structions, the parcel
following either of these instructions is defined by the extended
instruction set. If an EIS-capable instruction is issued without a
preceeding 005400 or 00®BGinstruction, the instruction issues and
performs its primary function. For example:

044ijk Transmit the logical product of (Gand (%) to S
044k In EIS mode, this instruction transmits the logical
product of (4) and (A) to Ai
Common Memory Requests

The JB options receive the following external common memory control
signals:

e Release Port A
. Release Port B
e Release Port C

e Bidirectional Mode: (Mode = 1) Enables block reads and writes at
the same time

e Common Memory Quiet: Indicates that all memory activity in the
CPU has been completed. Requires that all ports are quiet, conflict
logic is quiet, memory sections are quiet, and all read and write
operations are complete.

HTM-300-0 Cray Research Proprietary 189

Instruction Issue CPU Module (CPE1)

e Hold Common Memory Issue: No more references can issue
e Cache Miss In Progress: Indicates a cache miss is pending

 Read Quiet: Read references have cleared all conflict checks
* Write Quiet: Write references have cleared all conflict checks

* Exchange Active: Indicates an exchange has not completed

Shared Resource Requests

The JB options receive the following external signals, which control the
shared resource path, from the HD option:

* A/S Register Shared Resource Release: Releases a specific Aor S
register (0 — 7) path

* Release Shared Resource: Used in combination with Go Semaphore
Branch to cause issue to resume or P to advance

* Go Semaphore Branch: Signals that the conditions of a semaphore
branch have been satisfied
Branch Requests
The JB options check the conditional branch test conditions to determine
whether the condition is satisfied; if it is, the JB option issues a Go Branch
signal to the IC options.

Exchange Requests

The JB options perform the following actions during an exchange
sequence:

e 000000 (error exit) issues. Issue stops, P advances.
e 004dk (exitk) issues. Issue stops, P stops.
* The shared path is released. The state of Go Semaphore Branch

determines whether P advances on a l040ne of two possible
results can occur:

190 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

Interrupt Requests

HTM-300-0

Instruction Issue

A normal exit occurs and P advances when the shared path is
released and Go Semaphore Branch is a 0.

* An error exit occurs, P will not advance when the shared path is
released, and Go Semaphore Branch is a 1.

An interrupt request can be generated in one of three ways:

A 000000 (error exit) instruction issues
e A 0040k (Exit k) instruction issues
* A hardware error condition occurs

Interrupt requests are processed in two phases. In phase 1, the following
conditions are checked:

* No multiparcel instructions are in process
* No EIS type waiting for second parcel
* No branch sequence in progress

In phase 2, the following conditions are checked, and then the Go
Exchange signal is sent to the HH, IC, and CC options.

* No branch sequence in progress
* Shared path available

* Allregisters available

e Common memory quiet

When a hardware interrupt request occurs, the JB option performs the
phase 1 checks and stops issue. If the phase 2 checks are all valid, the JB
option sends a Go Exchange signal to the IC options. If any of the shared
type instructions have issued during this shut-down time, the HD option
must release the shared path and the following actions must occur:

 |fa 0034 (test and set semaphore) has issued, a Release signal and a
Go Branch signal must be sent before Go Exchange can occur.

e If a 000000 (error exit) or a 00f(exit jK) has issued, a release path
must occur to clear the JB option control.

Issue will resume when Go Branch occurs.

Cray Research Proprietary 191

Instruction Issue CPU Module (CPE1)

Control Signal Distribution
The JB option transmits the following control signals:

e Issue group 0, 1, and 2: These signals are combined on the BU and
VA options to complete the issue signal.

* Issue: Sentto the AN option for fanout.

* Enter Vector Length: Sent to the AV option following the decode of
a 0020® (Ak to VL) instruction.

* Read Vector Mask: Sent to the SS option during a @3 3) 0
(VMO or VM1 to S or Ai) instruction.

* Enter Vector Mask: Sent to the SS option during a PBe 3) ($
or Ai to VMO or VM1) instruction.

* Go Scalar Pop/Parity/Lz: Sent to the SS option during § (26 3)
or 024 (0 -1).

* Go Scalar Double Shift: Sent to the SS option during §K05ift
(S) and (9) left Ak places to &

* Go A Type: Sentto the SS option when a 005400 (EIS) is issued
using A register data.

* Go Scalar Divide: Sent to the RE option during aifg@sstruction.

* Go Scalar Floating Add: JB1 sends this signal to the FC option
when a 06Bk (sum) or 068k (difference) issues.

* Go Scalar Floating Multiply: Sent to the NG option when &aijR64
instruction issues.

 Go Address Multiply: Sent to the AV option when a ji8&ssues.

e Go Compare This signal is transmitted to the FC option from
JB001 when a 00550x 14 issues.

e Common Memory A or S Requests: Sent to the CD options when a
memory load or store issues. JBO sends out an A register request,
and JB1 sends out S register requests.

e Common Memory A or S Writes: Sent to the CD options when a

memory write 1hixxpnmor 13ixxpnmissues. JBO sends out A
register write requests, and JB1 sends out S register write requests.

192 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

HTM-300-0

Instruction Issue

CM Port B Enabled: Sent to the VB option through the JBO option
and to the BU option through the JB1 options to select the vector
read ports.

Vector Logical #2 Enabled: Sent to the VB options by JBO to select
vector logical functional units.

Data Resume: Sent to the instruction stack (IC options) to indicate
that the JB option can accept another word.

Go Exchange: Sent to the IC options to indicate that an exchange is
required. Another copy is sent to the HH option to clear the SIE bit
(taking I/O interrupt), and to the CC option to begin the swapping of
exchange packages in memory.

Go Branch: Sent to the IC options to indicate that a conditional
branch condition has been satisfied.

Branch Fall Through: Sent to the IC options to indicate that a
conditional branch has failed the condition test.

Branch Issued: Sent to the IC options to indicate that a branch has
issued.

Enter Rank 1, Enter Rank 2, or Clear Rank 2: Sent to the IC options
to move parcel data into or out of the ranks into issue.

The following signals are transmitted to the performance (HI)
monitor to indicate a hold issue condition:

* Holding Issue on A Registers

* Holding Issue on S Registers

* Holding Issue on B/T Registers

* Holding Issue on V Registers

e Holding Issue on Common Memory
* Holding Issue on Functional Unit

* Holding Issue on Shared Resources

Advance P: Sent to the P register (BU options) to advance P by 1 as
each parcel is issued.

Cray Research Proprietary 193

Instruction Issue CPU Module (CPE1)

Branch Instruction Control

The JB options decode and control the execution of branch instructions.
When a conditional branch passes or fails a test, it returns either the Go
Branch control signal or the Branch Fall Through control signal to the IC
options. Issue is halted until the Go Branch signal is received by the IC
options. Another signal, Branch Issued, is also sent to the ICs when a
branch is in progress.

Conditional Branch Instructions

Conditional branches use instructions {K.€hrough 01§k. Once the
instruction issues, branch control logic examines either the A0 or SO
register for the condition defined by the operation code. If the condition is
met, the value of the P register is replaced witmtindéield, and program

flow is passed to the instruction specified by P. If the condition is not met,
program flow drops through to the instruction that follows the branch.

Another type of conditional branch instruction for a CRAY T90 series
computer system is called test and set branch (KOG} If a specified
semaphore register equals 0, the bit is made a 1 and the next instruction
issues. If the semaphore is a 1, the P register is replaced with the value in
thenmfield.

Unconditional Branch Instructions

Unconditional branches use instructions QR%0Brough 00ifkmn, and

each code operates differently, except that none of them depends on
satisfying a condition before the branch takes place. In other words, they
always take the branch in thlem or nmfields.

The jump to Bk instruction (005{k) branches to the parcel address
specified by the contents ofl8 The unconditional jump instruction
(006000nn) branches to themfield. The unconditional jump instruction
(006100nn) branches to the addressnimfield.

