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CP02 MODULE

CP02 General Description

The CP02 module contains the central processing unit (CPU) for the
CRAY T90 series computer systems.  There is one CPU per CP02 module.
The CRAY T90 series CPU is compatible with the CRAY C90 series
CPU.  This means that code compiled on the CRAY C90 series system
will run on a CRAY T90 series system.

There have been many enhancements to the CRAY T90 series CPU and
several new instructions added to increase the performance.  Figure 1
illustrates CP module components.  Figure 2 and Figure 3 show the basic
functions and locations of all options on a CP module.  Figure 4 shows a
block diagram of the CPU.

The CP modules are arranged in stacks in the system.  A CRAY T94
system contains one stack of as many as four modules.  A CRAY T916
systems contains up to two stacks of as many as eight modules.  A
CRAY T932 system contains up to four stacks of as many as 8 modules.

Each module in a stack is independent of the other CP modules in the
stack; there are no interconnections between modules in a stack.  The CP
modules connect directly with either the memory modules, as in the
CRAY T94 system, or with the system interconnect board (SIB), as in
larger systems.
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Module Assembly Components

Refer to Figure 1 for an illustration of the CP module assembly
components.  This illustration is provided to show the basic components
that are part of all mainframe modules.  Sizes of various components
differ between modules.

A Flow Block, Board 1

B Optical Receiver

M

L

K

A

B

E

F

G

H

I

C PC Board Edge Shim

D Maintenance Connector Flex Assembly

E Fiber-optic Spool Assembly

F Voltage Regulator Board Assembly

H Fiber-optic Coupler

I Flow Block, Board 2

J PC Logic Board 2

K Outer Rail

L Inner Rail

C

D

M PC Logic Board 1

J

G Maintenance Connector

Figure 1.  CP Module Assembly Components



CP02 ModuleCPU

3Cray Research ProprietaryHTM-003-A

CP02 Module Board 1

HB000

AA

NA000

BA

RC000

CA

TZ000

DA

HM000

EA

MZ000

FA

TW010

GA

RC001

HA

NA001

IA

NC000

BB

RB000

CB

FA000

DB

TW006

EB

FA001

FB

QA002

GB

RB001

HB

NC001

IB

TW000

AB

VN007

BC

AU000

CC

VM006

DC

SS000

EC

OA000

FC

OA001

GC

VM014

HC

VM015

IC

TW002

AC

VM005

BD

AT000

CD

VM004

DD

JA000

ED

VA000

FD

CG000

GD

VM012

HD

VM013

ID

HD000

AD

VM003

BE

AS001

CE

VM002

DE

BT000

EE

CD000

FE

CB000

GE

VM010

HE

VM011

IE

VF000

AE

VM001

BF

AR000

CF

VM000

DF

CH010

EF

CH008

FF

CA000

GF

VM008

HF

VM009

IF

TW004

AF

CC000

BG

IC000

CG

CH002

DG

CH014

EG

CH012

FG

CH000

GG

IC002

HG

VF002

IG

HA000

AG

CF004

BH

CF000

CH

CK000

DH

CH006

EH

CH004

FH

CK002

GH

CF002

HH

TW008

IH

HA002

AH

CI000

BI

CJ000

CI

CI004

DI

CJ004

EI

CI002

FI

CJ002

GI

CI006

HI

CJ006

II

YA YB YC YD YE

ZB008

YH

YG

ZB000 ZB004 ZB002 ZB006

YF

AI

HG000

Pin 1

Pin 1

Pin 1

Pin 1

Pin 1

Gnd 2.7 3.5 Gnd2.73.5

Optical
Receiver

I/O
Control

Flt Mult Recip Clock
Logic

MonItor BS Fanout Not Used Recip Flt Mult

Flt Mult Recip Flt Add
Coeff

Not Used Flt Add
Coeff

BMM and
Parity

Recip Flt MultNot Used

Vector
Even A/S Reg

Vector
Even

Shift Pop
LZ

BMM and
Parity

BMM and
Parity

Vector
Odd

Vector
OddNot

Used

Vector
Even A/S Reg

Vector
Even

Issue
Control

Vector
Control

Check–bit
Generation

Vector
Odd

Vector
Odd

CIP Exchn
Package

Vector
Even A/S Reg

Vector
Even

Ports E Ports C Vector
Odd

Vector
Odd

 Vector
Control

B/T/P
Reg

Vector
Even A/S Reg

Vector
Even

Ports
A,  A’

Vector
Odd

Vector
Odd

Not Used Data MUX
Cache

Data MUX
Cache

Ports D Inst
Buffers

Data MUX
Cache

Data MUX
Cache

Inst
Buffers

Vector
Control

I/O to
Mem

Data MUX
Cache

Data MUX
Cache

Write Data
Conflicts

Write Data
Conflicts

Data
Steering

Data
Steering

Write Data
Conflicts

Not UsedI/O to
Mem

Data MUX
Cache

Data MUX
Cache

Maint
Channel

Section 0
Driver

Section 0
Receiver

Section 4
Driver

Section 4
Receiver

Section 2
Driver

Section 2
Receiver

Section 6
Driver

Section 6
Receiver

Figure 2.  Option Layout Board 1



CP02 Module CPU

4 Cray Research Proprietary HTM-003-A
 

CP02 Module Board 2
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Pop/Parity/LZ

Add
Vector

Functional
Units
Pipe 1

Shift

Add

Multiply

Add
Shared

Vector/Scalar
Functional

Units
Pipe 0

Recip Appr
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T77
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Functional
Units

Logical

Shift
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Vector
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Units
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P
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IB6

IB5
IB4

IB3
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IB1
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NIP

Execution

Ak

Ai

Ak

(A0) Si

Tjk

(A0) Ai

Bjk

+1
+3
+4

Scalar Registers

•
•
•

Logical

Logical 2
Int Multiply

Comp Index
Comp/Exp

Pop/Parity/LZ
Logical 2
Int Multiply

Bit Matrix Multiply

Add

Multiply
Recip Appr

Data
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To A Registers

To S Registers
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SB and ST Registers
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Figure 4.  CPU Block Diagram
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ADDRESS AND SCALAR REGISTERS

The address and scalar registers are located on the same options.  The
following subsections describe the address and scalar registers.

Address Registers

The address and scalar registers are contained on eight options:  one AR
option, three AS options, two AT options, and two AU options.  Each
CRAY T90 series CPU contains eight address registers designated A0
through A7.  Each register is 64 bits wide (32 bits in C90 mode) and
performs the following functions:

• Determines addresses for memory references
• Provides memory reference indexing
• Provides loop control
• Determines shift counts
• Provides I/O channel set-up
• Determines I/O channel status
• Receives results from scalar leading zero and pop count
• Determines vector length
• Provides an exchange address (monitor mode only)
• Provides an index for shared registers and B and T instructions
• Provides operands and results for address add and address multiply
• Transfers data to and from scalar registers
• Provides integer-to-floating-point conversion

As shown in Figure 5, the AR000, AS000, AS001, AS002, AT000,
AT001, AU000, and AU001 options each contain an 8-bit slice of the
address registers.   Figure 5 also illustrates the input and output data paths
for the address and scalar registers.
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AR000

AS000

AS001

AT000

AT001

AU000

AU001

AS002

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 32 – 39

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63

Address Multiply Results

Shared Data IBA – IBH

Constant Data ICA – ICH

B/T Register Data IDA – IDH

Floating-point Add Results

Floating-point
Multiply Results

Floating-point Reciprocal
Approximation Results

Shift Data, VM IHA – IHH

Vj (Even) Data to Scalar IIA – IIH

Vj (Odd) Data to Scalar III – IIP

Common Memory Path 1 IJA – IJH

Common Memory Path 2 IKA – IKH

OAA – OAH

OBA – OBH

OCA – OCH

ODA – ODH

OEA – OEH

OEI – OEP

OFA – OFH

OFI – OFP

OGA – OGH

OHA – OHH

OIA – OIH

OJA – OJH

OMA – OMH

ONA – ONH

Floating-point Add
Operand (Sj)

Floating-point Add
Operand (Sk)

Floating-point Multiply
Operand (Sj)

Floating-point Multiply
Operand (Sk)

CM Address to Vector
Pipe 0

CM Address to Vector
Pipe 1

Sj to Shift, Pop/Parity/LZ/VM

Aj to Shift, Pop/Parity/LZ/VM

Address Multiply
Operand (Aj)

Address Multiply
Operand (Ak)

Ai to Shared Data Path

Ai to B/T Registers and CM

Ah Address to CM Port E

Constant Data to CM Port E

OPA – OPG

OQA –OQH

Ak to Vector Control

Ak to Scalar Shift Count

(AN)

(HD)

(JA)

(BT)

(FA)

(ND)

(RA)

(SS)

(VR)

(VR)

(CH)

(CH)

(FA, FB)

(FA, FB)

(NB)

(NA)

(VM, VR)

(VM, VR)

(SS)

(SS)

(AN)

(AN)

(HD)

(BT)

(CD)

(CD)

(VA)

(SS)

BMM ISA – ISH
(OA)

IAA – IAH

IEA – IEH

IFA – IFH

IGA – IGH

Figure 5.  Address and Scalar Register Data Paths
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Entry Codes

As part of the instruction decode on the JA option, the JA option sends an
A/S entry code to the A/S register options; this code generates the control
necessary to complete the operations.  The operand data is then
transmitted to the appropriate resources, and a destination delay chain is
entered on the option.  Refer to Table 1 for the address/scalar (A/S)
register entry codes and to Figure 6 for an illustration of the A/S control
terms.

Table 1.  A/S Register Entry Codes

Entry Code Instruction

0 020i  Constants

1 023ij0  Sj

2 023ij1  VL data

3 024ijk  B data

4 030,031ijk  Add

5 026ij (0 – 3), 027ij (0 – 1)  pop/par/lz

6 032ijk  A multiply

7 022ijk, 04 (2 – 3)   jk/mask data

10 N/A

11 073i (2 – 3) 0  VM data

12 N/A

13 N/A

14 04 (4 – 7) ijk, 05 (0 – 1) ijk  Logical

15 N/A

16 05 (2 – 5) ijk, 05 (6 – 7) ijk  Shift

17 N/A
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A/S Register Read-out Code

Enter CPU VL

Go 071i(0,1,2)k

Pop/Parity/LZ  (AR000 Only)

A/S Register Entry Code

A/S Entry Code Valid

A/S Entry Code Valid

i, j, k, h Data

Memory Path 1 Read Code

Memory Path 2 Read Code

Shared Data Code

Enter Exchange VL (AR000 Only)

Exchange Active

Ak  Negative (32-bit Mode)

Ak  Negative (64-bit Mode)

Exchange Path 2 Select

Triton Mode

ILA – ILB(JA000)
ILC

AR000
AS000
AS001
AS002

ILD

IMA – IMG
(SS000)

INA – INC

IOA – IOD

IOA – IOD

IPA – IPL

IQA – IQE
(VR)

IRA – IRE
(VR)

IUA – IUE
(HD000)

IVA
(HD001)

IVB
(IC001)

IVC
(AS002)

IVD
(AU001)

IVE
(VR004)

IXA
(IC000)

A/S Register Read-out Code ILA – ILB
(JA001)

Enter CPU VL ILC
(JA001)

AT000
AT001
AU000
AU001

Go 071i(0,1,2)k ILD
(JA001)

A/S Register Entry Code INA – INC
(JA001)

A/S Entry Code Valid IOA – IOD
(JA001)

A/S Entry Code Valid IOA – IOD
(JA001)

i, j, k, h Data IPA – IPL
(JA001)

Memory Path 1 Read Code IQA – IQE
(VR)

Memory Path 2 Read Code IRA – IRE
(VR)

Shared Data Code IUA – IUE
(HD001)

Exchange Active IVB
(IC002)

Ak  Negative (32-bit Mode) IVC
(AS002)

Ak  Negative (64-bit Mode) IVD
(AU001)

Exchange Path 2 Select IVE
(VR004)

Triton Mode IXA
(IC001)

(JA000)

(JA000)

(JA000)

(JA000)

(JA000)

(JA000)

Figure 6.  A/S Control Terms
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A Register Memory References

Refer to Figure 7 for an A/S-register-to-memory block diagram.  The
address registers write or read 1 word of memory per instruction.  The B
registers provide intermediate storage for the address registers.  B registers
perform memory block references that enable a group of operands to be
read from memory with one instruction.  These operands are then used by
the A registers to generate results that are sent to the B registers and
block-stored to memory.  Using the B registers as buffer storage is
advantageous because it takes fewer clock periods to do a block reference
than to issue several individual address or scalar references.

The A registers also have an access path to cache memory.  This provides
access to common memory data without having to reference memory
directly.  If the requested address resides in cache, a cache hit is initiated
and the data is read from cache memory instead of common memory.

Special Register Values

The A0 register has special features that the other A registers do not have.
The A0 register holds the starting address for all block transfers for the 
B, T, and V registers and branch control.  A0 is the only register that can
be tested for equal-to-zero, not-equal-to-zero, positive, or negative
conditions using A0 conditional branch instructions.  This register also has
a special feature for reading data.

If A0 is specified as an operand in the h, j, or k field of an instruction, it
will not send the actual contents of the register.  Instead, the register sends
a value of 0 if A0 is used in the j or h field, or it sends a value of 1 if A0 is
used in the k field.  If A0 is used in the i field, the actual contents of the
A0 register are sent.

Because the A registers in this system are now 64 bits wide, special Triton
mode instructions have been implemented.  These instructions are part of
the extended instruction set (EIS).  These instructions make the A registers
functionally equal to S registers and enable A registers to be shifted and
logical operations to be performed.  To execute these instructions, an EIS
005400 instruction must precede the actual A register instruction.  If a
Triton mode instruction is issued while the system is in C90 mode, the
results of the operation are undefined.
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B/T Registers

CH000

CH002

CH004

CH006

CH008

CH010

CH012

CH014

CH009

CH011

CH013

CH015

CH001

CH003

CH005

CH007

B/T Registers

BT001

BT000Read Data

Read Data

Read Data

Read Data

CM Left

CM Right

CM Left

CM Right

ICA – ICP

IEA – IEP

IFA – IFP

AR000
AS000
AT000
AT001

OAA – OAP,
OBA – OBP

Bits 16 – 31, 48 – 63

Bits 0 – 15, 32 – 47
IDA – IDP

IFA – IFP

IEA – IEP

ICA – ICP

IDA – IDP
IDA – IDH

AS001
AS002
AU000
AU001

IDA – IDH

A/S Registers

OAA – OAP,
OBA – OBP

Figure 7. Memory to A/S-register Block Diagram



CPU Address and Scalar Registers

13Cray Research ProprietaryHTM-003-A

Scalar Registers

The CPU contains eight scalar registers that are designated S0 through S7
and are 64 bits in length.  The scalar registers are contained on the AR,
AS, AT, and AU options (refer again to Figure 5).

The scalar registers send operands to, and get results from, the scalar
functional units and the floating-point functional units.  The functional
units perform integer and floating-point arithmetic as well as logical
operations.  The scalar registers read and write central memory through
the T registers and also read and write the data cache.  In addition, there
are paths to the vector registers, vector mask, real-time clock, status
register, programmable clock interrupt, and the performance monitor.

Instruction Issue

When an instruction issues, the scalar register receiving the data is
reserved until the result is latched in the register.  If an instruction in the
current instruction parcel (CIP) register requires the reserved result
register, that CIP instruction holds issue until the register is available.  The
S0 register, however, is an exception.  If the S0 register is reserved as a
result register and is needed as an Sj or Sk operand in a following
instruction, no hold issue occurs because the S0 register has special
register values as an operand.

The issue hardware also develops scalar functional unit codes.  These
codes select the input terms to be gated from the proper functional unit
into the scalar register multiplexer.

S Register Memory References

The scalar registers write or read 1 word of memory per instruction.  The
T registers provide intermediate storage for the scalar registers.  T
registers can perform memory block references, enabling a group of
operands to be read from memory with one instruction.  These operands
are then used by the scalar registers to generate results that can be sent to
the T registers and block-stored to memory.  Using the T registers as
buffer storage is advantageous because it takes fewer clock periods to do a
block reference than to issue several individual scalar references.

The S registers also have an access path to cache memory.  This provides
access to common memory data without having to reference memory
directly.  If the requested address resides in cache, a cache hit is initiated
and the data is read from cache instead of from common memory.
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Special  Register  Values

S0 has special register values when Sj or Sk is used as an operand.  When
the j field equals 0, the value sent out is 0, no matter what value is stored
in S0.  When the k field is 0, bit 63 is set to a 1.

Lower/Upper  Scalar  Register  Load

It is possible to load either the lower- or upper-half of a scalar register
with a 32-bit quantity.  The following four instructions load constants into
scalar registers.

• 040i00 nm  Si exp:  loads the quantity nm into the lower 32 bits of
register Si.  The upper 32 bits are cleared.

• 041i00 nm  Si exp:  loads the one’s complement of nm into the lower
32 bits of register Si.  The upper 32 bits are all 1’s.

• 040i20 nm  Si exp:  loads the quantity nm into the lower 32 bits of
register Si.  The upper 32 bits are unchanged.

• 040i40 nm   Si exp:  loads the quantity nm into the upper 32 bits of
register Si.  The lower 32 bits are unchanged.
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B AND T REGISTERS

Each CPU contains 64 (1008) B registers and 64 T registers.  The B and T
registers act as intermediate registers for the address and scalar registers,
respectively.  Each B and T register contains 64 bits.

Two BT options, BT000 and BT001, contain the B and T registers.  Each
option contains 32 bits of each register.  BT000 contains bits 00 through
15 and 32 through 47.  BT001 contains bits 16 through 31 and 48 through
63.  As shown in Figure 8, the B and T registers can be loaded from the
address and scalar registers, common memory, and branch control.

BT000

BT001

IAA – IAP,
IBA – IBPFrom Ai or Si

IGA – IGPP Entry on Branch

ICA – ICP,
IDA – IDPCM Path 1

IEA – IEP,
IFA – IFPCM Path 2

Ai Length (BT001 Only) IIA – IIG

OAA – OAP,
OBA – OBP To Ai or Si

OCA – OCP,
ODA – ODP Ai, Si, B or T CM Data

OEA – OEP Bjk to Branch Control

Bits 0 – 15,
32 – 47

Bits 16 – 31,
48 – 63

Figure 8.  B and T Register Inputs and Outputs

The B and T registers are used primarily for block transfers to and from
common memory.  Refer to Table 2 for a list of the B and T register
instructions.  Refer also to Figure 9 for a B/T-register-to-memory block
diagram.
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Table 2.  B/T Register Instructions

Instruction CAL Description

0050jk J  Bjk Jump to Bjk

0051jkO JINV  Bjk Jump to Bjk  (invalidate instruction buffers)

024ijkD Ai  Bjk Transmit (Bjk) to Ai

025ijkD Bjk  Ai Transmit (Ai) to Bjk

034ijkD Bjk  Ai, A0 Transmit (Ai) words from common memory starting at
address (A0) to B registers starting at register jk

035ijkD ,A0  Bjk,Ai Transmit (Ai) words from B registers starting at register jk to
memory starting at address (A0)

036ijkD Tjk  Ai, A0 Transmit (Ai) words from memory starting at address (A0) to
T register starting at register jk

037ijkD ,A0  Tjk,Ai Transmit (Ai) words from T registers starting at register jk to
memory starting at address (A0)

074ijk Si  Tjk Transmit (Tjk) to Si

075ijk   Tjk  Si Transmit (Si) to Tjk

O denotes a maintenance mode instruction only.

D denotes a difference between Triton mode and C90 mode.
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B/T Registers

CH000

CH002

CH004

CH006

CH008

CH010

CH012

CH014

CH009

CH011

CH013

CH015

CH001

CH003

CH005

CH007

B/T Registers

BT001

BT000Read Data

Read Data

Read Data

Read Data

CM Left

CM Right

CM Left

CM Right

ICA – ICP

IEA – IEP

IFA – IFP

Bits 16 – 31, 48 – 63

Bits 0 – 15, 32 – 47
IDA – IDP

IFA – IFP

IEA – IEP

ICA – ICP

IDA – IDP

Memory
Write Data

Memory
Write Data

CG000

CG001

OCA – OCP,
ODA – ODP

OCA – OCP,
ODA – ODP

Figure 9.  B/T-register-to-memory Block Diagram
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ADDRESS/SCALAR ADD

The address and scalar registers are contained on eight options:  one AR
option, three AS options, two AT options, and two AU options.  Each
option contains 8 bits of the 64-bit address registers.  These options also
contain the address and scalar add functional unit.  Table 3 describes the
instructions that use the address and scalar add functional unit.

Table 3.  A/S Adder Instructions

Instruction CAL Description

030ijkD Ai  Aj+Ak Transmit integer sum of (Aj) and (Ak) to Ai

030i0kD Ai  AkS Transmit (Ak) to Ai

030ij0D Ai  Aj+1S Transmit integer sum of (Aj) and 1 to Ai

031ijkD Ai  Aj–Ak Transmit integer difference of (Aj) and (Ak) to Ai

031i0kD Ai  –AkS Transmit inverse of (Ak) to Ai

031ij0D Ai  Aj–1S Transmit integer difference of (Aj) and 1 to Ai

060ijk Si   Sj+Sk Transmit integer sum of (Sj) and (Sk) to Si

061ijk Si   Sj–Sk Transmit integer difference of (Sj) and (Sk) to Si

061i0k Si  –Sk Transmit inverse of (Sk) to Si

D denotes a difference between Triton mode and C90 mode.

S denotes a special CAL syntax.

The address add and scalar functional units perform a 64-bit add; each
option performs the add function on the bits of the operands contained on
that option.  Carry and enable bits generated during the add are passed on
to the next option, as shown in Figure 10.  The 64-bit result is stored in the
destination register in 4 clock periods.



Address/Scalar Add CPU

20 Cray Research Proprietary HTM-003-A

AS0

AS1

AS2

AT0

AT1

AU0

AU1

AR0 OSA ISA

OSB

OSC

OSD

ISA

ISA

ISA

AT0

AT1

OSB
ISC

AS2
ISC

OTA ITB

OTB

ITB

AU0

AU1

OSC
ISC

OTC

ITB

AT0

AT1

OSB
ISB

OTB

ITA

AS1

AS2

OSA
ISB

OTA

ITA

AU0

AU1

OSC
ISB

OTC

ITA

OSA

AT0

AT1

OSA
ISD

OTA

ITC

AU0

AU1

OSB
ISD

OTB

ITC

AU0

AU1

OSB
ISE

OTB

ITD

AT1
ISE

OTA ITD

OSA

AU0

AU1

OSA
ISF

OTA

ITE

AU1
ISG

OTA ITF

OSA

NOTE: ISA – ISG and OSA – OSC terms are
adder carries.  ITA – ITF and OTA – OTC
terms are adder enables.

AS0

AS1

AU0

AT1

AT0

AS2

Bits
0 – 7

Bits
8 – 15

Bits
16 – 23

Bits
24 – 31

Bits
32 – 39

Bits
40 – 47

Bits
48 – 55

Figure 10.  Carry Bit and Enable Bit Fanouts
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SCALAR LOGICAL

The scalar logical functional unit performs logical operations on the
scalar registers.  Logical operations include OR, AND, and XOR
operations and merges.

Refer to Figure 11 for an illustration of the address/scalar registers.  The
scalar registers are contained on eight options:  one AR option, three AS
options, two AT options, and two AU options.  Each option contains 8 bits
of the 64-bit address registers.  These options also contain the scalar
logical functional unit.  The operands are latched and the logical operation
is completed in 1 clock period; the result is then entered into the proper
destination register.

AR000

A/S0

 Logical
Functional Unit

Ai/Si
FU

Select

Operand
Select

Address/Scalar Register

IOA – IODA/S Entry Code Valid

hijk Instruction Data

A/S Register
Data Path 1

A/S Entry Code INA – INC

IJA – IJH

IPA – IPL

Ai/Si

(JA0)

(JA0)

Aj/Sj

Ak/Sk

(JA0)

(CH0)

A/S Register
Data Path 2 IKA – IKH

(CH1)

Bits 0 – 7

AS000 Bits 8 – 15

AS001 Bits 16 – 23

AS002 Bits 24 – 31

AT000 Bits 32 – 39

AT001 Bits 40 – 47

AU000 Bits 48 – 55

AU001 Bits 56 – 63

A/S1
A/S2
A/S3
A/S4

A/S5
A/S6

A/S7

Figure 11. Address/Scalar Logical Block Diagram (Instructions 044ijk 
through 051ijk)
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Table 4 and Table 5 list the instructions used in the address and scalar
logical functional unit.  The instructions listed in Table 5 must be
preceded by a 005400 instruction; they are for Triton mode only.

Table 4. Scalar Logical Functional Unit Instructions

Instruction CAL Description

044ijk Si Sj&Sk Logical product of (Sj) and (Sk) to Si

044ij0 Si Sj&SB Sign bit of (Sj) to Si

044ij0 Si SB&Sj Sign bit of (Sj) to Si (Sj ≠ 0)

045ijk Si #Sk&Sj Logical product of (Sj) and one’s complement of (Sk) to Si

045ij0 Si #SB&Sj (Sj) with sign bit cleared to Si

046ijk Si Sj\Sk Logical difference of (Sj) and (Sk) to Si (Sj ≠ 0)

046ij0 Si Sj\SB Transmit (Sj) with sign bit toggled to Si

046ij0 Si SB\Sj Transmit (Sj) with sign bit toggled to Si (Sj ≠ 0)

047ijk Si #Sj\Sk Logical equivalence of (Sk) and (Sj) to Si

047i0k Si #Sk Transmit one’s complement of (Sk) to Si

047ij0 Si #Sj\SB Logical equivalence of (Sj) and sign bit to Si

047ij0 Si #SB\Sj Logical equivalence of (Sj) and sign bit to Si (Sj ≠ 0)

047i00 Si #SB Enter one’s complement of sign bit into Si

050ijk Si Sj!Si&Sk Logical product of (Si) and (Sk) complement ORed with
logical  product of (Sj) and (Sk)

050ij0 Si Sj!Si&SB Scalar merge of (Si) and sign bit of (Sj) to Si

051ijk Si Sj!Sk Logical sum of (Sj) and (Sk) to Si

051i0k Si Sk Transmit (Sk) to Si

051ij0 Si Sj!SB Logical sum of (Sj) and sign bit to Si (Sj ≠ 0)

051i00 Si SB Enter sign bit into Si
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Table 5. Address Logical Functional Unit Instructions

Instruction CAL Description

044ijk Ai Aj&Ak Logical product of (Aj) and (Ak) to Ai

045ijk Ai #Ak&Aj Logical product of (Aj) and one’s complement of (Ak) to Ai

046ijk Ai Aj\Ak Logical difference of (Aj) and (Ak) to Ai  (Aj ≠ 0)

047ijk Ai #Aj\Ak Logical equivalence of (Ak) and (Aj) to Ai

047i0k Ai #Aj Transmit one’s complement of (Ak) to Ai

050ijk Ai Aj!Ai&Ak Logical product of (Ai) and (Ak) complement ORed with
logical  product of (Aj) and (Ak)

051ijk Ai Aj!Ak Logical sum of (Aj) and (Ak) to Ai

Address and Scalar Mask

Another function separate from scalar logical but included in this section,
is address mask and scalar mask.  Address and scalar mask functions use
instructions 042ijk and 043ijk.  Refer to Table 6 and Table 7 for the scalar
and address mask instruction formats, respectively.

Table 6. Scalar Mask Instructions

Instruction CAL Description

042ijk Si<exp Form ones mask in Si exp bits from the right; jk
field = 100 – exp

042i77 Si 1 Enter 1 into Si

042i00 Si-1 Enter  -1 into Si; 
(Si = 177777  177777  177777  177777)

043ijk Si >exp Form ones mask in Si exp bits from the left:  
jk field = exp

043ijk Si #<exp Form zeroes mask in Si exp bits from the right:
jk field gets 1008= exp

043i00 Si 0 Clear Si
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Table 7. Address Mask Instructions

Instruction CAL Description

042ijk Ai<exp Form ones mask in Ai exp bits from the right; 
jk field = 100 – exp

042i77 Ai 1 Enter 1 into Ai

042i00 A-1 Enter  -1 into Ai; 
(Ai = 177777  177777  177777  177777)

043ijk Ai>exp Form ones mask in Ai exp bits from the left:  
jk field = exp

043ijk Ai #<exp Form zeroes mask in Ai exp bits from the right:
jk field gets 1008 = exp

043i00 Ai 0 Clear Ai

The address/scalar mask functional unit is located on the SS options.
When the 042ijk or 043ijk instruction issues the jk field, it is sent from the
BT0 option.  The jk field determines how many 1 bits are set, and the h
field bit 0 determines whether the 1’s should be on the left or the right.
Figure 12 is a block diagram of the scalar mask functional unit.

