Instruction Set Overview
(CRAY T90 ™ Series)

HTM-115-A

Cray Research Proprietary

Cray Research, Inc.

V-G1T
M3IAIBAQ 189S uonannsu|

Record of Revision

REVISION DESCRIPTION

March 1995. Original printing.

A September 1995. Revision A incorporates minor technical corrections to the instruction set.

Any shipment to a country outside of the United States require$ a
letter of assurance from Cray Research, Inc.

This document is the property of Cray Research, Inc. The use of this document is subject to specific license rights
extended by Cray Research, Inc. to the owner or lessee of a Cray Research, Inc. computer system or other licensed
party according to the terms and conditions of the license and for no other purpose.

Cray Research, Inc. Unpublished Proprietary Information — All Rights Reserved

Autotasking, CF77, CRAY, CRAY-1, Cray Ada, CraySoft, CRAY Y-MP, HSX, MPP Apprentice, SSD,
SUPERCLUSTER, SUPERSERVER, UniChem, UNICOS, and X-MP EA are federally registered trademarks and
Because no workstation is an island, CCI, CCKF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS,
CRAY-2, Cray Animation Theater, CRAY APP, CRAY C90, CR&¥0D, Cray C++ Compiling System, CrayDoc,
CRAY EL, CRAY J90, Cray NQS, Cray/REELlibrarian, CRAY S-MP, CRAY SUPERSERVER 6400, CRAY T3D,
CRAY T90, CrayTutor, CRAY X-MP, CRAY XMS, CRInform, CRUrbKiva, CS6400, CSIM, CVT,

Delivering the power . . ., DGauss, Docview, EMDS, HEXAR, 10S, LibSci, ND Series Network Disk Array,
Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE, SUPERLINK,
System Maintenance and Remote Testing Environmemstdd UNICOS, and UNICOS MAX are trademarks of

Cray Research, Inc.

Requests for copies of Cray Research, Inc. publications should be directed to:

CRAY RESEARCH, INC.
Logistics

6251 South Prairie View Road
Chippewa Falls, WI 54729

Comments about this publication should be directed to:

CRAY RESEARCH, INC.

Service Publications and Training
890 Industrial Blvd.

Chippewa Falls, WI 54729

INSTRUCTION SET OVERVIEW

HTM-115-A

Notational Conventions, 2
Instruction Formats. 3
One-parcel Instruction Formats 3
Three-parcel Instruction Formats. 4
Four-parcel Instruction Format. 6
Extended Instruction Set. 7
Special Register Values. 7
Undefined Instructions. 7
Triton-mode Instructions 8
Monitor-mode Instructions. 9
IMI-mode InStructions. 10
Instructionand Branch Timing 12
ISSUE TIMING. e 12
Branch Timing. 14
Special CAL Syntax FOorms. 15
Instruction Summary. 15
Figures
Figure 1. Vector ElementLayout. 2
Figure 2. General Instruction Format 3
Figure 3. One-parcel Instruction Formats. 4
Figure 4. Three-parcel Instruction Formats. 5
Figure 5. Four-Parcel Instruction Formats. 6
Tables
Table 1. Special RegisterValues 7
Table 2. Triton-mode Instructions. 8
Table 3. Monitor-mode Instructions. 9
Table 4. IMI-mode Instructions. 10
Table 5. Special Indicators 16
Table 6. Instruction Special Indicators. 16

Cray Research Proprietary 1

This overview describes the CPU instruction set. Depending on the state
of the Triton mode (TRI) bit in the exchange package, the CPU operates in
one of two modes: Triton mode or C90 mode.

In Triton mode, the A registers are 64 bits wide; bit 63 is the sign bit.
(Software written for earlier systems needs to be recompiled before it can
run in Triton mode.) In C90 mode, the CRAY T90 series system is
binary-compatible with software written for the CRAY C90 series
computer system. The A registers are 32 bits wide; bit 31 is the sign bit.

Some instructions operate differently in Triton mode than in C90 mode;
the following subsections explain these differences.

Notational Conventions

This document uses the following conventions:

e Machine instructions are octal; all other numbers are decimal unless
otherwise indicated.

* Register bits are numbered from right to left.

* The letter n represents a specified value.

* \Variable parameters areitalic type.

* The symbol * designates an arithmetic product.

* The VM register contains the vector mask bits, which consist of two
parts: VMO and VM1. As shown in Figure 1, VMO contains vector

mask bits for elements 0 through 63; VM1 contains vector mask bits
for elements 64 through 127.

Figure 1. Vector Element Layout

Elements 0 63
VMO | 63 0
Elements 64 127
VM1 | 63 0

2 Cray Research Proprietary HTM-115-A

Instruction Set Overview

Instruction Formats

Instructions can be 1 parcel (16 bits), 3 parcels (48 bits), or 4 parcels (64
bits) long. Instructions contain 4 parcels per word. Within a word,
parcels are numbered 0 through 3 from left to right.

A 3- or 4-parcel instruction can begin in any parcel of a word and can
span a word boundary. For example, a 3-parcel instruction beginning in
parcel 3 of a word ends in parcel 1 of the next word. No padding of word
boundaries is required. Any parcel position can be addressed in branch
instructions.

Figure 2 shows the general instruction format. The first parcel is divided
into five fields. The second, third, and fourth parcels each contain a single
field. Figure 4 and Figure 5 show how multiparcel instructions are
actually stored in memory.

Figure 2. General Instruction Format

First Parcel Second Parcel Third Parcel Fourth Parcel
A AL AL AL
r T N N r N r N
g h i j k m n p Field
4|3(3]3]|3 16 16 16 Number
of Bits

One-parcel Instruction Formats

HTM-115-A

Mostinstructions are 1-parcel instructions; there are two types of 1-parcel
instruction formats as shown in the following list. Figure 3 illustrates
these two formats.

e 1l-parcel instructions with discretandk fields
e 1-parcel instructions with combing@ndk fields

In 1-parcel instructions with discretendk fields, thej andk fields
usually designate operand registers. iTfeld designates a destination
register. Some instructions do not use all three of these fields. Other
instructions use thieor k field to provide additional bits for the operation
code.

