
CONTENTS

CP02 MODULE 1

CP02 General Description . 1

Module Assembly Components . 2

AD 0 RE.~1f'II'41111 CALAR REGISTERS 7

{ IJIdfj,ss Registers. 7

DO~~e~,ij;2~~::::: :::::::::::::::::::::: 1~
_~ V. u .. ,~...................... 11

Seal 'gf-tersA';'" "'Vf::'A~""""""""'" 13
InStruCtiOnISS~(~6:~.V~AA 13

S Register Memory R~~}f ~ Jj V1..11.~. 13

Special Register Values ': ~ !. v.11} ., ... ~ I nO" 14

Lower/Upper Scalar RegISter Load .:.~. V,q. ~ . .. ~4
BAND T REGISTERS 15

',,"

ADRESS/SCALAR ADD :., 19
.J .f:.

t •.

SCALAR LOGICAL 21

Address and Scalar Mask .. ; . ; . .. 23

Transmit nm to Si, Si Upper, Si Lower 25

ADDRESS/SCALAR POP/PARITY AND LEADING ZERO

HTM-xxx-O
December 19,1994

Gray Research Proprietary
Preliminary Information

27

iii

INSTRUCTION ISSUE (continued)

Common Memory Requests 181

Shared Resource Requests 182

Branch Requests 182

Exchange Requests 182

Interrupt Requests 183

Control Signal Distribution 183

Branch Instruction Control 186

Conditional Branch Instructions 186

Unconditional Branch Instructions 186

Issue Control .. . 187

EXCHANGE 201

Exchange Process 201

Deadstart ' 202

Interrupt Flag Set 203

Program Exit ; ' 203

Exchange Sequence 203

Exchange Package Descriptions 204

REAL-TIME CLOCK, PROGRAMMABLE CLOCK INTERRUPT,
STATUS REGISTER, PERFORMANCE· MONITOR 213

viii

Real-time Clock .;. .. 213

Programmable Clock•............................ 214

RTC and PC Instructions 215

Performance Monitor 215

Performance Monitor Instructions .. 217

Clearing the Performance Counters . : .. 217

Reading the Performance Monitor. .. 217

Performance Monitor Block Diagram 218

Status Register 218

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

"

))

/

)

SCALAR CACHE

Figures

HTM-xxx-O
December 19,1994

227

Cache Hit .. 227

Cache Miss .. 228

Cache Addressing 229

Potential Cache Problems 229

CH Option ... 230

Scalar Cache Instructions .. 230

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

CP Module Assembly Components

Option Layout Board 1

Option Layout Board 2

CPU Block Diagram

Address and Scalar Register Data Paths

AlS Control Terms

Memory to AlS-register Block Diagram

B and T Register Inputs and Outputs

2

3

4

5
8

10
12

15

Figure 9. B/T-register-to-memory Block Diagram 17

Figure 10. Carry Bit and Enable Bit Fanouts 20

Figure 11. Address/Scalar Logical Block Diagram (Instructions
044ijk through 05lijk) 21

Figure 12. Scalar Mask Block Diagram 24

Figure 13. AlS Population/Parity/Leading Zero Count 29

Figure 14. Address Register Shift. 32

Figure 15. Shift Count Breakdown. 34

Figure 16. Address Register LeftSingle Shift 35

Figure 17. Address Register Right Single Shift 36

Figure 18. Address Register Left Double Shift 37

Figure 19. Address Register Right Double Shift 38

Figure 20. Example of an.A Register Left Single-shift
Instruction 39

Figure 21. Example of an Address Register Left Double-shift
Instruction 41

Figure 22. Example of an Address Register Right Double-shift
Instruction 42

Figure 23. Scalar Shift 44

Figure 24. Shift Count Breakdown . 46

Cray Research Proprietary ix
Preliminary Information

Figures (continued)

x

Figure 25. Scalar Left Single Shift. 47

Figure 26. Scalar Right Single Shift . 48

Figure 27. Scalar Left Double Shift 49

Figure 28. Scalar Right Double Shift 50

Figure 29. Example of Scalar Left Single-shift Instruction 51

Figure 30. Example of a Scalar Register Left Double-shift
Instruction 53

Figure 31. Example of a Scalar Register Right Double-shift
Instruction 54

Figure 32. AN Option " 56

Figure 33. C90 Operation Mode . 60

Figure 34. AM Option Inputs 61
Figure 35. Write Data Path 69

Figure 36. Read Data Path for Pipe 0 (Even Elements) 71

Figure 37. Read Data Path for Pipe 1 (Odd Elements) 72

Figure 38. Vector Register Write Block Diagram (Pipe 0) 73
Figure 39. Vectors 0 through 3 Pipe 0/1 Read Data Path.... .. 75

Figure 40. Vectors 4 through 7 Pipe 0/1 Read Data Path 77
Figure 41. Vectors 0 through 3 Pipe 0/1 Write Data Path 79

Figure 42. Vectors 4 through 7 Pipe 0/1 Write Data Path 81

Figure 43. Vector Register Decode Bit Fanout (Pipe 0 and 1
Path 1 Only) . 83

Figure 44. Vector Register Decode Bit Fanout (Pipe 0 and 1
Path 2 Only) . 85

Figure 45. S Register to Vectors. 87

Figure 46. Memory Data to Vectors (Even Elements) 89
Figure 47. Memory Data to Vectors (Odd Elements) 91

Figure 48. Vector Logical Block Diagram 94
Figure 49. Vector Merge Operation 96

Figure 50. 1750jO Instructions 98

Figure 51. Function of the 175ij4 Instructions 99

Figure 52. Iota Pipe 0 100

Figure 53. Function of the 070ijl Instructions 101

Figure 54. Vector Add Block Diagram 105

Figure 55. Shift Count Breakdown 108

Figure 56. Vector Shift Block Diagram 109

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

... ~

)

..

)

)

)

)

Figures (continued)

HTM-xxx-O
December 19, 1994

Figure 57. Vector Right Shift 110

Figure 58. Vector Right Double Shift .. 111

Figure 59. Vector Transfer 112

Figure 60. Vector Compress 112

Figure 61. Vector Expand 113
Figure 62. Vector Population/Parity/Leading Zero Block

Diagram .. 116
Figure 63. Floating-point Add 122

Figure 64. Floating-point Add Sticky Bits 123
Figure 65. Floating-point Format. .. 123

Figure 66. Floating-point Add Flowchart. 129

Figure 67. Newton's Method for Approximating Roots 132
Figure 68. Reciprocal Approximation Functional Unit 140

Figure 69. Floating-point Multiply Block Diagram 149
Figure 70. Floating-point Multiply First-level Summation 151

Figure 71. Vector Storage of Bit Matrices 154
Figure 72. Mathematical Representation of Matrices A and B .. 155

Figure 73. B Matrix and Bt Matrix Relationships. '. 155
Figure 74. Multiplication of A and Bt .. 156

Figure 75. Bit Matrix Multiply Block Diagram Pipe 0 159
Figure 76. Bit Matrix Multiply Block Diagram Pipe 1 161

Figure 77. IC Options Bit Layout .. 166
Figure 78. IC Block Diagram 167

Figure 79. IC Option Terms 168
Figure 80. Memory-to-Instruction Buffers (Path 1) 169

Figure 81. Memory-to-Instruction Buffers (Path 2) 170
Figure 82. Common Memory Path Code 1 Fanouts 171

Figure 83. Common Memory Path Code 2 Fanouts 173

Figure 84. Instruction Issue Block Diagram 175

Figure 85. Format for a I-parcel Instruction. 176

Figure 86. Format for a 3-parcel Instruction. 176

Figure 87. Format for a 4-parcel Instruction 177

Figure 88. Bjk (Exchange P) Fan-out Bits 188

Figure 89. JA-to-IC Parcel Data for Branches 189

Figure 90. Path 1 CH to IC to JA Option 190
Figure 91. Path 2 CH to IC to JA Option 191

Figure 92. JA Option Block Diagram 193

Cray Research Proprietary
Preliminary Information

xi

Figures (continued)

Tables

xii

Figure 93. Instruction Data Distribution AlS/B/T Registers ... 195

Figure 94. CIP Distribution .. 196

Figure 95. CIP Distribution to HF Option 197

Figure 96. Instruction Data Distribution to VA and BT Options 198

Figure 97. CIP Distribution .. 199

Figure 98. CIP Distribution to HF Option 200

Figure 99. Exchange Package .. 206

Figure 100. RTC and PCI Block Diagram 214

Figure 101. Performance Monitor Block Diagram 219

Figure 102. Status Registers 221

Figure 103. Cache Layout 228

Figure 104. Memory Addresses 229

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

Table 9.

Table 10.

Table 11.

Table 12.

Table 13.

Table 14.

Table 15.

Table 16.

Table 17.

Table 18.

Table 19.

NS Register Entry Codes 9

BIT Register Instructions . 16

NS Adder Instructions 19

Scalar Logical Functional Unit Instructions 22

Address Logical Functional Unit Instructions

Scalar Mask Instructions

Address Mask Instructions

Transmit nm to Si Instructions

Scalar Pop CountIParity and Leading Zero
Count Instructions

Address Register Shift Instructions

Scalar Shift Instructions

Recode Groups

Vector Register Options

VM/VR Data Steering

Vector Logical Instructions

Vector Merge Instructions

Vector Mask Operations

Vector Mask Test Operations

Iota Instruction

23

23

24

25

28

31

43

56

64

68

95

95

97

98

99

Table 20. Vector Add Instructions .. 103

Table 21. Vector Shift Instructions 107

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

Tables (continued)

HTM-xxx-O
December 19, 1994

Table 22. Vector Population/Parity Instructions 118

Table 23. Floating-point Add Functional Unit Instructions ... 123

Table 24. Reciprocal Approximation Values 135

Table 25. Floating-point Reciprocal Approximation
Instructions 139

Table 26. Floating-point Multiply Functional Unit Instructions 146

Table 27. Bit Matrix Multiply Instructions. 157

Table 28. IC Options. .. 163

Table 29. Read-out Path Codes 179
Table 30. Interrupt Modes Register Bit Assignments 208

Table 31. Flag Register Bit Assignments 209

Table 32. LAT Fields .. 211
Table 33. RTC and PC Instructions 215

Table 34. Performance Monitor. .. 216

Table 35. Performance Monitor Instructions 217

Table 36. Status Register (SRO) 222
Table 37. Status Register 4 (SR4) 223

Table 38.
Table 39.

Table 40.

Destination Codes 223
Status Register 7 Bit Definitions 224

Register Parity Error Code 224
Table 41. CH Option Bits 230

Table 42. Scalar Cache Instructions 230

Cray Research Proprietary
Preliminary Information

xiii

)

J

)

CP02 MODULE

CP02 General Description

HTM-xxx-O
December 19, 1994

Cray Research Proprietary
Preliminary Information

1

CP02Module CPU

Module Assembly Components

A

B

C

D

E

F

G

2

Refer to Figure 1 for an illustration of the CP module assembly
components. This illustration is provided to show the basic components
that are part of all mainframe modules. Sizes of various components
differ between modules.

Flow Block, Board 1 H Fiber-optic Coupler

Optical Receiver I Flow Block, Board 2

PC Board Edge Shim J PC Logic Board 2

Maintenance Connector Flex Assembly K Outer Rail

Fiber-optic Spool Assembly L Inner Rail

Voltage Regulator Board Assembly M PC Logic Board 1

Maintenance Connector

Figure 1. CP Module Assembly Components

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

j

)

)

CPU

HBOOO

I/O
Control

NAOOO

Fit Mult

TWOOO NeOOO

Not Used Fit Mult

TW002 VM007

Not Used
Vector even
R Bit 60-63
W Bit 56-63

HDOOO VM005
CIP Vector even

Exchange
Package

R Bit 44-47
W Bit 40-47

VFOOO VM003

Vector Vector even

Control R Bit 28-31
W Bit 24-31

TW004 VMOO1
Vector even

Not Used
R Bit 12-15
W Bit 8-15

HAOOO CCOOO

I/O to Mem Ports
SBCDBD 0

HA002 CF004

I/O to Mem Write data
SBCDBD conflicts

HGOOO CIOOO

Maint. Section

Channel Driver
Section 0

I ZBOO8 I

HTM-xxx-O
December 19, 1994

RCOOO TZOOO HMOOO MZOOO TWO 1 0

Recip Clock Logic BS Fanout Not Used
Monitor

RBOOO FAOOO TW006 FA001 OA002

Recip Fit Add Not Used Fit Add BMM
Coeff Coeff and

Parity

AUOOO VM006 SSOOO OAOOO OA001

A/S reg Vector even
Shift BMM BMM

R Bit 52-55 Pop and and

Bits 48-55 W Bit 48-5f LZ Parity Parity

ATOOO VM004 JAOOO VAOOO CGOOO

A/S reg Vector even
Vector Checkbit Issue

R Bit 36-39 Control Control Genera-
Bits 32-39 W Bit 32-3! tion

AS001 VM002 BTOOO CDOOO CBOOO
A/S reg Vector even BITIP reg Ports Ports

R Bit 20-23 E C
Bits 16-23 W Bit 16-2, Bits 0-15 Cache

Bits 32-47 HIT

AROOO VMOOO CH010 CH008 CAOOO
A/S reg Vector even Data Mux DataMux Ports

Cache Cache A,Pi R Bit 4-7 20-23 16-19 Bits 0-7 W Bit 0-7 52-55 48-51
ICOOO CH002 CH014 CH012 CHOOO
Inst Data Mux Data Mux DataMux Data Mux
Buffers Cache Cache Cache Cache
Bit 0-7 4-7 28-31 24-27 0-3
Bit 32-39 36-39 60-63 56-59 32-35
CFOOO CKOOO CH006 CH004 CK002

Write data Data Data Mux DataMux Data

conflicts steering Cache Cache steering
12-15 8-11
44-47_ 40-43

CJOOO CI004 CJ004 CI002 CJ002

Section Section Section Section Section
Receiver Driver Receiver Driver Receiver
Section 0 Section 4 Section 4 Section 2 Section 2

I ZBOOO I I ZBOO4 I I ZBOO2

Figure 2. Option Layout Board 1

Cray Research Proprietary
Preliminary Information

CP02Modu/e

RC001 NA001

Recip Fit Mult

RB001 NC001

Recip
Fit Mult

VM014 VM015
Vector odd Vector odd

R Bit 52-55
W Bit48-s!:

R Bit60~~
W Bit 56-6

VM012 VM013

Vector odd Vector odd

R Bit 36-39
W Bit32-3~

R Bit 44-4_,
W Bit 40-4

VM010 VM011
Vector odd Vector odd

R Bit 20-23 R Bit 28-31
W Bit 16-2~ W Bit 24-3

VM008 VM009

Vector odd Vector odd

R Bit 4-7 R Bit 12-lE
W Bit 0-7 W Bit 8-15

IC002 VF002
Inst

Vector Buffers
Control Bit 16-23

Bit 48-55

CF002 TW008

Write data
conflicts Not Used

CI006 CJ006
Section Section
Driver Receiver
Section 6 Section 6

I I ZBOO6 I

3

CP02Module

ND001 AM001

Fit Mult Integer
Multi

NB001 RA001

Fit Mult Recip

VR015 VR014

Vector 7 Vector 6
Odd Odd

Bits 56-59 Bits 48-51

VR013 VR012
Vector 5 Vector 4

Odd Odd

Bits 40-43 Bits 32-35

VR011 VR010
Vector 3 Vector 2

Odd Odd

Bits 24-27 Bits 16-19

VRD09 VROOa

Vector 1 Vector 0
Odd Odd

Bits 8-11 Bits 0-3

VF003 IC003
Vector Inst
Control Buffers

Bit 24-31
Bit 56-63

TW009 CF003

Not Used Write data
conflicts

CI007 CJ007
Section Section
Driver Receiver
Section 7 Section 7

I ZBOO7 I I

4

TW011 HM001 AM002

Not Used Logic Integer
Monitor Multi

OA005 FB001 TW007 FBOOO RAOOO

BMM Fit Add Not Used
Fit Add

Recip and Expo- Expo-
Parity nent nent

OA004 OA003 VSOOO VR006 AU001

BMM BMM Vector Vector 6 AlS reg
and and Shift Even
Parity Parity

Bits 48-51 Bits 56-63

CG001 VA001 JA001 VR004 AT001
Checkbit Vector Vector 4 AlS reg
Genera- Control Issue Even
tion Control

Bits 32-35 Bits 40-47

CB001 CD001 BT001 VR002 AS002
Port BITIP reg Vector 2 AlS reg Port E Even C' Cache Bits 16-31

Control Bits 48-63 Bits 16-19 Bits 24-31

CA001 CH009 CH011 VROOO ASOOO
Port Data Mux Data Mux Vector 0 AlS reg
B,B' Cache Cache Even

16-19 20-23
48-51 52-55 Bits 0-3 Bits 8-15

CH001 CH013 CH015 CH003 IC001
Data Mux Data Mux Data Mux Data Mux Inst
Cache Cache Cache Cache Buffers
0-3 24-27 28-31 4-7 Bit 8-15
32-35 56-59 60-63 36-39 Bit 40-47

CK003 CH005 CH007 CK001 CF001
Data Data Mux Data Mux Data Write data
Steering Cache Cache Steering

8-11 12-15 conflicts
Cache Cache
Control 40-43 44-47 Control

CI003 CJ003 CI005 CJ005 CI001
Section Section Section Section Section
Driver Receiver Driver Receiver Driver
Section 3 Section 3 Section 5 Section 5 Section 1

ZBOO3 I I ZBOO5 I I ZBOOI I

Figure 3. Option Layout Board 2

Gray Research Proprietary
Preliminary Information

CPU

HCOOO

I/O relay
data

NDOOO

Fit Mult

NBOOO TW001

Fit Mult Not Used

VR007 TW003
Vector 7

Even Not Used

Bits 56-59

VR005 HD001
Vector 5 CIP

Even Exchange
Bits 40-43 Package

VR003 VF001
Vector 3 Vector

Even Control

Bits 24-27

VR001 ANOOO
Vector 1 Address

Even Multi
Bits 8-11

TW005 HA001
1/0

Not Used SECDED

CF005 HA003

Write data
conflicts Maint.

Channel

CJ001 HFOOO

Section Perf
Receiver Monitor
Section 1

I ZBO(J~ I

HTM-xxx-O
December 19, 1994

)

\

)

)

)

)
"

CPU CP02Modu/e

I Comp/Exp I Como/Em
I Comp Index Comolndex
Int Multiply lint MultiDiv

vecto. Control
I LOQical 2 I LOQical 2 1

Vector Registers I Pop/Paritv/LZI Pop/ParltY/LZ)

~~
Vector Mask

I Shift Shift Ak
.LJ V6 1 LOQical I LOQical [)Y • Si [(AD) + (Ak)]. [(AD) + (Vk)] LJ V5 Add Add

[(AD) + (Ak)]. [(AD) + (Vk)] ZI V4 Vi Vector Vector

[(AD) + (Ak)]. [(AD) + (Vk)]R V3 Vk Functional Functional I-
Units Units ~ V2 11Z Vi PipeD Pipe 1

V1 W-
OO VO Sj Bit Matrix Multiply

•

"
I Recip Appr I Recip Appr

• Si Vi I Multiply I Multiply
177

Real-time CloCkC§[Vk- Add Add

n Shared Shared
S' Vi

Status r Si Vector/Scalar Vector/Scalar
I/O Data to Functional Functional

LOSP. HISP. Si Units Units Programmable Si VHISP Channels Clock Interrupt Sk PipeD Pipe 1

Performance ~
Log

poP/parity/~~ I
T77 } Scalar Registers I Shift Ak (AD)

Si .r-I S7 P • ~ S6
I LOQical 0 • • S5 . Add

T ik S4"'J:=1" Scalar

r TOO lY ~ S3 FZ Functional

S2~ Units

Common I Z=f S1 Ai
SO Exchange

Memory [(Ah) + (pnm)] r Data Vector Control Ak
-I Cache Control

Address Registers
XA t

--I

A~ I B77
AiO

r vector~
(AD) A6 Length I Multiplv

A5
• # A4 Aj Add

• Address • Bik A3 J7' Ak Functional

,~ JE A~ ...t'7: Ai Units

Q AD

~

Shared Resources
L

P ~ To A Registers
L~ I/O Status and Control

+3 SB and ST Registers
cl To S Registers Semaphores

I""rud~" r IB~
Buffers r IB6

IB5
""'NiP ~ rw r IB3

} Execution r IB2 LIP
I IB1 LlP1

o IBO ~

37

HTM-xxx-O
December 19, 1994

Figure 4. CPU Block Diagram

Cray Research Proprietary
Preliminary Information

5

)

)

)

)

ADDRESS AND SCALAR REGISTERS

The address and scalar registers are located on the same options. The
following subsections describe the address and scalar registers.