Sji

SS000

jk

h

Scalar
Shift

Vector
Mask
Upper

Address/
Scalar Maskh0

MUX

ORed
AR000

Address/Scalar
Registers

(AR, AS,AT, AU)

AS000

AS001

AS002

AT000

AT001

AU000

AU001

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Bits 32 – 39

Bits 40 – 47

Bits 48 – 55

Bits 56 – 63IAA – IDP

IEE

IGA – IGF
(BT)

(IC)

Lower

Figure 12.  Scalar Mask Block Diagram
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Transmit nm to S i, Si Upper, S i Lower

Constant data can be transmitted to an S register by four different
instructions.  Refer to Table 8 for a list of these instructions.

Table 8.  Transmit nm to Si Instructions

Instruction CAL Description

040i00nm Si exp Transmit expression = nm to Si, bits 
0 through 31 (bits 32 through 63 = 0)

040i20nm Si Si:exp Transmit expression = nm to Si, bits 0 through
31 (bits 32 through 63 unchanged) (j2 = 0)

040i40nm Si exp:Si Transmit expression = nm to Si, bits 32
through 63 (bits 0 through 31 unchanged) 
(j2 = 1)

041i00nm Si exp Transmit expression = one’s complement of
nm to Si, bits 0 through 31 (Si bits 32 through
63 = 1)
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ADDRESS/SCALAR POP/PARITY AND LEADING ZERO

The address/scalar population count functional unit counts the number of
1 bits in the scalar (S) register or address (A) register of the k field of
instruction 026ijk (k = 0 or 1 for S registers, and k = 2 or 3 for A
registers).  The maximum count could be 1008 or 6410 for the
corresponding number of 1 bits set in the A or S register, and the smallest
count could be 0 when no bits are set in the A or S register.

The k field of the instruction determines whether or not the entire
population count is recorded in Ai.  If it is a 026ij0/2 instruction, all 7 bits
of the final population count are sent to the A register.  When a 026ij1/3
instruction is issued, the entire S or A register is counted for the number of
1 bits set, but then only bit 0 of the count is sent to the A register.  If bit 0
of the count equals 0, then the count has even parity, indicating an even
number of bits set.  If bit 0 of the count equals 1, then the count has odd
parity.

Starting from bit position 63, the address/scalar leading zero count
functional unit counts the number of 0’s preceding the first bit set to a 1 in
a specified address or scalar register.  The number of leading 0’s is then
transferred to the lower 7 bits of an Ai register.  To use the address/scalar
leading zero count functional unit, a 027ij0 instruction is issued when Sj is
the operand and Ai is the result register.  The 027ij1 is issued when Aj is
the operand and Ai is the result register.

The SS option performs scalar pop/parity and leading zero functions.
Population count/parity and leading zero functions are performed on either
a scalar or an address register operand, with the result sent to an address
register.  Table 9 describes the instructions that use the pop/parity and
leading zero functional unit, and Figure 13 illustrates the A/S
population/parity/leading zero count.
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Table 9.  Scalar Pop Count/Parity and Leading Zero Count Instructions

Instruction CAL Description

026ij0D Ai  PSj Transmit population count of (Sj) to Ai

026ij1D Ai  QSj Transmit population count parity of (Sj) to Ai

026ij2ND Ai  PAj Transmit population count of (Aj) to Ai

026ij3ND Ai  QAj Transmit population count parity of (Aj) to Ai

027ij0 Ai  ZSj Transmit leading zero count of (Sj) to Ai

027ij1NT Ai  ZAj Transmit leading zero count of (Aj) to Ai

D denotes a difference between Triton mode and C90 mode.

N denotes new instruction (not available on CRAY C90 series systems).

T denotes Triton mode only.
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Sj/Si Bits 0 – 15
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Figure 13.  A/S Population/Parity/Leading Zero Count
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ADDRESS REGISTER SHIFT

The address register shift function is performed on the SS option (refer to
Figure 14 for a block diagram of address register shift).  This functional
unit performs both left and right single-register shifts and left and right
double-register (also referred to as long) shifts.  All shifts are end-off with
zero fill.  For example, if data is shifted more than 6410 places in a single
shift, or more than 12810 places in a double-register shift, the data is
shifted off the register.  The data is then lost, and 0’s are moved into the
register.

The shift unit performs only left shifts.  The shift count for a right shift
must be in the two’s complement form; the unit then performs a left shift.
Refer to Table 10 for a list of the address register shift instructions.

NOTE: To issue A-register-shift instructions, a 005400 (EIS) instruction
must precede the shift instruction.  If an A-register-shift
instruction is issued in C90 mode, the results are undefined.

Table 10.  Address Register Shift Instructions

Instruction CAL Description

052ijk A0 Ai<exp Shift (Ai) left exp = jk places to A0

053ijk A0 Ai>exp Shift (Ai) right exp = 1008–jk places to A0

054ijk Ai Ai<exp Shift (Ai) left exp = jk places to Ai

055ijk Ai Ai>exp Shift (Ai) right exp = 1008–jk places to Ai

056ijk Ai Ai, Aj<Ak Shift (Ai) and (Aj) left (Ak) places to Ai

056ij0 Ai Ai, Aj<1 Shift (Ai) and (Aj) left one place to Ai

056i0k Ai Ai<Ak Shift (Ai) left (Ak) places to Ai

057ijk Ai Aj, Ai>Ak Shift (Aj) and (Ai) right (Ak) places to Ai

057ij0 Ai Aj, Ai>1 Shift (Aj) and (Ai) right one place to Ai

056i0k Ai Ai>Ak Shift (Ai) right (Ak) places to Ai
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Address register shift diagram here.
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Address Register Single Shift

The address register single-shift instructions are 052ijk through 055ijk.
The first two instructions perform left single shifts (052ijk) and right
single shifts (053ijk) on the content of the Ai register and always store the
result in A0.  The shift count is obtained from the jk field of the
instruction.  The value placed in the jk field for the single-shift
instructions depends on whether it is a left or right shift.  For a single left
shift, the value in the jk field is the number of octal places desired to shift
Ai.  This allows a shift left of 0 to 778 places.  For a right shift, the jk field
is equal to the two’s complement of the actual number of places desired to
shift right.  If a shift of 248 places were required, 54 would be entered in
the jk field (two’s complement of 24 is 54).

When instructions are written in machine code, this operation must be
done by the person writing the code.  However, when instructions are
written in CAL, this is done by the assembler.  In the CAL instruction, you
would simply enter the shift count.  This allows a shift right of 1 to 1008
places.  Because the two’s complement of the shift count is used for a
single shift, a shift right 0 places is not possible.

The 054ijk and 055ijk instructions perform single shifts left or right on the
contents of Ai.  However, these instructions store the result of the shift
back in Ai.  These shifts overwrite the original contents of Si with the new
results from the shifter.

Address Register Double Shift

Double shifts work similarly to single shifts and are end-off with zero fill.
The difference is that a double shift concatenates two S registers, forming
a 128-bit register.  The arrangement of the two registers is determined by
the shift direction.

Double shifts always shift data into Si.  The two instructions associated
with double shifts are 056ijk (left double shift) and 057ijk (right double
shift).  The double shifts use the i and j fields to specify the two operand
registers; the i field also specifies the result register.  The k field of the
instructions specifies the A register used for the shift count.

Because a double shift uses a 128-bit operand and shifts are end-off with
zero fill, a shift equal to or greater than 12810 (2008) produces a result of
zero.  The A register bits 0 through 6 are used as a shift count, providing a
shift of 0 to 1778.  Bit 7 is checked, and if this bit is set to a 1, it causes the
double shift result to equal zero.  For right double shifts, the shift count
does not need to be entered into the A register in two’s complement form;
the hardware performs this function.
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Address Register Shift Count Description

The AR option sends 7 bits of shift count to the SS option.  For both
single and double shifts, the breakdown of the shift count is the same,
except that the double shift has 1 extra bit (bit 6).  Refer to Figure 15 for a
breakdown of the shift count.

Double
Shift
Only
6
64

5
32

4
16

3
8

2
4

1
2

0
1

Bit Position
Shift Value

Figure 15.  Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count.

If the jk field of a left single shift equals 278 and bits 4, 2, 1, and 0 are set,
the shift values would be 16, 4, 2, and 1, respectively.  The sum of the
shift values would be 23 (16 + 4 + 2 + 1); therefore, the instruction would
shift left 2310 places.

The actual hardware that performs the shifts is the same for both left and
right shifts.  However, the hardware performs only left shifts.  Right shifts
are accomplished by the way in which data is entered into the shifter,
hence the use of two’s complement for right shifts.
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Address Register Left Single Shift

Figure 16 is an illustration of how a left single shift is performed for a
054220 instruction.  (Ai Ai<exp), shift A2 left jk places (208) with data bit
10 set.

A2 =

A2 Final Results

Address Shift Functional Unit

Bit
10

Shift A2 1610 places
to the left, moving bit
26 to bit position 10Bit

26

Bit 10

Bit 26

Figure 16.  Address Register Left Single Shift
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Address Register Right Single Shift

Figure 17 is an illustration of how a right single shift is performed using
left shifts and a two’s complement shift count.  This example uses a
055254 instruction (Ai>Ai exp) that shifts Ai right exp = 100 – jk places to
Ai.  In this example, data bit 45 shifts to the right 248 (2010) places.
Notice that the jk field of the instruction 055254 contains 548, which is the
two’s complement of 248, causing A2 to be shifted to the left 548 places to
set bit 25 of the result.

Address Shift Functional Unit

Shift  548

A2 =

A2 =

Bit
25

Bit 45

Bit 25

Bit 45

Bit 63 0 63 0

Bit 25

Figure 17.  Address Register Right Single Shift

NOTE: On a right shift, it is the programmer’s responsibility to perform
the two’s complement of the shift count and supply that value to
the functional unit.
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Address Register Left Double Shift

Double shifts are the same as single shifts except that they concatenate
two 64-bit registers to form a value.  Figure 18 is an illustration of a left
double shift using a 056123 instruction (Ai A1, Aj<Ak).  In this example,
we shift (Ai) and (Aj) left (Ak) places to Ai, with A3 = 408 (3210), A1
having bit 30 set, and S2 having bit 10 set.  When a left double shift
occurs, the content of Aj is moved into Ai, and the two registers are
positioned as shown with Ai ahead of Aj.

40

A2 (Aj) =

A1 (Ai) =

A3 = – Shift Control

Address Shift Functional Unit

Ai Aj

Shift 32 Shift 32

= A1 Final Result

(A2)(A1)

Bit
62

Bit
42

Bit 10

Bit 30

Bit 30 Bit 10

Bit 62

Bit 62

Figure 18.  Address Register Left Double Shift

Shifting Ai and Aj to the left 32 places puts bit 30 of A1 at bit position 62
and bit 10 of A2 at bit position 41.  Because bit 41 of A2 did not make it
to the result register A1, it is lost.  The result bit (bit 62) is then sent to the
Ai (A1) register.  The Aj (A2) register remains changed.
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Address Register Right Double Shift

To perform an address register right double shift, a 057ijk [(A i Aj, Ai
>Ak),  shift (Aj) and (Ai) right (Ak) places to Ai] instruction is used.
Figure 19 illustrates a 057123 instruction with the indicated parameters.

60

A1 =

A2 =

A3 = – Shift Control

Address Shift Functional Unit

AiAj

Shift 80 Shift 80

= A1 Final Result

(A1)(A2)

Bit
56

Bit
36

Bit 20

Bit 40

Bit 20Bit 40

Bit 56

Bit 56

Figure 19.  Address Register Right Double Shift

To right shift Aj and Ai using left shifts, the two’s complement is first
performed on A3, which currently equals 608 (4810).  Because the two’s
complement is 1208 (or 10100002 or 8010), the required shift can be
accomplished through successive shifts of 6410 and 1610 for a total shift of
8010 places.  A left shift of 8010 would move bit 40 of A2 to bit position
56 inside the dotted box and bit 20 of A1 to bit position 36 of A2.
Because bit 36 did not make it into the result register (indicated by the
dotted box), it is lost, and bit 56 is sent to the final result.
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Left Single-shift Instruction

Refer to Figure 20 when reading the two following examples of the
address register left single-shift instruction.

2

j                        k

32 4

= jk Field

052ijk Results to A0

054ijk Results to Ai

1 0 2 1 0Bits

= Shift Values Decimal16 28 1

Figure 20.  Example of an A Register Left Single-shift Instruction

Example 1: Write the instruction to shift A2 left 2010 places, putting the 
results into A0.

Steps: 1. 052ijk – left shift instruction result goes to A0

2. jk field – shift count 2010 = 248 = jk field

3. 052224 – final instruction

Example 2: Write the instruction to shift A4 left 3510 places, putting the 
results into A4.

Steps: 1. 054ijk – left shift instruction result goes to Ai

2. jk field – shift count 3510 = 438

3. 054443 – final instruction
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Right Single-shift Instruction

The right single-shift count is the jk field of the instruction, which must
either be in the two’s complement form or 1008 minus the number of
places to right shift.  The following two examples show an address
register right single-shift instruction.

• 053ijk results to A0
• 055ijk results to Ai

Example 1: Write the instruction to shift A5 right 1010 places, putting 
 the results into A0.

Steps: 1. 053ijk – right shift instruction results to A0

2. jk field – shift count in two’s complement equals 668

1010 = 128 = 001010

two’s complement = 110101

        + 1

110110 = 668

3. 053566 – final instruction

Example 2: Write the instruction to shift A7 right 2810 places.

Steps: 1. 055ijk right shift instruction results to Ai

2. jk field – shift count in two’s complement equals

2810 = 348 = 011100

two’s complement = 100011

        + 1

100100 = 448

or 1008 – 348 = 448

3. 055744 – final instruction
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Left Double-shift Instruction

Refer to Figure 21 when reading the following example of an address
register left double-shift instruction.

056ijk Shift Ai and Aj left by Ak places to Ai

Ai Aj

Ai

Ak contains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any bits from 7 through 63 are set, the results of Ai are zeroed.

Zero Results 64  32  16   8    4     2    1 = Valid Decimal Shifts

On a left double shift, the contents of Aj are always shifted into Ai.  This shift is done
inside the address shift functional unit.

Bits 63 7 6 5 4 3 2 1 0     = Ak

Figure 21.  Example of an Address Register Left Double-shift Instruction

Example 1: Write the instruction to left double shift A2 and A3 6410 
places, putting the results into A2.

056234 – final instruction, where A4 – 1008

NOTE: A circular left shift can be effected by issuing a 056 instruction
with i = j and (Ak)< 64.
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Right Double-shift Instruction

Refer to Figure 22 when reading the following example of a scalar right
double-shift instruction.

Bits 63 7 6 5 4 3 2 1 0     = Ak

057ijk Shift Aj and Ai right by Ak places to Ai

Aj Ai

Ai

Zero Results

Two’s Complement

64  32  16   8     4     2    1 = Valid Decimal Shifts

= During Right Double Shift

Figure 22.  Example of an Address Register Right Double-shift Instruction

Ak contains the shift count, and address (A) register bits 0 through 6
contain the valid shift counts.  If any bits from 7 through 63 are set, the
results of Ai are zeroed.  Also, the hardware generates the two’s
complement of the shift count Ak register bits 0 through 6 on a right
double shift.

On a right double shift, the contents of Aj are always shifted into Ai.  This
operation and the two’s complement of the shift count are done inside the
address shift functional unit.

Example 1: Write the instruction to right double shift A4 and A5 
3210 places, with the results going into A4.

057454 – final instruction, where A4 = 408 
hardware generates a shift count of 1408 inside 
the functional unit.

NOTE: A circular right shift can be effected by issuing a 057 instruction
with i = j and (Ak)< 64.
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SCALAR SHIFT

The scalar shift function is performed on the SS option (refer to Figure 23
for a block diagram of a scalar shift).  This functional unit performs both
left and right single-register shifts, and left and right double-register (also
referred to as long) shifts.  All shifts are end-off with zero fill.  For
example, if data is shifted more than 6410 places in a single shift, or more
than 12810 places in a double-register shift, the data is shifted off the
register.  The data is then lost, and the register is filled with 0’s.

The shift unit performs only left shifts.  The shift count for a right shift
has to be in the two’s complement form; the unit then performs a left shift.
Refer to Table 11 for a list of the scalar shift instructions.

Table 11.  Scalar Shift Instructions

Instruction CAL Description

052ijk S0 Si<exp Shift (Si) left exp = jk places to S0

053ijk S0 Si>exp Shift (Si) right exp = 1008 – jk places to S0

054ijk Si Si<exp Shift (Si) left exp = jk places to Si

055ijk Si Si>exp Shift (Si) right exp = 1008 – jk places to Si

056ijk S1 Si, Sj<Ak Shift (Si) and (Sj) left (Ak) places to Si

056ij0  � S1 Si, Sj<1 Shift (Si) and (Sj) left 1 place to Si

056i0k  � S1 Si<Ak Shift (Si) left (Ak) places to Si

057ijk Si Sj, Si>Ak Shift (Sj) and (Si) right (Ak) places to Si

057ij0  � S1 Sj, Si>1 Shift (Sj) and (Si) right 1 place to Si

057i0k  � S1 Si>Ak Shift (Si) right (Ak) places to Si

† If j = 0, then (Sj) = 0.

‡ If k = 0, then (Ak) = 1.
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Scalar Shift Block Diagram
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Scalar Single Shift

The scalar single-shift instructions are 052ijk through 055ijk.  The first
two instructions perform single shifts left (052ijk) and right (053ijk) on the
contents of the Si register and always store the result in S0.  The shift
count is obtained from the jk field of the instruction.  The value placed in
the jk field for the single-shift instructions depends on whether it is a left
or right shift.  For a single left shift, the value in the jk field is the number
of octal places desired to shift Si.  This allows a shift left of 0 to 778
places.  For a right shift, the jk field is equal to the two’s complement of
the actual number of places desired to shift right.  If a shift of 248 places
were required, 54 would be entered in the jk field (two’s complement of
24 is 54).

When instructions are written in machine code, this operation must be
done by the person writing the code.  However, when instructions are
written in CAL, this operation is done by the assembler.  In the CAL
instruction, you would simply enter the shift count.  This allows a right
shift of 1 to 1008 places.  Because the two’s complement of the shift count
is used for a single shift, a shift right of 0 places is not possible.

The 054ijk and 055ijk instructions perform single shifts left or right on the
contents of Si.  However, these instructions store the result of the shift
back in Si.  These shifts overwrite the original contents of Si with the new
results from the shifter.

Scalar Double Shift

Double shifts work similar to single shifts; all shifts are end-off with zero
fill.  The difference is that a double shift concatenates two S registers,
forming a 128-bit register.  The arrangement of the two registers is
determined by the shift direction.

Double shifts always shift data into Si.  The two instructions associated
with double shifts are 056ijk (double left shift) and 057ijk (double right
shift).  The double shifts use the i and j fields to specify the two operand
registers; the i field also specifies the result register.  The k field of the
instructions specifies the A register used for the shift count.

Because a double shift uses a 128-bit operand and shifts are end-off with
zero fill, a shift equal to or greater than 12810 (2008) produces a result of
zero.  The A register bits 0 through 6 are used as a shift count, providing a
shift of 0 to 1778.  For right double shifts, the shift count does not need to
be entered into the A register in two’s complement; the hardware performs
this function.
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Scalar Shift Count Description

The AR000 option sends the shift count to the SS option.  All eight
A-series options check the value of the 64-bit A register to discover
whether any bits above bit 6 have been set.  If any bits have been set, the
result is lost due to overshift.  If each A-series option reports that its bits
are zero, a signal called Ak = 0 is sent to the SS option and the shift count
is valid.

The AR option sends 7 bits of shift count to the SS option.  For both
single and double shifts, the breakdown of the shift count is the same,
except for the fact that the double shift has 1 extra bit (bit 6).  Refer to
Figure 24 for a breakdown of the shift count.

Double
Shift
Only
6
64

5
32

4
16

3
8

2
4

1
2

0
1

Bit Position
Shift Value

Figure 24.  Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count.

If the jk field of a left single shift equals 278 and bits 4, 2, 1, and 0 are set,
the shift values would be 16, 4, 2, and 1, respectively.  The sum of the
shift values would be 23 (16 + 4 + 2 + 1); therefore, the instruction would
shift left 2310 places.

The actual hardware that performs the shifts is the same for both left and
right shifts.  However, the hardware performs only left shifts.  Right shifts
are performed according to how data is entered into the shifter, hence the
use of two’s complement for right shifts.
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Scalar Left Single Shift

Figure 25 is an illustration of how a left single shift is performed for a
054220 instruction (Si Si<exp).  In this example, we shift S2 left jk places
(208) with data bit 10 set.

S2 =

S2 Final Results

Scalar Shift Functional Unit

Shift S2 1610
places to the left,
moving bit 10 to
bit position 26

Bit
26

Bit 10

Bit 10

Bit 26

Figure 25.  Scalar Left Single Shift
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Scalar Right Single Shift

Figure 26 is an illustration of how a right single shift is performed using
left shifts and a two’s complement shift count.  This example uses a
055254 instruction (Si>Si exp) that shifts Si right exp = 100 – jk places
to Si.

In this example, we shift data bit 45 to the right 248 (2010) places.  Notice
that the jk field of the instruction 055254 contains 548, which is the two’s
complement of 248, causing S2 to be shifted to the left 548 places to set bit
25 of the result.

Scalar Shift Functional Unit

Shift  548

S2 =

S2 =

Bit
25

Bit 45

Bit 45

Bit 25

Bit 25

Bit 63 0 63 0

Figure 26.  Scalar Right Single Shift

NOTE: It is the programmer’s responsibility to perform the two’s
complement of the shift count and supply that value to the
functional unit.
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Scalar Left Double Shift

Double shifts are the same as single shifts except that they concatenate
two 64-bit registers to form a value.  Figure 27 is an illustration of a left
double shift using a 056123 instruction (Si, Sj < Ak).  In this example, we
shift S (Si) and (Sj) left (Ak) places to Si, with A3 = 408 (3210), S1 having
bit 30 set, and S2 having bit 10 set.  When a left double shift occurs, the
contents of Sj move into Si, and the two registers are positioned as shown
with Si ahead of Sj.

40

S2 (Sj) =

S1 (Si) =

A3 = – Shift Control

Scalar Shift Functional Unit

Si Sj

Shift 32 Shift 32

= S1 Final Result

(S2)(S1)

Bit
62

Bit 10

Bit 30

Bit
41 Bit 10Bit 30

Bit 62

Bit 62

Figure 27.  Scalar Left Double Shift

Shifting Si and Sj to the left 32 places puts bit 30 of S1 at bit position 62
and bit 10 of S2 at bit position 41.  Because bit 41 of S2 did not make it to
the result register S1, it is lost.  The result bit (bit 62) is then sent to the Si
(S1) register.  The Sj (S2) register remains unchanged.
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Scalar Right Double Shift

To perform a scalar right double shift, a 057ijk instruction (Si Sj, Si > Ak)
shifts (Sj) and (Si) right (Ak) places to Si.  Figure 28 is an illustration of a
057123 instruction with the indicated parameters.

60

S1 =

S2 =

A3 = – Shift Control

Scalar Shift Functional Unit

SiSj

Shift 80 Shift 80

= S1 Final Result

(S1)(S2)

Bit
56

Bit
36

Bit 20

Bit 40

Bit 20Bit 40

Bit 56

Bit 56

Figure 28.  Scalar Right Double Shift

To right shift Sj and Si using left shifts, the two’s complement is first
performed on A3, which currently equals 608 (4810).  Because the two’s
complement is 1208 (or 10100002 or 8010), the required shift can be
accomplished through successive shifts of 6410 and 1610 for a total shift of
8010 places.  A left shift of 8010 would move bit 40 of S2 to bit position
56 inside the dotted box and bit 20 of S1 to bit position 36 of S2.  Because
bit 36 did not make it into the result register (indicated by the dotted box),
it is lost, and bit 56 is sent to the final result.
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Left Single-shift Instruction

Refer to Figure 29 when reading the two following examples of the scalar
left single-shift instruction.

2

j                        k

32 4

= jk Field

052ijk Results to S0

054ijk Results to Si

1 0 2 1 0Bits

= Shift Values Decimal16 28 1

Figure 29.  Example of Scalar Left Single-shift Instruction

Example 1: Write the instruction to shift S2 left 2010 places, placing
the results into S0.

Steps: 1. 052ijk – left shift instruction result goes to S0

2. jk field– shift count 2010 = 248 = jk field

3. 052224 – final instruction

Example 2: Write the instruction to shift S4 left 3510 places, placing the 
results into S4.

Steps: 1. 054ijk – left shift instruction result goes to Si

2. jk field– shift count 3510 = 438

3. 054443 – final instruction
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Right Single-shift Instruction

The right single-shift count is the jk field of the instruction, which must
either be in the two’s complement form or 1008 minus the number of
places to right shift.  Two examples of a scalar right single-shift
instruction follow.

• 053ijk results to S0
• 055ijk results to Si

Example 1: Write the instruction to shift S5 right 1010 places, placing 
the results into S0.

Steps: 1. 053ijk – right shift instruction results to S0

2. jk field – shift count in two’s complement equals 668

1010 = 128 = 001010

two’s complement = 110101

        + 1

110110 = 668

3. 053566 – final instruction

Example 2: Write the instruction to shift S7 right 2810 places.

Steps: 1. 055ijk right shift instruction results to Si

2. jk field – shift count in two’s complement equals

2810 = 348 = 011100

two’s complement = 100011

        + 1

100100 = 448

    or 1008 – 348 = 448

3. 055744 – final instruction
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Left Double-shift Instruction

Refer to Figure 30 when reading the following example of a scalar left
double-shift instruction.

Zero Results

Bits 63 7 6 5 4 3 2 1 0     = Ak

056ijk Shift Si and Sj left by Ak places to Si

Si Sj

Si

Ak contains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any of bits 7 through 63 are set, the results of Si are zeroed.

= Valid Decimal Shifts

On a left double shift, the contents of Sj are always shifted into Si.  This shift is done
inside the scalar shift functional unit.

64 32 16 8 4 2 1

Figure 30.  Example of a Scalar Register Left Double-shift Instruction

Example 1: Write the instruction to left double shift S2 and S3 6410 
places, placing the results into S2.

056234 – final instruction, where A4 – 1008

NOTE: A circular left shift can be effected by issuing a 056 instruction
with i = j and (Ak) < 64.
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Right Double-shift Instruction

Refer to Figure 31 when reading the following example of a scalar right
double-shift instruction.

Bits 63 7 6 5 4 3 2 1 0

057ijk Shift Sj and Si right by Ak places to Si

Sj Si

Si

      Zero Results

Two’s Complement

= Valid Decimal Shifts

= During Right Double Shift

64 32 16 8 4 2 1

Figure 31.  Example of a Scalar Register Right Double-shift Instruction

Ak contains the shift count, and address (A) register bits 0 through 7
contain the valid shift counts.  If any of bits 7 through 63 are set, the
results of Si are zeroed.  Also, the hardware generates the two’s
complement of the shift count on the Ak register bits 0 through 7 on a
right double shift.

On a right double shift, the contents of Sj are always shifted into Si.  This
operation and the two’s complement of the shift count are done inside the
scalar shift functional unit.

Example 1: Write the instruction to right double shift S4 and S5 
3210 places, with the results going into S4.

057454 – final instruction, where A4 = 408 
hardware generates a shift count of 1408 inside the 
functional unit.

NOTE: A circular right shift can be effected by issuing a 057 instruction
with i = j and (Ak) < 64.
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ADDRESS MULTIPLY

The AN option performs the address multiply operation (a 032ijk
instruction).  The AN option also fans out the Aj and Ak operand used for
other A register operations.

When operating in Triton mode, two 48-bit operands are presented to the
functional unit to produce a 48-bit result.  The AN option then does a sign
extension to bit 63 and a leading zero count on the operands to determine
whether the results will fit within 48 bits.  If the results exceed 48 bits, the
64-bit incompatibility signal sets, causing the Address Multiply Interrupt
(AMI) flag to set in the exchange package.

The AN option does not use a standard pyramid formation multiply
algorithm.  Instead, it uses a variation of the Booth Recode algorithm.
This algorithm enables the address multiply unit to reside on a single
option.

Half the recode groups are formed immediately upon arrival of the data on
the AN option (those groups that are centered on bits 0, 4, 8, 12, 16, etc).
One clock period later, using the same logic, those groups centered on bits
2, 6, 10, and 14 are recoded.  This method allows a multiply operation to
be done on about one-fourth of the logic used in a standard pyramid
multiply.  Because this method holds the Ak operand for 2 clock periods,
the AN operand can accept data only every other clock period.  Refer to
Figure 32 for an illustration of the AN option.
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IAA – ICP

IDA – IFP
A Registers

IGF – IGJ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

IHA – IHB

Multiply

Fanout

OCA – ODP,
OEA – OFP

Ak Bits 0 – 7 to VL

OAA – OBV A Register Data

OGA – OGT,
OHA – OHPg Data

Go 032

OIA – OIH Sign Extend Bits
Aj

Ak

Figure 32.  AN Option

Multiply Algorithm

The multiplier is partitioned into 3-bit recode groups centered on the even
bits (0 to 46); a forced zero is added to the first recode group.  The recode
groups are formed as shown in Table 12, and the following subsections
provide examples of standard and Booth Recode multiplication.