Cray Research Proprietary 3

Instruction Set Overview

Figure 3. One-parcel Instruction Formats

gh i j Kk
7 313]3
J
Operation Code |— Register Designators
gh i

7 3

Operation Code J

In 1-parcel instructions with combing¢@ndk fields, thejk field usually
contains a constant or designates a source or destination register. The
field usually designates a destination or source register. Some instructions
use tha field or bit 2 of thg field to provide additional bits for the

operation code.

jk
6
|— Constant or Register Designator

Register Designators

Some 1-parcel instructions of both formats are part of the extended
instruction set. For example, they perform different operations when
immediately preceded by the extended instruction set (EIS) instruction
005400.

Three-parcel Instruction Formats

Some instructions are 3-parcel instructions. Figure 4 shows the 3-parcel
format.

* 3-parcel instruction with fielemas a constant
e 3-parcel instruction with fielemas a branch address
e 3-parcel instruction with fielttlmas an address displacement

In all three formats, fieltimis a 32-bit field with parcet (the last parcel
of the instruction) the most significant parcel.

4 Cray Research Proprietary HTM-115-A

Instruction Set Overview

Three-parcel instructions with timenfields as constants transmit a

constant value to an A or S register (instructions 020, 021, 040, and 041).
Thei field specifies the destination register. Tladk fields are not

used, except that bits 1 and 2 of jlield specify different operations for
instructions 020 and 040.

Figure 4. Three-parcel Instruction Formats

First Parcel Third Parcel Second Parcel
A A A
r) — r) r)]
gh i jk n m Field
Number
7 3 6 16 16 of Bits
1\ J
Y
32-bit Constant
Destination Register Designator
Operation Code
First Parcel Third Parcel Second Parcel
r A h) r A h) r A h)
gh i jk n m Field
Number
7 3 6 16 16 of Bits
|\ J
Y
32-bit Direct or Indirect Branch Address
Test Register Designator (006 Instruction)
Operation Code
First Parcel Third Parcel Second Parcel
r A h) r A h) r A h)
g h i j k n m Field
Number
41313]3]3 16 16 of Bits
1\ J
Y

32-bit Address Displacement

Source/Destination Register Designator

Address Register Designator (Used as Index)
Operation Code

HTM-115-A Cray Research Proprietary 5

Instruction Set Overview

Three-parcel instructions with timenfields as jump addresses are used for
all types of jumps (instructions 006 through 017). Instructions 006 and
007 use field bit 0 to distinguish between direct and indirect jumps.

Instruction 006 useisfield bit 2 to distinguish between unconditional and
conditional jumps. For conditional jumps, instruction 006 usegktheld

as the test register designator. Instructions 010 through 017 do not use the
i,], andk fields.

Three-parcel instructions with fielimas address displacements are used
for A-register and S-register memory references (instructionshtbugh

13h) using normal addressing. Thdield selects an A register to be used
as an address index. Thield designates an A or S register as the source
or destination of the data. For memory read references (instructibns 10
and 12) | field bit 1 disables/enables bypass of the data cache. Bit 2 of
thej field must be 0 to indicate a 3-parcel (nhormal addressing) instruction.
Thek field is not used.

Four-parcel Instruction Format

Figure 5 shows the 4-parcel instruction format. Fprichis a 48-bit field
with parcelp (the last parcel of the instruction) as the most significant
parcel.

Figure 5. Four-Parcel Instruction Formats

First Parcel Fourth Parcel Third Parcel Second Parcel
A A A A
r i . r h) r h) r h) .
g h i p n m Field
4]3|3]3 16 16 16 Number
of Bits
1N J

Y
48-bit Address Displacement

Source/Destination Register Designator

Address Register Designator (Used as Index)

Operation Code

Four-parceinstructions are used for A- and S-register memory references
(instructions 10 through 18) that use extended addressing. Thield
selects an A register to be used as an address index.figldedesignates

an A or S register as the source or destination of the data. For memory

Cray Research Proprietary HTM-115-A

Instruction Set Overview

read references (instructionshlénd 1), j field bit 1 disables/enables
bypass of the data cache. Bit 2 of tffield must be 1 to indicate a
4-parcel (extended addressing) instruction. KFeld is not used.

Extended Instruction Set

The operation of some 1-parcel instructions is modified when they
immediately follow a special instruction parcel (005400). The set of
modified instructions is called the extended instruction set (EIS).

Each EIS instruction must be immediately preceded by the instruction
parcel 005400 or the instruction performs its normal operation. For
example, if instruction 04k is not preceded by parcel 005400, it
computes the logical sum of registersa8d & and transmits the result to
register & If instruction 044k is preceded by parcel 005400, it computes
the logical sum of registersjand A and transmits the result to register
Ai.

Special Register Values

HTM-115-A

If register AO or SO is referenced in thg, ork field of certain
instructions, the contents of the respective register are not used; instead, a
special operand is generated.

The special operand is available regardless of existing AO or SO
reservations (and in this case is not checked). This special operand does
not alter the actual value of the AO or SO register. If register AO or SO is
used in the field as the operand, the actual value of the register is
provided. Cray Assembly Language (CAL) issues a caution-level error
message for AO or SO when 0 does not apply to fieéd. Table 1 lists

the special register values.

Table 1. Special Register Values

Instruction Field Operand Value
Ah, h=0 0
Aj,j=0 0
Ak, k=0 1
Sj,j=0 0
Sk, k=0 bit63=1

Cray Research Proprietary 7

Undefined Instructions

Executing an illegal instruction produces undefined results. Some
instructions cause an error exit, others are no-operation (no-op)
instructions, etc. However, no illegal instruction will halt or hang the
CPU.

Triton-mode Instructions

Triton mode is active when the Triton-mode (TRI) bit in the exchange
package modes field is set. Some instructions execute correctly only if the
CPU is operating in Triton mode. If a Triton-mode instruction issues

while the CPU is operating in C90 mode, the result is undefined. Table 2
lists the instructions that are privileged to Triton mode.

