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CP02 MODULE

CPO02 General Description

HTM-003-A

The CP02 module contains the central processing unit (CPU) for the
CRAY T90 series computer systems. There is one CPU per CP02 module.
The CRAY T90 series CPU is compatible with the CRAY C90 series

CPU. This means that code compiled on the CRAY C90 series system

will run on a CRAY T90 series system.

There have been many enhancements to the CRAY T90 series CPU and
several new instructions added to increase the performance. Figure 1
illustrates CP module components. Figure 2 and Figure 3 show the basic
functions and locations of all options on a CP module. Figure 4 shows a
block diagram of the CPU.

The CP modules are arranged in stacks in the system. A CRAY T94
system contains one stack of as many as four modules. A CRAY T916
systems contains up to two stacks of as many as eight modules. A
CRAY T932 system contains up to four stacks of as many as 8 modules.

Each module in a stack is independent of the other CP modules in the
stack; there are no interconnections between modules in a stack. The CP
modules connect directly with either the memory modules, as in the
CRAY T94 system, or with the system interconnect board (SIB), as in
larger systems.
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CP0O2 Module CPU

Module Assembly Components

Refer to Figure 1 for an illustration of the CP module assembly
components. This illustration is provided to show the basic components
that are part of all mainframe modules. Sizes of various components
differ between modules.

A Flow Block, Board 1 H  Fiber-optic Coupler
B  Optical Receiver I Flow Block, Board 2
C PC Board Edge Shim J  PC Logic Board 2

D Maintenance Connector Flex Assembly K Outer Rail

E  Fiber-optic Spool Assembly L  Inner Rail

F  Voltage Regulator Board Assembly M  PC Logic Board 1
G

Maintenance Connector

Figure 1. CP Module Assembly Components
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Figure 2. Option Layout Board 1
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CP02 Module CPU
CP02 Module Board 2
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CPU CP02 Module
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B77 A Vector -
(AO) I Length Multlply
P Add
. | Address
: _| Functional
@J ™ units
A
—.El:k__‘ To A Registers < »| Shared Resources
+1 1/0O Status and Control
+3 . SB and ST Registers
+4 To S Registers <—3 Semaphores
Instruction
Buffers
Y —
1 NIP | i CIP I
‘E—»} Execution
LIP1 |[—>
0
37
Figure 4. CPU Block Diagram
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ADDRESS AND SCALAR REGISTERS

The address and scalar registers are located on the same options. The
following subsections describe the address and scalar registers.

Address Registers

HTM-003-A

The address and scalar registers are contained on eight options: one AR
option, three AS options, two AT options, and two AU options. Each
CRAY T90 series CPU contains eight address registers designated A0
through A7. Each register is 64 bits wide (32 bits in C90 mode) and
performs the following functions:

* Determines addresses for memory references

* Provides memory reference indexing

*  Provides loop control

e Determines shift counts

* Provides I/O channel set-up

e Determines I/O channel status

* Receives results from scalar leading zero and pop count

* Determines vector length

* Provides an exchange address (monitor mode only)

* Provides an index for shared registers and B and T instructions
* Provides operands and results for address add and address multiply
* Transfers data to and from scalar registers

* Provides integer-to-floating-point conversion

As shown in Figure 5, the AR000, AS000, AS001, AS002, AT000,

AT001, AUO0O0O, and AU0O1 options each contain an 8-bit slice of the
address registers. Figure 5 also illustrates the input and output data paths
for the address and scalar registers.

Cray Research Proprietary 7



Address and Scalar Registers CPU

AU001
Bits 56 — 63
AU000
Bits 48 — 55
ATO001
Bits 40 — 47
AT000
Bits 32 — 39
AS002
Bits 24 — 31
AS001
Bits 16 — 23
AS000
Bits 8 — 15
ARO000
Bits0 -7 . .
Floating-point Add
Address Multiply Results  |IAA — IAH OAA — OAH Operand (S
(AN) Py ey perand (5) > (FA, FB)
Floating-point Add
(HD) Shared Data IBA — IBH OBA—_OBH Operand (SK) .
Constant Data ICA-ICH Floating-point Multiply '
(IA) OCA - OCH__Operand (S)) - (NB)
BT B/T Register Data IDA — IDH Floating-point Multiply
. . - @) d (SK
Floating-point Add Results IEA — IEH ODA — ODH perand (SK) > (NA)
(FA) CM Address to Vector
Floating-point OEA—OEH Pipe 0 » (VM, VR)
(ND) Multiply Results IFA - IFH CM Address to Vector
OEI-OEP __ Pipel -
Floating-point Reciprocal > (VM, VR)
Approximation Results IGA —IGH OFA — OFH  Sjto Shift, Pop/Parity/LZ/VM
(RA) . prale™ 9
Shift Data, VM IHA — IHH — i i i
(SS) - OFl — OFP  Ajto Shift, Pop/Parlty/LZ/VM: (SS)
; Address Multiply
Vj (Even) Data to Scalar IIA —IIH
(VR) L(Even) > OGA—OGH Operand (A) -
Vj (Odd) Data to Scalar H—1Ip Address Multiply
VR) OHA — OHH Operand (AK) - (AN
c Common Memory Path1  1JA—1JH _ > (AN)
(CH) OIA—OIH  Aito Shared Data Path
Common Memory Path 2 IKA — IKH > (HD)
(CH) OJA-OJH Aito BIT Registers and CM __
BMM ISA — ISH > (BT)
©A) OMA — OMH Ah Address to CM Port E
> (CD)
ONA - ONH Constant Data to CM Port E
» (CD)
OPA - OPG Akto Vector Control
> (VA)
OQA -OQH Akto Scalar Shift Count
Q Q > (SS)

Figure 5. Address and Scalar Register Data Paths
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CPU Address and Scalar Registers

Entry Codes

As part of the instruction decode on the JA option, the JA option sends an
A/S entry code to the A/S register options; this code generates the control
necessary to complete the operations. The operand data is then
transmitted to the appropriate resources, and a destination delay chain is
entered on the option. Refer to Table 1 for the address/scalar (A/S)
register entry codes and to Figure 6 for an illustration of the A/S control
terms.

Table 1. A/S Register Entry Codes

Entry Code Instruction
0 020/ Constants
1 023j0 Sj
2 0231 VL data
3 024ijk B data
4 030,031jk Add
5 0264 (0 — 3), 027/ (0 — 1) pop/par/lz
6 032ijk A multiply
7 022ijk, 04 (2 — 3) jkimask data
10 N/A
11 073i(2-3)0 VM data
12 N/A
13 N/A
14 04 (4 - 7) ijk, 05 (0 — 1) jjk Logical
15 N/A
16 05 (2 - 5) ijk, 05 (6 — 7) ijk Shift
17 N/A

HTM-003-A Cray Research Proprietary 9



Address and Scalar Registers CPU
AR000
A/S Register Read-out Code ILA—ILB _| AS000
(JAO0O) g > AS001
(JA00O) Enter CPU VL ILC - AS002
Go 071/(0,1,2)k ILD
(JA000) ( ) >
Pop/Parity/LZ (ARO0O Onl IMA — IMG
(ss000) 2oR/ParyLe ( ) >
AJS Register Entry Code INA — INC
(JA000) 4o b >
A/S E Vali I0A — 10D
(JA000) /S Entry Code Valid (®) (@) -
(JA00O) A/S Entry Code Valid I0A — 10D -
i, J, k, h Dat IPA —IPL
(3A000) 22 a2 >
(VR) Memory Path 1 Read Code IQA — IQE -
Memory Path 2 Read Code IRA—IRE _
(VR) >
(HDOOO) Shared Data Code IUA — IUE -
(HDOO1) Enter Exchange VL (AR00O Only) IVA
(Ic001) Exchange Active IVB
Ak Negative (32-bit Mode) IvC
(AS002) >
(AU0O1) Ak Negative (64-bit Mode) IVD
(VR004) Exchange Path 2 Select IVE -
Triton Mod IXA
(1C000) riton Mode -
AT000
AJ/S Register Read-out Code ILA—ILB _ | ATOO1
(JAOO1) 1 AUO0O
Enter CPU VL ILC
(3A001) | AU0OL
Go 071i(0,1,2)k ILD
(JA001) >
A/S Register Entry Code INA —INC
(JA001) >
A/S Entry Code Valid I0A — 10D
(JAOO1) >
A/S Entry Code Valid I0A - 10D
(JA001) >
i, j, k, h Data IPA — IPL
(JA001) >
M Path 1 R C 1QA — IQE
(VR) emory Pal ead Code 1Q Q -
M Path 2 R IRA — IRE
(VR) emory Pal ead Code -
Shared Data Code IUA — IUE
(HDOO01) >
Exch Acti IVB
(1C002) xchange Active -
(AS002) Ak Negative (32-bit Mode) IVC
(AUOOL) Ak Negative (64-bit Mode) IVD
Exchange Path 2 Select IVE
(VROO4) xchange Pa C
Triton Mod IXA
(Icoo1) riton Mode -
Figure 6. A/S Control Terms
Cray Research Proprietary HTM-003-A
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CPU

Address and Scalar Registers

A Register Memory References

Refer to Figure 7 for an A/S-register-to-memory block diagram. The
address registers write or read 1 word of memory per instruction. The B
registers provide intermediate storage for the address registers. B registers
perform memory block references that enable a group of operands to be
read from memory with one instruction. These operands are then used by
the A registers to generate results that are sent to the B registers and
block-stored to memory. Using the B registers as buffer storage is
advantageous because it takes fewer clock periods to do a block reference
than to issue several individual address or scalar references.

The A registers also have an access path to cache memory. This provides
access to common memory data without having to reference memory
directly. If the requested address resides in cactaglze hitis initiated

and the data is read from cache memory instead of common memory

Special Register Values

HTM-003-A

The AO register has special features that the other A registers do not have.
The AO register holds the starting address for all block transfers for the

B, T, and V registers and branch control. AO is the only register that can
be tested for equal-to-zero, not-equal-to-zero, positive, or negative
conditions using A0 conditional branch instructions. This register also has
a special feature for reading data.

If AO is specified as an operand in ting, or k field of an instruction, it

will not send the actual contents of the register. Instead, the register sends
a value of 0 if AO is used in theor hfield, or it sends a value of 1 if AO is
used in the field. If AO is used in théfield, the actual contents of the

AO register are sent.

Because the A registers in this system are now 64 bits wide, special Triton
mode instructions have been implemented. These instructions are part of
the extended instruction set (EIS). These instructions make the A registers
functionally equal to S registers and enable A registers to be shifted and
logical operations to be performed. To execute these instructions, an EIS
005400 instruction must precede the actual A register instruction. If a
Triton mode instruction is issued while the system is in C90 mode, the
results of the operation are undefined.

Cray Research Proprietary 11



Address and Scalar Registers

BT0O00
Bits 0 — 15, 32 - 47

B/T Registers

OAA — OAP,
OBA - OBP

CM Left
Read Data
ICA - ICP
iﬂﬂ- A
i CHO10 IEA — IEP
IFA—IFP
CHO008
CM Left
Read Data
Read Data -
CM Right
CHO001 ICA—ICP
CHO003
IDA — IDP
IFA — IFP
Read Data
CM Right

12

BTO01
Bits 16 — 31, 48 — 63

B/T Registers

OAA — OAP,
OBA - OBP

IDA — IDH

CPU

A/S Registers

IDA — IDH

AR000
AS000
AT000
ATO01

Figure 7. Memory to A/S-register Block Diagram

Cray Research Proprietary

AS001
AS002
AU000
AU001
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CPU Address and Scalar Registers

Scalar Registers

The CPU contains eight scalar registers that are designated SO through S7
and are 64 bits in length. The scalar registers are contained on the AR,
AS, AT, and AU options (refer again to Figure 5).

The scalar registers send operands to, and get results from, the scalar
functional units and the floating-point functional units. The functional
units perform integer and floating-point arithmetic as well as logical
operations. The scalar registers read and write central memory through
the T registers and also read and write the data cache. In addition, there
are paths to the vector registers, vector mask, real-time clock, status
register programmable clock interrupt, and the performance monitor

Instruction Issue

When an instruction issues, the scalar register receiving the data is
reserved until the result is latched in the register. If an instruction in the
current instruction parcel (CIP) register requires the reserved result
register, that CIP instruction holds issue until the register is available. The
SO0 register, however, is an exception. If the SO register is reserved as a
result register and is needed as aorSk operand in a following

instruction, no hold issue occurs because the SO register has special
register values as an operand.

The issue hardware also develops scalar functional unit codes. These
codes select the input terms to be gated from the proper functional unit
into the scalar register multiplexer.

S Register Memory References

The scalar registers write or read 1 word of memory per instruction. The

T registers provide intermediate storage for the scalar registers. T
registers can perform memory block references, enabling a group of
operands to be read from memory with one instruction. These operands
are then used by the scalar registers to generate results that can be sent to
the T registers and block-stored to memory. Using the T registers as

buffer storage is advantageous because it takes fewer clock periods to do a
block reference than to issue several individual scalar references.

The S registers also have an access path to cache memory. This provides
access to common memory data without having to reference memory
directly. If the requested address resides in cactaglae hitis initiated

and the data is read from cache instead of from common memory

HTM-003-A Cray Research Proprietary 13



Address and Scalar Registers CPU

Special Register Values

SO has special register values wheoiSX is used as an operand. When
thej field equals 0, the value sent out is 0, no matter what value is stored
in SO. When thé field is O, bit 63 is set to a 1.

Lower/Upper Scalar Register Load

It is possible to load either the lower- or upper-half of a scalar register
with a 32-bit quantity. The following four instructions load constants into
scalar registers.

e 04000nm S exp loads the quantitygminto the lower 32 bits of
register & The upper 32 bits are cleared.

e 04100nm S exp loads the one’s complementrohinto the lower
32 bits of registeriS The upper 32 bits are all 1's.

e 04G20nm S exp loads the quantityminto the lower 32 bits of
register & The upper 32 bits are unchanged.

e 04040nm S exp loads the quantityminto the upper 32 bits of
register & The lower 32 bits are unchanged.

14 Cray Research Proprietary HTM-003-A



B AND T REGISTERS

Each CPU contains 64 (1§)B registers and 64 T registers. The Band T
registers act as intermediate registers for the address and scalar registers,
respectively. Each B and T register contains 64 bits.

Two BT options, BTO00 and BT001, contain the B and T registers. Each
option contains 32 bits of each register. BT0O0O contains bits 00 through
15 and 32 through 47. BTO001 contains bits 16 through 31 and 48 through
63. As shown in Figure 8, the B and T registers can be loaded from the
address and scalar registers, common memory, and branch control.

Ai Length (BTO01 Only) IIA—-1IG | BT001
>l Bits 16 — 31,
48 — 63
IAA — IAP,
From Ajor Si IBA —IBP BT000
™ Bits 0 - 15,
32-47
ICA - ICP,
CM Path 1 IDA — IDP_
OAA — OAP,
OBA-OBP To Ajor Sj
IEA — IEP, >

CM Path 2 IFA —IFP

OCA - OCP,
ODA - ODP Aj, Si,BorTCM Data

P Entry on Branch IGA —IGP_

OEA — OEP Bjk to Branch Control

Figure 8. B and T Register Inputs and Outputs

The B and T registers are used primarily for block transfers to and from
common memory. Refer to Table 2 for a list of the B and T register
instructions. Refer also to Figure 9 for a B/T-register-to-memory block
diagram.

HTM-003-A Cray Research Proprietary 15



B and T Registers

16

Table 2. B/T Register Instructions

Instruction CAL Description
0050k J Bjk Jump to Bjk
0051,/k° JINV Bjk |Jump to Bjk (invalidate instruction buffers)
024ijkP Ai Bjk Transmit (BJjK) to Aj
025ijkP Bjk Ai Transmit (A)) to Bjk
034ijkP Bjk Ai, AO | Transmit (Aj) words from common memory starting at
address (A0) to B registers starting at register jk
035jkP ,AO0 Bjk,Ai | Transmit (Aj) words from B registers starting at register jk to
memory starting at address (A0)
036jkP Tjk Ai, AO | Transmit (Aj) words from memory starting at address (AO) to
T register starting at register jk
037ijkP A0 TjkAi | Transmit (Aj) words from T registers starting at register jk to
memory starting at address (A0)
074ijk Si Tjk Transmit (T/k) to Si
075ijk Tjk Si Transmit (S)) to Tjk

O denotes a maintenance mode instruction only.

D denotes a difference between Triton mode and C90 mode.

CPU

Cray Research Proprietary HTM-003-A



CPU

BT000
Bits 0 — 15, 32 — 47

B/T Registers

OCA - OCP,
ODA - ODP

B and T Registers

CG000

Memory
Write Data

CM Left
Read Data
ICA - ICP
P IEA — IEP
CHO10 -
IFA — IFP
CHO008
CM Left
Read Data
Read Data
CM Right
CHO001 ICA—ICP
CHO003
IDA — IDP
!E_ IEA - IEP
IFA — IFP
Read Data
CM Right

Figure 9. B/T-register-to-memory Block Diagram

HTM-003-A

BTOO1
Bits 16 — 31, 48 — 63

B/T Registers

OCA - OCP,
ODA — ODP

CGO001

Memory
Write Data

Cray Research Proprietary
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B and T Registers
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ADDRESS/SCALAR ADD

The address and scalar registers are contained on eight options: one AR
option, three AS options, two AT options, and two AU options. Each
option contains 8 bits of the 64-bit address registers. These options also
contain the address and scalar add functional unit. Table 3 describes the
instructions that use the address and scalar add functional unit.

Table 3. A/S Adder Instructions

Instruction CAL Description

030ijkP Ai Aj+Ak Transmit integer sum of (Aj)) and (AK) to Aj

030/0kP Ai AKS Transmit (AK) to Aj

030ijoP Ai Aj+1S | Transmit integer sum of (Aj) and 1 to Ai

031jjkP Ai A-Ak Transmit integer difference of (Aj) and (Ak) to Ai

031/0kP Ai —AkS Transmit inverse of (Ak) to Ai

031jjoP Ai Aj-15 | Transmit integer difference of (Aj) and 1 to Aj
060ijk Si Sj+Sk | Transmit integer sum of (Sj) and (Sk) to Si
061jjk Si S-Sk | Transmit integer difference of (Sj) and (Sk) to Si
0610k Si —Sk Transmit inverse of (Sk) to Si

D denotes a difference between Triton mode and C90 mode.
S denotes a special CAL syntax.

The address add and scalar functional units perform a 64-bit add; each
option performs the add function on the bits of the operands contained on
that option. Carry and enable bits generated during the add are passed on
to the next option, as shown in Figure 10. The 64-bit result is stored in the
destination register in 4 clock periods.
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Address/Scalar Add

20

ARO OSA ISA_
> Aso
Bits
0-7
0SB ISA AS1
AS2
ISA
0SsC — ATO
| S e
ISA
0SD AUO
AU1
ISB_
OSA >
ASO | ASt
OTA >
AS2
Bits ITA
8- 15 >
ISB_
0SB ATO
oTB >
A | AT
ISB_
0SsC "1 auo
oTC >
ITA_ AUL
o1 OSA ISC_
| As2
OTA ITB_
Bits
16 - 23
ISC_
OsB ATO
OTB >
AT1
ITB_
ISC_
0sC AUO
oTC >
e | AVL

Y

Figure 10. Carry Bit and Enable Bit Fanouts

CPU
NOTE: ISA - ISG and OSA — OSC terms are
adder carries. ITA—ITF and OTA - OTC
terms are adder enables.
ISD
AS2 OSA ATO
Bits OTA > AT1
24 - 31 ITC_
ISD_
0SB AUO
OTB >
AU1
ITC v
OSA ISE
ATO AT1
OTA ITD
Bits
32-39
ISE
0SB AUO
OTB
AUl
ITD_
ISF
AT1 OSA ™ Auo
Bits >
40 — 47 | OTA >
ITE AUL
AUO OSA ISG_ |
. AULl
Bits OTA ITF
48 — 55
HTM-003-A
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SCALAR LOGICAL

The scalar logical functional unit performs logical operations on the
scalar registers. Logical operations include OR, AND, and XOR
operations and merges.

Refer to Figure 11 for an illustration of the address/scalar registers. The
scalar registers are contained on eight options: one AR option, three AS
options, two AT options, and two AU options. Each option contains 8 bits
of the 64-bit address registers. These options also contain the scalar
logical functional unit. The operands are latched and the logical operation
is completed in 1 clock period; the result is then entered into the proper

destination register.

AUO001 Bits 56 — 63
AUO000 Bits 48 — 55
ATO001 Bits 40 — 47
AT000 Bits 32 — 39
AS002 Bits 24 — 31
AS001 Bits 16 — 23
AS000 Bits 8 — 15
ARO000 Bits 0 — 7
Address/Scalar Register |
(3A0) hijk Instruction Data  IPA — IPL - A/SO o
A/S Register AS1 |AS —
Data Path 1 1JA — IJH
(CHO) J JH IS AS2 |AKISk
A/S Register AIS3
cpy) DataPath 2 IKA —IKH _ AIS4 1 |
(CH1) - — AISS | [ Operand
AilSi AIS6 Select
FU —
AJS Entry Code INA — INC AIST
(JA0) y - Select _l
\ -
AJS Entry Code Valid 10A — 10D -
(JA0) > Logical - | |
Functional Unit

Figure 11. Address/Scalar Logical Block Diagram (Instructiongjk44
through 05§k)
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Scalar Logical

Table 4 and Table 5 list the instructions used in the address and scalar

CPU

logical functional unit. The instructions listed in Table 5 must be
preceded by a 005400 instruction; they are for Triton mode only.

Table 4. Scalar Logical Functional Unit Instructions

Instruction CAL Description
044ijk SiSj&Sk Logical product of (Sj) and (Sk) to Si
044ij0 SiSj&SB Sign bit of (Sj) to Si
0440 Si SB&Sj Sign bit of (Sj) to Si (Sj# 0)
045ijk Si#Sk&Sj Logical product of (Sj) and one’s complement of (SKk) to Si
045j0 Si#SB&Sj | (S)) with sign bit cleared to Si
046ijk SiSASk Logical difference of (Sj) and (SK) to Si (Sj # 0)
0460 SiSASB Transmit (Sj) with sign bit toggled to Si
0460 Si SB\Sj Transmit (Sj) with sign bit toggled to Si (Sj # 0)
047ijk Si#S\Sk Logical equivalence of (Sk) and (Sj) to Si
0470k Si#Sk Transmit one’s complement of (Sk) to Si
047j0 Si#S\SB Logical equivalence of (Sj) and sign bit to Si
0470 Si#SB\Sj Logical equivalence of (Sj) and sign bit to Si (Sj # 0)
047/00 Si#SB Enter one’s complement of sign bit into Si
050ijk SiSjISi&Sk | Logical product of (Si) and (Sk) complement ORed with
logical product of (Sj) and (Sk)
0500 SiSj1Si&SB | Scalar merge of (Si) and sign bit of (S)) to S/
051jjk SiSjISk Logical sum of (Sj) and (SKk) to S/
051/0k SiSk Transmit (SK) to Si
051j0 SiSjISB Logical sum of (Sj) and sign bit to S/ (Sj # 0)
051/00 SiSB Enter sign bit into S/

Cray Research Proprietary
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Scalar Logical

Table 5. Address Logical Functional Unit Instructions

Instruction CAL Description
044ijk Ai Aj&Ak Logical product of (Aj) and (AK) to Ai
045ijk Al #AK&A] Logical product of (Aj) and one’s complement of (AK) to Ai
046ijk Ai ANAK Logical difference of (Aj) and (AK) to Ai (Aj# 0)
047ijk Ai #ANAK Logical equivalence of (Ak) and (A)) to Ai
0470k Ai #Aj Transmit one’s complement of (AK) to Ai
050ijk Ai AlAiI&Ak | Logical product of (Aj) and (AkK) complement ORed with
logical product of (A)) and (AK)
051ijjk Ai AjAk Logical sum of (Aj) and (AK) to Ai

Address and Scalar Mask

HTM-003-A

Another function separate from scalar logical but included in this section,
Is address mask and scalar mask. Address and scalar mask functions use
instructions 04k and 043k. Refer to Table 6 and Table 7 for the scalar

and address mask instruction formats, respectively.

Table 6. Scalar Mask Instructions

Instruction CAL Description

042ijk Sikexp Form ones mask in Si exp bits from the right; jk
field = 100 — exp

042i77 Sil Enter 1 into Si

04200 Si-1 Enter -1 into Si;
(Si= 177777 177777 177777 177777)

043ijk Si>exp Form ones mask in Si exp bits from the left:
jk field = exp

043ijk Si#<exp Form zeroes mask in Si exp bits from the right:
Jjk field gets 100g= exp

043/00 Si0 Clear Si
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Scalar Logical
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CPU

Table 7. Address Mask Instructions

Instruction CAL Description

042ijk Ai<exp Form ones mask in Ai exp bits from the right;
Jk field = 100 — exp

04277 Ail Enter 1 into Ai

04200 A-1 Enter -1 into A/,
(Ai=177777 177777 177777 177777)

043ijk Ai>exp Form ones mask in Ai exp bits from the left:
Jk field = exp

043ijk Ai #t<exp Form zeroes mask in Ai exp bits from the right:

Jk field gets 100g = exp

04300 AiO Clear Aj

The address/scalar mask functional unit is located on the SS options.
When the 04@k or 043jk instruction issues th field, it is sent from the
BTO option. Thgk field determines how many 1 bits are set, anchthe
field bit O determines whether the 1's should be on the left or the right.
Figure 12 is a block diagram of the scalar mask functional unit.

SS000
Scalar
Shift
AR AS AT AL S AA—IDP_ Vector [Auoo1  Bits 56 - 63
(AR ASAT A Mask = [Au000  Bits 48 - 55
Upper
PP MUX [ATo01 Bits 40— 47
Lower [ [AT000 Bits 32— 39
|Asooz Bits 24 — 31
|ASOOl Bits 16 — 23
" GA_IG |ASOOO Bits 8 — 15
IGA — IGF, :
(BT) L »—  Address/ | AR000 Bits0 -7
IEE | "0 | scalar Mask »{ ORed >
(9] >
Address/Scalar
Registers

Figure 12. Scalar Mask Block Diagram
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CPU Scalar Logical

Transmit nm to S/, Si Upper, S/ Lower

Constant data can be transmitted to an S register by four different
instructions. Refer to Table 8 for a list of these instructions.

Table 8. Transmmmto 9 Instructions

Instruction CAL Description

040/00nm Siexp Transmit expression = nm to Si, bits
0 through 31 (bits 32 through 63 = 0)

040/20nm SiSiexp Transmit expression = nm to Si, bits 0 through
31 (bits 32 through 63 unchanged) (j2 = 0)

040/40nm Siexp:Si Transmit expression = nmto Si, bits 32
through 63 (bits 0 through 31 unchanged)
(2=1)

041i00nm Siexp Transmit expression = one’s complement of
nmto Si, bits 0 through 31 (S/ bits 32 through
63=1)
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ADDRESS/SCALAR POP/PARITY AND LEADING ZERO

The address/scalar population count functional unit counts the number of
1 bits in the scalar (S) register or address (A) register o tie¢d of

instruction 02gk (k = 0 or 1 for S registers, amkd= 2 or 3 for A

registers). The maximum count could be g6064 g for the

corresponding number of 1 bits set in the A or S register, and the smallest
count could be 0 when no bits are set in the A or S register.

Thek field of the instruction determines whether or not the entire
population count is recorded in Alf it is a 02 0/2 instruction, all 7 bits

of the final population count are sent to the A register. Whenigld26
instruction is issued, the entire S or A register is counted for the number of
1 bits set, but then only bit 0 of the count is sent to the A register. If bit O
of the count equals 0, then the count has even parity, indicating an even
number of bits set. If bit O of the count equals 1, then the count has odd

parity.

Starting from bit position 63, the address/scalar leading zero count
functional unit counts the number of 0’s preceding the first bit setto a 1 in
a specified address or scalar register. The number of leading O’s is then
transferred to the lower 7 bits of am #egister. To use the address/scalar
leading zero count functional unit, a G&7instruction is issued when 8

the operand andiAs the result register. The GRIis issued when jAs

the operand andiAs the result register.

The SS option performs scalar pop/parity and leading zero functions.
Population count/parity and leading zero functions are performed on either
a scalar or an address register operand, with the result sent to an address
register. Table 9 describes the instructions that use the pop/parity and
leading zero functional unit, and Figure 13 illustrates the A/S
population/parity/leading zero count.
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Table 9. Scalar Pop Count/Parity and Leading Zero Count Instructions

Instruction CAL Description
026ij0P Ai PSj Transmit population count of (Sj) to Ai
026ij1P Ai QSj Transmit population count parity of (Sj) to Ai
026j2ND Ai PAj Transmit population count of (Aj) to Ai

026j3ND Ai QAj Transmit population count parity of (Aj) to Ai
0270 Ai ZSj Transmit leading zero count of (Sj) to Ai
027iINT Ai ZAj Transmit leading zero count of (Aj) to Ai

D denotes a difference between Triton mode and C90 mode.
N denotes new instruction (not available on CRAY C90 series systems).
T denotes Triton mode only.
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AR000
Bits 0 — 7
AS000
SS000
SjiSiBits0—15  IAA — IAP
Bits 8 — 15 AJAiBits 0-15 IJA-1IP__ 4-bit Sum
AS001 SjISiBits 16 —31 IBA - IBP
AJAIBits 16 —31 IKA—IKP _
Sj/SiBits 32— 47 ICA—ICP \
Bits 16 — 23 AjAiBits 32— 47 ILA—ILP _ 8-bit SUM
AS002 Sj/SiBits 48 — 63 IDA — IDP t
AJIAiBits 48 — 63 IMA— IMP _|
16-bit Sum
Bits 24 — 31 }
| D
AT000 (Jo00) 80026 IED | ln e '
0270 s ¢ 32-bit Sum
t o 7
its 32 — hOBit  IEE rod
Bits 32 — 39 (1C000) SN | AR000
; ) OFA— OFG Result Bits 0— 6
AT001 (BTooy) (D& IGA-IGC ] c 64-bit Sum -
kData  IGD—IGF i Bits 0 — 7
(BT000) el
Bits 40 — 47 n
AU000
Bits 48 — 55
AU001
Bits 56 — 63

Figure 13. A/S Population/Parity/Leading Zero Count
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The address register shift function is performed on the SS option (refer to
Figure 14 for a block diagram of address register shift). This functional
unit performs both left and right single-register shifts and left and right
double-register (also referred tolaag) shifts. All shifts are end-off with
zero fill. For example, if data is shifted more thang@dlaces in a single
shift, or more than 128 places in a double-register shift, the data is
shifted off the register. The data is then lost, and O’s are moved into the
register.

The shift unit performs only left shifts. The shift count for a right shift
must be in the two’s complement form; the unit then performs a left shift.
Refer to Table 10 for a list of the address register shift instructions.

NOTE: To issue A-register-shift instructions, a 005400 (EIS) instruction
must precede the shift instruction. If an A-register-shift
instruction is issued in C90 mode, the results are undefined.

Table 10. Address Register Shift Instructions

Instruction CAL Description
052ijk AO Aikexp | Shift (A)) left exp = jk places to AO
053jjk A0 Ai>exp | Shift (AJ) right exp = 100g—jk places to AO
054ijk Ai Aiexp Shift (A)) left exp = jk places to Ai
055ijk Ai Ai>exp Shift (AJ) right exp = 100g—jk places to Ai
056ijk Ai Ai, Aj<Ak | Shift (Ai) and (A)) left (AK) places to Ai
0560 Ai Ai, Aj<1 | Shift (A)) and (A)) left one place to Ai
0560k Ai Ai<Ak Shift (A)) left (AK) places to Aj
057ijk Ai Aj, A>Ak | Shift (Aj) and (AJ) right (AKk) places to Aj
057ij0 Ai Aj, A1 | Shift (Aj) and (Ai) right one place to Aj
0560k Ai A>Ak Shift (AJ) right (AK) places to Ai
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Address register shift diagram here.
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Address Register Shift

Address Register Single Shift

The address register single-shift instructions arejloB2rough 054Kk.

The first two instructions perform left single shifts (§kRand right

single shifts (05i) on the content of theiAegister and always store the
result in AO. The shift count is obtained from {kdield of the

instruction. The value placed in thefield for the single-shift

instructions depends on whether it is a left or right shift. For a single left
shift, the value in thgk field is the number of octal places desired to shift
Ai. This allows a shift left of 0 to gplaces. For a right shift, thie field

is equal to the two’s complement of the actual number of places desired to
shift right. If a shift of 24 places were required, 54 would be entered in
thejk field (two’s complement of 24 is 54).