Address Registers

HTM-xxx-O
December 19, 1994

The address and scalar registers are contained on eight options: one AR
option, three AS options, two AT options, and two AU options. Each
CRAY T90 series CPU contains eight address registers designated AO
through A7. Each register is 64 bits wide (32 bits in C90 mode) and
performs the following functions:

• Determines addresses for memory references
• Provides memory reference indexing
• Provides loop control
• Determines shift counts
• Provides liD channel set-up
• Determines liD channel status
• Receives results from scalar leading zero and pop count
• Determines vector length
• Provides an exchange address (monitor mode only)
• Provides an index for shared registers and B and T instructions
• Provides operands and results for address add and address multiply
• Transfers data to and from scalar registers
• Provides integer-to-floating-point conversion

As shown in Figure 5, the AROOO, ASOOO, ASOOl, AS002, ATOOO,
ATOOl, AUOOO, and AUOOI options each contain an 8-bit slice of the
address registers. Figure 5 also illustrates the input and output data paths
for the address and scalar registers.

Cray Research Proprietary
Preliminary Information

7

Address and Scalar Registers

(AN)

(HD)

(JA)

(BT)

(FA)

(ND)

(RA)

(SS)

(VR)

(VR)

(CH)

(CH)

(OA)

Address Multiply Results

Shared Data

Constant Data

BIT Register Data

Floating-point Add Results

Floating-point
Multiply Results

Floating-point Reciprocal
Approximation Results

Shift Data, VM

Vi (Even) Data to Scalar

Vi (Odd) Data to Scalar

Common Memory Path 1

Common Memory Path 2

BMM

IAA-IAH

IBA-IBH

ICA-ICH

IDA-IDH

IEA-IEH

IFA-IFH

IGA-IGH

IHA-IHH

IIA-IIH

III-liP

IJA-IJH

IKA-IKH

ISA-ISH

I AU001
Bits 56-63

I AUOOO
Bits 48-55

I AT001
Bits 40-47

,ATOOO
Bits 32-39 ~

I AS002
Bits 24-31

....
I AS001

Bits 16-23 ~

IASOOO
Bits8-15 ~

AROOO I-Bits 0-7

OAA-OAH

OBA-OBH

OCA-OCH

ODA-ODH

OEA-OEH

OEI-OEP

OFA-OFH

OFI-OFP

OGA-OGH

OHA-OHH

OIA-OIH

OJA-OJH

OMA-OMH

ONA-ONH

OPA-OPG

OQA-QQH

CPU

I-

~

Floating-point Add
Operand (SJ)

(FA, FB)
Floating-point Add
Operand (Sk)

Floating-point Multiply
(FA, FB)

Operand (SJ)
(NB)

Floating-point Multiply
Operand (Sk)

(NA)
CM Address to Vector
Pipe 0

(VM, VR)
CM Address to Vector
Pipe 1

(VM, VR)

Sito Shift, Pop/Parity/LZlVM
(SS)

Aito Shift, Pop/Paritv/LZlVM
~ (SS)

Address Multiply
Operand (AJ)

(AN)
Address Multiply
Operand (Ak)

(AN)

AHo Shared Data Path
(HD)

AHo BIT Registers and CM
(BT)

Ah Address to CM Port E
(CD)

Constant Data to CM Port E
(CD)

Akto Vector Control
(VA)

Akto Scalar Shift Count
(SS)

Figure 5. Address and Scalar Register Data Paths

8 Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

)

)

CPU

Entry Codes

HTM-xxx-O
December 19,1994

Address and Scalar Registers

As part of the instruction decode on the JA option, the JA option sends an
AlS entry code to the AlS register options; this code generates the control
necessary to complete the operations. The operand data is then
transmitted to the appropriate resources, and a destination delay chain is
entered on the option. Refer to Table 1 for the address/scalar (AlS)
register entry codes and to Figure 6 for an illustration of the AlS control
terms.

Table 1. AlS Register Entry Codes

Entry Code Instruction

0 020i Constants

1 023ljU Sj

2 023ij1 VL data

3 024ijk B data

4 030,031 ijk Add

5 026ij (0 - 3), 027ij (0 -1) pop/parllz

6 032ijk A multiply

7 022ijk, 04 (2 - 3) jk/mask data

10 N/A

11 073i (2 - 3) 0 VM data

12 N/A

13 N/A

14 04 (4 - 7) ijk, 05 (0 - 1) ijk Logical

15 N/A

16 05 (2 - 5) ijk, 05 (6 - 7) ijk Shift

17 N/A

Cray Research Proprietary
Preliminary Information

9

Address and Scalar Registers

(JAOOO)

(JAOOO)

(JAOOO)

(SSOOO)

(JAOOO)

(JAOOO)

(JAOOO)

(JAOOO)

AlS Register Read-out Code

EnterCPUVL

Go 071 i(0,1 ,2)k

Pop/Parity/LZ (AROOO Only)

AlS Register Entry Code

AlS Entry Code Valid

AlS Entry Code Valid

i,j, k, h Data

Memory Path 1 Read Code

Memory Path 2 Read Code

Shared Data Code

AROOO
ILA-ILB ASOOO

AS001
ILC AS002

ILD

IMA-IMG

INA-INC

IOA-IOD

IOA-IOD

IPA-IPL

IOA-IOE

IRA-IRE

IUA-IUE

(VR)

(VR)

(HDOOO)

(HD001)

(IC001)

Enter Exchange VL (AROOO Only) IVA

10

(AS002)

(AU001)

(VR004)

(ICOOO)

Exchange Active

Ak Negative (32-bit Mode)

Ak Negative (64-bit Mode)

Exchange Path 2 Select

Triton Mode

(JAOO1)

(JA001)

(JA001)

(JA001)

(JA001)

(JA001)

(JA001)

(VR)

(VR)

(HD001)

(IC002)

(AS002)

(AU001)

(VROO4)

(IC001)

IVB

IVC ,

IVD

IVE

IXA

AlS Register Read-out Code ILA-ILB

Enter CPU VL ILC

Go 071 i(0,1 ,2)k ILD

AlS Register Entry Code INA-INC

AlS Entry Code Valid IOA-IOD

AlS Entry Code Valid IOA-IOD

i, j, k, h Data IPA-IPL

Memory Path 1 Read Code .IOA-IOE

Memory Path 2 Read Code IRA-IRE

Shared Data Code IUA-IUE

Exchange Active IVB

Ak Neaative (32-bit Mode) IVC

Ak Neaative (64-bit Mode) IVD

Exchange Path 2 Select IVE

Triton Mode IXA

Figure 6. AlS Control Terms

Cray Research Proprietary
Preliminary Information

ATOOO
AT001
AUOOO
AU001

CPU

HTM-xxx-O
December 19,1994

.-~

)

)

)
./

CPU Address and Scalar Registers

A Register Memory References

Refer to Figure 7 for an AlS-register-to-memory block diagram. The
address registers write or read 1 word of memory per instruction. The B
registers provide intermediate storage for the address registers. B registers
perform memory block references that enable a group of operands to be
read from memory with one instruction. These operands are then used by
the A registers to generate results that are sent to the B registers and
block-stored to memory. Using the B registers as buffer storage is
advantageous because it takes fewer clock periods to do a block reference
than to issue several individual address or scalar references.

The A registers also have an access path to cache memory. This provides
access to common memory data without having to reference memory
directly. If the requested address resides in cache, a cache hit is initiated
and the data is read from cache memory instead of common memory.

Special Register Values

HTM-xxx-O
December 19, 1994

The AO register has special features that the other A registers do not have.
The AO register holds the starting address for all block transfers for the
B, T, and V registers and branch control. AO is the only register that can
be tested for equal-to-zero, not-equal-to-zero, positive, or negative
conditions using AO conditional branch instructions. This register also has
a special feature for reading data.

If AO is specified as an operand in the h, j, or k field of an instruction, it
will not send the actual contents of the register. Instead, the register sends
a value of 0 if AO is used in the j or h field, or it sends a value of 1 if AO is
used in the k field. If AO is used in the i field, the actual contents of the
AO register are sent.

Because the A registers in this system are now 64 bits wide, special Triton
mode instructions have been implemented. These instructions are part of
the extended instruction set (EIS). These instructions make the A registers
functionally equal to S registers and enable A registers to be shifted and
logical operations to be performed. To execute these instructions, an EIS
005400 instruction must precede the actual A register instruction. If a
Triton mode instruction is issued while the machine is in e90 mode, the
results of the operation are undefined.

Cray Research Proprietary
Preliminary Information

11

Address and Scalar Registers

CHOO6 I
CHOO4 I

CHOO2 I ..
CHOOO ...

Read Data

CH014 I
CH012 I -- CH010 I ...

CHOOS

Read Data

Read Data

r-
CHOO1

r-
CHOO3 I -

CHOO5 I
CHOO7 I

Read Data

-
CHOO9

r-
CH011 I r-

I CH013

CH015 I

12

CM Path 1
BTOOO

'Je'" Bits 0 -15,32 -47 fh\,I0,1 ICA-ICP OCA-OCP,

L ,-<Z.~.f) ODA-ODP

IDA-lOP

OAA-OAP,

CM Path 2 OBA-OBP

S€-'- l'
BfT Registers

1.. ~.L\;:.>
~~"l'<\~ ')

CM Path 1 BTOO1 OCA-OCP,

IEA-IEP Bits 16-31, 4S-63 ODA-ODP

IFA-IFP

OAA-OAP,
OBA-OBP

CM Path 2
BfT Registers

Figure 7. Memory to AlS-register Block Diagram

Cray Research Proprietary
Preliminary Information

CPU

CGOOO

Memory
Write Data

CGOO1

Memory
Write Data

AlS Registers

L-.-

HTM-xxx-O
December 19,1994

)

)

CPU Address and Scalar Registers

Scalar Registers

The CPU contains eight scalar registers that are designated SO through S7
and are 64 bits in length. The scalar registers are contained on the AR,
AS, AT, and AU options (refer again to Figure 5).

The scalar registers send operands to, and get results from, the scalar
functional units and the floating-point functional units. The functional
units perform integer and floating-point arithmetic as well as logical
operations. The scalar registers read and write central memory through
the T registers and also read and write the data cache. In addition, there
are paths to the vector registers, vector mask, real-time clock, status
register, programmable clock interrupt, and the performance monitor.

Instruction Issue

When an instruction issues, the scalar register receiving the data is
reserved until the result is latched in the register. If an instruction in the
current instruction parcel (CIP) register requires the reserved result
register, that CIP instruction holds issue until the register is available. The
SO register, however, is an exception. If the SO register is reserved as a
result register and is needed as an Sj or Sk operand in a following
instruction, no hold issue occurs because the SO register has special
register values as an operand.

The issue hardware also develops scalar functional unit codes. These
codes select the input terms to be gated from the proper functional unit
into the scalar register multiplexer.

S Register Memory References

HTM-xxx-O
December 19, 1994

The scalar registers write or read 1 word of memory per instruction. The
T registers provide intermediate storage for the scalar registers. T
registers can perform memory block references, enabling a group of
operands to be read from memory with one instruction. These operands
are then used by the scalar registers to generate results that can be sent to
the T registers and block-stored to memory. Using the T registers as
buffer storage is advantageous because it takes fewer clock periods to do a
block reference than to issue several individual scalar references.

The S registers also have an access path to cache memory. This provides
access to common memory data without having to reference memory
directly. If the requested address resides in cache, a cache hit is initiated
and the data is read from cache instead of from common memory.

Cray Research Proprietary
Preliminary Information

13

Address and Scalar Registers CPU

Special Register Values

SO has special register values when Sj or Sk is used as an operand. When
the j field equals 0, the value sent out is 0, no matter what value is stored
in so. When the k field is 0, bit 63 is set to a 1.

Lower/Upper Scalar Register Load

14

It is possible to load either the lower- or upper-half of a scalar register
with a 32-bit quantity. The following four instructions load constants into
scalar registers.

• 040iOO mn Si exp: loads the quantity nm into the lower 32 bits of
register Si. The upper 32 bits are cleared.

• 041iOO mn Si exp: loads the one's complement of nm into the lower
32 bits of register Si. The upper 32 bits are all 1 'so

• 040i20 mn Si exp: loads the quantity nm into the lower 32 bits of
register Si. The upper 32 bits are unchanged.

• 040i40 mn Si exp: loads the quantity nm into the upper 32 bits of
register Si. The lower 32 bits are unchanged.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

')
.'

)

)

)

BAND T REGISTERS

HTM-xxx-O
December 19,1994

Each CPU contains 64 (1008) B registers and 64 T registers. The B and T
registers act as intermediate registers for the address and scalar registers,
respectively. Each B and T register contains 64 bits.

Two BT options, BTOOO and BTOO 1, contain the B and T registers. Each
option contains 32 bits of each register. BTOOO contains bits 00 through
15 and 32 through 47. BTOOI contains bits 16 through 31 and 48 through
63. As shown in Figure 8, the B and T registers can be loaded from the
address and scalar registers, common memory, and branch control.

Ai Length (BT001 Only) IIA-IIG BT001
Bits 16-31,

48-63
IAA-IAP, BTOOO

From Aior Si IBA-IBP
Bits 0-15,

32-47

ICA-ICP,
CM Path 1 IDA-lOP

OAA-OAP,

IEA-IEP,
OBA-OBP To Aior Si

CM Path 2 IFA-IFP

OCA-OCP,
ODA-ODP Ai, Si, B or T CM Data

P Entry on Branch IGA - IGP

OEA-OEP Bjk to Branch Control

Figure 8. B and T Register Inputs and Outputs

The B and T registers are used primarily for block transfers to and from
common memory. Refer to Table 2 for a list of the B and T register
instructions. Refer also to Figure 9 for a B/T-register-to-memory block
diagram.

Cray Research Proprietary
Preliminary Information

15

Band T Registers CPU

16

Table 2. BIT Register Instructions

Instruction CAL Description

0050jk J 8jk Jump to 8jk

0051jJ<O JINV 8jk Jump to 8jk (invalidate instruction buffers)

024ijJ<D Ai 8jk Transmit (8jk) to Ai

025ijJ<D 8jk Ai Transmit (AI) to 8jk

034ijJ<D 8jk Ai, AO Transmit (AI) words from common memory starting at
address (AO) to 8 registers starting at register jk

035ijJ<D ,AO 8jk,Ai Transmit (AI) words from 8 registers starting at register jkto
memory starting at address (AO)

036ijJ<D Tjk Ai, AO Transmit (AI) words from memory starting at address (AO) to
T register starting at register jk

037ijJ<D ,AO Tjk,Ai Transmit (AI) words from T registers starting at register jkto
memory starting at address (AO)

074ijk Si Tjk Transmit (Tjk) to Si

075ijk Tjk Si Transmit (S/) to Tjk

o denotes a maintenance mode instruction only.

D denotes a difference between Triton mode and egO mode ..

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

CPU

CHOO6 I
CHOO4 I

CHOO2 I
~

CHOOO
L...

Read Data

CH014 I
CH012 I - CHOW I
i-

CHOO8
i-

Read Data

Read Data

I"'"

CHOO1
I"'"

.... CHOO3 I
CHOO5 I

CHOO7 I

Read Data

I"'"

CHOO9
I"'"

.... CH011 I
CH013 I

CH015 I

HTM-xxx-O
December 19, 1994

CM Path 1
BTOOO

ICA-ICP Bits 0 - 15, 32 - 47 OCA-OCP,
ODA-ODP

IDA-lOP

OAA-OAP,
CM Path 2 OBA-OBP

BIT Registers

CM Path 1 BTOO1 OCA-OCP,
ODA-ODP

IEA-IEP Bits 16 -31,48 - 63

IFA-IFP

OAA-OAP,
OBA-OBP

CM Path 2 BIT Registers

Figure 9. B/T-register-to-memory Block Diagram

Cray Research Proprietary
Preliminary Information

Band T Registers

CGOOO

Memory
Write Data

CGOO1

Memory
Write Data

AlS Registers

L...--.

17

)

)

)

)

)

ADDRESS/SCALAR ADD

The address and scalar registers are contained on eight options: one AR
option, three AS options, two AT options, and two AU options. Each
option contains 8 bits of the 64-bit address registers. These options also
contain the address and scalar add functional unit. Table 3 describes the
instructions that use the address and scalar add functional unit.

Table 3. NS Adder Instructions

Instruction CAL Description

030ijIP Ai Aj+Ak Transmit integer sum of (A)) and (Ak) to Ai

030'{)IP Ai AJ<S Transmit (Ak) to Ai

030jpD Ai Aj+1 s Transmit integer sum of (A)) and 1 to Ai

031 ijIP Ai Aj-Ak Transmit integer difference of (A)) and (Ak) to Ai

031 '{)IP Ai -AJ<S Transmit inverse of (Ak) to Ai

031jpD Ai Aj-1s Transmit integer difference of (A)) and 1 to Ai

060ijk Si Sj+Sk Transmit integer sum of (S)) and (Sk) to Si

061 ijk Si Sj-Bk Transmit integer difference of (S)) and (Sk) to Si

061 '{)k Si -Sk Transmit inverse of (Sk) to Si

D denotes a difference between Triton mode and C90 mode.

S denotes a special CAL syntax.

HTM-xxx-O
December 19, 1994

The address add and scalar functional units perform a 64-bit add; each
option performs the add function on the bits of the operands contained on
that option. Carry and enable bits generated during the add are passed on
to the next option, as shown in Figure 10. The 64-bit result is stored in the
destination register in 4 clock periods.

Cray Research Proprietary
Preliminary Information

19

Address/Scalar Add

ARO OSA
I---"-...;;;.;..;.----'"'~

Bits
0-7

ASO

Bits
8-15

AS1

Bits
16-23

OSB

OSC

OSO

OSA

OTA

OSB

OTB

OSC

OTC

OSA

OTA

OSB

OTB

OSC

OTC

r
~

ITA

r-
~

ITA

r
~

ITA

ISC

ITB

f29-
~

ITB

f9-
-
ITB

AS1

AS2

ATO

AT1

AUO

AU1

r---

AS2 --
ATO

AT1

AUO

AU1

NOTE: ISA -ISG and OSA - OSC terms are
adder carries. ITA - ITF and OTA - OTC
terms are adder enables.

AS2 tO~S~A~--~~-J1 MI

Bits
24-31

ATO

Bits
32-39

AT1

Bits
40-47

OTA

OSB

OTB

OSA

OTA

OSB

OTB

OSA

OTA

ISE

lTD

~
1
T lTD

~

ITE

AUO OSA ISG

Bits OTA ITF
48-55

AT1

AUO

AU1

AUO

AU1

CPU

Figure 10. Carry Bit and Enable Bit Fanouts

20 Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

)

)

Ft DPR t7/;b /
SCALAR LOGICAL

HTM-xxx-O
December 19,1994

The scalar logical functional unit performs logical operations on the
scalar registers. Logical operations include OR, AND, and XOR
operations and merges.