Table 2. Triton-mode Instructions

Machine Instruction CAL Syntax Instruction Type

0030,2 VMO Aj Instructions that require 64-bit A
003043 VM1 Aj registers.
02020nm Ai Al.exp
020i/40nm Ai exp:Ai
027ij1 Ai ZAj

005400 042ijk Ai <exp

005400 043ijk Ai >exp

005400 044ijk Ai AJ&Ak

005400 045ijk Ai #AK&A]

005400 046ijk Ai AjIAk

005400 047ijk Ai #AJIAk

005400 050ijk Ai APAI&AK

005400 051jjk Ai AAk

005400 052ijk A0 Ai<exp

005400 053ijk A0 Ai>exp

005400 054ijk Ai Ai<exp

005400 055ijk Ai A>exp

005400 056/jk Ai AiA<Ak

005400 057ijk Ai AjA>AK
073i20 Ai VMO
073i30 Ai VM1
10hi4d0pnm Ai exp,Ah A- and S-register memory reference
10hi60pnm Ai exp,Ah,BC instructions that use extended
11hid0pnm exp,Ah Aij addressing.
12hid0pnm Si exp,Ah
12hi60pnm Si exp,Ah,BC
13hi4d0pnm exp,Ah Si

8 Cray Research Proprietary HTM-115-A

HTM-115-A

Instruction Set Overview

Machine Instruction CAL Syntax Instruction Type
006100nm 1J exp Indirect jump and indirect return jump
007100nm IR exp instructions.
005400 153jj0 Vi Vj,[VM] Vector compress, expand, and
005400 1531 Vi[VM] Vj double gather instructions.
005400 176ijk ViVj JAO0:AK VK

001501 - Clear performance monitor pointer.

Cray Research Proprietary

Instruction Set Overview

Monitor-mode Instructions

10

Monitor mode is active when the monitor mode (MM) bit in the exchange
package modes field is set.

Monitor-mode instructions perform specialized functions that are useful to
the operating system. These instructions execute normally only if the
CPU is in monitor mode. If a monitor-mode instruction issues while the
CPU is in user mode, the instruction is treated as a no-op instruction.
However, all hold-issue conditions still apply.

In normal user mode, most monitor-mode instructions act as simple
no-ops; program execution continues with the next sequential instruction.
Instruction 0781 (j = 2 through 7) is the only exception. If this

instruction is executed in normal user mode, it returns a value of O to
register &

In interrupt-on-monitor-instruction (IMI) mode, most monitor-mode
instructions execute as no-ops, but a monitor instruction interrupt (Mll)
occurs before the next instruction issues. Instruction DTj3= 2

through 7) is the only monitor-mode instruction that executes normally
when the IMI mode bit is set. Table 3 lists the instructions that are
privileged to monitor mode.

Table 3. Monitor-mode Instructions

Machine Instruction CAL Syntax Machine Instruction CAL Syntax
0010jk (jk zM0) CAAj Ak 001406 ECI

0011jk CL,Aj Ak 001407 DCI

0012j0 CLAj 001500 —

0012/1 MC,Aj 001501 —

0012,2 DI,Aj 001600 ESI

0012/3 ELAj 001640 BCD

00130 XA Aj 0017k BPk Aj
00131 Aj XA 0236 Ai EAj
001302 EMI 0237 Aj EAA/
001303 DMI 0272 EAj Aj
00140 RT Sj 027i3 EAAj Ai
00141 SIPI Aj 03300 Aj Cl
001402 CIPI 03340 (j #[0) Ai CAAj
00143 CLN Aj 033j/1 (j #[0) Ai CE,Aj
00144 PCI Sj 0731 (j=2-7) Si SRj
001405 CClI 07305 SRO Si

Cray Research Proprietary HTM-115-A

Instruction Set Overview

IMI-mode Instructions

IMI mode is active when the monitor mode (MM) bit in the exchange
package modes field is clear and the IMI bit in the exchange package
interrupt modes field is set.

IMI mode is a special operating mode designed to facilitate testing of an
operating system in a nondedicated CPU. The operating system being
tested is run under the control of a supervisory program that runs in
monitor mode. The test operating system runs in IMI mode.

The test operating system can run most instructions at full speed.
However, monitor-mode instructions and instructions that affect the
system environment or the environment of the test operating system are
trapped. (Most trapped instructions execute as no-ops, but some execute
normally) After execution of a trapped instruction, an MIl occurs. The
supervisory program can then simulate the operation of the trapped
instruction.

For proper operation, the cluster number (CLN) must be set to 0 when the

CPU is operating in IMI mode. Table 4 lists all instructions that are
trapped in IMI mode.

Table 4. IMI-mode Instructions

Machine Instruction CAL Syntax Operation When IMI Mode Active
0010jk (jk #0) CAA/ Ak These instructions are privileged to monitor mode.
0011jk CL,Aj Ak They execute as no-ops in IMI mode. An MIl interrupt
0012/0 CLAj occurs after the instruction executes.

00121 MC,Aj

0012)2 DILAj

00123 ElLAj

00130 XA Aj

0013/1 Aj XA

001302 EMI

001303 DMI

001450 RT Sj

001411 SIPI Aj

001402 CIPI

00143 CLN Aj

0014/4 PCI Sj

001405 CCl

001406 ECI

001407 DCI

001500 —
HTM-115-A Cray Research Proprietary 11

Instruction Set Overview

Machine Instruction CAL Syntax Operation When IMI Mode Active

001501 — These instructions are privileged to monitor mode.

001600 ESI They execute as no-ops in IMI mode. An Ml interrupt

001640 BCD occurs after the instruction executes.

0017jk BPk Aj

023ij6 Ai EA,j

023ij7 Ai EA A/

027ij2 EA/ Ai

027i3 EAA/ Ai

073i05 SRO Si

00200k VL Ak These instructions execute normally in IMI mode. An

072i00 Si RT MIl interrupt occurs after the instruction executes.

073/01 Si SRO

073i25 (no-op when in | SR2 Si

maintenance mode)

002100 EFI These instructions execute normally in normal user

002200 DFI mode, but execute as no-ops in IMI mode. An Mill

002210 CBL interrupt occurs after the instruction executes.

002300 ERI

002301 EBP

002400 DRI

002401 DBP

002500 DBM

002501 ESC

002600 EBM

002601 DSC

0034jk (j2 =0) SMjk 1,TS Because the cluster number must be set to 0 when IMI

0034jk (2 =1) SM,Ak 1,TS mode is active, these instructions execute as no-ops.

0036jk (j2 =0) SMjk 0 An MIl interrupt occurs after the instruction executes.