Table 12.  Recode Groups

Odd Bit Even Bit i –1 Recode Value Recode Product

0 0 0 +0 0

0 0 1 +1 X47 – X0

0 1 0 +1 X47 – X0

0 1 1 +2 2(X47 – X0)

1 0 0 –2 {2(X47 – X0}’+1

1 0 1 –1 (X47 – X0)’+1

1 1 0 –1 (X47 – X0)’+1

1 1 1 –0 0

i – 1 = Bit to right of recode
group

X47 – X0 = Multiplicand
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Standard Binary Multiplication

Refer to the following example of standard binary multiplication.

000011  (3)
    011101  (35)

000011
    000000
 000011

     000011
  000011

     000000
 0000001010111

Booth Recode Multiplication

Refer to the following example of Booth Recode multiplication.

   000011   (3)
   011101  (35)

   000000000011
                11111111010
               00000110
         1    000001010111

In the previous example, the multiplier is recoded into bit groups centered
on the even bit.  A forced zero is appended to the first recode group.

As shown in Table 12, the first recode of the multiplier, bits 1 and 0 and
the forced zero, yields a recode value of 010, or +1.  In this case, the
multiplicand is brought down.

The second recode, bits 3, and 2, and 1 yields a recode value of –1.  In this
case, a two’s complement and a shift of 1 are done on the multiplicand.

The final recode, bits 5, 4, and 3 yields a recode value of +2.  This causes
a shift of 1 on the multiplicand.
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INTEGER MULTIPLY

The AM option performs the scalar vector integer multiply operation
(166ijk).  It receives Sj and Vk operands and produces a 40-bit output to
Vi for VL length when the system is in Triton mode.

In C90 mode, a 32-bit result forms, and the input operands are modified to
produce the 32-bit result.  The Sj operand must be left shifted 3110  places,
and the Vk operand must be left shifted by 1610 places before executing the
166ijk instruction, as shown in Figure 33.

The AM option, like the AN option, also uses the Booth Recode algorithm
for the multiply operation.  The AN option also does a leading zero count
on the operands to determine whether the results will fit within 40 bit
positions.  The input operands are passed through the floating-point
multiply unit before they arrive at the AM option, as shown in Figure 34.



Integer Multiply CPU

60 Cray Research Proprietary HTM-003-A

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

015163147

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

63

015163132474863

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

0151631324748

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

63

015163132474863

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

Sj bits 0 through 31 are gated into bit
positions 32 through 63 for C90 mode.

Vk bits 0 through 31 are gated into bit
positions 15 through 47 for C90 mode.

ÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏ

C90 32-bit Mode

Bits

Bits

Bits

Bits

ÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏ

C90 32-bit Mode

3248

Figure 33.  C90 Operation Mode
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IAA – IAT
IBA – IBT

ICA – ICT
IDA – IDT

Sj Bits 0 – 19
Sj Bits 20 – 39

OGA – OGT
OGU – OHNNB

AM

NA

Vk Bits 0 – 19
Vk Bits 20 – 39

OEA – OET
OEU – OFT

IFA – IFHODA – ODH Sj Bits 40 – 47

NC
IFI – IFWOGA – OGO Sj Bits 48 – 62

IGA – IGBOFO – OFP Vk Bits 40 – 41

IGC – IGHOIA – OIF Vk Bits 42 – 47

IEDOHA Valid

IECOJA Go V 166

IC

IEAOYQ Triton Mode

OAA, OAZ
Vi Bits 0 – 25 to 
Result Register

OBA, OBZ
Vi Bits 26 – 51 to 
Result Register

OHQ, OHR 40-bit Mode

Figure 34.  AM Option Inputs
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VECTOR REGISTERS

A CRAY T90 series computer system contains eight vector (V) registers,
which are designated V0 through V7.  Each register contains 12810
elements; each element is 6410 bits wide.  The 12810 elements are divided
into two pipes of even and odd elements.

The vector registers have their own integer functional units, which include
vector add, vector logical 1, vector logical 2, vector shift, vector
population, vector leading zero count, and 32-bit integer multiply.  The
vector registers share the floating-point functional units with the scalar
registers.  The floating-point functional units include floating-point add,
floating-point multiply, floating-point reciprocal and bit matrix multiply.

The vector registers can send data to memory or load data from memory.
The number of elements sent to a functional unit (including memory)
depends on the value of the vector length (VL) register.  Any element of a
vector register can be loaded into a scalar register, and any scalar register
can be loaded into any element of a vector register by using the 076ijk and
077ijk instructions.

The vector registers use 1-parcel instructions.  In a 1-parcel instruction,
the gh field contains the instruction decode, and the ijk field contains the
operands and destination.  The gh field of the instruction indicates the
functional unit needed, and the ijk field indicates the vector registers used.
Generally, the k field of the instruction contains the vector operand
registers V0 through V7.  The j field of the instruction can be either Sj or
Vj, depending on the instruction.  The i field of the instruction is used as
the destination or result register.

Some vector instructions, when preceded by a 005400 instruction, cause
the instruction to execute in Triton mode as opposed to C90 mode of
operation.  If, for example, an instruction sequence of 005400 150ij0
issues, a left shift of Vj V0 places to Vi is performed.  If the 005400
instruction had not preceded the 150ij0 instruction, a left shift of Vj A0
places to Vi would have occurred.
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The vector registers in the Triton system contain a dual set of functional
unit pipes.  Each functional unit has another identical functional unit.  For
example, the vector add functional unit is duplicated so that all the even
elements go to one of the vector add functional units, while all the odd
elements go to the other vector add functional unit.  The even and odd
elements are sent to the functional unit simultaneously, and the two results
are loaded back into the result vector register simultaneously.

If the vector add functional unit fails in the even elements, the cause of the
failure is the pipe 0 vector add.  Pipe 1 handles the odd vector elements.  If
the vector length register is an even value, the results are written into the
vector register simultaneously using pipe 0 and pipe 1, until the last
element specified by the vector length is used.  Refer to Table 13 for a list
of the vector register options.

Table 13.  Vector Register Options

Option Type Number Used Description

VA 2

Provide read/write address and control  
(VA0 pipe 0)  
(VA1 pipe 1)
Vector length register
Functional unit release

VF 4
Pipe control  
(VF0,VF1 for pipe 0)                
(VF2,VF3 for pipe 1)

VM 16

Data multiplexing (VM0 – VM7 pipe 0)         
(VM8 – VM15 pipe 1)     
Vector add functional unit
Vector logical functional unit

VR 16
Data multiplexing and storage                       
(VR0 – VR7 pipe 0)                                   
(VR8 – VR15 pipe 1)
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VA Option

The VA option provides vector read and write control.  There are two VA
options on a CPU:  VA0 provides address and control for the even
elements of the vectors, and VA1 provides the address and control for the
odd elements.  The VA options have the following common functions:

• Vector read and write address
• Read and write vector length
• Vector chaining control

The VA options also have the following unique features:

• VA0

• Release vectors for write operations

• Functional unit release for:
Vector logical #1
Vector shift
Vector floating-point multiply
Vector reciprocal

• Even-element addressing

• VA1

• Release vectors for read operations

• Functional unit release for:
Vector logical #2
Vector adder
Vector floating-point add
Vector matrix multiply

• Odd-element addressing

Vector Length Register

The vector length register is located on the VA option.  There are two VA
options, one for each pipe.  Both vector length registers are loaded with
Ak data bits 00 through 06 from the AR000 option.  These bits are needed
to achieve values from 0 to 1778.  If a value of all 0’s is entered, the VL
register is forced to a value of 2008.
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When the vector length value is entered, it is entered into a countdown
register.  VL bit 0 is removed so a VL value of 200 will be a value of 100
in the active register (a pseudo right shift).  This is done because each pipe
handles only 100 elements.  Every time VL decrements, it generates 
the Advance Address signal.  The VA option also checks VL bit 0 to
determine whether the vector length is odd or even.  This enables either
pipe 0 for odd vector lengths, or pipe 1 for even vector lengths, on the last
operation.

Chaining

If V i, j, or k is reserved as a destination and the next instruction tries to use
the same vector register as an operand, the next instruction is allowed to
issue.  This is referred to as chaining.

Chain slot time is the time required for the result of a previous instruction
to be presented to the inputs on the VR options.  If another instruction is
waiting for these results or is addressing the same element, the VR option
passes the results directly to the read-out register.  The VA option controls
the vector chaining by controlling the issuing of the Go Write  signal.

Chaining to common memory read operations occurs on 8-word
boundaries.  Vector control waits for 8 contiguous words to become valid
before the read of that group is allowed.

VF Option

There are four VF options on the CP module.  VF0 and VF1 control
fanout for pipe 0; VF2 and VF3 control fanout for pipe 1.  The VF options
perform the following functions.

• Instruction parcel data fanout to VR options
• Vector add carry and enable summations and bit toggles
• Vector register parity error information
• Vector functional unit delay chains
• Vector functional unit data valids
• Vk address buffering for common memory
• Release of Vi for write operations
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VM Option

The VM options perform write data multiplexing on an 8-bit slice of all
functional unit data.  There are 16 VM options.  VM000 to VM007 are for
even-element steering, and VM008 to VM015 are for odd-element
steering.

The VM option performs the following functions:

• Read and write data steering
• Vector read-out control
• Vector add functional unit
• Both vector logical functional units

VR Option

A total of 16 VM and VR options reside on the CP module as shown in
Table 14.  Each option performs read data steering and also vector data
storage.  The contents of the selected vector register are gated to one of
the following destinations; the read data steering is done on 4-bit slices.

• Floating-point add
• Floating-point multiply
• Reciprocal, pop, parity, LZ
• Shift
• Common memory port A
• Common memory port B
• Common memory port C
• Common memory write data
• V data to scalar
• Bit matrix multiply

The VM and VR options contain four high-speed register (HSR) storage
arrays that are 18 bits wide by 64 elements deep.  Sixteen of the bits are
data and 2 bits are for parity.  VR000 through VR007 store vector data for
the even elements (pipe 0), and VR008 through VR015 store data for the
odd elements (pipe 1).

NOTE: VM/VR options 12 through 15 do not handle exchange data.
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Table 14.  VM/VR Data Steering

Option Pipe 0/Pipe 1 VM3/11 VR3/11 VM2/10 VR2/10 VM1/9 VR1/9 VM0/8 VR0/8

Read Bits 28 – 31 24 – 27 20 – 23 16 – 19 12 – 15 8 – 11 4 – 7 0 – 3

Write Bits 24 – 31 – 16 – 23 – 8 – 15 – 0 – 7 –

Exchange Bits 60 – 63 55 – 59 52 – 55 48 – 51 44 – 47 40 – 43 36 – 39 32 – 35

Option Pipe 0/Pipe 1 VM7/15 VR7/15 VM6/14 VR6/14 VM5/13 VR5/13 VM4/12 VR4/12

Read Bits 60 – 63 56 – 59 52 – 55 48 – 51 44 – 47 40 – 43 36 – 39 32 – 35

Write Bits 56 – 63 – 48 – 55 – 40 – 47 – 32 – 39 –

Exchange Bits 28 – 31 24 – 27 20 – 23 16 – 19 12 – 15 8 – 11 4 – 7 0 – 3

Each VR option has an input that is used to force parity errors into the
HSR arrays.  The maintenance channel provides the following two
features:  force RAM parity error internal (code 100) and force RAM
parity error external (code 140).  Through the use of the maintenance
channel, a specific loop controller and a specific chip can be given a
maintenance function such as force parity error.

Write Data Steering

The VM options receive the i instruction field from the VF options; this
field performs internal gating of data to the correct register.  The i field
and the instruction decode enable separate write paths for each vector.
This path stays selected until a new instruction issue changes it.  All the
write paths are separate and all can be active at the same time.  Refer to
Figure 35 for an illustration of the write data path.
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Figure 35.  Write Data Path
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Read Data Steering

Both the VM and the VR options are responsible for read data steering.
Each VM and VR option steers 4 bits for all eight vector registers to one
of the following destinations:

• Floating-point add
• Floating-point multiply
• Reciprocal, pop, parity, leading zero
• Shift
• Common memory port A, B, C
• V data to scalar

The VM and VR options receive the j and k fields of the instruction from
the VF option along with the instruction; this enables one of eight vector
paths to which data is steered.  These paths stay selected until another
instruction changes them.  All the read paths are separate and all can be
active at the same time.  Figure 36 shows the read data path for pipe 0 and
pipe 1 (even elements), and Figure 37 shows the read data path for pipe 0
and pipe 1 (odd elements).  Refer also to the following diagrams for
additional related vector register information:

• Figure 38 – vector register write block diagram (pipe 0)
• Figure 39 – vectors 0 through 3 pipe 0/1 read data path
• Figure 40 – vectors 4 through 7 pipe 0/1 read data path
• Figure 41 – vectors 0 through 3 pipe 0/1 write data path
• Figure 42 – vectors 4 through 7 pipe 0/1 write data path
• Figure 43 – vector register decode bit fanout (pipe 0 and 1 path 1)
• Figure 44 – vector register decode bit fanout (pipe 0 and 1 path 2)
• Figure 45 – S register to vectors
• Figure 46 – memory data to vectors (even elements)
• Figure 47 – memory data to vectors (odd elements)
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Figure 36.  Read Data Path for Pipe 0 (Even Elements)
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Figure 37.  Read Data Path for Pipe 1 (Odd Elements)
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Figure 38.  S Register to Vectors
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Figure 39.  Vector Register Write Block Diagram (Pipe 0)
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Figure 40.  Memory Data to Vectors (Even Elements)



Vector RegistersCPU

79Cray Research ProprietaryHTM-003-A

CH000

OJA – OJD VM008IIA – IID

VM012

OJE – OJH IIA – IID

CH002

OIA –
OID

IIE –
IIH

IIE –
IIH

OIE –
OIH

CH004

VM009IIA – IID

VM013

IIA – IID

CH006

OIA –
OID

IIE –
IIH

IIE –
IIH

OIE –
OIH

CH008

VM010IIA – IID

VM014

IIA – IID

CH010

OIA –
OID

IIE –
IIH

IIE –
IIH

OIE –
OIH

CH012

VM011IIA – IID

VM015

IIA – IID

CH014

OIA –
OID

IIE –
IIH

IIE –
IIH

OIE –
OIH

CH001

VM008IJA – IJD

VM012

IIA – IID

CH003

OIA –
OID

IJE –
IJH

OIE –
OIH

IJE –
IJH

CH005

VM009IJA – IJD

VM013

IIA – IID

CH007

OIA –
OID

IJE –
IJH

OIE –
OIH

IJE –
IJH

CH009

VM010IJA – IJD

VM014

IIA – IID

CH011

OIA –
OID

IJE –
IJH

OIE –
OIH

IJE –
IJH

CH013

VM011IJA – IJD

VM015

IIA – IID

CH015

OIA –
OID

IJE –
IJH

OIE –
OIH

IJE –
IJH

OJA – OJD

OJE – OJH

OJA – OJD

OJE –  OJH

OJA – OJD

OJE –  OJH

OJA – OJD

OJE – OJH

OJA – OJD

OJE –  OJH

OJA – OJD

OJE –  OJH

OJA – OJD

OJE –  OJH

Common Memory Data to Vector Paths 1 and 2 Odd Elements

Path 1

Path 2

Figure 41.  Memory Data to Vectors (Odd Elements)
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NOTES: The top option number represents pipe 0. 
The bottom number represents pipe 1.

Figure 42.  Vector Register Decode Bit Fanout (Pipe 0 and 1 Path 1 Only)
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NOTES: The top option number represents pipe 0. 
The bottom number represents pipe 1.

Figure 43.  Vector Register Decode Bit Fanout (Pipe 0 and 1 Path 2 Only)



Vector RegistersCPU

75Cray Research ProprietaryHTM-003-A

VR000
VR008 ICA –

ICD

IEA –
IED

OAA –
OAD

OAE –
OAH

ICA –
ICD

IEA –
IED

OAI –
OAL

OAM –
OAP

ICA –
ICD

IEA –
IED

OBA –
OBD

OBE –
OBH

ICA –
ICD

IEA –
IED

OBI –
OBL

OBM 
OBP

ICA –
ICD

IEA –
IED

OCA –
OCD

OCE –
OCH

ICA –
ICD

IEA –
IED

OCI –
OCL

OCM –
OCP

ICA –
ICD

IEA –
IED

ODA –
ODD

ODE –
ODH

ICA –
ICD

IEA –
IED

ODI –
ODL

ODM –
ODP

Vector 0

VR001
VR009

Vector 1

VR002
VR010

Vector 2

VR003
VR012

Vector 3

VR000/8

   Bits 0 – 3

   Bits 4 – 7

  Bits 8 – 11

 Bits 12 – 15

 Bits 16 – 19

 Bits 20 – 23

 Bits 24 – 27

 Bits 28 – 31

 Bits 32 – 35

 Bits 36 – 39

 Bits 40 – 43

 Bits 48 – 51

 Bits 52 – 55

 Bits 56 – 59

 Bits 60 – 63

 Bits 44 – 47

VM000/8

IEA –
IED

VM000/8

VR001/9

VM001/9

VM001/9

VR002/10

VM002/10

VM002/10

VR003/11

VM003/11

VM003/11

VR004/12

VM004/12

VM004/12

VR005/13

VM005/13

VM005/13

VR006/14

VM006/14

VM006/14

VR007/15

VM007/15

VM007/15

IEA –
IED

IEA –
IED

IEA –
IED

IEA –
IED

IEA –
IED

IEA –
IED

IEA –
IED

ICE –
ICH

OAA –
OAD

OAE –
OAH

OAI –
OAL

OAM –
OAP

OBA –
OBD

OBE –
OBH

OBI –
OBL

OBM 
OBP

OCA –
OCD

OCE –
OCH

OCI –
OCL

OCM –
OCP

ODA –
ODD

ODE –
ODH

ODI –
ODL

ODM –
ODP

VR000/8

   Bits 0 – 3

   Bits 4 – 7

  Bits 8 – 11

 Bits 12 – 15

 Bits 16 – 19

 Bits 20 – 23

 Bits 24 – 27

 Bits 28 – 31

 Bits 32 – 35

 Bits 36 – 39

 Bits 40 – 43

 Bits 48 – 51

 Bits 52 – 55

 Bits 56 – 59

 Bits 60 – 63

 Bits 44 – 47

VM000/8

IEE 
IEH

VM000/8

VR001/9

VM001/9

VM001/9

VR002/10

VM002/10

VM002/10

VR003/11

VM003/11

VM003/11

VR004/12

VM004/12

VM004/12

VR005/13

VM005/13

VM005/13

VR006/14

VM006/14

VM006/14

VR007/15

VM007/15

VM007/15

IEE 
IEH

ICE –
ICH

IEE 
IEH

IEE 
IEH

ICE –
ICH

IEE 
IEH

IEE 
IEH

ICE –
ICH

IEE 
IEH

IEE 
IEH

ICE –
ICH

IEE 
IEH

IEE 
IEH

ICE –
ICH

IEE 
IEH

IEE 
IEH

ICE –
ICH

IEE 
IEH

IEE 
IEH

ICE –
ICH

IEE 
IEH

IEE 
IEH

ICI
ICL

OAA –
OAD

OAE –
OAH

OAI –
OAL

OAM –
OAP

OBA –
OBD

OBE –
OBH

OBI –
OBL

OBM 
OBP

OCA –
OCD

OCE –
OCH

OCI –
OCL

OCM –
OCP

ODA –
ODD

ODE –
ODH

ODI –
ODL

ODM –
ODP

VR000/8

   Bits 0 – 3

   Bits 4 – 7

  Bits 8 – 11

 Bits 12 – 15

 Bits 16 – 19

 Bits 20 – 23

 Bits 24 – 27

 Bits 28 – 31

 Bits 32 – 35

 Bits 36 – 39

 Bits 40 – 43

 Bits 48 – 51

 Bits 52 – 55

 Bits 56 – 59

 Bits 60 – 63

 Bits 44 – 47

VM000/8

IEI 
IEL

VM000/8

VR001/9

VM001/9

VM001/9

VR002/10

VM002/10

VM002/10

VR003/11

VM003/11

VM003/11

VR004/12

VM004/12

VM004/12

VR005/13

VM005/13

VM005/13

VR006/14

VM006/14

VM006/14

VR007/15

VM007/15

VM007/15

IEI 
IEL

ICI
ICL

IEI 
IEL

IEI 
IEL

ICI
ICL

IEI 
IEL

IEI 
IEL

ICI
ICL

IEI 
IEL

IEI 
IEL

ICI
ICL

IEI 
IEL

IEI 
IEL

ICI
ICL

IEI 
IEL

IEI 
IEL

ICI
ICL

IEI 
IEL

IEI 
IEL

ICI
ICL

IEI 
IEL

IEI 
IEL

ICM
ICP

OAA –
OAD

OAE –
OAH

OAI –
OAL

OAM –
OAP

OBA –
OBD

OBE –
OBH

OBI –
OBL

OBM 
OBP

OCA –
OCD

OCE –
OCH

OCI –
OCL

OCM –
OCP

ODA –
ODD

ODE –
ODH

ODI –
ODL

ODM –
ODP

VR000/8

   Bits 0 – 3

   Bits 4 – 7

  Bits 8 – 11

 Bits 12 – 15

 Bits 16 – 19

 Bits 20 – 23

 Bits 24 – 27

 Bits 28 – 31

 Bits 32 – 35

 Bits 36 – 39

 Bits 40 – 43

 Bits 48 – 51

 Bits 52 – 55

 Bits 56 – 59

 Bits 60 – 63

 Bits 44 – 47

VM000/8

IEM
IEP

VM000/8

VR001/9

VM001/9

VM001/9

VR002/10

VM002/10

VM002/10

VR003/11

VM003/11

VM003/11

VR004/12

VM004/12

VM004/12

VR005/13

VM005/13

VM005/13

VR006/14

VM006/14

VM006/14

VR007/15

VM007/15

VM007/15

IEM
IEP

ICM
ICP

IEM
IEP

IEM
IEP

ICM
ICP

IEM
IEP

IEM
IEP

ICM
ICP

IEM
IEP

IEM
IEP

ICM
ICP

IEM
IEP

IEM
IEP

ICM
ICP

IEM
IEP

IEM
IEP

ICM
ICP

IEM
IEP

IEM
IEP

ICM
ICP

IEM
IEP

IEM
IEP

Figure 44.  Vectors 0 through 3 Pipe 0/1 Read Data Path
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Figure 45.  Vectors 4 through 7 Pipe 0/1 Read Data Path
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Figure 46.  Vectors 0 through 3 Pipe 0/1 Write Data Path
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Figure 47.  Vectors 4 through 7 Pipe 0/1 Write Data Path
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VECTOR LOGICAL

Refer to Figure 48 for a vector logical block diagram.  There are two
vector logical units in a CRAY T90 series system; each unit operates
independently.  These functional units reside on 16 VM options.  VM000
through VM007 handle pipe 0 (the even elements), and VM008 through
VM015 handle pipe 1 (the odd elements).  Each VM option operates on a
4-bit slice of all eight vector registers.

The vector logical units receive data from the VR options and send the
results back to the vector registers.  The second vector logical unit is
enabled by setting mode bit 2 (ESL) in the mode field of the exchange
package.  When both logical units are enabled, data is first processed in
the second unit.  This is done because only the first unit can process the
146 and 147 (vector merge) instructions.  For example, if a 140 instruction
(logical product) issues, the second unit processes the instruction in case a
146 or 147 issues next.  If the first unit processed the 140 instruction, it
would be busy and the 146 instruction would have to hold issue.

The vector logical unit performs the logical product (AND), logical sum
(OR), and logical difference [XOR (exclusive OR)] functions using either
scalar or vector registers.
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Figure 48.  Vector Logical Block Diagram
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Vector Logical Instructions

Refer to Table 15 for a list of the vector logical instructions.

Table 15.  Vector Logical Instructions 

Instruction CAL Description

140ijk Vi Sj&Vk Transmit logical product of (Sj) and (Vk elements) to Vi
elements

141ijk Vi Vj&Vk Transmit logical product of (Vj elements) and (Vk elements)
to Vi elements

142ijk Vi Sj!Vk Transmit logical sum of (Sj) and (Vk elements) to Vi
elements

143ijk Vi Vj!Vk Transmit logical sum of (Vj elements) and (Vk elements) to
Vi elements

144ijk Vi Sj\Vk Transmit logical differences of (Sj) and (Vk elements) to Vi
elements

145ijk Vi Vj\Vk Transmit logical differences of (Vj elements) and (Vk
elements) to Vi elements

Vector Merge

The 146 and 147 instructions merge the contents of the registers using the
vector mask register for control.  The 146 instruction merges the contents
of Sj with the contents of Vk; the 147 instruction merges the contents of
Vj and Vk.  If the vector mask bit is a 1, the Vj or Sj data is used; if the
vector mask bit is a 0, the Vk data is used.

The vector logical functional unit holds a copy of the S-register value.
Therefore, a subsequent instruction can change the S-register value and
not affect the results.  These instructions are confined to the second logical
unit.  Refer to Table 16 for the vector merge instructions, and refer to
Figure 49 for an example of a vector merge operation.



Vector Logical CPU

96 Cray Research Proprietary HTM-003-A

Table 16.  Vector Merge Instructions 

Instruction CAL Description

146ijk Vi Sj!Vk&VM Merge (Sj) and (Vk elements) to Vi elements using (VM) as
mask

146i0k Vi #VM&Vk Merge 0 and (Vk elements) to Vi elements using (VM) as
mask

147ijk Vi Vj!Vk&VM Merge (Vj elements) and (Vk elements) to Vi elements
using (VM) as mask
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Figure 49.  Vector Merge Operation
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Vector Mask

There are two vector mask registers:  VM0 and VM1.  Each register is 64
bits wide, and the two registers are aligned to create a 128-bit register.
Each bit in the register corresponds to an element in a vector register.
The vector mask register stores the results of a test condition of an
element in a vector.  For example, a bit can be set in the mask register for
all elements in the test vector that are positive values.

The vector mask register receives data from the scalar registers or from
the result of comparing a condition within the elements of a vector.  The
vector mask register is arranged so that mask bit 127 corresponds to
element 0 of the vector.

Refer to Table 17 and Table 18 for a list of the vector mask and vector
mask test operations, respectively.  Refer also to Figure 50 for an
illustration of the 1750j0 instructions.

Table 17.  Vector Mask Operations 

Instruction CAL Description

0030j0 VM0 Sj Transmit (Sj) to VM0

0030j1 VM1 Sj Transmit (Sj) to VM1

*0030j2 VM0 Aj Transmit (Aj) to VM0

*0030j3 VM1 Aj Transmit (Aj) to VM1

070ij1 Vi CI,Sj&VM Transmit compressed index of (Sj) controlled by (VM) to Vi

073i00 Si VM0 Transmit (VM0) to Si

073i10 Si VM1 Transmit (VM1) to Si

*073i20 Ai VM0 Transmit (VM0) to Ai

*073i30 Ai VM1 Transmit (VM1) to Ai

* These instructions must be preceded by a 005400 (EIS) instruction.
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Table 18.  Vector Mask Test Operations 

Instruction CAL Description

1750j0 VM Vj,Z Set VM bit if (Vj element) = 0

1750j1 VM Vj,N Set VM bit if (Vj element) �0

1750j2 VM Vj,P Set VM bit if (Vj element)�0

1750j3 VM Vj,M Set VM bit if (Vj element) �0

175ij4 Vi,VM Vj,Z Set VM bit if (Vj element) = 0 and store compressed
indices of Vj elements = 0 in Vi

175ij5 Vi,VM Vj,N Set VM bit if (Vj element) �0 and store compressed
indices of Vj elements � 0 in Vi

175ij6 Vi,VM Vj,P Set VM bit if (Vj element) �0 and store compressed
indices of Vj elements � 0 in Vi

175ij7 Vi,VM Vj,M Set VM bit if (Vj element) � 0 and store compressed
indices of Vj elements � 0 in Vi

Element 0

Element 1

Element 2

Element 3

Element 4

Vector Mask Register  (SS)

Compare  VF

Vector Register (Vj)  (VR/VM) Test Vj = 0

1750j0  Set VM bit if Vj element = 0

00000000000000000

00000001110000001

1111111111111111111

00000000000000000

1111111111111000000

Bit 127

Bit 126

Bit 125

Bit 124

Bit 123

Bit 122

0

1

0

1

0

0

Bit 00

VL = 5

Figure 50.  1750j0 Instructions
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Figure 51 illustrates the function of the 175ij4 instructions that use the
vector mask to create a compressed vector.