Refer to Figure 11 for an illustration of the address/scalar registers. The
scalar registers are contained on eight options: one AR option, three AS
options, two AT options, and two AU options. Each option contains 8 bits
of the 64-bit address registers. These options also contain the scalar
logical functional unit. The operands are latched and the logical operation
is completed in 1 clock period; the result is then entered into the proper
destination register.

I AU001 Bits 56-63

AUOOO Bits 48 -55

J AT001 Bits 40-47

I ATOOO Bits 32 -39

I AS002 Bits 24-31

I AS001 Bits 16-23

I ASOOO Bits8-15

AROOO BitsO-7

Address/Scalar Register -
(JAO)

hijk Instruction Data IPA-IPL
AlSO

AlS Register AlS1 AjSj ..
Data Path 1 IJA-IJH AlS2 1" T' AlS3 -AlS Register

AlS4 Data Path 2 IKA-IKH -AlS5 I Operand I
AilS; AlS6 Select
FU n f -

AlS Entry Code INA-INC Select AlS7

l-

t Y Loglom ~ AlS Entry Code Valid IOA-IOD

Functional Unit ~

(CHO)

(CHO)

(JAO)

(JAO)

Figure 11. Address/Scalar Logical Block Diagram (Instructions 044ijk
through 05lijk)

Cray Research Proprietary
Preliminary Information

21

Scalar Logical

Table 4 and Table 5 list the instructions used in the address and scalar
logical functional unit. The instructions listed in Table 5 must be
preceded by a 005400 instruction; they are for Triton mode only.

(E-\S) \
et- ~"'lJe& ~L,+rJc-t\Cl"" t;w-

Table 4. Scalar Logical Functional Unit Instructions

CPU

Instruction CAL Description

044ijk

044ljO

044ljO

045ijk

045ljO

046ijk

046ljO

046ljO

047ijk

047IJk

047ljO

047ljO

0471J0

050ijk

050ljO

051 ijk

051IJk

051ljO

0511J0

22

SiSj&Sk Logical product of (S}) and (Sk) to Si

SiSj&SB Sign bit of (S}) to Si

SiSB&Sj Sign bit of (S}) to Si (Sj"* 0)

Si#Sk&Sj Logical product of (S}) and one's complement of (Sk) to Si

Si#SB&Sj (S}) with sign bit cleared to Si

SiSj.Sk Logical difference of (S}) and (Sk) to Si (Sj "* 0)

SiSj.SB Transmit (S}) with sign bit toggled to Si

SiSB\Sj Transmit (S}) with sign bit toggled to Si (Sj"* 0)

Si#Sj.Sk Logical equivalence of (Sk) and (S}) to Si

Si#Sk Transmit one's complement of (Sk) to Si

Si#Sj.SB Logical equivalence of (S}) and sign bit to Si

Si#SB\Sj Logical equivalence of (S}) and sign bit to Si (Sj"* 0)

Si#SB Enter one's complement of sign bit into Si

SiSjlSi&Sk Logical product of (S/) and (Sk) complement ORed with
logical product of (S}) and (Sk)

SiSjlSi&SB Scalar merge of (S/) and sign bit of (S}) to Si

SiSjlSk Logical sum of (S}) and (Sk) to Si

SiSk Transmit (Sk) to Si

SiSjlSB Logical sum of (S}) and sign bit to Si (Sj"* 0)

SiSB Enter sign bit into Si

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

)

)

CPU Scalar Logical

Table 5. Address Logical Functional Unit Instructions

Instruction CAL Description

044ijk Ai Aj&Ak Logical product of (Al) and (AI<) to Ai

045ijk Ai#Ak&Aj Logical product of (Al) and one's complement of (AI<) to Ai

046ijk AiAjAk Logical difference of (Al) and (AI<) to Ai (Aj =t 0)

047ijk Ai#AjAk Logical equivalence of (AI<) and (Al) to Ai

047KJk Ai#Aj Transmit one's complement of (AI<) to Ai

050ijk Ai AflAi&Ak Logical product of (AI) and (AI<) complement ORed with
logical product of (Al) and (AI<)

051 ijk Ai AflAk Logical sum of (Al) and (AI<) to Ai

Address and Scalar Mask

HTM-xxx-O
December 19,1994

Another function separate from scalar logical but included in this section,
is address mask and scalar mask. Address and scalar mask functions use
instructions 042ijk and 043ijk. Refer to Table 6 and Table 7 for the scalar
and address mask instruction formats, respectively.

Instruction

042ijk

042/77

042KJO

043ijk

043ijk

043KJO

Table 6. Scalar Mask Instructions

CAL Description

Si<exp Form ones mask in Si exp bits from the right; jk
field = 100 - exp

Si 1 Enter 1 into Si

Si-1 Enter -1 into Si;
(Si = 177777 177777 177777 177777)

Si>exp Form ones mask in Si exp bits from the left:
jk field = exp

Si#<exp Form zeroes mask in Si exp bits from the right:
jk field gets 100s= exp

SiO Clear Si

Cray Research Proprietary
Preliminary Information

23

Scalar Logical

24

(AR, AS,AT, AU)

(BT)

(IC)

Sii

ik

h

CPU

Table 7. Address Mask Instructions

Instruction CAL Description

042ijk Ai<exp Form ones mask in Ai exp bits from the right;
jk field = 100 - exp

042177 Ai 1 Enter 1 into Ai

042,00 A-1 Enter -1 into At,
(Ai = 177777 177777 177777 177777)

043ijk Ai>exp Form ones mask in Ai exp bits from the left:
jk field = exp

043ijk Ai#<exp Form zeroes mask in Ai exp bits from the right:
jk field gets 1 008 = exp

043,00 AiO Clear Ai

The address/scalar mask functional unit is located on the SS options.
When the 042ijk or 043ijk instruction issues the jk field, it is sent from the
BTO option. The jk field determines how many 1 bits are set, and the h
field bit 0 determines whether the one's should be on the left or the right.
Figure 12 is a block diagram of the scalar mask functional unit.

SSOOO

rI Scalar I Shift

IAA-IDP Vector
Mask r-.r--'-
Upper

MUX I--
Lower ~

'--'

r--
IGA-IGF

Address/ ORed lEE hO Scalar Mask

'---

Figure 12. Scalar Mask Block Diagram

Cray Research Proprietary
Preliminary Information

I AUOO1 Bits 56-63

IAUOOO Bits 48-55

IAT001 Bits 40-47

IATOOO Bits 32-39

I AS002 Bits 24-31

IAS001 Bits 16-23

IASOOO Bits8-15

AROOO Bits 0-7

Address/Scalar
Registers

HTM-xxx-O
December 19, 1994

)

)

CPU Scalar Logical

Transmit nm to Si, Si Upper, Si Lower

HTM-xxx-O
December 19,1994

Constant data can be transmitted to an S register by four different
instructions. Refer to Table 8 for a list of these instructions.

Table 8. Transmit nm to Si Instructions

Instruction CAL Description

040.o0nm Siexp Transmit expression = nm to Si, bits
o through 31 (bits 32 through 63 = 0)

040J20nm SiSf.exp Transmit expression = nm to Si, bits 0 through

040i40nm

041.o0nm

31 (bits 32 through 63 unchanged) (/2 = 0)

Si exp:Si Transmit expression = nm to Si, bits 32
through 63 (bits 0 through 31 unchanged)
(/2=1)

Siexp Transmit expression = one's complement of
nm to Si, bits 0 through 31 (Si bits 32 through
63 = 1)

Cray Research Proprietary
Preliminary Information

25

)

)

)

)

)

ADDRESS/SCALAR POP/PARITY AND LEADING ZERO

HTM-xxx-O
December 19,1994

The address/scalar population count functional unit counts the number of
1 bits in the scalar (S) register or address (A) register of the k field of
instruction 026ijk (k = 0 or 1 for S registers, and k = 2 or 3 for A
registers). The maximum count could be 1008 or 6410 for the
corresponding number of 1 bits set in the A or S register, and the smallest
count could be 0 when no bits are set in the A or S register.

The k field of the instruction determines whether or not the entire
population count is recorded in Ai. If it is a 026ij012 instruction, all 7 bits
of the [mal population count are sent to the A register. When a 026ij1l3
instruction is issued, the entire S or A register is counted for the number of
1 bits set, but then only bit 0 of the count is sent to the A register. If bit 0
of the count equals 0, then the count has even parity, indicating an even
number of bits set. If bit 0 of the count equals 1, then the count has odd
parity.

Starting from bit position 63, the address/scalar leading zero count
functional unit counts the number of O's preceding the first bit set to a 1 in
a specified address or scalar register. The number of leading O's is then
transferred to the lower 7 bits of an Ai register. To use the address/scalar
leading zero count functional unit, a 027ijO instruction is issued when Sj is
the operand and Ai is the result register. The 027ijl is issued when Aj is
the operand and Ai is the result register.

The SS option performs scalar pop/parity and leading zero functions.
Population count/parity and leading zero functions are performed on either
a scalar or an address register operand, with the result sent to an address
register. Table 9 describes the mstructions that use the pop/parity and
leading zero functional unit, and Figure 13 illustrates the AlS
population/parity/leading zero count.

Cray Research Proprietary
Preliminary Information

27

Address/Sca~rPop/Pario/andLeadmgZero CPU

Table 9. Scalar Pop Count/Parity and Leading Zero Count Instructions

28

Instruction CAL Description

026ljOD Ai PSj Transmit population count of (S)) to Ai

026ij1 D Ai QSj Transmit population count parity of (S)) to Ai

026q2ND Ai PAj Transmit population count of (A)) to Ai

026lj3ND Ai QAj Transmit population count parity of (A)) to Ai

027ljO Ai ZSj Transmit leading zero count of (S)) to Ai

027ij1 NT Ai ZAj Transmit leading zero count of (A)) to Ai

o denotes a difference between Triton mode and C90 mode.

N denotes new instruction (not available on CRAY C90 series systems).

T denotes Triton mode only.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

CPU Address/Scalar Pop/Parity and Leading Zero

AROOO

I-

BitsO-7

ASOOO

I-- SSOOO
Sj/Si Bits 0 - 15 IAA-IAP

Bits8-15 Aj/Ai Bits 0 -15 IJA-IJP
4-bit Sum

AS001 Sj/Si Bits 16 - 31 IBA-IBP
AUAiBits 16-31 IKA-IKP

l Sj/Si Bits 32 - 47 ICA-ICP
Bits 16-23 Aj/Ai Bits 32 - 47 ILA-ILP 8-bitSum I
AS002 Sj/Si Bits 48 - 63 IDA-lOP ~ I- Aj/Ai Bits 48 - 63 IMA-IMP

16-bitSum I
Bits 24-31 - l ATOOO I 0

Go 026iix lED
32-bitSum I - (JAOOO) n e

027ijJ s c
t 0

l Bits 32-39
(ICOOO)

hO Bit lEE r d
u e

64-bitSum I AT001 (BT001) iData IGA-IGC c OFA - OFG Result Bits 0 - 6

t
I--

(BTOOO) k Data IGD-IGF i
0

Bits 40-47 n
L...--

AUOOO

Bits 48-55

AU001

Bits 56-63

Figure 13. NS PopulationJParity/Leading Zero Count

HTM-xxx-O
December 19,1994

Cray Research Proprietary
Preliminary Information

AROOO

Bits 0-7

29

)

)

)

)

ADDRESS REGISTER SHIFT

HTM-xxx-O
December 19, 1994

The address register shift function is performed on the SS option (refer to
Figure 14 for a block diagram of address register shift). This functional
unit performs both left and right single-register shifts and left and right
double-register (also referred to as long) shifts. All shifts are end-off with
zero fill. For example, if data is shifted more than 6410 places in a single
shift, or more than 12810 places in a double-register shift, the data is
shifted off the register. The data is then lost, and O's are moved into the
register.

The shift unit performs only left shifts. The shift count for a right shift
must be in the two's complement form; the unit then performs a left shift.
Refer to Table 10 for a list of the address register shift instructions.

NOTE: To issue A-register-shift instructions, 005400 (EIS instruction
must precede the shift instruction. If an - e - ift
instruction is issued in e90 mode, the results are undefined.

Instruction

052ijk

053ijk

054ijk

055ijk

056ijk

056;P

056'{)k

057ijk

057;P

056'{)k

Table 10. Address Register Shift Instructions

CAL Description

AOAi<exp Shift (AI) left exp = jk places to AO

AO Ai>exp Shift (AI) right exp = 1 OOa-jk places to AO

Ai Ai<exp Shift (AI) left exp = jk places to Ai

Ai Ai>exp Shift (AI) right exp = 1 OOa-jk places to Ai

AiAi, Aj<Ak Shift (AI) and (Al) left (Ak) places to Ai

AiAi, Aj<1 Shift (AI) and (Al) left one place to Ai

Ai Ai<Ak Shift (AI) left (Ak) places to Ai

AiAj, Ai>Ak Shift (Al) and (AI) right (Ak) places to Ai

AiAj, Ai>1 Shift (Al) and (AI) right one place to Ai

Ai Ai>Ak Shift (AI) right (Ak) places to Ai

Cray Research Proprietary
Preliminary Information

31

~

-cO
CD~
3:0
:d~
Il)CD
.::.:!~
_0
:::J:::T
O'-c
~ ~

3 0
Il)~
!:!: (5.
0_
:::J1l)

-<

~
3
C"
~:r:
~-I
<03:
• I
~X
COX
COX
-1:>00

AROOO

Bits 0-7

ASOOO

Bits 8-15

AS001

Bits 16-23

AS002
~

Bits24-31

ATOOO

Bits 32-39

ATOO1

Bits 40-47

AUOOO

Bits 48-55

AU001

Bits 56-6~

'--./

SS

Aj/Ai Bits 0 -15 / Ai Result r--IJA-IJP OAA - OAP Ai Bits 0 - 15

Aj/Ai Bits 16 - 31 IKA-IKP OBA-OBP Ai Bits 16-31

Aj/Ai Bits 32 - 47 ILA-ILP r/ AjData r OCA-OCP AiBits32-47

Aj/Ai Bits 48 - 63 IMA-IMP / Ai Data r ODA - ODP Ai Bits 48 - 63

JA001 via BT
jk Shift Count IGA-IGF

Go A Type (Gate A Data) IEF OHA - OHG Ak Shift Count

(JAOOO)
flO Bit (1 = Right Shift) lEE

(ICOOO) OHH No Ak Overflow

Ak Shift Courit IHA-IHH.. I Shift Count (AI<) (AROOO)

. (AR/AS/AT/AU) Ak= 0 IIA-IIG
: (AI<) 7 - 63 = 0 I--

Figure 14. Address Register Shift

~,

AROOO

Bits 0-7

ASOOO

Bits 8 -15

AS001

Bits 16 -23

AS002

i.....-.+

Bits 24 -31

(VS) ATOOO

(VS)
Bits 32 -39

AT001

Bits 40-47

AUOOO

Bits 48 -55

AU001

Bits 56-63

} '-J

)),.

8:
<i3
~
::0
~
Ci).
(j)
~

~
;:j;

~

)

)

)

CPU Address Register Shift

Address Register Single Shift

The address register single-shift instructions are 052ijk through 055ijk.
The first two instructions perform left single shifts (052ijk) and right
single shifts (053ijk) on the content of the Ai register and always store the
result in AO. The shift count is obtained from the jk field of the
instruction. The value placed in the jk field for the single-shift
instructions depends on whether it is a left or right shift. For a single left
shift, the value in the jk field is the number of octal places desired to shift
Ai. This allows a shift left of 0 to 778 places. For a right shift, the jk field
is equal to the two's complement of the actual number of places desired to
shift right. If a shift of 248 places were required, 54 would be entered in
the jk field (two's complement of 24 is 54).

When instructions are written in machine code, this operation must be
done by the person writing the code. However, when instructions are
written in CAL, this is done by the assembler. In the CAL instruction, you
would simply enter the shift count. This allows a shift right of 1 to 1008
places. Because the two's complement of the shift count is used for a
single shift, a shift right 0 places is not possible.

The 054ijk and 055ijk instructions perform single shifts left or right on the
contents of Ai. However, these instructions store the result of the shift
back in Ai. These shifts overwrite the original contents of Si with the new
results from the shifter.

Address Register Double Shift

HTM-xxx-O
December 19, 1994

Double shifts work similar to single shifts and are end-off with zero fill.
The difference is that a double shift concatenates two S registers, forming
a 128-bit register. The arrangement of the two registers is determined by
the shift direction.

Double shifts always shift data into Si. The two instructions associated
with double shifts are 056ijk (left double shift) and 057ijk (right double
shift). The double shifts use the i and j fields to specify the two operand
registers; the i field also specifies the result register. The k field of the
instructions specifies the A register used for the shift count.

Because a double shift uses a 128-bit operand and shifts are end-off with
zero fill, a shift equal to or greater than 12810 (2008) produces a result of
zero. The A register bits 0 through 6 are used as a shift count, providing a
shift of 0 to 1778. Bit 7 is checked, and if this bit is set to a 1, it causes the
double shift result to equal zero. For right double shifts, the shift count
does not need to be entered into the A register in two's complement form;
the hardware performs this function.

Cray Research Proprietary
Preliminary Information

33

Address Register Shift CPU

Address Register Shift Count Description

34

The AR option sends 7 bits of shift count to the SS option. For both
single and double shifts, the breakdown of the shift count is the same,
except that the double shift has 1 extra bit (bit 6). Refer to Figure 15 for a
breakdown of the shift count.

Double
Shift
Only
6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Figure 15. Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count.

If the jk field of a left single shift equals 278 and bits 4, 2, 1, and 0 are set,
the shift values would be 16, 4, 2, and 1, respectively. The sum of the
shift values would be 23 (16 + 4 + 2 + 1); therefore, the instruction would
shift left 2310 places.

The actual hardware that performs the shifts is the same for both left and
right shifts. However, the hardware performs only left shifts. Right shifts
are accomplished by the way in which data is entered into the shifter,
hence the use of two's complement for right shifts.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

)

)

CPU Address Register Shift

Address Register Left Single Shift

A2=

HTM-xxx-O
December 19, 1994

Figure 16 is an illustration of how a left single shift is performed for a
054220 instruction. (Ai Akexp), shift A2leftjk places (20g) with data bit
10 set.

(~g)

Address Shift Functional Unit

Bit 10

/
(~~)

Bit 26

Shift
to the I

A2 1610 places
eft, moving bit
t position 1 0 26 to bi

A2 Fin al Results

Figure 16. Address Register Left Single Shift

Cray Research Proprietary
Preliminary Information

35

Address Register Shift CPU

Address Register Right Single Shift

A2.=

36

Figure 17 is an illustration of how a right single shift is performed using
left shifts and a two's complement shift count. This example uses a
055254 instruction (Ai>Ai exp) that shifts Ai right exp = 100 - jk places to
Ai. In this example, data bit 45 shifts to the right 24g (2010) places.
Notice that the jk field of the instruction 055254 contains 54g, which is the
two's complement of 248, causing A2 to be shifted to the left 548 places to
set bit 25 of the result.