0036jk (2 =1) SMAkK O

0037jk (2 = 0) SMjk 1

0037jk (2 =1) SMAkK 1

027ij6 SB,Aj Ai

027ij7 SBj Ai

07302 SM Si

073i3 STj Si

073ij6 STAj Si

0064jknm (j2 = 0) JTSjk exp Because the cluster number must be set to 0 when IMI

0064jknm (j2 = 1) JTS,Ak exp mode is active, these instructions execute as no-ops.
An Ml interrupt occurs after the instruction executes.
Following the interrupt, the P register points to the
second parcel (m field) of the instruction.

0264 Ai SB,Aj+1 These instructions execute normally when IMI mode is

0265 Ai SBj,+1 active, but the data is blocked from entering register

026ij6 Ai SB,Aj AilSi. In addition, because the cluster number must be

02617 Ai SBj set to 0 when IMI mode is active, instructions 026ij4

072i02 Si SM and 0265 do not increment an SB register. An Mll

072i3 Si STy interrupt occurs after the instruction executes.

072ij6 Si STAj

12 Cray Research Proprietary HTM-115-A

Instruction Set Overview

Machine Instruction CAL Syntax Operation When IMI Mode Active
033/00 Ai Cl These instructions execute normally when IMI mode is
0330 (j z0) Ai CAA/ active, but the data is blocked from entering register Ai.
033j/1 (j z0) Ai CEAj This effectively makes them no-ops. An MiIl interrupt

occurs after the instruction executes.

07301 (j = 2,3)

Si SRj This instruction is privileged to monitor mode. It
executes normally in IMI mode except that the perfor-
mance monitor pointer is prevented from advancing.
An MIl interrupt occurs after the instruction executes.

073ifl (j=4-7)

Si SRj This instruction is privileged to monitor mode. It clears
register Sito O in IMI mode. An MIl interrupt occurs
after the instruction executes.

073i75

SR7 Si This instruction operates as a no-op unless
maintenance mode is active. With maintenance mode
active, this instruction operates normally. An Mill
interrupt occurs after the instruction executes.

NOTE: Normal use of this instruction requires checking
of register SRO bit 0 before executing the instruction.
Because the instruction that does the checking
(073/01) is trapped in IMI mode, it is recommended
that instruction 073/75 not be used in IMI mode.

Instruction and Branch Timing

Issue Timing

HTM-115-A

The instruction buffer attempts to keep ahead of instruction issue; this
reduces instruction waiting times. Because the instruction set is complex
and is executing in a complex environment, issue timing might not seem
deterministic (due to things such as variable wait times for memory
conflicts). However, some general rules can be stated for events that
occur within a CPU.

Although the instruction word that is the destination of a branch request is
the first word requested from memory (followed by the remainder of the
instruction block in circular order) instruction words can enter the stack in
any order (Eight words at a time are requested so that the 32-word block
is requested over 4 clock periods.) Priority conflicts, howenzer

lengthen the request time.

The issue logic has five valid flags. The first flag corresponds to the
branch address word. The next three flags correspond to the following 3
words (unless the branch address is 3 words or less from the end of a
32-word address block). The last flag indicates the validity of the
remainder of the address block.

Cray Research Proprietary 13

Instruction Set Overview

14

When the first valid flag sets, the issue unit retrieves the corresponding
word from the buffer and starts issuing instructions. At the time the first
parcel is issued, a request for the next word is made. The issue unit can
request a new instruction word every 4 clock periods (CPs), corresponding
to the maximum issue rate. The maximum issue rate is four 1-parcel
instructions with no dependencies issued in 4 clock periods.

Issue continues until the next instruction word is required. If the next
instruction word is available, issue continues; if the next word is not
available, issue halts after the last complete instruction. (Instructions split
across word boundaries are never issued until all parcels are available to
the issue unit.) This sequence continues for the first four instruction
words/valid flags.

Because the fifth valid flag indicates the validity of the remaining 28
words of the instruction block, issue halts after 4 instruction words unless
the entire instruction block is available. This is true even if the first
instruction issued is in the middle of the instruction block, with one
exception. If the next sequential instruction word of the block enters the
buffer in the same clock period that issue would halt, that word is sent to
the issue unit without waiting.

In order to reduce delays caused by memory access times, a prefetch of
the next sequential 32-word instruction block is requested when the 25th
word (8th word from the end) of the current instruction block is entered or
when a branch is done into the last 8 words of the current block. If the
next instruction block is already in the buffer, it does not have to be
fetched from memory. If the current block is still being fetched when the
request for the next block occurs, the next block is not fetched until the
current fetch is completed; the hardware can perform only one instruction
fetch at a time.

A delay occurs if the first word of the next sequential instruction block is
needed while the current block is still being fetched. In this case, issue
halts after the last word of the first block until the first word of the next
block is fetched.

If an out-of-stack branch occurs while the next sequential block is waiting
to be prefetched, the prefetch is aborted and the block containing the
branch address is fetched instead. Issue of instructions at the branch
address are delayed until the fetch of the current block is completed, a
fetch of the block containing the branch address can begin, and the
requested instruction word is available from the instructiofebuf

Cray Research Proprietary HTM-115-A

Instruction Set Overview

If an in-stack branch occurs (either to the current block or to another block
in the buffer) while the next sequential block is waiting to be prefetched,

the prefetch is aborted. Because the word at the branch address is already
in the buffer, no fetch is needed and issue continues without delay.

Branch Timing

In issuing, just like other instructions, a branch instruction is affected by
instruction buffer timing and issue interlocks. In addition, timing is
affected by branch success and by the destination address of the branch.
Even if the destination address is currently in the instruction stack, timing
is further affected by, for example, the destination parcel address and by
the size (number of parcels) of the destination instruction.

Two timing numbers are given for branches: issue time and branch time.
The issue time corresponds to the number of parcels in the instruction;
most branch instructions are 3 parcels long and therefore take 3 clock
periods to issue. The branch time listed is the minimum additional time
required to complete an in-stack branch.

Branch fall-through, for conditional branches, requires no additional time.
If a branch that is taken completes in 10 clock periods (3 CPs to issue and
7 CPs branch time) the fall-through time for that instruction is 3 CPs.