When instructions are written in machine code, this operation must be
done by the person writing the code. However, when instructions are
written in CAL, this is done by the assembler. In the CAL instruction, you
would simply enter the shift count. This allows a shift right of 1 tgs100
places. Because the two’s complement of the shift count is used for a
single shift, a shift right O places is not possible.

The 054k and 055k instructions perform single shifts left or right on the
contents of A However, these instructions store the result of the shift
back in A. These shifts overwrite the original contents iofvih the new
results from the shifter.

Address Register Double Shift

HTM-003-A

Double shifts work similarly to single shifts and are end-off with zero fill.
The difference is that a double shift concatenates two S registers, forming
a 128-bit register. The arrangement of the two registers is determined by
the shift direction.

Double shifts always shift data intd. SThe two instructions associated
with double shifts are 05& (left double shift) and 05jk (right double
shift). The double shifts use thandj fields to specify the two operand
registers; the field also specifies the result register. Kfeld of the
instructions specifies the A register used for the shift count.

Because a double shift uses a 128-bit operand and shifts are end-off with
zero fill, a shift equal to or greater than 1g280Qs) produces a result of

zero. The A register bits 0 through 6 are used as a shift count, providing a
shift of 0 to 173§. Bit 7 is checked, and if this bit is set to a 1, it causes the
double shift result to equal zero. For right double shifts, the shift count
does not need to be entered into the A register in two’s complement form;
the hardware performs this function.
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Address Register Shift Count Description

The AR option sends 7 bits of shift count to the SS option. For both
single and double shifts, the breakdown of the shift count is the same,
except that the double shift has 1 extra bit (bit 6). Refer to Figure 15 for a
breakdown of the shift count.

Double
Shift
Only
6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Figure 15. Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count.

If the jk field of a left single shift equals g and bits 4, 2, 1, and 0 are set,
the shift values would be 16, 4, 2, and 1, respectively. The sum of the
shift values would be 23 (16 + 4 + 2 + 1); therefore, the instruction would
shift left 23, places.

The actual hardware that performs the shifts is the same for both left and
right shifts. However, the hardware performs only left shifts. Right shifts
are accomplished by the way in which data is entered into the shifter,
hence the use of two’s complement for right shifts.
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Address Register Left Single Shift

Figure 16is an illustration of how a left single shift is performed for a
054220 instruction. (PAi<exp), shift A2 leftjk places (28) with data bit
10 set.

- Bit

Address Shift Functional Unit

Bit 10 <

Shift A2 16, places
to the left, moving bit
26 to bit position 10

Bit 26 A2 Final Results

Figure 16. Address Register Left Single Shift

HTM-003-A Cray Research Proprietary 35



Address Register Shift

CPU

Address Register Right Single Shift

A2 =

Figure 17 is an illustration of how a right single shift is performed using
left shifts and a two’s complement shift count. This example uses a
055254 instruction (A>Ai exp that shifts A rightexp= 100 —jk places to
Ai. In this example, data bit 45 shifts to the righg @D, places.

Notice that thgk field of the instruction 055254 containsgb#vhich is the
two’s complement of 24 causing A2 to be shifted to the leftggglaces to
set bit 25 of the result.

Bit 45

Address Shift Functional Unit

Bit 63 0 63 0

———— e
: Bit 45 -
L

Bit 25

> A2 = Bit 25

36

Figure 17. Address Register Right Single Shift

NOTE: On aright shift, it is the programmer’s responsibility to perform
the two’s complement of the shift count and supply that value to
the functional unit.
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Address Register Shift

Address Register Left Double Shift

HTM-003-A

A2 (A) = Bit 10
Al (A)) = Bit 30
A3 = 40 — Shift Control

Double shifts are the same as single shifts except that they concatenate
two 64-bit registers to form a value. Figure 18 is an illustration of a left
double shift using a 056123 instructioni (AL, Aj<AKk). In this example,

we shift (A) and (A) left (Ak) places to A with A3 = 4G (32;0), Al

having bit 30 set, and S2 having bit 10 set. When a left double shift
occurs, the content ofjAs moved into A and the two registers are
positioned as shown withiAahead of A

Address Shift Functional Unit

Al (A1) A (A2) \

Bit . Bit .
@ Bit 30 @ Bit 10

b shift32 | b shifta2

Bit 62

\

Bit 62 = Al Final Result

Figure 18. Address Register Left Double Shift

Shifting Ai and A to the left 32 places puts bit 30 of Al at bit position 62
and bit 10 of A2 at bit position 41. Because bit 41 of A2 did not make it
to the result register Al, itis lost. The result bit (bit 62) is then sent to the
Ai (Al) register. The A(A2) register remains changed.
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Address Register Right Double Shift

To perform an address register right double shift, &lOHAI Aj, Al
>Ak), shift (A)) and (A) right (Ak) places to A instruction is used.
Figure 19 illustrates a 057123 instruction with the indicated parameters.

Al = Bit 20
A2 = Bit 40
A3 = 60 — Shift Control

Address Shift Functional Unit

v Aj (A2) Ai (A1) y
A<—————— .

. Bit .
I Bit 40  5¢ Bit 20

______ A
L[ Shift 80 Shift 80

Bit 56 = Al Final Result

Figure 19. Address Register Right Double Shift

To right shift A and A using left shifts, the two’s complement is first
performed on A3, which currently equalsg@@8;0). Because the two’s
complement is 120(or 1010008 or 80,¢), the required shift can be
accomplished through successive shifts giy@hd 16 for a total shift of
800 places. A left shift of 8@ would move bit 40 of A2 to bit position
56 inside the dotted box and bit 20 of Al to bit position 36 of A2.
Because bit 36 did not make it into the result register (indicated by the
dotted box), it is lost, and bit 56 is sent to the final result.
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Left Single-shift Instruction

Referto Figure 20 when reading the two following examples of the
address register left single-shift instruction.

Bits | 2 1 0 2 1 0 |=jkField

32 16 8 4 2 1 = Shift Values Decimal

052jjk Results to AO
054ijk Results to Ai

Figure 20. Example of an A Register Left Single-shift Instruction

Example 1: Write the instruction to shift A2 left@Mlaces, putting the
results into AO.

Steps: 1. 05k — left shift instruction result goes to A0
2. jk field — shift count 26y = 245 = jk field
3. 052224 —final instruction

Example 2: Write the instruction to shift A4 left3®laces, putting the
results into A4.

Steps: 1. 054k — left shift instruction result goes td A
2. jk field — shift count 39 = 43

3. 054443 —final instruction
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Right Single-shift Instruction

The right single-shift count is thke field of the instruction, which must
either be in the two’s complement form or $@0inus the number of
places to right shift. The following two examples show an address
register right single-shift instruction.

* 053jk results to AO
e 055jk results to A

Example 1. Write the instruction to shift A5 right;3@laces, putting
the results into AO.

Steps: 1. 05K — right shift instruction results to AO
2. jk field — shift count in two’s complement equals; 66
1050 = 12 = 001010
two’s complement = 110101

+1

110110 =060
3. 053566 — final instruction
Example 2. Write the instruction to shift A7 right3®laces.
Steps: 1. 058K right shift instruction results toiA
2. jk field — shift count in two’s complement equals
2810 =343 = 011100

two’s complement = 100011

+1
100100 = 44
or 10Q — 34; = 44

3. 055744 —final instruction
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Left Double-shift Instruction

Refer to Figure 21 when reading the following example of an address
register left double-shift instruction.

056ijk Shift Aiand Ajleft by Ak places to Ai

Ai Aj

e

Ai

Ak contains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any bits from 7 through 63 are set, the results of Aj are zeroed.

Bits | 63 7 6|/5 4 3 2 1 0 =Ak

Zero Results 643216 8 4 2 1 = Valid Decimal Shifts

On a left double shift, the contents of Aj are always shifted into Ai. This shift is done
inside the address shift functional unit.

Figure 21. Example of an Address Register Left Double-shift Instruction

Example 1. Write the instruction to left double shift A2 and A3¢64
places, putting the results into A2.

056234 — final instruction, where A4 — 00

NOTE: A circular left shift can be effected by issuing a 056 instruction
with'i =j and (A)< 64.
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Right Double-shift Instruction

Referto Figure 22 when reading the following example of a scalar right
double-shift instruction.

057ijk  Shift Ajand Airight by Ak places to Ai

Aj Ai
Ai
Bits | 63 7 6|5 4 3 2 1 0 =Ak
Zero Results
Two'’s Complement = During Right Double Shift
64 3216 8 4 2 1 = Valid Decimal Shifts

Figure 22. Example of an Address Register Right Double-shift Instruction

Ak contains the shift count, and address (A) register bits O through 6
contain the valid shift counts. If any bits from 7 through 63 are set, the
results of A are zeroed. Also, the hardware generates the two’s
complement of the shift countkAegister bits 0 through 6 on a right
double shift.

On a right double shift, the contents gfae always shifted intoiA This
operation and the two’s complement of the shift count are done inside the
address shift functional unit.

Example 1.  Write the instruction to right double shift A4 and A5
3210 places, with the results going into A4.

057454 — final instruction, where A4 =40
hardware generates a shift count of d.4Bide
the functional unit.

NOTE: A circular right shift can be effected by issuing a 057 instruction
with i =j and (&)< 64.
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The scalar shift function is performed on the SS option (refer to Figure 23
for a block diagram of a scalar shift). This functional unit performs both
left and right single-register shifts, and left and right double-register (also

referred to asong) shifts. All shifts are end-off with zero fill. For

example, if data is shifted more thamgplaces in a single shift, or more
than 128 places in a double-register shift, the data is shifted off the

register. The data is then lost, and the register is filled with O’s.

The shift unit performs only left shifts. The shift count for a right shift
has to be in the two’s complement form; the unit then performs a left shift.

Refer to Table 11 for a list of the scalar shift instructions.

Table 11. Scalar Shift Instructions

Instruction CAL Description
052ijk S0 Sikexp | Shift (S)) left exp = jk places to SO
053jjk S0 Si>exp | Shift (Si) right exp = 100g — jk places to SO
054ijk SiSikexp Shift (S)) left exp = jk places to Si
055jjk SiSi>exp Shift (Si) right exp = 100g — jk places to Si
056ijk S1 Si, Sj<Ak | Shift (Si) and (S)) left (AK) places to Si
0560 S1Si, Sj<1 | Shift (Si) and (S)) left 1 place to Si
0560k S1 SikAk Shift (Si) left (Ak) places to Si
057ijk SiSj, S>Ak | Shift (S)) and (S)) right (AK) places to Si
057ij0 S1Sj, S>1 | Shift (Sj) and (S)) right 1 place to Si
0570k S1 Si>Ak Shift (Si) right (AK) places to Si

t1fj=0, then (S)) = 0.
TIf k=0, then (Ak) = 1.
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Scalar Shift Block Diagram
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Scalar Shift

Scalar Single Shift

The scalar single-shift instructions are Pl2hrough 0548k. The first

two instructions perform single shifts left (OfQ and right (058k) on the
contents of the iSegister and always store the result in SO. The shift
count is obtained from th& field of the instruction. The value placed in
thejk field for the single-shift instructions depends on whether it is a left
or right shift. For a single left shift, the value in jkdield is the number
of octal places desired to shifit SThis allows a shift left of 0 to g7
places. For a right shift, thie field is equal to the two’s complement of
the actual number of places desired to shift right. If a shift gptes
were required, 54 would be entered in jihéeld (two’s complement of
24 is 54).

When instructions are written in machine code, this operation must be
done by the person writing the code. However, when instructions are
written in CAL, this operation is done by the assembler. In the CAL
instruction, you would simply enter the shift count. This allows a right
shift of 1 to 10@ places. Because the two’s complement of the shift count
Is used for a single shift, a shift right of O places is not possible.

The 054k and 055k instructions perform single shifts left or right on the
contents of 5 However, these instructions store the result of the shift
back in $. These shifts overwrite the original contents ioivEh the new
results from the shifter.

Scalar Double Shift

HTM-003-A

Double shifts work similar to single shifts; all shifts are end-off with zero
fill. The difference is that a double shift concatenates two S registers,
forming a 128-bit register. The arrangement of the two registers is
determined by the shift direction.

Double shifts always shift data intd. SThe two instructions associated
with double shifts are 05& (double left shift) and 05jk (double right
shift). The double shifts use thandj fields to specify the two operand
registers; the field also specifies the result register. Kfeld of the
instructions specifies the A register used for the shift count.

Because a double shift uses a 128-bit operand and shifts are end-off with
zero fill, a shift equal to or greater than 1g280Qs) produces a result of

zero. The A register bits 0 through 6 are used as a shift count, providing a
shift of O to 17%8. For right double shifts, the shift count does not need to
be entered into the A register in two’s complement; the hardware performs
this function.
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Scalar Shift Count Description

The AROOO option sends the shift count to the SS option. All eight
A-series options check the value of the 64-bit A register to discover
whether any bits above bit 6 have been set. If any bits have been set, the
result is lost due to overshift. If each A-series option reports that its bits
are zero, a signal calledkA 0 is sent to the SS option and the shift count

is valid.

The AR option sends 7 bits of shift count to the SS option. For both
single and double shifts, the breakdown of the shift count is the same,
except for the fact that the double shift has 1 extra bit (bit 6). Refer to
Figure 24 for a breakdown of the shift count.

Double
Shift
Only
6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Figure 24. Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count.

If the jk field of a left single shift equals g&and bits 4, 2, 1, and O are set,
the shift values would be 16, 4, 2, and 1, respectively. The sum of the
shift values would be 23 (16 + 4 + 2 + 1); therefore, the instruction would
shift left 23 places.

The actual hardware that performs the shifts is the same for both left and
right shifts. However, the hardware performs only left shifts. Right shifts
are performed according to how data is entered into the shifece the

use of two’s complement for right shifts.
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Scalar Left Single Shift

Figure 25is an illustration of how a left single shift is performed for a
054220 instruction (SSi<exp. In this example, we shift S2 |gk places
(20g) with data bit 10 set.

S2= Bit 10

Scalar Shift Functional Unit

Bit 10 <
/ Shift S2 164
places to the left

Bit moving bit 10 to l
26 bit position 26

- Bit 26 S2 Final Results

Figure 25. Scalar Left Single Shift
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Scalar Right Single Shift

48

Figure 26 is an illustration of how a right single shift is performed using
left shifts and a two’s complement shift count. This example uses a
055254 instruction (SS exp that shifts $right exp = 100 4k places

to S.

In this example, we shift data bit 45 to the righg 220,0) places. Notice
that thejk field of the instruction 055254 containsgb#vhich is the two’s
complement of 24l causing S2 to be shifted to the lefgfaces to set bit
25 of the result.

S2= Bit 45

Scalar Shift Functional Unit

Bit 63 0 63 0

63 —
: @ Bit 45 -
[

» S2 = Bit 25

Figure 26. Scalar Right Single Shift

NOTE: Itis the programmer’s responsibility to perform the two’s
complement of the shift count and supply that value to the
functional unit.
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Scalar Left Double Shift

Double shifts are the same as single shifts except that they concatenate
two 64-bit registers to form a value. Figure 27 is an illustration of a left
double shift using a 056123 instruction,(§ < Ak). In this example, we
shift S (8) and (9) left (AK) places to § with A3 = 4G (3210), S1 having

bit 30 set, and S2 having bit 10 set. When a left double shift occurs, the
contents of pmove into $ and the two registers are positioned as shown
with S ahead of 5

S2(S) = Bit 10

S1(Si)= Bit 30

A3 = 40 | - Shift Control
Scalar Shift Functional Unit

Si (S1) g Sj (S2) ]

Bit . Bit .
<62> Bit 30 <41> Bit 10

| Shift 32 | |Shift32 I

Bit 62

»| Bit 62 = S1 Final Result

Figure 27. Scalar Left Double Shift

Shifting S and $ to the left 32 places puts bit 30 of S1 at bit position 62
and bit 10 of S2 at bit position 41. Because bit 41 of S2 did not make it to
the result register S1, it is lost. The result bit (bit 62) is then sent to the S
(S1) register. ThejS2) register remains unchanged.
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S1=

S2 =

A3 =

To perform a scalar right double shift, a o hstruction ($5, S > AK)
shifts () and ($) right (Ak) places to 5 Figure 28 is an illustration of a
057123 instruction with the indicated parameters.

Bit 20

Bit 40

60

— Shift Control

Scalar Shift Functional Unit

v Sj (S2) Si(S1) y
=" )
. Bit .
| @ Bit 40  5¢ Bit 20
______ )
T Shift 80 Shift 80
Bit 56
Bit 56 = S1 Final Result

50

Figure 28. Scalar Right Double Shift

To right shift $ and $ using left shifts, the two’s complement is first
performed on A3, which currently equalsg@@8;0). Because the two’s
complement is 120(or 1010008 or 80,¢), the required shift can be
accomplished through successive shifts giy@hd 16 for a total shift of

800 places. A left shift of 8@ would move bit 40 of S2 to bit position

56 inside the dotted box and bit 20 of S1 to bit position 36 of S2. Because
bit 36 did not make it into the result register (indicated by the dotted box),
it is lost, and bit 56 is sent to the final result.
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Left Single-shift Instruction

Referto Figure 29 when reading the two following examples of the scalar
left single-shift instruction.

Bits | 2 1 0 2 1 0 |=jkField

32 16 8 4 2 1 = Shift Values Decimal

052jjk Results to SO
054ijk Results to S/

Figure 29. Example of Scalar Left Single-shift Instruction

Example 1: Write the instruction to shift S2 left;g@laces, placing
the results into SO.

Steps: 1. 05k — left shift instruction result goes to SO
2. jk field— shift count 2@y = 24 = jk field
3. 052224 —final instruction

Example 2: Write the instruction to shift S4 left;gplaces, placing the
results into S4.

Steps: 1. 054k — left shift instruction result goes to S
2. jk field— shift count 3pg=43%

3. 054443 —final instruction
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Right Single-shift Instruction

The right single-shift count is thke field of the instruction, which must
either be in the two’s complement form or $@0inus the number of

places to right shift. Two examples of a scalar right single-shift
instruction follow.

* 053jk results to SO
e 055jk resultsto &

Example 1: Write the instruction to shift S5 right;d@laces, placing
the results into SO.
Steps: 1. 05 — right shift instruction results to SO
2. jk field — shift count in two’s complement equals; 66
10,0= 12 = 001010
two’s complement = 110101

+1

110110 =6@

3. 053566 — final instruction

Example 2: Write the instruction to shift S7 right,g@laces.
Steps: 1. 058k right shift instruction results toi S
2. jk field — shift count in two’s complement equals
2810 = 34 = 011100
two’s complement = 100011

+1

100100 =44

or 10Q — 34; = 44

3. 055744 —final instruction
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Left Double-shift Instruction

Referto Figure 30 when reading the following example of a scalar left
double-shift instruction.

056ijk Shift Siand Sjleft by Ak places to Si

Si sj

<

Ak contains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any of bits 7 through 63 are set, the results of Siare zeroed.

Si

Bits | 63 716 5 4 3 2 1 0]|=Ak

Zero Results 64 32 16 8 4 2 1 =Valid Decimal Shifts

On a left double shift, the contents of Sj are always shifted into Si. This shift is done
inside the scalar shift functional unit.

Figure 30. Example of a Scalar Register Left Double-shift Instruction
Example 1: Write the instruction to left double shift S2 and S3 64
places, placing the results into S2.
056234 — final instruction, where A4 — 100

NOTE: A circular left shift can be effected by issuing a 056 instruction
with i =] and (A) < 64.
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Right Double-shift Instruction

Referto Figure 31 when reading the following example of a scalar right
double-shift instruction.

057jjk  Shift Sjand Siright by Ak places to Si

sj Si

Si

Bits | 63 716 5 4 3 2 1 O

Zero Results

Two’s Complement = During Right Double Shift

64 32 16 8 4 2 1 =Valid Decimal Shifts

Figure 31. Example of a Scalar Register Right Double-shift Instruction

Ak contains the shift count, and address (A) register bits O through 7
contain the valid shift counts. If any of bits 7 through 63 are set, the
results of $are zeroed. Also, the hardware generates the two’s
complement of the shift count on thé& Pegister bits 0 through 7 on a
right double shift.

On a right double shift, the contents ¢fa®e always shifted intoi S This
operation and the two’s complement of the shift count are done inside the
scalar shift functional unit.

Example 1. Write the instruction to right double shift S4 and S5
320 places, with the results going into S4.

057454 — final instruction, where A4 =40
hardware generates a shift count of d4@ide the
functional unit.

NOTE: A circular right shift can be effected by issuing a 057 instruction
with i = and (A) < 64.
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The AN option performs the address multiply operation (ajk32
instruction). The AN option also fans out thpakd A operand used for
other A register operations.

When operating in Triton mode, two 48-bit operands are presented to the
functional unit to produce a 48-bit result. The AN option then does a sign
extension to bit 63 and a leading zero count on the operands to determine
whether the results will fit within 48 bits. If the results exceed 48 bits, the
64-bit incompatibility signal sets, causing the Address Multiply Interrupt
(AMI) flag to set in the exchange package.

The AN option does not use a standard pyramid formation multiply
algorithm. Instead, it uses a variation of the Booth Recode algorithm.
This algorithm enables the address multiply unit to reside on a single
option.

Half the recode groups are formed immediately upon arrival of the data on
the AN option (those groups that are centered on bits 0, 4, 8, 12, 16, etc).
One clock period later, using the same logic, those groups centered on bits
2, 6, 10, and 14 are recoded. This method allows a multiply operation to
be done on about one-fourth of the logic used in a standard pyramid
multiply. Because this method holds thke @perand for 2 clock periods,

the AN operand can accept data only every other clock period. Refer to
Figure 32 for an illustration of the AN option.
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IHA — IHB _ Go 032

OAA — OBV A Register Data

IAA —ICP Aj
. o OIA-0OIH Sign Extend Bits
A Registers Multiply >

IDA — IFP Ak

OCA - ODP,
OEA - OFP
Fanout o
AkBits 0 —7to VL _
OGA - OGT,
IGF - 1GJ g Data OHA — OHP

Figure 32. AN Option

Multiply Algorithm

The multiplier is partitioned into 3-bit recode groups centered on the even
bits (O to 46); a forced zero is added to the first recode group. The recode
groups are formed as shown in Table 12, and the following subsections
provide examples of standard and Booth Recode multiplication.

Table 12. Recode Groups

Odd Bit Even Bit i-1 Recode Value Recode Product

0 0 0 +0 0
0 0 1 +1 X47 — X0
0 1 0 +1 X47 — X0
0 1 1 +2 2(X47 — X0)
1 0 0 -2 {2(X47 — X0y +1
1 0 1 -1 (X47 — X0)'+1
1 1 0 -1 (X47 — X0)'+1
1 1 1 -0 0

i— 1 = Bit to right of recode X47 — X0 = Multiplicand

group
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Standard Binary Multiplication

Referto the following example of standard binary multiplication.

000011 (3)
011101 (35)
000011
000000
000011
000011
000011
000000
0000001010111

Booth Recode Multiplication

Refer to the following example of Booth Recode multiplication.

000011 (3)
011101 (35)
000000000011
11111111010
00000110
1 000001010111

In the previous example, the multiplier is recoded into bit groups centered
on the even bit. A forced zero is appended to the first recode group.

As shown in Table 12, the first recode of the multiplier, bits 1 and 0 and
the forced zero, yields a recode value of 010, or +1. In this case, the
multiplicand is brought down.

The second recode, bits 3, and 2, and 1 yields a recode value of —1. In this
case, a two’s complement and a shift of 1 are done on the multiplicand.

The final recode, bits 5, 4, and 3 yields a recode value of +2. This causes
a shift of 1 on the multiplicand.
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INTEGER MULTIPLY

HTM-003-A

The AM option performs the scalar vector integer multiply operation
(166jk). It receives Sand \k operands and produces a 40-bit output to
Vi for VL length when the system is in Triton mode.

In C90 mode, a 32-bit result forms, and the input operands are modified to
produce the 32-bit result. The &erand must be left shifted3Jlaces,

and the \k operand must be left shifted by,dBlaces before executing the
166jk instruction, as shown in Figure 33.

The AM option, like the AN option, also uses the Booth Recode algorithm
for the multiply operation. The AN option also does a leading zero count
on the operands to determine whether the results will fit within 40 bit
positions. The input operands are passed through the floating-point
multiply unit before they arrive at the AM option, as shown in Figure 34.
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Bits 63 48 47 32 31 16 15 0
C90 32-bit Mode
Bits 63 48 47 32 31 16 15 0
Sj bits 0 through 31 are gated into bit
positions 32 through 63 for C90 mode.
Bits 63 48 47 32 31 16 15 0
C90 32-bit Mode
Bits 63 48 47 32 31 16 15 0
Vk bits 0 through 31 are gated into bit
positions 15 through 47 for C90 mode.
Figure 33. C90 Operation Mode
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Figure 34. AM Option Inputs

OGA-OGT §SjBits0-19 IAA — IAT
NB OGU—-OHN SjBits20-39 IBA-IBT
OIA - OIF Vk Bits 42 — 47 1GC —IGH
OJA Go V 166 IEC
NA ODA—-ODH SjBits40-47 IFA—IFH
OEA-OET VkBIits0-19 ICA-ICT
OEU - OFT VkBits20—39 IDA—IDT_
OFO -OFP VkBIits40-41 IGA-IGB
NC .
OGA-0GO SjBits48-62 IFI—IFW
OHA Valid IED
IC
oYQ Triton Mode IEA
HTM-003-A
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AM

Integer Multiply

ViBits 0 — 25 to

OAA, OAZ Result Register _

ViBits 26 — 51 to
OBA, OBZ Result Register

OHQ, OHR 40-bit Mode
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VECTOR REGISTERS

A CRAY T90 series computer system contains eight vector (V) registers,
which are designated VO through V7. Each register containg 128
elements; each element is;gbits wide. The 128, elements are divided
into two pipes of even and odd elements.

The vector registers have their own integer functional units, which include
vector add, vector logical 1, vector logical 2, vector shift, vector
population, vector leading zero count, and 32-bit integer multiphe

vector registers share the floating-point functional units with the scalar
registers. The floating-point functional units include floating-point add,
floating-point multiply, floating-point reciprocal and bit matrix multiply.

The vector registers can send data to memory or load data from memory
The number of elements sent to a functional unit (including memory)
depends on the value of the vector length (VL) register. Any element of a
vector register can be loaded into a scalar register, and any scalar register
can be loaded into any element of a vector register by using tijk ama
077jk instructions.

The vector registers use 1-parcel instructions. In a 1-parcel instruction,
theghfield contains the instruction decode, andijkdield contains the
operands and destination. Tdefield of the instruction indicates the
functional unit needed, and tjk field indicates the vector registers used.
Generally, the field of the instruction contains the vector operand
registers VO through V7. Thdield of the instruction can be eithey &

Vj, depending on the instruction. Thield of the instruction is used as
the destination or result register.

Some vector instructions, when preceded by a 005400 instruction, cause
the instruction to execute in Triton mode as opposed to C90 mode of
operation. If, for example, an instruction sequence of 005400150
issues, a left shift of \WO0 places to Vis performed. If the 005400
instruction had not preceded the §B0nstruction, a left shift of VAO

places to Ywould have occurred.
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The vector registers in the Triton system contain a dual set of functional
unit pipes. Each functional unit has another identical functional unit. For
example, the vector add functional unit is duplicated so that all the even
elements go to one of the vector add functional units, while all the odd
elements go to the other vector add functional unit. The even and odd
elements are sent to the functional unit simultaneously, and the two results
are loaded back into the result vector register simultaneously.

If the vector add functional unit fails in the even elements, the cause of the
failure is the pipe 0 vector add. Pipe 1 handles the odd vector elements. If
the vector length register is an even value, the results are written into the
vector register simultaneously using pipe 0 and pipe 1, until the last
element specified by the vector length is used. Refer to Table 13 for a list
of the vector register options.

Table 13. Vector Register Options

Option Type | Number Used Description
Provide read/write address and control
(VAO pipe 0)
VA 2 (VA1 pipe 1)

Vector length register
Functional unit release

Pipe control
VF 4 (VFO,VF1 for pipe 0)
(VF2,VE3 for pipe 1)

Data multiplexing (VMO — VM7 pipe 0)
(VM8 — VM15 pipe 1)

Vector add functional unit

Vector logical functional unit

VM 16

Data multiplexing and storage
VR 16 (VRO - VR7 pipe 0)
(VR8 — VR15 pipe 1)
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VA Option

Vector Registers

The \A option provides vector read and write control. There are #vo V
options on a CPU: VAO provides address and control for the even
elements of the vectors, and VA1 provides the address and control for the
odd elements. The VA options have the following common functions:

* \ector read and write address
* Read and write vector length
e Vector chaining control

The VA options also have the following unique features:
* VA0
* Release vectors for write operations

¢  Functional unit release for:
Vector logical #1
Vector shift
Vector floating-point multiply
Vector reciprocal

 Even-element addressing

* Release vectors for read operations

*  Functional unit release for:
Vector logical #2
Vector adder
Vector floating-point add
Vector matrix multiply

* Odd-element addressing

Vector Length Register

HTM-003-A

The vector length register is located on the VA option. There are two VA
options, one for each pipe. Both vector length registers are loaded with
Ak data bits 00 through 06 from the AROOO option. These bits are needed
to achieve values from 0 to 1g/7If a value of all O’s is entered, the VL
register is forced to a value of 200
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When the vector length value is entered, it is entered into a countdown
register VL bit O is removed so a VL value of 200 will be a value of 100

in the active register (a pseudo right shift). This is done because each pipe
handles only 100 elements. Every time VL decrements, it generates

the Advance Addresssignal. The VA option also checks VL bit O to
determine whether the vector length is odd or even. This enables either
pipe O for odd vector lengths, or pipe 1 for even vector lengths, on the last
operation.

Chaining
If Vi, j, ork is reserved as a destination and the next instruction tries to use
the same vector register as an operand, the next instruction is allowed to
iIssue. This is referred to as chaining.
Chain slot time is the time required for the result of a previous instruction
to be presented to the inputs on the VR options. If another instruction is
waiting for these results or is addressing the same element, the VR option
passes the results directly to the read-out register. The VA option controls
the vector chaining by controlling the issuing of G&e Write signal.
Chaining to common memory read operations occurs on 8-word
boundaries. Vector control waits for 8 contiguous words to become valid
before the read of that group is allowed.

VF Option
Thereare four VF options on the CP module. VFO and VF1 control
fanout for pipe 0; VF2 and VF3 control fanout for pipe 1. The VF options
perform the following functions.
* Instruction parcel data fanout to VR options
* \ector add carry and enable summations and bit toggles
*  \ector register parity error information
*  \ector functional unit delay chains
*  \ector functional unit data valids
* Vkaddress buffering for common memory
* Release of Vfor write operations
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VM Option

The VM options perform write data multiplexing on an 8-bit slice of all
functional unit data. There are 16 VM options. VM000 to VMO0OQ7 are for
even-element steering, and VMO008 to VMO015 are for odd-element
steering.

The VM option performs the following functions:

* Read and write data steering

*  \ector read-out control

* Vector add functional unit

*  Both vector logical functional units

VR Option

A total of 16 VM and VR options reside on the CP module as shown in
Table 14. Each option performs read data steering and also vector data
storage. The contents of the selected vector register are gated to one of
the following destinations; the read data steering is done on 4-bit slices.

*  Floating-point add

*  Floating-point multiply

* Reciprocal, pop, parity, LZ

e  Shift

e Common memory port A

«  Common memory port B

«  Common memory port C

¢  Common memory write data
* V data to scalar

«  Bit matrix multiply

The VM and VR options contain four high-speed register (HSR) storage
arrays that are 18 bits wide by 64 elements deep. Sixteen of the bits are
data and 2 bits are for parity. VR000 through VR0OO7 store vector data for
the even elements (pipe 0), and VR008 through VRO015 store data for the
odd elements (pipe 1).

NOTE: VM/VR options 12 through 15 do not handle exchange data.
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Table 14. VM/VR Data Steering

Option Pipe 0/Pipe 1

VM3/11 | VR3/11 | VM2/10 | VR2/10 | VM1/9 | VR1/9 | VMO/8 | VRO/8

Read Bits

28—-31 | 24-27 | 20-23 |16-19|12-15 | 8-11 4-7 0-3

Write Bits

24 -31 - 16 - 23 - 8-15 - 0-7 -

Exchange Bits

60-63 | 55-59 | 52 -55 |48-51]|44—-47 [40-43 | 36-39 |32-35

Option Pipe 0/Pipe 1

VM7/15 | VR7/15 | VM6/14 | VR6/14 | VM5/13 | VR5/13 | VM4/12 | VR4/12

Read Bits

60-63 | 56 -59 | 52 -55 |48-51]|44—-47 [40-43 | 36-39 |32-35

Write Bits

56 — 63 - 48 — 55 - 40 — 47 - 32-39 —

Exchange Bits

28—-31 | 24-27 | 20-23 |16-19]|12-15 | 8-11 4-7 0-3

Each VR option has an input that is used to force parity errors into the
HSR arrays. The maintenance channel provides the following two
features: force RAM parity error internal (code 100) and force RAM
parity error external (code 140). Through the use of the maintenance
channel, a specific loop controller and a specific chip can be given a
maintenance function such as force parity error.