The return jump instruction (00700M) jumps to the address in the

address field and places P + 3 (the address of the next instruction) into
BOO. The return jump allows a jump to a subroutine, the last instruction of
which must be a 005000 instruction, which is a jump to BOO.

The 00710@Gmjump instruction is an indirect jump. This instruction
stores the address of the next sequential instruction in the BOO register;
then the instruction uses thenfield to specify a common memory

194 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Instruction Issue

address. The lower 32 bits of the contents of that address are transferred
to the P register, causing program execution to continue at that point.
When this instruction executes, the instruction buffers are set invalid.

Issue Control

Thefirst parcel of the instruction leaves NIP and moves into all the CIPs
on options HIO00, HHOOO, and HHOO1. The CIP located on the Hi

options is responsible for the instructions that affect the exchange package
and performance monitor.

The HH option CIP is used for A/S path release and provides A/S
designators and shared path release. The JB options determine whether
any register or functional unit reservation exists. If not, these options send
thelssuesignal to the HH and HI options. The instruction issues,

reserving the appropriate registers and/or functional unit. If resource
conflicts do exist, the JB option does not send the Issue signal, and the
instruction remains in CIP until the conflict is resolved. This is called a
hold issue condition.

The JB options are responsible for providing issue control, and checking
and making functional unit and path reservations for the following items:

* \ector registers

* Vector functional units

* AJ/S shared resource control
* Memory ports

e CM path/cache

* A/S register entry codes

* B/T register

The functional units must send a release back to the JB options to indicate
that the units are available.

The JB options also send out the, j, andk fields to the A/S registers for
further instruction decode.

Refer to Figure 92 through Figure 98 for related instruction issue block
diagrams.

HTM-300-0 Cray Research Proprietary 195

Instruction Issue CPU Module (CPE1)

Figure 92. Bk (Exchange P) Fan-out Bits

OCA- IDA— ODA -
IC000 |OCH Bits0—7 IDH_|IC000 | ODH
IDA—
IDH _[1coo1
sUo00 | SEA- ICA~ ocl - IDA— BUO0O
OEH Bits0—7 ICH its 0 — IGA -
OCP Bits0-7 IDH: 1C002 Bits 0 — 7 \oH
IDA—
IDH Gl —
»{ 1003 Bits 8—15 IGP
OCA- IDI -
OEl - ICA-|1C001 |OCH Bits8=15 IDP _|!C000
OEP Bits8-15 ICH o ODA —
0P _[icoo1 | ©BH
ocCl - IDI —
OCP Bits8—-15 IDP [|coo02
IDI —
IDP | 1co03
OCA- IEA —
Ico02 | OCH Bits 16 - 23 IEH _[(Cooo
IEA -
IEH _] 1coo1
- A ocCl - IEA - ODA- IGA — | BUOO1
- - OCP Bits 16— 23 IEH ODH Bits16-23 IGH
BUOO1 |oEH Bits 16 —23 ICH »| 1C002
IEA -
[EH _1 1c003
IGI —
OCA- IEl - .
1C003 | OCH Bits 2431 IEP _[Tcooo Bits 24 -31 IGP _
OEIl - ICA— >
OEP Bits24-31 ICH IEl -
IEP | ICo01
ocCl - IEl -

OCP Bits 24 —31 IEP _|C002

IEI - ODA -
IEP] 1coo3 |ODH

196 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Instruction Issue

Figure 93. JB-to-IC Parcel Data for Branches

JB001 1Co01 JB001 IC003
OKE — IPA — 1C000 OKM — IPA — 1C002
OKH gFieldBits0—-3 IPD _ OKP gFieldBits0—-3 IPD _
OKB — IPE — OKJ — IPE —
OKD hField Bits0—2 IPG OKL hFieldBits0—2 IPG _
OKA jField Bit 2 IPJ _ OKI jField Bit 2 IPJ
JB0O00 OKG — IPH — JB000 OKO — IPH —
OKH FieldBits0—-1 IPl OKP jFieldBits0—-1 IPl
OKD — IPK — OKL - IPK —
OKF jField Bits0—3 IPM OKN jField Bits0—3 IPM
OKA — IPN — OKI - IPN —
OKC kFieldBits0—-3 IPP OKK kFieldBits0 —3 IPP

HTM-300-0 Cray Research Proprietary 197

Instruction Issue CPU Module (CPE1)

Figure 94. Path 1 CH-to-IC-to-JB Option

OMA — IAA -
CH000 OMD Bits0-3 I1AD _}co00 [38001
OME — 1Al — JB00O
OMH Bits32-35 IAL _ OAA - IDA —
> OAH Bits0-7 IDH _
OMA - IAE —
ooz OMD Bits4—7 IAH
- OAI - IBA -
OME - IAM OAP Bits32-39 IBH
OMH Bits36-39 IAP -
OMA — IAA -
OMD Bits8—11 IAD
CHO04 > 1C001 OAA — IDI -
OME - Al - OAH Bits8—15 IDP
OMH Bits40-43 IAL _ >
OMA - IAE — OAIl — 1Bl —
CH006 OMD Bits12-15 IAH _ OAP Bits40-47 IBP
OME — IAM — -
OMH Bits44-47 IAP _
OMA — IAA -
CHOOS oMD Bits16-19 1AD [000 oA Ch
OME - Al - OAH Bits16-23 ICH
OMH Bits48-51 IAL _
OMA — IAE — OAIl — 1AA —
CHO10 OMD Bits20-23 IAH _ OAP _ Bits48-55 IAH _
OME — 1AM —
OMH Bits52-55 IAP
OMA — IAA -
CHO12 OMD_ Bits24-27 IAD | cq03
OME — Al ora- ICl -
OMH Bits56-59 IAL _ OAH _ Bits24-31 ICP
OMA - IAE —
oHoLa OMD Bits28-31 IAH _ OAI - Al -
> OAP Bits56-63 AP _
OME - IAM — >
OMH Bits 6063 IAP _

198 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Instruction Issue

Figure 95. Path 2 CH-to-IC-to-JB Option

OMA — IBA —
OME — IBI — JB000
OMH Bits32-35 IBL _ OAA — IDA —
o OAH Bits 0 — 7 IDH
OMA — IBE —
CH003 OMD Bits4—7 IBH
> OAl — IBA —
OME - IBM — OAP Bits32-39 IBH
OMH Bits36-39 IBP
OMA — IBA —
CH005 OMD Bitsg8—11 IBD _| Icoo1
> OAA — IDI —
OME - 1Bl - OAH Bits8—15 IDP
OMH Bits40-43 IBL _
OMA — IBE — OAI — 1Bl —
OME — IBM —
OMH Bits44-47 IBP
OMA — IBA —
OMD Bits16-19 IBD
CHO009 | Icoo2 OAA — ICA —
OME — IBI — OAH Bits 16 — 23 ICH
OMH Bits48-51 IBL | o
OMA - IBE — OAIl — IBA —
CHo11 OMD Bits20-23 IBH _ OAP Bits 48 — 55 IBH
OME — IBM —
OMH Bits52-55 |IBP
OMA — IBA —
CHO13 OMD Bits24-27 I1BD _|Ic003
OME — IBI - OAA- ICI-
OMH Bits56-59 IBL _ OAH Bits 24 — 31 ICP
OMA — IBE —
CHO15 OMD Bits28—31 IBH _ OAl — IBI —
> OAP Bits 56 — 63 IBP
OME — IBM —
OMH Bits60—-63 IBP _

HTM-300-0 Cray Research Proprietary 199

Instruction Issue CPU Module (CPE1)