To the times listed, add additional time according to the rules in the
following list. This time is in addition to the time required for

out-of-stack instruction issues discussed previously and applies only to
branches that are taken.

* If the destination parcel is parcel 0, no additional time is added.
* If the destination parcel is parcel 1 and the destination instruction is a
4-parcel instruction, add 1 CP to the branch time. (Ifitis not a

4-parcel instruction, do not add any time.)

» If the destination is parcel 2 and that instruction is a single parcel,
add 1 CP. If it is a multiparcel instruction, add 2 CPs.

» If the destination parcel is parcel 3, add 2 CPs.

HTM-115-A Cray Research Proprietary 15

Instruction Set Overview

This timing can create a special case. If a branch to a multiparcel
instruction in parcel 2 can be converted from a branch to a single parcel
instruction in parcel 1 (even an inserted no-op before the multiparcel
instruction), a CP can be saved even if the multiparcel instruction is not
moved. (What would have been a 2-CP wait is converted to 1 CP to issue
the single-parcel instruction.) If a 3-parcel instruction can be moved from
parcel 2 to parcel 1, two CPs are saved.

Special CAL Syntax Forms

16

Certainmachine instructions can be generated from two or mdexetit

CAL instructions. Any of the operations performed by special
instructions can be performed by instructions in the basic CAL instruction
set. For example, the following CAL instructions generate instruction
002000, which transmits a 1 to the vector length (VL) register:

* VLAO (normal CAL syntax)
e VL1 (special CAL syntax)

The first instruction is the basic form of the instruction, which takes
advantage of the special case in whick)(A 1 ifk=0. The second
instruction is a special syntax form that provides the programmer with a
more convenient notation for the special case.

In several cases, a single CAL syntax can generate several different
machine instructions. These cases provide for transmitting the value of an
expression to an A register or S register, or for shifting A register or S
register contents. For example, the CAL instructio®X¥pgenerates
instruction 020, 021, or 022, depending on the valuexpf The

assembler usesxpto determine which instruction to generate.

Cray Research Proprietary HTM-115-A

Instruction Summary

HTM-115-A

Table 5 lists the special indicators that apply to many of the instructions.
When one or more of these indicators applies to a specific instruction, the
indicator is shown as a superscript letter following the machine
instruction.

Table 6 lists, in numerical order, all instructions in the CRAY T90 series

instruction set. Included for each instruction is the machine instruction,
the CAL syntax, and a brief description.

Cray Research Proprietary 17

Instruction Set Overview

Table 5. Special Indicators

Superscript

Description

New instruction (not available on CRAY C90 series systems)

New version of CRAY C90 series instruction

Triton mode only

Difference in operation between Triton mode and C90 mode

Monitor mode only

olZ|ol4|<| =z

Maintenance mode only

Table 6. Instruction Special Indicators

Machine Instruction CAL Syntax Description

000000 ERR Error exit.

001000 PASS Pass (no operation).

0010jk (jk z0)M CAAj Ak Set channel (Aj) CA register (Ak) and activate
channel.

0011,jkM CLAf Ak Set channel (A)) CL register (AK).

0012j0M CLA/ Clear interrupt flag and error flag for channel (A)).
Clear Device Master Clear (output channels only).
Enable channel interrupt.

0012aM MC,Aj Clear interrupt flag and error flags for channel
(A)). Set Device Master Clear (output channels
only). Clear Ready Held (input channels only).
Enable channel interrupt.

0012j2M DLAj Disable channel Ajinterrupt.

0012/3M ELAj Enable channel Ajinterrupt.

0013/0M XA Aj Transmit (A)) to exchange address.

0013/1NM Aj XA Transmit exchange address to Aj.

001302M EMI Enable monitor interrupt mode (set EIM to 1).

001303M DMI Disable monitor interrupt mode (clear EIM to 0).

0014j0M RT Sj Transmit (S)) to real-time clock.

0014j1M SIPI Aj Send inter-CPU interrupt to CPU (A)).

001402M CIPI Clear inter-CPU interrupt.

0014/3M CLN AJj Transmit (A)) to cluster number register.

00144M PCI Sj Transmit (S)) to programmable clock.

001405M CCl Clear programmable clock interrupt (clear PCI to
0).

18

Cray Research Proprietary HTM-115-A

Instruction Set Overview

Machine Instruction CAL Syntax Description

001406M ECI Enable programmable clock interrupt (set IPC to
1).

001407M DCI Disable programmable clock interrupt (clear IPC
to 0).

001500M — Clear all performance monitor counters.

001501N™ — Clear performance monitor pointer.

001600M ESI Enable system I/O interrupts (set SIE to 1).

001640NM BCD Broadcast cluster detach.

0017,jkM BP,k AJj Transmit (A)) to breakpoint address k (k=0 or 1).

00200k VL Ak Transmit (AK) to vector length register.

002100 EFI Enable interrupt on floating-point error (set IFP
to 1).

002200 DFI Disable interrupt on floating-point error (clear IFP
to 0).

002210 CBL Clear bit matrix loaded bit (clear BML to 0).

002300 ERI Enable interrupt on operand range error (set IOR
to 1).

002301 EBP Enable interrupt on breakpoint (set IBP to 1).

002400 DRI Disable interrupt on operand range error (clear
IOR to 0).

002401 DBP Disable interrupt on breakpoint (clear IBP to 0).

002500 DBM Disable bidirectional memory transfers (clear BDM
to 0).

002501N ESC Enable scalar cache (set SCE to 1).

002600 EBM Enable bidirectional memory transfers (set BDM
to 1).

002601N DSC Disable and invalidate scalar cache (clear SCE to
0).

002700 CMR Complete memory references.

002704 CPA Complete port reads and writes (ports A, B,
and C).

002705 CPR Complete port reads (ports A and B).

002706 CPW Complete port writes (port C).

0030/0 VMO Sj Transmit (Sj) to VMO.

00301 VM1 Sj Transmit (Sj) to VML1.

0030j2NT VMO Aj Transmit (Aj) to VMO.

0030,3NT VM1 Aj Transmit (Aj) to VML1.

0034jk (j2 =0) SMjk 1,TS Test and set semaphore jk (jk =0 — 375).

0034jk (2 =1) SM,Ak 1,TS Test and set semaphore (AK).