Bit 45

Address Shift Functional Unit

Bit 63 0 63 0

r-~----- I I Bit 45
L. _ _

Shift 548 I

Bit 25

A2.= Bit 25

Figure 17. Address Register Right Single Shift

NOTE: On a right shift, it is the programmer's responsibility to perform
the two's complement of the shift count and supply that value to
the functional unit.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

CPU Address Register Shift

Address Register Left Double Shift

Double shifts are the same as single shifts except that they concatenate
two 64-bit registers to form a value. Figure 18 is an illustration of a left
double shift using a 056123 instruction (Ai AI, Aj<Ak). In this example,
we shift (Ai) and (AJ) left (Ak) places to Ai, with A3 = 408 (3210), Al
having bit 30 set, and S2 having bit 10 set. When a left double shift
occurs, the content of Aj is moved into Ai, and the two registers are
positioned as shown with Ai ahead of Aj.

A2 (AJ) = I Bit 10
I
I

A1 (AI) = I Bit 30 I
I

HTM-xxx-O
December 19,1994

A3= I 40 1- Shift Control

Address Shift Functional Unit

Ai (A1) ! Aj (A2) l
(~0 Bit 30 1(~0 Bit 10

. f Shift 32 I f Shift 32 I

I Bit62 I

: Bit 62 J = A 1 Final Result

Figure 18. Address Register Left Double Shift

Shifting Ai and Aj to the left 32 places puts bit 30 of Al at bit position 62
and bit 10 of A2 at bit position 41. Because bit 41 of A2 did not make it
to the result register AI, it is lost. The result bit (bit 62) is then sent to the
Ai (AI) register. The Aj (A2) register remains changed.

Cray Research Proprietary
Preliminary Information

37

Address Register Shift CPU

Address Register Right Double Shift

A1 =

A2=

A3=

38

To perform an address register right double shift, a 057ijk [(Ai Aj, Ai
>Ak) , shift (AJ) and (Ai) right (Ak) places to Ai] instruction is used.
Figure 19 illustrates a 057123 instruction with the indicated parameters.

Bit 20 ;

Bit 40 L
I

I 60 1-Shift Control

Address Shift Functional Unit

1 Aj (A2) Ai (A1) ,

~C!fJ---- Bit 40 (~~) I Bit Bit 20

L_
56

Shift 80 I f Shift 80 I

I Bit 56 J I

I Bit 56 J = A 1 Final Result

Figure 19. Address Register Right Double Shift

To right shift Aj and Ai using left shifts, the two's complement is fIrst
performed on A3, which currently equals 608 (4810). Because the two's
complement is 1208 (or 10100002 or 8010), the required shift can be
accomplished through successive shifts of 6410 and 1610 for a total shift of
8010 places. A left shift of 8010 would move bit 40 of A2 to bit position
56 inside the dotted box and bit 20 of Al to bit position 36 of A2.
Because bit 36 did not make it into the result register (indicated by the
dotted box), it is lost, and bit 56 is sent to the fmal result.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

)

CPU Address Register Shift

Left Single-shift Instruction

HTM-xxx-O
December 19, 1994

Refer to Figure 20 when reading the two following examples of the
address register left single-shift instruction.

j

B~s 12 o I 2

32 16 8 4

k

0 l=ikField

2 = Shift Values Decimal

052ijk Results to AO

054ijk Results to Ai

Figure 20. Example of an A Register Left Single-shift Instruction

Example 1: Write the instruction to shift A2left 2010 places, putting the
results into AO.

Steps: 1. 052ijk - left shift instruction result goes to AO

2. jk field - shift count 2010 = 248 = jk field

3. 052224 - [mal instruction

Example 2: Write the instruction to shift A4left 3510 places, putting the
results into A4.

Steps: 1. 054ijk - left shift instruction result goes to Ai

2. jk field - shift count 3510 = 438

3. 054443 - [mal instruction

Cray Research Proprietary
Preliminary Information

39

Address Register Shift CPU

Right Single-shift Instruction

40

The right single-shift count is the jk field of the instruction, which must
either be in the two's complement form or 1008 minus the number of
places to right shift. The following two examples show an address
register right single-shift instruction.

• 053ijk results to AO
• 055ijk results to Ai

Example 1: Write the instruction to shift A5 right 1010 places, putting
the results into AO.

Steps: 1. 053ijk - right shift instruction results to AO

2. jk field - shift count in two's complement equals 668

1010 = 128 = 001010

two's complement = 110101

+1

110110 = 668

3. 053566 - final instruction

Example 2: Write the instruction to shift A7 right 2810 places.

Steps: 1. 055ijk right shift instruction results to Ai

2. jk field - shift count in two's complement equals

2810 = 34g = 011100

two's complement = 100011

+1

100100 = 44g

or 1008 - 34g = 448

3. 055744 - final instruction

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

CPU Address Register Shift

Left Double-shift Instruction

HTM-xxx-O
December 19, 1994

Refer to Figure 21 when reading the following example of an address
register left double-shift instruction.

056ijk Shift Ai and Aj left by Ak places to Ai

Ai Aj

Ai

Akcontains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any bits from 7 through 63 are set, the results of Ai are zeroed.

Bits I ... 6_3 ________ 7_6""'1_5_4 __ 3_2 ___ 0_=_A_k

Zero Results 64 32 16 8 4 2 = Valid Decimal Shifts

On a left double shift, the contents of Aj are always shifted into Ai. This shift is done
inside the address shift functional unit.

Figure 21. Example of an Address Register Left Double-shift Instruction

Example 1: Write the instruction to left double shift A2 and A3 6410
places, putting the results into A2.

056234- [mal instruction, where A4-100g

NOTE: A circular left shift can be effected by issuing a 056 instruction
with i = j and (Ak)::: 64.

Gray Research Proprietary
Preliminary Information

41

Address Register Shift CPU

Right Double-shift Instruction

42

Bits

Refer to Figure 22 when reading the following example of a scalar right
double-shift instruction.

057 ijk Shift Aj and Ai right by Ak places to Ai

Aj Ai

Ai

63 7 6 5 4 3 2 1 0 =Ak

Zero Results 1
Two's Complement = During Right Double Shift

64 32 16 8 4 2 1 = Valid Decimal Shifts

Figure 22. Example of an Address Register Right Double-shift Instruction

Ak contains the shift count, and address (A) register bits 0 through 6
contain the valid shift counts. If any bits from 7 through 63 are set, the
results of Ai are zeroed. Also, the hardware generates the two's
complement of the shift count Ak register bits 0 through 6 on a right
double shift.

On a right double shift, the contents of Aj are always shifted into Ai. This
operation and the two's complement of the shift count are done inside the
address shift functional unit.

Example 1: Write the instruction to right double shift A4 and A5
3210 places, with the results going into A4.

057454 - final instruction, where A4 = 408
hardware generates a shift count of 1408 inside
the functional unit.

NOTE: A circular right shift can be effected by issuing a 057 instruction
with i = j and (Ak)~ 64.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

.)

SCALAR SHIFT

HTM-xxx-O
December 19, 1994

The scalar shift function is performed on the SS option (refer to Figure 23
for a block diagram of a scalar shift). This functional unit performs both
left and right single-register shifts, and left and right double-register (also
referred to as long) shifts. All shifts are end-off with zero fill. For
example, if data is shifted more than 64lO places in a single shift, or more
than 128lO places in a double-register shift, the data is shifted off the
register. The data is then lost, and the register is filled with O's.

The shift unit performs only left shifts. The shift count for a right shift
has to be in the two's complement form; the unit then performs a left shift.
Refer to Table 11 for a list of the scalar shift instructions.

Table 11. Scalar Shift Instructions

Instruction CAL Description

052ijk SO Si<exp Shift (S/) left exp = jk places to SO

053ijk SO Si>exp Shift (S/) right exp = 1 OOa - jk places to SO

054ijk SiSi<exp Shift (S/) left exp = jk places to Si

055ijk SiSi>exp Shift (S/) right exp = 1 OOa - jk places to Si

056ijk S1 Si, Sj<Ak Shift (S/) and (S) left (Ak) places to Si

056lj{) t S1 Si, Sj<1 Shift (S/) and (S) left 1 place to Si

056'{)k :j: S1Si<Ak Shift (S/) left (Ak) places to Si

057ijk SiSj, Si>Ak Shift (S) and (S/) right (Ak) places to Si

057lj{) t S1 Sj, Si>1 Shift (S) and (S/) right 1 place to Si

057'{)k :j: S1 Si>Ak Shift (S/) right (Ak) places to Si

t If j = 0, then (8J) = 0

:j: If k= 0, then (Ak) = 1

Cray Research Proprietary
Preliminary Information

43

.j::..

.j::..

-oQ
m~
3:0 _.CD
::lCIJ
I» CD
-<~ _0
::l::T
0-0
3 0
a-g.
O·CD
::lD)

-<

o
CD

~
C"
~::r:
..... --1
coS:
• I
..... x
COX
COX
.j::..6

AROOO

BitsO-7

ASOOO

Bits8-15

ASOO1

Bits 16-23

AS002

Bits 24-31

ATOOO

Bits 32 -39

ATOO1

Bits 40-47

AUOOO

Bits 48 -55

AUOO1

Bits 56-63

"-/

Sj/Si Bits 0 - 15 IAA-IAP

SiSi Bits 16 - 31 IBA-IBP

SiSi Bits 32 - 47 ICA-ICP

SiSi Bits 48 - 63 IDA-lOP

I--

(JA001) Go 056ijkl0571jk lED

Ii.J Bit
(ICOOO) (1 = Right Shift) lEE

(AROOO) Ak Shift Count IHA-IHH

(AR, AS, AT, AU) Ak = 0 IIA-IIG

SSOOO

/ SiResult
OAA - OAP Si Bits 0 - 15

OBA-OBP SiBits 16-31

~ SjOata r OCA - OCP Si Bits 32 - 47

/ SiOata r OOA - OOP Si Bits 48 - 63

: Shift Count (Ak) I
OHA - OHG Ak Shift Count

(VS)

I (Ak) 7 - 63 = 0 I OHH No Ak Overflow
(VS)

L J

Scalar Shift

Figure 23. Scalar Shift

.,---,/

AROOO

Bits 0-7

ASOOO

Bits 8-15

ASOO1

Bits 16-23

AS002

L.....-.

Bits 24-31

ATOOO

~

Bits 32-39

ATOO1

-- Bits 40-47

AUOOO

Bits 48- 55

AUOO1

Bits 56- 63

;

-----)

C/)

2
iii" ..,
~
~

~

)

CPU Scalar Shift

Scalar Single Shift

The scalar single-shift instructions are 052ijk through 055ijk. The first
two instructions perform single shifts left (052ijk) and right (053ijk) on the
contents of the Si register and always store the result in SO. The shift
count is obtained from the jk field of the instruction. The value placed in
the jk field for the single-shift instructions depends on whether it is a left
or right shift. For a single left shift, the value in the jk field is the number
of octal places desired to shift Si. This allows a shift left of 0 to 778
places. For a right shift, the jk field is equal to the two's complement of
the actual number of places desired to shift right. If a shift of 248 places
were required, 54 would be entered in the jk field (two's complement of
24 is 54).

When instructions are written in machine code, this operation must be
done by the person writing the code. However, when instructions are
written in CAL, this operation is done by the assembler. In the CAL
instruction, you would simply enter the shift count. This allows a right
shift of 1 to 1008 places. Because the two's complement of the shift count
is used for a single shift, a shift right of 0 places is not possible.

The 054ijk and 055ijk instructions perform single shifts left or right on the
contents of Si. However, these instructions store the result of the shift
back in Si. These shifts overwrite the original contents of Si with the new
results from the shifter.

Scalar Double Shift

HTM-xxx-O
December 19, 1994

Double shifts work similar to single shifts; all shifts are end-off with zero
fill. The difference is that a double shift concatenates two S registers,
forming a 128-bit register. The arrangement of the two registers is
determined by the shift direction.

Double shifts always shift data into Si. The two instructions associated
with double shifts are 056ijk (double left shift) and 057ijk (double right
shift). The double shifts use the i and j fields to specify the two operand
registers; the i field also specifies the result register. The k field of the
instructions specifies the A register used for the shift count.

Because a double shift uses a 128-bit operand and shifts are end-off with
zero fill, a shift equal to or greater than 12810 (2008) produces a result of
zero. The A register bits 0 through 6 are used as a shift count, providing a
shift of 0 to 1778. For right double shifts, the shift count does not need to
be entered into the A register in two's complement; the hardware performs
this function.

Cray Research Proprietary
Preliminary Information

45

Scalar Shift CPU

Scalar Shift Count Description

46

The AROOO option sends the shift count to the SS option. All eight
A-series options check the value of the 64-bit A register to discover
whether any bits above bit 6 have been set. If any bits have been set, the
result is lost due to overshift. If each A -series option reports that its bits
are zero, a signal called Ak = 0 is sent to the SS option and the shift count
is valid.

The AR option sends 7 bits of shift count to the SS option. For both
single and double shifts, the breakdown of the shift count is the same,
except for the fact that the double shift has 1 extra bit (bit 6). Refer to
Figure 24 for a breakdown of the shift count.

Double
Shift
Only
6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Figure 24. Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of ')
the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count.

If the jk field of a left single shift equals 278 and bits 4, 2, 1, and 0 are set,
the shift values would be 16, 4, 2, and 1, respectively. The sum of the
shift values would be 23 (16 + 4 + 2 + 1); therefore, the instruction would
shift left 2310 places.

The actual hardware that performs the shifts is the same for both left and
right shifts. However, the hardware performs only left shifts. Right shifts
are performed according to how data is entered into the shifter, hence the
use of two's complement for right shifts.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

CPU Scalar Shift

Scalar Left Single Shift

HTM-xxx-O
December 19, 1994

Figure 25 is an illustration of how a left single shift is performed for a
054220 instruction (Si Si<exp). In this example, we shift S2leftjk places
(208) with data bit 10 set.

S2=

I
I
I

Bit 10

Scalar Shift Functional Unit

Bit 10 J
/'

(~~) I

Bit 26

Figure 25. Scalar Left Single Shift

Cray Research Proprietary
Preliminary Information

I---
Shift S2 1610
places to the left,
moving bit 10 to
bit position 26

S2 Final Results

47

Scalar Shift CPU

Scalar Right Single Shift

48

Figure 26 is an illustration of how a right single shift is performed using
left shifts and a two's complement shift count. This example uses a
055254 instruction (Si>Si exp) that shifts Si right exp = 100 - jk places
to Si.

In this example, we shift data bit 45 to the right 248 (2010) places. Notice
that the jk field of the instruction 055254 contains 548, which is the two's
complement of 24g, causing S2 to be shifted to the left 54g places to set bit
25 of the result.

S2= Bit 45

Scalar Shift Functional Unit

Bit 63 0 63 0

r-~-- I I Bit 45

I
L.. _____

Shift 548

I
Bit 25 I I

S2= Bit 25

Figure 26. Scalar Right Single Shift

NOTE: It is the programmer's responsibility to perform the two's
complement of the shift count and supply that value to the
functional unit.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

)

CPU Scalar Shift

Scalar Left Double Shift

HTM-xxx-O
December 19, 1994

Double shifts are the same as single shifts except that they concatenate
two 64-bit registers to form a value. Figure 27 is an illustration of a left
double shift using a 056123 instruction (Si, Sj < Ak). In this example, we
shift S (Si) and (S}) left (Ak) places to Si, with A3 = 408 (3210), S1 having
bit 30 set, and S2 having bit 10 set. When a left double shift occurs, the
contents of Sj move into Si, and the two registers are positioned as shown
with Si ahead of Sj.

S 2 (SJ) = I Bit 10 I
1 (S/) = I Bit 30 I

I
S

A 3= I 40 1- Shift Control

Scalar Shift Functional Unit

Si (S1) ! Sj (S2) • I BiD
62 Bit 30 IC~;) Bit 10j

t Shift 32 I t Shift 32 I

: Bit 62 I

-: Bit 62 1= S1 Final Result

Figure 27. Scalar Left Double Shift

Shifting Si and Sj to the left 32 places puts bit 30 of S 1 at bit position 62
and bit 10 of S2 at bit position 41. Because bit 41 of S2 did not make it to
the result register S 1, it is lost. The result bit (bit 62) is then sent to the Si
(S1) register. The Sj (S2) register remains unchanged.

Cray Research Proprietary
Preliminary Information

49

Scalar Shift CPU

Scalar Right Double Shift

S1 =

S2=

A3=

50

To perform a scalar right double shift, a 057ijk instruction (Si Sj, Si > Ak)
shifts (S}) and (Si) right (Ak) places to Si. Figure 28 is an illustration of a
057123 instruction with the indicated parameters.

Bit 20 ;

Bit 40 I
I

I 60 1-Shift Control

Scalar Shift Functional Unit

! Sj (S2) Si (S1) ~

Bit 20 I 56 W L_, ____ Bit 40 (~~)
Shift 80 I f Shift 80 I

I
Bit 56 I I

: Bit 56 J = S1 Final Result

Figure 28. Scalar Right Double Shift

To right shift Sj and Si using left shifts, the two's complement is fIrst
performed on A3, which currently equals 608 (4810)' Because the two's
complement is 1208 (or 101000Ch or 8010), the required shift can be
accomplished through successive shifts of 6410 and 1610 for a total shift of
8010 places. A left shift of 8010 would move bit 40 of S2 to bit position
56 inside the dotted box and bit 20 of S 1 to bit position 36 of S2. Because
bit 36 did not make it into the result register (indicated by the dotted box),
it is lost, and bit 56 is sent to the fInal result.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

CPU Scalar Shift

Left Single-shift Instruction

HTM-xxx-O
December 19, 1994

Refer to Figure 29 when reading the two following examples of the scalar
left single-shift instruction.

j

Bits 12 01 2
32 16 8 4

k

0 1= jkFieJd

2 = Shift Values Decimal

052ijk Results to SO

054ijk Results to Si

Figure 29. Example of Scalar Left Single-shift Instruction

Example 1: Write the instruction to shift S2 left 2010 places, placing
the results into SO.

Steps: 1. 052ijk -left shift instruction result goes to SO

2. jk field- shift count 2010 = 248 = jk field

3. 052224 - final instruction

Example 2: Write the instruction to shift S4left 3510 places, placing the
results into S4.

Steps: 1. 054ijk - left shift instruction result goes to Si

2. jk field- shift count 3510 = 438

3. 054443 - final instruction

Cray Research Proprietary
Preliminary Information

51

Scalar Shift CPU

Right Single-shift Instruction

52

The right single-shift count is the jk field of the instruction, which must
either be in the two's complement form or 1008 minus the number of
places to right shift. Two examples of a scalar right single-shift
instruction follow.

• 053ijk results to SO
• 055ijk results to Si

Example 1: Write the instruction to shift S5 right 1010 places, placing
the results into SO.

Steps: 1. 053ijk - right shift instruction results to SO

2. jk field - shift count in two's complement equals 668

1010 = 128 = 001010

two's complement = 110101

+ 1

110110 = 668

3. 053566 - final instruction

Example 2: Write the instruction to shift S7 right 2810 places.

Steps: 1. 055ijk right shift instruction results to Si

2. jk field - shift count in two's complement equals

2810 = 34g = 011100

two's complement = 100011

+ 1

100100 =44g

or 1008 - 34g = 44g

3. 055744 - final instruction

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

)

CPU Scalar Shift

Left Double-shift Instruction

Refer to Figure 30 when reading the following example of a scalar left
double-shift instruction.

056ijk Shift Si and Sj left by Ak places to Si

Si Sj

.....-----.c../
Si

Ak contains the shift count, and A register bits ° through 6 contain the valid shift counts.
If any of bits 7 through 63 are set, the results of Si are zeroed.

Bits .. 16_3 _________ 7"""1_6_. 5 __ 4 __ 3 __ 2 ___ 0 1 = Ak

HTM-xxx-O
December 19, 1994

Zero Results 64 32 16 8 4 2 = Valid Decimal Shifts

On a left double shift, the contents of Sj are always shifted into Si. This shift is done
inside the scalar shift functional unit.