JB0O0O I AWO000

OAA — OAC kBits IPG —IPIl | Av000
OAD — OAF J Bits IPD — IPF

OAG — OAl i Bits IPA —IPC
OAJ — OAL hBits IPJ—IPL —

I AW002

OBA - OBC kBits IPG—IPI | Awo001
OBD - OBF jBits IPD — IPF

OBG - OBl i Bits IPA—IPC
OBJ - OBL hBits IPJ—IPL —

| VB001

OCA-0OCC kBits IPG-IPI | VB00O
OCD-OCF jBits IPD — IPF

OCG - OClI i Bits IPA - IPC
OCJ - OCL hBits IPJ—IPL

OCM—-OCP__ gBits IPJ—IPL —

JB0OO1 I AX001

OAA — OAC kBits IPG —IPI _| AX000
OAD — OAF J Bits IPD — IPF_

OAG - OAI i Bits IPA —IPC_
OAJ — OAL hBits IPJ—IPL —

I AY001

OBA - OBC k Bits IPG - IPlI | AY0O00
OBD - OBF J Bits IPD — IPF

OBG - OBl i Bits IPA —IPC
OBJ — OBL hBits IPJ—IPL _ —

| BUOO1

OCA-0CC _ kBits _IPG-IPI_[G500
OCD-OCF __ jBits __ IPD-IPF

OCG-0ClI iBits IPA—IPC_
OCJ—OCL hBits IPJ—IPL
OCM-OCP gBits IPJ—IPL —

Figure 96. Instruction Data Distribution A/S/B/T/V Registers

200 Cray Research Proprietary HTM-300-0

CPU Module with IEEE Instruction Issue

Figure 97. CIP Distribution to HH Options

HHOO1
JB0O1 HHO00
AY000
OBA — OBC IPG — IPI OWJ—OWL KkBits IEA— IEC _
IC001
OKD — OKF IPK — IPM OWO_OWS jBits ED - IEF
IC000
IPH — IPJ . OWQ - OWS i Bits IEG-IEI _
AY000
OBJ - OBL PJ-PL OWA-OWC _ hBits IEJ—IEL _
OMA — OMB
JB00O GH_16 | ANo0O
0G| — OGL gBits IEM—IEP _
OMA-OMB IGF-IGG _
OLG Issue IEQ -

HTM-300-0 Cray Research Proprietary 201

Instruction Issue CPU Module (CPE1)

Figure 98. CIP Distribution to HH Option

JB000
JB0OO1 AYO001 HHOO00
JB001 [OBA - OBC IPG 1P, OWJ — OWL k Bits IDA — IDC
IC003
38000 | 2KLE = OKN IPK—IPM OWQ — OWS jBits IDD — IDF
1C002
JB00O | OKO — OKP IPH-1PI_ OWQ-OWS iBits IDG—IDI |
38001 LOK! IPJ .
AY001
8001 | OBJ — OBL PJ—PL OWA-OWC hBits IDJ—IDL
_ _ ANO001
38001 LOMA — OMB IGH-1GI |
OGE-OGH gBits IDM—IDP,
38000 | OMA - OMB IGF —1GG _
JBOOO ODD Issue Via ANOOO |DQ

202 Cray Research Proprietary HTM-300-0

Figure 99. JB Option Block Diagram

OOA — OOD Hold Issues to Performance Monitor

Instruction Issue

Conflict
Check

KEY

Group 0: V Registers, A Registers
Group 1: S Registers, B/T Registers,

Vector Logical, Vector Shift, Reciprocal,

Vector Read Port A/Port B

Group 2: Shared Resource, Memory Quiet,

AO0/SO Sign Test, Others (hold issue,
exchange, etc.)

ODE JB000 Advance P BUO, BU1
ODE JB001 Go FP Multiply NF
ODA Issue Group 0 Valid VBO and VB1 (JBO)
ODA Issue Group 0 Valid BUO and BU1 (JB1)
ODB Issue Group 1 Valid VBO and VB (JBO)
Issue ODB Issue Group 1 Valid BUO and BU1 (JB1)

oDC Issue Group 2 Valid VB0 and VB1 (JBO)
OoDC Issue Group 2 Valid BUO and BU1 (JB1)
OLG JB00O0 Issue CIP HHO, HH1
ODD JA000 Issue CIP HIO via ANO

h, i, j, k Field to A/S
OAA — OAL Registers AV, AW, AX, AY

h, i, j, k Field to A/S
OBA — OBL Registers AV, AW, AX, AY

OCA — OCP g, h, i, j, k Field to VB/BU Registers

A/S Read-out Code Bit 0

OPA, OPC to AV, AW, AX, AY

A/S Read-out Code Bit 1

OPB, OPD to AV, AW, AX, AY

A/S Entry Code Bit 0, 1, 2

OFA — OFF to AV, AW, AX, AY

— DO =9 T

o~ O

OGA — OGH A/S Constant Bits to AVO or AX0

OHA — OHH A/S Constant Bits to AWO or AX1

OIA-OIH AJ/S Constant Bits to AW1 or AYO

OJA -0OJH AJ/S Constant Bits to AW2 or AY1

OKA — OKH Parcel Data to Stack

OKIl — OKP Parcel Data to Stack

g, h, I, j, kto CIP

To HDs via Fanout A/S Path Release

To HF via Fanout Shared Path Release/Exchange Data

Go Exchange

ODF Go Exchange to ICs

OQA to ICs Branch Issued

OO0B to ICs Branch Fall Through

OQC to ICs Go Branch

CPU Module (CPE1)
JB000 / JB001
V Reg Read Release VB1 (8) IEA — IEH
IGA Vector Logical 1 VBO] .
IGB \Vector Logical 2 VvB1| Y RegWrite Release VBO(8) IFA—IFH V Reg Reservation
IGC Vector Shift VBO | V FU Release VBO/VB1 (11) IGA — IGK ,
IGD Vector Add VB1 V FU Reservation
:gE ﬁgg; EE X&Jg xgg AJS Register (Shared Resource) 1A — IIE
IGG Vector Recip VB0 | AJ/S Path (Shared Resource) IIF Shared Reservation
IGH BMM VB1
Rel M Port A, B ILA —IL .
IGI Vector Mask VB0 glease Mem Port A, B, < Memory Port Reservation
IGJ B Reg Release BUO | M Path/Cache Release (Even) 1JA — IJE
IGK T Reg Release BUL1 (Odd) 131 = 1IIM CM Path/Cache Reservation
Reg Translation
Decode Inst T lati
(NIP) » Inst Translation
A
| >
>l O 0
Instruction Data from ICs (64) IAA — IDP 1 1
2 2
3 3
Instruction Data Ready IKA IKA
Parcel Pointers Bit 0 and Bit 1 IKB, IKC
Interrupt from HH IKF
Exchange Active from CC IPB
FA (S0) Test Valid IKG
FA (S0) Sign State IKH
FM (S0) Sign State 1KJ
A0=0 INA — INH Sign Bit Test
AO Negative INA — INJ
S0=0 IOA — IOH
S0 Negative 101
HTM-300-0

Cray Research Proprietary

EXCHANGE

The exchange mechanism in a CRAY T90 series computer system has the
following features:

e Means of switching execution from program to program
* Exchange packageBlock (4G words) of program parameters that:

* Must be present in order for any program to execute; defines
where and how the program runs

 Must be 4@ words long
* Must reside in lower 2 MW of memory

* Must start on a 4pword boundary

Exchange Process

204

The exchange sequence is the process that deactivates the current
exchange package and puts it into memory, then loads a new exchange
package from memory and activates it.

In CRAY T90 series systems, a feature in the exchange package allows a
process to exchange to either the address specified by the exchange
address (XA) register or to one of five different addresses specified by one
of the five exit address (EA) registers. With this capability, a user job can
exchange to another user job, or it can exchange to specific areas in the
kernel, without first exchanging to the monitor.