Write Data Steering

68

The VM options receive thieinstruction field from the VF options; this

field performs internal gating of data to the correct registéei field

and the instruction decode enable separate write paths for each vector.
This path stays selected until a new instruction issue changes it. All the
write paths are separate and all can be active at the same time. Refer to
Figure 35 for an illustration of the write data path.

Cray Research Proprietary HTM-003-A



CPU Vector Registers
V7 VRO007
V6 VR006
Even Element Vs VROO5
Storage
V4 VR004
V3 VR003
V2 VR002
\
VMO000 VM004
Vi VRO001
Bits Bits VO VR000
0-7 32-39
RAM 0 RAM 1
VMO001 VMO005 . .
Bits Bits
0-15 16 -31
Bits Bits
Elements| |Elements
8-15 40 — 47 0— 62 0—62
VM002 VMO006 RAM 2 RAM 3
Bits Bits
Bits Bits 32-47 48 - 63
16 - 23 48 — 55
Elements| [Elements v7 VR015
0-62 0-62
VMO003 VMO007 V6 VRO14
) ) V5 VRO013
Bits Bits
24 - 31 56 — 63 V4 VRO12
/
V3 VRO11
\
VM008 VMO012 V2 VRO010
Bits Bits V1 VR009
0-7 32 -39
\Y/¢] VR008
VMO009 VMO013
RAM 0 RAM 1
. . Bits Bits
Bits Bits
8-15 40 - 47 0-15 | (16-31
Elements| |Elements
VMO10 VMO14 1-63 1-63
. . RAM 2 RAM 3
Bits Bits Bits Bits
16 — 23 48 — 55
s2-47 48-63 Odd Element
Elements| |Elements Storage
VMO011 VMO015 1-63 1-63 g
Bits Bits
24 -31 56 — 63
/
Figure 35. Write Data Path
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Read Data Steering

Both the VM and the VR options are responsible for read data steering.
Each VM and VR option steers 4 bits for all eight vector registers to one
of the following destinations:

*  Floating-point add

*  Floating-point multiply

* Reciprocal, pop, parity, leading zero
e Shift

e Common memory port A, B, C

* V data to scalar

The VM and VR options receive thandk fields of the instruction from

the VF option along with the instruction; this enables one of eight vector
paths to which data is steered. These paths stay selected until another
instruction changes them. All the read paths are separate and all can be
active at the same time. Figure 36 shows the read data path for pipe 0 and
pipe 1 (even elements), and Figure 37 shows the read data path for pipe O
and pipe 1 (odd elements). Refer also to the following diagrams for
additional related vector register information:

* Figure 38 — vector register write block diagram (pipe 0)

*  Figure 39 — vectors 0 through 3 pipe 0/1 read data path

*  Figure 40 — vectors 4 through 7 pipe 0/1 read data path

* Figure 41 — vectors 0 through 3 pipe 0/1 write data path

* Figure 42 — vectors 4 through 7 pipe 0/1 write data path

e  Figure 43 — vector register decode bit fanout (pipe 0 and 1 path 1)
*  Figure 44 — vector register decode bit fanout (pipe 0 and 1 path 2)
*  Figure 45 — S register to vectors

* Figure 46 — memory data to vectors (even elements)

* Figure 47 — memory data to vectors (odd elements)
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CPU Vector Registers
VRO07  Bits 56 — 59
VRO06  Bits 48 — 51
VR007 Vector 7
VRO006 Vector 6 VRO005 Bits 40 — 43
VRO005 Vector 5 -
VR0O04 Bits32-35 |
VR004 Vector 4
VR003 Vector 3 VRO003 Bits 24 — 27 |
VRo02 Vector 2 VR002  Bits 16 — 19 a
VR001 Vector 1
VROO1  Bits 8 —11
VRO000 Vector 0 "
VR000 Bits 0 -3 ||
Array 0 Array 1
Bits Bits
0-15 16 - 31
Elements 0 — 62
Array 2 Array 3
Bits Bits _—
32-47 48 — 63
VM000  Bits4-7 |
Elements 0 — 62
VMO01 Bits 12— 15 |
VMO002 Bits 20 — 23 |
VMO003  Bits 28 — 31
VMO004 Bits 36 — 39 |
VMOO05  Bits 44 — 47
VMO006 Bits 52 — 55
VMO007 Bits 60 — 63
Figure 36. Read Data Path for Pipe 0 (Even Elements)
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VRO15  Bits 56 — 59
VR014  Bits 48 —51
VRO015 Vector 7
VR014 Vector 6 VRO13  Bits 40 — 43
VRO013 Vector 5 -
VRO012 Bits32-35 |
VR012 Vector 4
VRO11 Vector 3 VRO11 Bits 24 - 27 |
VRO10 Vector 2 VRO10 Bits 16 — 19 a
VR009 Vector 1
VR0O09 Bits 8 —11
VR008 Vector O =
VR008 Bits 0 — 3 [
Array 0 Array 1
Bits Bits
0-15 16 - 31
Elements 1 — 63
Array 2 Array 3
Bits Bits -
32-47 48 - 63
VM008  Bits4—7 |
Elements 1 — 63
VMO009 Bits 12 — 15 ]
VMO10 Bits 20 — 23 |
VMO11 Bits 28 — 31 |
VMO12 Bits 36 — 39 ]
VMO13 Bits 44 — 47
VMO014 Bits 52 — 55
VMO015 Bits 60 — 63
Figure 37. Read Data Path for Pipe 1 (Odd Elements)
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AR000 AS000 AS001 AS002
VMO000 VMO001 VMO002 VMO003
OEA - IGA - OEA - IGA - OEA- IGA - OEA - IGA-—
OEH Bits 0 — 7 IGH OEH Bits 8 — 15 IGH OEH Bits 16 — 23 IGH OEH Bits 24-31 IGH
Pipe 0
Pipe 1
VMO008 VMO009 VMO010 VMO011
OEI - IGA - OEl - IGA — OEl - IGA — OEIl - IGA —
OEP Bits 0 — 7 IGH OEP Bits 8 — 15 IGH OEP Bits 16 — 23 IGH OEP Bits24-31 IGH

S Register to Vector

AT000 AT001 AU000 AU001
VMO004 VMO005 VMO006 VMO007
OEA - IGA— OEA - IGA - OEA - IGA— OEA - IGA -
OEH Bits 32 — 39 IGH OEH Bits 40 — 47 IGH OEH Bits 48 — 55 IGH OEH Bits 56 — 63 IGH
Pipe 0
Pipe 1
VMO012 VMO013 VMO014 VMO015
OEl — IGA - OEIl - IGA— OEl - IGA - OEIl - IGA -
OEP Bits 32 — 39 IGH OEP Bits 40 — 47 IGH OEP Bits 48 — 55 IGH OEP Bits 56 — 63 IGH

Figure 38. S Register to &ttors
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Functional Units VMO000 VM004
Floating-point Add Bits Bits
Floating-point 0-7 32 _ 39
Multiply V Write Data IAA, IBX
Reciprocal VMO01 VMO005
Vector Shift IGA, IGH _ Bits Bits
BMM . > 8-15 40 - 47
Integer Multiply A IIH OAA — ODP V Write Data IAA — IDP
> VMO002 VMO006 VR2
OEA OEH > 16-23 | | 48-55 a
Scalar Data IMA, IMH VMOO3 VMOO7 VRO |
IMA. IMD Bits Bits ——
] > 24 -31 56 — 63
CHO000 — CH014 - —
Common Memory |OIA, OIH IME, IMH —
Data Path 1 = -
CHO001 — CHO015 VA001 I
Common Memory [9!A OIH VA000
Data Path 2
ARO000 OPA, OPG __ AkData IHA, IHG :I VL Registerl O_I-O N V Write Address 1JA — IJF
VR000 - VR00O7 - .
Vector Select |OYI, OYP OAQ Go Write 1JH .
Code (Fanout Instruction
from CK) JA000 OCA, OCP  Parcel IAA, IAP
VR1, VR3, VR5, L.
VR6 IKA,“ ILA“
Common Memory |OY!. OYL ODA, ODC _Issue IBA, BB, IBD IKP
Path 1 Code |
(Fanout from CK)
00 OAA — OAP
VR1, VR3 ,VR5, VF001 OMA, OMH__ Release ICA, ICH OBA — OBP
VR6 OCA -0OCP
. . VF000
Cog]mr?g geénory OYM, OYP > OWA — OWP_Instruction Fields IKA—-IKP | ODA — ODP
at ode OAQ Parcel 0
(Fanout from CK) OBQ Parcel 1
Ckooa OGA,0GJ _ Path 1 Code IDA, IDJ oo eue 888 Eg;gg: g
_IXA - IXH Go Write OMA — OMH
K002 OGA, OGJ _ Path2 Code IEA, IEJ
Pipe 0
INJ o ONE

Advance Vi Write Address (Expand)

Figure 39. Vector Register \Wte Block Diagram (Pipe 0)
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Path 1
CHO00
OIA-0ID [IA-1ID__|VMO000
OIA- IIE-
CHO02 oD IH_
OIE- IE-
OIH _ lIH _]vmo04
OIE - OIH HA-IID
Path 2
CHo01
OIA-0OID IJA=1JD_ VMO00o
OIA- IJE-
CHO03 oD WH_
OIE- IJE-
OIH IJH _|VYMO004
OIE - OIH HA-IID _
HTM-003-A

CH004 CH008
OIA—OID IIA—1ID _|VMO001 OIA—OID IIA—1ID _ | VM002
OIA-— IlE- OIA- IlIE-
CHO006 oIb H CHO10 oIb H
OE- lE- OE- IlE-
OIH IIH | VMO005 OIH IH _ | vM006
OIE — OIH IIA—IID OIE — OIH HA—IID
Common Memory Data to Vector Paths 1 and 2 Even Elements
CH005 CHO009
VM001 VM002
OIA—OID 1JA— 1JD OIA—OID 1JA— 1JD
OA- JE- OIA- IE-
CHO007 OID 1IJH CHO11 OID IJH
OIE- 1JE- OE- WE-
OH  1JH_|VYMOOS OH  1H_|VMO0e
OIE - OIH IIA —1ID OIE — OIH IIA —1ID

Figure 40. Memory Data to ¥ctors (Even Elements)

Cray Research Proprietary

Vector Registers
CHO012
OIA - 0OID HA—1ID _|VMO003
OIA- lIE-
ey oID H
OIE- lE-
OIH IIH _| v™mo07
OIE — OIH HA—IID
CHO013
VM003
OIA—OID IJA—1JD_
OIA- JE-
CHO015 OID 1IJH
OE- JE-
OH  1JH _|VMOO7
OIE — OIH IIA — IID
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CPU

Path 1
CH000
OJA— 0JD A—np _|Vvmoo8
OlA- IE-
chooz | H
OIE- IE-
OH IIH _|VMO12
OJE — OJH A — 1ID
Path 2
CH001
0JA - 0JD IJA- 13D _ | YMO08
OIA- IJE-
CHO003 Oob NH
OIE- 1JE-
OH IJH _|VMo12
OJE — OJH NA—1ID _
HTM-003-A

VMO009
OJA—0JD NA-1ID _ OJA—0JD A—1p _|vmo10
OIA- lIE- OIA- lE-
OID IIH
CHO06 > CHO10 OID H
OIE- lE- OE- IE-
O IH _|VMOI3 oH  UH_|v™mo14
Common Memory Data to Vector Paths 1 and 2 Odd Elements
Choos CHO009
OJA-0JD IJA—1JD _| YMO10
OJA— 0JD IJA—1JD_ | YMO09 >
OIA e OIA- IE-
- - OID 1JH
ChHoo7 OID DH CHo11 >
Ol e OIE- WE-
— - H 1JH | VM014
OIH IJH | VMO013 ° J >
E- OJH 1A —IID
OJE — OJH HA—IID _ OJE - O >

Figure 41. Memory Data to ¥ctors (Odd Elements)
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Vector Registers
CHO12
0OJA - 0JD na-np _ | vmoil
OIA- IIE-
CHola |2D0___IH
OIE- IE-
OIH IIH | vM015
OJE — OJH A — 1ID
CHO13
OJA— 0ID IJA— 13D _| YMO11
OIA- 1JE-
T WH
OIE- 1E-
OIH IJH | YMO15
OJE - OJH A - 1ID
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CPU Vector Registers

CKO000 OED IvB _ | vR0Os ovI IMC M000 Vector Register Decode Bits
CKO002 >| VR0O13 oYJ VMO008
VR001 ovl IMA__I'vM000 OvK IMD* IMC IMB IMA
OFB IYB _|VR009 oYJ VMO008 M000
> oYL L2 1 0 0 0 VO
oYK »| VM010
OFC oYL Ma | Ymoo2
1 0 0 1 \Val
»| VM010 IMC _ | vmoo04
> vM012
OFA MA [vmooa o102
VM012 IMC | VMO006 1 0 1 1 V3
VMO014
IMA__| VMO006 1 1 0 0 V4
VM014 IMC | VMO0O01
=] VMO009 1 1 0 1 Vs
IMA VMO001
> VMO011
ma  [VMo03 1 1 1 1 V7
VMO11 iMmc _ | VM005
| VM013 * Path 1 Valid
IMA VMO005
> VM013 IMC VMO007
> VM015
NOTES: The top option number represents pipe 0.
IMA VMO007 :
- (0)1] IMD The bottom number represents pipe 1.
»| VM015 VR006 »! \/M000 P PIP
VRO015 VM008
oYl IMB oYJ
VR003 » \VM000
IYB | vRo11 ovJ VMO08 OYK mp [ vmoo2
OYK oYL ~ 1 YM010
oYL IMB VM002 VRO0O
VMO010 oYM IMD__ | VM004 A VR008
OYN > vM012
IMB _ | VM004 IYB
> > INA | VROO2
VMO012 > oYo IMD _ | VM006 VRO10
IYC oYP VMO014
IMB VMO006
> VMO14 mp  [Vmoot INA ] VRO02
1 VMO009
IMB__| VMOOL INA _ [VR006
VMO009 IMD _ | VMO003 > VRO14
> VMO011
IMB VMO003 VROOL
VMO11 IMD__ | VM005 NA VR009
> vmo013
mB | vmo05
VR003
VMO013 IMD _ | VMO007 A . VRO11
> vm015
IMB s Path 1 Valid ina [ VRO05
»| VR013
Path 1 Valid
Path 1 Valid VR0O07
Path 1 Valid INA _ | VRO1S

Figure 42. Vector Register Decode Bit Fanout (Pipe 0 and 1 Path 1 Only)
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CPU Vector Registers

CKO000 OFD IYC VROO5 Vector Register Decode Bits
CK002 > URO13 oYM IMG_I'vMo00
VROO1 OYM IME: VMO0O00 OYN VMO008 IMH* IMG IME IME
OFB IYC _|VR009 OYN VMO008 oYO
0oYO oYP IMG_ xmg% 1 0 0 0 Vo
OFC ovYp e | vmoo2
»{ VM010 1 0 0 1 Vil
IMG | VM004
OFA -
IME | VM004 VMO012 1 0 1 0 V2
-1 VM012
mc | vmoo6 1 0 1 1 V3
> VM014
IME | VMOO6
> vmo14 1 1 0 0 V4
IM VMO001
G' VMO009 1 1 0 1 V5
IME | VMOO1
VMO009 1 1 1 0 V6
IMG _ VMO003
IME _ | VMO003 VMOLL 1 1 1 1 V7
> VMO011
VMO005
IMS 1 /Mo13 * Path 2 Valid
IME | VMO005
> vM013
IMG_ | VMO007
IME | VMO007 | yMo15 NOTES: The top option number represents pipe 0.
> vM015 oyl IMH The bottom number represents pipe 1.
VR0O07 »| VMO000
QYI IMF
VRO003 »| VM000 VRO15 | OYJ VMO008
IYB | vRo11 oYJ VMO008 oYK
IMH | VM002
oK (e} VMO010
oYL IMF | VMOO2 IYB e
=1 VM010 > VRO00
oYM INB
IYC IMHV xmggg »| \VRO0O8
IMF _ | vMo04 OYN
=1 VM012 VRO02
Yo IMH _| VMOOG B ol VRO10
IMF_ | vMo06 oYP VMO14
-1 VM014
IMH | VM001 INB - VR004
IMF_ | YMO001
1 VM009 INB VR006
IMH _| VMOO3 VRO14
> vM011
iME | vmo03
> vMmo11 ne  [VRooL
IMH | VMOOS > VR009
>1VM013
IMF _ | VMO005
>l vM013 g [VRo003
IMH _ xmg% > VRO11
IMF _ | VMO007
>| VM015 Path 2 Valid INB | VROOS
} > VRO13
Path 2 Valid
Path 2 Valid VR007
Path 2 Valid INB VRO15

Figure 43. Vector Register Decode Bit Fanout (Pipe 0 and 1 Path 2 Only)
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CPU Vector Registers
Vector 0 Vector 1 Vector 2 Vector 3
IEA— IEE EI IEM
VR000 IED | VRO0O/8 VROO1 IEH _ | VRoOO/8 VR002 IEL _ | vRoOO/8 VR003 IEP__ | VROOO/8
VR008 OAA - ICA= VR009 OAA— ICE - VRO10 OAA - ICl VRO12 OAA - ICM
OAD Bits 0 — 3 ICD _ | vm000/8 OAD Bits 0 — 3 ICH VMO000/8 OAD Bits 0 — 3 ICL VM000/8 OAD Bits 0 — 3 ICP VMO000/8
OAE — IEA— OAE — IEE OAE — EI OAE — IEM
OAH Bits4—7 IED _ VMo00/8 OAH Bitsa—7 IEH | VMO0O/® OAH Bitsa—7 (EL | VMO0O/® OAH Bits4—7 IEP | VMO0
IEA— IEE EI IEM
IED _| VR001/9 IEH _| vROO1/9 IEL _] vrRoo1/9 IEP__| VR001/9
OAl - ICA— OAl - ICE — OAI - ICl OAI - ICM
OAL Bits 8 — 11 ICD 1 VM001/9 OAL Bits 8 — 11 ICH _ 1 VM001/9 OAL Bits 8 — 11 ICL VMO001/9 OAL Bits 8 — 11 ICP VMO001/9
OAM — IEA— OAM — IEE OAM — IEI OAM — IEM
OAP  Bits12-15 IED _[VMOOL9 OAP  Bits12-15 IEH _|VMOOLS OAP  Bits12-15 IEL _[VMOOL® OAP  Bits12-15 IEp _|VMOO®
IEA— IEE IEI IEM
IED _ I vR002/10 IEH _I'vro02/10 IEL__ ] VR002/10 IEP__|vRroo2/10
OBA- ICA— OBA- ICE — OBA- ICl OBA- ICM
OBD Bits 16 —19] ICD »| vmo02/10 OBD Bits 16 —19] ICH VMO002/10 OBD Bits 16 — 19/ ICL VMO002/10 OBD Bits 16 —19] ICP VMO002/10
OBE — IEA— OBE — IEE OBE - IEI OBE - IEM
OBH  Bits20—23 IED _|VM002/10 OBH  Bits20—23 IEH _|VM002/10 OBH  Bits20—23 |EL _|VM002/10 OBH  Bits20-23 IEP _|VMO002/10
IEA— IEE EI IEM
IED _I'VR003/11 IEH _[VRoo3/11 IEL__['VRoO3/11 IEP _['VR003/11
OBI - ICA— OBI - ICE — OBI - ICl OBI - ICM
OBL _ Bits24-27] 1D _I\mo03/11 OBL _ Bits24-274 'CA 1 ymoos/i OBL _ Bits24-270 1L _I\moos/ OBL _ Bits24-278 1P _{vmoos/
OBM IEA— OBM IEE OBM IEI OBM IEM
OBP  Bits28—-31 IED _|VMO003/11 OBP  Bits28-31 [EH | VMO003/11 OBP  Bits28—31 IEL _|VMO003/11 OBP  Bits28-31 IEP _|VMO003/11
IEA— IEE IEI IEM
IED _ | VR004/12 IEH _| VR004/12 IEL__| vRo04/12 IEP__| VR0O04/12
OCA- ICA— OCA- ICE — OCA- ICl OCA- ICM
OCD Bits 32— 35] ICD | vM004/12 OCD Bits 32 —35] ICH | v/Mm004/12 OCD Bits 32 -35] ICL VMO004/12 OCD Bits 32 —35] ICP VMO004/12
OCE - IEA— OCE - IEE OCE - EI OCE - IEM
OCH _ Bits36-39 IED _[VMO04/12 OCH _ Bits36-39 IEH _[VMO04/12 OCH _ Bits36—39 IEL _[VM004/12 OCH _ Bits36-39 IEP _|VMO04/12
IEA— IEE EI IEM
IED _['VRo05/13 IEH _I'VR005/13 IEL__T'VR005/13 IEP__[VRo05/13
oCl - ICA— ocCl - ICE — oCl - Il ocCl - ICM
OCL Bits 40 —43] ICD »| vmoos/13 OCL Bits 40 —43] ICH VMO005/13 OCL Bits 40 —43] ICL VMO005/13 OCL Bits 40 — 43| ICP VMO005/13
OCM — IEA— OCM — IEE OCM — EI OCM — IEM
OCP  Bits44—47 IED _|VMO005/13 OCP  Bits44—-47 IEH _|VMO005/13 OCP  Bits44-47 IEL _|VMO005/13 OCP  Bits44-47 I|EP _|VMO005/13
IEA— IEE EI IEM
IED _ | VROOB/14 IEH | VROO6/14 IEL _ | vRoO6/14 IEP _ | VROO6/14
ODA - ICA— ODA - ICE — ODA- ICl ODA - ICM
OoDD Bits 48 —51] ICD _ | vM006/14 ODD Bits 48 - 51| ICH VMO006/14 ODD Bits 48 —51] ICL VMO006/14 ODD Bits 48 — 51| ICP VMO006/14
ODE - IEA— ODE — IEE ODE — EI ODE — IEM
ODH Bits52-55 I|ED _ VMO06/14 ODH Bits52—55 IEH | /M00®/14 ODH Bits52—55 IEL | VMO06/14 ODH  Bits52—55 IEp | YMO06/1L4
IEA— IEE IEI IEM
IED _| vROO7/15 IEH _| VROO07/15 IEL__ | VR007/15 IEP__| vRoO7/15
oDI - ICA— oDI - ICE — oDI - ICl oDI - ICM
ODL _ Bits56-59] 1CD | \mo07/15 ODL _ Bits56-59] ICH _|\mo07/15 ODL  Bits56-59] ICL | \m007/15 ODL  Bits 56 -59] ICP |\ \1007/15
ODM — IEA— ODM — IEE y ODM — IEI p ODM — IEM ’
ODP  Bits60—63 IED _|VYMOO7/15 ODP  Bits 6063 IEH _[VMOO7/15 ODP  Bits60-63 IEL _|VYMOO7/15 ODP  Bits60-63 IEP | VMOO7/15
Figure 44. Vectors 0 through 3 Pipe 0/1 Read Data Path
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CPU Vector Registers
Vector 4 Vector 5 Vector 6 Vector 7
IDA IDE IDI IDM
VR004 IDD - VR000/8 VRO05 IDH - VR000/8 VRO06 IDL VR000/8 VRO07 IDP - VR000/8
VRO012 OAA— IFA VRO013 OAA - IFE VRO14 OAA — IFI VRO015 OAA - IFM
OAD Bits 0 — 3 IFD | VMO000/8 OAD Bits0—3 | IFH |VvMO000/8 OAD Bits0—3 | IFL _|VMO000/8 OAD Bits0—-3 | IFP | VMO00/8
OAE — IDA OAE — IDE OAE — IDI OAE — IDM
OAH Bits 4 — 7 IDD VM000/8 OAH Bits4—7 IDH |VMO0O/8 OAH Bits4—7 IpL | VYMO0O/8 OAH Bits4—7 IDP VM000/8
IDA IDE IDI IDM
IBD _ | VR001/9 IDH _ | vR001/9 IDL__| VR001/9 IBP__ | VR001/9
OAIl - IFA OAIl - IFE OAl - IFI OAIl - IFM
OAL Bits 8 — 11 IFD 1 VM001/9 OAL Bits 8 — 11 IFH ~ 1 VM001/9 OAL Bits 8 — 11 IFL VMO001/9 OAL Bits 8 — 11 IFP _ 1 VM001/9
OAM — IDA OAM — IDE OAM — IDI OAM — IDM
OAP  Bits12-15 DD _|VMOOL/® OAP  Bits12-15 IpH _|VYMOOL® OAP  Bits12-15 DL _|VMOOL/9 OAP  Bits12-15 pp _[VYMOOL®
IDA IDE IDI IDM
IBD _IvR002/10 IDH _VvR002/10 IBL__1VvR002/10 IDP__ I VR002/10
OBA - IFA OBA- IFE OBA- IFI OBA - IFM
OBD _Bits16-19 | IFD |\ mo002/10 OBD _ Bits16-19] IFH |\ 100010 OBD _ Bits16-19] IFL |\, \100o10 OBD _ Bits16-19] IFP I\ 100010
OBE — IDA OBE — IDE OBE — IDI OBE — IDM
OBH  Bits20-23 IDD _|VM002/10 OBH  Bits20-23 IDH _|VYM002/10 OBH  Bits20—23 IDL _|VM002/10 OBH  Bits20—23 [DP _|VMO002/10
IDA IDE IDI IDM
IDD _['VRoos/11 IDH _[VRo03/11 IDL _I'VRoO3/11 IDP__I'VRoo3/11
OBI - IFA OBI - IFE OBl - IFI OBI - IFM
OBL Bits24-27 ) IFD |\ \\0oos OBL _ Bits24-27) IFH | 1000 OBL _ Bits24-27] IFL |\ ,\io0ai OBL _ Bits24—27) IFP [ '\ 0oos
OBM IDA OBM IDE OBM IDI OBM IDM
OBP  Bits28—-31 IDD | VMO003/11 OBP  Bits28—31 IDH |VMO003/11 OBP  Bits28-31 IDL _|VMO003/11 OBP  Bits28-31 IDP _|VMO003/11
IDA IDE IDI IDM
IDD _ | VRO04/12 IDH _ | VR004/12 IDL _ | VRO04/12 IDP__ | VR004/12
OCA-— IFA OCA- IFE OCA-— IFI OCA- IFM
OCD Bits 32 — 35 IFD | v™M004/12 OCD Bits 32 -35] IFH VMO004/12 OCD Bits 32 -35] IFL VMO004/12 OCD Bits 32 - 35| IFP | vmM004/12
OCE - IDA OCE - IDE OCE - IDI OCE - IDM
OCH Bits36-39 (DD _| YMO004/12 OCH  Bits36-39 IDH _|VM004/12 OCH  Bits36-39 IDL _|YM004/12 OCH _ Bits36-39 IDP | VMO04/12
IDA IDE IDI IDM
IDD _['VRoo5/13 IDH _T'VRoO5/13 IDL__['VRo05/13 IDP _[VRoo5/13
ocClI - IFA ocCl - IFE ocClI - IFI ocCl - IFM
OCL__ Bits40-43] IFD | 00 - OCL _ Bits40-43] IFH |, ' ociia OCL__ Bits40-43] IFL | \'oociia OCL__ Bits40-43] IFP |\ 0cis
OCM — IDA OCM — IDE OCM - IDI OCM — IDM
OCP  Bits44—-47 IDD | vMm005/13 OocCpP Bits 44 — 47 IDH | vM005/13 OCP Bits 44 —47 IDL | vM005/13 OocCpP Bits 44 — 47 IDP | vyM005/13
IDA IDE IDI IDM
IDD _ | VR006/14 IDH _ | VR006/14 IDL _ | VROO6/14 IDP _ | VR0O6/14
ODA - IFA ODA- IFE ODA - IFI ODA - IFM
OoDD Bits 48 — 51 IFD _ | vM006/14 OoDD Bits 48 —51] IFH VMO006/14 ODD Bits 48 —51] IFL VMO0O06/14 OoDD Bits 48 —51] IFP _ | vM006/14
ODE — IDA ODE - IDE ODE - IDI ODE - IDM
VMO006/14 VMO06/14 VMO006/14 VMO006/14
ODH Bits52-55 IDD ODH  Bits52-55 IDH ODH  Bits52—55 IDL ODH  Bits52-55 IDP
IDA IDE IDI IDM
IBD _ | VR0O07/15 IDH _ | vRO07/15 IBL__| vROO7/15 IDP__ | VR00O7/15
oDI - IFA oDI — IFE oDI - IFI oDI — IFM
ODM — IDA ODM — IDE ODM — IDI ODM — IDM
ODP__ Bits60—63 IDD _|VMOO7/15 ODP  Bits60—63 IDH _|YMOO07/15 ODP  Bits60_63 IDL | VM0O7/15 ODP  Bits60_63 IDP | YMOO7/15
Figure 45. Vectors 4 through 7 Pipe 0/1 Read Data Path
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CPU Vector Registers

Vector O Vector 1 Vector 2 Vector 3
VR000 VR001 VR002 VR003
VR008 VRO009 VR010 VRO11
VMO000 OAA — JAA — VMO000 OAl — 1AA — VMO000 OBA — 1AA — VMO000 OBl — 1AA —
VMO008 OAH _ Bits0-7 IAH _ VMO008 OAP  Bits0-7 IAH VMO008 OBH  Bits0-7 IAH VMO008 OBP  Bits0—7 IAH
xmggé OAA- Al - \\;mggé OAI - 1Al - xmggé OBA- IAl - xmggé OBI - IAI -
OAH Bits 8 — 15 IAP OAP Bits 8 — 15 IAP | OBH Bits 8 — 15 IAP OBP Bits 8 — 15 IAP
VMO002 VM002 VM002 VMO002
V|v|8(1)o OAA - IBA - VMggo OAl - IBA— VM8(1)0 OBA - IBA— vmgclJo OBI - IBA -
OAH Bits 16 — 23 IBH OAP Bits 16 — 23 IBH OBH Bits 16 —23 IBH _ OBP Bits 16 — 23 IBH _
VMO003 VM003 VMO003 VMO003
VMO11 OAA - IBI — VMO11 OAI — 1Bl — VMO11 OBA - 1Bl — VMO11 OBI - IBI —
OAH  Bits24-31 IBP _ OAP  Bits24—-31 IBP _ OBH  Bits24—-31 IBP _ OBP  Bits24—-31 IBP
xmg?g OAA - ICA - \\;mggg OAI — ICA - xmggg OBA - ICA - xmggg OBI - ICA -
OAH Bits 32 — 39 ICH OAP Bits 32 — 39 ICH OBH Bits 32-39 ICH OBP Bits 32 — 39 ICH
VMO005 VMO005 VMO005 VMO005
VMO013 OAA - ICI - VMO13 OAl — ICI - VMO013 OBA - ICI - VMO13 OBI - ICI -
OAH Bits 40 — 47 ICP OAP Bits 40 — 47 ICP OBH Bits 40— 47 ICP OBP Bits 40 — 47 ICP
VMO006 VMO006 VMO006 VMO006
VM014 OAA - IDA — VMO014 OAI — IDA — VM014 OBA - IDA — VM014 OBI - IDA —
OAH Bits 48 — 55 IDH OAP Bits 48 — 55 IDH OBH Bits 48 —55 IDH OBP Bits 48 — 55 IDH
VMO007 VMO007 VMO007 VMO007
VMO015 OAA - IDI — VMO015 OAI — IDI — VMO015 OBA - IDI — VMO015 OBI - IDI —
OAH Bits 56 — 63 IDP OAP Bits 56 — 63 IDP OBH Bits 56 — 63 IDP OBP Bits 56 — 63 IDP

Figure 46. Vectors 0 through 3 Pipe 0/1rit¢ Data Path
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CPU Vector Registers

Vector 4 Vector 5 Vector 6 Vector 7
VR004 VR005 VR006 VR007
VR012 VRO013 VRO014 VRO015
VMO000 OCA - IAA — VMO00 ocCl - IAA — VMO000 ODA - IAA — VMO000 ODI — IAA —
VM008 OCH Bits0-7 IAH VMO008 OCP  Bits0-7 IAH VMO008 ODH  Bits0-7 IAH VMO008 ODP  Bits0—7 IAH
xmggé OCA - IAl \\;mggé oCI - IAl - xmggé ODA - IAl xmggé ODI - IAl
OCH Bits8-15 IAP OCP  Bits8—15 IAP ODH Bits8-15 IAP ODP  Bits 8- 15 IAP
xmg% OCA - IBA— xmg% ocl - IBA— xmg% ODA- IBA— xmg% oDI - IBA—
OCH Bits16-23 IBH OCP Bits16-23 IBH ODH Bits16—-23 IBH ODP  Bits16—-23 IBH _
xmgﬁ’ OCA - IBI — xmggf ocCl - 1Bl — xmgcﬁ’ ODA-— IBI — xmgﬁ oDl — IBI —
OCH Bits24-31 IBP _ OCP Bits24—-31 IBP _ ODH Bits24—31 IBP _ ODP Bits24-31 IBP _
xmggg OCA - ICA— \\fmggg ocCl - ICA— xmggg ODA - ICA— xmggg oDl — ICA—
OCH Bits32-39 ICH OCP Bits32-39 ICH ODH Bits32-39 ICH _ ODP  Bits32—-39 ICH _
VMO005 VMO005 VMO005 VMO005
OCH Bits40-47 ICP _ OCP  Bits40-47 ICP _ ODH  Bits40-47 ICP ODP  Bits40-47 ICP
VM006 VMO006 VMO006 VMO006
VMO014 OCA- IDA — VMO014 OCI - IDA — VMO014 ODA - IDA — VMO014 ODI - IDA —
OCH Bits48—55 IDH OCP Bits48—55 IDH ODH Bits48-55 IDH ODP Bits48-55 IDH
VMO007 VM007 VM007 VMO007
VMO15 OCA- IDI — VMO15 oCl — IDI — VMO015 ODA-— IDI — VMO015 oDl — IDI —
OCH Bits56-63 IDP OCP Bits56—63 IDP ODH Bits56—63 IDP _ ODP  Bits56—-63 IDP _

Figure 47. Vectors 4 through 7 Pipe 0/1rif¢ Data Path
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VECTOR LOGICAL

HTM-003-A

Referto Figure 48 for a vector logical block diagram. There are two
vector logical units in a CRAY T90 series system; each unit operates
independently. These functional units reside on 16 VM options. VM000
through VMO0O7 handle pipe 0 (the even elements), and VM0O08 through
VMO015 handle pipe 1 (the odd elements). Each VM option operates on a
4-bit slice of all eight vector registers.