Figure 30. Example of a Scalar Register Left Double-shift Instruction

Example 1: Write the instruction to left double shift S2 and S3 6410
places, placing the results into S2.

056234 - final instruction, where A 4 - 1008

NOTE: A circular left shift can be effected by issuing a 056 instruction
with i = j and (Ak)~ 64.

Gray Research Proprietary
Preliminary Information

53

Scalar Shift CPU

Right Double-shift Instruction

Bits

54

Refer to Figure 31 when reading the following example of a scalar right
double-shift instruction.

057 ijk Shift Sj and Si right by Akplaces to Si

Sj Si

~
Si

63 7 6 5 4 3 2 1 0

Zero Results !
Two's Complement = During Right Double Shift

64 32 16 8 4 2 1 = Valid Decimal Shifts

Figure 31. Example of a Scalar Register Right Double-shift Instruction

Ak contains the shift count, and address (A) register bits 0 through 7
contain the valid shift counts. If any of bits 7 through 63 are set, the
results of Si are zeroed. Also, the hardware generates the two's
complement of the shift count on the Ak register bits 0 through 7 on a
right double shift.

On a right double shift, the contents of Sj are always shifted into Si. This
operation and the two's complement of the shift count are done inside the
scalar shift functional unit.

Example 1: Write the instruction to right double shift S4 and S5
3210 places, with the results going into S4.

057454 - final instruction, where A4 = 408
hardware generates a shift count of 1408 inside the
functional unit.

NOTE: A circular right shift can be effected by issuing a 057 instruction
with i = j and (Ak)~ 64.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

ADDRESS MULTIPLY

HTM-xxx-O
December 19, 1994

The AN option performs the address multiply operation (a 032ijk
instruction). The AN option also fans out the Aj and Ak operand used for
other A register operations.

When operating in Triton mode, two 48-bit operands are presented to the
functional unit to produce a 48-bit result. The AN option then does a sign
extension to bit 63 and a leading zero count on the operands to determine
whether the results will fit within 48 bits. If the results exceed 48 bits, the
64-bit incompatibility signal sets, causing the Address Multiply Interrupt
(AMI) flag to set in the exchange package.

The AN option does not use a standard pyramid formation multiply
algorithm. Instead, it uses a variation of the Booth Recode algorithm.
This algorithm enables the address multiply unit to reside on a single
option.

Half the recode groups are formed immediately upon arrival of the data on
the AN option (those groups that are centered on bits 0,4,8, 12, 16, etc).
One clock period later, using the same logic, those groups centered on bits
2, 6, 10, and 14 are recoded. This method allows a mUltiply operation to
be done on about one-fourth of the logic used in a standard pyramid
multiply. Because this method holds the Ak operand for 2 clock periods,
the AN operand can accept data only every other clock period. Refer to
Figure 32 for an illustration of the AN option.

Cray Research Proprietary
Preliminary Information

55

Address Multiply CPU

IHA-IHB Go 032 ,
A Registers {

IAA-ICP Ai
OAA-OBV A Register Data

OIA-OIH Sign Extend Bits

IDA-IFP Ak
Multiply

OCA-ODP,
OEA OFP

Fanout
AkBits 0 -7 to VL

OGA-OGT,
IGF-IGJ gData OHA-OHP

Figure 32. AN Option

Multiply Algorithm

56

The multiplier is partitioned into 3-bit recode groups centered on the even
bits (0 to 46); a forced zero is added to the iirst recode group. The recode
groups are formed as shown in Table 12, and the following subsections
provide examples of standard and Booth Recode multiplication.

Table 12. Recode Groups

Odd Bit Even Bit i-1 Recode Value Recode Product

0 0 0 +0 0

0 0 1 +1 X47-XO

0 1 0 +1 X47-XO

0 1 1 +2 2(X47 - XO)

1 0 0 -2 {2(X47 - XO}'+1

1 0 1 . -1 (X47-XO)'+1

1 1 0 -1 (X47-XO)'+1

1 1 1 -0 0

i - 1 = Bit to right of recode X47 -XO = Multiplicand
group

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

CPU Address Multiply

Standard Binary Multiplication

Refer to the following example of standard binary multiplication.

000011 (3)
011101 (35)
000011

000000
000011

000011
000011

000000
00000010 10 111

Booth Recode Multiplication

HTM-xxx-O
December 19, 1994

Refer to the following example of Booth Recode multiplication.

000011 (3)
011101 (35)

000000000011
11111111010

00000110
1 0000010 10 111

In the previous example, the multiplier is recoded into bit groups centered
on the even bit. A forced zero is appended to the first recode group.

As shown in Table 12, the first recode of the mUltiplier, bits 1 and 0 and
the forced zero, yields a recode value of 010, or + 1. In this case, the
multiplicand is brought down.

The second recode, bits 3, and 2, and 1 yields a recode value of -1. In this
case, a two's complement and a shift of 1 are done on the multiplicand.

The fmal recode, bits 5,4, and 3 yields a recode value of +2. This causes
a shift of 1 on the multiplicand.

Cray Research Proprietary
Preliminary Information

57

)

)

..)

)

INTEGER MULTIPLY

HTM-xxx-O
December 19, 1994

The AM option performs the scalar vector integer multiply operation
(166ijk). It receives Sj and Vk operands and produces a 4O-bit output to
Vi for VL length when the system is in Triton mode.

In e90 mode, a 32-bit result forms, and the input operands are modified to
produce the 32-bit result. The Sj operand must be left shifted 31 10 places,
and the Vk operand must be left shifted by 1610 places before executing the
166ijk instruction, as shown in Figure 33.

The AM option, like the AN option, also uses the Booth Recode algorithm
for the multiply operation. TheAN option also does a leading zero count
on the operands to determine whether the results will fit within 40 bit
positions. The input operands are passed through the floating-point
multiply unit before they arrive at the AM option, as shown in Figure 34 .

Cray Research Proprietary
Preliminary Information

59

Integer Multiply

Bits 63 48 47

Bits 63 48 47

Bits 63 48 47

Bits 63 48 47

60

32 31 16 15

32 31 16 15

Sjbits 0 through 31 are gated into bit
positions 32 through 63 for G90 mode.

32 31 16 15

32 31 16 15

Vkbits 0 through 31 are gated into bit
positions 15 through 47 for G90 mode.

Figure 33. e90 Operation Mode

Gray Research Proprietary
Preliminary Information

CPU

o

o

o

o

HTM-xxx-O
December 19, 1994

)

)

CPU

OGA-OGT
NB OGU-OHN

OIA-OIF

OJA

NA ODA-ODH

OEA-OET
OEU-OFT

OFO-OFP

NC
OGA-OGO

OHA

IC

OVQ

HTM-xxx-O
December 19, 1994

AM

SjBits 0 -19 IM-IAT
Si Bits 20 - 39 IBA-IBT

Vk Bits 42 - 47 IGC-IGH

Go V 166 IEC

Si Bits 40 - 47 IFA-IFH

VkBits 0 -19 ICA-ICT
VkBits 20 - 39 IDA-lOT

VkBits 40 - 41 IGA-IGB

Si Bits 48 - 62 IFI-IFW

Valid lED

Triton Mode lEA

Figure 34. AM Option Inputs

Cray Research Proprietary
Preliminary Information

Integer Multiply

Vi Bits 0 - 25 to
OM,OAZ Result Reaister

Vi Bits 26 - 51 to
OBA, OBZ Result Reaister

OHQ, OHR 40-bit Mode

61

)

)

)

)

VECTOR REGISTERS

HTM-xxx-O
December 19, 1994

A CRA Y T90 series computer system contains eight vector (V) registers,
which are designated VO through V7. Each register contains 12810
elements; each element is 6410 bits wide. The 12810 elements are divided
into two pipes of even and odd elements.

The vector registers have their own integer functional units, which include
vector add, vector logical 1, vector logical 2, vector shift, vector
population, vector leading zero count, and 32-bit integer multiply. The
vector registers share the floating-point functional units with the scalar
registers. The floating-point functional units include floating-point add,
floating-point multiply, floating-point reciprocal and bit matrix mUltiply.

The vector registers can send data to memory or load data from memory.
The number of elements sent to a functional unit (including memory)
depends on the value of the vector length (VL) register. Any element of a
vector register can be loaded into a scalar register, and any scalar register
can be loaded into any element of a vector register by using the 076ijk and
077ijk instructions.

The vector registers use I-parcel instructions. In a I-parcel instruction,
the gh field contains the instruction decode, and the ijk field contains the
operands and destination. The gh field of the instruction indicates the
functional unit needed, and the ijk field indicates the vector registers used.
Generally, the k field of the instruction contains the vector operand
registers VO through V7. The j field of the instruction can be either Sj or
Vj, depending on the instruction. The i field of the instruction is used as
the destination or result register.

Some vector instructions, when preceded by a 005400 instruction, cause
the instruction to execute in Triton mode as opposed to C90 mode of
operation. If, for example, an instruction sequence of 005400 150ijO
issues, a left shift of Vj VO places to Vi is performed. If the 005400
instruction had not preceded the 150ijO instruction, a left shift of Vj AO
places to Vi would have occurred.

Cray Research Proprietary
Preliminary Information

63

Vector Registers

64

CPU

The vector registers in the Triton system contain a dual set of functional
unit pipes. Each functional unit has another identical functional unit. For-~)
example, the vector add functional unit is duplicated so that all the even
elements go to one of the vector add functional units, while all the odd
elements go to the other vector add functional unit. The even and odd
elements are sent to the functional unit simultaneously, and the two results
are loaded back into the result vector register simultaneously.

If the vector add functional unit fails in the even elements, the cause of the
failure is the pipe 0 vector add. Pipe 1 handles the odd vector elements. If
the vector length register is an even value, the results are written into the
vector register simultaneously using pipe 0 and pipe 1, until the last
element specified by the vector length is used. Refer to Table 13 for a list
of the vector register options.

Option Type

VA

VF

VM

VR

Table 13. Vector Register Options

Number Used Description

Provide read/write address and control
(VAO pipe 0)

2 (VA1 pipe 1)
Vector length register
Functional unit release

Pipe control
4 (VFO,VF1 for pipe 0)

(VF2,VF3 for pipe 1)

Data multiplexing (VMO - VM? pipe 0)

16 (VMS - VM15 pipe 1)
Vector add functional unit
Vector logical functional unit

Data multiplexing and storage
16 (VRO - VR? pipe 0)

(VRS - VR15 pipe 1)

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

CPU

VA Option

Vector Registers

The VA option provides vector read and write control. There are two VA
options on a CPU: VAO provides address and control for the even
elements of the vectors, and VA 1 provides the address and control for the
odd elements. The VA options have the following common functions:

• Vector read and write address
• Read and write vector length
• Vector chaining control

The VA options also have the following unique features:

• VAO

• Release vectors for write operations

• Functional unit release for:
Vector logical #1
Vector shift
Vector floating-point multiply
Vector reciprocal

• Even-element addressing

• VAl

• Release vectors for read operations

• Functional unit release for:
Vector logical #2
Vector adder
Vector floating-point add
Vector matrix multiply

• Odd-element addressing

Vector Length Register

HTM-xxx-O
December 19, 1994

The vector length register is located on the VA option. There are two VA
options, one for each pipe. Both vector length registers are loaded with
Ak data bits 00 through 06 from the AROOO option. These bits are needed
to achieve values from 0 to 1778. If a value of all O's is entered, the VL
register is forced to a value of 2008.

Cray Research Proprietary
Preliminary Information

65

Vector Registers

Chaining

VF Option

66

CPU

When the vector length value is entered, it is entered into a countdown
register. VL bit 0 is removed so a VL value of 200 will be a value of 100
in the active register (a pseudo right shift). This is done because each pipe
handles only 100 elements. Every time VL decrements, it generates
the Advance Address signal. The VA option also checks VL bit 0 to
determine whether the vector length is odd or even. This enables either
pipe 0 for odd vector lengths, or pipe 1 for even vector lengths, on the last
operation.

If Vi, j, or k is reserved as a destination and the next instruction wants to
use the same vector register as an operand, the next instruction is allowed
to issue. This is referred to as chaining.

Chain slot time is the time required for the result of a previous instruction
to be presented to the inputs on the VR options. If another instruction is
waiting for these results or is addressing the same element, the VR option
passes the results directly to the read-out register. The VA option controls
the vector chaining by controlling the issuing of the Go Write signal.

Chaining to common memory read operations occurs on 8-word
boundaries. Vector control waits for 8 contiguous words to become valid
before the read of that group is allowed.

There are four VF options on the CP module. VFO and VFl control
fanout for pipe 0; VF2 and VF3 control fanout for pipe 1. The VF options
perform the following functions.

• Instruction parcel data fanout to VR options
• Vector add carry and enable summations and bit toggles
• Vector register parity error information
• Vector functional unit delay chains
• Vector functional unit data valids
• Vk address buffering for common memory
• Release of Vi for write operations

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

)

)

CPU

VM Option

VR Option

HTM-xxx-O
December 19, 1994

Vector Registers

The VM options perform write data multiplexing on an 8-bit slice of all
functional unit data. There are 16 VM options. VMOOO to VM007 are for
even-element steering, and VM008 to VM015 are for odd-element
steering.

The VM option performs the following functions:

• Read and write data steering
• Vector read-out control
• Vector add functional unit
• Both vector logical functional units

A total of 16 VM and VR options reside on the CP module as shown in
Table 14. Each option performs read data steering and also vector data
storage. The contents of the selected vector register are gated to one of
the following destinations; the read data steering is done on 4-bit slices.

• Floating-point add

• Floating-point multiply

• Reciprocal, pop, parity, LZ

• . Shift

• Common memory port A

• Common memory port B

• Common memory port C

• Common memory write data

• V data to scalar

• Bit matrix multiply

The VM and VR options contain four high-speed register (HSR) storage
arrays that are 18 bits wide by 64 elements deep. Sixteen of the bits are
data and 2 bits are for parity. VROOO through VR007 store vector data for
the even elements (pipe 0), and VR008 through VR015 store data for the
odd elements (pipe 1).

NOTE: VMlVR options 12 through 15 do not handle exchange data.

Cray Research Proprietary
Preliminary Information

67

Vector Registers

Option Pipe O/Pipe 1

Read Bits

Write Bits

Exchange Bits

Option Pipe O/Pipe 1

Read Bits

Write Bits

Exchange Bits

CPU

Table 14. VMlVR Data Steering

VM3/11 VR3/11 VM2/10 VR2/10 VM1/9 VR1/9 VMO/8 VRO/8

28-31 24-27 20-23 16 -19 12 -15 8 -11 4-7 0-3

24-31 - 16-23 - 8 -15 - 0-7 -

60-63 55-59 52-55 48-51 44-47 40-43 36-39 32-35

VM7/15 VR7/15 VM6/14 VR6/14 VM5/13 VR5/13 VM4/12 VR4/12

60-63 56-59 52-55 48-51 44-47 40-43 36-39 32-35

56-63 - 48-55 - 40-47 - 32-39 -

28-31 24-27 20-23 16-19 12-15 8 -11 4-7 0-3

Each VR option has an input that is used to force parity errors into the
HSR arrays. The maintenance channel provides the following two
features: force RAM parity error internal (code 100) and force RAM
parity error external (code 140). Through the use of the maintenance
channel, a specific loop controller and a specific chip can be given a
maintenance function such as force parity error.

Write Data Steering

68

The VM options receive the i instruction field from the VF options; this
field performs internal gating of data to the correct register. The i field
and the instruction decode enable separate write paths for each vector.
This path stays selected until a new instruction issue changes it. All the
write paths are separate and all can be active at the same time. Refer to
Figure 35 for an illustration of the write data path.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

)

CPU

VMOOO VM004

Bits Bits
0-7 32-39

VM001 VM005

Bits Bits
8-15 40-47

VM002 VM006

Bits Bits
16-23 48-55

VM003 VM007

Bits Bits
24-31 56-63

VM008 VM012

Bits Bits
0-7 32-39

VM009 VM013

Bits Bits
8-15 40-47

VM010 VM014

Bits Bits
16-23 48-55

VM011 VM015

Bits Bits
24-31 56-63

HTM-xxx-O
December 19, 1994

Vector Registers

I V7 VR007

I V6 VR006

Even Element I V5 VR005 Storage

I V4 VR004

IV3 VR003

I V2 VR002

I V1 VR001

VO VROOO

RAMO RAM 1 -
Bits Bits

0-15 16-31 f--

Elements Elements
0-63 0-63 -

~

RAM 2 RAM 3
Bits Bits I--

32-47 48-63

Elements Elements - IV7 VR015

0-63 0-63
- IV6 VR014

I V5 VR013

VR012

VR011

VO

RAMO

Bits
0-15

Element
0-63

RAM 2

Bits
32-47

Elements
0-63

VR010

VR009

VR008

RAM 1

Bits
16-31

Elements
0-63

RAM 3

Bits
48-63

Element
0-63

Figure 35. Write Data Path

Cray Research Proprietary
Preliminary Information

Odd Element
Storage

69

Vector Registers CPU

Read Data Steering

70

Both the VM and the VR options are responsible for read data steering.
Each VM and VR option steers 4 bits for all eight vector registers to one
of the following destinations:

• Floating-point add
• Floating-point multiply
• Reciprocal, pop, parity, leading zero

• Shift
• Common memory port A, B, C
• V data to scalar

The VM and VR options receive the j and k fields of the instruction from
the VF option along with the instruction; this enables one of eight vector
paths to which data is steered. These paths stay selected until another
instruction changes them. All the read paths are separate and all can be
active at the same time. Figure 36 shows the read data path for pipe 0 and
pipe 1 (even elements), and Figure 37 shows the read data path for pipe 0
and pipe 1 (odd elements). Referalso to the following diagrams for
additional related vector register information:

• Figure 38 - vector register write block diagram (pipe 0)
• Figure 39 - vectors 0 through 3 pipe 0/1 read data path
• Figure 40 - vectors 4 through 7 pipe 0/1 read data path
• Figure 41 - vectors 0 through 3 pipe 0/1 write data path
• Figure 42 - vectors 4 through 7 pipe 0/1 write data path
• Figure 43 - vector register decode bit fanout (pipe 0 and 1 path 1)
• Figure 44 - vector register decode bit fanout (pipe 0 and 1 path 2)
• Figure 45 - S register to vectors
• Figure 46 - memory data to vectors (even elements)
• Figure 47 - memory data to vectors (odd elements)

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

CPU

VR007 Vector 7 1
VR006 Vector 61

VR005 Vector 51

-

VR004 Vector 4 I

-

VR003 Vector 31

VR002 Vector 21

VR001 Vector 1 I
VROOO Vector 0

Array 0 Array 1

Bits Bits
0-15 16-31

Elements 0 - 63

Array 2

Bits
32-47

Array 3

Bits
48-63

Vector Registers

I VR007 Bits 56-59

VR006 Bits 48-51

I VR005 Bits 40 - 43

I VR004 Bits 32 - 35

I VR003 Bits 24 - 27

JVR002 Bits 16 - 19

I VR001 Bits 8 -11

VROOO Bits 0 - 3

-

-

-
-

VMOOO Bits 4 - 7

HTM-xxx-O
December 19, 1994

- Elements 0 - 63

IVM001 Bits12-15

I VM002 Bits 20 - 23

I VM003 Bits 28 - 31 -
I VM004 Bits 36 - 39 -
I VM005 Bits 44 - 47

I VM006 Bits 52 - 55

VMOO7 Bits 60 - 63

Figure 36. Read Data Path for Pipe 0 (Even Elements)