Element 0

Element 1

Element 2

175ij4   Set VM bit if Vj element = 0 and store compressed indices of Vj elements = 0 in Vi

0 0

0

0

1

0

Vj Elements (VR/VM)

Test

Vj = 0

VL = 5

VM Reg 
(SS)

Index
Address (VF) Vi Elements (VM/VR)

0

2

Element 0

Element 1

127

126

125

124

 0 177

Element 23

Element 3

Element 4

0 0

0 0

1

1

Element 3

Element 4

4

VF

Unchanged

1

0

1

0

1

2

3

Bits

Figure 51.  Function of the 175ij4 Instructions

Compressed Iota

The Iota function is performed on the RA, RB, and RC options; these
options also make up the floating-point reciprocal approximation unit and
the vector pop functional unit.  Table 19 lists the instruction used in iota
operations, and Figure 52 is a block diagram of iota pipe 0.

Table 19.  Iota Instruction

Instruction CAL Description

070ij1 Vi CI,Sj&VM Transmit compressed index of (Sj) controlled by (VM) to Vi

The 070ij1 instruction forms multiples of the contents of register Sj
starting with 0 (0, Sj, 2 x Sj, 3 x Sj, and so on).  It stores multiples
corresponding to each 1 bit set in the vector mask register in successive
elements of register Vi (beginning at element 0).  The instruction stops
when all unused bits of the vector mask are 0 or are used.
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RA000

RB000

RC000

IQA – 
IQO

Vi Iota 0 – 14

OFA –
OFO

OP–

IMC

OBA – 
OBQ

OEA – 
OEO Vi Bits 0 – 14 Results

Go Iota Pipe 0

OPA

IMA IQA

Select Iota, Gate A, Hold A, Gate Iota

Sj Bits 0 – 15

Sj Bits 16 – 26

IME

OPI

Gate Iota Pipe 0

ODA – 
ODL

Shared Iota Vi
Bits 15 – 26

IDA – 
IDL

IMA

IMC, IME, IMI, IMK

OPA Sj Bit 26 Relay

IQA – 
IQP

IRA – 
IRK Sj Bits 27 – 42

IRA – 
IRP

Sj Bits 43 – 46
ISA – 
ISD

Sj Bits
48 – 63 IDA – IDP

Sj Bit 47 ICP

Vi Bits 15 – 40
Results

Vi Bits 41 – 46
Results

ONA –
ONC

OAA – 
OAZ

OBA – 
OBF

Carries/Enables 
to RA

OOA,
OOC,
ONA

Carries/Enables 
to RC/RA

Vi Bits 47 – 63 Results

INA, INC,
INE, ING

IPA, IPB
IPH
IOA, IOB

Figure 52.  Iota Pipe 0

Figure 53 on page 102 illustrates the function of the 070ij1 instructions
that use the vector mask to create a compressed vector.

RA Option

The RA option generates the iota results for bits 47 through 63.  It
receives iota result bits 0 through 14 from the RB option and outputs bits 0
through 14, and 47 through 63 to the result vector.  The RA000 option also
generates the control for the iota function for both pipes.
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070ij1  Transmit compressed index of (Sj) controlled by (VM) to Vi

Vi Elements (VM/VR)

0

6

Element 0

Element 1

Element 28

Element 3

Element 4

Sj 0 2

Vector Mask (SS)

1 0 0 1 1 1 0 1 0 0 0

Functional
Unit

10

14

2 x 0
2 x 3
2 x 4
2 x 5
2 x 7

Sj x VM Bit

Figure 53.  Function of the 070ij1 Instructions

RB Option

The RB option generates the iota result for bits 0 through 26.  Bits 0
through 14 are sent to the RA option, and bits 15 through 26 are sent to
the RC option.

The RB option receives two control signals:  Select Iota0 and Gate Iota.
Select Iota0 selects the correct iota results from Iota0/Iota1; Gate Iota
multiplexes (muxes) the iota results to the RA and RC options.

RC Option

The RC option receives bits 15 through 26 from the RB option and
generates result bits 27 through 46 to be sent to the result vectors.

The RC option receives four control signals from the RA option:  Select
Iota0, Hold A , Gate A, and Gate Iota.  Select Iota0 selects from
Iota0/Iota1 the correct iota results.  Hold A  and Gate A control the
first-in-first-out (FIFO) buffers, and Gate Iota disables
reciprocal/pop/parity/leading zero and enables iota results to be sent to the
result vectors.
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VECTOR ADD

Refer to Figure 54 for a block diagram of vector add.  The vector add
functional unit is located on the VM and VF options.  The VM options
perform the actual addition of the input operands and then pass the group
carries and group enables to the VF for summation.  These bit toggles are
then returned to the VM option for final summation.  The functional unit
uses two’s complement arithmetic and does not detect any overflow
conditions.

Refer to Table 20 for a list of the vector add instructions and to Figure 54
for a vector add block diagram.

Table 20.  Vector Add Instructions

Instruction CAL Description

154ijk Vi Sj+Vk Transmit integer sum of (Sj) and (Vk elements) to Vi elements

155ijk Vi Vj+Vk Transmit integer sum of (Vj elements) and (Vk elements) to 
Vi elements

156ijk Vi Sj–Vk Transmit integer difference of (Sj) and (Vk elements) to Vi 
elements

156i0k Vi –Vk Transmit two’s complement of (Vk elements) to Vi elements

157ijk Vi Vj–Vk Transmit integer difference of (Vj elements) and (Vk elements)
to Vi elements

The 154 and 156 instructions use the Sj register as the second operand.
The VM option holds a copy of the S register so if a subsequent
instruction wants to use Sj, that instruction can be changed without
affecting the vector instruction.
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VM000 Bits 0 – 7
OWA

OWC
  Carry

Enable

ILA

ILA

IMA

IMA

VF000

VF001

VM001  Bits 8 – 15
OWA

OWC
Carry

 Enable

ILB

ILB

IMB

IMB

VF000

VF001

VM002 Bits 16 – 23
OWA

OWC
Carry

 Enable

ILC

ILC

IMC

IMC

VF000

VF001

VM003 Bits 24 – 31
OWA

OWC
Carry

Enable

ILD

ILD

IMD

IMD

VF000

VF001

VF000

INA

INA

INA

INA

OIA

OIB

OIC

OID

Adder Bit Toggles

Adder Bit Toggles

Adder Bit Toggles

Adder Bit Toggles

Vector Data

Vector Data

Vector Data

Vector Data(VR000
VR007)

Result Data to Vectors

Result Data to Vectors

Result Data to Vectors

Result Data to Vectors

Summation

Adder

VM004 Bits 32 – 39
OWA

OWC

Carry

 Enable

ILE

ILE

IME

IME

VF000

VF001

VM005 Bits 40 – 47
OWA

OWC

Carry

 Enable

ILF

ILF

IMF

IMF

VF000

VF001

VM006 Bits 48 – 55
OWA

OWC

Carry

 Enable

ILG

ILG

IMG

IMG

VF000

VF001

VM007 Bits 56 – 63

Carry

Enable

VF001

INA

INA

INA

INA

OIA

OIB

OIC

OID

Adder Bit Toggles

Adder Bit Toggles

Adder Bit Toggles

Adder Bit Toggles

Vector Data

Vector Data

Vector Data

Vector Data(VR000
VR007)

Result Data to Vectors

Result Data to Vectors

Result Data to Vectors

Result Data to Vectors

Summation

Adder

(VR000
VR007)

(VR000
VR007)

(VR000
VR007)

(VR000
VR007)

(VR000
VR007)

(VR000
VR007)

Figure 54.  Vector Add Block Diagram
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VECTOR SHIFT

The vector shift functional unit is contained within the VS option.  Vector
shift is a dual-pipe functional unit; it accepts a pair of elements and
generates a pair of results.  If the vector length is odd, the last operand
generates a single result.  There is only one VS option used per CPU.

The vector shift functional unit is also responsible for vector transfer
operations.  For example, it moves the contents of one vector register to
another vector register; then the functional unit uses the Ak value as a
starting element number for the block move.

This unit also performs the vector compress and expand operations.  The
compress operation writes the elements of Vj to Vi if a corresponding bit
in the vector mask register sets.  The expand operation reads the elements
of Vj to Vi if a corresponding bit in the vector mask register sets.  These
operations are illustrated later in this section.

The 150 to 153 instructions use Ak as the shift count.  The 150 to 151
instructions, when preceded by a 005400 (EIS) instruction, use V0 for the
shift count.  In either case, if bit 7 or above is set, the result is 0’s.

Vector Shift Instructions

Refer to Table 21 for a list of the vector shift instructions.

Table 21.  Vector Shift Instructions 

Instruction CAL Description

150ijk Vi Vj<Ak Shift (Vj elements) left (Ak) places to Vi elements

*150ij0 Vi Vj<V0 Shift (Vj elements) left (V0 elements) places to Vi elements

151ijk Vi Vj>Ak Shift (Vj elements) right (Ak) places to Vi elements

*151ij0 Vi Vj>V0 Shift (Vj elements) right (V0 elements) places to Vi elements

152ijk Vi Vj,Vj<Ak Double shift (Vj elements) left (Ak) places to Vi elements

*152ijk Vi Vj,Ak Transfer (Vj elements) starting at element (Ak) to Vi elements

153ijk Vi Vj,Vj>Ak Double shift (Vj elements) right (Ak) places to Vi elements

* These instructions must be preceded by a 005400 (EIS) instruction.
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Table 21.  Vector Shift Instructions (continued)

Instruction DescriptionCAL

*153ij0 Vi Vj,{VM] Compress Vj by (VM) to Vi

*153ij1 Vi,[VM] Vj Expand Vj by (VM) to Vi

* These instructions must be preceded by a 005400 (EIS) instruction.

Vector Shift Count Description

The Ak shift count is sent to the VS option by the AR000 option, and all
eight A series options check the value of the 64-bit A register.  This
determines if any bits above bit 6 have been set.  If any bits have been set,
the result is lost due to overshift.  If no overflow is detected, a No Ak
Overflow signal is sent from the SS to the VS.  AR000 sends bits 0
through 6 for the shift count.

To understand this, the breakdown of the shift count must be examined.
For both single and double shifts, the breakdown is the same, except for
the fact that the double shift has 1 extra bit (bit 6).  Refer to Figure 55 for
a breakdown of the shift count and to Figure 56 for a block diagram of
vector shift.

Double
Shift
Only
6
64

5
32

4
16

3
8

2
4

1
2

0
1

Bit Position
Shift Value

Figure 55.  Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.  The maximum shift count that could be generated is 12710
or 1778.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count.  Also,
a shift of 0 generates a maximum shift of 1778 places; this
zeroes out the result register.
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VF003

VS000

VM/VR

SS000

VR000

VR008

VF001

BT000

VA000

IAA, IDP

IEA, IHP

IIA, IIG

IIM

IMM

ILA, ILH

IKA, IKH

INC

ILM

IKM

INM

IMC

IME

INB

OHA, OHG

OHH

OID

OMA, OMH

OMA, OMH

ONB
IND

OMI

ONB

INA

OMI

OQB

OSG

ORA

Ak Shift Count 0 – 6

No Ak  Overflow

Vector Mask Bit = 1  (Even)

Vector Mask Bit = 1  (Odd)

Vector Shift Count (V0) Pipe 1

Vector Shift Count (V0) Pipe 0

V0 Overflow

V0  Overflow

Pipe 0 Valid

Pipe 1 Valid

End Vector Shift or k0 Field

EIS Bit

Go Vector Shift

Vector Shift Data Pipe 0

Vector Shift Data Pipe 1
Vector Shift Result Data Pipe 0

Vector Shift Result Data Pipe 1

OAA, ODP

OEA, OHP

OMA VA000INE

VA001

INEOMB

OMC

INF

INF

End Vector Shift

Shift Result Valid Pipe 0

Shift Result Valid Pipe 1

VM/VR

OIE IMN

Figure 56.  Vector Shift Block Diagram
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If the jk field of a left single shift equals 278 and bits 4, 2, 1, and 0 are set,
the shift values are 16, 4, 2, and 1, respectively.  The sum of the shift
values is 23 (16 + 4 + 2 + 1); therefore, the instruction shifts left 2310
places.

The actual hardware that performs the shifts is the same for both left and
right shifts.  However, the hardware performs only left shifts.  Right shifts
are accomplished according to the way data is entered into the shifter,
hence the use of two’s complement for right shifts.

The vector shift unit also receives a shift count from V0 when performing
the 150 and 151 EIS instructions.  The shift count is sent to the VS option
from VR0 for pipe 0 and from VR8 for pipe 1.

Vector Right Shift 005400 151 ij0

Refer to Figure 57 for an example of a vector right shift using V0 for the
shift count.  Note that the shift count for element 0 is 0; this results in an
end-off shift for that element.  This instruction must be preceded by the
054100 instruction in order to function as illustrated.  This process
continues for vector length.

Element 0

Element 1

Element 2

1 0

0

0

10

100

Vj Elements (VR/VM) Pipe 0/1

VL = 5

Vi Elements (VM/VR) Pipe 0/1

Element 0

Element 1

Element 2

Element 3

Element 4

0 1000

0 10000

Element 3

Element 4

0 0

0

0

1

1

0 1

Element 0

Element 1

Element 2

0 0

0

0 2

VL = 5

Element 3

Element 4

0

0

Vk Elements (VR/VM) Pipe 0/1

VS

1

3

4

0 1

V0 Shift Count

Vector Shift
Functional

Unit

Figure 57.  Vector Right Shift
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Vector Right Double Shift 153 ijk

Refer to Figure 58 for an example of a vector right double shift using Ak
for the shift count.  This instruction concatenates two successive elements
of register Vj and right shifts the lower 64 bits to Vi.  The first operation
combines element 0 with a word of all 0’s.  Element 0 becomes the lower
64 bits, and this value is then shifted right Ak places to Vi.

The next operation combines element 0 and element 1 of Vj, with element
1 being the least significant bits, and shifts this value right to Vi.  This
operation continues for vector length.  Note that the shift count for
element 0 is 0; this results in an end-off shift for that element.

Element 1

Element 3

Element 5

6 6

16

0

0

0

Vj Elements (VR/VM) Pipe 1

Element 7

Element 9

0 0

0 0

Element 0

Element 2

Element 4

0 17

1

0 0

Element 6

Element 8

0

0

Vk Elements (VR/VM) Pipe 0

VS

6

0

0

Vector Shift Functional Unit

Element 0

Element 0 Element 1

Element 1 Element 2

Element 2 Element 3

Element 3 Element 4

Word of 0’s

Element 0

Element 1

Element 2

0 1

166

15

0

0

Element 3

Element 4

156 0

0 0

Vi Elements (VR/VM) Pipe 0/1

VL = 3

Shift count from Ak

Figure 58.  Vector Right Double Shift
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Vector Transfer 005400 152 ijk

This instruction moves the contents of Vj to Vi starting with element Ak as
shown in Figure 59.  Note that this is an EIS instruction.

Element 0

Element 1

Element 2

1 0

0

0

10

100

Vj Elements (VR/VM) Pipe 0/1

VL = 5

Vi Elements (VM/VR) Pipe 0/1

Element 0

Element 1

Element 2

Element 3

Element 4

0 1000

0 10000

Element 3

Element 4

0 100

0

0

0

VS

0 0

Vector Shift
Functional

Unit

1000

10000

0

Ak = 2

Figure 59.  Vector Transfer

Vector Compress 005400 153 ij0

This instruction compresses a vector register using a vector mask and
transmits the results to Vi as shown in Figure 60.

Two element counters are initialized to 0, one for Vj and the other for Vi.
The vector mask is then scanned from right to left, and for every 1 bit set,
an element of Vj is written to Vi.  The element counters internal to the VS
option determine the element position within each register.

Element 0

Element 1

Element 2

0 0

0

0

10

100

Vj Elements (VR/VM) Pipe 0/1

VL = 5

Vi Elements (VM/VR) Pipe 0/1

Element 0

Element 1

Element 2

Element 3

Element 4

0 1000

0 10000

Element 3

Element 4

VS

0

Vector Shift
Functional

Unit

1000

10000

0

1 0 0 1 1 0

SS Vector Mask Register

0 0

0

0

0

0

Figure 60.  Vector Compress
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Vector Expand 005400 153 ij1

This instruction expands a vector register using a vector mask and
transmits the results to Vi as shown in Figure 61.

Two element counters are initialized to 0, one for Vj and the other for Vi.
The vector mask is then scanned from right to left, and for every 1 bit set,
an element of Vj is written to Vi.  The element counters internal to the VS
option determine the element position within each register.  In this
instruction, the element counter for Vj falls behind the counter for Vi by
one position for each 0 bit in the vector mask register.

Element 0

Element 1

Element 2

0 0

0

0

10

100

Vj Elements (VR/VM) Pipe 0/1

VL = 5

Vi Elements (VM/VR) Pipe 0/1

Element 0

Element 1

Element 2

Element 3

Element 4

0 1000

0 10000

Element 3

Element 4

VS

Vector Shift
Functional

Unit

1 0 0 1 1 0

SS Vector Mask Register

0

10

100

Unchanged

Unchanged

0

0

0

Figure 61.  Vector Expand
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VECTOR POP/ POP PARITY AND LEADING ZERO

The vector population/parity functional unit performs population counts
and parity for vector operations and executes instructions 174ij1 vector
population count and 174ij2 vector parity.

Refer to Figure 62 for a vector population/parity/leading zero block
diagram.  This functional unit shares logic with the floating-point
reciprocal approximation functional unit.  The k field of the instruction
determines the type of operation to be performed.

Because the vector population/parity functional unit shares logic with the
floating-point reciprocal approximation functional unit, all vector
operations reserve the associated functional unit.  The floating-point
reciprocal approximation functional unit is reserved when the vector
population/parity functional unit is reserved and vice versa.

Both scalar and vector register operations share the floating-point
reciprocal functional unit.  Therefore, when vector reciprocal or vector
population/parity instructions are executed, any scalar reciprocal
instruction holds issue until the vector operation is finished.

The 174ij1 instruction counts the number of 1 bits in each element of a
vector register specified by Vi.  Each element is counted individually, and
the result is stored in the respective element of Vi.  For example, the count
of 1 bits in element 0 of Vj is stored in element 0 of Vi; the count of 1 bits
in element 1 of Vj is stored in element 1 of Vi; and so on.  This process
continues for the number of elements equal to the VL.

The 174ij2 instruction counts the number of 1 bits in each element of a
vector register specified by Vj and stores a 1-bit parity result in a vector
register specified by Vi.  The 174ij2 instruction uses the same logic as the
174ij1 but outputs only bit 0 of the result.  Bits 1 through 6 are forced to
0’s.  This instruction determines whether an odd or even number of bits
are set in each element of a vector register.  If the result equals 0, there is
an even number of bits.  If the result equals 1, there is an odd number of
bits.
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Figure 62.  Vector Population/Parity/Leading Zero Block Diagram
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Pop/Parity/Leading Zero Functional Units

The RA options contain part of the reciprocal approximation unit; these
options also contain the logic for vector pop, vector pop parity, and vector
leading zero.  There are two RA options per CPU:  RA000 handles pipe 0,
or the even elements; and RA001 handles pipe 1, or the odd elements.

The RA options receive data from the VM and VR options; 4 bits come
from each VR and VM.  Data is sent on the same wires and terms that the
reciprocal data uses.  The data is then sent to VM000 and VM008 on the
same terms that the reciprocal output data uses.  Data is sent to only those
two options because the pop functional unit returns only a 7-bit value to
the result register.

Vector Population Count 174 ij1

Vector pop counts the number of bits set in an element and reports that
count to a result vector.  The count ranges anywhere from 0 (no bits in the
element set) to 100 (all bits in the element set).  The functional unit sends
only bits 0 through 6 to the result vector; the remaining bits are zeroed
out.

Vector Population/Parity 174 ij2

This instruction counts the number of bits set in each element of a vector
and then determines whether this number of bits is an even or an odd
number.  If the result is an even number of bits, a 0 is written to the result
vector.  If the number of bits is odd, a 1 is written to the result vector.
Only bit 0 is written to the result vector; the rest of the bits in the element
are set to 0’s.

Vector  Leading Zero Count 174 ij3

This instruction counts the number of 0’s that precede the first bit set in
each element of a vector.  The count will be from 0 (bit 63 of the element
set) to 100 (no bits in the element set).
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Vector Population/Parity Instructions

Refer to Table 22 for a list of the vector population/parity instructions.

Table 22.  Vector Population/Parity Instructions

Instruction CAL Description

174ij1 Vi PVj Population count (Vj) to Vi

174ij2 Vi QVj Parity of (Vj) to Vi

174ij3 Vi ZVj Transmit leading zero count of (Vj) to Vi
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GATHER/SCATTER INSTRUCTIONS

The 176i1k and 1771jk instructions transfer blocks of data between
common memory and the vector registers.  The 176 instruction invokes
the gather, or read function; the 177 instruction invokes the scatter, or
write function.  When the 176i1k instruction is preceded by a 005400
instruction parcel, it performs a double gather function, which utilizes the
dual-pipe capability of the computer system.  The contents of the vector
length (VL) register determine the number of words transferred.

Gather Instructions

The 176i1k instruction transfers data from common memory to the Vi
register.  Register A0 contains the initial (base) address; the Vk register
contains the address indices.

For each element transferred to Vi, the memory address is the sum of (A0)
and the corresponding element of register Vk.  For example, during a
176213 instruction, V2[0] is loaded from address (A0) + (V3[0]); V2[1] is
loaded from address (A0) + (V3[1]); etc.

The 005400 176ijk instruction performs the double gather operation.  Data
is transferred from common memory to Vi and Vj in two separate data
transfers that occur simultaneously.  The A0 register contains the base
address for the transfer to Vi.  The Ak register contains the base address
for the transfer to Vj.  The Vk register contains the address indices for
both transfers.

For each element transferred to Vi, the memory address is the sum of (A0)
and the corresponding element of Vk.  For example, during a 005400
176213 instruction, V2[0] is loaded from address (A0) + (V3[0]); V2[1] is
loaded from address (A0) + (V3[1]); etc.  Simultaneously, V1[0] is loaded
from address (A3) + (V3[0]); V1[1] is loaded from address (A3) +
(V3[1]); etc.
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Scatter Instructions

The 1771jk instruction transfers data from Vj to common memory.  The
A0 register contains the initial address.  Vk contains the address indices.

For each element transferred from register Vi, the memory address is the
sum of (A0) and the corresponding element of register Vk.  For example,
element 0 of Vi is stored to address (A0) + (Vk[0]); element 1 of Vi is
stored to address (A0) + (Vk[1]); etc.
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FLOATING-POINT ADD

Refer to Figure 63 for a block diagram of floating-point add.  The
floating-point add unit consists of two option types:  the FA and the FB
options.  Each pipe has one FA option and one FB option.  FA000 and
FB000 represent pipe 0, and FA001 and FB001 represent pipe 1.  The use
of dual pipes allows two floating-point add functions to occur at the same
time.  The even elements of the vector go to pipe 0; the odd elements go to
pipe 1.  This feature helps in troubleshooting; if you identify which
element is failing, you can identify which pipe and associated options are
failing.  For scalar floating-point add instructions, only pipe 0 is used.

The floating-point add unit must do several things to produce a result.
First, the exponents of the input operands must be compared to determine
which is larger.  Then, the coefficient of the smaller must be right shifted
until the exponents become equal.  When this is done, the coefficient is
then added.  If the sign bits are different, or if the sign bits are the same
and a subtract instruction is decoded, then a two’s complement addition is
performed.

Next, the results have to be normalized and the exponent adjusted.  The
results are then sent to the result registers (either scalar or vector
registers).  Finally, if the resulting exponent is greater than 600008 or less
than 177778, the results are checked for overflow and underflow
conditions.  If an overflow condition exists, the exponent is forced to
600008, the coefficient is left intact, and an error flag is set in the
exchange package.  If an underflow condition exists, the exponent and the
coefficient are forced to 0 and no flag is set.  The result coefficient is also
checked for a zero value.  If it is 0, both the result exponent and
coefficient are zeroed out.

The issuing of a 005400 extended instruction set (EIS) instruction just
before a floating-point add instruction enables the extended accuracy
mode.  This adds a rounding bit if all the necessary conditions are
satisfied.  This is accomplished with the use of sticky bits.  When the
operand of the smaller exponent number is right shifted to equalize the
exponents, the coefficient may be shifted more than 478 places, resulting 
in a coefficient of 0.  What actually takes place is the bits are shifted right
into another register as bit –1 to –15, as shown in Figure 64.  If any of
these bits set and EIS sets, a rounding bit is added to the result coefficient
at bit position 0.
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Exp j = Exp k 6 – 14 IMA – IMFOMA – OMC

Exp k > Exp j 6 – 14ONA – ONB

Exp j + 1 = Exp k 6 – 14 IOA – IODOOA – OOB

Exp j = Exp k + 1  6 – 14 IPA – IPDOPA – OPB

(AR, AS, AT, AU) Sj 0 – 53, 63 IAA – ICC

(AR, AS, AT, AU)
Sk 0 – 53, 63 IDA – IFC

(VM, VR) IGA – IIC

(VM, VR)
Vj 0 – 53, 63 IJA – IJC

IMWOCA Exponent Underflow

IXC – IXD
(AT)

h0 – h1 Field

IXA – IXB
(JA)

Go Scalar FA

IXE
(BT)

Go Vector FA

IXG
(BT)

EIS Mode

FA

FB

OAA – OBV

Si/Vi
Coefficient
Results

OAA – OAO Si/Vi Exponent

OAP Si/Vi Sign Bit

(AR, AS, AT, AU)
Sj 0 – 63 IAA – ICL

(AR, AS, AT, AU)
Sk 0 – 63 IDA – IFL

(VM, VR)
Sj Copy/Vj 0 – 63 IGA – IIL

(VM, VR)
Vk 0 – 63 IJA – ILL

IXC – IXD(AT) h0 – h1 Field

IXA – IXB
(JA)

Go Scalar FA

IXE
(BT)

Go Vector FA

IXF(VF) S0 Result/Valid

IXG(BT) EIS Mode

IXHFPE Mode

(JA)

j Exponent

k Exponent

Calculation
of Exponent

Coefficient  Add

Leading Zero Count

Coefficient
Adjustment

Exponent
Bits 0 – 5

Early Sign
Bit

Calculation

j Coefficient

k Coefficient

Adjusted
Exponent

INA – IND

Sj Copy/Vj 0 – 53, 63

(JA)

j Coefficient

k Coefficient

Figure 63.  Floating-point Add
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Exponent Coefficient

Bits 63 48 0 –35

Sign Bit

Sticky Bits

Figure 64.  Floating-point Add Sticky Bits

Floating-point Add Functional Unit Instructions

Refer to Table 23 for a list of the floating-point add functional unit
instructions.

Table 23.  Floating-point Add Functional Unit Instructions

Instruction CAL Description

062ijk Si Sj + FSk Scalar floating-point sum of (Sj) and (Sk) to Si

062i0k Si + FSk Transmit normalized (Sk) to Si

063ijk Si Sj – FSk Scalar floating-point difference of (Sj) minus (Sk) to Si

063i0k Si –FSk Transmit normalized negative of (Sk) to Si, normalize the
coefficient and toggle the sign bit

170ijk Vi Sj + FVk Vector floating-point sum of (Sj) and (Vk elements) to Vi

171ijk Vi Vj + FVk Vector floating-point sum of (Vi elements) and (Vk elements) to
Vi

172ijk Vi Sj – FVk Transmit normalized negatives of (Vk elements) to Vi,
normalize the coefficient and toggle the sign bit

173ijk Vi Vj – FVk Vector floating-point difference of (Vj elements) minus (Vk
elements) to Vi

Floating-point Format

Refer to Figure 65 for an illustration of floating-point format.  A number
is referred to as normalized if the upper bit of the coefficient (bit 47) is set.

Exponent Coefficient

Bits 63 48 0

Sign Bit

62

Figure 65.  Floating-point Format
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Floating-point Add Examples

Refer to the following subsections for some examples of floating-point
add.

Add  Instruction (Subtract Operation)

j  = 040002 140000 000000 000000 +   38
k = 140003 140000 000000 000000 + –68

 –38

Subtract Operation

Shift j 040003 060000 000000 000000

Retain k 040003 060000 000000 000000

Toggle k 140003 037777 177777 177777

Add 
coefficients 140003 117777 177777 177777

CBP (carry across binary point)

Retain exponent and sign of larger

Toggle result 140003 0600000 00000 000000

Normalize 140002 140000 000000 000000
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Subtract  Instruction (Add Operation)

j  = 040003 140000 000000 000000  68
k = 140002 140000 000000 000000 –  –38

118

Add Operation

J operand 040003 140000 000000 000000

Complement k 
sign bit 040002 140000 000000 000000

Retain j 040003 140000 000000 000000

Shift k 040003 060000 000000 000000

Add 
coefficients 040003 1.020000 000000 000000

CBP

040004 110000 000000 000000

Shift right to normalize; adjust exponents

Add  Instruction (Subtract Operation with Carry across Binary Point)

j  = 040004 004000 000000 000000 .48
k = 140003 140000 000000 000000 +  –6.08

 –5.48

Subtract Operation

Retain j 040004 004000 000000 000000

Shift k 140004 060000 000000 000000

Toggle j 040004 173777 177777 177777

140004 060000 000000 000000

Add 
coefficients 040004 1.053777 177777 177777

CBP
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Retain exponent and sign of larger

040004 053777 177777 177777

+1 End-around carry

Toggle sign bit 140004 054000 000000 000000

Normalize 140003 130000 000000 000000

Add  Instruction (Add Operation)

j  = 040003 140000 000000 000000 68
k = 040002 140000 000000 000000 +   38

118

Add Operation

Retain j 040003 140000 000000 000000

Shift k 040003 060000 000000 000000

Add
coefficients 040003 1.020000 000000 000000

040004 110000 000000 000000

CBP

Normalize result

FA Option

The FA option operates on the coefficient portion of the floating-point add
operation.  The FA does the actual addition of the j and k operands.  It also
determines from the sign bit and the instruction issued whether to perform
an add or subtract operation.