The vector logical units receive data from the VR options and send the
results back to the vector registers. The second vector logical unit is
enabled by setting mode bit 2 (ESL) in the mode field of the exchange
package. When both logical units are enabled, data is first processed in
the second unit. This is done because only the first unit can process the
146 and 147 (vector merge) instructions. For example, if a 140 instruction
(logical product) issues, the second unit processes the instruction in case a
146 or 147 issues next. If the first unit processed the 140 instruction, it
would be busy and the 146 instruction would have to hold issue.

The vector logical unit performs the logical product (AND), logical sum
(OR), and logical difference [XOR (exclusive OR)] functions using either
scalar or vector registers.
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Vector Logical

» Result Vector

CPU

Even Elements

OVA, Vj= Neg
OVB Vj=0

OVA, Vj= Neg
OVB Vj=0

VF000 - 001 Vector Logical 1 and 2
Vectors 0 — 7 VMO00
Pipe 0 VMO007
:I_l OPA — OAP —
IKA —
Instruction Parcel IKP —
VRO000 - 007
V Data -
- Unit 2
IGA —
IGH
ILC -
L= _ Vj=Neg
VM =1 Vj=0
A
oYU
IC000 — 1C003 I0A
Enable Vector
Logical 2
OEA - OEH
OEA - OEH
SS000
————-ARAS AT AU SjData  f— — —— 1 Vector Mask Register
OEI - OEP
VF002 - 003 OFl — OEP
Vectors 0 — 7
Pipe 1 OAA — OAP I0A
VM008
. VMO015
Instruction KA —
Parcel IKP Viep
> _ j=Pos
VM =1 o
VR008 - 015 Vj=0
IGA - Unit 1
IGH
4 V Data Unit 2
1C000 — 1C003 —
Enable Vector ovu ILC >
Logical 2

94

Vector Logical 1 and 2

» Result Vector
Odd Elements

Figure 48. Vector Logical Block Diagram
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INA, VF000
IOHV 001
Pipe 0
Pipe 1
INA
" | VF002 —
IOH 003
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CPU Vector Logical

Vector Logical Instructions

Refer to Table 15 for a list of the vector logical instructions.

Table 15. Vector Logical Instructions

Instruction CAL Description

140ik ViSj&Vk Transmit logical product of (Sj) and (Vk elements) to Vi
elements

141ijk ViVj&Vk Transmit logical product of (Vj elements) and (Vk elements)
to Vielements

142jjk ViSj\Vk Transmit logical sum of (Sj) and (Vk elements) to Vi
elements

143ijk ViVjVk Transmit logical sum of (Vj elements) and (Vk elements) to
Vielements

144jjk Vi SA\Vk Transmit logical differences of (Sj) and (Vk elements) to Vi
elements

145jjk ViVAVK Transmit logical differences of (Vj elements) and (Vk
elements) to Vi elements

Vector Merge

The 146 and 147 instructions merge the contents of the registers using the
vector mask register for control. The 146 instructiongegithe contents

of § with the contents of k, the 147 instruction merges the contents of

Vj and \k. If the vector mask bit is a 1, thg ®r § data is used; if the

vector mask bit is a 0, thek\ata is used.

The vector logical functional unit holds a copy of the S-register value.
Therefore, a subsequent instruction can change the S-register value and
not affect the results. These instructions are confined to the second logical
unit. Refer to Table 16 for the vector merge instructions, and refer to
Figure 49 for an example of a vector merge operation.
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Vector Logical

96

Table 16. Vector Merge Instructions

CPU

Instruction CAL Description
146ijk ViSjIVk&VM | Merge (Sj) and (Vk elements) to Vi elements using (VM) as
mask
14610k Vi#VM&Vk |Merge 0 and (Vk elements) to Vi elements using (VM) as
mask
147ijk ViVAVK&VM | Merge (Vjelements) and (Vk elements) to Vi elements
using (VM) as mask

Cray Research Proprietary
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147ijk Merge Sjand Vk elements to Vi elements using VM as mask

Vector Mask (SS)

VL=5 0001100 —— O
Vk Elements (VR/VM) Vi Elements (VM/VR)
Element0| 0 ——— 0 »| Vk Element 0 | Element O
Element1]| O 1 »| Vk Element 1 | Element 1
Element2| 0 2 »| Vk Element 2 | Element 2
Element3| 0 3 > Sj Element 3
Element4| O 4 > Sj Element 4
S2 0O —m8—7 NOTE: Elements 5 through
127 are unchanged.

146ijk Merge Vjelements and Vk elements to Vi elements using VM as mask
Vector Mask (SS)

VL=5 0001100 —— 0
Vk Elements (VR/VM) Vi Elements (VM/VR)
Element0| O 0 »| Vk Element 0 | Element O
Element1| 0 —m8 ——— 1 »| VkElement 1 | Element 1
Element2| 0 —m8 — »| Vk Element 2 | Element 2
Element3| 0 ——— 3 »| V/jElement0 | Element3
Element4| 0 — 4 VjElement1 | Element 4

Vj Elements (VR/VM)

Element0| O 7
Element1| O 7
Element2| 0 —Mm7
Element3| 0 — 7
NOTE: Elements 5 through
Element4| 0 ———7 127 are unchanged.

Figure 49. Vector Merge Operation
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Vector Mask

CPU

There are two vector mask registers: VMO and VM1. Each register is 64
bits wide, and the two registers are aligned to create a 128-bit register
Each bit in the register corresponds to an element in a vector register
The vector mask register stores the results of a test condition of an
element in a vector. For example, a bit can be set in the mask register for
all elements in the test vector that are positive values.

The vector mask register receives data from the scalar registers or from
the result of comparing a condition within the elements of a veGioe
vector mask register is arranged so that mask bit 127 corresponds to
element O of the vector.

Refer to Table 17 and Table 18 for a list of the vector mask and vector

mask test operations, respectively. Refer also to Figure 50 for an
illustration of the 175 instructions.

Table 17. Vector Mask Operations

Instruction CAL Description
0030,0 VMO Sj Transmit (Sj) to VMO
003041 VM1 Sj Transmit (Sj) to VM1
*0030,2 VMO Aj Transmit (Aj) to VMO
*0030,3 VM1 Aj Transmit (Aj) to VM1
070i1 ViCl,Sj&VM | Transmit compressed index of (Sj) controlled by (VM) to Vi
073i00 SiVMO Transmit (VMO) to Si
073i10 SivVM1 Transmit (VM1) to Si
*073/20 AiVMO Transmit (VMO) to Aj
*073i30 AiVM1 Transmit (VM1) to Aj

* These instructions must be preceded by a 005400 (EIS) instruction.

98
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Table 18. Vector Mask Test Operations

Instruction CAL Description

1750/0 VM Vj,Z Set VM bhit if (Vjelement) =0

175071 VM Vj,N Set VM bit if (Vj element) =0

1750j2 VM Vj,P Set VM bit if (Vjelement)=0

17503 VM Vj,M Set VM bit if (Vj element) <0

175i4 ViVM Vj,Z | Set VM bit if (Vj element) = 0 and store compressed
indices of Vjelements =0 in Vi

175i5 ViVM VjN | Set VM bit if (Vjelement) =0 and store compressed
indices of Vjelements = 0in Vi

175ij6 ViVM Vj,P | Set VM bit if (Vj element) =0 and store compressed
indices of Vjelements = 0in Vi

175ij7 VIiVM VjM | Set VM bit if (Vj element) < 0 and store compressed
indices of Vjelements < 0in Vi

1750/0 Set VM bit if Vjelement =0

VL=5
Compare VF
P Vector Mask Register (SS
Vector Register (V)) (VR/VM) TestVj=0 gister (SS)
Element 0 00000000000000000 - - 0 Bit 127
Element 1 00000001110000001 > 1 Bit 126
Element 2 1111111111111111111 > 0 Bit 125
Element 3 00000000000000000 > > 1 Bit 124
Element 4 1111111111111000000 > > 0 Bit 123
0 Bit 122
L]
L]
L]
0 Bit 0

Figure 50. 1750 Instructions
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Figure 51 illustrates the function of the 1jASinstructions that use the
vector mask to create a compressed vector.

175i/4 Set VM bit if Vjelement = 0 and store compressed indices of Vj elements =0 in Vi

VM Reg Index
Vj Elements (VR/VM) VF (SS) Bits Address (VF) ViElements (VM/VR)
Element0 | O 0 > 1 -@—» 0 > 0 Element O
Test
Element1l | O 1 > 0 126 1 |" 2 Element 1
Element 2 0 0 > 1 @ 2 3 Element 2
Element3 | 0 ——— 0 . 1 | ¥ 3 4 Element 3
Vj=0 . :
Element4 | 0 ——— 0 1 e Unchanged | Element 4
0 177

VL=5

Figure 51. Function of the 1ij8 Instructions

Compressed lota

The lota function is performed on the RA, RB, and RC options; these
options also make up the floating-point reciprocal approximation unit and
the vector pop functional unit. Table 19 lists the instruction used in iota
operations, and Figure 52 is a block diagram of iota pipe 0.

Table 19. lota Instruction

Instruction CAL Description

070ij1 ViCl,Sj&VM | Transmit compressed index of (Sj) controlled by (VM) to Vi

The 0701 instruction forms multiples of the contents of regisjer S
starting with 0 (0, §2x §, 3x §, and so on). It stores multiples
corresponding to each 1 bit set in the vector mask register in successive
elements of registeri\(beginning at element 0). The instruction stops
when all unused bits of the vector mask are 0 or are used.
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Go lota Pipe 0
Select lota, Gate A, Hold A, Gate lota RC000
RA000 OP— IMC, IME, IMI, IMK
SjBit 47 ICP
> OPA IMA
Sj Bits OBA —
48 ~63 IDA - IDP OBQ  ViBits 47 — 63 Results
INA, INC, OEA — "
INE, ING_ OEO  ViBits 0 — 14 Results
B OAA - ViBits 15 — 40
:Sg N OAZ Results -
OBA - ViBits 41 - 46
OPI OBF  Results
Gate lota Pipe 0
ONA - Carries/Enables
‘ ONC toRA
Vilota 0 — 14 -
RB000O OFA _
IME OFO
IMC ODA - Shared lota Vi IDA —
» ODL Bits 15 — 26 IDL
IMA OPA Sj Bit 26 Relay IQA
- 0O0A, IPA, IPB
IQA - 00C, Carries/Enables IPH
SjBits0—15 1QP ONA to RC/RA IOA, IOB
IRA — IRA —
SjBits 16 — 26 IRK SjBits 27 —42__IRP
B ISA —
SjBits 43— 46 1SD
Figure 52. lota Pipe 0
Figure 53 on page 102 illustrates the function of thej@Q74Astructions
that use the vector mask to create a compressed vector.
RA Option

The RA option generates the iota results for bits 47 through 63. It
receives iota result bits 0 through 14 from the RB option and outputs bits O
through 14, and 47 through 63 to the result vector. The RA000 option also
generates the control for the iota function for both pipes.
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070i1 Transmit compressed index of (Sj) controlled by (VM) to Vi

Vector Mask (SS)
1001110100———— 0
Vi Elements (VM/VR)
Functional
Unit 0 Element O
> Sjx VMBIt 6 Element 1
2x0 _
2% 3 - 8 Element 2
> 2x4
2% 5 10 Element 3
2x1 14 Element 4
Sj O ——— 2

Figure 53. Function of the 0ij@ Instructions

RB Option

The RB option generates the iota result for bits 0 through 26. Bits 0
through 14 are sent to the RA option, and bits 15 through 26 are sent to
the RC option.

The RB option receives two control signatselect lotaOandGate lota.
Select lotaOselects the correct iota results from lotaO/lotadte lota
multiplexes (muxes) the iota results to the RA and RC options.

RC Option

The RC option receives bits 15 through 26 from the RB option and
generates result bits 27 through 46 to be sent to the result vectors.

The RC option receives four control signals from the RA optieatect

lota0, Hold A, Gate A, andGate lota. Select lotaOselects from

lotaO/lotal the correct iota resultslold A andGate A control the
first-in-first-out (FIFO) buffers, anate lota disables
reciprocal/pop/parity/leading zero and enables iota results to be sent to the
result vectors.
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VECTOR ADD

Referto Figure 54 for a block diagram of vector add. The vector add
functional unit is located on the VM and VF options. The VM options
perform the actual addition of the input operands and then pass the group
carries and group enables to the VF for summation. These bit toggles are
then returned to the VM option for final summation. The functional unit
uses two’s complement arithmetic and does not detect any overflow
conditions.

Refer to Rble 20 for a list of the vector add instructions and to Figure 54
for a vector add block diagram.

Table 20. Vector Add Instructions

Instruction CAL Description

154k Vi Sj+Vk Transmit integer sum of (Sj) and (Vk elements) to Vi elements

155ijk ViVi+Vk Transmit integer sum of (Vj elements) and (Vk elements) to
Vielements

156ijk Vi SVk Transmit integer difference of (Sj) and (Vk elements) to Vi
elements

1560k Vi-Vk Transmit two's complement of (Vk elements) to Vi elements

157jjk ViV~Vk Transmit integer difference of (Vj elements) and (Vk elements)

to Vi elements

HTM-003-A

The 154 and 156 instructions use theegister as the second operand.
The VM option holds a copy of the S register so if a subsequent
instruction wants to usg,3hat instruction can be changed without
affecting the vector instruction.
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CPU

VF000

OIA Adder Bit Toggles INA

(VROOO Vector Data
_— = >

VR007)

OIB Adder Bit Toggles INA

Summation

(VROO0O Vector Data

VR007)

OIC Adder Bit Toggles INA

(VROOO Vector Data
—_—

VR007)

OID Adder Bit Toggles INA

HTM-003-A

(VROOO Vector Data
—_—

VR007)

ILA
Adder VF000
VMO0O _ Bits 0— 7 IMA
OWA
Carry
Enable owce
VFO001
ILA
IMA _|
Result Data to Vectors
ILB __IvFooo
VMOOL  Bits 8 - 15 IMB
OWA
Carry
Enable owc
VFO001
ILB
IMB
Result Data to Vectors
ILC _I'vFo00
VM002 Bits 16 — 23 IMC
OWA
Carry
OWC
Enable
VFO001
ILC
IMC
— Result Data to Vectors
ILD__IvFoo0o
VMO003 Bits 24 - 31 IMD
OWA
Carry
owcC
Enable
VF001
ILD
IMD

— Result Data to Vectors

Figure 54. Vector Add Block Diagram

VF001

OIA Adder Bit Toggles INA

(VROO0 _Vector Data

VR007)

OIB Adder Bit Toggles INA

Summation

Vector Add

Adder ILE _|VvFooo
VMO004 Bits 32 — 39 IME
Carry |OWA
Enable [OWC
VFO001
ILE _
IME _

(VROOO Vector Data

VR007)

OIC Adder Bit Toggles INA

VMO005 Bits 40 — 47
Carry

Enable

—» Result Data to Vectors

(VROOO Vector Data

VR007)

OID Adder Bit Toggles INA

VMO006 Bits 48 — 55
Carry

Enable

ILF | vFooo
IMF _
OWA
owC
VF001
ILF
IMF

— Result Data to Vectors

ILG _|vFooo
IMG
OWA
owcC
VF001
ILG
IMG

Cray Research Proprietary

(VRO0O Vector Data

VRO007)

VMO007 Bits 56 — 63
Carry
Enable

—— Result Data to Vectors

—————— Result Data to Vectors
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VECTOR SH

IFT

The vector shift functional unit is contained within the VS optiorectdr
shift is a dual-pipe functional unit; it accepts a pair of elements and
generates a pair of results. If the vector length is odd, the last operand
generates a single result. There is only one VS option used per CPU.

The vector shift functional unit is also responsible for vector transfer
operations. For example, it moves the contents of one vector register to
another vector register; then the functional unit uses kweahie as a
starting element number for the block move.

This unit also performs the vector compress and expand operations. The
compress operation writes the elements jofoM if a corresponding bit

in the vector mask register sets. The expand operation reads the elements
of Vj to M if a corresponding bit in the vector mask register sets. These
operations are illustrated later in this section.

The 150 to 153 instructions usd As the shift count. The 150 to 151
instructions, when preceded by a 005400 (EIS) instruction, use VO for the
shift count. In either case, if bit 7 or above is set, the result is 0’s.

Vector Shift Instructions

Refer to Table 21 for a list of the vector shift instructions.

Table 21. Vector Shift Instructions

Instruction CAL Description
150/k ViVj<Ak Shift (Vj elements) left (AK) places to Vielements
*150ij0 ViVj<V0 Shift (Vj elements) left (VO elements) places to Vi elements
151ijk ViV>Ak Shift (Vj elements) right (Ak) places to Vi elements
*151i0 ViVj>V0 Shift (Vj elements) right (VO elements) places to Vi elements
152ijk ViVjVj<Ak | Double shift (Vjelements) left (Ak) places to Vielements
*152ijk ViVj,Ak Transfer (Vj elements) starting at element (Ak) to Vi elements
153ijk ViVjV>Ak | Double shift (Vjelements) right (Ak) places to Vi elements

* These instru

HTM-003-A

ctions must be preceded by a 005400 (EIS) instruction.
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Table 21. Vector Shift Instructions (continued)

Instruction CAL Description
*153if0 ViVj{VM] Compress Vjby (VM) to Vi
*153ij1 Vi[VM] Vj | Expand Vjby (VM) to Vi

* These instructions must be preceded by a 005400 (EIS) instruction.

Vector Shift Count Description

The Ak shift count is sent to the VS option by the AR0OOO option, and all
eight A series options check the value of the 64-bit A register. This
determines if any bits above bit 6 have been set. If any bits have been set,
the result is lost due to overshift. If no overflow is detectedio &k

Overflow signal is sent from the SS to the VS. ARO00O sends bits 0
through 6 for the shift count.

To understand this, the breakdown of the shift count must be examined.
For both single and double shifts, the breakdown is the same, except for
the fact that the double shift has 1 extra bit (bit 6). Refer to Figure 55 for
a breakdown of the shift count and to Figure 56 for a block diagram of
vector shift.

Double
Shift
Only
6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Figure 55. Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted. The maximum shift count that could be generatediig 127
orl7%.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count. Also,
a shift of 0 generates a maximum shift of 4 places; this
zeroes out the result register.
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V-€00-IN1H

Arelandold yoreasay Aeid

60T

VM/VR Vector Shift Data Pipe 0 IAA, IDP
Vector Shift Data Pipe 1 IEA, IHP
OHA, OHG Ak Shift Count0—6 A, 11G
SS000 >
OHH No Ak Overflow 1IM
OID Vector Mask Bit =1 (Even) IMM
OIE Vector Mask Bit =1 (Odd) IMN _
VRO0O OMA, OMH Vector Shift Count (VO) Pipe 0 IKA, IKH
OMI VO Overflow IKM
VR008 OMA, OMH Vector Shift Count (VO) Pipe 1 ILA, ILH
OMI VO Overflow ILM
VF001 INA
ONB Pipe 0 Valid INB |
IND
VAO0O oQB End Vector Shift or kO Field INM
BT000 0SG EIS Bit IMC
ORA Go Vector Shift IME

VS000

OAA, ODP Vector Shift Result Data Pipe 0 VMIVR
OEA, OHP Vector Shift Result Data Pipe 1
OMA Shift Result Valid Pipe O INE | vvA000

INF
OMC End Vector Shift

INF

VA001

OMB Shift Result Valid Pipe 1 INE

Figure 56. Vector Shift Block Diagram
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Vector Shift

CPU

If the jk field of a left single shift equals g&and bits 4, 2, 1, and O are set,
the shift values are 16, 4, 2, and 1, respectively. The sum of the shift
values is 23 (16 + 4 + 2 + 1); therefore, the instruction shifts lgft 23
places.

The actual hardware that performs the shifts is the same for both left and
right shifts. However, the hardware performs only left shifts. Right shifts
are accomplished according to the way data is entered into the shifter,
hence the use of two’s complement for right shifts.

The vector shift unit also receives a shift count from VO when performing
the 150 and 151 EIS instructions. The shift count is sent to the VS option
from VRO for pipe 0 and from VRS for pipe 1.

Vector Right Shift 005400 151 /0

Referto Figure 57 for an example of a vector right shift using VO for the
shift count. Note that the shift count for element O is O; this results in an
end-of shift for that element. This instruction must be preceded by the
054100 instruction in order to function as illustrated. This process
continues for vector length.

Vk Elements (VR/VM) Pipe 0/1

Element 0 0 0
Element 1 0 1
VO Shift Count

Element 2 0 2

Element 3 0 3

Element4 | 0 4 VL =5

Vj Elements (VR/VM) Pipe 0/1 VS g Vi Elements (VM/VR) Pipe 0/1
Element 0 1 0 > » 0 0 | Element0
Element 1 0 10 »| Vector Shift » 0 1 | Element 1
Functional
Element 2 0 100 > Unit > 0 1 | Element 2
Element 3 0 1000 > > 0 1 |Element3
Element4 | 0 10000 > » 0 —— 1 | Element4
VL=5
Figure 57. Vector Right Shift
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Vector Right Double Shift 153 jjk

Referto Figure 58 for an example of a vector right double shift usikag A

for the shift count. This instruction concatenates two successive elements
of register \f and right shifts the lower 64 bits ta.VThe first operation
combines element 0 with a word of all 0’s. Element 0 becomes the lower
64 bits, and this value is then shifted right places to V

The next operation combines element 0 and element 1, @fithh element
1 being the least significant bits, and shifts this value righi.torYis
operation continues for vector length. Note that the shift count for
element O is O; this results in an end-off shift for that element.

Vk Elements (VR/VM) Pipe 0

Element0 | 0 ——— 8 17 VL =3
Element 2 1 6 Shift count from Ak
Element 4 0 0 VS Vector Shift Functional Unit
Element 6 0 0 Word of 0's Element 0
Element 8 o o Element 0 Element 1
» Element 1 Element 2
Vj Elements (VR/VM) Pipe 1
Element 2 Element 3
Element 1 66— 6
Element 3 Element 4
Element3 |16 0
Element 5 0 0
Element 7 0 0
Element9 | 0O— 0 Vi Elements (VR/VM) Pipe 0/1
0 — 1 Element O
166 0 | Element1
»| 15 0 | Element2
156 0 | Element3
0 ——— 0 | Element4

Figure 58. Vector Right Double Shift
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Vector Transfer 005400 152 jk

This instruction moves the contents gfty' Vi starting with element kas
shown in Figure 59. Note that this is an EIS instruction.

Ak=2
VL=5
Vj Elements (VR/VM) Pipe 0/1 VS Vi Elements (VM/VR) Pipe 0/1
Element 0 1 0 > » 0O 100 | Element0
Element 1 0 10 » Vector Shift »{ 0 1000 | Element 1
Functional
Element 2 0 100 > Unit > 0 ———— 10000 | Element 2
Element 3 0 1000 > > 0 0 | Element 3
Element4 | 0 ——— 10000 > » 0 0 | Element 4

Figure 59. Vector Transfer

Vector Compress 005400 153 jj0

This instruction compresses a vector register using a vector mask and
transmits the results toi ¥s shown in Figure 60.

Two element counters are initialized to 0, one fpaNd the other for V

The vector mask is then scanned from right to left, and for every 1 bit set,
an element of Yis written to \. The element counters internal to the VS
option determine the element position within each register.

SS Vector Mask Register

10011 o | VL=5

Vj Elements (VR/VM) Pipe 0/1 VS y Vi Elements (VM/VR) Pipe 0/1
Element 0 0 0 > »] Q—— 0 | Element0
Element 1 0 10 Vector Shift » 0 1000 | Element 1

Functional

Element 2 0 —— 100 Unit > 0 10000 | Element 2
Element 3 0 1000 > >0 0 | Element 3
Element4 | 0 ———— 10000 > > 0 0 | Element 4

Figure 60. Vector Compress
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Vector Expand 005400 153 1

This instruction expands a vector register using a vector mask and
transmits the results to s shown in Figure 61.

Two element counters are initialized to 0, one fpakNd the other for V

The vector mask is then scanned from right to left, and for every 1 bit set,
an element of Yis written to \. The element counters internal to the VS
option determine the element position within each register. In this
instruction, the element counter foy félls behind the counter fori by

one position for each 0 bit in the vector mask register.

SS Vector Mask Register

10011 o | VL=5

Vj Elements (VR/VM) Pipe 0/1 VS ViElements (VM/VR) Pipe 0/1
Element 0 0 0 > » 00— 0 | Element0
Element1 | 0 10 »| Vector Shift Unchanged Element 1

Functional

Element2 | O 100 > Unit Unchanged Element 2
Element 3 0 1000 > 0 ——— 10 | Element 3
Element 4 0 ——— 10000 > 0 100 | Element 4

Figure 61. Vector Expand
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VECTOR POP/ POP PARITY AND LEADING ZERO

The vector population/parity functional unit performs population counts
and parity for vector operations and executes instructiongllvdctor
population count and 112 vector parity.

Refer to Figure 62 for a vector population/parity/leading zero block
diagram. This functional unit shares logic with the floating-point
reciprocal approximation functional unit. Thdield of the instruction
determines the type of operation to be performed.

Because the vector population/parity functional unit shares logic with the
floating-point reciprocal approximation functional unit, all vector
operations reserve the associated functional unit. The floating-point
reciprocal approximation functional unit is reserved when the vector
population/parity functional unit is reserved and vice versa.

Both scalar and vector register operations share the floating-point
reciprocal functional unit. Therefore, when vector reciprocal or vector
population/parity instructions are executed, any scalar reciprocal
instruction holds issue until the vector operation is finished.

The 174j1 instruction counts the number of 1 bits in each element of a
vector register specified byi VEach element is counted individually, and
the result is stored in the respective elementioffbr example, the count
of 1 bits in element 0 of Ms stored in element 0 ofiMhe count of 1 bits
in element 1 of Yis stored in element 1 ofiMand so on. This process
continues for the number of elements equal to the VL.

The 174j2 instruction counts the number of 1 bits in each element of a
vector register specified byj\énd stores a 1-bit parity result in a vector
register specified by iV The 1742 instruction uses the same logic as the
174ij1 but outputs only bit O of the result. Bits 1 through 6 are forced to
0’s. This instruction determines whether an odd or even number of bits
are set in each element of a vector register. If the result equals 0, there is
an even number of bits. If the result equals 1, there is an odd number of
bits.
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Vector Pop/Pop Parity and Leading Zero CPU
VMO11 Bits 28 — 31
VRO11 Bits 24 — 27
VMO10 Bits 20 — 23 |
VRO010 Bits 16 — 19
VMO009 Bits 12 — 15
VRO009 Bits 8 — 11
VMO008 Bits 4 — 7
VRO008 Bits 0 — 3 RAOOL
_ IBA — IBP
Vector Registers
Pipe 1
VMO015 Bits 60 — 63 IAA — IAP
VRO15 Bits 56 -59 | DA IDP OEA - OEG
VMO014 Bits 52 — 55 | ICA — ICP
VRO14 Bits 48 — 51
VMO013 Bits 44-47 oo o) GO Scalar IEA
VRO13 Bits 40-43 | (Force 0) Ko -
- —  » Pipe 1
VMO12 Bits 3639 | (IC002) P
K1 IEC
VRO12 Bits 32 — 35 (1IC002) ————— ™
Go Recip
Vector Registers (BT000) Recip
Pipe 1 Data Valid IEE
(VF002) ——————————»
VR007 Bits 56 — 59
VROO6 Bits 4851 |
VROO5 Bits 40 — 43 |
VR004 Bits 32 — 35
VR003 Bits 24 — 27
VROO02 Bits 16 -19 |
VRO000 Bits 0 —3
Vector Registers IBA — 1BP
Pipe 0
VMO07 Bits 60 — 63 IAA —1AP
, > OEA — OEG
VMO06 Bits 52 -55 | DA-IDP
VMO005 Bits 44 — 47 CA_ICP
VMO004 Bits 36 — 39 >
VMO003 Bits 28 — 31 Go S Recip IEA
i (JA000) =P =R
VMO002 Bits 20 — 23 KO IEB ;
| | (1C000) ———————> Pipe 0
VMO001 Bits 12 — 15 K1 IEC
- (ICOOO)—’
VMO00 Bits 4—7 Go Recip
(BT0O00) CoRecp ED,
Vector Registers Recip
Pipe 0 Data Valid |EE
(VF000) —————— =
Figure 62. ¥ctor Population/Parity/Leading Zero Block Diagram
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Pop/Parity/Leading Zero Functional Units

The RA options contain part of the reciprocal approximation unit; these
options also contain the logic for vector pop, vector pop patig vector
leading zero. There are two RA options per CPU: RA000 handles pipe 0,
or the even elements; and RA001 handles pipe 1, or the odd elements.

The RA options receive data from the VM and VR options; 4 bits come
from each VR and VM. Data is sent on the same wires and terms that the
reciprocal data uses. The data is then sent to VM00O and VMO008 on the
same terms that the reciprocal output data uses. Data is sent to only those
two options because the pop functional unit returns only a 7-bit value to
the result register.

Vector Population Count 174 jj1

Vector pop counts the number of bits set in an element and reports that
count to a result vector. The count ranges anywhere from 0 (no bits in the
element set) to 100 (all bits in the element set). The functional unit sends
only bits 0 through 6 to the result vector; the remaining bits are zeroed
out.

Vector Population/Parity 174  jj2

This instruction counts the number of bits set in each element of a vector
and then determines whether this number of bits is an even or an odd
number If the result is an even number of bits, a 0 is written to the result
vector If the number of bits is odd, a 1 is written to the result vector
Only bit O is written to the result vector; the rest of the bits in the element
are set to O’s.

Vector Leading Zero Count 174 jj3

This instruction counts the number of 0’s that precede the first bit set in
each element of a vector. The count will be from O (bit 63 of the element
set) to 100 (no bits in the element set).
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Vector Population/Parity Instructions

118

Refer to Rble 22 for a list of the vector population/parity instructions.