0036jk (j2 =0) SMjk 0 Clear semaphore jk (jk = 0 — 375).

0036k (2 = 1) SMAkK 0 Clear semaphore (AK).

HTM-115-A

Cray Research Proprietary 19

Instruction Set Overview

Machine Instruction CAL Syntax Description

0037jk (j2 =0) SMjk 1 Set semaphore jk (jk = 0 — 37g).

0037jk (2 = 1) SMAkK 1 Set semaphore (AK).

00400kY EXk Exit k.

0050jk J Bjk Jump to Bjk.

0051jk0 JINV Bjk Jump to Bjk (invalidate instruction buffers).

006000nm J exp Jump to exp.

006100nmNT 1J exp Jump to address in exp.

0064jknm (j2 = 0) JTSjk exp Jump to exp if SMjk = 1; else set SMjk.

0064jknm (j2 = 1) JTS,Ak exp Jump to exp if SM(AK) = 1; else set SM(AK).

007000nm R exp Return jump to exp; set BOO to (P)+3.

007100nmNT IR exp Return jump to address in exp; set BOO to (P)+3.

010000nmP JAZ exp Jump to exp if (A0) = 0.

011000nmP JAN exp Jump to exp if (AO) 0.

012000nmP JAP exp Jump to exp if (AO) =[0.

013000nmP JAM exp Jump to exp if (AO) < O.

014000nm JSz exp Jump to exp if (SO) = 0.

015000nm JSN exp Jump to exp if (SO) # 0.

016000nm JSP exp Jump to exp if (SO) = 0.

017000nm JSM exp Jump to exp if (SO) < 0.

020/00nmP Ai exp Transmit nm to Ai bits 0 — 31; Aibits 32 - 63 = 0.

020i20nmNT Ai Afexp Transmit nm to Ai bits 0 — 31; AJ bits 32 — 63
unchanged.

020i40nmMNT Aj exp:Ai Transmit nm to Ai bits 32 — 63; Aj bits 0 — 31
unchanged.

021/00nmP Ai exp Transmit inverse (nm) to Ai bits 0 — 31; A/ bits
32-63=1.

022ijk Ai exp Transmit jk to Aibits 0 — 5; Ai bits 6 — 63 = 0.

023ijjoP Aj Sj Transmit (Sj) to Al

023i01 Ai VL Transmit (VL) to Al

023jje\M Aj EA,j Transmit exit address jto Ai.

023jj7\M Ai EA A/ Transmit exit address (A)) to Ai.

024ijkP Ai Bjk Transmit (Bjk) to Ai.

025ijkP Bj Aj Transmit (AJ) to Bjk.

026if0 Ai PSj Transmit population count of (Sj) to Al

0261 Ai QSj Transmit population count parity of (Sj) to Al

026/j2ND Ai PAj Transmit population count of (Aj) to Ai.

026/j3ND Aj QAj Transmit population count parity of (Aj) to A

026ij4P Ai SB,Aj,+1 Transmit (SB(A))) to AJ; increment (SB(A))) by 1.

026i5P Ai SBj,+1 Transmit (SB)) to Aj; increment (SBj) by 1.

20

Cray Research Proprietary HTM-115-A

Instruction Set Overview

Machine Instruction CAL Syntax Description
026ij6P Aj SB,Aj Transmit (SB(A))) to Ai.
026ij7P Ai SBj Transmit (SBj) to A
027i/0 Ai ZSj Transmit leading zero count of (Sj) to Al
027 jjANT Ai ZAj Transmit leading zero count of (A)) to Al
027i2\M EAj Ai Transmit (Aj) to exit address j.
027ij3\M EAAj Aj Transmit (Aj) to exit address (A)).
027ij6P SB,Aj Ai Transmit (Aj) to SB(A)).
027ij7P SBj Ai Transmit (AJ) to SBj.
030ijkP Ai Aj+Ak Transmit integer sum of (Ay) and (AK) to Ai.
031ijkP Ai AJ-Ak Transmit integer difference (Aj) and (AK) to Al
032ijKkP Aj AFAK Address multiply.
033/00PM Ai Cl Transmit channel number of highest-priority
interrupt request to Al.
033j0 (j #[0)PM Aj CAAj Transmit current address of channel (A)) to
register Al
033ij1 (j #[0)PM Ai CE.Aj Transmit status/error word of channel (Aj) to
register Al
034ijkP Bjk,Ai ,AO Transmit (Aj) words from common memory
starting at address (AO) to B registers starting at
register jk.
035ijkP ,AO Bjk,Ai Transmit (Aj) words from B registers starting at
register jkto memory starting at address (AO).
036ijkP Tjk,Ai ,AO Transmit (Aj) words from memory starting at
address (AO) to T registers starting at register jk.
037ijkP JAO Tjk,Ai Transmit (Aj) words from T registers starting at
register jk to memory starting at address (AO).
040/00nm Si exp Transmit nmto Sjbits — 31; S/ bits 32 - 63 = 0.
04020nm Si Siexp Transmit nmto Sibits 0 — 31; S/ bits 32 — 63
unchanged.
040i/40nm Si exp:Si Transmit nm to Si bits 32 — 63; Sibits 0 — 31
unchanged.
041i/00nm Si exp Transmit inverse (nm) to S/ bits 0 — 31; S/ bits 32
-63=1.
042ijk Si <exp Form ones mask in Si exp bits from right;
Jk field gets 100g — exp.
005400 042jjKNT Ai <exp Form ones mask in Ai exp bits from right;
Jk field gets 1005 — exp.
043ijk Si >exp Form ones mask in Si exp bits from left; jk field
gets exp.
005400 043jjkNT Ai >exp Form ones mask in Ai exp bits from left; jk field
gets exp.
044ijk Si Sj&Sk Transmit logical product of (Sj) and (Sk) to Si.
HTM-115-A Cray Research Proprietary 21