The CRAY T90 series system also incorporates another special feature.
When an exchange occurs, the CPU that exchanges out retains the cluster
number that was initially assigned to it unless the system is operating in
C90 mode or unless AutoBCD (automatic broadcast cluster detach) is
active. Also, when a CPU is master cleared and then exchanged out, the
pending interrupt bits are retained so that the maximum amount of
information about the process is available. A second exchange sequence
can retrieve this information.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

SIPI

HTM-300-0

Exchange

If an exchange occurs and the program is in monitor mode, the monitor
needs to save the B registers, T registers, shared registers, scalar (S)
registers, and vector (V) registers. If the vector not used (VNU) bitis a 1,

the V registers do not need to be saved. If the exchange is to another user

job, the user is responsible for saving the register values.
Four conditions cause an exchange sequence:

* Deadstart sequence (SIPI)

e Interrupt flag set (F register)

* Program exit (004000, 000000 instruction)
e Hardware error that causes a flag to set, which causes an exchange

A CRAY T90 series system does not use a deadstart signal or command.
Instead, the system uses Set Interprocessor Interrupt 68jR&ls from
either a 0014 instruction [send inter-CPU interrupt to CPU)JAor
during an initial deadstart, when a CPU loop controller function gf 76
issued by the maintenance channel, starts an exchange.

The following sequence lists the events that invoke the Mainframe
Maintenance Environment (MME):

1. Set CPU Master Clear.
2. Load data to memory address 0 via the maintenance channel.

3. Issue a loop controller function of gAda the maintenance channel
to allow CPU maintenance instructions.

4. Issue a loop controller function of Jlia the maintenance channel
to allow CPU instruction exchange and halt.

The exchange package at memory location 0 loads into the CPU
registers, and what was in the CPU registers loads to memory
starting at location 0. There is no fetch after this exchange.

5. Drop CPU Master Clear via the maintenance channel.

6. Issue the loop controller function ofgAda the maintenance
channel.

The dropping of CPU Master Clear works as an enable; the function
76g must be present along with the Master Clear signal before the
exchange can occur.

Cray Research Proprietary 205

Exchange

Interrupt Flag Set

Program Exit

CPU Module (CPE1)

7. Interrupted CPU exchanges to address 0, a fetch is done and issue
starts.

In this case, because /O is handled by the maintenance channel, the return
path for output depends on how the sanity tree has been configured. From
this point, the initially started CPU can issue SIPI commands to the other
CPUs.

In the CRAY T90 series system, each interrupt flag has an enable interrupt
mode bit. The interrupt modes are enabled by the enabled interrupt mode
(EIM) flag. An exchange to nonmonitor mode sets the EIM flag.

An exchange to monitor mode clears the EIM flag. While the program is
in monitor mode, a 001302 instruction sets the EIM flag, and an 001303
instruction clears the EIM flag.

Each CPU has an EIM flag. In monitor mode, the EIM flag is cleared and
all interrupt modes are disabled except enable flag on normal exit (FNX),
enable flag on error exit (FEX), and enable interrupt on program range
error (IPR). This scheme provides a stable environment within monitor
mode immediately following an exchange.

Program exit follows the decode of instructions 000000 and 004000.
Instruction 000000 is an error exit instruction; instruction 004000 is a
normal exit.

Exchange Sequence

206

Before a CPU can perform an exchange, the CPU must first finish all
active instructions. If a test and set instruction (k)34 in the next
instruction parcel (NIP) or entering the current instruction parcel (CIP),
the program (P) register will hold the current value until the test and set
condition is true. The JB option then waits until the condition is resolved
before it advances P. Memory must also be quiet, and all memory writes
must be complete.

The processor that is performing the exchange clears the buffer valid bits
and buffer counter. Clearing the buffer valid bits causes a fetch to occur
after the exchange has completed. Clearing the instruction buffer address
register (IBAR) counter causes the data that was fetched from memory to

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Exchange

load into instruction buffer O first. Also, issuing a Of&ihstruction
clears the buffer valid bits. The 0Qk1s a maintenance instruction that
loads the P register fromjilBand invalidates the instruction buffers if the
CPU is in maintenance mode (MM).

Exchange Package Descriptions

Figure 100 illustrates the exchange package. The exchange parameters
are located on two options: HHO00 and HHO01. HHOOO handles bits O
through 31 for words 0 through 17, and HHOO1 handles bits 32 through 63
for words 0 through 17.

P Register
P register — Program register, word 10 bits O through 31. The P register
contains 32 bits, the lower 2 bits of which are used for parcel selects. P
register bits —2 through 29 enable the addressing of 1 gigaword of
memory.

Modes

Modes — MM, BDM, ESL, SCE, RMO, RM1, BDD word 11, bits 0
through 7. Selectable interrupt modes enable the programmer to choose
the conditions under which the active program can be interrupted.

e MM — Monitor mode, word 11, bit O

Certain operations are privileged to monitor mode: controlling the
channel, setting the real-time clock, setting the programmable clock,
and so on. Monitor mode instructions perform specialized functions
that are useful to the operating system. A monitor mode instruction
that issues while the CPU is not in monitor mode is treated as a
no-operation instruction. If a monitor mode instruction issues while
the IMI flag is set, the MII flag sets, and an exchange occurs.

e BDM - Bidirectional memory, word 11, bit 1

When BDM is set, block reads and writes may occur concurrently.

HTM-300-0 Cray Research Proprietary 207

Exchange

Status

208

CPU Module (CPE1)

ESL — Enable second vector logical, word 11, bit 2

If ESL is set and any 14R through 14§k instructions issue, the
instruction is routed to the second vector logical unit. If ESL =0,
the second vector logical unit is not used. The second vector logical
unit is used before the full vector logical unit if a choice exists.

SCE - Scalar cache enabled, word 11, bit 4
If SCE is setto a 1, onboard scalar cache is enabled.
RMO — Rounding Mode Bit 0, word 11, bit 5

This is used to determine the rounding mode to be used for
floating-point operations.

RM1 — Rounding Mode Bit 1, word 11, bit 6

This is used to determine the rounding mode to be used for
floating-point operations.

BDD - Bidirectional memory disable, word 11, bit 7

When BDD is set to a 1, bidirectional block reads and writes are
disabled.

Status (BML, WS, VNU, SBU, SBM) word 12, bit O through 7.

Status (NVS, DVS, OVS, UNS, NXS, XIS) word 13, bits 9 through 14.
The status register reflects the condition of the CPU at the time of an
exchange. The bits in the status field are set during program execution
and are not user selectable.

BML — Bit matrix loaded, word 12, bit O

The BML bit indicates the BB transposed) registers have been
successfully loaded by a 17j40dnstruction.

WS — Waiting on semaphore, word 12, bit 1

The WS bit sets when a 0QR4nstruction is in CIP and holding
Issue.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Exchange

e VNU - Vectors not used, word 12, bit 3

After a program has been exchanged into memory, the Band T
registers must be saved as well as the SB, ST, and SM registers of
the cluster that the program is using. If the VNU bit is equal to 1,
then this indicates that the vector registers were not used so the
vector registers do not need to be saved. However, if the VNU bit is
0, then the vector registers must be saved as well. The VNU bit is
set when a 077xxx or a 140 through 177xxx instruction issues.

e SBU - Status Bit-user mode, word 12, bit 6
Indicates that the CPU is in user mode.

e SBM - Status Bit-monitor mode, word 12, bit 7
Indicates that the CPU is in monitor mode.

* NVS - Floating point invalid, word 13, bit 9

An attempt was made to generate a result that is not a real number.
Invalid is signaled in any of the following cases:

* Aninput operand is an SNAN

* Addition or subtraction of infinites

* Multiplication of 0 by infinity

» Division of 0 by 0 or infinity by infinity

« Division of a finite normal numerator by O

» Square root of a negative number

* Signed compare where one or both inputs are NaNs

* DVS-—Floating point divide by zero, word 13, bit 10
* OVS-—Floating point overflow, word 13, bit 11

A result larger than the greatest representable number was generated.
Infinity (03777 000000000000000000) is returned.

* UNS-Floating point underflow, word 13, bit 12

A result smaller than the least representable number was generated.
Zero (00000 000000000000000000) with the sign bit is returned.