Table 22. Vector Population/Parity Instructions

Instruction CAL Description
174i1 ViPVj Population count (V)) to Vi
174i2 Vi QVj Parity of (V)) to Vi
17443 ViZVj Transmit leading zero count of (V) to Vi
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GATHER/SCATTER INSTRUCTIONS

The 1761k and 177§k instructions transfer blocks of data between
common memory and the vector registers. The 176 instruction invokes
the gather, or read function; the 177 instruction invokes the scatter, or
write function. When the 178k instruction is preceded by a 005400
instruction parcel, it performs a double gather function, which utilizes the
dual-pipe capability of the computer system. The contents of the vector
length (VL) register determine the number of words transferred.

Gather Instructions

The 1761k instruction transfers data from common memory to the V
register. Register AO contains the initial (base) address;kegister
contains the address indices.

For each element transferred tp e memory address is the sum of (AO)
and the corresponding element of registkr ¥or example, during a
176213 instruction, V2[0] is loaded from address (A0) + (V3[0]); V2[1] is
loaded from address (A0) + (V3[1]); etc.

The 005400 17§k instruction performs the double gather operation. Data
is transferred from common memory todnd V in two separate data
transfers that occur simultaneously. The AO register contains the base
address for the transfer ta.VThe A register contains the base address
for the transfer to / The \k register contains the address indices for

both transfers.

For each element transferred tg e memory address is the sum of (A0)
and the corresponding element d€ \iFor example, during a 005400
176213 instruction, V2[0] is loaded from address (A0) + (V3[0]); V2[1] is
loaded from address (A0) + (V3[1]); etc. Simultaneaugly{O] is loaded
from address (A3) + (V3[0]); V1[1] is loaded from address (A3) +
(V3[1]); etc.
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Scatter Instructions

120

The 1773k instruction transfers data fronj Yo common memory. The
AO register contains the initial addressk dbntains the address indices.

For each element transferred from registerthe memory address is the
sum of (AOQ) and the corresponding element of register Kor example,
element O of Vis stored to address (AO) +KN]); element 1 of Vis
stored to address (A0) + KJ4]); etc.
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FLOATING-POINT ADD
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Referto Figure 63 for a block diagram of floating-point add. The
floating-point add unit consists of two option types: the FA and the FB
options. Each pipe has one FA option and one FB option. FA0OOO and
FBOOO represent pipe 0, and FAOO1 and FBOO1 represent pipe 1. The use
of dual pipes allows two floating-point add functions to occur at the same
time. The even elements of the vector go to pipe 0; the odd elements go to
pipe 1. This feature helps in troubleshooting; if you identify which

element is failing, you can identify which pipe and associated options are
failing. For scalar floating-point add instructions, only pipe 0 is used.

The floating-point add unit must do several things to produce a result.
First, the exponents of the input operands must be compared to determine
which is larger. Then, the coefficient of the smaller must be right shifted
until the exponents become equal. When this is done, the coefficient is
then added. If the sign bits are different, or if the sign bits are the same
and a subtract instruction is decoded, then a two’s complement addition is
performed.

Next, the results have to be normalized and the exponent adjusted. The
results are then sent to the result registers (either scalar or vector
registers). Finally, if the resulting exponent is greater than g0@0@ss

than 17774 the results are checked for overflow and underflow

conditions. If an overflow condition exists, the exponent is forced to
6000@;, the coefficient is left intact, and an error flag is set in the

exchange package. If an underflow condition exists, the exponent and the
coefficient are forced to 0 and no flag is set. The result coefficient is also
checked for a zero value. Ifitis O, both the result exponent and
coefficient are zeroed out.

The issuing of a 005400 extended instruction set (EIS) instruction just
before a floating-point add instruction enables the extended accuracy
mode. This adds a rounding bit if all the necessary conditions are
satisfied. This is accomplished with the usstafky bits When the

operand of the smaller exponent number is right shifted to equalize the
exponents, the coefficient may be shifted more thampkices, resulting

in a coefficient of 0. What actually takes place is the bits are shifted right
into another register as bit —1 to —&S,shown in Figure 64. If any of

these bits set and EIS sets, a rounding bit is added to the result coefficient
at bit position O.

Cray Research Proprietary 121



et

Arelandold yoleasay Aeid

V-€00-IN1H

(AR, AS, AT, AU)

(AR, AS, AT, AU)

(VM, VR)
(VM, VR)
(IA)
(AT)
(BT)
(VF)
(BT)

SilVi
Coefficient
OAA - OBV Results

FA
(AR, AS, AT, AU) Sj0-53, 63 1AA — ICC:
(AR, AS, AT, AU) SK0 =58, 63 IDA—IFC,, Exponent
i i0— _ Bits 0 -5
(VM. VR) S]. Copy/VjO—53,63 IGA-IIC
(VM, VR) Vj0-53, 63 1IJA—-1JC -
GA) Go Scalar FA IXA — IXB
hO — h1 Field IXC = IXD Y
(AT > .
Go Vector FA IXE | —»| Coefficient
(BT) S Mod o Adjustment
(BT) EIS Mode IX -
[ Leading Zero Count|
FB Coefficient Add
Sj0-63 IAA-ICL .
/ > jExponent OMA —OMC Expj=Exp k6—14 IMA — IMF_
Sk0-63 IDA—IFL_ »| k Exponent ONA-ONB Exp k>Exp6—14 INA— IND_
Sj Copy/Vj0 - 63 IGA - IIL Calculation OOA-0OOB_Expj+1=Expk6-14 I10A—-10D_

- - i -
VkO-63 DAILL of Exponenti .| |opa—OPB  Expj=Expk+1 614 IPA—IPD_ k Coefficient
Go Scalar FA IXA - IXB OCA Exponent Underflow IMW |
hO — hl Field IXC — IXD_|
Go Vector FA  IXE Adjusted o

> Exponent OAA — OAO SilViExponent
S0 Result/Valid __IXF > (JA)
EIS Mode IXG
FPE Mode IXH o
Early Sign OAP SiViSign Bit
Bit = (JA)
Calculation

Figure 63. Floating-point Add
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CPU Floating-point Add

Bits 63 48 0 -35

Exponent Coefficient Sticky Bits

Sign Bit

Figure 64. Floating-point Add Sticky Bits

Floating-point Add Functional Unit Instructions

Refer to Rble 23 for a list of the floating-point add functional unit
instructions.

Table 23. Floating-point Add Functional Unit Instructions

Instruction CAL Description
062ijk Si Sj+ FSk Scalar floating-point sum of (Sj) and (Sk) to S/
0620k Si+ FSk Transmit normalized (Sk) to Si
063jjk SiSj— FSk | Scalar floating-point difference of (Sj) minus (Sk) to S/
0630k Si—-FSk Transmit normalized negative of (Sk) to Si, normalize the
coefficient and toggle the sign bit
170ijk ViSj+ FVk | Vector floating-point sum of (Sj) and (Vk elements) to Vi
171ijk ViVj+ FVk | Vector floating-point sum of (Vi elements) and (Vk elements) to
Vi
172ijk ViSj— FVk | Transmit normalized negatives of (Vk elements) to Vi,
normalize the coefficient and toggle the sign bit
173ijk ViVj—FVk | Vector floating-point difference of (Vj elements) minus (Vk
elements) to Vi

Floating-point Format

Referto Figure 65 for an illustration of floating-point format. A number
is referred to asormalizedif the upper bit of the coefficient (bit 47) is set.

Bits 63| 62 48 0

Exponent Coefficient

Sign Bit

Figure 65. Floating-point Format
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Floating-point Add Examples

Refer to the following subsections for some examples of floating-point
add.

Add Instruction (Subtract Operation)

] 040002 140000 000000 000000+g 3

k= 140003 140000 000000 000000 +g—6

-3
Subtract Operation
Shiftj 040003 060000 000000 000000
Retaink 040003 060000 000000 000000
Togglek 140003 037777 177777 177777

Add
coefficients 140003 117777 177777 177777

CBP (carry across binary point)
Retain exponent and sign of larger
Toggle result 140003 0600000 00000 000000

Normalize 140002 140000 000000 000000
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CPU

Subtract Instruction (Add Operation)

040003 140000 000000 000000 g 6
140002 140000 000000 000000 —g—3

11g

j
k

Add Operation

Floating-point Add

J operand 040003 140000 000000 000000
Complemenk
sign bit 040002 140000 000000 000000
Retain; 040003 140000 000000 000000
Shift k 040003 060000 000000 000000
Add
coefficients 040003  1.020000 000000 000000
CBP

040004 110000 000000 000000
Shift right to normalize; adjust exponents

Add Instruction (Subtract Operation with Carry across Binary Point)
j = 040004 004000 000000 000000 g.4
k= 140003 140000 000000 000000 + 5.0
—5.4

Subtract Operation
Retainj 040004 004000 000000 000000
Shiftk 140004 060000 000000 000000
Togglej 040004 173777 177777 177777

140004 060000 000000 000000
Add
coefficients 040004 1.053777 177777 177777

HTM-003-A
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Retain exponent and sign of larger

Add Instruction (Add Operation)

FA Option

040004 053777 177777 177777
+1 End-around carry
Toggle sign bit 140004 054000 000000 000000
Normalize 140003 130000 000000 000000
j = 040003 140000 000000 000000 g 6
k= 040002 140000 000000 000000+ 3

11s

Add Operation
Retain; 040003 140000 000000 000000
Shift k 040003 060000 000000 000000
Add
coefficients 040003 1.020000 000000 000000

040004 110000 000000 000000

CBP

Normalize result

CPU

126

The FA option operates on the coefficient portion of the floating-point add
operation. The FA does the actual addition ofjthedk operands. It also
determines from the sign bit and the instruction issued whether to perform

an add or subtract operation.

If the extended accuracy mode is set by an EIS instruction, a rounding bit
is inserted into the result coefficient if all the necessary conditions are

satisfied.

The FA option also uses the lower 6 bits of the exponent (48 through 53)
and control signals sent from the FB option to make the final
determination of the right shift, which aligns the coefficient.

Cray Research Proprietary
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FB Option

Floating-point Add

The FB option operates on the exponent portion of the floating-point add
operation. The FB also receives the coefficient bits so it can compute the
final exponent.

The FB option also does a calculation based on the state of the initial
operand as to the sign of the final results. If the result sign bit can be
determined, a valid signal is sent and the sign bit is sent to the JA option.
This information can be used if the JA is processing a jump on a sign bit
instruction. This calculation can be done only for a scalar floating-point
add instruction.

The FB option does the initial calculation to determine which exponent is
larger. To detect the number of right shifts, the exponent is divided into
bits 0 through 5 and 6 through 14. This way, the FA can start shifting
using bits 0 through 5, and the full shift count can be sent from the FB
option. This is done by comparing the following five conditions:

* exponenj = exponenk
* exponenk > exponenj
* exponenj > exponenk
* exponenf + 1 = exponenk
* exponenk+ 1 = exponeng

Determining Exponent Size

HTM-003-A

If the upper bits are equal, the lower 6 bits determine the shift count of the
coefficient.

« j=k(14-6) and >k (0 — 5) then right shifk by j —k (0 — 5)

e j 040012
k 040001 Right shift coefficiehtby 12 —1 =11
Increasek exponent by 11

* j=k(14-6) ank>j (0 - 5) then right shiftbyk—j (0-15)

« | 040001
k 040012 Right shift coefficientby 12 -1 =11
Increase&k exponent by 11

If the upper bits (6 through 14) differ by 1, the lower bits can still be used
to determine the full shift count.
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* j=k+1(14-6);thatig>k (14 —6) by 1 anfi<k (0 —5) then
right shiftk by j —k (0 — 5)

e j 040100
k 040077 Right shifk coefficient by 1
Increasek exponent by 1

e j=k+1(14-6);thatig>k (14 —6) by 1 ang>k (0 — 5) then
overshift occurs.
e j 040177
k 040076 Right shifik coefficient by 101 places

(overshift)

e j+1=k(14-6);thatik>)(14-6)by 1 anéd<j (0 -5) then
right shiftj by k— (0-5)

e j 040077
k 040100 Right shift coefficient by 1
Increasg exponent by 1

e j+1=k(14-6);thatik>]j(14—-6) by 1 anét>j (0 - 5) then
overshift will occur

« j 040000
k 040177 Right shifk coefficient by 177 places
(overshift)

If the upper bits differ by more than 1, the lower bits can be ignored
because the effect is to zero out the coefficient of the smaller exponent.
This is why only the +1 case needs to be determined for the upper bits.

« j 040200
k 040077 Right shifk coefficient by 177
Increasek exponent by 177

Refer to Figure 66 for a floating-point add flowchart.
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Subtract

(FA) instruction?

Sign bit of j = k. add instruction = add operation
Sign bit of j # k- add instruction = subtract operation (FA) 22{32'2{:‘%‘
Sign bit of j = k. subtract instruction = subtract operation
Sign bit of j# k. subtract instruction = add operation "‘
(FA)
Add operation No Signs Yes Subtract operation
unequal bit
63?
k>j k>j
exponent? exponent?
\
Retain j Retain k Retain k Retain j
(FB) exponent (FB) exponent (FB) exponent (FB) exponent
Right shift k Right shift j Right shift j Right shift k
(FAFB) | coefficient (FA, FB) coefficient (FA, FB) coefficient (FA, FB) coefficient
| ] + +
Toggle k Toggle j
(FA) coefficient (FA) coefficient
Add
(FA) | Coefficient L |
Y
(FA) Add
Carry (FA) | Coefficients
across
binary point
Y Y
R N R Carry
Left shift Right shift Yes across No
(FA) | coefficient for (FA) | coefficient by binary point
normalization one (shift -1) (end
* ‘ Y garry)? Y
End-around
L Complement
Decrease Increase (FA) | carry/carry in FA) | n esuI’t)
(FB) | exponent for (FB) | exponent by 1 lower
normalization +
+ + Toggle sign
(FA) bitgg g
NOTE: Both options are involved in most aspects |
of this unit. This diagram shows the option
that does most of the work.  J
Normalize
(FA) result

(FB) Decrease
No exponent for -t
normalization

Result
coefficient = 0?

Yes

(FA, FB)

Coefficient

underflow To (esult
zero result register
exponent and
coefficient

Figure 66. Floating-point Add Flowchart
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FLOATING-POINT RECIPROCAL APPROXIMATION

Referto the following subsections for information about floating-point
reciprocal approximation.

Floating-point Division Algorithm

HTM-003-A

A CRAY T90 series computer system does not have a single functional
unit dedicated to the division operation; rather, the floating-point multiply
and reciprocal approximation functional units together carry out the
algorithm. The following paragraphs explain the algorithm and how it is
used in the functional units.

Finding the quotient of two floating-point numbers involves two steps, as
shown below in the example of finding the quotient A/B.

Step Operation

1 The B operand is sent through the reciprocal
approximation functional unit to obtain its reciprocal,
1/B.

2 The result from Step 1 along with the A operand is
sent to the floating-point multiply functional unit to
obtain the product A 1/B.

The reciprocal approximation functional unit uses an application of
Newton's method for approximating the real root of an arbitrary equation,
F(x) = 0, to find reciprocals.

To find the reciprocal, the equation F(x) = 1/x — B = 0 must be solved. T
do this, A must be found so that F(A) = 1/A — B = 0. That is, the number
A is the root of the equation 1/x — B = 0. The method requires an initial
approximation or guess (shown gsix Figure 67), sufficiently close to

the true root (shown as i Figure 67). yis then used to obtain a better
approximation; this is done by drawing a tangent line (line 1 in Figure 67)
to the graph of y = F(x) at the poinfg[X¥(xg)]. The x-intercept of this
tangent line becomes the second approximatign;Tkis process is

repeated using tangent line 2 to obtainand so on.
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J y =F(x)

[Xo. F(X0)]

X1 F(x
[xa, F(xq)] —— Tangent Line 1
A / Tangent Line 2
X X1 X0 X

Xt

Figure 67. Newton’s Method for Approximating Roots

The following iteration equation is derived from the above process:
X(i+1) = 2% — %°B = X (2 — %B)

In the equation, 1) is the next iteration,)s the current iteration, and B

is the divisor. Each1) is a better approximation thanta the true

value, x. The exact answer is generally not obtained at once because the
correction term is not exact. The operation is repeated until the answer
becomes sufficiently close for practical use.
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The mainframe uses this approximation technique based on Newton’s
method. A hardware look-up table provides an initial guegsylxich is
accurate to 8 bits. The following iterations are then calculated.

Iteration Operation Description

1 X% =X(2 —xB) The first approximation is done
in the reciprocal approximation
functional unit and is accurate to
16 bits.

2 % =X1(2 —xB) The second approximation is
done in the reciprocal
approximation functional unit
and is accurate to 30 bits.

3 % = X2(2 —%B)  The third approximation is done
in the floating-point multiply functional
unit to calculate the correction term.

The reciprocal approximation functional unit calculates the first two
iterations, while the floating-point multiply functional unit calculates the
third iteration. The third iteration uses a special instruction within the
floating-point multiply functional unit to calculate the correction term.

This iteration is used to increase accuracy of the reciprocal approximation
functional unit’s answer to full precision (the floating-point multiply
functional unit can provide both full- and half-precision results).

The reciprocal iteration is designed for use once with each half-precision
reciprocal generated. If the third iteration (the iteration performed by the
floating-point multiply functional unit) results in an exact reciprocal, or if
an exact reciprocal is generated by some other method, performing
another iteration results in an incorrect final reciprocal. A fourth iteration
should not be done.
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An example of calculating the reciprocal of 2 is provided below. Values
from the look-up table in Table 24 are used.

B
Ao

2, start with
0.2

As 2(0.2) - (0.2,

2(0.491602) — (0.491602)

0.4 -0.08
0.983204 — 0.483345

0.32
0.499859

2(0.32) — (0.3%,
2(0.499859) — (0.49985%)

0.64 —0.2048
0.999718 — 0.499718

0.4352
0.50000

2(0.4352) — (0.435%)
2(0.5) — (0.5%

0.8704 — 0.378798
1.0-05

0.491602
0.5
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Table 24. Reciprocal Approximation Values

B Ag Ay? —2A¢
1.000 0.776 0.774004 0.000
1.004 0.772 0.764044 0.010
1.010 0.766 0.754144 0.020
1.014 0.762 0.744304 0.030
1.020 0.756 0.734504 0.040
1.024 0.752 0.724744 0.050
1.030 0.750 0.721100 0.054
1.034 0.744 0.711420 0.064
1.040 0.740 0.702000 0.074
1.044 0.734 0.672420 0.104
1.050 0.732 0.666644 0.110
1.054 0.726 0.657344 0.120
1.060 0.722 0.650104 0.130
1.064 0.720 0.644400 0.134
1.070 0.714 0.635220 0.144
1.074 0.710 0.626100 0.154
1.100 0.706 0.622444 0.160
1.104 0.702 0.613404 0.170
1.110 0.700 0.610000 0.174
1.114 0.674 0.601020 0.204
1.120 0.672 0.575444 0.210
1.124 0.666 0.566544 0.220
1.130 0.664 0.563220 0.224
1.134 0.660 0.554400 0.234
1.140 0.656 0.551104 0.240
1.144 0.652 0.542344 0.250
1.150 0.650 0.537100 0.254
1.154 0.646 0.533644 0.260
1.160 0.642 0.525204 0.270
1.164 0.640 0.522000 0.274
1.170 0.636 0.516604 0.300
1.174 0.632 0.510244 0.310
1.200 0.630 0.505100 0.314
1.204 0.626 0.501744 0.320
1.210 0.624 0.476620 0.324
1.214 0.620 0.470400 0.334
1.220 0.616 0.465304 0.340
1.224 0.614 0.462220 0.344
1.230 0.612 0.457144 0.350
1.234 0.610 0.454100 0.354
1.240 0.604 0.446020 0.364
1.244 0.602 0.443004 0.370
1.250 0.600 0.440000 0.374
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Table 24. Reciprocal Approximation Values

B Ag Ag? —2Ag
1.254 0.576 0.435004 0.400
1.260 0.574 0.432020 0.404
1.264 0.572 0.427044 0.410
1.270 0.570 0.424100 0.414
1.274 0.566 0.421144 0.420
1.300 0.564 0.416220 0.424
1.304 0.562 0.413304 0.430
1.310 0.560 0.410400 0.434
1.314 0.556 0.405504 0.440
1.320 0.554 0.402620 0.444
1.324 0.552 0.377744 0.450
1.330 0.550 0.375100 0.454
1.334 0.546 0.372244 0.460
1.340 0.544 0.367420 0.464
1.344 0.542 0.364604 0.470
1.350 0.540 0.362000 0.474
1.354 0.536 0.357204 0.500
1.360 0.534 0.354420 0.504
1.364 0.532 0.351644 0.510
1.370 0.530 0.347100 0.514
1.374 0.526 0.344344 0.520
1.400 0.524 0.341620 0.524
1.404 0.522 0.337104 0.530
1.410 0.520 0.334400 0.534
1.414 0.520 0.334400 0.534
1.420 0.516 0.331704 0.540
1.424 0.514 0.327220 0.544
1.430 0.512 0.324544 0.550
1.434 0.510 0.322100 0.554
1.440 0.506 0.317444 0.560
1.444 0.506 0.317444 0.560
1.450 0.504 0.315020 0.564
1.454 0.502 0.312404 0.570
1.460 0.500 0.310000 0.574
1.464 0.476 0.305404 0.600
1.470 0.476 0.305404 0.600
1.474 0.474 0.303020 0.604
1.500 0.472 0.300444 0.610
1.504 0.470 0.276100 0.614
1.510 0.470 0.276100 0.614
1.514 0.466 0.273544 0.620
1.520 0.464 0.271220 0.624
1.524 0.462 0.266704 0.630
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Table 24. Reciprocal Approximation Values

B Ag Ag? —2Ag
1.530 0.462 0.266704 0.630
1.534 0.460 0.264400 0.634
1.540 0.456 0.262104 0.640
1.544 0.456 0.262104 0.640
1.550 0.454 0.257620 0.644
1.554 0.452 0.255344 0.650
1.560 0.452 0.255344 0.650
1.564 0.450 0.253100 0.654
1.570 0.446 0.250644 0.660
1.574 0.446 0.250644 0.660
1.600 0.444 0.246420 0.664
1.604 0.442 0.244204 0.670
1.610 0.442 0.244204 0.670
1.614 0.440 0.242000 0.674
1.620 0.436 0.237604 0.700
1.624 0.436 0.237604 0.700
1.630 0.434 0.235420 0.704
1.634 0.434 0.235420 0.704
1.640 0.432 0.233244 0.710
1.644 0.430 0.231100 0.714
1.650 0.430 0.231100 0.714
1.654 0.426 0.226744 0.720
1.660 0.426 0.226744 0.720
1.664 0.424 0.224620 0.724
1.670 0.422 0.222504 0.730
1.674 0.422 0.222504 0.730
1.700 0.420 0.220400 0.734
1.704 0.420 0.220400 0.734
1.710 0.416 0.216304 0.740
1.714 0.416 0.216304 0.740
1.720 0.414 0.214220 0.744
1.724 0.412 0.212144 0.750
1.730 0.412 0.212144 0.750
1.734 0.410 0.210100 0.754
1.740 0.410 0.210100 0.754
1.744 0.406 0.206044 0.760
1.750 0.406 0.206044 0.760
1.754 0.404 0.204020 0.764
1.760 0.404 0.204020 0.764
1.764 0.402 0.202004 0.770
1.770 0.402 0.202004 0.770
1.774 0.400 0.200000 0.774
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Handling of B Exponent

The following example shows how the floating-point reciprocal
approximation unit handles the B exponent:

B= 40000 + E IXXXXX XXXXXX XXXXXX

Exponent Coefficient

Value of B = Z x 0.1XXX —— X Normalize floating-point number
B =251x 1.XXX —— X Left shift by 1
Letb = 1.XXX ——X
thenB=%1xb
1 1 1 1
B 2t=b 217 b
Letn=E-1
1 2zn 1 2=z(Ez1) 2zE<1
2n T ORze= 1

The following method is used in the CRAY T90 series system:
51132 Exponent

Perform 1's complement 26645
1 Add one for normalization

1  Add one for two’s complement
26647
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Floating-point Reciprocal Approximation Instructions

Refer to Rble 25 for a list of the floating-point reciprocal approximation
instructions. Figure 68 is an illustration of the reciprocal approximation
functional unit.

Table 25. Floating-point Reciprocal Approximation Instructions

Instruction CAL Description

070jj0

Si/HSj Floating-point reciprocal approximation of (S)) to Si

174ij0

Vi/HVj Floating-point reciprocal approximation (Vj) to Vi

RA Option

RB Option

RC Option

HTM-003-A

One RA option is used; it is the first option in the reciprocal
approximation functional unit. It performs all of the vector pop operations
as well as the exponent, floating-point range error, look-up table and first
iteration of the reciprocal function. The RA receives and decodes the
control necessary to gate the data to the correct unit and generates the
control for the rest of the reciprocal approximation functional unit.

One RB option is used; it is the second option in the reciprocal
approximation functional unit. The RB option gets the Al iteration data
from the RA option and performs the Afunction to send it to the RC

option final iteration pyramid. The B2 operand data is also delayed on the
RB option before being sent to the RC.

When the A% and the B2 data is available, the RB option generates the
jagged portion of the A2 pyramid. After a couple of levels of adds, those
bits are sent to the RC option to be included in the rest of the pyramid.

The RC option is the last option in the unit. It performs the final iteration
of the reciprocal approximation function. It receives thé AL, and B2
data from the RB option; forms the pyramid; and adds all the data to get
A2. The outputs of the RC option are all forced to 0’s by the input control
during any operation of the vector pop unit.
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Multiply Algorithm
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Floating-point Reciprocal Approximation

Thereciprocal approximation functional unit uses a recode multiply
algorithm known as Booth Recode algorithm. It is used on several parts
of the various pyramids. This algorithm was used instead of the standard

pyramid formations to save space on the options and make them easier to
route.
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FLOATING-POINT MULTIPLY
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The scalar and vector registers share the floating-point multiply functional
unit. Two floating-point operands are sent to the multiply functional unit

by either the scalar or the vector registers. The signs of the two operands
are combined through an exclusive OR operation, the exponents are added
together, and the two 48-bit coefficients are multiplied. Multiplying two
48-bit numbers produces a 96-bit result. Because the result register (either
a scalar or a vector register) can hold only 48 bits in the coefficient, only
the upper 48 bits of the 96-bit result are kept. The lower 48 bits are lost;

in fact, most are not generated.

The floating-point multiply functional unit also passes operands to the AM
option for the integer multiply operationj &d \k data are relayed

through the NA and NB options for use by the AM option during integer
multiply operations. The floating-point multiply functional unit no longer
performs integer multiply.

The floating-point multiply functional unit can also be used to generate a
third iteration in conjunction with the reciprocal approximation functional
unit. Generating the third iteration creates a full-precisiorficasit,

utilizing all 48 bits of the coefficient. The full-precision reciprocal

number can then be multiplied by the multiplier to finish the division. If
full precision is not needed, then there is no need to generate a third
iteration. Instead, the results from the reciprocal approximation functional
unit are multiplied by the multiplier using a multiply instruction. The
following multiply instructions add 2 rounding bits and truncate the lower
19 bits of the coefficient: O&%, 162jk, or 163jk.

The floating-point multiply functional unit has the same range error
conditions as the floating-point add. If an overflow condition exists, the
floating-point number has exceeded the limits of the computer system.
When an overflow condition occurs, the result register receives the
calculated coefficient with an exponent forced to 6@008n overflow
condition also causes a flag to be set in the exchange package if the
interrupt on floating-point error mode bit is set. An underflow condition
exists when the result exponent is equal to or less than g.7Wfien an
underflow condition exists, both the final exponent and the coefficient are
forced to O’s, but no flag sets in the exchange package.
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The floating-point multiply functional unit performs the @&4hrough

067k instructions for the scalar registers and performs thgkls®ough

167jk instructions for the vector registers. Because the multiply unit is
shared by both the scalar and vector registers, a functional unit reservation
must be checked before one of these instructions can issue.

The floating-point multiply unit is controlled by the mode bits, which are
taken fromh field bits 1 and O for the 0g# through 06§k instructions,

or fromh field bits 2 and 1 for the 1§R through 16§k instructions. The
064ijk instruction, which is the scalar equivalent of theifk6é&nd 161k
instructions for the vector registers, performs a floating-point multiply of
two scalar registers.

The 06%k instruction, which is the equivalent of the fjB2r 163jk

instruction for vector registers, is used with the reciprocal approximation
functional unit to complete a divide sequence. In other words,igk 065
instruction would be issued after a @KOnstruction. The 06§k instruction

adds 2 bits into the final summation in bit positions 16 and 17. These 2 bits
are calledstrong rounding bitbecause they have a major effect on the
answer. When the final summation is completed, thglOg&truction also
causes the lower 19 bits to be truncated; the control term that enables this is
calledstrong round

The 066k instruction, which is the equivalent of the fjB4hrough

165jk instruction for the vector register, is used only after the third
iteration has been completed within the floating-point multiply functional
unit. The 066k instruction generatesveak rounding bits These 2 bits
are calledveak rounding bitbecause they are added into the lower
portion of the summation, having only a minimal effect on the final
summation.

The 067k instruction, which is the equivalent of the fjB4nstruction for
the vector registers, forms part of the third iteration as follows.

The third iteration is equal tog’= (2A; — A»?B). The 067k instruction
solves for (-2 + A* B) by first multiplying Ay times B, and then adding

—2 to the product. The —2 addition is accomplished by adding 1 to each
sum in bit position 0 through 46 during the summation of*(B). These

1 bits actually comprise 49 1 bits and are generated by the control terms,
which are decoded from a Gfor a 167k instruction.

The 067}k instructions also complement or toggle their final result to
convert —-A3 = (-2 + A* B) to A3 = (2 — A * B). At this point, the
064ijk instruction completes the third iteration by multiplying thnes
the result of the 06jk instruction. In other words,

Ao * (2 — Ax* B) = (2A2 — Ap?B). In conclusion, the 06K instruction,
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along with the 06¢k instruction, generates the third iteration equation
A3 = (2A2 - AZZB).

Divide Sequence

A divide sequence produces an answer accurate to 29 places. The
instructions used to perform this divide sequence are shown below. If an
answer accurate to 48 places is required, a software algorithm (shown
below) produces the desired results.

S6 = S1/S2

Accurate to 29 Bits:

#1

#2

070320

065613

Accurate to 48 Bits:

S6 = S1/S2
#1 070320
#2 067432
#3 064543
#4 066651
#1 A1 = 2A0 — A?B

As=2A; — A?B

HTM-003-A

S3=1/S2
S6 =S1*FS3
S3=1/S2

S4 = (2 - [S3*S2))
S5 = S4*S3

S6 = S5*S1

First Iteration

Second lteration
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#2

#3

#4

CPU

S4 = (2 - (A*B)) Third Iteration

A3 = A2 - (A*B))

or

A3 = 2A, — A,2B

S6 = A*S1 Third Iteration * S1

Floating-point Multiply Functional Unit Instructions

Refer to Rble 26 for a list of the floating-point multiply functional unit
instructions.

Table 26. Floating-point Multiply Functional Unit Instructions

Instruction CAL Description

064ijk SiISfFFSk Scalar floating-point product of (Sj) times (SK) to (Si)

065ijk SISFHSk Scalar floating-point product, half precision, (Sj) times (Sk) to
(S

066ijk SiIS*RSk Scalar floating-point product, full precision, (Sj) times (SkK) to
(S

067ijk SIS/* ISk Scalar floating-point product, 2 minus the product of (Sj) times
(SK) to (S))

160ijjk VISfFVk Vector floating-point product (Sj) times (Vk elements) to Vi

161jjk VNj*FVk | Vector floating-point product (V) elements) times (elements) to
Vi

162jjk VISFHVk Half precision, (Sj) times (Vk elements) to Vi

163jjk VNj*HVk Half precision, (Vj elements) times (Vk elements) to Vi

164ijk VISRV k Full precision, (S)) times (Vk elements) to Vi

165ijk VN*RVk Full precision, (Vj elements) times (Vk elements) to Vi

167ijk VIVFVk Iteration, two minus (Vj elements) times (Vk elements) to Vi

146
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NA Option

NB Option

NC Option

HTM-003-A

Floating-point Multiply

Because this is a dual-pipe functional unit, there are two options. The
even elements are processed by pipe 0, which is option number 000; and
the odd elements are processed by pipe 1, which is option number 001.

The NA option forms the upper right portion of the pyramid. The
pyramid is 24 bits deep from sum bits 40 to 65. It is generated; from
operand bits 17 through 47, akdperand bits O through 41. The scalar
j/k and vectoj/k operands are multiplexed (muxed) before the pyramid is
formed.

The NA option relays a copy of 8its 40 through 47 andRbits O
through 41 to the AM option for the 166 instruction (integer multiply).