Instruction Set Overview

Machine Instruction CAL Syntax Description
005400 044jKNT Ai Aj&AK Transmit logical product of (Aj) and (AK) to Ai.
045ijk Si #SK&Sj Transmit logical product of (Sj) and one’s
complement of (SK) to Si.
005400 045jjkNT Aj HAK&A] Transmit logical product of (Aj) and one’s
complement of (AK) to Al
046ijk Si SjISk Transmit logical difference of (Sj) and (SK) to Si.
005400 046/jKNT Aj AjlAk Transmit logical difference of (Aj) and (AK) to Al
047ijk Si #SjISk Transmit logical equivalence of (Sj) and (SkK) to Si.
005400 047 jjKNT Aj #AjIAk Transmit logical equivalence of (Aj) and (AK) to Al
050ijk Si SjISi&Sk Merge (Si) and (S)) to Siusing (Sk) as mask.
005400 050/jKNT Aj ANAI&RAK Merge Aiand Ajto Ajusing (Ak) as mask.
051jk Si SISk Transmit logical sum of (Sj) and (Sk) to Si.
005400 051 jjKNT Ai AlAk Transmit logical sum of (Aj) and (AK) to Ai.
052ijk S0 Si<exp Shift (S)) left exp = jk places to SO.
005400 052jjkNT A0 Ai<exp Shift (Ai) left exp = jk places to AO.
053jjk SO Si>exp Shift (SJ) right exp = 1005 — jk places to SO.
005400 053jjkNT A0 A>exp Shift (Ai) right exp = 100g — jk places to AOQ.
054ijk Si Si<exp Shift (S)) left exp = jk places to Si.
005400 054 jKNT Ai Aikexp Shift (Ai) left exp = jk places to Al
055ijk Si Si>exp Shift (Si) right exp = 100g — jk places to Si.
005400 055/jkNT Aj A>exp Shift (Ai) right exp = 100g — jk places to A/
056ijkP Si Si,Sj<Ak Shift (S) and (S)) left (AK) places to Si.
005400 056/jKNT Ai AP Aj<Ak Shift (Aj) and (Aj) left (Ak) places to Ai.
057ijkP Si Sj,SP>AkK Shift (Sj) and (S)) right (AK) places to Si.
005400 057 jjkNT Ai ALAPAK Shift (Aj) and (AJ) right (AK) places to A
060ijk Si Sj+Sk Transmit integer sum of (Sj) and (SkK) to Si.
061ijk Si Sj-Sk Transmit integer difference of (Sj) and (Sk) to Si.
062ijk Si Sj+FSk Transmit floating-point sum of (Sj) and (Sk) to Si.
063jjk Si Sj-FSk Transmit floating-point difference of (S)) and (Sk)
to Si.
064ijk Si SHFFSk Transmit floating-point product of (Sj) and (Sk) to
Si.
065ijk Si SHFHSK Transmit half-precision rounded floating-point
product of (Sj) and (Sk) to Si.
066k Si SRSk Transmit rounded floating-point product of (S))
and (SK) to Si.
067ijk Si Sj*ISk Transmit 2 — (S)) * (SK) to S/ (reciprocal iteration).
070i/0 Si [HSj Transmit floating-point reciprocal approximation of
(S)) to Si.
22 Cray Research Proprietary HTM-115-A

Instruction Set Overview

Machine Instruction CAL Syntax Description

070ijN Vi Cl,Sj&VM Transmit compressed index of (Sj) controlled by
(VM) to Vi.

070ijeN Si SHBT Transmit bit-matrix product of (Sj) and (BT) to Si.

071i0kP Si Ak Transmit (AK) with no sign extension to Si.

071/1KP Si +Ak Transmit (AK) with sign extension to Si .

071i2kP Si +FAKk Transmit (Ak) as unnormalized floating-point
number to Si.

071/30 Si 0.6 Transmit 0.75 x 248 as normalized floating-point
constant to Si.

071i40 Si 04 Transmit 0.4g as normalized floating-point
constant to Si.

07150 Si 1.0 Transmit 1.0 as normalized floating-point constant
to Si.

071i60 Si 2.0 Transmit 2.0 as normalized floating-point constant
to Si.

071i70 Si 4.0 Transmit 4.0 as normalized floating-point constant
to Si.

072i00 Si RT Transmit real-time clock to Si.

072i02v Si SM Transmit semaphores to Si.

072i3 Si STj Transmit (ST)) register to Si.

072jj6v Si STAj Transmit ST(A)) to Si.

073i00 Si VMO Transmit (VMO) to Si.

073/10 Si VM1 Transmit (VM1) to Si.

073/20NT Aj VMO Transmit (VMO) to A

073/30NT Ai VM1 Transmit (VM1) to Al

073j1vM Si SRj Transmit (SR)) to Si (monitor mode only for
j=2-17).

073i02Y SM Si Transmit (Si) to semaphores.

073i3 STj Si Transmit (S)) to STj.

07305 SRO Si Transmit (Si) bits 48 — 52 to SRO.

073259 SR2 Si Advance performance monitor pointer.

073/75V0 SR7 Si Transmit (S/) to maintenance channel.

073jj6Y STAj Si Transmit (Si) to ST (A)).

074ijk Si Tjk Transmit (Tjk) to Si.

075ijk Tjk Si Transmit (S)) to Tjk.

076ijk Si Vj,Ak Transmit (Vj element (AK)) to Si.

077ijk Vi,Ak Sj Transmit (S)) to Vi element (AK).

10hi00NmP Aj exp,Ah Load Aifrom ((Ah) + exp).

10hi20nmND Ai exp,Ah,BC Load Aifrom ((Ah) + exp) bypassing data cache
and invalidating cache line.

10hi40pnmNT Aj exp,Ah Load Aifrom ((Ah) + exp).