HTM-300-0 Cray Research Proprietary 209

Exchange

210

CPU Module (CPE1)

NXS—-Floating point not exact, word 13, bit 13

A result was generated that would be different if all possible
significant bits were returned. Inexact is also signaled on both
overflow and underflow, but not if the returned result is exactly O.

e 1/3returns 0.33333....... 3 and signals Inexact
e 0.5/2returns .25 all bits returned.

» Afloating-point unit received an operand of infinity or NaN.
This is a Cray Research feature not an IEEE standard.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Exchange
Figure 100. Exchange Package

63 48 47 3231 16 15 0
0 15.16 31 32 47 48 63
LU rfrrrrerrrerrerrrerrrrrrrrerreed rrrrryrerrrrrrrerrrrrrrrerrrerrel
LAT O . L

O Modes LAT 0 Logical Limit LAT 0 Logical Base
RW X C 39 14 39 14
L L I I I
LAT 1] o

1| Modes LAT 1 Logical Limit LAT 1 Logical Base
RW X C 39 14 39 14
L rrrrrrrrrrrrrrrrrrrerrrrrrrrgrrrrryprererrrrrrererrrrrrrrrrrred
LAT 2 _

2| Modes LAT 2 Logical Limit LAT 2 Logical Base
RW X C 39 14 39 14
LI rfrrrrrrrrrerrerrrrrrerrrrrerd rrrrrjyrrrrrrrrrerrrrrrrrrrrrerd

3| LATS o .
Modes LAT 3 Logical Limit LAT 3 Logical Base
RW X C 39 14 39 14
LI rfrrrrrrrrrerrerrrrrrerrrrrerd rrrrrjyrrrrrrrrrerrrrrrrrrrrrerd
LAT 4) o)

4| Modes LAT 4 Logical Limit LAT 4 Logical Base
RW X C 39 14 39 14
LU rfrrrrerrrerrerrrerrrrrrrrerreed rrrrryrerrrrrrrerrrrrrrrerrrrred
LAT 5 _

5| Modes LAT 5 Logical Limit LAT 5 Logical Base
RW X C 39 14 39 14
LI rfrrrrrrrrrrrerrrrrrerrrrrerd rrrrrjyrrrrrrrrrerrrrrrrrrrrrerd
LAT 6

6| Modes LAT 6 Logical Limit LAT 6 Logical Base
RW X C 39 14 39 14
L rfrrrrrrrerrerrrerrrrrrrrerreea rrrrryrerrrrrrrerrrrrrrrerrrerrel
LAT 7 . o

7 | Modes LAT 7 Logical Limit LAT 7 Logical Base
RW X C 39 14 39 14
L rrrrrrerrrerrerrrerrrrrered LI rrrrrrrerrrrrrre rrrrrrrrerrerel
LAT O

10| Modes LAT 0 Physical Bias P Register
RW X D|37 14 29 —2
T T T [TTT T T T T T T T Tt TT T T T T TTTTT TT T T T T T T T T T T T T T T TrTT TTTTTTI
LAT 1 [||r|1t|$r|ru|pt|'v||0|d?5||||=||| o Modes

111 Modes LAT 1 Physical Bias RU-OPEBCMRI IPDMNAXNUODN| |D mme —5 om
RW X D| 37 14 PM RRXPMCTPOCLIXMIXNVVV||D10E LM
T T T [TTTT T T T T T T Tt T T T T T TTTITT TT T T T T T T T T I T T T Tt TrTrTT TTTTTTI
LAT 2 : : RM OllgltliegrLl{Aptl\AFlla]gslPDMNAXNUODN Status

12 | Modes LAT 2 Physical Bias PE-RREPECTCOCLIEMIXNVIV|[SE__N_ WS
RW X D] 37 14 EU EEXICUIPI I IXI FFVI| Imu U L
T T 1T [T T T T T T T T T T Tt TTTTTTTTTTT TTTTTTTT1 TTTTT1 TTTT1 TTTTTT1
LAT 3 Cluster Processor Vector

13| Modes LAT 3 Physical Bias Number Number | [F¥NOO0 Length
RW X D| 37 14 7 0] |6 Of [ssssss| |7 0
UL rrrrrrrrrrrvrrrrrrrrrreld [LLBLBLBLELBL LILLBLBLIL UL rrrrrrd
LAT 4

14| Modes LAT 4 Physical Bias
RW X D] 37 14]
T T 1T [T T T T T T T T T T Tt TTTTTTTTTTT TTQ T T T T T T T T T T T T T T TR T T T T T T T T T T T T Tl
LAT 5

15| modes LAT 5 Physical Bias Exit Address 3 Exit Address 4
RW X D| 37 14 20 5120 5
L rrrrrrrrrrrerrrerrrrrered LI rrrrrrrerrrerred rrrrrrrerrrrerd
LAT 6 . .

16 | Modes LAT 6 Physical Bias Exit Address 1 Exit Address 2
RW X D] 37 14] 20 5120 5
T T T [TTTT T T T T T T Tt T T T T T T T T TTT TT T
LAT 7 .

. . Exchange Address

171 Modes LAT 7 Physical Bias 9 Exit Address 0
RW X D | 37 14 20 5120 5
Words 20 — 27: A Registers 0 — 7
Words 30 — 37: S Registers 0 — 7

HTM-300-0 Cray Research Proprietary 211

Exchange

Interrupt Flags

212

CPU Module (CPE1)

Interrupt modes, word 11, bits 9 through 31. Refer to Table 48 for a list of
the bit assignments for the modes field in the exchange package. All
modes except IPR, FEX, and FNX must be enabled by the EIM flag to be
effective. The EIM flag sets on an exchange to nonmonitor mode and
clears on an exchange to monitor mode. The EIM flag enables interrupt
modes if set. The EIM bit can be set or cleared by a 001302 or a 001303
instruction, respectively.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

Exchange

Table 48. Interrupt Modes Register Bit Assignments

Binary
Word | Exponent | Acronym Name
11 31 IRP Interrupt on Register Parity Error
11 30 IUM Interrupt on Uncorrectable Memory Error
11 29 - Not Used
11 28 IOR Interrupt on Operand Range Error
11 27 IPR Interrupt on Program Range Error
11 26 FEX Enable Flag on Error Exit (does not disable
exchange)
11 25 IBP Interrupt on Breakpoint
11 24 ICM Interrupt on Correctable Memory Error
11 23 IMC Interrupt on MCU Interrupt
11 22 IRT Interrupt on Real-time Interrupt
11 21 1P Interrupt on Interprocessor Interrupt
11 20 o] Interrupt on 1/O
11 19 IPC Interrupt on Programmable Clock
11 18 IDL Interrupt on Deadlock
11 17 IMI Interrupt on 001jk=0 or 033 instruction
11 16 FNX Enable Flag on Normal Exit (does not disable
exchange)
11 15 IAM Interrupt on Address Multiply Range Error
11 14 IXI Interrupt on floating-point exceptional input
11 13 INX Interrupt on floating-point not exact
11 12 IUN Interrupt on floating-point underflow
11 11 IOV Interrupt on floating-point overflow
11 10 IDV Interrupt on floating-point divide by zero
11 9 INV Interrupt on floating-point invalid

HTM-300-0

Cray Research Proprietary 213

Exchange CPU Module (CPE1)

Refer to Table 49 for a list of the bit assignments for the
interrupt flags field in the exchange package.

Table 49. Flag Register Bit Assignments

Binary
Word | Exponent | Acronym Name
12 31 RPE Register Parity Error
12 30 MEU Uncorrectable Memory Error
12 29 - Not Used
12 28 ORE Operand Range Error
12 27 PRE Program Range Error
12 26 EEX Error Exit (000 issued)
12 25 BPI Breakpoint Interrupt
12 24 MEC Correctable Memory Error
12 23 MCU MCU Interrupt
12 22 RTI Real-time Interrupt
12 21 ICP Interrupt from Internal CPU
12 20 Te] /0 Interrupt (if 110 and SIE)"
12 19 PCI Programmable Clock Interrupt
12 18 DL Deadlock Interrupt
12 17 Mil 001jk=0 or 033 Instruction Interrupt (if IMI
and not MM)
12 16 NEX Normal Exit (004 issued)
12 15 AMI Address Multiply Interrupt
12 14 XI Floating-point exceptional input interrupt
12 13 NX Floating-point not exact interrupt
12 12 UNF Floating-point underflow interrupt
12 11 OVF Floating-point overflow interrupt
12 10 DVI Floating-point divide by zero interrupt
12 9 NVI Floating-point invalid interrupt

T

SIE = System /O interrupt enabled.