The NB option forms the lower right portion of the pyramid. The pyramid
increments from 17 bits deep at sum bit 40, to 24 bits deep at sum bit 47,
and then tapers down to 6 bits deep at sum bit 65. It remains at 9 bits
from sum bit 65 to sum bit 78.

It is generated fromoperand bits 0 through 39 akdperand bits 24
through 47. The scal@lk and vectoj/k operands are muxed before the
pyramid is formed.

The NB option also forms rounding bits for all floating-point multiply
instructions at sum bits 78 through 40. The first two-level results are then
sent to the ND option for final summation.

The NB option relays a copy of Bits 0 through 39 andRhbits 42
through 47 to the AM option for the 166 instruction (integer multiply).
The NB option also sends the control signal Go V 166 to the AM option.

The NC option forms the lower left portion of the pyramid. The pyramid
decrements from 20 bits deep at sum bit 66, to 8 bits deep at sum bit 78.
The pyramid then starts from 16 bits deep at sum bit 79 and tapers to 1 bit
deep at sum bit 94.
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The pyramid is generated frgnoperand bits 28 through 62 akdperand

bits 16 through 47. The scal# and vectoj/k operands are muxed

before the pyramid is formed. The NC option also forms rounding bits for
all floating-point multiply instructions at sum bits 79 through 94. The first
two-level results are then sent to the ND option for final summation.

The NC option also computes the exponent, underflow, and range error.
The exponent value is sent to the ND option to compute the exponent —1
and to multiplex the correct exponent. The NC option also computes the
final sign bit and sends it to the result register. The NC sends the sign bit
back to the JA for possible early branch determination.

The NC option relays a copy of ®its 48 through 62 to the AM option
for the 166 instruction (integer multiply).

The ND option does the final summation for the floating-point multiply
pyramid. The ND sends the final coefficient and exponent to the result
registers. The NC also transmits the range error signal to the HD option.

Refer to Figure 69 for a block diagram of floating-point multiply and to

Figure 70 for an illustration of the floating-point multiply first-level
summation.
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Sj Bits 17 — 47 IAA — IBE
NAOOO
SkBits 0 — 41 - .
' ICA_IDP OCA — OCD 15t Pyramid Results IDA — IDF _
VkBits 0 — 41 IGA — IHP
SjIVk Copy
Bits 17 — 47 IEA — IFE
hO IXA
Go Scalar FM IXC, IXD
Go Vector FM IXE
SjBits 0 — 39 IAA — IBN OAA - OBQ 15t Pyramid Results IGA - IHQ
NBOOO -
Sk Bits 24 — 47 ICA — ICX OCA — ODK 15t Pyramid Results IAA - IBK _
Vj Bits 0 — 39 IEA — IFN OED Address Multiply IXC _
VKBits 24 —47  IGA—IGX OEE Iteration IXB -
h Blts O — 2 |XA _ |XC OEF Strong ROUnd |XF -
Go Scalar FM IXD, IXE
OEC
Go Vector FM IXF OEA, OEB
OEG
OFA
Use Vjdata
Go Vector FM
Mode 0, 1
Address Multiply
IXC, IXD »| NCooo
IXA, IXB _ OAA — OBZ 15t Pyramid Results IIA —13Z -
IXK - ODA — ODM 15t Pyramid Results ICA—ICM _
IXG R -
Sj Bits 28 — 63 IAA — IBJ OEA - OEO Exponent Results IKA — IKO -
Sk Bits 16 — 63 ICA—-IDV_ OFA Underflow IXE _
Vj Bits 28 — 63 IEA - IFG OFB Range Error IXG -
. OFC Integer Multiply IXD _
Vk Bits 16 — 63 IGA — IHV >
- OFD Go FM IXA _
Go Scalar FM IXI, IXJ OFE FPE Mode IXH N
Go Vector FM IXK OEP  Sign Bitto V*/ A*
FPE Mode IXM

OFF

Jump Sign Bitto JA

NDOOO

OAA, OBV Sj/ViCoeff Results to V*/A*

OCA, OCO Sj/Vi Exponent Results to V*/ A*

ODA Si/ Vi Range Error to HD

Figure 69. Floating-point Multiply Block Diagram
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NA
NC
NB

NC NB

—
Sum Bits

94| 93| 92|91 |90 |89 88| 87|86]|85]|8a]|83|82|81|s0|70[78]|77|76]|75]|7a]| 73| 72| 71| 70| 69| 68]|67|66]|65]|64a]|63]|62]61]60[59]58]|57]56]|55]|54[53[52[51]50[a0{as8]a7]{a6]a5|aa[a3[a2]41]a0]
47 |46 | 45 | 44 |43 [42 |41 [ 40| 3038 [37 [ 36 [ 3534 ]33] 32] 31] 30| 29| 28] 27| 26[ 25| 24| 23| 2221 [ 20| 19| 1817|1615 14|13 ] 12| 10[ o [8 |7 |6 |5 [a[3[2]1]o0 jOperand

HTM-003-A

Figure 70. Floating-point Multiply First-level Summation
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The OA option performs the bit matrix multiply operation. The functional
unit consists of six OA options.

The OA option performs two functions related to bit matrix multiphre

first function is to load the B array with thg Wperand. The second

function is to perform the A BT operation where A is either th¢ & Vj
operand and Bis the B array transposed. The scalar operation produces a
scalar result, and the vector operation produces a vector result.

Each OA option receives 22 bits of the operand. OA002 and OA005
receive 20 bits, and the last two inputs are forced to zero. Each OA option
holds 32 elements 22 bits. When performing the ABT operation,

each OA produces a partial result for each of the 32 elements. The partial
results are then sent the appropriate OA option to complete the final
results. There is only one copy of each control bit coming into the
functional unit, so OA001 and OA004 relay the control bits to the other
options.

Bit Matrix Multiply Theory of Operation

HTM-003-A

The bit matrix multiply (BMM) functional unit performs a logical
multiplication of two matrices, designated A and B, resulting in a
single-bit result for each pair of elements multiplied. The matrices, which
are held in vector registers, may vary in size from X Ritbit (1x 1) to

64 x 64 bits. The size of the matrix is specified by the vector length (VL)
register (example: VL = 20 specifies 220 matrices).

The following conditions are necessary to obtain valid results:
*  The two matrices must be square and of equal size.

* The two matrices must be left-justified in the vector registers to
element O, bit 63.

* Unused bits of each element that contain part of the matrix must be
zeroed.

* Elements not containing parts of a matrix are unaffected.
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Result matrix C is the product of matrix A and matrix B transpos8d (B
Btis formed from matrix B by interchanging its rows and columns.

In addition to performing full 64 64 matrix multiply operations, the

BMM functional unit performs a scalar-vector multiply operation and

stores the result in an S register.

Figure 71 is an illustration of 2020 and 5 50 matrices as stored in
vector registers.

Bits 63 44 43 Bits 63 14 13 0
Element 0 Element 0
' Valid Zeroes -
Data
Element 19 )
Element 20 Valid Data Zeroes
Don't Care Element 49
Element 50
Don’t Care
Element 63 Element 63
VL = 2010 VL = 5010

Figure 71. Vector Storage of Bit Matrices

In this section, the notation used to represent individual bits of a matrix
consists of a lower-case letter followed by a subscripted numeric field.
The letter represents the name of the matrix; the numerics denote,
respectively, the element and bit of the vector register data. Elements and
bits numbered from 1 to 9 are represented as a 2-digit number; elements
and bits numbered upward from 10 are separated by a comma. For
example:

ag, 7 represents matrix A, element 3, bit 7
b1s a3represents matrix B, element 15, bit 43
ag 12represents matrix A, element 3, bit 12

Mathematically, matrices A and B can then be represented as shown in
Figure 72. Note that the ultimate degree of both element and bit can be
represented by because these must be square matrices. Each row of a
matrix corresponds to an element of a vector register.
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a1 &2 &3 ... an P11 b1z b1z ... b

a1 &2 @3 ... @n o1 b2 boz ... bpp
A=]. . . ) B=]. . ) .

91 2 A3 --- hn bhi b2 bnz ... Ihn

Figure 72. Mathematical Representation of Matrices A and B

The BMM functional unit transposes matrix B as it is loaded into the
BMM storage area. The elements (rows) of the B matrix data are
interchanged with the bit positions (columns) as shown in Figure 73.

b11 b2 b1z ... hip P11 bp1 bzg ... I
bo1 bpo bp3 ... lpp b2 bpo bzp ... b2
B=|bgs b3z bzz ... bsn| Bi=[biz bpz bsz ... s
bnl bn2 bn3 bnn bln b2n b3n bm

Figure 73. B Matrix and BMatrix Relationships
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a1
a1
az1
ABt=].
an1
156

aip
a2
ag2

an2

The product C = ABis defined as shown in Figure 74.

a13
a3
a33

an3

where;:

chn

Ci1=a11b11Pay b1 2Pag 3b13P . .
Cro=a1b21Pag JboPay 3023 P . .
Ciza1bz1Pay bzoPar 3oz P . .

Cor=ap1b11P a1 oPagad1zP . .

Car=ag1b21PagoPazabozd . .

b11
12
b13

21
07y
o3

Bt

bay ...
by ...
b3z ...

T @ indicatesanexclusiveOR operation.

b
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C21
C31

Ch1

Figure 74. Multiplication of A and'B

C12
C22
C32

Ch2

.Paybint
.Dagnb2n
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.Dagnb1n
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CPU
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Instructions

Refer to Table 27 for a list of the bit matrix multiply instructions.

Table 27. Bit Matrix Multiply Instructions

Instruction CAL Description
1740/4 BMM LVj |Transmit Vjelements 0 — 63 to B matrix
*1740/5 BMM UVj |Transmit Vjelements 64 — 127 to B matrix
174i6 Vi Vj*BT | Transmit the value of Vj multiplied by the transposed B matrix
to Vi
070i6 Si Sj*BT | Transmit the value of Sj multiplied by the transposed B matrix
to Si
002210 CBL Clear the bit matrix loaded (BML) flag

* New Instruction

Referto Figure 75 for a BMM block diagram for pipe 0 and to Figure 76
for a BMM block diagram for pipe 1.
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| VR0OOO

Bits 0 — 3

| VMOOO Bits 4-7

OAO000 Bits 0 —21

OAQO01 Bits 22 — 43

OA000

Bits 42, 44 — 62

Partial Results

OAOQ02 Bits 44 — 63

OA001

Bits 20, 22 — 40

Partial Results

Bit Matrix Multiply

OAQ03 Bits 0 — 21

OA002

Bits 0,2 - 18

Partial Results

IAA — 1AV
| VROO1 Bits 8—11 >
| vM001 Bits 12 - 15
| VROO2 Bits 16 - 19
VMO002  Bits 20 — 21
IAA — IAV_
| VM002  Bits 22 — 23 IAA - IAU_
| VRO0O3  Bits 24 — 27
| VM003  Bits 28 - 31
| VRO0O4  Bits32-35
| vM004  Bits 36 — 39
VRO05  Bits 40 — 43 /
IAA — 1AV
IAA — 1AV
| VM005  Bits 44 — 47 >
| VRO06  Bits 48 —51
| VM006  Bits 52 - 55
| VROO7  Bits 56 — 59
VMO007  Bits 60 — 63

IAA — IAU_

OAQ04 Bits 22 — 43

OAQ03

Bits 43, 45 - 63

Partial Results

-/

OAOQO05 Bits 44 — 63

OA004

Bits 21, 23 - 41

Partial Results

OCK — OCU IDA—IDK
OCV — ODF ICA—ICK _
OCK — OCU IDA — IDK _
OCV — ODF ICA—ICK
0CA—0c3 IEA — IEK

IDA - IDJ
OCV — ODF
OCK — OCU .
OCA — 0CJ IEA — IEJ
OCK - OCU IDA — IDK

IEA — IEK
OCA — OCJ
OCV — ODF ICA — ICK
OCK — OCU IDA — IDK
OCV — ODF

ICA — ICK
OCA — 0CJ IEA — IEK
OCV — ODF

IDA—IDJ _
OCK — OCU

ICA—ICJ _
OCA — 0CJ IEA — IEJ

Figure 75. Bit Matrix Multiply Block Diagram Pipe 0
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OAO005

Bits 1,3 -19

Partial Results

VMOOO/AR0O00
OAA — OAK Final Result Bits _/
Odd Bits 1 — 21 "/ | VMO01/AS000
> VMO002/AS001
yAa
OAA — OAK Final Result Bits
Odd Bits 23 — 43
OAA — OAJ Final Result Bits
Odd Bits 45 — 63
VM002/AS001
. VMO03/AS002
» VMO004/AT000
VMOO05/AT001
OAA — OAK Final Result Bits
Even Bits 0 — 20
OAA — OAK Final Result Bits
Even Bits 22 — 42 /_ VMOO5/AT001
7 VMO06/AU000
/| vmooziauo01
OAA - OAJ Final Result Bits

Even Bits 44 — 62
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OAO000 Bits 0-21 IGA — IGK
OEK — OEU »| OA000
| VRO0O8  Bits 0 - 3
| [vMo08 Bits4-7 IBA - IBV OEA — OEJ IHA—IHK _| Bits42,44—62 | OBA-OBK Final Result Bits _ /| Vv™Mo008
VRO09 Bits 8 —11 Odd Bits 1 — 21 /
| vM009 Bits 12 - 15 OV — OEF FA  IEK > VIoos
| VRO10 Bits 16 — 19 — — »|  Partial Results f VMO010 [
VMO010 Bits20-21 OAOOL
OAO0L Bits 22 — a3 2n—OFEV IGA ~ 16K,
IFA — IFK Bits 20. 22 — 40 OBA - OBK Final Result Bits
IHA — IHK _
OEA — OEJ Partial Results
IGA-16J _| 0A002
OA002 Bits 44 — 632 — OEF =
| vM010 Bits 22 - 23 IBA—IBU OEK — OEU IFA — IFJ Bits 0,218 | 55 _ 08By Final Result Bits
|VRO11  Bits 24— 27 Odd Bits 45 — 63
| vM011  Bits 28 - 31
OEA — OEJ IHA — IHJ i
I VRO12 Bs3z-35 Partial Results VMO10
| vM012  Bits 36 — 39 — VMO11
VRO013 Bits 40 -43
VM012
IGA—IGK_| OAO003
OAO003 Bits 0 — 21 | OEK— OEU VMO013
IBA— 1BV _ OEA - O IHA—IHK ol Bits 43, 45_63 |OBA—OBK _Final Result Bits
Even Bits 0 — 20
OEV — OEF IFA — IFK Partial Results
_ _ OA004
OA004 Bits 22 — 43| — OEU oA - IoK
IBA — IBV - :
I VMO13  Bits 44 — a7 - OEV — OEF IFA — IFK Bits 21, 23 — 41 OBA — OBK Final Rgsult Bits
[VRo14 Bis4s- 51 Even Bits 22 - 42 —] vmo13
[vmo014  Bits 5255 OEA — OEJ IHA — IHK _ 7 T[moia
|VR015 Bits 56 - 59 Partial Results -
i _ f VMO015
VMO15  Bits 60 - 63 OAO05 Bits 44 — 63| OEV — OEF OAO005
IGA—1GJ
IBA—IBU _
o OEK - OEU Bits 1, 3 - 19 OBA — OBJ Final Result Bits
IFA — IFJ Even Bits 44 — 62
OEA — OEJ IHA - 1HJ Partial Results

Figure 76. Bit Matrix Multiply Block Diagram Pipe 1
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INSTRUCTION BUFFERS

The instruction buffers are located on four IC options; Table 28 shows
how the four IC options are partitioned. Each IC option contains 8
buffers, and each buffer holds 32 16-bit words. The IC options also hold
data for functions other than instructions.

Table 28. IC Options

Bit Type IC000 IC001 1C002 IC003

Instruction data bits 0-7and 8 —-15and 16 — 23 and 24 — 31 and

32-39 40 - 47 48 — 55 56 — 63
B address bits 0-7 8-15 16 — 23 24 -31
Fetch address bits 0-7 8-15 16 - 23 24 -31
Logical address translation 0-7and 8 — 15 and 16 — 23 and 24 — 31 and
(LAT) address bits 32-39 40 — 47 48 — 55 56 — 63
Exchange P address bits 0-7and 8 - 15 and 16 — 23 and 24 — 31 and

32-39 40 - 47 48 — 55 56 — 63
Fetch destination code 0,1 2,3 4,5 6,7
fan-out bits

Fetch

HTM-003-A

The IC options generate a deadstart fetch after the figsv@@s have

been received,; this is the number of words in the exchange package. The
IC option counts the number of common memory valid codes received,
and this count enables the deadstart fetch signal to be generated.

When data is fetched from memory, it is requested as a block of 32 words
(4 blocks of 8 words with the first word of this block being the first word
that is needed). For example, if a branch is made to address 1005, that
address is requested first, followed by addresses 1006 to 1037, then 1000
to 1004.

When the common memory data arrives, the IC compares the incoming
code with the expected code. This code tells the IC option where to put
the data in the buffer. Data can arrive at the IC from memory in any
order; it is reordered inside the buffer. The memory code enables this to
happen. Along with every 16 bits of memory data, a 9-bit code is also
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Prefetch

CPU

sent. This code specifies the buffer and the element in the buffer into
which the word is to be loaded. The following illustration shows a
breakdown of the code.

Valid Buffer Element

8176 5143210

The data arrives at the IC options 2 words at a time. When the data starts
arriving, the 1C options look for the first 4 words. These words go

through a bypass path, to the read-out registers, and then to the JA options
for issue.

Two pointers are associated with bypass: a read pointer and a write
pointer. As long as the write pointer stays ahead of read issue, the first 4
words will issue. The buffers will continue to fill while the first 4 words
are issuing. If the first 4 words issue and the buffers are not full, then
issue stops until the buffers fill and the buffer valid bit is set. The
instruction parcels will then start leaving the buffers for the JA options.

164

A prefetch is initiated when the buffer read-out pointer reaches address
30g in the buffer or a branch occurs to addresses 30go 37

The prefetch checks to determine whether the next sequential buffer is
already in-stack. If it is not, a fetch is initiated to the next sequential
common memory address. When the count in the buffer reachab&7

IC advances the buffer pointer and checks to ensure that the read data
valid bit is set. If the read data valid bit is not set, the IC option enables
the wait first word flag and waits for the first word to be received from
common memory.

NOTE: The prefetch will always occur, but it can be blocked or aborted
by anybranch sequence in progress.

Prefetch can, in some cases, cause a decrease in performance. For
example, if the first word of the next sequential instruction block is

needed while the current instruction block is being fetched, a delay occurs.
In this case, issue stops until the last word of the next block is fetched.

Cray Research Proprietary HTM-003-A



CPU

HTM-003-A

Instruction Buffers

If an out-of-stack branch occurs while the next sequential block is waiting
to be prefetched, the prefetch is aborted and the block containing the
branch address is fetched instead. Issue of instructions at the branch
address are delayed until the fetch of the current block is completed and a
fetch of the current block containing the branch address begins.

Another problem with prefetch occurs when executing an instruction at
the top of logical address translation (LAT) space. The code may execute
a branch to lower memory but the prefetch may try to initiate a fetch from
the next sequential memory location. If the next sequential memory
location is out of the LAT range, a range error may occur. This will
happen if the branch is within 8 words of the last valid LAT address.

Refer to Figure 77 for the IC options bit layout, to Figure 78 for an IC
block diagram, and to Figure 79 for the IC option terms.

Figure 80 is a block diagram of the memory-to-instructiofeosiffor

path 1, and Figure 81 is a block diagram of the memory-to-instruction
buffers for path 2. Figure 82 is a block diagram of the common memory
path code 1 fanouts, and Figure 83 is a block diagram of the common
memory path code 2 fanouts.
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IC003

B Bits 24 - 31
Fetch Bits 24 — 31

Instruction Data Bits 24 — 31 and 56 — 63

LAT Address Bits 24 — 31 and 56 — 63
Exchange P Data Bits 24 — 31 and 56 — 63

IC002

Instruction Data Bits 16 — 23 and 48 — 55
B Bits 16 — 23

Fetch Bits 16 — 23

LAT Address Bits 16 — 23 and 48 — 55
Exchange P Data Bits 16 — 23 and 48 — 55

IC001

B Bits 8 — 15
Fetch Bits 8 — 15

Instruction Data Bits 8 — 15 and 40 — 47

LAT Address Bits 8 — 15 and 40 — 47
Exchange P Data Bits 8 — 15 and 40 — 47

IC000

Instruction Data Bits 0 — 7 and 32 — 39

B Bits0 -7
Fetch Bits 0 — 7

LAT Address Bits 0 — 7 and 32 — 39
Exchange P Data Bits 0 — 7 and 32 — 39

RAM Array 0| RAM Array 2

Buffer 0 — 3 Buffer 0 — 3
Even Words Odd Words
0-30 0-30

RAM Array 1| RAM Array 3

Buffer4 — 7 Buffer4 -7
Even Words Odd Words
0-30 0-30

Figure 77. 1C Options Bit Layout
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Ic »| Fan-out Dat: OWA - OWC
o OwWD - OWE ég%))
o OWI - OWK
IPA — IPP Coincidence Buffer OWQ — OWS HM)
(JA) » Parcel Data OXA — OXC HD)
iR (NA, NB)
> P Reg Data h, i, j, kBits | OXD — OXF (vs' FA. FB)
Buffer Match Branch Address
OEA — OEH
»{ Branch or LAT »(CC)
»  Address LAT Address OEI — OEP: o)
Path 1 Code »| Array 0
(Array Write/ > puffer Parity Error to OUA
_ > (OA
1) Read Address) I1AQ — IAX |0 _3 Even (OA)
| Words
Path 1 Valid ~| 0-15
Write Enable) IAX
(9) ( ) Array 1 R
Buffer e
(CH) Path 1 Data I1AA — IAP »|4 -7 Even a
| | Words d
0-15 - Inst Data to OAA — OAP
> o [ > (JA)
—» Array 2 u
Buffer
Path 2 Data IBA — IBP t
(CH) - 0-30dd
Path 1 Valid
(Write Enable) IBX Words R
(IC) T » 0-15 e
Path 1 Code -
(Array Write/ > ';rl:?%r‘? 9
Read Address) IBQ — IBX
(IC) ) 1BQ > 4 — 7 Odd
Words
0-15
i Bypass
P Bits 0 — 15 IDA — IDP
(IC) pBits 16 -31 IEA—IEP Fotch Address New P to OAA — OAH
(IC) > A > (BT)
Register
OCA - OCH
- OCI — OCP Bjk/P Fanout
(BT) ICA—IcH »| Fan-out Data / (IC)

Figure 78. 1C Block Diagram
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IAA

CH) CM Path 1 Data IAP -
IAQ

(10) CM Path 1 Code IAY -
IvVC

(CK) CM Path 1 Code to Fanout 1VD -
IBA

(CH) CM Path 2 Data IBP -
IBQ

(10) CM Path 2 Code IBY -
IVE

(CK) CM Path 2 Code to Fanout IVF -
ICA

BT) Bjk Exchange P to Fanout ICH -
IDA

BT) Bjk Exchange P Bit 0 — 15 IDP -
IEA

BT) Bjk Exchange P Bit 16 — 31 IEH .
IPA

aA) Parcel Data IPP -

GA) Enter Rank 1 1QA -

A) Enter Rank 2 IQE -

A) Clear Rank 2 1QA -

(A) Data Resume 1IOM -

(A) Branch Issue 1QQ -

9A) Go Branch IQR -

3A) Branch Fall Through 1QS -

GA) Interrupt Request QU -

(HA) CPU MC to Fanout IRA -

(cC) Exchange Active to Fanout IRB -

(HD) Triton Mode to Fanout IRC -

(VA) VL#2 or CM B to Fanout  IRD -

(HA) CM MC to Fanout IRE -

(cC) Fetch Done ISA

(HA) Maint Mode ITA -
IUA

(Force) IC Select 1UB -

(cC) Enter Exchange P VB -

168

Figure 79. IC Option Terms
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OAA
OAP Instruction Data
> (JA)
OAQ Instruction Data Ready 9A)
OCA
OCH Bjk Exchange P to Fanout
/ g BT
oCl
OCP Bjk Exchange P to Fanout
> (BT)
ODA
ODH NewP
Sl > (BT)
ODI  Enter New P/Dump Mode BT
ODJ Go Branch/Exchange Enable > (A)
OEA
OEH B h A
ranch Address (cC)
OEI
OEP Exchange LAT
e > (CC)
OEQ Fetch Requests (c0)
OER Go Dump > (CB)
ODJ Buifer Load Pointers > (A)
OVA
OVD CM Path 1 Read Code Fanout (I0)
OVE
OVH CM Path 2 Read Code Fanout (10)
OWA
owcC
kO, k1, k2 at Phase 3 (HM)
OwWD
OWE
kO, k1 at Phase 2 (RA)
OWK
oWl jj
ilj at Phase 3 (HM)
OowWQ
OWS j/jat Phase 2 (HF)
OXA
OXC
hO, hl, h2 at Phase 2 (NA, N)
HTM-003-A
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OMA — IAA —
CHO000 . IC000 CH008 | OMA — IAA -1 1c002
OMD Bits0-3 IAD__ OMD Bits 16 — 19 IAD

OME — 1Al — OME — 1Al —
OMH Bits32-35 IAL OMH Bits 48 — 51 IAL
OMA — IAE —
CHO002 . CHO010 | OMA - IAE —
OMD Bits4-7 IAH OMD Bits 20 — 23 IAH
OME — IAM — OME — IAM —
OMH Bits36 -39 IAP OMH Bits 52 — 55 IAP
OMA - IAA —
. OMA — IAA —
CHOO4 Jomp  Bitss—11  1ap | €09 cHo12 | oun” misoa—27  mp |
OME - IAl -
OME - 1Al —
OMH  Bits40-43 IAL _ OMH Bits 56 — 59 IAL
OMA — IAE —
) OMA — IAE —
CHO06 |omp  Bits12-15 1AH _ CHO14 | SuD  Bits28—31  IAH
OME - IAM — OME — 1AM —
OMH  Bits44—-47 IAP _ OMH Bits 60 — 63 IAP

Figure 80. Memory-to-instruction Buffers (Path 1)
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CHoo1 | OMA- IBA - T1cooo CHO09 | OmA - IBA - | 1C002
OMD  Bits0-3 IBD _ OMD Bits 16 —19  IBD

OME — IBI —
OME - 1Bl —
OMH  Bits32-35 IBL _ OMH Bits 48 —51  IBL
OMA — IBE —
CHO003 _ CHO11 | OMA - IBE —
OMD  Bits4-7 IBH OMD Bits20—23 IBH _
OME — IBM —
OME - IBM —
OMH Bits36 -39 IBP OMH Bits 52 —55  IBP
OMA — IBA — 1C003
CHO005 . IC001 CHO013 OMA — IBA —
OMD  Bitsg8—11 IBD _ OMD Bits 24 —27  IBD
OME — IBI —
OME - 1Bl —
OMH Bits 40-43 IBL _ OMH Bits 56 — 59 IBL
OMA — IBE —
CHO007 CHO015 | OMA - IBE —
OMD Bits 12—-15 IBH _ OMD Bits 28 — 31 IBH
OME — IBM — OME — IBM —
OMH Bits 44— 47 IBP _ OMH Bits 60 — 63 IBP
Figure 81. Memory-to-instruction Buffers (Path 2)
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IC000
ovVvB
OoVD
IC003
IC002
IAQ .
»| Element Bit 0
IC001
IAR .
»| Element Bit 1
OovVvB IAS )
Element Bit 2
OVD IAT
Element Bit 3
IC002
ovVvB IAU .
Element Bit 4
OvD AV Buffer Bit 0
AW Buffer Bit 1
IAX »| Buffer Bit 2
IC003
OVB IAY
OVD
Valid

CPU
1C000
Ve OVA
IVD OovC
1C001
CKO000 1C000
Element Bit 0 |LONF IAQ: Element Bit O
1C001
ONG
i IAR
Element Bit 1 »| Element Bit 1
Element Bit 2 ONH IVC= OVA IAS
»1 Element Bit 2
Element Bit 3 ONI IVD:
ovC IAT .
> Element Bit 3
1C002
OVA LU Bit 4
_ ONJ Ve > Element Bit
Element Bit 4
ovC 1AV » Buffer Bit 0
Buffer Bit 0 ONC IVD: IAW= Buffer Bit 1
I1AX
Buffer Bit 1 OND > Buffer Bit 2
. ONE
Buffer Bit 2 1C003
OVA 1AY
ONB ONA IVC
ovC
IVD
Valid
Figure 82. Common Memory Path Code 1 Fanouts
HTM-003-A Cray Research Proprietary
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IC000
OVF
OVH
IC003
1C002
1B
Q— Element Bit 0
IC001
IBR— Element Bit 1
OVF IBS Element Bit 2
OVH IBT Element Bit 3
IC002
OVF IBU Element Bit 4
OVH IBV Buffer Bit O
IBW Buffer Bit 1
IBX— Buffer Bit 2
A
IC003
OVF IBY
OVH
Valid

CPU
1C000
Ve OVE
IVD_ OovVG
IC001
CKO0O01 IC000
Element Bit 0 ONF IBQ= Element Bit O
1C001
Element Bit 1 ONG IBR Element Bit 1
Element Bit 2 ONH IVC: OVE IBS
»| Element Bit 2
Element Bit 3 | ONI 'VD:
ovG IBT »| Element Bit 3
1C002
ONJ Ve OVE IBU: Element Bit 4
Element Bit 4 >
ovG IBV »| Buffer Bit 0
Buffer Bit 0 ONC IVD: 'BW: Buffer Bit 1
Buffer Bit 1 fOND IBX o1 Buffer Bit 2
. ONE A
Buffer Bit 2 1C003
OVE IBY
ONB ONA IVC
ovG
IVD_
Valid
Figure 83. Common Memory Path Code 2 Fanouts
HTM-003-A Cray Research Proprietary
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INSTRUCTION ISSUE

A CRAY T90 series computer system uses a process called instruction
issue to introduce instructions into the central processing unit (CPU).

The first instruction parcel is read from of one of eight instructiofetsf
(IBs) and sent to the next instruction parcel (NIP) register where it is
partially decoded to determine whether it is a 1-, 3- or 4-parcel instruction.

Refer to Figure 84 for an instruction issue block diagram. The program
address (P) register points to the next parcel to be read out of the
instruction buffer. If it is a 1-parcel instruction, the NIP moves to the
current instruction parcel (CIP), the parcel from the instructiofebuf
moves to NIP, and P is incremented by 1. If it is a 3-parcel instruction, as
NIP moves to CIP, the second parcel moves into LIPO, the third parcel
moves into LIP1, and P is incremented by 3. If itis a 4-parcel instruction,
as the first parcel moves from NIP to CIP, the second and third parcels
move to LIPO and LIP1. Then, the fourth parcel goes to NIP and then to
CIP as the other three parcels are leaving. In the next clock period, the
fourth parcel leaves CIP, and P is incremented by 4.

IB 4 +1, 43, +4
> = NIP CIP

IB 1
B0 LIPO
LIP1

./

Figure 84. Instruction Issue Block Diagram
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Instruction Formats

Thereare three instruction formats: 1-, 3-, or 4- parcel instructions. The
first parcel always contains the operation code. The operation code is
pre-decoded in NIP to determine whether it is an exit instruction (000000
or 004000) or a 1-, 3-, or 4- parcel instruction.

One-parcel Instructions

Thegh portion generally is the operation code, although some instructions
also use the j, orkfields. Thel field is usually the result designator, and
thejk portions are generally operand register designators. Some
instructions use thiefield or bit 20f thej field to provide additional bits

for the operation code.

Some 1-parcel instructions are part of the extended instruction set (EIS)
and perform different operations when immediately preceded by the EIS
parcel (005400).

Figure 85 shows the format of a 1-parcel instruction.
7 3 3 3 Bits

L__9gh | i 1 7 | « |
15-9 8-6 5-3  2-0

Figure 85. Format for a 1-parcel Instruction

Three-parcel Instructions

The 3-parcel instruction is used in both Triton mode and C90 mode. The
nmfields hold the 32-bit address or constant value. Refer to Figure 86 for
an illustration of a 3-parcel instruction format.

NOTE: Then portion holds the most significant bits, and th@ortion
holds the least significant bits.

4 3 3 3 3 16 16 Bits
g [ o | 7 ] 7 | «k J[ n J[{ m
15-12 11-9 8-6 5-3  2-0 15-0  15-0

Figure 86. Format for a 3-parcel Instruction
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Four-parcel Instructions

Four-parcel instructions are used exclusively in Triton mode. The
instruction field mnemonipmnrepresents a 48-bit field with tipefield

being the most significant parcel. Refer to Figure 87 for an illustration of
a 4-parcel instruction format.