If the extended accuracy mode is set by an EIS instruction, a rounding bit
is inserted into the result coefficient if all the necessary conditions are
satisfied.

The FA option also uses the lower 6 bits of the exponent (48 through 53)
and control signals sent from the FB option to make the final
determination of the right shift, which aligns the coefficient.
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FB Option

The FB option operates on the exponent portion of the floating-point add
operation.  The FB also receives the coefficient bits so it can compute the
final exponent.

The FB option also does a calculation based on the state of the initial
operand as to the sign of the final results.  If the result sign bit can be
determined, a valid signal is sent and the sign bit is sent to the JA option.
This information can be used if the JA is processing a jump on a sign bit
instruction.  This calculation can be done only for a scalar floating-point
add instruction.

The FB option does the initial calculation to determine which exponent is
larger.  To detect the number of right shifts, the exponent is divided into
bits 0 through 5 and 6 through 14.  This way, the FA can start shifting
using bits 0 through 5, and the full shift count can be sent from the FB
option.  This is done by comparing the following five conditions:

• exponent j = exponent k
• exponent k > exponent j
• exponent j > exponent k
• exponent j + 1 = exponent k
• exponent k + 1 = exponent j

Determining Exponent Size

If  the upper bits are equal, the lower 6 bits determine the shift count of the
coefficient.

• j = k (14 – 6) and j > k (0 – 5) then right shift k by j – k (0 – 5)

• j  040012
k  040001   Right shift coefficient k by 12 – 1 = 11

  Increase k exponent by 11

• j = k (14 – 6) and k > j (0 – 5) then right shift j by k – j  (0 – 5)

• j  040001
k  040012   Right shift j coefficient by 12 – 1 = 11

  Increase k exponent by 11

If the upper bits (6 through 14) differ by 1, the lower bits can still be used
to determine the full shift count.
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• j = k + 1 (14 – 6); that is j > k (14 – 6) by 1 and j < k (0 – 5) then
right shift k by j – k (0 – 5)

• j    040100
k    040077 Right shift k coefficient by 1

Increase k exponent by 1

• j = k + 1 (14 – 6); that is j > k (14 – 6) by 1 and j > k (0 – 5) then
overshift occurs.

• j    040177
k    040076 Right shift k coefficient by 101 places 

(overshift)

• j + 1 = k (14 – 6); that is k > j (14 – 6) by 1 and k < j (0 – 5) then
right shift j by k–j (0–5)

• j    040077
k    040100 Right shift j coefficient by 1

Increase j exponent by 1

• j + 1 = k (14 – 6); that is k > j (14 – 6) by 1 and k > j (0 – 5) then
overshift will occur

• j    040000
k    040177 Right shift k coefficient by 177 places 

(overshift)

If the upper bits differ by more than 1, the lower bits can be ignored
because the effect is to zero out the coefficient of the smaller exponent.
This is why only the +1 case needs to be determined for the upper bits.

• j    040200
k    040077 Right shift k coefficient by 177

Increase k exponent by 177

Refer to Figure 66 for a floating-point add flowchart.
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Operands
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No
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Right shift j
coefficient(FA, FB)

Add
Coefficient(FA)

Carry
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(FA)
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Left shift
coefficient for
normalization

(FA)
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End-around
carry/carry in
lower

(FA)
Complement
result(FA)

Toggle k
coefficient(FA)

Toggle j
coefficient(FA)

Normalize
result(FA)

Toggle sign
bit(FA)

Decrease
exponent for
normalization

(FB)

Sign bit of j = k • add instruction = add operation

Sign bit of j ≠ k • add instruction = subtract operation

Sign bit of j = k • subtract instruction = subtract operation

Sign bit of j ≠ k • subtract instruction = add operation

Subtract operation

To result
register

NOTE:

Result
coefficient = 0?
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underflow
zero result
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Yes
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Both options are involved in most aspects 
of this unit.  This diagram shows the option
that does most of the work.

Figure 66.  Floating-point Add Flowchart 
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FLOATING-POINT RECIPROCAL APPROXIMATION

Refer to the following subsections for information about floating-point
reciprocal approximation.

Floating-point Division Algorithm

A CRAY T90 series computer system does not have a single functional
unit dedicated to the division operation; rather, the floating-point multiply
and reciprocal approximation functional units together carry out the
algorithm.  The following paragraphs explain the algorithm and how it is
used in the functional units.

Finding the quotient of two floating-point numbers involves two steps, as
shown below in the example of finding the quotient A/B.

    Step Operation

       1 The B operand is sent through the reciprocal 
approximation functional unit to obtain its reciprocal, 
1/B.

       2 The result from Step 1 along with the A operand is 
sent to the floating-point multiply functional unit to 
obtain the product A x 1/B.

The reciprocal approximation functional unit uses an application of
Newton’s method for approximating the real root of an arbitrary equation,
F(x) = 0, to find reciprocals.

To find the reciprocal, the equation F(x) = 1/x – B = 0 must be solved.  To
do this, A must be found so that F(A) = 1/A – B = 0.  That is, the number
A is the root of the equation 1/x – B = 0.  The method requires an initial
approximation or guess (shown as x0 in Figure 67), sufficiently close to
the true root (shown as xt in Figure 67).  x0 is then used to obtain a better
approximation; this is done by drawing a tangent line (line 1 in Figure 67)
to the graph of y = F(x) at the point [x0, F(x0)].  The x-intercept of this
tangent line becomes the second approximation, x1.  This process is
repeated using tangent line 2 to obtain x2, and so on.
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y = F(x)

[x0, F(x0)]

[x1, F(x1)]
Tangent Line 1

Tangent Line 2

x2 x1 x0

y

x
xt

Figure 67.  Newton’s Method for Approximating Roots

The following iteration equation is derived from the above process:

x(i+1) = 2xi – xi
2B = xi (2 – xiB)

In the equation, x(i+1) is the next iteration, xi is the current iteration, and B
is the divisor.  Each x(i+1) is a better approximation than xi to the true
value, xt.  The exact answer is generally not obtained at once because the
correction term is not exact.  The operation is repeated until the answer
becomes sufficiently close for practical use.
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The mainframe uses this approximation technique based on Newton’s
method.  A hardware look-up table provides an initial guess, x0, which is
accurate to 8 bits.  The following iterations are then calculated.

Iteration Operation Description

      1 x1 = x0(2 – x0B) The first approximation is done
                                   in the reciprocal approximation
                                 functional unit and is accurate to
                                   16 bits.

      2 x2 = x1(2 – x1B) The second approximation is 
done in the reciprocal 
approximation functional unit 
and is accurate to 30 bits.

      3 x3 = x2(2 – x2B) The third approximation is done
             in the floating-point multiply functional 

unit to calculate the correction term.

The reciprocal approximation functional unit calculates the first two
iterations, while the floating-point multiply functional unit calculates the
third iteration.  The third iteration uses a special instruction within the
floating-point multiply functional unit to calculate the correction term.
This iteration is used to increase accuracy of the reciprocal approximation
functional unit’s answer to full precision (the floating-point multiply
functional unit can provide both full- and half-precision results).

The reciprocal iteration is designed for use once with each half-precision
reciprocal generated.  If the third iteration (the iteration performed by the
floating-point multiply functional unit) results in an exact reciprocal, or if
an exact reciprocal is generated by some other method, performing
another iteration results in an incorrect final reciprocal.  A fourth iteration
should not be done.
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An example of calculating the reciprocal of 2 is provided below.  Values
from the look-up table in Table 24 are used.

B = 2, start with 
A0 = 0.2

A1 = 2(0.2) – (0.2)22
= 2(0.491602) – (0.491602)2

2

= 0.4 – 0.08
= 0.983204 – 0.483345

= 0.32
= 0.499859

A2 = 2(0.32) – (0.32)22
= 2(0.499859) – (0.499859)2

2

= 0.64 – 0.2048
= 0.999718 – 0.499718

= 0.4352
= 0.50000

A3 = 2(0.4352) – (0.4352)2
2

= 2(0.5) – (0.5) 22

= 0.8704 – 0.378798
= 1.0 – 0.5

= 0.491602
= 0.5
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Table 24.  Reciprocal Approximation Values

B A0 A0
2 –2A0

1.000 0.776 0.774004 0.000
1.004 0.772 0.764044 0.010
1.010 0.766 0.754144 0.020
1.014 0.762 0.744304 0.030
1.020 0.756 0.734504 0.040
1.024 0.752 0.724744 0.050
1.030 0.750 0.721100 0.054
1.034 0.744 0.711420 0.064
1.040 0.740 0.702000 0.074
1.044 0.734 0.672420 0.104
1.050 0.732 0.666644 0.110
1.054 0.726 0.657344 0.120
1.060 0.722 0.650104 0.130
1.064 0.720 0.644400 0.134
1.070 0.714 0.635220 0.144
1.074 0.710 0.626100 0.154
1.100 0.706 0.622444 0.160
1.104 0.702 0.613404 0.170
1.110 0.700 0.610000 0.174
1.114 0.674 0.601020 0.204
1.120 0.672 0.575444 0.210
1.124 0.666 0.566544 0.220
1.130 0.664 0.563220 0.224
1.134 0.660 0.554400 0.234
1.140 0.656 0.551104 0.240
1.144 0.652 0.542344 0.250
1.150 0.650 0.537100 0.254
1.154 0.646 0.533644 0.260
1.160 0.642 0.525204 0.270
1.164 0.640 0.522000 0.274
1.170 0.636 0.516604 0.300
1.174 0.632 0.510244 0.310
1.200 0.630 0.505100 0.314
1.204 0.626 0.501744 0.320
1.210 0.624 0.476620 0.324
1.214 0.620 0.470400 0.334
1.220 0.616 0.465304 0.340
1.224 0.614 0.462220 0.344
1.230 0.612 0.457144 0.350
1.234 0.610 0.454100 0.354
1.240 0.604 0.446020 0.364
1.244 0.602 0.443004 0.370
1.250 0.600 0.440000 0.374
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Table 24.  Reciprocal Approximation Values

B –2A0A0
2A0

1.254 0.576 0.435004 0.400
1.260 0.574 0.432020 0.404
1.264 0.572 0.427044 0.410
1.270 0.570 0.424100 0.414
1.274 0.566 0.421144 0.420
1.300 0.564 0.416220 0.424
1.304 0.562 0.413304 0.430
1.310 0.560 0.410400 0.434
1.314 0.556 0.405504 0.440
1.320 0.554 0.402620 0.444
1.324 0.552 0.377744 0.450
1.330 0.550 0.375100 0.454
1.334 0.546 0.372244 0.460
1.340 0.544 0.367420 0.464
1.344 0.542 0.364604 0.470
1.350 0.540 0.362000 0.474
1.354 0.536 0.357204 0.500
1.360 0.534 0.354420 0.504
1.364 0.532 0.351644 0.510
1.370 0.530 0.347100 0.514
1.374 0.526 0.344344 0.520
1.400 0.524 0.341620 0.524
1.404 0.522 0.337104 0.530
1.410 0.520 0.334400 0.534
1.414 0.520 0.334400 0.534
1.420 0.516 0.331704 0.540
1.424 0.514 0.327220 0.544
1.430 0.512 0.324544 0.550
1.434 0.510 0.322100 0.554
1.440 0.506 0.317444 0.560
1.444 0.506 0.317444 0.560
1.450 0.504 0.315020 0.564
1.454 0.502 0.312404 0.570
1.460 0.500 0.310000 0.574
1.464 0.476 0.305404 0.600
1.470 0.476 0.305404 0.600
1.474 0.474 0.303020 0.604
1.500 0.472 0.300444 0.610
1.504 0.470 0.276100 0.614
1.510 0.470 0.276100 0.614
1.514 0.466 0.273544 0.620
1.520 0.464 0.271220 0.624
1.524 0.462 0.266704 0.630
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Table 24.  Reciprocal Approximation Values

B –2A0A0
2A0

1.530 0.462 0.266704 0.630
1.534 0.460 0.264400 0.634
1.540 0.456 0.262104 0.640
1.544 0.456 0.262104 0.640
1.550 0.454 0.257620 0.644
1.554 0.452 0.255344 0.650
1.560 0.452 0.255344 0.650
1.564 0.450 0.253100 0.654
1.570 0.446 0.250644 0.660
1.574 0.446 0.250644 0.660
1.600 0.444 0.246420 0.664
1.604 0.442 0.244204 0.670
1.610 0.442 0.244204 0.670
1.614 0.440 0.242000 0.674
1.620 0.436 0.237604 0.700
1.624 0.436 0.237604 0.700
1.630 0.434 0.235420 0.704
1.634 0.434 0.235420 0.704
1.640 0.432 0.233244 0.710
1.644 0.430 0.231100 0.714
1.650 0.430 0.231100 0.714
1.654 0.426 0.226744 0.720
1.660 0.426 0.226744 0.720
1.664 0.424 0.224620 0.724
1.670 0.422 0.222504 0.730
1.674 0.422 0.222504 0.730
1.700 0.420 0.220400 0.734
1.704 0.420 0.220400 0.734
1.710 0.416 0.216304 0.740
1.714 0.416 0.216304 0.740
1.720 0.414 0.214220 0.744
1.724 0.412 0.212144 0.750
1.730 0.412 0.212144 0.750
1.734 0.410 0.210100 0.754
1.740 0.410 0.210100 0.754
1.744 0.406 0.206044 0.760
1.750 0.406 0.206044 0.760
1.754 0.404 0.204020 0.764
1.760 0.404 0.204020 0.764
1.764 0.402 0.202004 0.770
1.770 0.402 0.202004 0.770
1.774 0.400 0.200000 0.774
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Handling of B Exponent

The following example shows how the floating-point reciprocal
approximation unit handles the B exponent:

  

B = 40000 + E 1XXXXX XXXXXX XXXXXX

 Exponent Coefficient

Value of B = 2E x 0.1XXX –––– X Normalize floating-point number

B = 2E–1 x 1.XXX –––– X Left shift by 1

Let b = 1.XXX –––– X

then B = 2E–1 x b

1
B
�

1
2E�1 � b

�
1

2E�1 �
1
b

Let n = E – 1

1
2n �

2�n

1
OR 1

2E�1 �
2�(E�1)

1
�

2�E�1

1

1
B
�

2�E�1

1
�

1
b

The following method is used in the CRAY T90 series system:

51132 Exponent

Perform 1’s complement 26645
1 Add one for normalization
1 Add one for two’s complement

26647
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Floating-point Reciprocal Approximation Instructions

Refer to Table 25 for a list of the floating-point reciprocal approximation
instructions.  Figure 68 is an illustration of the reciprocal approximation
functional unit.

Table 25.  Floating-point Reciprocal Approximation Instructions

Instruction CAL Description

070ij0 Si /HSj Floating-point reciprocal approximation of (Sj) to Si

174ij0 Vi /HVj Floating-point reciprocal approximation (Vj) to Vi

RA Option

One RA option is used; it is the first option in the reciprocal
approximation functional unit.  It performs all of the vector pop operations
as well as the exponent, floating-point range error, look-up table and first
iteration of the reciprocal function.  The RA receives and decodes the
control necessary to gate the data to the correct unit and generates the
control for the rest of the reciprocal approximation functional unit.

RB Option

One RB option is used; it is the second option in the reciprocal
approximation functional unit.  The RB option gets the A1 iteration data
from the RA option and performs the A12 function to send it to the RC
option final iteration pyramid.  The B2 operand data is also delayed on the
RB option before being sent to the RC.

When the A12 and the B2 data is available, the RB option generates the
jagged portion of the A2 pyramid.  After a couple of levels of adds, those
bits are sent to the RC option to be included in the rest of the pyramid.

RC Option

The RC option is the last option in the unit.  It performs the final iteration
of the reciprocal approximation function.  It receives the A12, A1, and B2
data from the RB option; forms the pyramid; and adds all the data to get
A2.  The outputs of the RC option are all forced to 0’s by the input control
during any operation of the vector pop unit.
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Figure 68.  Reciprocal Approximation Functional Unit
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Multiply Algorithm

The reciprocal approximation functional unit uses a recode multiply
algorithm known as Booth Recode algorithm.  It is used on several parts
of the various pyramids.  This algorithm was used instead of the standard
pyramid formations to save space on the options and make them easier to
route.
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FLOATING-POINT MULTIPLY

The scalar and vector registers share the floating-point multiply functional
unit.  Two floating-point operands are sent to the multiply functional unit
by either the scalar or the vector registers.  The signs of the two operands
are combined through an exclusive OR operation, the exponents are added
together, and the two 48-bit coefficients are multiplied.  Multiplying two
48-bit numbers produces a 96-bit result.  Because the result register (either
a scalar or a vector register) can hold only 48 bits in the coefficient, only
the upper 48 bits of the 96-bit result are kept.  The lower 48 bits are lost;
in fact, most are not generated.

The floating-point multiply functional unit also passes operands to the AM
option for the integer multiply operation.  Sj and Vk data are relayed
through the NA and NB options for use by the AM option during integer
multiply operations.  The floating-point multiply functional unit no longer
performs integer multiply.

The floating-point multiply functional unit can also be used to generate a
third iteration in conjunction with the reciprocal approximation functional
unit.  Generating the third iteration creates a full-precision coefficient,
utilizing all 48 bits of the coefficient.  The full-precision reciprocal
number can then be multiplied by the multiplier to finish the division.  If
full precision is not needed, then there is no need to generate a third
iteration.  Instead, the results from the reciprocal approximation functional
unit are multiplied by the multiplier using a multiply instruction.  The
following multiply instructions add 2 rounding bits and truncate the lower
19 bits of the coefficient:  065ijk, 162ijk, or 163ijk.

The floating-point multiply functional unit has the same range error
conditions as the floating-point add.  If an overflow condition exists, the
floating-point number has exceeded the limits of the computer system.
When an overflow condition occurs, the result register receives the
calculated coefficient with an exponent forced to 600008.  An overflow
condition also causes a flag to be set in the exchange package if the
interrupt on floating-point error mode bit is set.  An underflow condition
exists when the result exponent is equal to or less than 177778.  When an
underflow condition exists, both the final exponent and the coefficient are
forced to 0’s, but no flag sets in the exchange package.
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The floating-point multiply functional unit performs the 064ijk through
067ijk instructions for the scalar registers and performs the 160ijk through
167ijk instructions for the vector registers.  Because the multiply unit is
shared by both the scalar and vector registers, a functional unit reservation
must be checked before one of these instructions can issue.

The floating-point multiply unit is controlled by the mode bits, which are
taken from h field bits 1 and 0 for the 064ijk through 067ijk instructions,
or from h field bits 2 and 1 for the 160ijk through 167ijk instructions.  The
064ijk instruction, which is the scalar equivalent of the 160ijk and 161ijk
instructions for the vector registers, performs a floating-point multiply of
two scalar registers.

The 065ijk instruction, which is the equivalent of the 162ijk or 163ijk
instruction for vector registers, is used with the reciprocal approximation
functional unit to complete a divide sequence.  In other words, a 065ijk
instruction would be issued after a 070ijk instruction.  The 065ijk instruction
adds 2 bits into the final summation in bit positions 16 and 17.  These 2 bits
are called strong rounding bits because they have a major effect on the
answer.  When the final summation is completed, the 065ijk instruction also
causes the lower 19 bits to be truncated; the control term that enables this is
called strong round.

The 066ijk instruction, which is the equivalent of the 164ijk through
165ijk instruction for the vector register, is used only after the third
iteration has been completed within the floating-point multiply functional
unit.  The 066ijk instruction generates 2 weak rounding bits.  These 2 bits
are called weak rounding bits because they are added into the lower
portion of the summation, having only a minimal effect on the final
summation.

The 067ijk instruction, which is the equivalent of the 167ijk instruction for
the vector registers, forms part of the third iteration as follows.

The third iteration is equal to A3 = (2A2 – A2
2B).  The 067ijk instruction

solves for (–2 + A2 * B) by first multiplying A2 times B, and then adding
–2 to the product.  The –2 addition is accomplished by adding 1 to each
sum in bit position 0 through 46 during the summation of (A2 * B).  These
1 bits actually comprise 49 1 bits and are generated by the control terms,
which are decoded from a 067ijk or a 167ijk instruction.

The 067ijk instructions also complement or toggle their final result to
convert –A3 = (–2 + A2 * B) to A3 = (2 – A2 * B).  At this point, the
064ijk instruction completes the third iteration by multiplying A2 times
the result of the 067ijk instruction.  In other words, 
A2 * (2 – A2 * B) = (2A2 – A2

2B).  In conclusion, the 067ijk instruction,
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along with the 064ijk instruction, generates the third iteration equation 
A3 = (2A2 – A2

2B).

Divide Sequence

A divide sequence produces an answer accurate to 29 places.  The
instructions used to perform this divide sequence are shown below.  If an
answer accurate to 48 places is required, a software algorithm (shown
below) produces the desired results.

S6 = S1/S2

Accurate to 29 Bits:

#1 070320 S3 = 1/S2

#2 065613 S6 = S1 * FS3

Accurate to 48 Bits:

S6 = S1/S2

#1 070320 S3 = 1/S2

#2 067432 S4 = (2 – [S3*S2])

#3 064543 S5 = S4*S3

#4 066651 S6 = S5*S1

#1 A1 = 2A0 – A0
2B First Iteration

A2 = 2A1 – A1
2B Second Iteration
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#2 S4 = (2 – (A2*B)) Third Iteration

#3 A3 = A2(2 – (A2*B))

            or

A3 = 2A2 – A2
2B

#4 S6 = A3*S1 Third Iteration * S1

Floating-point Multiply Functional Unit Instructions

Refer to Table 26 for a list of the floating-point multiply functional unit
instructions.

Table 26.  Floating-point Multiply Functional Unit Instructions

Instruction CAL Description

064ijk SiSj*FSk Scalar floating-point product of (Sj) times (Sk) to (Si)

065ijk SiSj*HSk Scalar floating-point product, half precision, (Sj) times (Sk) to
(Si)

066ijk SiSj*RSk Scalar floating-point product, full precision, (Sj) times (Sk) to
(Si)

067ijk SiSj*ISk Scalar floating-point product, 2 minus the product of (Sj) times
(Sk) to (Si)

160ijk ViSj*FVk Vector floating-point product (Sj) times (Vk elements) to Vi

161ijk ViVj *FVk Vector floating-point product (Vj elements) times (elements) to
Vi

162ijk ViSj*HVk Half precision, (Sj) times (Vk elements) to Vi

163ijk ViVj*HVk Half precision, (Vj elements) times (Vk elements) to Vi

164ijk ViSj*RVk Full precision, (Sj) times (Vk elements) to Vi

165ijk ViVj*RVk Full precision, (Vj elements) times (Vk elements) to Vi

167ijk ViVj*Vk Iteration, two minus (Vj elements) times (Vk elements) to Vi
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Because this is a dual-pipe functional unit, there are two options.  The
even elements are processed by pipe 0, which is option number 000; and
the odd elements are processed by pipe 1, which is option number 001.

NA Option

The NA option forms the upper right portion of the pyramid.  The
pyramid is 24 bits deep from sum bits 40 to 65.  It is generated from j
operand bits 17 through 47, and k operand bits 0 through 41.  The scalar
j/k and vector j/k operands are multiplexed (muxed) before the pyramid is
formed.

The NA option relays a copy of Sj bits 40 through 47 and Vk bits 0
through 41 to the AM option for the 166 instruction (integer multiply).

NB Option

The NB option forms the lower right portion of the pyramid.  The pyramid
increments from 17 bits deep at sum bit 40, to 24 bits deep at sum bit 47,
and then tapers down to 6 bits deep at sum bit 65.  It remains at 9 bits
from sum bit 65 to sum bit 78.

It is generated from j operand bits 0 through 39 and k operand bits 24
through 47.  The scalar j/k and vector j/k operands are muxed before the
pyramid is formed.

The NB option also forms rounding bits for all floating-point multiply
instructions at sum bits 78 through 40.  The first two-level results are then
sent to the ND option for final summation.

The NB option relays a copy of Sj bits 0 through 39 and Vk bits 42
through 47 to the AM option for the 166 instruction (integer multiply).
The NB option also sends the control signal Go V 166 to the AM option.

NC Option

The NC option forms the lower left portion of the pyramid.  The pyramid
decrements from 20 bits deep at sum bit 66, to 8 bits deep at sum bit 78.
The pyramid then starts from 16 bits deep at sum bit 79 and tapers to 1 bit
deep at sum bit 94.
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The pyramid is generated from j operand bits 28 through 62 and k operand
bits 16 through 47.  The scalar j/k and vector j/k operands are muxed
before the pyramid is formed.  The NC option also forms rounding bits for
all floating-point multiply instructions at sum bits 79 through 94.  The first
two-level results are then sent to the ND option for final summation.

The NC option also computes the exponent, underflow, and range error.
The exponent value is sent to the ND option to compute the exponent –1
and to multiplex the correct exponent.  The NC option also computes the
final sign bit and sends it to the result register.  The NC sends the sign bit
back to the JA for possible early branch determination.

The NC option relays a copy of Sj  bits 48 through 62 to the AM option
for the 166 instruction (integer multiply).

ND Option

The ND option does the final summation for the floating-point multiply
pyramid.  The ND sends the final coefficient and exponent to the result
registers.  The NC also transmits the range error signal to the HD option.

Refer to Figure 69 for a block diagram of floating-point multiply and to
Figure 70 for an illustration of the floating-point multiply first-level
summation.
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Sj Bits 17 – 47 IAA – IBE

Sk Bits 0 – 41 ICA – IDP

Vk Bits 0 – 41 IGA –  IHP

Sj/Vk Copy
Bits 17 – 47 IEA – IFE

h0 IXA

Go Scalar FM IXC, IXD

Go Vector FM IXE

OCA – OCD 1st Pyramid Results

 Sj Bits 0 – 39 IAA –  IBN

Sk Bits 24 – 47 ICA – ICX

Vj Bits 0 – 39 IEA – IFN

Vk Bits 24 – 47 IGA – IGX

h Bits 0 – 2 IXA – IXC

Go Scalar FM IXD, IXE

Go Vector FM IXF

OAA – OBQ 1st Pyramid Results

OCA – ODK 1st Pyramid Results

OEA, OEB

Mode 0, 1

OED Address Multiply

OEE Iteration

OEF Strong Round

OEG

Go Vector FM

OFA

Use Vj data

OEC

Address Multiply

IXA, IXB

IXC, IXD

IXG

IXK

Sj Bits 28 – 63 IAA – IBJ

Sk Bits 16 – 63 ICA – IDV

Vj Bits 28 – 63 IEA – IFG

Vk Bits 16 – 63 IGA – IHV

Go Scalar FM IXI, IXJ

Go Vector FM IXK

FPE Mode IXM

OAA – OBZ 1st Pyramid Results

ODA – ODM 1st Pyramid Results

OEA – OEO Exponent Results

OEP Sign Bit to V* / A*

OFA Underflow

OFB Range Error

OFC Integer Multiply

OFD Go FM

OFE FPE Mode

OFF Jump Sign Bit to JA

NA000

NB000

NC000

ND000
IDA – IDF

IGA – IHQ

IAA – IBK

IXC

IXF

IXB

IIA – IJZ

ICA – ICM

IKA – IKO

IXE

IXG

IXD

IXA

IXH

OAA, OBV Si / Vi Coeff Results to  V* / A*

OCA, OCO Si / Vi  Exponent  Results to V* / A*

ODA Si / Vi  Range Error to HD

Figure 69.  Floating-point Multiply Block Diagram
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Figure 70.  Floating-point Multiply First-level Summation
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BIT MATRIX MULTIPLY

The OA option performs the bit matrix multiply operation.  The functional
unit consists of six OA options.

The OA option performs two functions related to bit matrix multiply.  The
first function is to load the B array with the Vj operand.  The second
function is to perform the A x BT operation where A is either the Sj or Vj
operand and BT is the B array transposed.  The scalar operation produces a
scalar result, and the vector operation produces a vector result.

Each OA option receives 22 bits of the operand.  OA002 and OA005
receive 20 bits, and the last two inputs are forced to zero.  Each OA option
holds 32 elements x 22 bits.  When performing the A x BT  operation,
each OA produces a partial result for each of the 32 elements.  The partial
results are then sent the appropriate OA option to complete the final
results.  There is only one copy of each control bit coming into the
functional unit, so OA001 and OA004 relay the control bits to the other
options.