214 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Exchange

Vector Length

VL - vector length, word 13, bits O through 7. The VL register holds the
content of the VL register. The 8-bit field contains the number of
elements to be operated on in the vector register. In a CRAY T90 series
system, if VL = 000 or VL = 200, all 2@&ector elements are used within
the vector register.

Exchange Address

XA — exchange address, word 17, bits 16 through 31. The 16-bit field
specifies the address of the first word of the next exchange package. This
exchange package is loaded when any one of the following conditions
OCCUrs:

* An interrupt occurs that sets any of the following flags: RPE, MEU,
FPE, OPR, BPI, MEC, MCU, RTI, ICP, 10I, PCI, DL, MIl, NEX, or
AMI

* AO000isissued
* A 0040k is issued withk being an illegal value (5, 6, or 7)

The XA field contains only bits 5 through 20. The lower bits are assumed
to be O’s.

Exit Address

EXIT Address 0 through 4, words 15, 16, 17 bits O through 31. Each of
the five 16-bit fields specifies the starting address of a 32-word exchange
package. Thé& field of the 004{k instruction specifies the exchange
package to use. Onk/fields equal to O through 4 are valid; if an invalid
value is used, the exchange is to the XA address. Exit Address (EA) O is
expected to be used for normal exits to maintain compatibility with
existing systems.

Each EA field contains only bits 5 through 20. The lower bits are
assumed to be O’s.

Cluster Number
CLN - cluster number, word 13, bits 24 through 31. The CLN contains an

8-bit field. There may be up to g6lusters in the system, depending on
the system configuration.

HTM-300-0 Cray Research Proprietary 215

Exchange CPU Module (CPE1)

Processor Number

PPN — Processor number, word 13, bits 16 through 22. The contents of
the 7-bit field in the exchange packages show the logical number of the
CPU in which the exchange was executed. The maximum number is 127.

Logical Address Translation

LAT — Logical address translation, words O through 17. Refer to the
exchange package diagram for bit layouts. Each LAT has four associated
fields; Table 50 identifies those fields.

Table 50. LAT Fields

Field Name Description

Logical Base |Firstlogical address of this LAT
Logical Limit |Last address +1 of this LAT

Physical Bias | Physical bias = Physical base address — Logical base address

Modes The controlling bits for each LAT
R(ead), W(rite), X(ecute), C(achable), D(irty)

The use of LATs allows programs to share memory space. For example,
two user jobs can reference the same library routine in memory while
keeping their local code private.

216 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Exchange

This page intentionally left blank.

HTM-300-0 Cray Research Proprietary 217

REAL-TIME CLOCK,

PROGRAMMABLE CLOCK INTERRUPT,
STATUS REGISTER,

PERFORMANCE MONITOR

Real-time Clock

Referto the following subsections for information about the real-time
clock, programmable clock interrupt, status register, and the performance
monitor.

218

A CRAY T90 series computer system contains one 64-bit real-time clock
(RTC) in each central processing unit (CPU). The RTC is synchronized
when a CPU issues a 0Q@4nstruction. The 0038 instruction causes all
CPUs in the same cluster to be loaded with the contenis of S

The RTC is located on two HH options, each of which handles 32 bits.
The HHOO0O option handles bits 0 through 31; the HHOO1 option handles
bits 32 through 63.

HHOOOI detects a carry from the RTC, at a count of 37777777776 during
normal operation and increments the upper bits during the next clock
period. HHOOO suppresses any toggles.

The RTC is incremented each clock period. The RTC enables

clock-period timing of program execution. When the machine is
deadstarted, all RTCs must be loaded in order to synchronize all the CPUs.
Otherwise, each CPU will have a different RTC value.

The 00140 instruction writes to the RTC by sending a copy of the S
register from the CPU issuing the instruction to all RTC registers through
the issue paths of the shared registers. Th&0T&struction reads the

RTC register of the CPU that issued theiQ®Znstruction and copies the
content into the scalar registers.

Refer to Figure 101 for an RTC and programmable clock interrupt (PCI)
block diagram.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

RTC, PCI, Status Register, Performance Monitor

Figure 101. RTC and PCI Block Diagram

Sj Data from HI000

Shared Module

OAA - OCL

CIP from Issue

Shared Data Path
(RTC Data or PCI)

Programmable Clock

RTCto Si
OAA — OBF Bits 0—31

RTCto Si
OAA — OBF Bits 32 — 63

HHO000
ICA—IDF
PCI Logic Used on
This Option Only
IEA—IEP
ONA
Carry to RTC
ICA—IDF
IEA—IEP

EachCPU has one programmable clock (PC), which is a 32-bit counter
The programmable clock decrements every clock period; the clock is
located on the HDOOO option.

The programmable clock is loaded by the (@idstruction when the
program is in monitor mode. When the programmable clock equals zero,
an interrupt request (PCI) is generated. To generate a PCI, the IPC mode
bit must be set. In user mode, IPC must have been set in the user’s

HTM-300-0

Cray Research Proprietary

219

RTC, PCI, Status Register, Performance Monitor CPU Module (CPE1)

exchange package. If the CPU is in monitor mode, either IPC was set in
the monitor’s exchange package, or a 001406 instruction was issued. The
interrupt request remains set until a 001#@Hruction clears it. If the

CPU is in monitor mode and if the interrupt request is not desired, use a
001407instruction to disable the IPC mode bit.

The PCI request is enabled and disabled on the HI option, which contains
the exchange parameters.

RTC and PC Instructions

Refer to Table 51 for a list of the RTC and PC instructions.

Table 51. RTC and PC Instructions

Instruction CAL Description
00140 ¥ RT Sj Enter RTC register with Sj
072i00 SiRT Transmit RTC to Si
00144 PCI Sj Transmit Sjto programmable clock
001405 * ccCl Clear PCI request
001406 * ECI Enable PCI request
001407 * DCI Disable PCI request

T Monitor mode instruction.

Performance Monitor

220

The performance monitor (PM) is normally used to monitor software
performance. With the results of the performance monitor, a programmer
can determine how efficiently a program is running in the system. If, for
example, the program is performing too many instruction fetches or too
many hold issue conditions are occurring, the programmer can review the
program structure and modify it to minimize these occurrences.

Each CPU contains a performance monitor. (Because each CPU is
identical, all references in this section pertain to a single CPU.) Each
CPU contains 32 performance counters; each counter is 48 bits wide.
Table 52 shows which event each counter monitors. Each counter
increments each time a particular event occurs in the CPU while the CPU
IS not in monitor mode (IMI bit is not set). The counters related to

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) RTC, PCI, Status Register, Performance Monitor

memory references may increment as many as eight times per clock
period (CP). Counters related to vector operations increment by the value
in the vector length register at the time the instruction issues.