4 3 3 3 3 16 16 16 Bits
g h | 7 [ | o« e L J[m
15-12 11-9 8-6 5-3  2-0 15-0  15-0  15-0

Figure 87. Format for a 4-parcel Instruction

Fourparcel instructions are used for A and S register memory references
that use extended addressing. THld selects an A register to be used
as an address index. Thield designates an A or S register to be used as
the source or destination of the data. For read refergrogs, bit 1

disables or enables cache bypass. Bit 2 of tieédd must be settoa 1 to
indicate a 4-parcel instruction. TRdield is not used.

Triton-mode Instructions

Triton mode is active when the Triton mode bit (TRI) is set in the
exchange package. Some instructions execute correctly only in Triton
mode. If a Triton mode instruction is executed while the machine is in
C90 mode, the results are undefined. Refer to the instruction set for
Triton-mode only instructions.

Instruction Decode

After the instruction parcel is in NIP, it is pre-decoded to determine its
size. Ifitis a 1-parcel instruction, it moves to CIP for further decoding to
determine which registers, functional units, and memory ports are
required.
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P Reqister

The P register is 32 bits wide and resides on the BTO and BT1 options.
The P register points to the relative memory address of the next instruction
to be read out of the instruction buffer read-out register and sent to either
NIP or LIPO. The lower 2 bits (bits —1 and —2) point to the parcel, and the
upper 30 bits (bits 8 through 29) point to the word address. There are
three ways to load the P register:

*  Multiplex 8 bits at a time during an exchange sequence
* Load from Bk as a result of a 0@k instruction

* Load from thdjk or nmfields of a 00§k, 007jk, or 01xjk
instruction

Every time a parcel issues, the JA option sendsdMance Psignal to
the BT options, which advances the P register by 1.

Coincidence

A condition calleccoincidenceexists if the next parcel needed is in one of
the eight instruction buffers. A coincidence check compares the upper
25 bits of the P register to the 25-bit buffer address (A) register as well as
determines whether the buffer valid bit is set. All 25 bits must match, and
the bufer valid bit must be set in order for a coincidence condition to
exist. If there is no coincidence, a fetch operation is initiated.
Coincidence is checked only on branch instructions to determine if the
next instruction will be in the stack.

Reading the Instruction Buffer

When a buffer read occurs, both the even and odd words are read out of
the buffer to a read-out register. The content of the P register on the BT
options directs one of these words to NIP or LIP for decoding.
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JA Option

There are two JA options on the CP module; they provide the issue control
signals for the processor. These options receive the instruction word from
the IC options, select and decode the correct parcels, and provide control
to the rest of the CPU. The JA option also has all the resource
reservations and holds issue if a resource is busy. The JA options are
responsible for the functions described in the following subsections.

Parcel Data Distribution

The JA option transmits parcel data to the AR, AS, AT, AU, BT, and VA
options and alters thdield going to the AR, AS, AT, and AU options for
certain instruction types. This occurs on the following instructions:

e 10h, 11h, 12h, 13n; the A becomes the Afield
e 00130; the A field becomes the Aield

The JA option also transmits a read-out pointer code to the A and S

registers; the read-out pointer code selects the read-out path. Refer to
Table 29 for a list of these codes.

Table 29. Read-out Path Codes

HTM-003-A

Code Instruction Description

00 075, 13h Sito BT path

01 034, 036, 025, 11h Aito BT path

11 035, 037 Aito BT path

00 00130, 027i2/3, 027i6/7 Aito SR path

01 073i2, 0733, 073j/5, 073j6 | Sito SR path

10 0010jk, 0011k Akto SR path

1 00140, 00144 Sjto SR path

00 057, 0030/0/1, 026jj0/1, 0270 |Sjto shift path

1 052 — 056 Sito shift path

00 Sjto vector pipe 0
01 176 AO0 to vector pipe 0
10 034, 036 AO to vector pipe 0
11 035, 037, 177 AO to vector pipe 0
00 Sjto vector pipe 1

Cray Research Proprietary
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Table 29. Read-out Path Codes (continued)

Code Instruction Description
01 176 Ak to vector pipe 1
10 034, 036 Aito vector pipe 1
11 035, 037, 177 AO0 to vector pipe 1
00 10h, 12h, 13h, 0017k Ah (A)) to CM port B/E
01 00200k Ak to CM port B/E
10 11h Ah (Aj) to CM port B/E
11 177 Ak to CM port B/E

A/SIVIBIT Register Requests

The JA option checks for register conflicts and receives a register release
signal from the shared resource control and from common memory for the
A and S registers. The JA option also receives a vector read/write (R/W)
release for V registers and a B/T read/write release. The JA option also
transmits A and S register entry codes. These codes, along withijfthe

field, the instruction, and the 2-bit register read-out code are used by the A
and S registers to define the instruction to be performed and to reserve the
needed path.

Functional Unit Requests

The JA option checks for functional unit conflicts in the following
functional units:

* Logical #1: 140 —147/175

* Logical #2: 140 — 145 if Logical #1 busy / Logical #2 enabled
* \ector Mask: 146 — 147 /175/0yD/ EIS 15§0,1

e \ector Shift: 150 — 153

* \ector Add: 154 — 157

e  Floating Multiply: 160 — 167

* Floating Add: 17 - 173

* Reciprocal (V pop, parity, leading zero, iota: §f@— 3) / 07¢ 1

e Matrix Multiply: 174ij(4 -7)/07¢(6 —7)
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Constant Data Requests

The JA option checks for constant data present on multiple-parcel
instructions such as jumps, branches, and instructions usipgithe

fields. Each JA option handles 32 bits of the constant data distribution.
JAO transmits data to the AR, AS, and CD options via the A series
options, and JA1 transmits data to the AT, AU, and CD options via the A
series options. JAO also provides pkielata on the constant path when
needed.

EIS (Extended Instruction Set) Requests

The JA option issues 005400 as a normal instruction; however, the next
parcel is decoded using the extended instruction set. If an EIS instruction
is issued without the 005400 preceding it, the instruction issues and
performs its normal function. For example:

044ijk  Transmit logical product of {pand (%) to 9

044k In EIS mode, the same instruction transmits logical
product of (4) and (A) to Ai

Common Memory Requests

HTM-003-A

The JA options receive the following external common memory control
signals:

e Release Port A
e Release Port B
e Release Port C

e Bidirectional Mode: (Mode = 1) enable block reads and writes at
the same time

e Common Memory Quiet This signal indicates that all memory
activity in the CPU has been completed. It requires that all ports are
quiet, conflict logic is quiet, memory sections are quiet, and all read
and write operations are complete.

* Hold Common Memory Issue No more references can issue

e Cache Miss In Progress Indicates a cache miss is pending
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* Read Quiet Read references have cleared all conflict checks
*  Write Quiet: Write references have cleared all conflict checks

* Exchange Active Indicates an exchange has not completed

Shared Resource Requests

The JA options receive the following external signals, which control the
shared resource path, from the HD option:

* A/S Register Shared Resource Releas&eleases a specific A or S
register (0 — 7) path

* Release Shared ResourceUsed in combination with Go
Semaphore Branch to cause issue to resume or P to advance

* Go Semaphore Branch Signals that the conditions of a semaphore
branch have been satisfied

Branch Requests
The JA options check the branch test conditions to determine whether the
condition is met; if it is, the JA option issue&a Branch signal to the IC
options.

Exchange Requests

The JA options perform the following actions during an exchange
sequence:

e 000000 (error exit) issues. Issue stops, P advances

* 0040k (exitk) issues. Issue stops, P stops

* The shared path is released. The stat@mBemaphore Branch
determines whether P advances on a l040wo conditions of the

004(dk instruction could occur:

1. A normal exit occurs and P advances when the shared path is
released ano Semaphore Branchis a 0.

2. An error exit occurs, P will not advance when the shared path is
released, an@o Semaphore Branchs a 1.
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Interrupt Requests
An interrupt request can be generated in one of three ways:

* A 000000 (error exit) instruction issues
e A 004dk (Exit k) instruction issues
* A hardware error condition occurs

Interrupt requests are processed in two phases. In phase 1, the following
conditions are checked:

* No multiparcel instructions are in process
* No EIS type waiting for second parcel
* No branch sequence in progress

In phase 2, the following conditions are checked, and theGdhe
Exchangesignal is sent to the HD, IC, and CC options.

* No branch sequence in progress
* Shared path available

* Allregisters available

e Common memory quiet

When a hardware interrupt request occurs, the JA option performs the
phase 1 checks and stops issue. If the phase 2 checks are all valid, the JA
option sends &0 Exchangesignal to the IC options. If any of the shared

type instructions have issued during this shut-down time, the HD option
must release the shared path and the following actions must occur:

* |fa 0034 (test and set semaphore) was issuReé]easesignal and a
Go Branch signal must be sent befo@» Exchangecan occur.

* |f a 000000 (error exit) or a 00f(exit jk) was issued, a release
path must occur to clear the JA option control.

Issue will resume whe@o Branch occurs.

Control Signal Distribution
The JA option transmits the following control signals:

* Issue group 0, 1, and 2 These signals are combined on the BT and
VA options to complete the issue signal.

* Issue This signal is transmitted to the AN option for fanout.
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Enter Vector Length: This signal is sent to the AR option on the
decode of a 002GQAk to VL) instruction.

Read Vector Mask This signal is sent to the SS option on ai073
(0 -3) 0 (VMO or VML to or Ai) instruction.

Enter Vector Mask: This signal is sent to the SS option on a (030
(0= 3) ($ or Ai to VMO or VM1) instruction.

Go Scalar Pop/Parity/Lz This signal is sent to the SS option on a
026j (0 —3) or 02§ (0 — 1).

Go Scalar Double Shift This signal is sent to the SS option on a
05Gjk Shift () and (9) left Ak places to &

Go A Type: This signal is sent to the SS option when a 005400
(EIS) is issued using A register data.

Go Scalar Reciprocal This signal is sent to the RA option on a
070j0 instruction.

Go Scalar Floating Ada JA1 sends this signal to the FA option
when a 068k (sum) or 068k (difference) issues.

Go Scalar Floating Multiply: This signal is sent to the NA and NC
options when a 06y through 06§k instruction issues.

Go Address Multiply: This signal is transmitted to the AR option
when a 03Bk issues.

Common Memory A or S Requests This signal is sent to the CD
options when a memory load or store issues. JAO sends out an A
register request, and JA1 sends out S register requests.

Common Memory A or S Writes: This signal is sent to the CD
options when a memory write Aikxpnmor 13ixxpnmissues. JAO
sends out A register write requests, and JA1 sends out S register
write requests.

CM Port B Enabled: This signal is sent to the VA option via the
JAO option and to the BT option via the JA1 options to select the
vector read ports.

Vector Logical #2 Enabled JAO sends this signal to the VA options
to select vector logical functional units.
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 Data Resume This signal is sent to the instruction stack (IC
options) to indicate that the JA can accept another word.

* Go Exchange This signal is sent to the IC options to indicate that
an exchange is required. Another copy is sent to the HD option and
is used by the HI3'to clear the SIE bit (taking 1/O interrupt). The
Go Exchange signal is also sent to the CC option to signal the CC to
start swapping exchange packages in memory.

 Go Branch: This signal is sent to the IC options to indicate that a
conditional branch has passed the test.

* Branch Fall Through: This signal is sent to the IC options to
indicate that a conditional branch has failed the test.

* Branch Issued This signal is sent to the IC options to indicate that
a branch has issued.

e Enter Rank 1, Enter Rank 2, or Clear Rank 2 These three
signals are sent to the IC options to move parcel data into or out of
the ranks into issue.

* The following signals are transmitted to the performance (HF)
monitor to indicate a hold issue condition:

* Holding Issue on A Registers

* Holding Issue on S Registers

* Holding Issue on B/T Registers

* Holding Issue on V Registers

* Holding Issue on Common Memory
¢ Holding Issue on Functional Unit

* Holding Issue on Shared Resources

* Advance P. This signal is sent to the P register (BT options) to
advance P by 1 as each parcel is issued.
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Branch Instruction Control

The JA options decode and control the execution of branch instructions.
When a conditional branch passes or fails a test, it returns eith@othe
Branch control signal or th&ranch Fall Through control signal to the

IC options. Issue is halted until tk Branch signal is received by the

IC options. Another signaBranch Issued is also sent to the ICs when a
branch is in progress.

Conditional Branch Instructions

Conditional branches use instructions {KL.€hrough 01§k. Once the
instruction issues, branch control logic examines either the A0 or SO
register for the condition defined by the operation code. If the condition is
met, the value of the P register is replaced witmtihdield, and program

flow is passed to the instruction specified by P. If the condition is not met,
program flow drops through to the instruction that follows the branch.

Another type of conditional branch instruction for a CRAY T90 series
computer system is called test and set branch (KOG If a specified
semaphore register equals 0, the bit is made a 1 and the next instruction
issues. If the semaphore is a 1, the P register is replaced with the value in
thenmfield.

Unconditional Branch Instructions

186

Unconditional branches use instructions gR30rough 00ikmn, and

each code operates differently, except that none of them depends on a
condition being met before the branch takes place. In other words, they
always take the branch in thkem or nmfields.

The jump to Bk instruction (005{k) branches to the parcel address
specified by the contents ofl8 The unconditional jump instruction
(006000Nnn) branches to themfield. A new unconditional jump

instruction is the branch to the addresanmfield (006100nn). This
instruction is a Triton-mode only instruction; if executed in C90 mode, the
results are undefined.

The return jump instruction (00700M) jumps to the address in the

address field and places P + 3 (the address of the next instruction) into
B0OO. The return jump allows a jump to a subroutine, the last instruction of
which must be a 005000 instruction, which is a jump to BOO.
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Issue Control

Instruction Issue

Another new jump instruction is the 00710Q which is an indirect jump.

The instruction stores the address of the next sequential instruction in the
BOO register; then the instruction usestiefield to specify a common
memory address. The lower 32 bits of the contents of that address are
transferred to the P register, causing program execution to continue at that
point. When this instruction executes, the instruction buffers are set
invalid.

HTM-003-A

Thefirst parcel of the instruction leaves NIP and moves into all the CIPs
on options HFO00, HDOOO, and HDOO1. The CIP located on the HF
options is responsible for the instructions that affect the exchange package
and performance monitor.

The HD option CIP is used for A/S path release and provides A/S
designators and shared path release. The JA options determine whether
any register or functional unit reservations exist. If not, these options send
thelssuesignal to the HD and HF options and the instruction issues,
reserving the appropriate registers and/or functional unit. If resource
conflicts do exist, the JA option does not sendissaesignal, and the
instruction remains in CIP until the conflict is resolved. This is called a
hold issue condition.

The JA options are responsible for providing issue control, and checking
and making functional unit and path reservations for the following items:

*  \ector registers

*  Vector functional units
 A/S shared resource control
* Memory ports

* CM path/cache

* AJ/S register entry codes

*  B/T register

The functional units must send a release back to the JA options to indicate
that the units are available.

The JA options also send out thg, j, andk fields to the A/S registers for
further instruction decode.

Refer to Figure 88 through Figure 94 for related instruction issue block
diagrams.
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OCA - IDA - ODA -
IC000 |OCH Bits0O—7 |DH_|!C000 | ODH
IDA—
IDH _| 1coo1
BT000 OEA - ICA - ocClI - IDA - BT000
OEH Bits0—7  ICH its 0 — IGA—
OCP Bits0 -7 IDH: 1C002 Bits 0 — 7 IGH
IDA -
IDH IGI -
» 1C003 Bits 8—15 IGP
OCA - IDI —
OEI - ICA—|IC001 |OCH Bitsg-15 IDP | !C000
OEP Bits8-15 ICH DI = ODA—
ioP _[icoor | 2BH
ocClI - IDI -
OCP Bits8—-15 IDP [ |coo02
IDI —
IDP _I'1coo3
OCA-— IEA—
1C002 OCH Bits 16 — 23 IEH | 1C000
IEA—
IEH _I 1coo1
OEA A ocCl - IEA - ODA - IGA— | BTOO1
- - i — ODH i -
BT0O01 OEH Bits 16 — 23 ICH OCP Bits 16 — 23 |EH: 1C002 Bits 16 — 23 IGH
IEA—
IEH _] 1c003
IGI —
OCA-— IEI - .
1C003 OCH Bits 24—31 IEP _| |co00 Bits24 —31 IGP
OEl - ICA - >
OEP Bits 24—31 ICH IEI -
IEP | 1co01
ocClI - IEI -
OCP Bits 24-31 IEP _[1C002
IEI - ODA -
IEP _[i1coo3 |oDH
Figure 88. Bk (Exchange P) Fan-out Bits
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JA001 1C001 JA001 1C003
1C002
OKE — IPA — 1C000 OKM — IPA —
OKH gFieldBits0—-3 IPD _ OKP  gFieldBits0—-3 IPD _
OKB — IPE — OKJ - IPE —
OKD hFieldBits0—-2 IPG _ OKL  hFieldBits0—-2 IPG _
OKA  jField Bit 2 IPJ OKI  Field Bit 2 P
JA000 OKG - IPH — JA000 OKO - IPH—
OKH jFieldBits0—1 IPI OKP  jFieldBits0-1 IPI
OKD — IPK — OKL — IPK —
OKF  jFieldBits0—3 IPM OKN  jField Bits0—-3 IPM
OKA — IPN — OKI — IPN —
OKC  kField Bits0—3 IPP OKK  kFieldBits0 —3 IPP

Figure 89. JA-to-IC Parcel Data for Branches
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OMA — IAA —
CHO00 OMD Bits0-3 IAD I cogg [JA001
OME - 1Al — JA000
OMH Bits32-35 IAL _ OAA — IDA —
> OAH  Bits0-7 IDH
OMA — IAE —
CHOO2 OMD Bits4-7 IAH
> OAl - IBA—
OME — IAM OAP  Bits32-39 IBH
OMH Bits36-39 IAP _ >
OMA — IAA —
OMD Bits8—11  IAD
CHO004 »| 1C001 OAA — DI
OME — 1Al — OAH  Bits8—15 IDP _
OMH Bits40-43 IAL _ >
OMA — IAE — OAIl - IBI -
CHOO6 OMD Bits12-15 IAH _ OAP  Bits40-47 IBP
OME — IAM — "
OMH Bits 44—47 AP _
OMA — IAA —
CH008 OMD Bits16-19 IAD _fco0p OAA — ICA—
OME - 1Al — OAH  Bits16-23 ICH
OMH Bits48-51 AL
OMA — IAE — OAIl — 1AA —
CHO10 OMD Bits20-23 IAH _ OAP Bits 48 —55 IAH
OME - IAM —
OMH Bits52—-55 IAP
OMA — IAA —
CHOL2 OMD Bits24-27 1AD [~00s
OME — 1Al — OAA- ICl -
OMH Bits56-50 1AL OAH _ Bits24-31 ICP
OMA — IAE —
CHoL4 OMD Bits28—31 IAH OAl - 1Al —
> OAP  Bits56-63 IAP
OME — IAM — >
OMH  Bits 60— 63 IAP _

Figure 90. Path 1 CH to IC to JA Option
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OMA — IBA —
CHO01 OMD  Bits0—3 IBD [ icooo [
OME — IBI — JA000
OMH  Bits32-35 IBL _ OAA — IDA —
o OAH  Bits0-7 IDH
OMA — IBE —
CHO003 OMD  Bits4—7 IBH _
> OAIl - IBA —
OME — IBM — OAP  Bits32-39  IBH
OMH  Bits36-39 IBP | >
OMA — IBA —
CHO05 OMD  Bis8—11  IBD _| Icoo1
> OAA — IDI -
OME — 1Bl - OAH  Bits8—15 IDP
OMH  Bits40-43 IBL
OMA — IBE — OAl - IBI -
CHO07 OMD  Bits12-15 IBH _ OAP  Bits 40 — 47 IBP
OME — IBM —
OMH  Bits44-47 IBP _
OMA — IBA —
OMD  Bits16-19 IBD
CHO009 | 1C002 OAA — ICA —
OME — 1Bl — OAH  Bits16—-23 ICH
OMH  Bits48-51 IBL
OMA - IBE — OAIl — IBA —
CHO11 OMD  Bits20-23 IBH _ OAP Bits 48 — 55 IBH
OME — IBM —
OMH  Bits52-55 IBP
OMA — IBA —
CHO013 OMD Bits 24 —27 I1BD | 1C003
OME — 1Bl — OAA- ICI -
OMH Bits56-59 IBL _ OAH  Bits24-31  ICP _
OMA — IBE —
CHO15 OMD  Bits28-31 IBH _ OAl - IBI —
> OAP  Bits56-63  IBP _
OME - IBM —
OMH  Bits60-63 IBP _

Figure 91. Path 2 CH to IC to JA Option
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Instruction Issue

KEY

Group 0 V Registers, A Registers

Group 1 S Registers, B/T Registers,
Vector Logical, Vector Shift, Reciprocal,
Vector Read Port A/Port B

Group 2 Shared Resource, Memory Quiet,
A0/SO Sign Test, Others (hold issue,
exchange, etc.)

JA000 / JAOO01 OOA — OOD Hold Issues to Performance Monitor
ODE JA000 Advance P BTO, BT1 _
ODE JA001 Go FP Multiply NB _
YR T VO V Reg Read Release VA1 (8)  IEA - IEH o ODA Issue Group 0 Valid VAO and VA1 (JAQ)
|GB V:g;g[ ng:ggl 2 VAL \Vj Reg Write Release VAO (8) IFA — IFH V Reg Reservation ODA Issue Group 0 Va“d BTO and BT1 (JAl) _
; - ODB Issue Group 1 Valid VAO and VA1 (JAO)
IGC Vector Shift VAO _ . !
oD Vector Add VAL V FU Release VAO/VAL (11) IGA - IGK . V EU Reservation Cgﬁél(l:(l:(t | jssue ODB Issue Group 1 Valid BTO and BT1 (JA1) _
IGE Vector FP Mult ~ VAO A/S Register (Shared Resource) 1A — IIE OoDC Issue Group 2 Valid VAO and VA1 (JAO)
IGF Vector FP Add VAl g ( ) > Shared Reservation OoDC Issue Group 2 Valid BTO and BT1 (JA1) _
IGG Vector Recip VAO | AJS Path (Shared Resource) IIF _
IGH BMM VAl OLG JA00O Issue CIP HDO, HD1
IGI Vector Mask VAO Release Mem Port A, B, C ILA - ILC > Memory Port Reservation )
IGJ B Reg Release BTO | M Path/Cache Release (Even) 1JA — 1JE obb JAOOQO Issue CIP HFO via ANO
IGK T Reg Release BT1 (Odd) 131 — 1IM CM Path/Cache Reservation h, I, j, k Field to A/IS
OAA — OAL Registers AR, AS, AT, AU
Req T lati h, i, j, k Field to A/S
€g Transiation OBA — OBL _Registers AR, AS, AT, AU
OCA - OCP g, h, i, j, k Field to VA/BT Registers
D(e,\ﬁ%?e Inst Translation AJ/S Read-out Code Bit 0
OPA, OPC to AR, AS, AT, AU
AJ/S Read-out Code Bit
A OPB, OPD 1to AR, AS, AT, AU
A/S Entry Code Bit 0, 1, 2
_ OFA — OFF to AR, AS, AT, AU
P
a OGA — OGH A/S Constant Bits to ARO or ATO
0 0 r
c OHA — OHH A/S Constant Bits to ASO or AT1
- e
Instruction Data from ICs (64) |AA — IDP 1 | OIA—OIH AJS Constant Bits to AS1 or AUO
> 2 2 D .
a OJA — OJH AJS Constant Bits to AS2 or AU1
t
3 3 a OKA — OKH Parcel Data to Stack
Instruction Data Ready IKA  IKA OKl — OKP Parcel Data to Stack
Parcel Pointers Bit 0 and Bit 1 IKB, IKC >
To HDs via Fanout A/S Path Release _
Interrupt from HD IKF
h, i, j, kto CIP
Exchange Active from CC IPB 9. b Jy KO To HF via Fanout Shared Path Release/Exchange Data
FA (S0) Test Valid IKG _ ODF Go Exchange to ICs _
FA (S0) Slgn State IKH _ Go Exchange
FM (SO0) Sign State 1KJ _
A0=0 INA — INH »  Sign Bit Test OOQAto ICs Branch Issued
A0 Negative INA — INJ _ B h Fall Th h
S0=0 IOA — IOH - OQBtolCs Branch 7a? Thioug
S0 Negative 101 OQC to ICs Go Branch
Figure 95. JA Option Block Diagram
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JA000 I AS000

OAA — OAC kBits IPG—IPl | AR0OOO
OAD — OAF J Bits IPD — IPF

OAG — OAl i Bits IPA —IPC
OAJ — OAL hBits IPJ—IPL —

I AS002

OBA - OBC kBits IPG-IPI | AS001
OBD - OBF  jBits IPD — IPF

OBG - OBl i Bits IPA—IPC
OBJ - OBL hBits IPJ—IPL —

| VA001

OCA-0OCC kBits IPG-IPI | VAOOO
OCD-OCF jBits IPD — IPF

OCG - OClI i Bits IPA - IPC
OCJ - OCL hBits IPJ—IPL

OCM—-OCP__ gBits IPJ—IPL —

JA001 I ATO001

OAA — OAC kBits IPG—IPI | ATO00
OAD — OAF J Bits IPD — IPF_

OAG - OAI i Bits IPA —IPC_
OAJ — OAL hBits IPJ—IPL —

I AU001

OBA - OBC k Bits IPG - IPlI | AUOOO
OBD - OBF J Bits IPD — IPF

OBG - OBl i Bits IPA —IPC
OBJ — OBL hBits IPJ—IPL _ —

| BTOO01

OCA -0OCC kBits IPG - IPI [ BT000
OCD - OCF jBits IPD — IPF

OCG-0ClI  iBits IPA—IPC_
OCJ—OCL  hBits IPJ—IPL
OCM-OCP  gBits IPJ—IPL —

Figure 92. Instruction Data Distribution A/S/B/T/V Registers
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HDOO01
JA001 HDOO0O
AU000
OBA — OBC IPG — IPI OWJ—OWL  kBits  IEA—IEC _
1C001
OKD - OKF IPK—IPM __ OWQ -OWS  jBits IED - IEF _
IC000
IPH — IPJ OWQ - OWS i Bits IEG-IEI _
AU000
OBJ — OBL IPJ — IPL OWA —OWC  hBits IEJ—IEL _
OMA — OMB
JA00O GH_1GI | AN00O
OGI - OGL g Bits IEM - IEP
OMA — OMB IGF — IGG
OLG Issue IEQ o

Figure 93. CIP Distribution to HD Options
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Instruction Issue

JA000
JA001 AUO001 HFO000
JA001 | OBA - OBC IPG-PL OWJ-OWL  kBits IDA—IDC
IC003
3A000 | 2KLE = OKN IPK—IPM OWQ — OWS  jBits IDD — IDF
IC002
JA000 | KO — OKP IPH-IPI_ OWQ — OWS  iBits IDG — IDI
3a001 LK IPJ .
AU001
Jaooz [ OBI — OBL IPI-1PL OWA-OWC  hBits  IDJ—IDL
_ _ ANO001
3001 LOMA — OMB IGH-1GI _
OGE—-OGH  gBits  IDM—IDP
38000 | OMA - OMB IGF —1GG
JA000 ODD Issue via ANOOO IDQ
Figure 94. CIP Distribution to HF Option
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EXCHANGE

The exchange mechanism in a CRAY T90 series computer system has the
following features:

e Means of switching execution from program to program
* Exchange packageBlock (4G words) of program parameters that:

* Must be present in order for any program to execute; defines
where and how the program runs

 Must be 4@ words long
*  Must reside in lower 2 MW of memory

*  Must start on a 4pword boundary

Exchange Process

The exchange sequence is the process that deactivates the current
exchange package and puts it into memory. It then loads a new exchange
package from memory and activates it.

The CRAY T90 series systems have a new feature in the exchange
package. This feature allows a process to exchange to either the address
specified by the exchange address (XA) register or to one of fiezeatt
addresses specified by one of the five exit address (EA) registers. With
this capability, a user job could exchange to another user job, or could
exchange to specific areas in the kernel, without first exchanging to the
monitor.

When a CPU is master cleared and then exchanged out, the pending
interrupt bits are retained. This is done so that the maximum amount of
information about the process is available. A second exchange sequence
can retrieve this information.
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CPU Exchange

If an exchange occurs and the program is in monitor mode, the monitor
needs to save the B registers, T registers, shared registers, and vector (V)
registers. If the vector not used (VNU) bit is a 1, the V registers do not
need to be saved. If the exchange is to another user job, it is up to the user
to save the register values.

Four conditions cause an exchange sequence:

* Deadstart sequence (SIPI)

e Interrupt flag set (F register)

*  Program exit (004000, 000000 instruction)

* Hardware error causing a flag to set, which causes an exchange

SIPI

A CRAY T90 series system does not use a deadstart signal or command.
Instead, the system useSaet Interprocessor Interrupt (SIPI) signal, via

a 00141 instruction [send inter-CPU interrupt to CPU)JAOn an

initial deadstart, a CPU loop controller function og 7$6sued by the
maintenance channel will also start an exchange.

The following list describes the sequence of events that occur when you
invoke the Mainframe Maintenance Environment (MME):

e Set CPU MC.
* Load data to memory address 0 via the maintenance channel.

* Issue a loop controller function of 1g@ia the maintenance channel
to allow CPU maintenance instructions.

* Issue a loop controller function of 1gltia the maintenance channel
to allow CPU instruction exchange and halt.

The exchange package at location 0 goes into the CPU, and
what was in the CPU goes to location 0. There is no fetch
after this exchange.

* Drop CPU Master Clear via the maintenance channel.
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Interrupt Flag Set

Program Exit

196

CPU

* Issue the loop controller function of g@ia the maintenance
channel.

The dropping of CPU Master Clear works as an enable; the
function 76 must be present along with the Master Clear
signal for the exchange to occur.

* Interrupted CPU exchanges to address 0, a fetch is done and issue
starts.

From this point, the initially started CPU could issue SIPI commands to
the other CPUs.

In the CRAY T90 series system, each interrupt flag has an enable interrupt
mode bit. The interrupt modes are enabled by the enabled interrupt mode
(EIM) flag; an exchange to non-monitor mode sets the EIM flag.

An exchange to monitor mode clears the EIM flag. While the program is
in monitor mode, a 001302 instruction sets the EIM flag, and an 001303
instruction clears the EIM flag.

Each CPU has an EIM flag. In monitor mode, the EIM flag is cleared and
all interrupt modes are disabled, except enable flag on normal exit (FNX),
enable flag on error exit (FEX), and enable interrupt on program range
error (IPR); this provides a stable environment within monitor mode
immediately following an exchange.

Program exit occurs following the decode of instructions 000000
and 004000. Instruction 000000 is an error exit instruction, and
instruction 004000 is a normal exit.
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Exchange

Exchange Sequence

Before a CPU can perform an exchange, the CPU must first finish all
active instructions. If a test and set instruction (gK)34 in the next
instruction parcel (NIP) or entering the current instruction parcel (CIP),
the program (P) register is decremented by 2, or by 1 if the test and set
instruction is in the CIP or NIP. The JA option transmits a signal to the
BT options that decrements the P register before it is loaded into memory
The JA then waits until the condition is resolved to advance P. Memory
must also be quiet, and all memory writes must be complete.

The processor that is performing the exchange clears out the buffer valid
bits and buffer counter. Clearing the buffer valid bits causes a fetch to
occur after the exchange has completed. Clearing the instructfen buf
address register (IBAR) counter causes the data that was fetched from
memory to be loaded into instruction buffer O first. Also, issuing ajR051
instruction clears the buffer valid bits. The Of)&$ a maintenance
instruction that loads the P register frogk Bnd invalidates the

instruction buffers if the CPU is in maintenance mode (MM).

Exchange Package Descriptions

HTM-003-A

Referto Figure 96 for an illustration of the exchange package. The
exchange parameters are located on two options: HDOOO and HDOO1.
HDOOO handles bits 0 through 31 for words 0 through 17, and HD0O1
handles bits 32 through 63 for words 0 through 17.