Bit Matrix Multiply Theory of Operation

The bit matrix multiply (BMM) functional unit performs a logical
multiplication of two matrices, designated A and B, resulting in a
single-bit result for each pair of elements multiplied.  The matrices, which
are held in vector registers, may vary in size from 1 bit x 1 bit (1 x 1) to
64 x 64 bits.  The size of the matrix is specified by the vector length (VL)
register (example: VL = 20 specifies 20 x 20 matrices).

The following conditions are necessary to obtain valid results:

• The two matrices must be square and of equal size.

• The two matrices must be left-justified in the vector registers to
element 0, bit 63.

• Unused bits of each element that contain part of the matrix must be
zeroed.

• Elements not containing parts of a matrix are unaffected.
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Result matrix C is the product of matrix A and matrix B transposed (Bt).
Bt is formed from matrix B by interchanging its rows and columns.

In addition to performing full 64 x 64 matrix multiply operations, the
BMM functional unit performs a scalar-vector multiply operation and
stores the result in an S register.

Figure 71 is an illustration of 20 x 20 and 50 x 50 matrices as stored in
vector registers.

Valid
Data Zeroes

Don’t Care

Don’t Care

ZeroesValid Data

Bits 63 44 43 0 14 13 0
Element 0

.

.

.
Element 19
Element 20

.

.

.

.

.

.

.
Element 63

Element 0

.

.

.

Element 49
Element 50

.

.

.

.

.

.

.

Element 63

VL = 5010VL = 2010

Bits 63

Figure 71.  Vector Storage of Bit Matrices

In this section, the notation used to represent individual bits of a matrix
consists of a lower-case letter followed by a subscripted numeric field.
The letter represents the name of the matrix; the numerics denote,
respectively, the element and bit of the vector register data.  Elements and
bits numbered from 1 to 9 are represented as a 2-digit number; elements
and bits numbered upward from 10 are separated by a comma.  For
example:

a3, 7 represents matrix A, element 3, bit 7

b15,43 represents matrix B, element 15, bit 43

a3,12 represents matrix A, element 3, bit 12

Mathematically, matrices A and B can then be represented as shown in
Figure 72.  Note that the ultimate degree of both element and bit can be
represented by n because these must be square matrices.  Each row of a
matrix corresponds to an element of a vector register.
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a11 a12 a13 . . . a1n b11 b12 b13 . . . b1n
a21 a22 a23 . . . a2n b21 b22 b23 . . . b2n

A = . . . . B = . . . .
. . . . . . . .
. . . . . . . .
an1 an2 an3 . . . ann bn1 bn2 bn3 . . . bnn

Figure 72.  Mathematical Representation of Matrices A and B

The BMM functional unit transposes matrix B as it is loaded into the
BMM storage area.  The elements (rows) of the B matrix data are
interchanged with the bit positions (columns) as shown in Figure 73.

b11 b12 b13 . . . b1n b11 b21 b31 . . . bn1
b21 b22 b23 . . . b2n b12 b22 b32 . . . bn2

B = b31 b32 b33 . . . b3n Bt = b13 b23 b33 . . . bn3
. . . . . . . .
. . . . . . . .
bn1 bn2 bn3 . . . bnn b1n b2n b3n . . . bnn

Figure 73.  B Matrix and Bt Matrix Relationships
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The product C = ABt is defined as shown in Figure 74.

a11 a12 a13 . . . a1n b11 b21 b31 . . . bn1 c11 c12 c13 . . . c1n
a21 a22 a23 . . . a2n b12 b22 b32 . . . bn2 c21 c22 c23 . . . c2n
a31 a32 a33 . . . a3n b13 b23 b33 . . . bn3 c31 c32 c32 . . . c3n

ABt = . . . . . . . . = . . . .
. . . . . . . . . . . .
. . . . . . . . . . . . .
an1 an2 an3 . . . ann b1n b2n b3n . . . bnn cn1 cn2 cn2 . . . cnn

A Bt C

where:
C11=a11b11�a12b12�a13b13� . . . �a1nb1n �

C12=a11b21�a12b22�a13b23� . . . �a1nb2n

C13=a11b31�a12b32�a13b33� . . . �a1nb3n
.
.
C21=a21b11�a22b12�a23b13� . . . �a2nb1n
.
.
C32=a31b21�a32b22�a33b23� . . . �a3nb2n
.
.

� � indicates an exclusive OR operation.

Figure 74.  Multiplication of A and Bt
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Instructions

Refer to Table 27 for a list of the bit matrix multiply instructions.

Table 27.  Bit Matrix Multiply Instructions

Instruction CAL Description

1740j4 BMM   LVj Transmit Vj elements 0 – 63 to B matrix

*1740j5 BMM   UVj Transmit Vj elements 64 – 127 to B matrix

174ij6 Vi   Vj * BT Transmit the value of Vj multiplied by the transposed B matrix
to Vi

070ij6 Si   Sj * BT Transmit the value of Sj multiplied by the transposed B matrix
to Si

002210 CBL Clear the bit matrix loaded (BML) flag

*  New Instruction

Refer to Figure 75 for a BMM block diagram for pipe 0 and to Figure 76
for a BMM block diagram for pipe 1.
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VR000      Bits 0 – 3

OA002

OA001

OA000

Bits 44 – 63

Bits 22 – 43

Bits 0 – 21

Partial Results

OA002

OA001

OA000

OA005

OA004

OA003

Partial Results

OA005

OA004

OA003

VM000     Bits 4 – 7

VR001      Bits 8 – 11

VM001    Bits 12 – 15

VR002     Bits 16 – 19

VM002      Bits 22 – 23
VR003       Bits 24 – 27

VM003      Bits 28 – 31
VR004       Bits 32 – 35

VM004      Bits 36 – 39

VR005      Bits 40 – 43

VM005        Bits 44 – 47
VR006        Bits 48 – 51

VM006       Bits 52 – 55

VR007       Bits 56 – 59

VM007       Bits 60 – 63

VM002     Bits 20 – 21

Bits 0 – 21

Bits 44 – 63

Bits 22 – 43

IAA – IAV

IAA – IAV

IAA – IAU

IAA – IAV

IAA – IAV

IAA – IAU

ICA – ICKOCV – ODF

Bits 42, 44 – 62

OCK – OCU

OCA – OCJ

ICA – ICK

ICA – ICJ

Bits 20, 22 – 40

Bits 0, 2 – 18

OCA – OCJ

OCK – OCU

OCV – ODF

IDA – IDK

IDA – IDJ

IDA – IDK

OCA – OCJ IEA – IEJ

OCK – OCU

IEA – IEK

OCV – ODF

IEA – IEK

OCV – ODF

OCK – OCU

OCA – OCJ

OCA – OCJ

OCK – OCU

OCV – ODF

OCA – OCJ

OCK – OCU

OCV – ODF

ICA – ICK

ICA – ICK

ICA – ICJ

IDA – IDK

IDA – IDJ

IDA – IDK

IEA – IEJ

IEA – IEK

IEA – IEK Bits 43, 45 – 63

Bits 21, 23 – 41

Bits 1, 3 – 19

VM000/AR000

VM001/AS000

VM002/AS001

VM003/AS002

VM004/AT000

VM005/AT001

VM006/AU000

VM007/AU001

VM002/AS001

VM005/AT001

Partial Results

Partial Results

Partial Results

Partial Results

OAA – OAK Final Result Bits

OAA – OAK Final Result Bits

Final Result BitsOAA – OAJ

Final Result Bits

Final Result Bits

OAA – OAK

OAA – OAK

OAA – OAJ Final Result Bits

Even Bits 22 – 42

Even Bits 0 – 20

Odd Bits 45 – 63

Odd Bits 23 – 43

Odd Bits 1 – 21

Even Bits 44 – 62

Figure 75.  Bit Matrix Multiply Block Diagram Pipe 0
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VR008       Bits 0 – 3

OA002

OA001

OA000

Bits 44 – 63

Bits 22 – 43

Bits 0 – 21

Partial Results

OA002

OA001

OA000

OA005

OA004

OA003

Partial Results

OA005

OA004

OA003

VM008       Bits 4 – 7

VR009        Bits 8 – 11

VM009      Bits 12 – 15

VR010     Bits 16 – 19

VM010      Bits 22 – 23

VR011       Bits 24 – 27

VM011      Bits 28 – 31

VR012      Bits 32 – 35

VM012       Bits 36 – 39

VR013     Bits 40 – 43

VM013       Bits 44 – 47

VR014       Bits 48 – 51

VM014      Bits 52 – 55

VR015      Bits 56 – 59

VM015      Bits 60 – 63

VM010       Bits 20 – 21

Bits 0 – 21

Bits 44 – 63

Bits 22 – 43

IBA – IBV

IBA – IBV

IBA – IBU

IBA – IBV

IBA – IBV

IBA – IBU

IFA – IFKOEV – OEF

Bits 42, 44 – 62

OEK – OEU

OEA – OEJ

IFA – IFK

IFA – IFJ

Bits 20, 22 – 40

Bits 0, 2 – 18

OEA – OEJ

OEK – OEU

OEV – OEF

IGA – IGK

IGA – IGJ

IGA – IGK

OEA – OEJ IHA – IHJ

OEK – OEU

IHA – IHK

OEV – OEF

IHA – IHK

OEV – OEF

OEK – OEU

OEA – OEJ

OEA – OEJ

OEK – OEU

OEV – OEF

OEA – OEJ

OEK – OEU

OEV – OEF

IFA – IFK

IFA – IFK

IFA – IFJ

IGA – IGK

IGA – IGJ

IGA – IGK

IHA – IHJ

IHA – IHK

IHA – IHK
Bits 43, 45 – 63

Bits 21, 23 – 41

Bits 1, 3 – 19

VM008

VM010

VM011

VM012

VM013

VM014

VM015

VM013

Partial Results

Partial Results

Partial Results

Partial Results

OBA – OBK Final Result Bits

OBA – OBK Final Result Bits

Final Result BitsOBA – OBJ

Final Result Bits

Final Result Bits

OBA – OBK

OBA – OBK

OBA – OBJ Final Result Bits

Even Bits 22 – 42

Even Bits 0 – 20

Odd Bits 45 – 63

Odd Bits 23 – 43

Odd Bits 1 – 21

Even Bits 44 – 62

VM010

VM009

Figure 76.  Bit Matrix Multiply Block Diagram Pipe 1
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INSTRUCTION BUFFERS

The instruction buffers are located on four IC options; Table 28 shows
how the four IC options are partitioned.  Each IC option contains 8
buffers, and each buffer holds 32 16-bit words.  The IC options also hold
data for functions other than instructions.

Table 28.  IC Options

Bit Type IC000 IC001 IC002 IC003

Instruction data bits 0 – 7 and 
32 – 39

8 – 15 and 
40 – 47

16 – 23 and 
48 – 55

24 – 31 and 
56 – 63

B address bits 0 – 7 8 – 15 16 – 23 24 – 31

Fetch address bits 0 – 7 8 – 15 16 – 23 24 – 31

Logical address translation
(LAT) address bits

0 – 7 and 
32 – 39

8 – 15 and 
40 – 47

16 – 23 and 
48 – 55

24 – 31 and 
56 – 63

Exchange P address bits 0 – 7 and 
32 – 39

8 – 15 and 
40 – 47

16 – 23 and 
48 – 55

24 – 31 and 
56 – 63

Fetch destination code
fan-out bits

0, 1 2, 3 4, 5 6, 7

Fetch 

The IC options generate a deadstart fetch after the first 208 words have
been received; this is the number of words in the exchange package.  The
IC option counts the number of common memory valid codes received,
and this count enables the deadstart fetch signal to be generated.

When data is fetched from memory, it is requested as a block of 32 words
(4 blocks of 8 words with the first word of this block being the first word
that is needed).  For example, if a branch is made to address 1005, that
address is requested first, followed by addresses 1006 to 1037, then 1000
to 1004.

When the common memory data arrives, the IC compares the incoming
code with the expected code.  This code tells the IC option where to put
the data in the buffer.  Data can arrive at the IC from memory in any
order; it is reordered inside the buffer.  The memory code enables this to
happen.  Along with every 16 bits of memory data, a 9-bit code is also
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sent.  This code specifies the buffer and the element in the buffer into
which the word is to be loaded.  The following illustration shows a
breakdown of the code.

4  3   2   1   0  8     7   6   5

ElementBufferValid

The data arrives at the IC options 2 words at a time.  When the data starts
arriving, the IC options look for the first 4 words.  These words go
through a bypass path, to the read-out registers, and then to the JA options
for issue.

Two pointers are associated with bypass:  a read pointer and a write
pointer.  As long as the write pointer stays ahead of read issue, the first 4
words will issue.  The buffers will continue to fill while the first 4 words
are issuing.  If the first 4 words issue and the buffers are not full, then
issue stops until the buffers fill and the buffer valid bit is set.  The
instruction parcels will then start leaving the buffers for the JA options.

Prefetch

A prefetch is initiated when the buffer read-out pointer reaches address
308 in the buffer or a branch occurs to addresses 30 to 378.

The prefetch checks to determine whether the next sequential buffer is
already in-stack.  If it is not, a fetch is initiated to the next sequential
common memory address.  When the count in the buffer reaches 378, the
IC advances the buffer pointer and checks to ensure that the read data
valid bit is set.  If the read data valid bit is not set, the IC option enables
the wait first word flag and waits for the first word to be received from
common memory.

NOTE: The prefetch will always occur, but it can be blocked or aborted
by any branch sequence in progress.

Prefetch can, in some cases, cause a decrease in performance.  For
example, if the first word of the next sequential instruction block is
needed while the current instruction block is being fetched, a delay occurs.
In this case, issue stops until the last word of the next block is fetched.
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If an out-of-stack branch occurs while the next sequential block is waiting
to be prefetched, the prefetch is aborted and the block containing the
branch address is fetched instead.  Issue of instructions at the branch
address are delayed until the fetch of the current block is completed and a
fetch of the current block containing the branch address begins.

Another problem with prefetch occurs when executing an instruction at
the top of logical address translation (LAT) space.  The code may execute
a branch to lower memory but the prefetch may try to initiate a fetch from
the next sequential memory location.  If the next sequential memory
location is out of the LAT range, a range error may occur.  This will
happen if the branch is within 8 words of the last valid LAT address.

Refer to Figure 77 for the IC options bit layout, to Figure 78 for an IC
block diagram, and to Figure 79 for the IC option terms.

Figure 80 is a block diagram of the memory-to-instruction buffers for
path 1, and Figure 81 is a block diagram of the memory-to-instruction
buffers for path 2.  Figure 82 is a block diagram of the common memory
path code 1 fanouts, and Figure 83 is a block diagram of the common
memory path code 2 fanouts.
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IC000

IC001

IC002

IC003

RAM  Array 0

Buffer 0 – 3
Even Words

0 – 30

RAM  Array 1

RAM  Array 2

RAM  Array 3

Buffer 4 – 7
Even Words

0 – 30

Buffer 4 – 7
Odd Words

0 – 30

Buffer 0 – 3
Odd Words

0 – 30

Instruction Data Bits 0 – 7 and 32 – 39

Instruction Data Bits 8 – 15 and 40 – 47

Instruction Data Bits 16 – 23 and 48 – 55

Instruction Data Bits 24 – 31 and 56 – 63

B Bits 0 – 7
Fetch Bits 0 – 7
LAT Address Bits 0 – 7 and 32 – 39
Exchange P Data Bits 0 – 7 and 32 – 39

B Bits 8 – 15
Fetch Bits 8 – 15
LAT Address Bits 8 – 15 and 40 – 47
Exchange P Data Bits 8 – 15 and 40 – 47

B Bits 16 – 23
Fetch Bits 16 – 23
LAT Address Bits 16 – 23 and 48 – 55
Exchange P Data Bits 16 – 23 and 48 – 55

B Bits 24 – 31
Fetch Bits 24 – 31
LAT Address Bits 24 – 31 and 56 – 63
Exchange P Data Bits 24 – 31 and 56 – 63

Figure 77.  IC Options Bit Layout



CPU Instruction Buffers

167Cray Research ProprietaryHTM-003-A

IC

  Array 0
Buffer

0 – 3 Even
Words
0 – 15

  Array 1

  Array 2

 Array 3

Buffer
4 – 7 Even

Words
0 – 15

Buffer
4 – 7 Odd

Words
0 – 15

Buffer
0 – 3 Odd

Words
0 – 15

Bypass

IAA – IAPPath 1 Data

IBA – IBPPath 2 Data

Inst Data to OAA – OAP

R
e
a
d
–
o
u
t

R
e
g

Parity Error to OUA
Path 1 Code

IAQ – IAX

Path 1 Code

IBQ – IBX
(Array Write/
Read Address)

(Array Write/
Read Address)

IAX
Path 1 Valid

IBX
Path 1 Valid

(Write Enable)

(Write Enable)

Fetch Address
Register

IDA – IDP
IEA – IEP

P Bits 0 – 15
P Bits 16 – 31 New P to OAA – OAH

Branch or LAT
Address

Branch Address
OEA – OEH

LAT Address OEI – OEP

 Parcel Data
P Reg Data

 Coincidence Buffer

Fan-out Data

IPA – IPP

Buffer Match

h, i, j, k Bits

OWA – OWC
OWD – OWE
OWI – OWK
OWQ – OWS
OXA – OXC
OXD – OXF

Fan-out Data
ICA – ICH

OCA – OCH
OCI – OCP Bjk/P Fanout

(CC)

(CC)

(OA)

(JA)

(BT)

(IC)

(HM)
(RA)
(HM)
(HD)
(NA, NB)
(VS, FA, FB)

(JA)

(IC)

(IC)

(CH)

(CH)

(IC)

(IC)

(IC)
(IC)

(BT)

Figure 78.  IC Block Diagram
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IAA
IAPCM Path 1 Data

IAQ
IAYCM Path 1 Code

IBA
IBPCM Path 2 Data

IBQ
IBYCM Path 2 Code

ICA
ICHBjk Exchange P to Fanout

IDA
IDPBjk Exchange P Bit 0 – 15

IEA
IEHBjk Exchange P Bit 16 – 31

IPA
IPPParcel Data

IQAEnter Rank 1

(CH)

(CH)

(IC)

(IC)

(BT)

(BT)

(BT)

(JA)
(JA)

IQEEnter Rank 2
(JA)

IQAClear Rank 2
(JA)

IQMData Resume
(JA)

IQQBranch Issue
(JA)

IQRGo Branch
(JA)

IQSBranch Fall Through
(JA)

IQUInterrupt Request
(JA)

IRACPU MC to Fanout

IRBExchange Active to Fanout

IRCTriton Mode to Fanout

IRDVL#2 or CM B to Fanout

IRECM MC to Fanout

ISAFetch Done

ITAMaint Mode

IUA
IUBIC Select

(HA)

(CC)

(HD)

(VA)

(HA)

(CC)
(HA)

(Force)
IVBEnter Exchange P

(CC)

IVC
IVDCM Path 1 Code to Fanout

(CK)

IVE
IVFCM Path 2 Code to Fanout

(CK)

OAA
OAP Instruction Data

(JA)

OAQ Instruction Data Ready
(JA)

OCA
OCH Bjk Exchange P to Fanout

(BT)
OCI
OCP Bjk Exchange P to Fanout

(BT)
ODA
ODH New P

(BT)

ODI Enter New P/Dump Mode
(BT)

ODJ Go Branch/Exchange Enable
(JA)

OEA
OEH Branch Address

(CC)
OEI
OEP Exchange LAT

(CC)

OEQ Fetch Requests
(CC)

OER Go Dump
(CB)

ODJ Buffer Load Pointers
(JA)

OVA
OVD

(IC)
OVE
OVH

(IC)

CM Path 1 Read Code Fanout

CM Path 2 Read Code Fanout

OWA
OWC

(HM)
OWD
OWE

(RA)
k0, k1 at Phase 2

k0, k1, k2 at Phase 3

OWK
OWI

(HM)
i/j at Phase 3

OWQ
OWS

(HF)
i/j at Phase 2

OXA
OXC

(NA, N)
h0, h1, h2 at Phase 2

IC

Figure 79.  IC Option Terms
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IC000CH000

CH002

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IAA –
IAD

IAI –
IAL

IAE –
IAH

IAM –
IAP

Bits 0 – 3

Bits 32 – 35

Bits 4 – 7

Bits 36 – 39

IC001CH004

CH006

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IAA –
IAD

IAI –
IAL

IAE –
IAH

IAM –
IAP

Bits 8 – 11

Bits 40 – 43

Bits 12 – 15

Bits 44 – 47

IC002CH008

CH010

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IAA –
IAD

IAI –
IAL

IAE –
IAH

IAM –
IAP

Bits 16 – 19

Bits 48 – 51

Bits 20 – 23

Bits 52 – 55

IC003CH012

CH014

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IAA –
IAD

IAI –
IAL

IAE –
IAH

IAM –
IAP

Bits 24 – 27

Bits 56 – 59

Bits 28 – 31

Bits 60 – 63

Figure 80.  Memory-to-instruction Buffers (Path 1)
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IC000CH001

CH003

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IBA –
IBD

IBI –
IBL

IBE –
IBH

IBM –
IBP

Bits 0 – 3

Bits 32 – 35

Bits 4 – 7

Bits 36 – 39

IC001CH005

CH007

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IBA –
IBD

IBI –
IBL

IBE –
IBH

IBM –
IBP

Bits 8 – 11

Bits 40 – 43

Bits 12 – 15

Bits 44 – 47

IC002CH009

CH011

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IBA –
IBD

IBI –
IBL

IBE –
IBH

IBM –
IBP

Bits 16 – 19

Bits 48 – 51

Bits 20 – 23

Bits 52 – 55

IC003CH013

CH015

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IBA –
IBD

IBI –
IBL

IBE –
IBH

IBM –
IBP

Bits 24 – 27

Bits 56 – 59

Bits 28 – 31

Bits 60 – 63

Figure 81.  Memory-to-instruction Buffers (Path 2)
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IC000

IC001

IC002

IC003

CK000

IVC

IVD

IVC

IVC

IVC

IVD

IVD

IVD

ONF

ONG

ONH

ONI

ONJ

ONC

OND

ONE

Element Bit 0

Element Bit 1

Element Bit 2

Element Bit 3

Element Bit 4

Buffer Bit 0

Buffer Bit 1

Buffer Bit 2

IC000

OVA

OVC

IAQ

IAR

IAS

IAT

IAU

IAV

IAW

IAX

OVA

OVA

OVA

OVC

OVC

OVC

IC001

Element Bit 0

Element Bit 1

Element Bit 2

Element Bit 3

Element Bit 4

Buffer Bit 0

Buffer Bit 1

Buffer Bit 2

IC000

IC001

IC002

IC003

IC002

OVB

OVD

IAQ

IAR

IAS

IAT

IAU

IAV

IAW

IAX

OVB

OVB

OVB

OVD

OVD

OVD

IC003

ONA

Valid

IAY

ONB
IAY

Valid

Element Bit 0

Element Bit 1

Element Bit 2

Element Bit 3

Element Bit 4

Buffer Bit 0

Buffer Bit 1

Buffer Bit 2

Figure 82.  Common Memory Path Code 1 Fanouts
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IC000

IC001

IC002

IC003

CK001

IVC

IVD

IVC

IVC

IVC

IVD

IVD

IVD

ONF

ONG

ONH

ONI

ONJ

ONC

OND

ONE

IC000

OVE

OVG

IBQ

IBR

IBS

IBT

IBU

IBV

IBW

IBX

OVE

OVE

OVE

OVG

OVG

OVG

IC001

IC000

IC001

IC002

IC003

IC002

OVF

OVH

IBQ

IBR

IBS

IBT

IBU

IBV

IBW

IBX

OVF

OVF

OVF

OVH

OVH

OVH

IC003

ONA

Valid

IBY

ONB
IBY

Element Bit 0

Element Bit 1

Element Bit 2

Element Bit 3

Element Bit 4

Buffer Bit 0

Buffer Bit 1

Buffer Bit 2

Element Bit 0

Element Bit 1

Element Bit 2

Element Bit 3

Element Bit 4

Buffer Bit 0

Buffer Bit 1

Buffer Bit 2

Valid

Element Bit 0

Element Bit 1

Element Bit 2

Element Bit 3

Element Bit 4

Buffer Bit 0

Buffer Bit 1

Buffer Bit 2

Figure 83.  Common Memory Path Code 2 Fanouts
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INSTRUCTION ISSUE

A CRAY T90 series computer system uses a process called instruction
issue to introduce instructions into the central processing unit (CPU).

The first instruction parcel is read from of one of eight instruction buffers
(IBs) and sent to the next instruction parcel (NIP) register where it is
partially decoded to determine whether it is a 1-, 3- or 4-parcel instruction.

Refer to Figure 84 for an instruction issue block diagram.  The program
address (P) register points to the next parcel to be read out of the
instruction buffer.  If it is a 1-parcel instruction, the NIP moves to the
current instruction parcel (CIP), the parcel from the instruction buffer
moves to NIP, and P is incremented by 1.  If it is a 3-parcel instruction, as
NIP moves to CIP, the second parcel moves into LIP0, the third parcel
moves into LIP1, and P is incremented by 3.  If it is a 4-parcel instruction,
as the first parcel moves from NIP to CIP, the second and third parcels
move to LIP0 and LIP1.  Then, the fourth parcel goes to NIP and then to
CIP as the other three parcels are leaving.  In the next clock period, the
fourth parcel leaves CIP, and P is incremented by 4.

IB 7

IB 6

IB 5

IB 4

IB 3

IB 2

IB 1

IB 0

NIP

P

+1, +3, +4

CIP

LIP0

LIP1

Figure 84.  Instruction Issue Block Diagram
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Instruction Formats

There are three instruction formats:  1-, 3-, or 4- parcel instructions.  The
first parcel always contains the operation code.  The operation code is
pre-decoded in NIP to determine whether it is an exit instruction (000000
or 004000) or a 1-, 3-, or 4- parcel instruction.

One-parcel Instructions

The gh portion generally is the operation code, although some instructions
also use the i, j, or k fields.  The i field is usually the result designator, and
the jk portions are generally operand register designators.  Some
instructions use the i field or bit 2 of the j field to provide additional bits
for the operation code.

Some 1-parcel instructions are part of the extended instruction set (EIS)
and perform different operations when immediately preceded by the EIS
parcel (005400).

Figure 85 shows the format of a 1-parcel instruction.

7 3 3 3 Bits

g   h i j k

15 – 9 8 – 6 5 – 3 2 – 0

Figure 85.  Format for a 1-parcel Instruction

Three-parcel Instructions

The 3-parcel instruction is used in both Triton mode and C90 mode.  The
nm fields hold the 32-bit address or constant value.  Refer to Figure 86 for
an illustration of a 3-parcel instruction format.

NOTE: The n portion holds the most significant bits, and the m portion
holds the least significant bits.

3 3 3 Bits

h i j k

11 – 9 8 – 6 5 – 3 2 – 0

g

15 – 12

4 3 16 16

n m

15 – 0 15 – 0

Figure 86.  Format for a 3-parcel Instruction



CPU Instruction Issue

177Cray Research ProprietaryHTM-003-A

Four-parcel Instructions

Four-parcel instructions are used exclusively in Triton mode.  The
instruction field mnemonic pmn represents a 48-bit field with the p field
being the most significant parcel.  Refer to Figure 87 for an illustration of
a 4-parcel instruction format.

3 3 3

h i j k

11 – 9 8 – 6 5 – 3 2 – 0

g

15 – 12

4 3 16

p

15 – 0

Bits16 16

n m

15 – 0 15 – 0

Figure 87.  Format for a 4-parcel Instruction

Four-parcel instructions are used for A and S register memory references
that use extended addressing.  The h field selects an A register to be used
as an address index.  The i field designates an A or S register to be used as
the source or destination of the data.  For read references, j field bit 1
disables or enables cache bypass.  Bit 2 of the j field must be set to a 1 to
indicate a 4-parcel instruction.  The k field is not used.

Triton-mode Instructions

Triton mode is active when the Triton mode bit (TRI) is set in the
exchange package.  Some instructions execute correctly only in Triton
mode.  If a Triton mode instruction is executed while the machine is in
C90 mode, the results are undefined.  Refer to the instruction set for
Triton-mode only instructions.

Instruction Decode

After the instruction parcel is in NIP, it is pre-decoded to determine its
size.  If it is a 1-parcel instruction, it moves to CIP for further decoding to
determine which registers, functional units, and memory ports are
required.
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P Register

The P register is 32 bits wide and resides on the BT0 and BT1 options.
The P register points to the relative memory address of the next instruction
to be read out of the instruction buffer read-out register and sent to either
NIP or LIP0.  The lower 2 bits (bits –1 and –2) point to the parcel, and the
upper 30 bits (bits 8 through 29) point to the word address.  There are
three ways to load the P register:

• Multiplex 8 bits at a time during an exchange sequence

• Load from Bjk as a result of a 005ijk instruction

• Load from the ijk or nm fields of a 006ijk, 007ijk, or 01xjk
instruction

Every time a parcel issues, the JA option sends an Advance P signal to
the BT options, which advances the P register by 1.