Cray Research Proprietary
Preliminary Information

71

Vector Registers CPU

VR015 Bits 56 - 59

VR015 Vector 7 I VR014 Bits 48 -51

72

VR014 Vector 61

VR013 Vector 51

VR012 Vector 41

I VR013 Bits 40 - 43

I VR012 Bits 32 - 35 -

VR011 Vector 3 I
VR010 Vector 21

VR009 Vector 1 I
VR008 Vector 0

IVR011 Bits 24-27 _

I VR010 Bits 16-19 -

I VR009 Bits 8-11 _

VR008 Bits 0 - 3

-

Array 0 Array 1

Bits Bits
0-15 16-31

Elements 0 - 63

Array 2

Bits
32-47

Array 3

Bits
48-63

Elements 0 - 63

-
-

-

VM008 Bits 4 - 7 -
I VM009 Bits 12-15

l VM010 Bits20-23

IVM011 Bits 28-31

I VM012 Bits36-39

-
-

I VM013 Bits 44 - 47

l VM014 Bits 52 - 55

-

VM015 Bits 60 - 63

Figure 37. Read Data Path for Pipe 1 (Odd Elements)

Gray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

~-)

)

CPU

Functional Units
Floating-point Add
Floating-point

Multiply
Reciprocal
Vector Shift
BMM
Integer Multiply

AR, AS, AT, AU

Scalar Data

CHOOO - CH014

Common Memory
Data Path 1

CH001 - CH015

Common Memory
Data Path 2

VROOO - VR007
Vector Select
Code (Fanout

from CK)

VR1, VR3, VR5,
VR6

Common Memory
Path 1 Code

(Fanout from CK)

VR1, VR3 ,VR5,
VR6

Common Memory
Path 2 Code

(Fanout from CK)

HTM-xxx-O
December 19, 1994

V Write Data

OEA,OEH

OIA,OIH

OIA,OIH

OYI,OYP

OYI,OYL

OYM,OYP

VMOOO
Bits

IAA ,IBX
0-7

VM001
IG A,IGH Bits

8-15
IIA ,IIH

VM002

,IIH Bits
16-23

IIA

1M A,IMH
VM003

Bits
1M A,IMD 24-31

1M E,IMH

'---

AROOO OPA,OPG

JAOOO OCA,OCP

ODA,ODC

VF001 OMA,OMH

CKOOO OGA OGJ

CK002 OGA OGJ

VM004
Bits

32-39

VM005
Bits

40-47

OAA-ODP V Write Data
VM006

Bits
48-55

VM007
Bits

56-63

-

VA001 I
VAOOO

AkData IHA,IHG
VL Registerl

01-0 N V Write Address

L
OAO Go Write

Instruction
Parcel IAA, lAP

L
Issue IBA, BB, IBD

L
Release ICA,ICH

1: OWA - OWP Instruction Fields IKA -IKP

Path 1 Code IDA,IDJ
OWO Issue

IXA-IXH Go Write OMA-OMH

Path 2 Code IEA,IEJ

INJ ONE

~

-
Advance Vi Write Address (Expand)

Figure 38. Vector Register Write Block Diagram (pipe 0)

Cray Research Proprietary
Preliminary Information

Vector Registers

IVR7

IVR6

IVR5

IVR4

IAA-IDP fVR3

~ IV~
IVR1 -

I-
' VRO

I-

I-

I-

~

I-

IJA-IJF

IJH

IKA, ILA
IKP

OAA-OAP
OBA-OBP

VFOOO OCA-OCP
ODA-ODP ----------
OAO Parcel 0
OBO Parcel 1
OCO Parcel 2
000 Parcel 3 -----------

Pipe 0

73

)

)

CPU

Vector 0

VROOO
VROOS

OAA-
lUAU

OAE-
IUAH

OAI-
IOAl

10AM-
OAP

IOBA-
OBO

10BE-
OBH

OBI-
IOBl

10BM
OBP

OCA-
OCO

OCE-
OCH

OCI-
OCl

OCM-
OCP

lonA
ODD

IOn!==_
OOH

001-
OOl

lonM_
OOP

HTM-xxx-O
December 19, 1994

IEA-

Bits 0 - 3 1 I~~
ICO

Bits4-7 IEA-
lED
lEA

Bits S -11 I II~~
ICO

Bits 12 -15 IEA-
lED

lEA

Bits 16-191 I~:-
ICO

Bits 20-23 IEA-
lED

lEA

.1 lED
Bits 24 - 27 ICA _

ICO

Bits2S-31 IEA-
lED

IEA-

Bits 32 - 351 I~:
ICO

Bits 36-39 IEA-
lED

lEA

Bits 40-431 :~~_
ICO

Bits 44-47 11:11

lED

IEA-

Bits4S-511 :~~-
ICO

Bits 52 - 55 11:11

lED
lEA

Bits 56 - 591 :~~
ICO

Bits 60-63 11:11

lED

Vector 1

VROOO/S VROOl
VR009

VMOOO/S OAA-
lOAD

VMOOO/S
IoAE-
IOAff

VROO1l9

VMOO1l9 OAI-
OAl

VMOO1l9
IoAM-
OAP

VR002l10

VM002l10 OBA-
OBO

VM002l10 IoBE-
OBH

VR003/11

VM003111 OBI-
OBl

VM003/11 ORM
OBP

VR004/12

VM004/12 OCA-
OCO

VM004/12
OCE
OCH

VR005/13

VM005/13
OCI-
OCl

VM005/13 OCM-
OCP

VR006/14

VM006/14
lonA
ODD

VM006/14
Ion I:
OOH

VR007/15

VM007/15
001-
OOl

VM007/15 lonM
OOP

Vector 2

lEE V ROOO/S VR002 lEI

Bits 0 - 3 1 I~; VMOOO/S
VR010

Bits 0-3 1 I~L OAA-

ICH I.UAU ICl

Bits 4-7
VMOOO/S

lEE OAE- Bits4-7 lEI
IEH IUAH IEL

lEE VROOl/9
1 IEH

Bits S -11 IC":F VMOO1l9
ICH

1f=1

1 IEl
OAI- Bits 8 -11 'f"

10Al ICl

Bits 12 -15 lEE VMOO1l9 OAM- Bits 12 -15 lEI
II:H OAP IEl

lEE VR002/10

Bits16-191
IEH

'I"'" VM002/10
ICH

lEI

II IEl
OBA- Bits 16 - 19 'I'"

OBO ICl

Bits 20-23 lEE VM002/10 IOBE- Bits 20-23 lEI
IEH OBH IEL

lEE VR003/11
.1 IEH

Bits 24 - 27 ICE ~ VM003111
ICH

lEI

OBI- Bits 24 _ 271 I~IL.
IOBl IC,;L

Bits 28-31 lEE VM003/11 10BM Bits2S-31 lEI

IEH OBP II:L

lEE VR004/12 lEI

Bits 32-35 I IEH
1f'E: VM004/12
ICH

I II:L
OCA- Bits 32 - 35 1f'1

OCO ICl

Bits 36-39 IFI=. VM004/12 OCE- Bits 36-39 lEI
IEH OCH IEl

lEE lEI

Bits40-4311~;
VR005/13 ,I IEL'

OCI- Bits 40 - 43 ICI
ICH VM005/13 OCl ICl

Bits 44-47 lEE VM005/13 OCM- Bits 44-47 lEI
lI::n OCP II:L

IFF VR006/14
II IEH

Bits 4S - 51 .,..~
VM006/14

ICH

11:1

Bits4S-511
IEl

lonA
ODD

.v
ICl

Bits 52-55 lEE VM006/14 lonl: Bits 52-55 lEI
II:H OOH IEL

lEE VR007/15

Bits 56-591
IEH
.,..~

lEI

Bits 56-591
IEl

001- .,..
iCH

VM007/15 OOl ICl

Bits 60-63 lEE VM007/15 IODM- Bits 60-63 lEI
IEH OOP IEL

Figure 39. Vectors 0 through 3 Pipe 0/1 Read Data Path

Cray Research Proprietary
Preliminary Information

Vector Registers

Vector 3

VROOO/S

VMOOO/S

VR003 IEM VROOO/8

VR012
Bits 0-3 .. II~~ OAA- VMOOO/S

VMOOO/S
roAD ICP

VMOOO/8
OAE- Bits4-7 IEM
rOAH IEP

VROOl/9

VMOOl/9

IEM VROO1l9
I IEP

OAI- Bits S -11 Ir.M VMOOI19
OAl ICP

VMOOl/9 10AM- Bits 12 -15 IEM VMOOl/9

OAP It::t'

VR002l10

VM002/10

IEM VR002l10
II'EP

OBA- Bits 16 -19 Ir.M
VM002/10 OBO ICP

VM002/10 10BE- Bits 20-23 IEM VM002/10

OBH IEP

VR003/11

VM003111

IEM VR003/11
,I'EP

OBI- Bits 24 - 27 ICM VM003/11
10Bl Ic';P

VM003/11 LuBM Bits 28-31 IEM VM003/11
OBP IEP

VR004/12

I VMOO4/12

IEM VR004/12
I'EP

OCA- Bits 32 - 35 Ir.M VM004/12
OCO ICP

VM004/12 OCE- Bils36-39 IEM VM004/12

OCH IEP

VR005/13

VM005/13

II:M

II IEP
VR005/13

OCI- Bils 40 - 43 IC":M
OCl ICP VMOO5/13

VMOO5/13 OCM- Bils44-47 IEM VM005/13
OCP 11:1-'

VR006114

VM006/14

IEM VR006/14

ll lEP
looA- Bits48-51 If'l

VM006/14 ODD ICP

VM006114 IOOE- Bils52 -55 IEM VM006/14

OOH It::t'

VR007/15
IEM VR007/15

Bils56-591
IEP

001- 'I"" VMOO7/15 OOl ICP
VMOO7/15

VMOO7/15 IODM- Bits 60-63 IEM VMOO7/15

OOP It::t'

75

)

CPU

Vector 4

VR004
VR012

OAA-
lUAU

OAE-
IUAH

OAI-
IOAl

10AM-
OAP

10BA-
OBO

IOAF-
OBH

OBI-
IOBl

IOBM
OBP

OCA-
OCO

OCE-
OCH

OCI-
OCl

IOCM-
OCP

lonA-
000

I OnF-
OOH

001-
OOl

lonM
OOP

HTM-xxx-O
December 19, 1994

lOA

IIDD
BitsO-3 IFA

IFO

Bits4-7 lOA
100
IDA

I 100
Bits 8 -11 1<=11

IFO

Bits12-15 lOA
100

lOA

II IDO
Bits16-19 1<=11

IFO

Bits 20-23 IDA
100
lOA

·IIUU
Bits 24 - 27 IFA

II-U

Bits28-31 lOA
100

lOA

Bits 32 -351
100
,<="

IFO
Bits 36-39 Ind

100
IDA

31 100
Bits 40-43 1<=11

IFO

Bits44-47 lOA
IDO

IDA

Bits48-511
IDO

IFO

Bits 52-55 lOA
IDO
IDA

91 IDD'
Bits 56-59 ,.-

IFO

Bits 60-63 IDA
IDD

Vector 5

VROOO/8 VR005
VR013

VMOOO/8 OAA-

VMOOO/8
lOAD

PAE-
IOAH

VR001/9

VM001/9 OAI-
OAl

VM001/9 IodM_
OAP

VR002l10

VM002l10 OBA-
OBO

VM002l10 IOBE-
OBH

VR003/11

VM003/11 OBI-
OBl

VM003/11 lOAM
OBP

VR004/12

VM004/12 OCA-
OCO

VM004/12
OCE-
OCH

VR005/13

VM005/13
OCI-
OCl

VM005/13 OCM-
OCP

VR006/14

VM006/14
I"nd _
000

VM006/14
lonF-
OOH

VR007/15

VM007/15
001-
OOl

VM007/15 lonM-
OOP

Vector 6

10E VROOO/8 VR006 101

IIDH
Bits 0-3 IFE VMOOO/8

VR014 II0l
OAA- BitsO-3 IFI

IFH lUAU IFl

Bits4-7
VMOOO/8

10E OAE- Bits4-7 101
10H IUAH 10l

Inl= VR001/9
IIOH

Bits 8 -11 IFE VM001/9
IFH

Inl

I 10l
OAI- Bits 8 -11 11:1'

IOAl IFl

Bits 12-15 IDE VM001/9 10AM- Bits 12 -15 101
10H OAP 10l

IDE VR002l10
,IIOH

Bits 16 - 19 1<='"
VM002l10

IFH

Inl

II 10l
OBA- Bits 16-19 , ... ,
OBO IFl

Bits 20-23 10E VM002/10 OBE- Bits 20-23 Inl
10H OBH 10l

10E VR003/11

Bits 24-271 :~~
VM003/11 .. .on

101

OBI- Bits24-271 :~IL
OBl IFl

Bits 28-31 10E VM003/11 OBM Bits 28-31 101
10H OBP 10l

10E VR004/12 101

IIUH
Bits 32 - 35 11=1= VM004/12

IFH

OCA- Bits 32 - 3s1 :~IL
OCO IFL

Bits 36-39 10E VM004/12 OCE- Bits 36-39 101
10H OCH 10l

10E
VR005/13

,IIOH
Bits 40-43 IFE

101

Bits 40-431
IDL

OCI- IFI
IFH VM005/13 OCl IFl

Bits 44-47 10E VM005/13 OCM- Bits 44-47 101
IDH OCP IUL

IDE VR006/14
11 10H

Bits 48-51
VM006/14

IFH

Inl

Bits48-511
10l

IODA- , ... ,
000 IFl

Bits 52-55 10E VM006/14 IODF- Bits 52-S5 101
Iun OOH IUL

10E VR007/15
91 10H

Bits 56 - 59 IFE

101

Bits 56-591
10l

001- '''''
IFH VM007/15 OOl IFl

Bits 60-63 10E VM007/15 lonM- Bits 60-63 101
IDH OOP IUL

Figure 40_ Vectors 4 through 7 Pipe 0/1 Read Data Path

Cray Research Proprietary
Preliminary Information

Vector Registers

Vector 7

VROOO/8

VMOOO/8

VR007 10M VROOO/8

VR015 IIDP
OAA- BitsO-3 IFM VMOOO/8

VMOOO/8
lUAU IFP

OAE- Bits 4-7
VMOOO/8

10M
IUAH lOP

VR001/9

VM001/9

IDM VR001/9
I IDP

OAI- Bits 8 -11 II:M VM001/9
rOAl IFP

VM001/9 .OAM- Bits12-15 10M VM001/9

OAP lOP

VROO2/10

VM002/10

IDM VR002l10
II lOP

OBA- Bits 16 -19 1<=.
VM002/10 OBO IFP

VM002/10 OBE- Bits 20-23 10M VM002/10

OBH lOP

VR003/11

VM003/11

10M VR003/11

OBI- Bits 24 - 271 :~~ VM003/11
OBl IFP

VM003/11 10BM Bits 28-31 10M VM003/11
OBP lOP

VR004/12

VM004/12

IDM VR004/12 I lOP
OCA- Bits 32 - 35 , VM004/12
OCO IFP

VM004/12 OCE- Bits 36-39 InM VM004/12

OCH IDP

VR005/13

VMOOS/13

IDM
VR005/13

II lOP
OCI- Bits 40 - 43 I""
OCl IFP

VM005/13

VM005/13 OCM- Bits 44-47 IDM VM005/13
OCP lOP

VR006/14

VM006/14

10M
VR006/14

IODA- Bits 48 -511 :~:
VM006/14 000 IFP

VM006114 IODE- Bits 52-55 10M
VM006/14

OOH lOP

VR007/15
InM VR007/15

91 IDP 001- Bits 56 - 59 IFM
VM007/15 OOl IFP VM007/15

VM007/15 IODM- Bits 60-63 10M VM007/15

OOP lOP

77

)

)

CPU

VMOOO OAA-
VMOO8 OAH

VM001 OAA-VM009
OAH

VM002
OAA-VM010
OAH

VM003
OAA-VM011
OAH

VM004
OAA-VM012
OAH

VM005
VM013 OAA-

OAH

VM006
VM014 OAA-

OAH

VM007
VM015 OAA-

OAH

HTM-xxx-O
December 19,1994

Vector 0

VROOO
VROO8

IAA-
BitsO-7 IAH

IAI-
Bits8-15 lAP

IBA-
Bits 16-23 IBH

IBI-
Bits 24-31 IBP

ICA-
Bits 32-39 ICH

ICI-
Bits40-47 ICP

10A-
Bits 48-55 10H

101-
Bits 56-63 lOP

VMOOO OAI-
VMOO8 OAP

VMOO1 OAI-
VMOO9 OAP

VMOO2
OAI-VM010
OAP

VMOO3
OAI-VM011
OAP

VM004
OAI-VM012
OAP

VM005
VM013 OAI-

OAP

VMOO6
VM014 OAI-

OAP

VM007
VM015 OAI-

OAP

Vector 1

VROO1
VR009

IAA- VMOOO OBA-
BitsO-7 IAH VM008 OBH Bits 0-7

IAI-
Bits8-15 lAP

VMOO1 OBA-
VMOO9 OBH Bits8-15

IBA-
Bits 16-23 IBH

VM002 OBA-VM010 OBH Bits 16-23

IBI-
Bits24-31 IBP

VMOO3
OBA-VM011
OBH Bits 24-31

ICA-
Bits 32 -39 ICH

VM004
OBA-VM012
OBH Bits 32-39

VMOO5
ICI- VM013 OBA-

Bits 40-47 ICP OBH Bits 40-47

VM006
10A- VM014 OBA-

Bits 48-55 10H OBH Bits 48-55

VMOO7
101- VM015 OBA-

Bits 56-63 lOP OBH Bits 56-63

Figure 41. Vectors 0 through 3 Pipe 0/1 Write Data Path

Cray Research Proprietary
Preliminary Information

Vector Registers

Vector 2 Vector 3

VR002 VR003
VR010 VR011

IAA- VMOOO OBI- IAA-
IAH VM008 OBP BitsO-7 IAH

IAI-
lAP

VM001 OBI- IAI-
VMOO9 OBP Bits8-15 lAP

IBA-
IBH

VM002 OBI- IBA-
VM010 OBP Bits 16-23 IBH

IBI-
IBP

VMOO3
OBI- IBI-VM011
OBP Bits24-31 IBP

ICA-
ICH ,

VM004
OBI- ICA-VM012
OBP Bits 32-39 ICH

VMOO5
ICI- VM013 OBI- ICI-
ICP OBP Bits 40-47 ICP

VMOO6
10A- VM014 OBI- 10A-
10H OBP Bits 48-55 IDH

VM007
101- VM015 OBI- 101-
lOP OBP Bits 56-63 lOP

79

)

)