Cray Research Proprietary 197



Exchange CPU
63 48 47 32 31 16 15 0
0 15,16 31 32 47 48 63
LI rfrrrrrrrrrrrrrrrreld LU rrrrerjprerrrrrrrrerrrrrrerrrrerrera
LAT O . o

O Modes LAT 0 Logical Limit LAT 0 Logical Base
RW X C 39 14 39 14
LI rfrrrrrrrrrrrrerrrrrd LU rrrrrjyrrrrrrrrrerrrrrrrrrrrrerd
LAT 1 ) o

1| Modes LAT 1 Logical Limit LAT 1 Logical Base
RW X C 39 14 39 14
[ rjfrrrrrrrerrerrrerrrerrrrrerrrrrprererrrejprrrrerrrrrerrrrerrrererrerd

,| LAT2 ,

Modes LAT 2 Logical Limit LAT 2 Logical Base

RW X C 39 14 39 14

LI rfrrrrrrrrrrrrerrrrrd UL rrrrrjyrrrrrrrrrerrrrrrrrrrrrerd
3| LAT3 _

Modes LAT 3 Logical Limit LAT 3 Logical Base

RW X C 39 14 39 14

LI rfrrrrrrrrrrrrerrrrrd UL rrrrrjyrrrrrrrrrerrrrrrrrrrrrerd

LAT 4 _

41 Modes LAT 4 Logical Limit LAT 4 Logical Base
RW X C 39 14 39 14
LI rfrrrrrrrrrrrrerrrrrd LU rrrrrjyrrrrrrrrrerrrrrrrrrrrrerd
LAT 5 _

5| Modes LAT 5 Logical Limit LAT 5 Logical Base
RW X C 39 14 39 14
LI rfrrrrrrrrrrrrerrrrrd LU rrrrrjyrrrrrrrrrerrrrrrrrrrrrerd
LAT 6

6| Modes LAT 6 Logical Limit LAT 6 Logical Base
RW X C 39 14 39 14
LI rfrrrrrrrrrrrrrrerreld LU rrrrrjprrrrrrrrrerrrrrrerrrrerrera
LAT 7 ) o

7 | Modes LAT 7 Logical Limit LAT 7 Logical Base
RW X C 39 14 39 14
LI rrrrrrrrrrrrrrerrrrrd LI LI rrrrrrrrrrrrrrrerrrrrrrrrrrreed
LAT O

10 | modes LAT 0 Physical Bias P Register
RW X D |37 14 29 —2
T T T [TTT T TTT T T T T i T T T T T T T T Tl TT[ T T T T T T T T T T T T T T T[T T T T T T T T T T TTT
LAT 1 ||||Ir|n§r|ru|p|”\|/|0|d|es| I 1F Modes

111 Modes LAT 1 Physical Bias RUFOPEBCMR | IPDMN A B__ 2 REBM
RW X D] 37 14 PMPRRXPMCTPOCL I XM D EILM
T T T [TTT T TT T T T T T i T T T T T T T T Tl TT[ T T T T T T T T I T T T T T Tt T I T T T T T T rTTT
LAT 2 RMF O Igtgguv\ftvv’:lﬁg? P DMNA Status

12 | Modes LAT 2 Physical Bias PEPRREPECTCOCL IEM NEWD
RW X D| 37 14 EUEEEXICUIPI I IX] Us L
T T T [ TTT T T T T T T T T i T T T T T T TTT Tl TT [ TTTTTT1 TTTTT1 TTT T T T[T T T iTT1
LAT 3 Cluster Processor Vector

13| Modes LAT 3 Physical Bias Number Number Length
RW X D| 37 14 7 0 6 0 7 0
[ rrrrrrrrrrrverrrrerrel 1 1 FTrrrrrta Frrrnd rrrrrra FTrrrrr
LAT 4

14| Modes LAT 4 Physical Bias
RW X D| 37 14
LI rrrrrrrrrrrrrrerrrrred LI LI rrrrrrrrrrrrrrd rrrrrrrrrrrrrrd
LAT 5 o . .

151 Modes LAT 5 Physical Bias Exit Address 3 Exit Address 4
RW X D| 37 14 20 5120 5
[ rrrrrrerrrerrerrrerrrerrered rryprrrrrrrrrrerrreld Frrrrrrrerrrrerd
LAT 6 o _ .

16 | Modes LAT 6 Physical Bias Exit Address 1 Exit Address 2
RW X D| 37 14 20 5120
T T T [ TTT T T T T T T T T i T T T T T T T T 1T TT [ T T T T T T T T T T T T T T T T T T T T T T T T T T TTTT
LAT 7 .

Exchange Address

171 Modes LAT 7 Physical Bias g Exit Address 0
RW X D |37 14 20 5 120 5
Words 20 — 27: A Registers 0 — 7 Words 30 — 37: S Registers 0 - 7

Figure 96. Exchange Package
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P register — program register, word 10 bits 0 through 31

The P register contains 32 bits, the lower 2 bits of which are
used for parcel selects. The P register contains bits —2 through
29, which allow 1 gigaword of memory to be addressed.

Modes — MM, BDM, ESL, TRI, SCE, BDD, word 11, bits O through 31

Refer to Table 30 for a list of the bit assignments for the
modes field. The modes tell the program what it can or cannot
do, thereby determining what effect the instructions issued

will have on the program.

Table 30. Modes Register Bit Assignments

Binary
Word | Exponent | Acronym Description

11 5 BDD Bidirectional memory disable — When BDD is set to a 1, bidirec-
tional block reads and writes are disabled.

11 4 SCE Scalar cache enabled — If SCE is set to a 1, onboard scalar
cache is enabled.

11 3 TRI Triton mode — The Triton mode allows the new instruction to run
in the CRAY T90 series system. If the Triton mode bit equals a 0,
then the instruction will run only CRAY C90 instructions.

11 2 ESL Enable second vector logical — If ESL is set and any 140ijk
through 145jjk instructions issue, the instruction is routed to the
second vector logical unit. If ESL = 0, the second vector logical
unit is not used. The second vector logical unit is used before the
full vector logical unit if a choice exists.

11 1 BDM Bidirection memory — When BDM is set, block reads and writes
may occur concurrently.

11 0 MM Monitor mode — Certain instructions are privileged to MM: con-
trolling the channel, setting the real-time clock, setting the pro-
grammable clock, and so on. These instructions perform special-
ized functions that are useful to the operating system. If an MM
instruction issues while the CPU is not in MM, it is treated as a
no-operation instruction. If an MM instruction issues while the IMI
flag is set, the Ml flag sets, which causes an exchange.

HTM-003-A Cray Research Proprietary 199



Exchange

200

CPU

Status — VNU, FPS, WS, PS, word 12, bits 0 through 3

Refer to Table 31 for a list of the bit assignments for the status
field. The status register reflects the condition of the CPU at
the time of an exchange. The bits in the status field are set
during program execution and are not user selectable.

Table 31. Status Register Bit Assignments

Word

Binary

Exponent | Acronym Description

12

3

VNU Vectors not used — After a program has been exchanged into
memory, the B and T registers must be saved as well as the SB,
ST, and SM registers of the cluster that the program is using. If
the VNU bit is equal to 1, then this indicates that the vector regis-
ters were not used so the vector registers do not need to be
saved. However, if the VNU bit is 0, then the vector registers must
be saved as well. The VNU bit is set when a 077xxx or a 140
through 177xxx instruction issues.

12

FPS Floating-point status — A floating-point error sets the FPS flag
regardless of the state of the floating-point error flag (FPE). The
FPE flag sets when an underflow or overflow condition exists in
the floating-point functional units.

The FPS bit is cleared whenever the interrupt on floating-point er-

ror (IFP) mode bit is set or cleared by a 002100 or 002200 instruc-
tion.The FPS bit is also cleared when the bit matrix loaded (BML)

flag is cleared; the BML flag is cleared when a 002210 instruction

issues.

12

WS Waiting on semaphore — The WS bit sets when a 0034k instruc-
tion is in CIP and holding issue.

12

BML Bit matrix loaded — The BML bit indicates the B! (B transposed)
registers have been successfully loaded by a 1740/4 instruction.
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Interrupt modes, word 11, bits 15 through 31

Refer to Table 32 for a list of the bit assignments for the
interrupt modes field in the exchange package. All modes

except IPR, FEX, and FNX must be enabled by the EIM flag

to be effective. The EIM flag sets on an exchange to

nonmonitor mode and clears on an exchange to monitor mode.

The EIM flag enables interrupt modes if set.

The EIM bit can be set or cleared by a 001302 or a 001303
instruction, respectively.

Table 32. Interrupt Modes Register Bit Assignments

Binary
Word | Exponent | Acronym Description
11 31 IRP Interrupt on Register Parity Error
11 30 IUM Interrupt on Uncorrectable Memory Error
11 29 IFP Interrupt on Floating-point Error
11 28 IOR Interrupt on Operand Range Error
11 27 IPR Interrupt on Program Range Error
11 26 FEX Enable Flag on Error Exit (does not disable
exchange)
11 25 IBP Interrupt on Breakpoint
11 24 ICM Interrupt on Correctable Memory Error
11 23 IMC Interrupt on MCU Interrupt
11 22 IRT Interrupt on Real-time Interrupt
11 21 P Interrupt on Interprocessor Interrupt
11 20 o Interrupt on 1/O
11 19 IPC Interrupt on Programmable Clock
11 18 IDL Interrupt on Deadlock
11 17 IMI Interrupt on 001jk=0 or 033 instruction
11 16 FNX Enable Flag on Normal Exit (does not disable
exchange)
11 15 IAM Interrupt on Address Multiply Range Error

HTM-003-A

Cray Research Proprietary 201




Exchange CPU

Interrupt flags, word 12, bits 15 through 31

Refer to Table 33 for a list of the bit assignments for the
interrupt flags field in the exchange package.

Table 33. Flag Register Bit Assignments

Binary
Word | Exponent | Acronym Description
12 31 RPE Register Parity Error
12 30 MEU Uncorrectable Memory Error
12 29 FPE Floating-point Error
12 28 ORE Operand Range Error
12 27 PRE Program Range Error
12 26 EEX Error Exit (000 issued)
12 25 BPI Breakpoint Interrupt
12 24 MEC Correctable Memory Error
12 23 MCU MCU Interrupt
12 22 RTI Real-time Interrupt
12 21 ICP Interrupt from Internal CPU
12 20 (o] I/O Interrupt (if 1O and SIE)*
12 19 PCI Programmable Clock Interrupt
12 18 DL Deadlock Interrupt
12 17 Mil 001jk=0 or 033 Instruction Interrupt (if IMI
and not MM)
12 16 NEX Normal Exit (004 issued)
12 15 AMI Address Multiply Interrupt

¥

SIE = System 1/O interrupt enabled.
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Miscellaneous registers

Table 34 lists the bit assignments for the CLN, PPN, VL, EA,
and XA registers.

Table 34. Miscellaneous Register Bit Assignments

Binary
Word [Exponent | Acronym Description

13 24 -31 CLN Cluster number — The CLN contains a 8-bit field. There are up to
36g clusters in the system, depending on the system configuration.

13 16 — 22 PPN Processor number — The contents of the 7-bit field in the exchange
packages show the logical number of the CPU in which the exchange
was executed. The maximum number is 127.

13 0-7 VL Vector length — The VL register holds the content of the VL register.
The 8-bit field contains the number of elements to be operated on in
the vector register. In a CRAY T90 series system, if VL =000 or VL =
200, all 200g vector elements are used within the vector register.

15,16, 0-31 EA Exit address — Each of the five 16-bit fields specifies the starting ad-

17 dress of a 32-word exchange package. The k field of the 0040/k
instruction specifies the exchange package to use. Only k fields
equalto Othrough 4 are valid; if an invalid value is used, the exchange
is to the XA address. Exit Address (EA) 0 is expected to be used for
normal exits to maintain compatibility with existing systems.

Each EA field contains only bits 5 through 20. The lower bits are as-
sumed to be 0’s.

17 16 -31 XA Exchange address — The 16-bit field specifies the address of the
first word of the next exchange package. This exchange package
is loaded when any one of the following conditions occurs:

An interrupt occurs that sets any of the following flags: RPE,
MEU, FPE, OPR, BPI, MEC, MCU, RTI, ICP, 10I, PCI, DL, MlI,
NEX, or AMI

A 000 is issued

A 0040jk is issued with k being an illegal value (5, 6, or 7)

The XA field contains only bits 5 through 20. The lower bits are
assumed to be O’s.
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LATS — Wbrds 0 through 17. Refer to the exchange package diagram for

bit layouts.
Each LAT has four associated fields; Table 35 identifies those
fields.
Table 35. LAT Fields
Field Name Description

Logical Base |Firstlogical address of this LAT
Logical Limit |Last address +1 of this LAT

Physical Bias | Physical bias = Physical base address — Logical base address

Modes The controlling bits for each LAT
R(ead), W(rite), X(ecute), C(achable), D(irty)

The use of LATs allows programs to share memory space. For example,
two user jobs could reference the same library routine in memory while
keeping their local code private.
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REAL-TIME CLOCK

PROGRAMMABLE CLOCK INTERRUPT
STATUS REGISTER

PERFORMANCE MONITOR

Real-time Clock

Referto the following subsections for information about the real-time
clock, programmable clock interrupt, status register, and the performance
monitor.

206

A CRAY T90 series computer system contains one 64-bit real-time clock
(RTC) per central processing unit (CPU). The RTC is synchronized when
a CPU issues a 00iinstruction. The 0030 instruction causes all

CPUs in the same cluster to be loaded with the contenis ditte RTC is
located on two HD options, each of which handles 32 bits. The HD0O0O
option handles bits 0 through 31; the HDOO1 option handles bits 32
through 63.

HDOOO will detect a carry, out of the RTC, at a count of 37777777776
during normal operation. HDOO1 then increments the upper bits during
the next clock period, and HDOOO suppresses any toggles.

The RTC is incremented once every clock period. The RTC allows for
clock-period timing of program execution. When the machine is
deadstarted, the RTC must be loaded in order to synchronize all the CPUs.
If they are not synchronized, each CPU will have a different RTC value.

Writing to the RTC with the 003@ instruction sends a copy of the S
register from the CPU issuing the instruction to all RTC registers via the
issue paths of the shared registers. Reading the RTC with@0072
instruction copies the RTC register of the CPU that issued the®72
instruction into the scalar registers.

Refer to Figure 97 for an RTC and programmable clock interrupt (PCI)
block diagram.
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i HFO000
Sj Data from
Shared Module OAA — OCL
Shared Data Path
(RTC Data or PCI)
HDOO0O0
ICA-DF RTC to Si
OAA - OBF Bits0—-31 _
PCI Logic Used on
This Option Only

CIP from Issue IEA—-IEP |

ONA

Carry to RTC

- RTC to Si
OAA — OBF Bits 32 -63

ICA — IDF _

IEA—IEP _

Figure 97. RTC and PCI Block Diagram

Programmable Clock

EachCPU has one programmable clock (PC), which is a 32-bit counter
The programmable clock decrements every clock period; the clock is
located on the HDOOO option.

The programmable clock is loaded by the (@idstruction when the
program is in monitor mode. When the programmable clock equals zero,
an interrupt request (PCI) is generated. To generate a PCI, the IPC mode
bit must be set. In user mode, IPC must have been set in the user’s
exchange package. If the CPU is in monitor mode, either IPC was set in
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the monitor’s exchange package, or a 001406 instruction was issued. The
interrupt request remains set until a 001#4@&ruction clears it. If the

CPU is in monitor mode, and if the interrupt request is not desired, use a
001407instruction to disable the IPC mode bit.

The PCI request is enabled and disabled on the HD option, which contains
the exchange parameters.

RTC and PC Instructions

Refer to Table 36 for a list of the RTC and PC instructions.

Table 36. RTC and PC Instructions

Instruction CAL Description
00140 RT Sj Enter RTC register with Sj
072i00 SiRT Transmit RTC to Si
0014/4 i PCI Sj Transmit Sjto programmable clock
001405 ¥ ccCl Clear PCI request
001406 * ECI Enable PCI request
001407 ¥ DCI Disable PCI request

T Monitor mode instruction.

Performance Monitor

208

The performance monitor (PM) is normally used to monitor software
performance. With the results of the performance monitor, a programmer
can determine how efficiently a program is running in the system. If, for
example, the program is performing too many instruction fetches or too
many lold issue conditions are occurring, the programmer can review the
program structure and modify it to minimize these occurrences.

Each CPU contains a performance monitor; because each CPU is
identical, all references in this section pertain to a single CPU. Each CPU
contains 32 performance counters and each counter is 48 bits wide.
Table 37 shows which event each counter monitors. Each counter
increments each time a particular event occurs in the CPU while the CPU
is in nonmonitor mode (IMI bit is not set). The counters related to
memory references may be incremented by as many as eight times per
clock period (CP). Counters related to vector operations are incremented
by the value in the vector length register at the time the instruction issues.
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Table 37. Performance Monitor

Counter Event Monitored Instructions Increments
Number of:
0 Clock periods monitored +1
1 Instructions issued +1
2 Clock periods holding issue +1
3 Instruction fetches +1
4 CPU memory references (ports A, B, C) +8
5 Clock periods for references (ports A, B,C) +2047
6 1/0 memory references (port D, 1/O only) +2
7 Cache misses +1
Holding issue on:
10 A registers and access conflicts +1
11 S registers and access conflicts +1
12 V registers +1
13 B/T registers +1
14 Functional units +1
15 Shared registers +1
16 Memory ports +1
17 Number of cache hits +1
Number of instructions:
20 Instructions 000000 through 004000 000 - 004 +1
21 Branches 005 - 017 +1
22 Address instructions 02x, 030 — 033, EIS 042 — 057 +1
,073120, 073i30
23 B/T memory instructions 034 - 037 +1
24 Scalar instructions 040 — 043, 071 — 077 except +1
07320, 073130
25 Scalar integer instructions 044 — 061, 070j6 +1
26 Scalar floating-point instructions 062 - 070 +1
27 S/A memory instructions 10x — 13x +1
Number of operations:
30 Vector logical 070i1, 140 — 147, +VL
17404 — 1740j6, 175
31 Vector shifts, pop., leading zero 150 — 153, 174xx (1 - 3) +VL
32 Vector integer adds 154 — 157 +VL
33 Vector floating-point multiplies 160 — 167 +VL
34 Vector floating-point adds 170-173 +VL
35 Vector floating-point reciprocals 174xx0 +VL
36 Vector memory reads 176 +VL
37 Vector memory writes 177 +VL
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Performance Monitor Instructions

Table 38 lists all the instructions associated with the performance monitor.

Table 38. Performance Monitor Instructions

Instruction CAL Description
001500 Clear all performance counters
073ij1 SiSRj | Transmit (SRj) to Si(monitor mode only for
j=2-17)
073/05 SRO S/ | Transmit (S)) bits 48 — 52 to SRO
073i25 SR2 Si |Advance performance monitor pointer
073i75 SR7 Si | Transmit (Si) to maintenance channel

Clearing the Performance Counters

Instruction 001500 clears all performance counters. This instruction must
be issued while the CPU is in monitor mode in order for the instruction to
operate correctly.

Reading the Performance Monitor

The performance monitor is read with the @23and 0781 instructions.

Each counter is read 48 bits at a time and requires that two instructions be
issued to read all the counters. The 48 bits of the counter read are stored
in the S register. When the OVAL instruction is issued, counters 0

through 17 are sent ta.SThe 07831 instruction, when issued, reads
counters 20 through 37 and sends the bits.to S

The system hardware requires a minimum of 3 CPs between issuing
073x1 instructions. Also, the PM Busy Status (PMBY) bit (bit 47 of

SRO0) must be cleared before reading the counters. If the 3-CP wait is not
written into the program, an undeterminable corruption of performance
monitor data occurs.
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Performance Monitor Block Diagram

Status Register

Referto Figure 98 for the performance monitor block diagram. The
performance monitor is composed of the HFO00, HD00O, and HD0O1
options. The HF00O0 option contains the lower bits (O through 31) and the
HDOO0O and HDOO1 options contain the upper bits (32 through 47) for all
32 counters; there is one counter for each event tracked by the
performance monitor. These 48-bit counters are incremented as each
event occurs, as long as the CPU is not in monitor mode.

HTM-003-A

A CRAY T90 series computer system has eight status registers, which are
located on the HD and HF options. The status registers are no longer part
of the exchange package as they were in previous systems. Figure 99
shows the status register format and bit assignments of each register. The
status registers are read by theiplr $struction.
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S Register

Vector Length Performance Monitor to S Bits 0 — 31

Go Increment

HDO0O OoMQ HDO01
OMA - )
OMH OAA - Performance Monitor
IAA — OBF to Si Bits 32 — 47 N
Vector Length IBF OAA — o
o OBF
Performance Performance
Counter Counter
Re&LZtZ;S?;?s? Registers 0 — 37
ICA — Bits 32 — 47
Shared Data Path IDF _ IMI Allow Read
o ONB of HPM 1JQ
IKO
IKL__¥'HFooo
IKP
ILA — » OFA  Carry Out IKM
ILH )} performance KM
Counter 8’;‘? - >
IKH —
Registers 0 — 37 IKL >
IAA — Bits 0 — 31 OFI
Shared Data ICL _
Performance Monitor OFO Busy IKP
Increment Terms IKA —
h Hold IKO
(Registers 10 — 16) IKG - OFK Carry
Cache Miss (Register 17)  IKH - OFA — IKH —
. . OFE Select Pointers IKL
Cache Hit (Register 7) IKK |
- OBG — ICA —
I/0 Reference Requests IKL — OCL Shared Data Path IDF
(Register 6) IKM

Figure 98. Performance Monitor Block Diagram
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Figure 99. Status Registers
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The eight status registers are further defined in Table 39 through Table 43.

Status register 0 (SR0) shows the status of several bits in the active
exchange package.

Table 39. Status Register (SRO)

Bits Name Description
63 CLN#0 | Cluster number not equal to zero
57 BML Bit matrix loaded
52 IBP ¥ Interrupt on breakpoint
51 FPS ¥ |Floating-point status
50 IFP ¥ Interrupt on floating-point error
49 IOR * Interrupt on operand range error
48 BDM 7 | Bidirectional memory
47 PMBY Performance monitor busy

40 through 43 PN Processor number

32 through 39 CLN Cluster number

T Designates that this was written by a 07305 instruction. All other bits of SRO
are read-only.

Status register 1 (SR1) is not defined.

Status register 2 (SR2) bit¢ldough 47 are bits of the performance
monitor counters 0 through 17.

Status register 3 (SR3) bit¢lhough 47 are bits of the performance
monitor counters 20 through 37.

Status register 4 (SR4) bits are shown in Table 40. SR4 contains the
correctable and uncorrectable memory error flags, port bits, and read
mode bits. The error information stored in SR4 is latched into the register
and held until the register is read. Once SR4 is read, the register is
cleared, and new error data can be stored in the register. If multiple errors
occur, only the first error is held in SR4. Bits 32 through 45 define the
destination code associated with the error. Table 40 is a decode of these
destination bits.
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Table 40. Status Register 4 (SR4)

Bits Name Description
a7 UME Uncorrectable memory error
46 CME Correctable memory error
32 through 45 CODE Destination code (refer to Table 41)

Table 41. Destination Codes

Bit
Destination 1312111019 |81 7|6]|5]14|3]2]1]|0
Cache read 1]111]- Word
V register read 11110 Register - Element
S register read 11011 Register 0 -
A register read 11071 Register 1 -
T register read 110710 - 0| - Register
B register read 110710 - 1] - Register
Fetch read 0Ol1]1 Group Word
I/O read 0110 Type Word
Exchange read 0101 - Word
I/0 write O IO N0 Type 1
Processor write 0OJj]O0Of(O0O]-10]12]0 AIS
Reconfigure Ol0|O0]-1]12 0 -
Memory error ojojol-]01]0¢}|O -

Statusregister 5 (SR5) bits 32 through 43 contain the syndrome code of
the memory error. The information is held until the status register is read.

Status register 6 (SR6) bits 32 through 44 contain the error address for the
memory error. These bits are latched into the SR6 on a memory error.
The information is held until the status register is read.

Status register 7 (SR7) contains information on LAT faults, register parity
errors (RPE), and shared register errors (SRRE). Bits 48 through 54
contain an LAT miss flag for each memory port. Bits 55 through 61
contain an LA multiple-hit flag for each memory port. Bit 47 is the RPE
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flag. If this bit sets, then bits 32 through 43 contain the chip nunider
46 is the SRRE flag and, if this flag is set, bits 24 through 31 contain the
chip number.

Table 42. Status Register 7 Bit Definitions

Bits Name Description

48 through 54 LAT fault |LAT miss
55 through 61 LAT fault | Multiple LAT hit

46 SRRE Shared register read error
24 through 31 Shared register chip number
47 RPE Register parity error
32 through 43 RPE chip number

Table 43. Register Parity Error Code

Octal Option Description
001 000 VRO Vector register VO pipe 0
001 001 VR1 Vector register V1 pipe 0
001 010 VR2 Vector register V2 pipe 0
001 011 VR3 Vector register V3 pipe 0
001 100 VR4 Vector register V4 pipe 0
001 101 VR5 Vector register V5 pipe 0
001 110 VR6 Vector register V6 pipe 0
001 111 VR7 Vector register V7 pipe 0
010 000 VR8 Vector register VO pipe 1
010 001 VR9 Vector register V1 pipe 1
010 010 VR10 Vector register V2 pipe 1
010011 VR11 Vector register V3 pipe 1
010 100 VR12 Vector register V4 pipe 1
010 101 VR13 Vector register V5 pipe 1
010 110 VR14 Vector register V6 pipe 1
010 111 VR15 Vector register V7 pipe 1
011 000 CHO Data cache bits 0 — 3, 32 — 35 Sect. 0,1,6,7
011 001 CH1 Data cache bits 0 — 3, 32 - 35 Sect. 2,3,4,5
011 010 CH2 Data cache bits 4 - 7, 36 — 39 Sect. 0,1,6,7
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Table 43. Register Parity Error Code (continued)

Octal Option Description
011 011 CH3 Data cache bits 4 — 7, 36 — 39 Sect. 2,3,4,5
011 100 CH4 Data cache bits 8 — 11, 40 — 43 Sect. 0,1,6,7
011 101 CH5 Data cache bits 8 — 11, 40 — 43 Sect. 2,3,4,5
011 110 CH6 Data cache bits 12 — 15, 44 — 47 Sect. 0,1,6,7
011 111 CH7 Data cache bits 12 — 15, 44 — 47 Sect. 2,3,4,5
100 000 CH8 Data cache bits 16 — 19, 48 — 51 Sect. 0,1,6,7
100 001 CH9 Data cache bits 16 — 19, 48 — 51 Sect. 2,3,4,5
100 010 CH10 Data cache bits 20 — 23, 52 - 55 Sect. 0,1,6,7
100 011 CH11 Data cache bits 20 — 23, 52 - 55 Sect. 2,3,4,5
100 100 CH12 Data cache bits 24 — 27, 56 — 59 Sect. 0,1,6,7
100 101 CH13 Data cache bits 24 — 27, 56 — 59 Sect. 2,3,4,5
100 110 CH14 Data cache bits 28 — 31, 60 — 63 Sect. 0,1,6,7
100 111 CH15 Data cache bits 28 — 31, 60 — 63 Sect. 2,3,4,5
101 000 ICO Instruction buffer bits 0 — 7, 32 — 39
101 o001 IC1 Instruction buffer bits 8 — 15, 40 — 47
101 010 IC2 Instruction buffer bits 16 — 23, 48 — 55
101 011 IC3 Instruction buffer bits 24 — 31, 56 — 63
110 000 BTO B and T register bits 0 — 15, 32 — 47
110 001 BT1 B and T register bits 16 — 31, 48 — 63
110 010 HMO Test-point buffer and logic monitor
110 011 HM1 Test-point buffer and logic monitor
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SCALAR CACHE

Cache Hit

Each CPU has a scalar data cache. The cache accelerates common
memory data access for address register and scalar register read requests.
Only address and scalar registers can access the cache.

The data cache has the following features:

The cache is organized into 8 pages of data. Each page contains 8
lines of 16 words, thus providing 1,024 words of data in the cache.
Figure 100 illustrates the logical layout of the cache.

Cache is parity protected; each 8-bit byte has an associated parity bit.
If enabled, a parity error on a cache read will cause an interrupt.

When an A or S register memory reference is made, one of two
things may occur: eache hitor acache miss

A and S register store requestsarée-through The cache word
will be updated if there is a hit; if a miss occurs, no cache lines are
written.

B, T, and V register store requests cause corresponding cache lines to
be set invalid on a cache hit. Store requests on a cache miss have no
effect on the cache. B, T, and V register load requests also have no
effect on the cache.

HTM-003-A

A cache hit is determined using logical addresses, not physical addresses.
A cache hit occurs when the following conditions are met:

A valid page address consisting of address bits 7 through 39, held
within the cache, matches the corresponding address bits of a
memory request.

The cache line indicated by bits 4 through 6 of the requesting address
is valid within the cache.
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| Page 7
| Page 6
| Page 5
| Page 4
| Page 3
| Page 2
Page 1
Page 0
Words 0 — 15

Line O

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Figure 100. Cache Layout
Cache Miss
A cache miss occurs when a read request from an A or S register does not
match a page address. When this occurs, the requested word is read from
memory and loaded into the appropriate A or S register. The requested
word and the next 15 consecutive memory addresses are loaded into
cache. As the new requested line returns from memory, the new page
address and cache line are set valid.
Another type of miss occurs when a memory reference matches the page
but not any line in the page, or the page is not valid. When this occurs, 16
sequential words are requested from memory, and the line is set valid.
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Cache Addressing
Figure 101 shows how memory addresses are used to determine a cache
hit or miss.
Memory Address
Subsection
Word Select Bank Select Select Section Select
A A A A
r Y Y Y N\
39 918 71615 413]2 0| Bits
1N J\ J\ J
Y Y Y
Cache Page Cache Line Cache Word
Cache Address

Figure 101. Memory Addresses

Potential Cache Problems

HTM-003-A

Because no communication occurs between caches in different CPUs, the
following problem can arise: Two or more CPUs can have data in their
respective caches from the same physical address in memory, and one of
the CPUs can write data to that memory address. The CPU that wrote the
data will update its cache, and the other CPUs will contain old data. This
problem can be managed in several ways:

* There are load instructions that bypass cache. These instructions
cause the cache line to be invalidated on a cache hit.

* LATs can be set up to define areas of memory that are not cache
enabled.

» Ifthe SCE (scalar cache enable) bit is not set in the exchange
package, it will prevent the use of cache for that job.

Another problem that can occur is when you go through memory with a
stride value of 128; this causes memorthiash A stride of 128 will use

1 word of 1 line from each cache page; then when you start replacing
lines, you will get 16 words back from memory to cache but will be using
only 1 word. This problem can be avoided by redesigning user code.
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CH Option
There are 16 CH options; these options contain all of the cache memory
RAMs. The even-numbered CHs hold data from memory sections 0, 1, 6,
and 7; the odd-numbered CHs hold data from memory sections 2, 3, 4,
and 5.
On a memory write, each CH writes 4 bits to all memory sections.
Table 44 shows the bits per option.
Table 44. CH Option Bits
CHO00 |[CH002 |CHO04 |CHOO06 |CHO08 |CHO10 |[CHO12 |[CHO14
Read Data 0-3 4-7 8-11 12-15 |16-19 [20-23 [24-27 [28-31
Sect0,1,6,7 |32-35 |36-39 |40-43 |44-47 |48-51 [52-55 [56-59 |60-63
Write Data 0-3 4-7 8-11 12-15 |16-19 [20-23 [24-27 [28-31
Sect. 0 -7 CBO CB1 CB2 CB3 CB4 CB5 CB6 CB7
CHO001 |[CHO003 |[CHO005 |[CHO07 |CHO09 |CHO1l |CHO13 |[CHO015
Read Data 0-3 4-7 8-11 12-15 |16-19 [20-23 [24-27 [28-31
Sect2,3,4,5 |32-35 |36-39 |40-43 |44-47 |48-51 [52-55 [56-59 |60-63
Write Data 32-35 |[36-39 |[40-43 |44-47 |48-51 |52-55 |56-59 |60-63
Sect. 0 -7 CB8 CB9 CB 10 CB 11

Scalar Cache Instructions

Refer to Table 45 for a list of the scalar cache instructions.

Table 45. Scalar Cache Instructions
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Instruction CAL Description

002501 ESC Enable scalar cache

002601 DSC Disable and invalidate scalar cache

10hi20mn Ai exp,Ah,BC Load Aifrom ((Ah)+exp) bypassing data cache and invalidating
cache line

10hi60pmn Ai exp,Ah,BC Load Aifrom ((Ah)+exp) bypassing data cache and invalidating
cache line

12hi20mn Siexp,Ah,BC Load Sifrom ((Ah)+exp) bypassing data cache and invalidating
cache line

12hi60pmn Siexp,Ah,BC Load Sifrom ((Ah)+exp) bypassing data cache and invalidating
cache line
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