Coincidence

A condition called coincidence exists if the next parcel needed is in one of
the eight instruction buffers.  A coincidence check compares the upper
25 bits of the P register to the 25-bit buffer address (A) register as well as
determines whether the buffer valid bit is set.  All 25 bits must match, and
the buffer valid bit must be set in order for a coincidence condition to
exist.  If there is no coincidence, a fetch operation is initiated.
Coincidence is checked only on branch instructions to determine if the
next instruction will be in the stack.

Reading the Instruction Buffer

When a buffer read occurs, both the even and odd words are read out of
the buffer to a read-out register.  The content of the P register on the BT
options directs one of these words to NIP or LIP for decoding.



CPU Instruction Issue

179Cray Research ProprietaryHTM-003-A

JA Option

There are two JA options on the CP module; they provide the issue control
signals for the processor.  These options receive the instruction word from
the IC options, select and decode the correct parcels, and provide control
to the rest of the CPU.  The JA option also has all the resource
reservations and holds issue if a resource is busy.  The JA options are
responsible for the functions described in the following subsections.

Parcel Data Distribution

The JA option transmits parcel data to the AR, AS, AT, AU, BT, and VA
options and alters the j field going to the AR, AS, AT, and AU options for
certain instruction types.  This occurs on the following instructions:

• 10h, 11h, 12h, 13h; the Aj becomes the Ah field
• 0013j0; the Ai field becomes the Aj field

The JA option also transmits a read-out pointer code to the A and S
registers; the read-out pointer code selects the read-out path.  Refer to
Table 29 for a list of these codes.

Table 29.  Read-out Path Codes 

Code Instruction Description

00 075, 13h Si to BT path

01 034, 036, 025, 11h Ai to BT path

11 035, 037 Ai to BT path

00 0013j0,  027ij2/3,  027ij6/7 Ai to SR path

01 073ij2, 073ij3, 073ij5, 073ij6 Si to SR path

10 0010jk, 0011jk Ak to SR path

11 0014j0, 0014j4 Sj to SR path

00 057, 0030j0/1, 026ij0/1, 027ij0 Sj to shift path

11 052 – 056 Si to shift path

00 Sj to vector pipe 0

01 176 A0 to vector pipe 0

10 034, 036 A0 to vector pipe 0

11 035, 037, 177 A0 to vector pipe 0

00 Sj to vector pipe 1
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Table 29.  Read-out Path Codes (continued)

Code DescriptionInstruction

01 176 Ak to vector pipe 1

10 034, 036 Ai to vector pipe 1

11 035, 037, 177 A0 to vector pipe 1

00 10h, 12h, 13h, 0017jk Ah (Aj) to CM port B/E

01 00200k Ak to CM port B/E

10 11h Ah (Aj) to CM port B/E

11 177 Ak  to CM port B/E

A/S/V/B/T Register Requests

The JA option checks for register conflicts and receives a register release
signal from the shared resource control and from common memory for the
A and S registers.  The JA option also receives a vector read/write (R/W)
release for V registers and a B/T read/write release.  The JA option also
transmits A and S register entry codes.  These codes, along with the ghijk
field, the instruction, and the 2-bit register read-out code are used by the A
and S registers to define the instruction to be performed and to reserve the
needed path.

Functional Unit Requests

The JA option checks for functional unit conflicts in the following
functional units:

• Logical #1:  140 – 147 / 175
• Logical #2:  140 – 145 if Logical #1 busy / Logical #2 enabled
• Vector Mask:  146 – 147 / 175 / 070ij1 / EIS 153ij0,1
• Vector Shift:  150 – 153
• Vector Add:  154 – 157
• Floating Multiply:  160 – 167
• Floating Add:  17 – 173
• Reciprocal (V pop, parity, leading zero, iota: 174ij (0 – 3) / 070ij1
• Matrix Multiply:  174ij (4 – 7) / 070ij (6 – 7)
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Constant Data Requests

The JA option checks for constant data present on multiple-parcel
instructions such as jumps, branches, and instructions using the pmn
fields.  Each JA option handles 32 bits of the constant data distribution.
JA0 transmits data to the AR, AS, and CD options via the A series
options, and JA1 transmits data to the AT, AU, and CD options via the A
series options.  JA0 also provides the jk data on the constant path when
needed.

EIS (Extended Instruction Set) Requests

The JA option issues 005400 as a normal instruction; however, the next
parcel is decoded using the extended instruction set.  If an EIS instruction
is issued without the 005400 preceding it, the instruction issues and
performs its normal function.  For example:

044ijk Transmit logical product of (Sj) and (Sk) to Si

044ijk In EIS mode, the same instruction transmits logical 
product of (Aj) and (Ak) to Ai

Common Memory Requests

The JA options receive the following external common memory control
signals:

• Release Port A

• Release Port B

• Release Port C

• Bidirectional Mode: (Mode = 1) enable block reads and writes at
the same time

• Common Memory Quiet:  This signal indicates that all memory
activity in the CPU has been completed.  It requires that all ports are
quiet, conflict logic is quiet, memory sections are quiet, and all read
and write operations are complete.

• Hold Common Memory Issue:  No more references can issue

• Cache Miss In Progress:  Indicates a cache miss is pending
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• Read Quiet:  Read references have cleared all conflict checks

• Write Quiet :  Write references have cleared all conflict checks

• Exchange Active:  Indicates an exchange has not completed

Shared Resource Requests

The JA options receive the following external signals, which control the
shared resource path, from the HD option:

• A/S Register Shared Resource Release:  Releases a specific A or S
register (0 – 7) path

• Release Shared Resource:  Used in combination with Go
Semaphore Branch to cause issue to resume or P to advance

• Go Semaphore Branch:  Signals that the conditions of a semaphore
branch have been satisfied

Branch Requests

The JA options check the branch test conditions to determine whether the
condition is met; if it is, the JA option issues a Go Branch signal to the IC
options.

Exchange Requests

The JA options perform the following actions during an exchange
sequence:

• 000000 (error exit) issues.  Issue stops, P advances

• 0040jk (exit k) issues.  Issue stops, P stops

• The shared path is released.  The state of Go Semaphore Branch
determines whether P advances on a 0040jk.  Two conditions of the
0040jk instruction could occur:

 1. A normal exit occurs and P advances when the shared path is
released and Go Semaphore Branch is a 0.

 2. An error exit occurs, P will not advance when the shared path is
released, and Go Semaphore Branch is a 1.
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Interrupt Requests

An interrupt request can be generated in one of three ways:

• A 000000 (error exit) instruction issues
• A 0040jk (Exit k) instruction issues
• A hardware error condition occurs

Interrupt requests are processed in two phases.  In phase 1, the following
conditions are checked:

• No multiparcel instructions are in process
• No EIS type waiting for second parcel
• No branch sequence in progress

In phase 2, the following conditions are checked, and then the Go
Exchange signal is sent to the HD, IC, and CC options.

• No branch sequence in progress
• Shared path available
• All registers available
• Common memory quiet

When a hardware interrupt request occurs, the JA option performs the
phase 1 checks and stops issue.  If the phase 2 checks are all valid, the JA
option sends a Go Exchange signal to the IC options.  If any of the shared
type instructions have issued during this shut-down time, the HD option
must release the shared path and the following actions must occur:

• If a 0034 (test and set semaphore) was issued, a Release signal and a
Go Branch signal must be sent before Go Exchange can occur.

• If a 000000 (error exit) or a 0040jk (exit jk) was issued, a release
path must occur to clear the JA option control.

Issue will resume when Go Branch occurs.

Control Signal Distribution

The JA option transmits the following control signals:

• Issue group 0, 1, and 2:  These signals are combined on the BT and
VA options to complete the issue signal.

• Issue:  This signal is transmitted to the AN option for fanout.
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• Enter Vector Length:  This signal is sent to the AR option on the
decode of a 00200k (Ak to VL) instruction.

• Read Vector Mask:  This signal is sent to the SS option on a 073i 
(0 – 3) 0 (VM0 or VM1 to Si or Ai) instruction.

• Enter Vector Mask:  This signal is sent to the SS option on a 0030j 
(0 – 3) (Si or Ai to VM0 or VM1) instruction.

• Go Scalar Pop/Parity/Lz: This signal is sent to the SS option on a
026ij (0 – 3) or 027ij (0 – 1).

• Go Scalar Double Shift:  This signal is sent to the SS option on a
056ijk Shift (Si) and (Sj) left Ak places to Si.

• Go A Type:  This signal is sent to the SS option when a 005400
(EIS) is issued using A register data.

• Go Scalar Reciprocal: This signal is sent to the RA option on a
070ij0 instruction.

• Go Scalar Floating Add:  JA1 sends this signal to the FA option
when a 062ijk (sum) or 063ijk (difference) issues.

• Go Scalar Floating Multiply :  This signal is sent to the NA and NC
options when a 064ijk through 067ijk instruction issues.

• Go Address Multiply: This signal is transmitted to the AR option
when a 032ijk issues.

• Common Memory A or S Requests:  This signal is sent to the CD
options when a memory load or store issues.  JA0 sends out an A
register request, and JA1 sends out S register requests.

• Common Memory A or S Writes:  This signal is sent to the CD
options when a memory write 11hixxpnm or 13hixxpnm issues.  JA0
sends out A register write requests, and JA1 sends out S register
write requests.

• CM Port B Enabled:  This signal is sent to the VA option via the
JA0 option and to the BT option via the JA1 options to select the
vector read ports.

• Vector Logical #2 Enabled:  JA0 sends this signal to the VA options
to select vector logical functional units.
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• Data Resume:  This signal is sent to the instruction stack (IC
options) to indicate that the JA can accept another word.

• Go Exchange:  This signal is sent to the IC options to indicate that
an exchange is required.  Another copy is sent to the HD option and
is used by the HD’s to clear the SIE bit (taking I/O interrupt).  The
Go Exchange signal is also sent to the CC option to signal the CC to
start swapping exchange packages in memory.

• Go Branch:  This signal is sent to the IC options to indicate that a
conditional branch has passed the test.

• Branch Fall Through:  This signal is sent to the IC options to
indicate that a conditional branch has failed the test.

• Branch Issued:  This signal is sent to the IC options to indicate that
a branch has issued.

• Enter Rank 1, Enter Rank 2, or Clear Rank 2:  These three
signals are sent to the IC options to move parcel data into or out of
the ranks into issue.

• The following signals are transmitted to the performance (HF)
monitor to indicate a hold issue condition:

• Holding Issue on A Registers

• Holding Issue on S Registers

• Holding Issue on B/T Registers

• Holding Issue on V Registers

• Holding Issue on Common Memory

• Holding Issue on Functional Unit

• Holding Issue on Shared Resources

• Advance P:  This signal is sent to the P register (BT options) to
advance P by 1 as each parcel is issued.
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Branch Instruction Control

The JA options decode and control the execution of branch instructions.
When a conditional branch passes or fails a test, it returns either the Go
Branch control signal or the Branch Fall Through control signal to the
IC options.  Issue is halted until the Go Branch signal is received by the
IC options.  Another signal, Branch Issued, is also sent to the ICs when a
branch is in progress.

Conditional Branch Instructions

Conditional branches use instructions 010ijk through 017ijk.  Once the
instruction issues, branch control logic examines either the A0 or S0
register for the condition defined by the operation code.  If the condition is
met, the value of the P register is replaced with the nm field, and program
flow is passed to the instruction specified by P.  If the condition is not met,
program flow drops through to the instruction that follows the branch.

Another type of conditional branch instruction for a CRAY T90 series
computer system is called test and set branch (0064jkmn).  If a specified
semaphore register equals 0, the bit is made a 1 and the next instruction
issues.  If the semaphore is a 1, the P register is replaced with the value in
the nm field.

Unconditional Branch Instructions

Unconditional branches use instructions 0050jk through 007ijkmn, and
each code operates differently, except that none of them depends on a
condition being met before the branch takes place.  In other words, they
always take the branch in the ijkm or nm fields.

The jump to Bjk instruction (0050jk) branches to the parcel address
specified by the contents of Bjk.  The unconditional jump instruction
(006000mn) branches to the nm field.  A new unconditional jump
instruction is the branch to the address in nm field (006100mn).  This
instruction is a Triton-mode only instruction; if executed in C90 mode, the
results are undefined.

The return jump instruction (007000mn) jumps to the address in the
address field and places P + 3 (the address of the next instruction) into
B00.  The return jump allows a jump to a subroutine, the last instruction of
which must be a 005000 instruction, which is a jump to B00.
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Another new jump instruction is the 007100nm, which is an indirect jump.
The instruction stores the address of the next sequential instruction in the
B00 register; then the instruction uses the nm field to specify a common
memory address.  The lower 32 bits of the contents of that address are
transferred to the P register, causing program execution to continue at that
point.  When this instruction executes, the instruction buffers are set
invalid.

Issue Control

The first parcel of the instruction leaves NIP and moves into all the CIPs
on options HF000, HD000, and HD001.  The CIP located on the HF
options is responsible for the instructions that affect the exchange package
and performance monitor.

The HD option CIP is used for A/S path release and provides A/S i
designators and shared path release.  The JA options determine whether
any register or functional unit reservations exist.  If not, these options send
the Issue signal to the HD and HF options and the instruction issues,
reserving the appropriate registers and/or functional unit.  If resource
conflicts do exist, the JA option does not send the Issue signal, and the
instruction remains in CIP until the conflict is resolved.  This is called a
hold issue condition.

The JA options are responsible for providing issue control, and checking
and making functional unit and path reservations for the following items:

• Vector registers
• Vector functional units
• A/S shared resource control
• Memory ports
• CM path/cache
• A/S register entry codes
• B/T register

The functional units must send a release back to the JA options to indicate
that the units are available.

The JA options also send out the h, i, j, and k fields to the A/S registers for
further instruction decode.

Refer to Figure 88 through Figure 94 for related instruction issue block
diagrams.
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IC000 IC000

IC001

IC002

IC003

OCA –
OCH

IDA –
IDH

IDA –
IDH

IDA –
IDH

IDA –
IDH

OCI –
OCP

IC001 IC000

IC001

IC002

IC003

OCA –
OCH

IDI –
IDP

IDI –
IDP

IDI –
IDP

IDI –
IDP

OCI –
OCP

IC002 IC000

IC001

IC002

IC003

OCA –
OCH

IEA –
IEH

IEA –
IEH

IEA –
IEH

IEA –
IEH

OCI –
OCP

IC003 IC000

IC001

IC002

IC003

OCA –
OCH

IEI –
IEP

IEI –
IEP

IEI –
IEP

IEI –
IEP

OCI –
OCP

BT000
OEA –
OEH

OEI –
OEP

ICA –
ICH

ICA –
ICH

Bits 0 – 7

Bits 8 – 15

Bits 0 – 7

Bits 0 – 7

Bits 8 – 15

Bits 8 – 15

BT001
OEA –
OEH

OEI –
OEP

ICA –
ICH

ICA –
ICH

Bits 16 – 23

Bits 24 – 31

Bits 16 – 23

Bits 16 – 23

Bits 24 – 31

Bits 24 – 31

BT000

BT001

ODA –
ODH

ODA –
ODH

ODA –
ODH

ODA –
ODH

IGA –
IGH

IGA –
IGH

IGI –
IGP

IGI –
IGP

Bits 0 – 7

Bits 8 – 15

Bits 16 – 23

Bits 24 – 31

Figure 88.  Bjk (Exchange P) Fan-out Bits



CPU Instruction Issue

189Cray Research ProprietaryHTM-003-A

IC001

OKE – 
OKH

OKB – 
OKD

OKA

OKG – 
OKH

OKD – 
OKF

OKA – 
OKC

IPA – 
IPD

IPE – 
IPG

IPJ

IPH –
IPI

IPK – 
IPM

IPN – 
IPP

IC003

OKM – 
OKP

OKJ – 
OKL

OKI

OKO – 
OKP

OKL – 
OKN

OKI – 
OKK

IPA –
IPD

IPE –
IPG

IPJ

IPH –
IPI

IPK –
IPM

IPN –
IPP

g Field Bits 0 – 3

h Field Bits 0 – 2

i Field Bit 2

i Field Bits 0 – 1

j Field Bits 0 – 3

k Field Bits 0 – 3

g Field Bits 0 – 3

h Field Bits 0 – 2

i Field Bit 2

i Field Bits 0 – 1

j Field Bits 0 – 3

k Field Bits 0  – 3

JA001

JA000

JA001

JA000

IC000 IC002

Figure 89.  JA-to-IC Parcel Data for Branches
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IC000

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IAA –
IAD

IAI –
IAL

IAE –
IAH

IAM
IAP

Bits 0 – 3

Bits 4 – 7

IC001

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IAA –
IAD

IAI –
IAL

IAE –
IAH

IAM –
IAP

OAA –
OAH

IDA –
IDH

OAI –
OAP

IBA –
IBH

JA000

OAA –
OAH

IDI –
IDP

OAI –
OAP

IBI – 
IBP

IC002

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IAA –
IAD

IAI –
IAL

IAE –
IAH

IAM –
IAP

IC003

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IAA –
IAD

IAI –
IAL

IAE –
IAH

IAM –
IAP

OAA –
OAH

ICA – 
ICH

OAI –
OAP

IAA – 
IAH

OAA –
OAH

ICI –
ICP

OAI –
OAP

IAI –
IAP

JA001

Bits 40 – 43

Bits 0 – 7

Bits 8 – 11

Bits 12 – 15

Bits 44 – 47

Bits 16 – 19

Bits 48 – 51

Bits 20 – 23

Bits 52 – 55

Bits 24 – 27

Bits 56 – 59

Bits 28 – 31

Bits 60 – 63

Bits 56 – 63

Bits 24 – 31

Bits 48 – 55

Bits 16 – 23

Bits 40 – 47

Bits 8 – 15

Bits 32 – 39

Bits 32 – 35

Bits 36 – 39

CH000

CH002

CH004

CH006

CH008

CH010

CH012

CH014

Figure 90.  Path 1 CH to IC to JA Option
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OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IBA –
IBD

IBI –
IBL

IBE –
IBH

IBM –
IBP

Bits 0 – 3

Bits 32 – 35

Bits 4 – 7

Bits 36 – 39

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IBA –
IBD

IBI –
IBL

IBE –
IBH

IBM –
IBP

Bits 8 – 11

Bits 40 – 43

Bits 12 – 15

Bits 44 – 47

OAA –
OAH

IDA –
IDH

OAI –
OAP

IBA –
IBH

Bits 16 – 23

Bits 48 – 55

OAA –
OAH

IDI –
IDP

Bits 56 – 63

OAI –
OAP

IBI –
IBP

Bits 24 – 31

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IBA –
IBD

IBI –
IBL

IBE –
IBH

IBM –
IBP

Bits 16 – 19

Bits 48 – 51

Bits 20 – 23

Bits 52 – 55

OMA –
OMD

OME –
OMH

OMA –
OMD

OME –
OMH

IBA –
IBD

IBI –
IBL

IBE –
IBH

IBM –
IBP

Bits 24 – 27

Bits 56 – 59

Bits 28 – 31

Bits 60 – 63

OAA –
OAH

ICA –
ICH

Bits 32 – 39

OAI –
OAP

IBA –
IBH

Bits 0 – 7

OAA –
OAH

ICI –
ICP

Bits 40 – 47

OAI –
OAP

IBI –
IBP

Bits 8 – 15

JA001CH001

CH003

IC001CH005

CH007

JA000

IC002CH009

CH011

IC003CH013

CH015

IC000

Figure 91.  Path 2 CH to IC to JA Option
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Decode
(NIP)

0 0

1 1

2 2

3 3

OGA – OGH

OHA – OHH

OKA – OKH

OKI – OKP

OIA – OIH

OJA – OJH

Instruction Data from ICs (64)

JA000 / JA001

V Reg Reservation

V FU Reservation

V Reg Read Release VA1 (8)

V Reg Write Release VA0 (8)

V FU Release VA0/VA1 (11)

IGA Vector Logical 1  VA0
IGB Vector Logical 2  VA1
IGC Vector Shift VA0
IGD Vector Add VA1
IGE Vector FP Mult VA0
IGF Vector FP Add VA1
IGG Vector  Recip VA0
IGH BMM VA1
IGI Vector Mask VA0
IGJ B Reg Release BT0
IGK T Reg Release BT1

Reg Translation

Conflict
 Check

ODA
ODA

ODB
ODB

ODC
ODC

Group 0 V Registers, A Registers
Group 1 S Registers, B/T Registers, 
Vector Logical, Vector Shift, Reciprocal, 
Vector Read Port A/Port B
Group 2 Shared Resource, Memory Quiet,
A0/S0 Sign Test, Others (hold issue,
exchange, etc.)

Inst Translation

OAA – OAL

OBA – OBL

OCA – OCP

P
a
r
c
e
l

D
a
t
a

A/S Register (Shared Resource)
Shared ReservationA/S Path (Shared Resource)

Memory Port Reservation
Release Mem Port A, B, C

CM Path/Cache Reservation
CM Path/Cache Release (Even)

IKB, IKC

Sign Bit Test

FA (S0) Sign State

FM (S0) Sign State

A0 = 0

A0 Negative
S0 = 0

S0 Negative OQC to ICs

FA (S0) Test Valid

ODE

Issue

ODE

Go Exchange

ODF

OLG

ODD

g, h, i, j, k to CIP

To HDs via Fanout A/S Path Release

To HF via Fanout Shared Path Release/Exchange Data

Interrupt from HD

Exchange Active from CC

OOA – OOD

OFA – OFF

OPA, OPC

OPB, OPD

OQA to ICs

OQB to ICs

IEA – IEH

IFA – IFH

IGA – IGK

IIA – IIE

IIF

ILA – ILC

IJA – IJE
IJI – IJM(Odd)

IAA – IDP

Instruction Data Ready  IKA
Parcel Pointers Bit 0 and Bit 1

IKH

IKJ

INA – INH

INA – INJ
IOA – IOH

IOI

IKG

IKF

IPB

A/S Constant Bits to AR0 or AT0

A/S Constant Bits to AS0 or AT1

Parcel Data to Stack

Parcel Data to Stack

A/S Constant Bits to AS1 or AU0

A/S Constant Bits to AS2 or AU1

Issue Group 0 Valid VA0 and VA1 (JA0)
Issue Group 0 Valid BT0 and BT1 (JA1)

Issue Group 1 Valid VA0 and VA1 (JA0)
Issue Group 1 Valid BT0 and BT1 (JA1)

Issue Group 2 Valid VA0 and VA1 (JA0)
Issue Group 2 Valid BT0 and BT1 (JA1)

h, i, j, k Field to A/S
Registers AR, AS, AT, AU

h, i, j, k Field to A/S
Registers AR, AS, AT, AU

g, h, i, j, k Field to VA/BT Registers

Go Branch

JA000 Advance P BT0, BT1

JA001 Go FP Multiply NB

Go Exchange to ICs

JA000 Issue CIP   HD0, HD1

JA000 Issue CIP HF0 via AN0

Hold Issues to Performance Monitor

A/S Entry Code Bit 0, 1, 2
to AR, AS, AT, AU

A/S Read-out Code Bit 0
to AR, AS, AT, AU

A/S Read-out Code Bit
1 to AR, AS, AT, AU

Branch Issued

Branch Fall Through

KEY

IKA

Figure 95.  JA Option Block Diagram
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AS002
AS001

JA000

IPG – IPIOBA – OBC

IPD – IPFOBD – OBF

IPA – IPCOBG – OBI

IPJ – IPLOBJ – OBL

k Bits

j Bits

i Bits

h Bits

AS000
AR000IPG – IPIOAA – OAC

IPD – IPFOAD – OAF

IPA – IPCOAG – OAI

IPJ – IPLOAJ – OAL

k Bits

j Bits

i Bits

h Bits

VA001

VA000IPG – IPIOCA – OCC

IPD – IPFOCD – OCF

IPA – IPCOCG – OCI

IPJ – IPLOCJ – OCL

k Bits

j Bits

i Bits

h Bits

IPJ – IPLOCM – OCP g Bits

AU001
AU000

JA001

IPG – IPIOBA – OBC

IPD – IPFOBD – OBF

IPA – IPCOBG – OBI

IPJ – IPLOBJ – OBL

k Bits

j Bits

i Bits

h Bits

AT001

AT000IPG – IPIOAA – OAC

IPD – IPFOAD – OAF

IPA – IPCOAG – OAI

IPJ – IPLOAJ – OAL

k Bits

j Bits

i Bits

h Bits

BT001

BT000IPG – IPIOCA – OCC

IPD – IPFOCD – OCF

IPA – IPCOCG – OCI

IPJ – IPLOCJ – OCL

k Bits

j Bits

i Bits

h Bits

IPJ – IPLOCM – OCP g Bits

Figure 92.  Instruction Data Distribution A/S/B/T/V Registers
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HD000

HD001

IEA – IEC

IED – IEF

IEG – IEI

IEJ – IEL

IEM – IEP

OWJ – OWL

OWQ – OWS

OWQ – OWS

OWA – OWC

OGI – OGL

AU000

AU000

IC001

IC000

AN000

k Bits

j Bits

i Bits

h Bits

g Bits

JA001

IPG – IPI

IPK – IPM

IPH – IPJ

IPJ – IPL

IGH – IGI

IGF – IGG

JA000

OMA – OMB

OMA – OMB

OBA – OBC

OKD – OKF

OBJ – OBL

IEQOLG Issue

Figure 93.  CIP Distribution to HD Options
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HF000

IDA – IDC

IDD – IDF

IDG – IDI

IDJ – IDL

IDM – IDP

OWJ – OWL

OWQ – OWS

OWQ – OWS

OWA – OWC

OGE – OGH

AU001

AU001

IC003

IC002

AN001

k Bits

j Bits

i Bits

h Bits

g Bits

JA000
JA001

IPG – IPI

IPK – IPM

IPH – IPI

IPJ – IPL

IGH – IGI

IGF – IGGOMA – OMB

OMA – OMB

OBA – OBC

OKL – OKN

OBJ – OBL

IDQODD Issue via AN000

JA001

JA001

JA001

JA000

JA000

IPJ

OKO – OKP

OKIJA001

JA000

JA000

Figure 94.  CIP Distribution to HF Option
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EXCHANGE

The exchange mechanism in a CRAY T90 series computer system has the
following features:

• Means of switching execution from program to program

• Exchange package – Block (408 words) of program parameters that:

• Must be present in order for any program to execute; defines
where and how the program runs

• Must be 408 words long

• Must reside in lower 2 MW of memory

• Must start on a 408 word boundary

Exchange Process

The exchange sequence is the process that deactivates the current
exchange package and puts it into memory.  It then loads a new exchange
package from memory and activates it.

The CRAY T90 series systems have a new feature in the exchange
package.  This feature allows a process to exchange to either the address
specified by the exchange address (XA) register or to one of five different
addresses specified by one of the five exit address (EA) registers.  With
this capability, a user job could exchange to another user job, or could
exchange to specific areas in the kernel, without first exchanging to the
monitor.

When a CPU is master cleared and then exchanged out, the pending 
interrupt bits are retained.  This is done so that the maximum amount of
information about the process is available.  A second exchange sequence
can retrieve this information.
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If an exchange occurs and the program is in monitor mode, the monitor 
needs to save the B registers, T registers, shared registers, and vector (V)
registers.  If the vector not used (VNU) bit is a 1, the V registers do not
need to be saved.  If the exchange is to another user job, it is up to the user
to save the register values.

Four conditions cause an exchange sequence:

• Deadstart sequence (SIPI)
• Interrupt flag set (F register)
• Program exit (004000, 000000 instruction)
• Hardware error causing a flag to set, which causes an exchange

SIPI

A CRAY T90 series system does not use a deadstart signal or command. 
Instead, the system uses a Set Interprocessor Interrupt (SIPI) signal, via
a 0014j1 instruction [send inter-CPU interrupt to CPU (Aj)]. On an 
initial deadstart, a CPU loop controller function of 768 issued by the
maintenance channel will also start an exchange.

The following list describes the sequence of events that occur when you
invoke the Mainframe Maintenance Environment (MME):

• Set CPU MC.

• Load data to memory address 0 via the maintenance channel.

• Issue a loop controller function of 1768 via the maintenance channel
to allow CPU maintenance instructions.

• Issue a loop controller function of 1418 via the maintenance channel
to allow CPU instruction exchange and halt.

The exchange package at location 0 goes into the CPU, and
what was in the CPU goes to location 0.  There is no fetch
after this exchange.

• Drop CPU Master Clear via the maintenance channel.
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• Issue the loop controller function of 768 via the maintenance
channel.

The dropping of CPU Master Clear works as an enable; the
function 768 must be present along with the Master Clear
signal for the exchange to occur.

• Interrupted CPU exchanges to address 0, a fetch is done and issue
starts.