CPU

VMOOO OCA-
VM008 OCH

VM001 OCA-
VMOO9 OCH

VMOO2 OCA-
VM010 OCH

VM003
OCA-VM011
OCH

VM004
OCA-VM012
OCH

VM005
OCA-VM013
OCH

VM006
VM014 OCA-

OCH

VMOO7
VM015 OCA-

OCH

HTM-xxx-O
December 19, 1994

Bits 0-7

Bits 8-15

Bits 16-23

Bits 24-31

Bits 32-39

Bits 40-47

Bits 48-55

Bits 56-63

Vector 4

VR004
VR012

IAA- VMOOO OCI-
IAH VM008 OCP

IAI-
lAP

VM001 OCI-
VM009 OCP

IBA-
IBH

VM002 OCI-
VM010 OCP

IBI-
IBP

VM003
OCI-VM011
OCP

ICA-
ICH

VM004
OCI-VM012
OCP

ICI-
ICP

VMOO5
OCI""-VM013
OCP

VM006
10A- VM014 OCI-
10H OCP

VM007
101- VM015 OCI-
lOP OCP

Vector 5

VR005
VR013

IAA- VMOOO OOA-
BitsO-7 IAH VM008 OOH Bits 0-7

IAI-
Bits 8-15 lAP

VM001 OOA-
VM009 OOH Bits8-15

IBA-
Bits 16-23 IBH

VM002 OOA-
VM010 OOH Bits 16-23

IBI-
Bits 24-31 IBP

VM003
OOA-VM011
OOH Bits 24-31

ICA-
Bits 32 -39 ICH

VM004
OOA-VM012
OOH Bits 32 -39

ICI-
Bits 40-47 ICP

VM005
OOA-VM013
OOH Bits 40-47

VM006
10A- VM014 OOA-

Bits 48-55 10H OOH Bits 48-55

VM007
101- VM015 OOA-

Bits 56-63 lOP OOH Bits 56-63

Figure 42. Vectors 4 through 7 Pipe 0/1 Write Data Path

Cray Research Proprietary
Preliminary Information

Vector 6

VR006
VR014

IAA-
IAH

IAI-
lAP

IBA-
IBH

IBI-
IBP

ICA-
ICH

ICI-
ICP

10A-
10H

101-
lOP

Vector Registers

Vector 7

VR007
VR015

VMOOO 001- IAA-
VM008 OOP BitsO-7 IAH

VMOO1 001- IAI-
VM009 OOP Bits 8-15 lAP

VM002 001- IBA-
VM010 OOP Bits 16-23 IBH

VM003
001- IBI-VM011
OOP Bits 24-31 IBP

VM004
001- ICA-VM012
OOP Bits 32 -39 ICH

VM005
001- ICI-VM013
OOP Bits 40-47 ICP

VM006
VM014 001- 10A-

OOP Bits48-55 10H

VM007
VM015 001- 101-

OOP Bits 56-63 lOP

81

)

CPU

CKOOO OFD
CKOO2

OFB

OFC

IOFA

HTM-xxx-O
December 19, 1994

VROO1
IYB VROO9

IYB
VROO3
VR011

OYI IMA

OYJ

OYK
OYL IMA

IMA

IMA

IMA

IMA

IMA

IMA

OYI 1MB

OYJ

OYK

OYL 1MB

1MB

1MB

1MB

1MB

1MB

1MB

IYB VROO5 OYI
VR013 OYJ

.1 VMOOO J I VMOO8 OYK
OYL

J VMOO2
I VM010 I
J VMOO4

J 1 VM012

.1 VMOO6 J L VM014

J 1 VMOO1
L VMOO9

J VMOO3
1 VM011 I

I .1 VMOO5
1 VM013

J
J VMOO7

OYI 1 VM015 VROO6
VR015 OYJ l VMOOO J VMOO8 OYK

OYL
J VMOO2
1 VM010 I OYM

OYN
J VMOO4 I IYB

OYO 1 VM012
IYC

OYP
.1 VMOO6 J I VM014

J VMOO1
. L VMOO9 J
J VM003
1 VM011 j

I J VMOO5
1 VM013

J VMOO7
I VM015 I

Figure 43. Vector Register Decode Bit Fanout (Pipe 0 and 1 Path 1 Only)

Cray Research Proprietary
Preliminary Information

Vector Registers

IMC .J VMOOO I
Vector Register Decode Bits

·l VMOO8
IMD· IMC 1MB IMA

I IMC JVMOO2
1 0 0 0 VO L VM010

1 0 0 1 V1
IMC JVM004 I LVM012 1 0 1 0 V2

IMC JVMOO6 I 1 0 1 1 V3 ·1 VM014
1 1 0 0 V4

IMC J VMOO1 I IVMOO9 1 1 0 1 V5

1 1 1 0 V6 IMC JVMOO3 I IVM011
1 1 1 1 V7

IVMOO5 I IMC L VM013 • Path 1 Valid

I IMC JVMOO7
1 VM015

NOTES: The top option number represents pipe O.
IMD The bottom number represents pipe 1. I VMOOO I VMOO8

IMD .IVMOO2 I I VM010

.1 VROOO I INA IMD JVMOO4 I L VROO8 1 VM012

INA JVROO2 I IMD .IVMOO6 I L VR010
tVM014

J VMOO1 I
INA .1 VR004 I IMD ·l VR012 ·IVMOO9

I
INA .IVR006 I IMD JVM003 1 VR014 1 VM011

I
INA JVROO1 I IMD JVMOO5 1 VROO9 I VM013

INA JVROO3 I IMD JVMOO7 I 1 VR011 1 VM015

Path 1 Valid INA .1 VROO5 I Path 1 Valid I VR013

Path 1 Valid
JVROO7 I Path 1 Valid INA VR015

83

)

CPU

CKOOO OFD
CKOO2

OFB

OFC

~

HTM-xxx-O
December 19, 1994

IYC

IYB

VROO1 OYM
VROO9 OYN

OYO
OYP

VROO3
OYI

VR011 OYJ

OYK

OYL

IYC VROO5 OYM
VR013 IME VMOOO I OYN I VMOO8 OYO

OYP
IME J VMOO2

L VM010 J
IME J VM004 J L VM012

IME J VMOO6 J L VM014

IME J VMOO1
1 VMOO9 J

IME J VMOO3
1 VM011 I

IME J VMOO5
L VM013 J

IME .1 VMOO7

J L VM015 OYI
VROO7

IMF I VMOOO J
VR015 OYJ

VMOO8 OYK

IMF J VMOO2 I
OYL

IYB 1 VM010 OYM
IYC

IMF J VMOO4 J
OYN

I VM012 OYO

IMF J VMOO6 J
OYP

I VM014

IMF J VMOO1
1 VMOO9 I

IMF J VMOO3 I 1 VM011

IMF J VMOO5
1 VM013 I

IMF J VMOO7
L VM015 J

Figure 44. Vector Register Decode Bit Fanout (pipe 0 and 1 Path 2 Only)

Cray Research Proprietary
Preliminary Information

Vector Registers

Vector Register Decode Bits
IMG IVMOOO

J lVMOO8 IMH* IMG IMF IME

IMG JVMOO2

J
1 0 0 0 VO

L VM010
1 0 0 1 Vi

IMG IVM004 I 1 VM012 1 0 1 0 V2

IMG JVMOO6 I
1 0 1 1 V3

IVM014
1 1 0 0 V4

IMG JVMOO1
1 VMOO9 I 1 1 0 1 V5

1 1 1 0 V6
IMG .IVMOO3 I 1 VM011 1 1 1 1 V7

IMG IVMOO5
1 VM013 I * Path 2 Valid

IMG IVMOO7 I 1 VM015 NOTES: The top option number represents pipe O.

IMH
The bottom number represents pipe 1.

VMOOO I ·1 VMOO8

IMH IVMOO2 I jVM010

IMH JVM004

J
INB 1 VROOO I I

VROO8 1 VM012

IMH JVMOO6 J
INB IVROO2 I 1 VR010 -I VM014

IMH IVMOO1 I
INB JVROO4 I ·1 VR012

I
VMOO9

IMH JVMOO3 I
INB JVROO6 I 1 VR014 1 VM011

IMH .IVMOO5 I
INB JVROO1 I I

VROO9 1 VM013

IMH IVMOO7 I
INB JVROO3 I 1 VR011 1 VM015

Path 2 Valid INB .IVROO5 I Path 2 Valid 1 VR013

Path 2 Valid
IVROO7 I Path 2 Valid INB VR015

85

)

)
_/

CPU

AROOO

VMOOO
OEA- IGA-
OEH Bits 0-7 IGH

Pipe 0
1---- ------------------

Pipe 1

VM008
OEI- IGA-
OEP Bits 0-7 IGH

ATOOO

OEA- IGA-
VM004

OEH Bits 32-39 IGH

Pipe 0
r---- ~-----------------

Pipe 1

OEI-
OEP

HTM-xxx-O
December 19, 1994

VM012
IGA-

Bits 32-39 IGH

ASOOO

AT001

- ----

AS001

VM001 VM002
OEA- IGA- OEA- IGA-
OEH Bits8-15 IGH OEH Bits 16-23 IGH

------------------ ------------------------
VM009 VM010

OEI- IGA- OEI- IGA-
OEP Bits8-15 IGH OEP Bits 16-23 IGH

S Register to Vector

AUOOO

OEA- IGA-
VM005 VM006

OEA- IGA-
OEH Bits 40-47 IGH OEH Bits 48-55 IGH

1------------------ ----- ------------------
VM013 VM014

OEI- IGA- OEI- IGA-
OEP Bits 40-47 IGH OEP Bits 48-55 IGH

Figure 45. S Register to Vectors

Cray Research Proprietary
Preliminary Information

Vector Registers

AS002

VM003
OEA- IGA-
OEH Bits 24-31 IGH

----- ------------------
VM011

OEI- IGA-
OEP Bits 24-31 IGH .

,

AUOU1

OEA- IGA-
VM007

OEH Bits 56-63 IGH

~---- ------------------
VM015

OEI- IGA-
OEP Bits 56-63 IGH

87

CPU

Path 1

CHOOO

OIA-OID

CHOO2

OIE-OIH

Path 2

CHOO1

OIA-OID

CHOO3

OIE-OIH

HHTM-xxx-O
December 19, 1994

CHOO4

IIA-IID VMOOO OIA-OID

OIA- IIE-
OlD IIH

CHOO6

OIE- IIE-
OIH IIH VMOO4

IIA-IID OIE-OIH

CHOO5

IJA-IJD
VMOOO

OIA-OID

OIA- IJE-
OlD IJH

CHOO7

OIE- IJE-
OIH IJH VMOO4

IIA-IID OIE-OIH

CHOOS

IIA-IID VMOO1 OIA-OID IIA-IID

OIA- IIE- OIA- IIE-
OlD IIH

CH010
OlD IIH

OIE- IIE- OIE- IIE-
OIH IIH VMOO5 OIH IIH

IIA-IID OIE-OIH IIA-IID

Common Memory Data to Vector Paths 1 and 2 Even Elements

CHOO9

VMOO1
IJA-IJD OIA-OID IJA-IJD

OIA- IJE- OIA- IJE-
OlD IJH CH011 OlD IJH

OIE- IJE-
VMOO5 OIH IJH

OIE- IJE-
OIH IJH

IIA-IID OIE-OIH IIA-IID

Figure 46. Memory Data to Vectors (Even Elements)

Cray Research Proprietary
Preliminary Information

Vector Registers

CH012

VMOO2 OIA-OID IIA-IID VMOO3

OIA- IIE-

CH014
OlD IIH

OIE- IIE-
VMOO6 OIH IIH VMOO7

OIE-OIH IIA-IID

CH013

VMOO2 VMOO3
OIA-OID IJA-IJD

OIA- IJE-
CH015 OlD IJH

VMOO6
OIE- IJE-
OIH IJH VMOO7

OIE-OIH IIA-IID

89

)

CPU

Path 1

CHOOO

OJA-OJD

CHOO2

OJE-OJH

Path 2

CHOO1

OJA-OJD

CHOO3

OJE-OJH

HTM-xxx-O
December 19,1994

CHOO4

IIA-IID VMOO8 OJA-OJD

OIA- IIE-
OlD IIH CHOO6

OIE- IIE-
OIH IIH VM012

IIA-IID OJE-OJH

CHOO5

IJA-IJD VMOO8
OJA-OJD

OIA- IJE-
OlD IJH

CHOO?

OIE- IJE-
OIH IJH~ VM012

IIA-IID~ OJE- OJH

CHOO8

IIA-IID VMOO9
OJA-OJD IIA-IID

OIA- IIE-
OlD IIH

OIA- IIE-

CH010 OlD IIH

OIE- IIE-
OIH IIH VM013 OIE- IIE-

OIH IIH

IIA-IID~ OJE- OJH IIA-IID

Common Memory Data to Vector Paths 1 and 2 Odd Elements

CHOO9

IJA-IJD VMOO9 OJA-OJD

OIA- IJE-
OlD IJH CH011

OIE- IJE-
OIH IJH VM013

IIA-IID~
OJE- OJH

Figure 47. Memory Data to Vectors (Odd Elements)

Cray Research Proprietary
Preliminary Information

IJA-IJD

OIA- IJE-
OlD IJH

OIE- IJE-
OIH IJH

IIA-IID

Vector Registers

CH012

VM010 OJA-OJD IIA-IID VM011

OIA- IIE-

CH014 OlD IIH

,

OIE- IIE-
VM014 OIH IIH VM015

OJE- OJH IIA-IID

CH013

VM010 OJA-OJD IJA-IJD VM011

OIA- IJE-

CH015 OlD IJH

OIE- IJE-
VM014 OIH IJH VM015

OJE- OJH IIA-IID

91

)

)

)

VECTOR LOGICAL

HTM-xxx-O
December 19,1994

Refer to Figure 48 for a vector logical block diagram. There are two
vector logical units in a eRA Y T90 series system; each unit operates
independently. These functional units reside on 16 VM options. VMOOO
through VM007 handle pipe 0 (the even elements), and VM008 through
VM015 handle pipe 1 (the odd elements). Each VM option operates on a
4-bit slice of all eight vector registers.

The vector logical units receive data from the VR options and send the
results back to the vector registers. The second vector logical unit is
enabled by setting mode bit 2 (ESL) in the mode field of the exchange
package. When both logical units are enabled, data is first processed in
the second unit. This is done because only the first unit can process the
146 and 147 (vector merge) instructions. For example, if a 140 instruction
(logical product) issues, the second unit processes the instruction in case a
146 or 147 issues next. If the first unit processed the 140 instruction, it
would be busy and the 146 instruction would have to hold issue.

The vector logical unit performs the logical product (AND), logical sum
(OR), and logical difference [XOR (exclusive OR)] functions using either
scalar or vector registers.

Cray Research Proprietary
Preliminary Information

93

Vector Logical

Vectors 0-7
Pipe 0

.... 10..

.... - ...
10.

VFOOO-001

VROOO-007

OAA- OAP

IKA
Instruction Parcel IKP

Vector Logical 1 and 2

VMOOO
VM007

Unit 1

O O ~vo~ata ~_
Unit 2

IGA-
IGH o 0 ILC

Result Vector
Even Elements

CPU

-L... ___ -' VM = 1 V j ~ Neg OVB Vj = 0 IOH ~ ~ II l OVA, Vj = Neg INA, VFOOO-

VJ= 0 J 001

OYU

ICOOO - IC003 lOA
Enable Vector

Logical 2

OEA-OEH
OEA-OEH

SSOOO PipeD
AR, AS, AT, AU Sj Data Vector Mask Register 1------------

Vectors 0-7
Pipe 1

.... 10..

.... 10..

94

10._

....

OEI-OEP

VF002-003

OAA-OAP

Instruction IKA-

VM008
VM015

OEI-OEP

lOA

Pipe 1

VR008-015

I Parcel IKP OVA, Vj = Neg INA, VF002 _
I VM = 1 II Vj~ Pos l OVB Vj = 0 IOH 003 I VJ= 0 J __ ...

00
00 ---_ ... V Data

IGA
IGH

ICOOO - IC003 OYU ILC
Enable Vector ~";";"--~--t-.......j~

Unit 1

Unit 2

Logical 2 '-----'"

-

..... -+---. Result Vector
Odd Elements

-

Vector Logical 1 and 2

Figure 48. Vector Logical Block Diagram

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

)

CPU Vector Logical

Vector Logical Instructions

Refer to Table 15 for a list of the vector logical instructions.

Table 15. Vector Logical Instructions

Instruction CAL Description

140(,4<

141 ijk

142ijk

143ijk

144ijk

145ijk

Vector Merge

ViSj&Vk Transmit logical product of (S,) and (Vkelements) to Vi
elements

ViVj&Vk Transmit logical product of (Vjelements) and (Vkelements)
to Vi elements

Vi Sj!Vk Transmit logical sum of (S,) and (Vkelements) to Vi
elements

ViVj!Vk Transmit logical sum of (Vjelements) and (Vkelements) to
Vi elements

ViSjlVk Transmit logical differences of (S,) and (Vkelements) to Vi
elements

ViV/lVk Transmit logical differences of (Vjelements) and (Vk
elements) to Vi elements

The 146 and 147 instructions merge the contents of the registers using the
vector mask register for control. The 146 instruction merges the contents
of Sj with the contents of Vk; the 147 instruction merges the contents of
Vj and Vk. If the vector mask bit is a 1, the Vj or Sj data is used; if the
vector mask bit is a 0, the Vk data is used.

The vector logical functional unit holds a copy of the S-register value.
Therefore, a subsequent instruction can change the S-register value and
not affect the results. These instructions are confined to the second logical
unit. Refer to Table 16 for the vector merge instructions, and refer to
Figure 49 for an example of a vector merge operation.

Table 16. Vector Merge Instructions

Instruction CAL Description

146ijk

146,uk

147ijk

HTM-xxx-O
December 19,1994

ViSj!Vk&VM Merge (S,) and (V k elements) to Vi elements using (VM) as
mask

Vi#VM&Vk Merge 0 and (Vkelements) to Vi elements using (VM) as
mask

ViVj!Vk&VM Merge (V j elements) and (V k elements) to Vi elements
using (VM) as mask

Cray Research Proprietary
Preliminary Information

95

Vector Logical CPU

96

147ijk Merge 8jand Vkelements to Vi elements using VM as mask

Element 0

Element 1

Element 2

Element 3

Element 4

82

VL=5

V k Elements (VRNM)

0 0

0 1

0 2

0 3

0 4

a 7
I

Vector Mask (88)

0001100 o

Vi Elements (VMNR)

VkElement 0

VkElement 1

VkElement 2

8j

8j

NOTE: Elemen
127 are

Element 0

Element 1

Element 2

Element 3

Element 4

ts 5 through
unchanged.

146ijk Merge Vj elements and Vk elements to Vi elements using VM as mask

Vector Mask (88)

Element 0

Element 1

Element 2

Element 3

Element 4

Element 0

Element 1

Element 2

Element 3

Element 4

VL=5 0001100

V k Elements (VRNM)

0 0

0 1

0 2

0 3

0 4

Vj Elements (VRNM)

0 7

0 7

0 7

0 7

0 7

~

Vi Elements (VMNR)

VkElement 0

VkElement 1

VkElement 2

VjElementO

Vj Element 1

NOTE: Elemen
127 are

Element 0

Element 1

Element 2

Element 3

Element 4

ts 5 through
unchanged.

Figure 49. Vector Merge Operation

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

)

CPU

Vector Mask

Vector Logical

There are two vector mask registers: VMO and VMl. Each register is 64
bits wide, and the two registers are aligned to create a 128-bit register.
Each bit in the register corresponds to an element in a vector register.
The vector mask register stores the results of a test condition of an
element in a vector. For example, a bit can be set in the mask register for
all elements in the test vector that are positive values.

The vector mask register receives data from the scalar registers or from
the result of comparing a condition within the elements of a vector. The
vector mask register is arranged so that mask bit 127 corresponds to
element 0 of the vector.

Refer to Table 17 and Table 18 for a list of the vector mask and vector
mask test operations, respectively. Refer also to Figure 50 for an
illustration of the 1750jO instructions.

Table 17. Vector Mask Operations

Instruction GAL Description

0030P VM08j Transmit (8}) to VMO

0030j1 VM18j Transmit (8}) to VM1

*0030/2 VMOAj Transmit (A}) to VMO

*0030]3 VM1 Aj Transmit (A}) to VM1

070ij1 ViGI,8j&VM Transmit compressed index of (8}) controlled by (VM) to Vi

073KlO 8iVMO Transmit (VMO) to 8i

073i10 8iVM1 Transmit (VM1) to 8i

*073120 AiVMO Transmit (VMO) to Ai

*073130 AiVM1 Transmit (VM1) to Ai

* These instructions must be preceded by a 005400 (EIS) instruction.