HTM-115-A Cray Research Proprietary 23

Instruction Set Overview

Machine Instruction CAL Syntax Description
10hi60pnmNT Ai exp,Ah,BC Load Aifrom ((Ah) + exp) bypassing data cache
and invalidating cache line.
11hi00NmMP exp,Ah Ai Store (Ai) to ((Ah) + exp).
11hid0pnmNT exp,Ah Aj Store (Ai) to ((Ah) + exp).
12hi00nm Si exp,Ah Load Sifrom ((Ah) + exp).
12hi20nmN Si exp,Ah,BC Load Sifrom ((Ah) + exp) bypassing data cache
and invalidating cache line.
12hid0pnmNT Si exp,Ah Load Sifrom ((Ah) + exp).
12hi60pnmNT Si exp,Ah,BC Load Sifrom ((Ah) + exp) bypassing data cache
and invalidating cache line.
13hi00Nm exp,Ah Si Store (S)) to ((Ah) + exp).
13hi40pnmNT exp,Ah Si Store (Si) to ((Ah) + exp).
140ijk Vi Sj&Vk Transmit logical products of (Sj) and (Vk
elements) to Vi elements.
141ijk Vi V/j&Vk Transmit logical products of (Vj elements) and (Vk
elements) to Vi elements.
142ijk Vi SVk Transmit logical sums of (S)) and (Vk elements) to
Vielements.
143jjk Vi ViVk Transmit logical sums of (Vj elements) and (Vk
elements) to Vi elements.
144k Vi Sj\Vk Transmit logical differences of (Sj) and (Vk
elements) to Vi elements.
145jjk Vi Vj\Wk Transmit logical differences of (Vj elements) and
(Vk elements) to Vi elements.
146ijk Vi SIVK&VM Merge (Sj) and (Vk elements) to Vi elements
using (VM) as mask.
147ijk Vi VAVKE&VM Merge (Vj elements) and (Vk elements) to Vi
elements using (VM) as mask.
150ijkP Vi Vj<Ak Shift (Vj elements) left (AK) places to Vielements.
005400 150ij0 Vi Vj<V0 Shift (Vj elements) left (VO elements) places to Vi
elements.
151jjkP Vi Vj>Ak Shift (Vj elements) right (AK) places to Vi
elements.
005400 15140 Vi V>VO0 Shift (Vj elements) right (VO elements) places to
Vi elements.
152ijk Vi VjVj<Ak Double shift (Vj elements) left (Ak) places to Vi
elements.
005400 152jjk Vi Vj,Ak Transfer (Vj elements) starting at element (AK) to
Vielements.
153ijk Vi Vi Vj>Ak Double shift (Vj elements) right (AK) places to Vi
elements.
005400 153jjONT Vi Vj,[VM] Compress Vj by (VM) to Vi.
005400 153jANT Vi[VM] Vj Expand Vj by (VM) to Vi.

24

Cray Research Proprietary

HTM-115-A

Instruction Set Overview

Machine Instruction CAL Syntax Description

154k Vi Sj+Vk Transmit integer sums of (Sj) and (Vk elements)
to Vi elements.

155jjk Vi Vj+Vk Transmit integer sums of (Vj elements) and (Vk
elements) to Vi elements.

156ijk Vi S/-Vk Transmit integer differences of (Sj) and (Vk
elements) to Vi elements.

157ijk Vi VJ-Vk Transmit integer differences of (V) elements) and
(Vk elements) to Vi elements.

160ijk Vi SRV Transmit floating-point products of (Sj) and (Vk
elements) to Vi elements.

161k Vi VFFVk Transmit floating-point products of (Vj elements)
and (Vk elements) to Vi elements.

162ijk Vi SHFHVK Transmit half-precision rounded floating-point
products of (Sj) and (Vk elements) to Vi elements.

163ijk Vi VFHVk Transmit half-precision rounded floating-point
products of (V) elements) and (Vk elements) to Vi
elements.

164ijk Vi SHFRVk Transmit rounded floating-point products of (S))
and (Vk elements) to Vi elements.

165jjk Vi V*RVk Transmit rounded floating-point products of (Vj
elements) and (Vk elements) to Vi elements.

166jkP Vi SHFVk Transmit integer products of (Sj) and (Vk
elements) to Vi elements.

167ijk Vi V*Vk Transmit 2 — the integer products of (Vj elements)
and (Vk elements) to Vi elements (reciprocal
iteration).

170jjk Vi Sj+FVk Transmit floating-point sums of (Sj) and (Vk
elements) to Vi elements.

171ijk Vi Vj+FVk Transmit floating-point sums of (Vj elements) and
(Vk elements) to Vi elements.

172ijk Vi Sj-FVk Transmit floating-point differences of (Sj) and (Vk
elements) to Vi elements.

173ijk Vi Vj-FVk Transmit floating-point differences of (Vj elements)
and (Vk elements) to Vi elements.

1740 Vi [HVj Transmit floating-point reciprocal approximation of
(Vj elements) to Vi elements.

174i1 Vi PVj Transmit population count of (Vj elements) to Vi
elements.

174i2 Vi QVj Transmit population count parity of (V) elements)
to Vi elements.

174i3 Vi ZVj Transmit leading zero count of (Vj elements) to Vi
elements.

1740/4 BMM LVj Transmit Vj elements 0 — 63 to B matrix.

1740/5N BMM uvj Transmit Vj elements 64 — 127 to B matrix.

HTM-115-A Cray Research Proprietary 25

Instruction Set Overview

Machine Instruction CAL Syntax Description

1746 Vi V*BT Transmit bit-matrix product of (Vj) and (BT) to Vi.

175040 VM Vj,Z Set VM bit if (Vj element) = 0.

175071 VM Vj,N Set VM bit if (Vj element) # 0.

17502 VM Vj,P Set VM bit if (Vj element) = 0.

175043 VM VjiM Set VM bit if (Vj element) < 0.

175ij4 ViVM Vj,Z Set VM bit if (Vj element) = 0 and store
compressed indices of Vjelements =0 in Vi.

175i5 ViVM Vj,N Set VM bit if (Vj element) # 0 and store
compressed indices of Vjelements # 0 in Vi.

175i6 ViVM Vj,P Set VM bit if (Vj element) > 0 and store
compressed indices of Vj elements >0 in Vi.

175i7 ViVM VjM Set VM bit if (Vj element) < 0 and store
compressed indices of Vjelements <0 in Vi.

1760k Vi ,AQ,Ak Load Vifrom memory starting at address (AO) and
incrementing by (AK).

176ilk Vi ,AO,Vk Load Vifrom memory using addresses (A0) +
(VK).

005400 176/jKNT ViVj JAO0:AK VK Load Vifrom memory using addresses (A0) + (VK)

and load Vj from memory using addresses (AK) +
(VK).

1770jk JAOQ0Ak Store (V) to memory starting at address (A0) and
increment by (AK).

1771jk AO VK Vi Store (V)) to memory using addresses (A0) + (VK).

26

Cray Research Proprietary HTM-115-A