From this point, the initially started CPU could issue SIPI commands to
the other CPUs.

Interrupt Flag Set

In the CRAY T90 series system, each interrupt flag has an enable interrupt
mode bit.  The interrupt modes are enabled by the enabled interrupt mode
(EIM) flag; an exchange to non-monitor mode sets the EIM flag.

An exchange to monitor mode clears the EIM flag.  While the program is
in monitor mode, a 001302 instruction sets the EIM flag, and an 001303
instruction clears the EIM flag.

Each CPU has an EIM flag.  In monitor mode, the EIM flag is cleared and
all interrupt modes are disabled, except enable flag on normal exit (FNX),
enable flag on error exit (FEX), and enable interrupt on program range
error (IPR); this provides a stable environment within monitor mode
immediately following an exchange.

Program Exit

Program exit occurs following the decode of instructions 000000
and 004000.  Instruction 000000 is an error exit instruction, and
instruction 004000 is a normal exit.
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Exchange Sequence

Before a CPU can perform an exchange, the CPU must first finish all
active instructions.  If a test and set instruction (0034jk) is in the next
instruction parcel (NIP) or entering the current instruction parcel (CIP),
the program (P) register is decremented by 2, or by 1 if the test and set
instruction is in the CIP or NIP.  The JA option transmits a signal to the
BT options that decrements the P register before it is loaded into memory.
The JA then waits until the condition is resolved to advance P.  Memory
must also be quiet, and all memory writes must be complete.

The processor that is performing the exchange clears out the buffer valid
bits and buffer counter.  Clearing the buffer valid bits causes a fetch to
occur after the exchange has completed.  Clearing the instruction buffer
address register (IBAR) counter causes the data that was fetched from
memory to be loaded into instruction buffer 0 first.  Also, issuing a 0051jk
instruction clears the buffer valid bits.  The 0051jk is a maintenance
instruction that loads the P register from Bjk and invalidates the
instruction buffers if the CPU is in maintenance mode (MM).

Exchange Package Descriptions

Refer to Figure 96 for an illustration of the exchange package.  The
exchange parameters are located on two options:  HD000 and HD001.
HD000 handles bits 0 through 31 for words 0 through 17, and HD001
handles bits 32 through 63 for words 0 through 17.
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P register – program register, word 10 bits 0 through 31

The P register contains 32 bits, the lower 2 bits of which are
used for parcel selects.  The P register contains bits –2 through
29, which allow 1 gigaword of memory to be addressed.

Modes – MM, BDM, ESL, TRI, SCE, BDD, word 11, bits 0 through 31

Refer to Table 30 for a list of the bit assignments for the
modes field.  The modes tell the program what it can or cannot
do, thereby determining what effect the instructions issued
will have on the program.

Table 30.  Modes Register Bit Assignments

Word
Binary

Exponent Acronym Description

11 5 BDD Bidirectional memory disable –– When BDD is set to a 1, bidirec-
tional block reads and writes are disabled.

11 4 SCE Scalar cache enabled –– If SCE is set to a 1, onboard scalar
cache is enabled.

11 3 TRI Triton mode –– The Triton mode allows the new instruction to run
in the CRAY T90 series system.  If the Triton mode bit equals a 0,
then the instruction will run only CRAY C90 instructions.

11 2 ESL Enable second vector logical –– If ESL is set and any 140ijk
through 145ijk instructions issue, the instruction is routed to the
second vector logical unit.  If ESL = 0, the second vector logical
unit is not used.  The second vector logical unit is used before the
full vector logical unit if a choice exists.

11 1 BDM Bidirection memory –– When BDM is set, block reads and writes
may occur concurrently.

11 0 MM Monitor mode ––  Certain instructions are privileged to MM:  con-
trolling the channel, setting the real-time clock, setting the pro-
grammable clock, and so on.  These instructions perform special-
ized functions that are useful to the operating system.  If an MM
instruction issues while the CPU is not in MM, it is treated as a
no-operation instruction.  If an MM instruction issues while the IMI
flag is set, the MII flag sets, which causes an exchange.
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Status – VNU, FPS, WS, PS, word 12, bits 0 through 3

Refer to Table 31 for a list of the bit assignments for the status
field. The status register reflects the condition of the CPU at
the time of an exchange.  The bits in the status field are set
during program execution and are not user selectable.

Table 31.  Status Register Bit Assignments

Word
Binary

Exponent Acronym Description

12 3 VNU Vectors not used  –– After a program has been exchanged into
memory, the B and T registers must be saved as well as the SB,
ST, and SM registers of the cluster that the program is using.  If
the VNU bit is equal to 1, then this indicates that the vector regis-
ters were not used so the vector registers do not need to be
saved.  However, if the VNU bit is 0, then the vector registers must
be saved as well.  The VNU bit is set when a 077xxx or a 140
through 177xxx instruction issues.

12 2 FPS Floating-point status –– A floating-point error sets the FPS flag
regardless of the state of the floating-point error flag (FPE).  The
FPE flag sets when an underflow or overflow condition exists in
the floating-point functional units.

The FPS bit is cleared whenever the interrupt on floating-point er-
ror (IFP) mode bit is set or cleared by a 002100 or 002200 instruc-
tion.The FPS bit is also cleared when the bit matrix loaded (BML)
flag is cleared; the BML flag is cleared when a 002210 instruction
issues.

12 1 WS Waiting on semaphore –– The WS bit sets when a 0034jk instruc-
tion is in CIP and holding issue.

12 0 BML Bit matrix loaded –– The BML bit indicates the Bt (B transposed)
registers have been successfully loaded by a 1740j4 instruction.
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Interrupt modes, word 11, bits 15 through 31

Refer to Table 32 for a list of the bit assignments for the
interrupt modes field in the exchange package.  All modes
except IPR, FEX, and FNX must be enabled by the EIM flag
to be effective.  The EIM flag sets on an exchange to
nonmonitor mode and clears on an exchange to monitor mode.
The EIM flag enables interrupt modes if set.

The EIM bit can be set or cleared by a 001302 or a 001303
instruction, respectively.

Table 32.  Interrupt Modes Register Bit Assignments

Word
Binary

Exponent Acronym Description

11 31 IRP Interrupt on Register Parity Error

11 30 IUM Interrupt on Uncorrectable Memory Error

11 29 IFP Interrupt on Floating-point Error

11 28 IOR Interrupt on Operand Range Error

11 27 IPR Interrupt on Program Range Error

11 26 FEX Enable Flag on Error Exit (does not disable
exchange)

11 25 IBP Interrupt on Breakpoint

11 24 ICM Interrupt on Correctable Memory Error

11 23 IMC Interrupt on MCU Interrupt

11 22 IRT Interrupt on Real-time Interrupt

11 21 IIP Interrupt on Interprocessor Interrupt

11 20 IIO Interrupt on I/O

11 19 IPC Interrupt on Programmable Clock

11 18 IDL Interrupt on Deadlock

11 17 IMI Interrupt on 001jk�0 or 033 instruction

11 16 FNX Enable Flag on Normal Exit (does not disable
exchange)

11 15 IAM Interrupt on Address Multiply Range Error
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Interrupt flags, word 12, bits 15 through 31

Refer to Table 33 for a list of the bit assignments for the
interrupt flags field in the exchange package.

Table 33.  Flag Register Bit Assignments

Word
Binary

Exponent Acronym Description

12 31 RPE Register Parity Error

12 30 MEU Uncorrectable Memory Error

12 29 FPE Floating-point Error

12 28 ORE Operand Range Error

12 27 PRE Program Range Error

12 26 EEX Error Exit (000 issued)

12 25 BPI Breakpoint Interrupt

12 24 MEC Correctable Memory Error

12 23 MCU MCU Interrupt

12 22 RTI Real-time Interrupt

12 21 ICP Interrupt from Internal CPU

12 20 IOI I/O Interrupt (if IIO and SIE)�

12 19 PCI Programmable Clock Interrupt

12 18 DL Deadlock Interrupt

12 17 MII 001jk�0 or 033 Instruction Interrupt (if IMI
and not MM)

12 16 NEX Normal Exit (004 issued)

12 15 AMI Address Multiply Interrupt

� SIE = System I/O interrupt enabled.
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Miscellaneous registers

Table 34 lists the bit assignments for the CLN, PPN, VL, EA,
and XA registers.

Table 34.  Miscellaneous Register Bit Assignments

Word
Binary

Exponent Acronym Description

13 24 – 31 CLN Cluster number –– The CLN contains a 8-bit field.  There are up to
368 clusters in the system, depending on the system configuration.

13 16 – 22 PPN Processor number –– The contents of the 7-bit field in the exchange
packages show the logical number of the CPU in which the exchange
was executed.  The maximum number is 127.

13 0 – 7 VL Vector length –– The VL register holds the content of the VL register.
The 8-bit field contains the number of elements to be operated on in
the vector register.  In a CRAY T90 series system, if VL = 000 or VL =
200, all 2008 vector elements are used within the vector register.

15, 16,
17

0 – 31 EA Exit address –– Each of the five 16-bit fields specifies the starting ad-
dress of a 32-word exchange package.  The k field of the 0040jk
instruction specifies the exchange package to use.  Only k fields
equal to 0 through 4 are valid; if an invalid value is used, the exchange
is to the XA address.  Exit Address (EA) 0 is expected to be used for
normal exits to maintain compatibility with existing systems.

Each EA field contains only bits 5 through 20.  The lower bits are as-
sumed to be 0’s.

17 16 – 31 XA Exchange address –– The 16-bit field specifies the address of the
first word of the next exchange package.  This exchange package
is loaded when any one of the following conditions occurs:

�  An interrupt occurs that sets any of the following flags:  RPE,
MEU, FPE, OPR, BPI, MEC, MCU, RTI, ICP, IOI, PCI, DL, MII,
NEX, or AMI

�  A 000 is issued

�  A 0040jk is issued with k being an illegal value (5, 6, or 7)

The XA field contains only bits 5 through 20.  The lower bits are
assumed to be 0’s.
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LATS – Words 0 through 17.  Refer to the exchange package diagram for
bit layouts.

Each LAT has four associated fields; Table 35 identifies those
fields.

Table 35.  LAT Fields

Field Name Description

Logical Base First logical address of this LAT

Logical Limit Last address +1 of this LAT

Physical Bias Physical bias = Physical base address – Logical base address

Modes The controlling bits for each LAT
R(ead), W(rite), X(ecute), C(achable), D(irty)

The use of LATs allows programs to share memory space.  For example,
two user jobs could reference the same library routine in memory while
keeping their local code private.
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REAL-TIME CLOCK
PROGRAMMABLE CLOCK INTERRUPT
STATUS REGISTER
PERFORMANCE MONITOR

Refer to the following subsections for information about the real-time
clock, programmable clock interrupt, status register, and the performance
monitor.

Real-time Clock 

A CRAY T90 series computer system contains one 64-bit real-time clock
(RTC) per central processing unit (CPU).  The RTC is synchronized when
a CPU issues a 0014j0 instruction.  The 0014j0 instruction causes all
CPUs in the same cluster to be loaded with the contents of Sj.  The RTC is
located on two HD options, each of which handles 32 bits.  The HD000
option handles bits 0 through 31; the HD001 option handles bits 32
through 63.

HD000 will detect a carry, out of the RTC, at a count of 37777777776
during normal operation.  HD001 then increments the upper bits during
the next clock period, and HD000 suppresses any toggles.

The RTC is incremented once every clock period.  The RTC allows for
clock-period timing of program execution.  When the machine is
deadstarted, the RTC must be loaded in order to synchronize all the CPUs.
If they are not synchronized, each CPU will have a different RTC value.

Writing to the RTC with the 0014j0 instruction sends a copy of the Sj
register from the CPU issuing the instruction to all RTC registers via the
issue paths of the shared registers.  Reading the RTC with a 072i00
instruction copies the RTC register of the CPU that issued the 072i00
instruction into the scalar registers.

Refer to Figure 97 for an RTC and programmable clock interrupt (PCI)
block diagram.
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Figure 97.  RTC and PCI Block Diagram

Programmable Clock

Each CPU has one programmable clock (PC), which is a 32-bit counter.
The programmable clock decrements every clock period; the clock is
located on the HD000 option.

The programmable clock is loaded by the 0014j4 instruction when the
program is in monitor mode.  When the programmable clock equals zero,
an interrupt request (PCI) is generated.  To generate a PCI, the IPC mode
bit must be set.  In user mode, IPC must have been set in the user’s
exchange package.  If the CPU is in monitor mode, either IPC was set in
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the monitor’s exchange package, or a 001406 instruction was issued.  The
interrupt request remains set until a 001405 instruction clears it.  If the
CPU is in monitor mode, and if the interrupt request is not desired, use a
001407 instruction to disable the IPC mode bit.

The PCI request is enabled and disabled on the HD option, which contains
the exchange parameters.

RTC and PC Instructions

Refer to Table 36 for a list of the RTC and PC instructions.

Table 36.  RTC and PC Instructions

Instruction CAL Description

0014j0 � RT Sj Enter RTC register with Sj

072i00 Si RT Transmit RTC to Si

0014j4 � PCI Sj Transmit Sj to programmable clock

001405 � CCI Clear PCI request

001406 � ECI Enable PCI request

001407 � DCI Disable PCI request

� Monitor mode instruction.

Performance Monitor

The performance monitor (PM) is normally used to monitor software
performance.  With the results of the performance monitor, a programmer
can determine how efficiently a program is running in the system.  If, for
example, the program is performing too many instruction fetches or too
many hold issue conditions are occurring, the programmer can review the
program structure and modify it to minimize these occurrences.

Each CPU contains a performance monitor; because each CPU is
identical, all references in this section pertain to a single CPU.  Each CPU
contains 32 performance counters and each counter is 48 bits wide.
Table 37 shows which event each counter monitors.  Each counter
increments each time a particular event occurs in the CPU while the CPU
is in nonmonitor mode (IMI bit is not set).  The counters related to
memory references may be incremented by as many as eight times per
clock period (CP).  Counters related to vector operations are incremented
by the value in the vector length register at the time the instruction issues.
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Table 37.  Performance Monitor

Counter Event Monitored Instructions Increments

Number of:

0 Clock periods monitored +1

1 Instructions issued +1
2 Clock periods holding issue +1
3 Instruction fetches +1
4 CPU memory references (ports A, B, C) +8
5 Clock periods for references (ports A, B,C) +2047
6 I/O memory references (port D, I/O only) +2
7 Cache misses +1

Holding issue on:

10 A registers and access conflicts +1
11 S registers and access conflicts +1
12 V registers +1
13 B/T registers +1
14 Functional units +1
15 Shared registers +1
16 Memory ports +1
17 Number of cache hits +1

Number of instructions:

20 Instructions 000000 through 004000 000 – 004 +1
21 Branches 005 – 017 +1
22 Address instructions 02x, 030 – 033, EIS 042 – 057

,073i20, 073i30
+1

23 B/T memory instructions 034 – 037 +1
24 Scalar instructions 040 – 043, 071 – 077 except

073i20, 073i30
+1

25 Scalar integer instructions 044 – 061, 070ij6 +1
26 Scalar floating-point instructions 062 – 070 +1
27 S/A memory instructions 10x – 13x +1

Number of operations:

30 Vector logical 070ij1, 140 – 147, 
1740j4 – 1740j6, 175

+VL

31 Vector shifts, pop., leading zero 150 – 153, 174xx (1 – 3) +VL
32 Vector integer adds 154 – 157 +VL
33 Vector floating-point multiplies 160 – 167 +VL
34 Vector floating-point adds 170 – 173 +VL
35 Vector floating-point reciprocals 174xx0 +VL
36 Vector memory reads 176 +VL
37 Vector memory writes 177 +VL
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Performance Monitor Instructions

Table 38 lists all the instructions associated with the performance monitor.

Table 38.  Performance Monitor Instructions

Instruction CAL Description

001500 Clear all performance counters

073ij1 Si SRj Transmit (SRj) to Si (monitor mode only for 
j = 2 – 7)

073i05 SR0 Si Transmit (Si) bits 48 – 52 to SR0

073i25 SR2 Si Advance performance monitor pointer

073i75 SR7 Si Transmit (Si) to maintenance channel

Clearing the Performance Counters

Instruction 001500 clears all performance counters.  This instruction must
be issued while the CPU is in monitor mode in order for the instruction to
operate correctly.

Reading the Performance Monitor

The performance monitor is read with the 073i21 and 073i31 instructions.
Each counter is read 48 bits at a time and requires that two instructions be
issued to read all the counters.  The 48 bits of the counter read are stored
in the Si register.  When the 073i21 instruction is issued, counters 0
through 17 are sent to Si.  The 073i31 instruction, when issued, reads
counters 20 through 37 and sends the bits to Si.

The system hardware requires a minimum of 3 CPs between issuing
073ix1 instructions.  Also, the PM Busy Status (PMBY) bit (bit 47 of
SR0) must be cleared before reading the counters.  If the 3-CP wait is not
written into the program, an undeterminable corruption of performance
monitor data occurs.
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Performance Monitor Block Diagram

Refer to Figure 98 for the performance monitor block diagram.  The
performance monitor is composed of the HF000, HD000, and HD001
options.  The HF000 option contains the lower bits (0 through 31) and the
HD000 and HD001 options contain the upper bits (32 through 47) for all
32 counters; there is one counter for each event tracked by the
performance monitor.  These 48-bit counters are incremented as each
event occurs, as long as the CPU is not in monitor mode.

Status Register

A CRAY T90 series computer system has eight status registers, which are
located on the HD and HF options.  The status registers are no longer part
of the exchange package as they were in previous systems.  Figure 99
shows the status register format and bit assignments of each register.  The
status registers are read by the 073ij1 instruction.
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Figure 99.  Status Registers
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The eight status registers are further defined in Table 39 through Table 43.

Status register 0 (SR0) shows the status of several bits in the active
exchange package.

Table 39.  Status Register (SR0)

Bits Name Description

63 CLN≠0 Cluster number not equal to zero

57 BML Bit matrix loaded

52 IBP � Interrupt on breakpoint

51 FPS � Floating-point status

50 IFP � Interrupt on floating-point error

49 IOR � Interrupt on operand range error

48 BDM � Bidirectional memory

47 PMBY Performance monitor busy

40 through 43 PN Processor number

32 through 39 CLN Cluster number

� Designates that this was written by a 073i05 instruction.  All other bits of SR0 
are read-only.

Status register 1 (SR1) is not defined.

Status register 2 (SR2) bits 0 through 47 are bits of the performance
monitor counters 0 through 17.

Status register 3 (SR3) bits 0 through 47 are bits of the performance
monitor counters 20 through 37.

Status register 4 (SR4) bits are shown in Table 40.  SR4 contains the
correctable and uncorrectable memory error flags, port bits, and read
mode bits.  The error information stored in SR4 is latched into the register
and held until the register is read.  Once SR4 is read, the register is
cleared, and new error data can be stored in the register.  If multiple errors
occur, only the first error is held in SR4.  Bits 32 through 45 define the
destination code associated with the error.  Table 40 is a decode of these
destination bits.
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Table 40.  Status Register 4 (SR4)

Bits Name Description

47 UME Uncorrectable memory error

46 CME Correctable memory error

32 through 45 CODE Destination code (refer to Table 41)

Table 41.  Destination Codes

Destination

Bit

Destination 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cache read 1 1 1 – Word

V register read 1 1 0 Register – Element

S register read 1 0 1 Register 0 –

A register read 1 0 1 Register 1 –

T register read 1 0 0 – 0 – Register

B register read 1 0 0 – 1 – Register

Fetch read 0 1 1 Group Word

I/O read 0 1 0 Type Word

Exchange read 0 0 1 – Word

I/O write 0 0 0 Type 1

Processor write 0 0 0 – 0 1 0 A/S

Reconfigure 0 0 0 – 1 1 0 –

Memory error 0 0 0 – 0 0 0 –

Status register 5 (SR5) bits 32 through 43 contain the syndrome code of
the memory error.  The information is held until the status register is read.

Status register 6 (SR6) bits 32 through 44 contain the error address for the
memory error.  These bits are latched into the SR6 on a memory error.
The information is held until the status register is read.

Status register 7 (SR7) contains information on LAT faults, register parity
errors (RPE), and shared register errors (SRRE).  Bits 48 through 54
contain an LAT miss flag for each memory port.  Bits 55 through 61
contain an LAT multiple-hit flag for each memory port.  Bit 47 is the RPE
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flag.  If this bit sets, then bits 32 through 43 contain the chip number.  Bit
46 is the SRRE flag and, if this flag is set, bits 24 through 31 contain the
chip number.

Table 42.  Status Register 7 Bit Definitions 

Bits Name Description

48 through 54 LAT fault LAT miss

55 through 61 LAT fault Multiple LAT hit

46 SRRE Shared register read error

24 through 31 Shared register chip number

47 RPE Register parity error

32 through 43 RPE chip number

Table 43.  Register Parity Error Code 

Octal Option Description

001 000 VR0 Vector register V0 pipe 0

001 001 VR1 Vector register V1 pipe 0

001 010 VR2 Vector register V2 pipe 0

001 011 VR3 Vector register V3 pipe 0

001 100 VR4 Vector register V4 pipe 0

001 101 VR5 Vector register V5 pipe 0

001 110 VR6 Vector register V6 pipe 0

001 111 VR7 Vector register V7 pipe 0

010 000 VR8 Vector register V0 pipe 1

010 001 VR9 Vector register V1 pipe 1

010 010 VR10 Vector register V2 pipe 1

010 011 VR11 Vector register V3 pipe 1

010 100 VR12 Vector register V4 pipe 1

010 101 VR13 Vector register V5 pipe 1

010 110 VR14 Vector register V6 pipe 1

010 111 VR15 Vector register V7 pipe 1

011 000 CH0 Data cache bits 0 – 3, 32 – 35  Sect. 0,1,6,7

011 001 CH1 Data cache bits 0 – 3, 32 – 35  Sect. 2,3,4,5

011 010 CH2 Data cache bits 4 – 7, 36 – 39  Sect. 0,1,6,7
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Table 43.  Register Parity Error Code (continued)

Octal DescriptionOption

011 011 CH3 Data cache bits 4 – 7, 36 – 39  Sect. 2,3,4,5

011 100 CH4 Data cache bits 8 – 11, 40 – 43  Sect. 0,1,6,7

011 101 CH5 Data cache bits 8 – 11, 40 – 43  Sect. 2,3,4,5

011 110 CH6 Data cache bits 12 – 15, 44 – 47  Sect. 0,1,6,7

011 111 CH7 Data cache bits 12 – 15, 44 – 47  Sect. 2,3,4,5

100 000 CH8 Data cache bits 16 – 19, 48 – 51  Sect. 0,1,6,7

100 001 CH9 Data cache bits 16 – 19, 48 – 51  Sect. 2,3,4,5

100 010 CH10 Data cache bits 20 – 23, 52 – 55  Sect. 0,1,6,7

100 011 CH11 Data cache bits 20 – 23, 52 – 55  Sect. 2,3,4,5

100 100 CH12 Data cache bits 24 – 27, 56 – 59  Sect. 0,1,6,7

100 101 CH13 Data cache bits 24 – 27, 56 – 59  Sect. 2,3,4,5

100 110 CH14 Data cache bits 28 – 31, 60 – 63  Sect. 0,1,6,7

100 111 CH15 Data cache bits 28 – 31, 60 – 63  Sect. 2,3,4,5

101 000 IC0 Instruction buffer bits 0 – 7, 32 – 39

101 001 IC1 Instruction buffer bits 8 – 15, 40 – 47

101 010 IC2 Instruction buffer bits 16 – 23, 48 – 55

101 011 IC3 Instruction buffer bits 24 – 31, 56 – 63

110 000 BT0 B and T register bits 0 – 15, 32 – 47

110 001 BT1 B and T register bits 16 – 31, 48 – 63

110 010 HM0 Test-point buffer and logic monitor

110 011 HM1 Test-point buffer and logic monitor
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SCALAR CACHE

Each CPU has a scalar data cache.  The cache accelerates common
memory data access for address register and scalar register read requests.
Only address and scalar registers can access the cache.

The data cache has the following features:

• The cache is organized into 8 pages of data.  Each page contains 8
lines of 16 words, thus providing 1,024 words of data in the cache.
Figure 100 illustrates the logical layout of the cache.

• Cache is parity protected; each 8-bit byte has an associated parity bit.
If enabled, a parity error on a cache read will cause an interrupt.

• When an A or S register memory reference is made, one of two
things may occur:  a cache hit or a cache miss.

• A and S register store requests are write-through.  The cache word
will be updated if there is a hit; if a miss occurs, no cache lines are
written.

• B, T, and V register store requests cause corresponding cache lines to
be set invalid on a cache hit.  Store requests on a cache miss have no
effect on the cache.  B, T, and V register load requests also have no
effect on the cache.

Cache Hit

A cache hit is determined using logical addresses, not physical addresses.
A cache hit occurs when the following conditions are met:

• A valid page address consisting of address bits 7 through 39, held
within the cache, matches the corresponding address bits of a
memory request.

• The cache line indicated by bits 4 through 6 of the requesting address
is valid within the cache.
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Page 1
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Page 0
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Figure 100.  Cache Layout

Cache Miss

A cache miss occurs when a read request from an A or S register does not
match a page address.  When this occurs, the requested word is read from
memory and loaded into the appropriate A or S register. The requested
word and the next 15 consecutive memory addresses are loaded into
cache.  As the new requested line returns from memory, the new page
address and cache line are set valid.

Another type of miss occurs when a memory reference matches the page
but not any line in the page, or the page is not valid.  When this occurs, 16
sequential words are requested from memory, and the line is set valid.
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Cache Addressing

Figure 101 shows how memory addresses are used to determine a cache
hit or miss.

Word Select

39 9 6

Bank Select
Subsection

Select Section Select

5 3 2 0

Cache Page Cache Line Cache Word

8

Memory Address

Cache Address

7 4 Bits

Figure 101.  Memory Addresses

Potential Cache Problems

Because no communication occurs between caches in different CPUs, the
following problem can arise:  Two or more CPUs can have data in their
respective caches from the same physical address in memory, and one of
the CPUs can write data to that memory address.  The CPU that wrote the
data will update its cache, and the other CPUs will contain old data.  This
problem can be managed in several ways:

• There are load instructions that bypass cache.  These instructions
cause the cache line to be invalidated on a cache hit.

• LATs can be set up to define areas of memory that are not cache
enabled.

• If the SCE (scalar cache enable) bit is not set in the exchange
package, it will prevent the use of cache for that job.

Another problem that can occur is when you go through memory with a
stride value of 128; this causes memory to thrash.  A stride of 128 will use
1 word of 1 line from each cache page; then when you start replacing
lines, you will get 16 words back from memory to cache but will be using
only 1 word.  This problem can be avoided by redesigning user code.
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CH Option

There are 16 CH options; these options contain all of the cache memory
RAMs.  The even-numbered CHs hold data from memory sections 0, 1, 6,
and 7; the odd-numbered CHs hold data from memory sections 2, 3, 4,
and 5.

On a memory write, each CH writes 4 bits to all memory sections.
Table 44 shows the bits per option.

Table 44.  CH Option Bits

CH000 CH002 CH004 CH006 CH008 CH010 CH012 CH014

Read Data
Sect 0,1,6,7

0 – 3
32 – 35

4 – 7
36 – 39

8 – 11
40 – 43

12 – 15
44 – 47

16 – 19
48 – 51

20 – 23
52 – 55

24 – 27
56 – 59

28 – 31
60 – 63

Write Data
Sect. 0 – 7

0 – 3
CB 0

4 – 7
CB 1

8 – 11
CB 2

12 – 15
CB 3

16 – 19
CB 4

20 – 23
CB 5

24 – 27
CB 6

28 – 31
CB 7

CH001 CH003 CH005 CH007 CH009 CH011 CH013 CH015

Read Data
Sect 2,3,4, 5

0 – 3
32 – 35

4 – 7
36 – 39

8 – 11
40 – 43

12 – 15
44 – 47

16 – 19
48 – 51

20 – 23
52 – 55

24 – 27
56 – 59

28 – 31
60 – 63

Write Data
Sect. 0 – 7

32 – 35
CB 8

36 – 39
CB 9

40 – 43
CB 10

44 – 47
CB 11

48 – 51 52 – 55 56 – 59 60 – 63

Scalar Cache Instructions

Refer to Table 45 for a list of the scalar cache instructions.

Table 45.  Scalar Cache Instructions

Instruction CAL Description

002501 ESC Enable scalar cache

002601 DSC Disable and invalidate scalar cache

10hi20mn Ai exp,Ah,BC Load Ai from ((Ah)+exp) bypassing data cache and invalidating
cache line

10hi60pmn Ai exp,Ah,BC Load Ai from ((Ah)+exp) bypassing data cache and invalidating
cache line

12hi20mn Si exp,Ah,BC Load Si from ((Ah)+exp) bypassing data cache and invalidating
cache line

12hi60pmn Si exp,Ah,BC Load Si from ((Ah)+exp) bypassing data cache and invalidating
cache line
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