Table 52. Performance Monitor

Counter Event Monitored Instructions Increments
Number of:
0 Clock periods monitored +1
1 Instructions issued +1
2 Clock periods holding issue +1
3 Instruction fetches +1
4 CPU memory references (ports A, B, C) +8
5 Clock periods for references (ports A, B, C) +2047
6 I/0 memory references (port D, 1/0O only) +2
7 Cache misses +1
Holding issue on:
10 A registers and access conflicts +1
11 S registers and access conflicts +1
12 V registers +1
13 B/T registers +1
14 Functional units +1
15 Shared registers +1
16 Memory ports +1
17 Number of cache hits +1
Number of instructions:
20 Instructions 000000 through 004000 000 - 004 +1
21 Branches 005 - 017 +1
22 Address instructions 02x, 030 — 033, EIS 042 — 057, +1
07320, 073/30
23 B/T memory instructions 034 - 037 +1
24 Scalar instructions 040 — 043, 071 — 077 except +1
07320, 073i30
25 Scalar integer instructions 044 — 061, 070ij6 +1
26 Scalar floating-point instructions 062 — 070 +1
27 S/A memory instructions 10x — 13x +1
Number of operations:
30 Vector logical 070i1, 140 — 147, +VL
1740/4 — 1740j6, 175
31 Vector shifts, pop., leading zero 150 — 153, 174xx (1 — 3) +VL
32 Vector integer adds 154 — 157 +VL
33 Vector floating-point multiplies 160, 161, 165, 166 +VL
34 Vector floating-point add/compare/converts 167 — 173 +VL
35 Vector floating-point divide/square root 162, 163, 174xj0 +VL
36 Vector memory reads 176 +VL
37 Vector memory writes 177 +VL
HTM-300-0 Cray Research Proprietary 221

RTC, PCI, Status Register, Performance Monitor CPU Module (CPE1)

Performance Monitor Instructions

Table 53 lists all the instructions associated with the performance monitor.

Table 53. Performance Monitor Instructions

Instruction CAL Description
001500 Clear all performance counters
073i1 SiSRj | Transmit (SR)) to Si(monitor mode only for
j=2-17)
073i05 SRO S/ | Transmit (S)) bits 48 — 52 to SRO
073125 SR2 Si | Advance performance monitor pointer
073i75 SR7 Si | Transmit (Si) to maintenance channel

Clearing the Performance Counters

Instruction 001500 clears all performance counters. This instruction must
be issued while the CPU is in monitor mode in order for the instruction to
operate correctly.

Reading the Performance Monitor

The 07321 and 0781 instructions read the performance monitor. Each
instruction reads half of the counters at a time, which requires that two
instructions be issued to read all the counters. The 48 bits of the counter
read are stored in the &gister. When the OVAL instruction is issued,
counters 0 through 17 are sent to $he 07831 instruction, when issued,
reads counters 20 through 37 and sends the biis to S

The system hardware requires an interval of at least 3 clock periods
between 07iX1 instructions, and the PM Busy Status (PMBY) bit (bit 47

of SRO) must be cleared before reading the counters. If the 3-CP wait is
not written into the program, an indeterminable corruption of performance
monitor data occurs.

222 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) RTC, PCI, Status Register, Performance Monitor

Performance Monitor Block Diagram

Referto Figure 102 for the performance monitor block diagram. The
performance monitor is composed of the HI000, HHO00, and HHOO1
options. The HIO00 option contains the lower bits (0 through 31) and the
HHOO00 and HHOO1 options contain the upper bits (32 through 47) for all
32 counters. There is one counter for each event tracked by the
performance monitor. These 48-bit counters increment as each event
occurs, as long as the CPU is not in monitor mode.

HTM-300-0 Cray Research Proprietary 223

RTC, PCI, Status Register, Performance Monitor CPU Module (CPE1)

Status Register

224

A CRAY T90 series computer system has eight status registers, which are
located on the HH and HI options. The status register is not part of the
exchange package in CRAY T90 series systems. Figure 103 shows the
status register format and bit assignments of each register. The status
registers are read by the @ja3instruction.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) RTC, PCI, Status Register, Performance Monitor

The eight status registers are further defined in Table 54 through Table 57.

Status register O(SR0) shows the status of several bits in the active
exchange package.

Table 54. Status Register (SRO)

Bits Name Description
63 CLN#0 [Cluster number not equal to zero
57 BML Bit matrix loaded
47 PMBY Performance monitor busy
40 through 46 PN Processor number
32 through 39 CLN Cluster number
31 SMB * Interrupt on floating-point error
30 SsMU ¥ Interrupt on operand range error
20 IBP * Interrupt on breakpoint
19 IOR ¥ Interrupt on operand range error mode
18 BDM Bidirectional memory mode
17 SCE " | Scalar cache enabled
16 Xis ¥ Floating-point exceptional input
15 NXS ¥ | Floating-point not exact
14 UNS ¥ Floating-point underflow
13 ovs * Floating-point overflow
12 DVS ¥ | Floating-point divide by zero
11 NVS ¥ | Floating-point invalid
9 X1 Interrupt on floating-point exceptional
input
8 INX ¥ Interrupt on floating-point not exact
7 IUN * Interrupt on floating-point underflow
6 lov * Interrupt on floating-point overflow
5 IDV ¥ Interrupt on floating-point divide by
zero
INV Interrupt on floating-point invalid
RM1 7 [Floating-point round mode bit 1
1 RMO ¥ | Floating-point round mode bit O

1 Designates that this was written by a 073/05 instruction. All other bits of SRO
are read-only.

HTM-300-0 Cray Research Proprietary 225

RTC, PCI, Status Register, Performance Monitor CPU Module (CPE1)

226

Status register 1(SR1) is not defined.

Status register 2(SR2) bits @hrough 47 are bits of the performance
monitor counters 0 through 17.

Status register 3(SR3) bits @hrough 47 are bits of the performance
monitor counters 20 through 37.

Status register 4(SR4) bits are shown in Table 55. SR4 contains the
correctable and uncorrectable memory error flags, port bits, and read
mode bits. The error information stored in SR4 is latched into the register
and held until the register is read. Once SR4 is read, the register is
cleared, and new error data can be stored in the register. If multiple errors
occut only the first error is held in SR4. Bits 32 through 45 define the
destination code associated with the error. Table 56 is a decode of these
destination bits.

Table 55. Status Register 4 (SR4)

Bits Name Description
47 UME Uncorrectable memory error
46 CME Correctable memory error
32 through 45 CODE Destination code (refer to Table 56)

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

RTC, PCI, Status Register, Performance Monitor

Table 56. Destination Codes

Bit
Destination 1312111019 |81 7|6]|5]14|3]2]1]|0
Cache read 111(1]- Word
V register read 11110 Register - Element
S register read 11071 Register 0 -
A register read 11011 Register 1 -
T register read 110710 - 0| - Register
B register read 110710 - 1] - Register
Fetch read 0Ol1]1 Group Word
I/O read 0110 Type Word
Exchange read 0101 - Word
I/O write 01010 Type 1
Processor write ojofof|-fOof1]O AIS
Reconfigure ojo|jOoO]-]11]1]0 -
Memory error OjJ]0]J]O0O]-10}0]}]O -

HTM-300-0

Status register 5(SR5) bits 32 through 43 contain the syndrome code of
the memory error. The information is held until the status register is read.

Status register 6(SR6) bits 32 through 44 contain the error address for
the memory error. These bits are latched into the SR6 on a memory error.
The information is held until the status register is read.

Status register 7(SR7) contains information on LAT faults, register
parity errors (RPE), and shared register errors (SRRE). Bits 48 through
54 contain an LAT miss flag for each memory port. Bits 55 through 61
contain an LA multiple-hit flag for each memory port. Bit 47 is the RPE
flag. If this bit sets, then bits 32 through 43 contain the chip nunider

46 is the SRRE flag and, if this flag is set, bits 24 through 31 contain the
chip number.

Cray Research Proprietary 227

RTC, PCI, Status Register, Performance Monitor CPU Module (CPE1)

Table 57. Status Register 7 (SR7) Bit Definitions

Bits Name Description

48 through 54 LAT fault |LAT miss
55 through 61 LAT fault | Multiple LAT hit

46 SRRE Shared register read error
24 through 31 Shared register chip number
47 RPE Register parity error
32 through 43 RPE chip number

228 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) RTC, PCI, Status Register, Performance Monitor

Figure 102. Performance Monitor Block Diagram

S Register

Vector Length Performance Monitor to S/ Bits 0 — 31

Go Increment

HHO00 oMQ HHO01
OMA - .
OMH OAA — Performance Monitor
IAA — OBF to Si Bits 32 — 47 =
Vector Length IBF _| OAA — o
o OBF
Performance Performance
Counter Counter
Relgi'titesrzs_();f? Registers 0 — 37
ICA — Bits 32 — 47
Shared Data Path IDF _ IMI Allow Read
o ONB of HPM 1JQ
IKO
IKL_ ¥ HI1000
ILA — IKP
> OFA Carry Out IKM
ILH »1 Performance KM
Counter 8’;’: - >
IKH —
Registers 0 — 37 IKL -
IAA — Bits 0 — 31 OFI
Shared Data ICL _|
Performance Monitor OFO Busy IKP
Increment Terms IKA —
h Hold IKO
(Registers 10 — 16) IKG - OEK Carry
Cache Miss (Register 17) IKH - OFA — IKH —
. . OFE Select Pointers IKL
Cache Hit (Register 7) IKK |
- OBG - ICA —
I/0O Reference Requests IKL — OCL Shared Data Path IDE
(Register 6) IKM |

HTM-300-0 Cray Research Proprietary 229

Modlule Title Section Title

Delete this page when printing.

HTM-003-0 Cray Research Proprietary 230

I
_|
=
w
o
o
o Bits 63 57 52 48 47 40 39 32 31 16 15 0
C B I F1I1B|P Processor Cluster M
SRO | L M BPFOD|M Number Number M
N L PSPRM|B '\4
#0 Y 6 0|7 0
M
SR1
SR2 Performance Monitors 0 — 17
47 32 31 16 15 0
0O
=
‘g SR3
- Performance Monitors 20 — 37
% 47 32 31 16 15 0
1]
= Error Type
S SR4 uc Destination Code
) M M
3 E E 13 0
S
,‘_TZ. SR5 Error Syndrome
]
< 11 0
Error Address
SR6
12 0
LAT Faults S RPE Chip SRRE Chip
. . . Numb Numb
SR7 Multiple Hit Miss E g umber umber
DC'CB'BAA|DCCBBAA|E E 11 0|7 0
Bits 63 62 61 55 54 48 47 46 43 32 31 24 16 15 0

T€C

SRO bit 20 = monitor mode - maintenance mode - not (SR7 busy)

Figure 103. Status Registers

(T3d42) 8inpow Ndo

10JIUOW daurWLIOLIBd 49]1s1B63Y SnelIS ‘IDd ‘D1

SCALAR CACHE

Cache Hit

Each CPU has a scalar data cache. The data cache accelerates common
memory data access for address register and scalar register read requests.
Only address and scalar registers can access the data cache.

The data cache has the following features:

The cache is organized into 8 pages of data. Each page contains 8
lines of 16 words, which provides 1,024 words of data in the cache.
Figure 104 illustrates the logical layout of the cache.

Cache is parity protected; each 8-bit byte has an associated parity bit.
If enabled, a parity error on a cache read will cause an interrupt.

When an A or S register memory reference is made, one of two
things may occur: eache hitor acache miss

A and S register store requestsarée-through The cache word
will be updated if there is a hit; if a miss occurs, no cache lines are
requested.

B, T, and V register store requests cause corresponding cache lines to
be set invalid on a cache hit. Store requests on a cache miss have no
effect on the cache. B, T, and V register load requests also have no
effect on the cache.

232

A cache hit is determined using logical addresses, not physical addresses.
A cache hit occurs when the following conditions are met:

A valid page address consisting of address bits 7 through 39, held
within the cache, matches the corresponding address bits of a
memory request.

The cache line indicated by bits 4 through 6 of the requesting address
is valid within the cache.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

Scalar Cache

Figure 104. Cache Layout

| Page 7
| Page 6
| Page 5
| Page 4
| Page 3
| Page 2
Page 1
Page 0
Words 0 — 15

Line O

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Cache Miss
A cache miss occurs when a request from an A or S register load request
does not match a page address. When this occurs, the corresponding line
is requested from memory and the previously valid page address is set to
the new page address. All lines in the new page are set invalid. As the
new requested line returns from memory, the new page address is set valid
as is the cache line that was requested.
Another type of miss occurs when a memory reference matches the page
but not any line in the page, or if the page is not valid. When this occurs,
16 sequential words are requested from memory, and the line is set valid.
HTM-300-0 Cray Research Proprietary 233

Scalar Cache CPU Module (CPE1)

Cache Addressing

Figure 105 shows how memory addresses are used to determine a cache
hit or miss.

Figure 105. Memory Addresses

Memory Address
Subsection
Word Select Bank Select Select Section Select
A A A A
r A4 A4 A4 h)
39 918 71615 413]2 0| Bits
1N\)\)\ J
Y Y Y
Cache Page Cache Line Cache Word
Cache Address

Potential Cache Problems

Because no communication occurs between caches in different CPUs, two
or more CPUs can have data in their respective caches from the same
physical address in memory, and one of the CPUs can write data to that
memory address. The CPU that writes the data will update its cache, and
the other CPUs will contain old data. This problem can be managed in
several ways:

* There are load instructions that bypass cache. These instructions
cause the cache line to be invalidated on a cache hit.

* LATs can be set up to define areas of memory that are not cache
enabled.

» Ifthe SCE (scalar cache enable) bit is not set in the exchange
package, it will prevent the use of cache for that job.

Another problem that can occur terashingmemory with a stride value

of 128. A stride of 128 uses 1 word of 1 line from each cache page. Then
when you start replacing lines, you will get 16 words back from memory
to cache but will be using only 1 word. This problem is avoided by
redesigning user code.

234 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Scalar Cache

CH Option
There are 16 CH options; these options contain all of the cache memory
RAMs. The even-numbered CHs hold data from memory sections 0, 1, 6,
and 7; the odd-numbered CHs hold data from memory sections 2, 3, 4,
and 5.
On a memory write, each CH writes 4 bits to all memory sections.
Table 58 shows the bits in each option.
Table 58. CH Option Bits
CHO000 |[CH002 |CHO004 |CHO06 |CHO08 |CHO10 |[CHO12 |[CHO14
Read Data 0-3 4-7 8-11 12-15 |16-19 [20-23 [24-27 [28-31
Sect. 0,1,6,7 |32—-35 |36-39 |40-43 |44-47 |48-51 [52-55 [56-59 |60-63
Write Data 0-3 4-7 8-11 12-15 |16-19 |[20-23 [24-27 [28-31
Sect. 0 -7 CBO CB1 CB2 CB3 CB 4 CB5 CB6 CB7
CH001 [CH003 |[CHO005 |[CHO007 |CHO09 |CHO1l |CHO13 [CHO015
Read Data 0-3 4-7 8-11 12-15 |16-19 [20-23 [24-27 [28-31
Sect. 2,3,4,5 |32-35 |36-39 |40-43 |44-47 |48-51 [52-55 [56-59 |60-63
Write Data 32-35 |[36-39 |[40-43 |[44-47 |48-51 |52-55 |56-59 |60-63
Sect. 0 -7 CB8 CB9 CB 10 CB 11

Scalar Cache Instructions

Refer to Table 59 for a list of the scalar cache instructions.

Table 59. Scalar Cache Instructions

Instruction CAL Description

002501 ESC Enable scalar cache

002601 DSC Disable and invalidate scalar cache

10hi20mn Ai exp,Ah,BC Load Aifrom ((Ah)+exp) bypassing data cache and invalidating
cache line

10hi60pmn Ai exp,Ah,BC Load Aifrom ((Ah)+exp) bypassing data cache and invalidating
cache line

12hi20mn Si exp,Ah,BC Load Sifrom ((Ah)+exp) bypassing data cache and invalidating
cache line

12hi60pmn Si exp,Ah,BC Load Sifrom ((Ah)+exp) bypassing data cache and invalidating
cache line

HTM-300-0 Cray Research Proprietary 235

	htm300_1
	htm300_2
	htm300_3
	htm300_4
	htm300_5
	htm300_6
	htm300_7
	htm300_8