HTM-xxx-O
December 19, 1994

Gray Research Proprietary
Preliminary Information

97

Vector Logical CPU

98

Table 18. Vector Mask Test Operations

Instruction CAL Description

1750p VM Vj,Z Set VM bit if (Vj element) =0

1750j1 VMVj,N Set VM bit if (Vj element) ;If. 0

1750P. VM Vj,P Set VM bit if (Vj element) ~O

1750fJ VMVj,M Set VM bit if (Vj element) < 0

175ij4 Vi,VM Vj,Z Set VM bit if (Vj element) = 0 and store compressed

Element 0

Element 1

Element 2

Element 3

Element 4

indices of V j elements = 0 in Vi

175ifj Vi,VM Vj,N Set VM bit if (Vj element) ;If. 0 and store compressed
indices of V j elements ;If. 0 in Vi

175;p Vi,VM Vj,P Set VM bit if (Vj element) ~ o and store compressed
indices of V j elements ~ 0 in Vi

175i]7 Vi,VM Vj,M Set VM bit if (Vj element) < o and store compressed
indices of V j elements < 0 in Vi

1750P 8et VM bit if V j element = 0

Compare VF

Vector Register (Vj) (VRNM) Test Vj= 0 Vector Mask Registe r (88)

00000000000000000

00000001110000001

1111111111111111111

00000000000000000

1111111111111000000

Figure 50. 1750jO Instructions

Cray Research Proprietary
Preliminary Information

0 Bit 127

1 Bit 126

0 Bit 125

1 Bit 124

0 Bit 123

0 Bit 122

• • •
0 Bit 0

HTM-xxx-O
December 19,1994

)

)

)

CPU

Element 0

Element 1

Element 2

Element 3

Element 4

Vector Logical

Figure 51 illustrates the function of the 175ij4 instructions that use the
vector mask to create a compressed vector.

175ij4 Set VM bit if Vj element = 0 and store compressed indices of V j elements = 0 in Vi

VM Reg Index
Vj Elements (VRNM) VF (SS) Bits Address (VF) Vi Elements (VMNR)

0 0 r------ r-- 1 ~ 0 r-- 0
Test

J 0 1 r------ - 0 126 1 2

@-0 0 r------ - 1 2 3

Element 0

Element 1

Element 2

0 0 1 124 3 4 •
Vj=O • •

• •
0 0 1 • Unchanged

0 177

Element 3

Element 4

VL=5

Figure 51. Function of the 175ij4 Instructions

Compressed Iota

The Iota function is performed on the RA, RB, and RC options; these
options also make up the floating-point reciprocal approximation unit and
the vector pop functional unit. Table 19 lists the instruction used in iota
operations, and Figure 52 is a block diagram of iota pipe O.

Table 19. Iota Instruction

Instruction CAL Description

070ij1

HTM-xxx-O
December 19, 1994

ViCI,8j&VM Transmit compressed index of (8)) controlled by (VM) to Vi

The 070ij1 instruction forms multiples of the contents of register Sj
starting with 0 (0, Sj, 2 x Sj, 3 x Sj, and so on). It stores multiples
corresponding to each 1 bit set in the vector mask register in successive
elements of register Vi (beginning at element 0). The instruction stops
when all unused bits of the vector mask are 0 or are used.

Cray Research Proprietary
Preliminary Information

99

Vector Logical

Go Iota Pipe 0

Select Iota, Gate A, Hold A, Gate Iota

RAOOO
SjBit47 ICP

SjBits
48-63 IDA-IDP

INA,INC,
INE,ING

10A-
100

Gate Iota Pipe 0

VilotaO-14

RBOOO

IME

IMC

IMA

10A-
SjBits 0 -15 lOP

IRA-
SjBits 16-26 IRK

100

OP- IMC, IME, IMI, IMK

OPA IMA

OBA-
OBO Vi Bits 47 - 63 Results

OEA-
OEO Vi Bits 0 -14 Results

OPI

OFA-
OFO

ODA- Shared Iota Vi IDA-
ODL Bits 15 - 26 IDL

OPA Si Bit 26 Relay lOA

OOA, IPA,IPB
~OC, Carries/Enables IPH
ONA to RC/RA 10A,IOB

IRA-
Sj Bits 27 - 42 IRP

ISA-
Sj Bits 43 - 46 ISD

Figure 52. Iota Pipe 0

Cray Research Proprietary
Preliminary Information

RCOOO

CPU

OAA- Vi Bits 15 - 40
OAZ Results

OBA- ViBits41-46
OBF Results

ONA- Carries/Enables
ONC to RA

HTM-xxx-O
December 19, 1994

)

)

)

CPU

RA Option

RB Option

HTM-xxx-O
December 19,1994

Vector Logical

Figure 53 illustrates the function of the 070ijl instructions that use the
vector mask to create a compressed vector.

070ij1 Transmit compressed index of (8J) controlled by (VM) to Vi

Vector Mask (88)

1001110100 0

Vi Elements (VMNR)
Functional

0 Unit Element 0

8jx VM Bit 6 Element 1

2xO
8 2x3 Element 2

2x4 10
2x5 Element 3

2x7 14 Element 4

8j I 0 2 I
Figure 53. Function of the 070ijl Instructions

The RA option generates the iota results for bits 47 through 63. It
receives iota result bits 0 through 14 from the RB option and outputs bits 0
through 14, and 47 through 63 to the result vector. The RAOOO option also
generates the control for the iota function for both pipes.

The RB option generates the iota result for bits 0 through 26. Bits 0
through 14 are sent to the RA option, and bits 15 through 26 are sent to
the RC option.

The RB option receives two control signals: Select IotaO and Gate Iota.
Select IotaO selects the correct iota results from 10taO/lotal; Gate Iota
multiplexes (muxes) the iota results to the RA and RC options.

Cray Research Proprietary
Preliminary Information

101

Vector Logical

RC Option

102

The RC option receives bits 15 through 26 from the RB option and
generates result bits 27 through 46 to be sent to the result vectors.

CPU

The RC option receives four control signals from the RA option: Select
IotaO, Hold A, Gate A, and Gate Iota. Select IotaO selects from
IotaO/lotal the correct iota results. Hold A and Gate A control the
first-in-first-out (FIFO) buffers, and Gate Iota disables
reciprocal/pop/parity/leading zero and enables iota results to be sent to the
result vectors.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)
/

)

)

VECTOR ADD

Refer to Figure 54 for a block diagram of vector add. The vector add
functional unit is located on the VM and VF options. The VM options
perform the actual addition of the input operands and then pass the group
carries and group enables to the VF for summation. These bit toggles are
then returned to the VM option for final summation. The functional unit
uses two's complement arithmetic and does not detect any overflow
conditions.

Refer to Table 20 for a list of the vector add instructions and to Figure 54
for a vector add block diagram.

Table 20. Vector Add Instructions

Instruction CAL Description

154ijk

155ijk

156ijk

156KJk

157ijk

HTM-xxx-O
December 19, 1994

Vi8j+Vk Transmit integer sum of (8}) and (V k elements) to Vi elements

ViVj+Vk Transmitinteger sum of (V j elements) and (V k elements) to
Vi elements

Vi8~Vk Transmit integer difference of (8}) and (V k elements) to Vi
elements

Vi-Vk Transmit two's complement of (Vk elements) to Vi elements

ViV~Vk Transmit integer difference of (Vj elements) and (V k elements)
to Vi elements

The 154 and 156 instructions use the Sjregister as the second operand.
The VM option holds a copy of the S register so if a subsequent
instruction wants to use Sj, that instruction can be changed without
affecting the vector instruction.

Cray Research Proprietary
Preliminary Information

103

)

)
_ . .//

CPU

VFOOO

HTM-xxx-O
December 19, 1994

OIA

OIB

OIC

010

Adder Bit Toggles INA
~

(VROOO Vector Data
VR007)

Adder Bit Toggles INA

(VROOO Vector Data
VR007)

Adder Bit Toaales INA

(VROOO Vector Data
VR007)

Adder Bit Toggles INA

(VROOO Vector Data
VR007)

Adder

VMOOO Bits 0-7

Carry

Enable

VM001 Bits8-15

Carry

Enable

VM002 Bits 16-23

Carry

Enable

VM003 Bits 24-31

Carry

Enable

OWA

OWC

f--

OWA

OWC

I--

OWA

OWC

OWA

OWC

I--

Summation

ILA VFOOO VF001

IMA

VF001
ILA

IMA

L........,. Result Data to Vectors

ILB VFOOO

1MB

VF001
ILB
~

1MB

I..-..., Result Data to Vectors

ILC VFOOO

IMC

VFOO1
ILC

IMC

~ Result Data to Vectors

ILD VFOOO

IMD

VF001
ILD

IMD

--... Result Data to Vectors

Figure 54. Vector Add Block Diagram

Cray Research Proprietary
Preliminary Information

Vector Add

Summation

Adder
ILE VFOOO

OIA Adder Bit Toggles INA VM004 Bits 32-39
IME

~ Carry OWA

(VROOO Vector Data Enable OWC

VR007) f-- ILE
VF001

IME

Result Data to Vectors

ILF VFOOO

OIB Adder Bit Toggles INA VMOO5 Bits 40-47 IMF

Carry OWA

(VROOO Vector Data
Enable OWC

VR007)
f-- ILF

VFOO1

IMF

~ Result Data to Vectors

ILG VFOOO

OIC Adder Bit Toggles INA VMOO6 Bits 48-55 IMG

Carry
OWA

(VROOO Vector Data
Enable owe

VR007)
~ VF001

ILG

IMG

~ Result Data to Vectors

010 Adder Bit Toggles INA VMOO7 Bits 56-63
~ Carry

(VROOO Vector Data
Enable

~ Result Data to Vectors
VR007)

105

VECTOR SHIFT

The vector shift functional unit is contained within the VS option. Vector
shift is a dual-pipe functional unit; it accepts a pair of elements and
generates a pair of results. If the vector length is odd, the last operand
generates a single result. There is only one VS option used per cpu.

The vector shift functional unit is also responsible for vector transfer
operations. For example, it moves the contents of one vector register to
another vector register; then the functional unit uses the Ak value as a
starting element number for the block move.

This unit also performs the vector compress and expand operations. The
compress operation writes the elements of Vj to Vi if a corresponding bit
in the vector mask register sets. The expand operation reads the elements
of V j to Vi if a corresponding bit in the vector mask register sets. These
operations are illustrated later in this section.

The 150 to 153 instructions use Ak as the shift count. The 150 to 151
instructions, when preceded by a 005400 (EIS) instruction, use VO for the
shift count. In either case, if bit 7 or above is set, the result is O's.

Vector Shift Instructions

Refer to Table 21 for a list of the vector shift instructions.

Table 21. Vector Shift Instructions

Instruction CAL Description

150!J'< ViVj<Ak Shift (Vjelements) left (Ak) places to Vi elements

*150lj{) ViVj<VO Shift (Vjelements) left (VO elements) places to Vi elements

151 ijk ViVj>Ak Shift (Vj elements) right (Ak) places to Vi elements

*151lj{) ViVj>VO Shift (Vjelements) right (VO elements) places to Vi elements

152ijk ViVj,Vj<Ak Double shift (Vj elements) left (Ak) places to Vi elements

*152ijk ViVj,Ak Transfer (Vjelements) starting at element (Ak) to Vi elements

153ijk ViVj,Vj>Ak Double shift (Vj elements) right (Ak) places to Vi elements

* These instructions must be preceded by a 005400 (EIS) instruction.

HTM-xxx-O
December 19,1994

Gray Research Proprietary
Preliminary Information

107

Vector Shift CPU

Table 21. Vector Shift Instructions (continued)

Instruction CAL Description

*153lj{) ViVj,{VM] Compress Vjby (VM) to Vi

*153ij1 Vi,[VM] Vj Expand V j by (VM) to Vi

* These instructions must be preceded by a 005400 (EIS) instruction.

Vector Shift Count Description

108

The Ak shift count is sent to the VS option by the AROOO option, and all
eight A series options check the value of the 64-bit A register. This
determines if any bits above bit 6 have been set. If any bits have been set,
the result is lost due to overshift. If no overflow is detected, a No Ak
Overflow signal is sent from the SS to the VS. AROOO sends bits 0
through 6 for the shift count.

To understand this, the breakdown of the shift count must be examined.
For both single and double shifts, the breakdown is the same, except for
the fact that the double shift has 1· extra bit (bit 6). Refer to Figure 55 for
a breakdown of the shift count, and to Figure 56 for a block diagram of
vector shift.

Double
Shift
Only
6 5 4 3 2 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Figure 55. Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted. The maximum shift count that could be generated is 12710
or 1778.

NOTE: The shift value is shown as a deCimal value; all references to
shift counts in the documentation refer to a decimal count. Also,
a shift of 0 generates a maximum shift of 1778 places; this
zeroes out the result register.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

O:::C
CD-I Os: CD,
3>< 0"><
CD:>;<
.... 0
~co
.....
co
<g

o
-0
CD~
~$l
:::IC/)
I).) CD
.... 1).)
'<
_0
:::I:J"

0'-0

3° I).)~ g. (D.

:::IS"

-<

.....
o co

.~

VMNR

SSOOO

VROOO

VR008

VF001

I VFOO3

VAOOO

I STOOO

\'-..../

VSOOO

Vector Shift Data Pipe 0 IAA, lOP
OAA ODP Vector Shift Result Data Pipe 0

Vector Shift Data Pipe 1 IEA,IHP

OEA, OHP Vector Shift Result Data Pipe 1
OHA, OHG Ak Shift Count 0 - 6 IIA,IIG

OHH No Ak Overflow 11M

010 Vector Mask Sit =1 (Even) IMM OMA Shift Result Valid Pipe 0 INE
OlE Vector Mask Sit =1 (Odd) IMN

INF

OMA, OMH Vector Shift Count (VO) Pipe 0 IKA,IKH OMC End Vector Shift

OMI VO Overflow IKM INF

OMS Shift Result Valid Pipe 1 INE

OMA, OMH Vector Shift Count (VO) Pipe 1 ILA,ILH

OMI VO Overflow ILM

INA

ONS Pipe o Valid I INS

ION8 Pioe 1 Valid INC

I IND

OOS End Vector Shift or kO Field INM

OSG EIS Sit IMC

ORA Go Vector Shift IME

Figure 56. Vector Shift Block Diagram

'~

D
VAOOO

VA001

~
c:

a;:
C')

8" ..,
fg
~

Vector Shift CPU

If the jk field of a left single shift equals 278 and bits 4, 2, 1, and 0 are set,
the shift values are 16, 4, 2, and 1, respectively. The sum of the shift ~)
values is 23 (16 + 4 + 2 + 1); therefore, the instruction shifts left 2310
places.

The actual hardware that performs the shifts is the same for both left and
right shifts. However, the hardware performs only left shifts. Right shifts
are accomplished according to the way data is entered into the shifter,
hence the use of two's complement for right shifts.

The vector shift unit also receives a shift count from VO when performing
the 150 and 151 EIS instructions. The shift count is sent to the VS option
from VRO for pipe 0 and from VR8 for pipe 1.

Vector Right Shift 005400 151ijO

Element 0

Element 1

Element 2

Element 3

Element 4

Refer to Figure 57 for an example of a vector right shift using VO for the
shift count. Note that the shift count for element 0 is 0; this results in an
end-off shift for that element. This instruction must be preceded by the
054100 instruction in order to function as illustrated. This process
continues for vector length.

Vk Elements (VRNM) Pipe 0/1

0 0

0 1

0 2
VO Shift Count

0 3

0 4 VL=5

v j Elements (VRNM) Pipe 0/1 VS Vi Elements (VMNR) Pipe 0/

Element 0

Element 1

Element 2

Element 3

Element 4

110

1

0

0

0

0

0

10

100

1000

10000

VL=5

Vector Shift
Functional

Unit

Figure 57. Vector Right Shift

Cray Research Proprietary
Preliminary Information

0

0

0

0

0

0

1

1

1

1

Element 0

Element 1

Element 2

Element 3

Element 4

HTM-xxx-O
December 19, 1994

)

)

)

CPU Vector Shift

Vector Right Double Shift 153ijk

Refer to Figure 58 for an example of a vector right double shift using Ak
for the shift count. This instruction concatenates two successive elements
of register Vj and right shifts the lower 64 bits to Vi. The first operation
combines element 0 with a word of all O's. Element 0 becomes the lower
64 bits, and this value is then shifted right Ak places to Vi.

The next operation combines element 0 and element 1 of Vj, with element
1 being the least significant bits, and shifts this value right to Vi. This
operation continues for vector length. Note that the shift count for
element 0 is 0; this results in an end-off shift for that element.

V k Elements (VRNM) Pipe 0

Element 0 0 17 VL=3

Element 2 1 6 Shift count from Ak

Element 4 0 0 VS Vector Shift Functional Unit

Element 6 0 0 Word ofO's Element 0

Element 8 0 0 Element 0 Element 1

Element 1 Element 2
Vj Elements (VRNM) Pipe 1

Element 2 Element 3
Element 1 6 6

Element 3 Element 4
Element 3 16 0

Element 5 0 0

Element 7 0 0

Element 9 0 0 Vi Elements (VRNM) Pipe 0/1

0 1 Element 0

166 0 Element 1

--+ 15 0 Element 2

156 0 Element 3

0 0 Element 4

Figure 58. Vector Right Double Shift

HTM-xxx-O
December 19, 1994

Cray Research Proprietary
Preliminary Information

111

Vector Shift CPU

Vector Transfer 005400 152ijk

This instruction moves the contents of Vj to Vi starting with element Ak as
shown in Figure 59. Note that this is an EIS instruction.

Ak=2
VL=5

Vj Elements (VRNM) Pipe 0/1 VS Vi Elements (VMNR) Pipe 0/1

Element 0

Element 1

Element 2

Element 3

Element 4

1

0

0

0

0

0

10

100

1000

10000

0 100 Element 0

Vector Shift 0 1000 Element 1
Functional

Unit 0 10000 Element 2

0 0 Element 3

0 0 Element 4

Figure 59. Vector Transfer

Vector Compress 005400 153ijO

This instruction compresses a vector register using a vector mask and
transmits the results to Vi as shown in Figure 60.

Two element counters are initialized to 0, one for Vj and the other for Vi.
The vector mask is then scanned from right to left, and for every 1 bit set,
an element of Vj is written to Vi. The element counters internal to the VS
option determine the element position within each register.

SS Vector Mask Register

110011 0 I VL=5
I

nt 0 Eleme

Elemen t 1

Elemen t2

Eleme nt 3

Eleme nt4

112

Vj Elements (VRNM) Pipe 0/1

0 0

0 10

0 100

0 1000

0 10000

VS

Vector Shift
Functional

Unit

Figure 60. Vector Compress

Cray Research Proprietary
Preliminary Information

Vi Elements (VMNR) Pipe 0 /1

0

0

0

0

0

0

1000

10000

0

0

Element 0

Element 1

Element 2

Element 3

Element 4

HTM-xxx-O
December 19,1994

)

)

)

CPU Vector Shift

Vector Expand 005400 153ij1

This instruction expands a vector register using a vector mask and
transmits the results to Vi as shown in Figure 61.

Two element counters are initialized to 0, one for Vj and the other for Vi.
The vector mask is then scanned from right to left, and for every 1 bit set,
an element of Vj is written to Vi. The element counters internal to the VS
option determine the element position within each register. In this
instruction, the element counter for Vj falls behind the counter for Vi by
one position for each ° bit in the vector mask register.

SS Vector Mask Register

I 1 00 1 1 0

V j Elements (VRNM) Pipe 0/1

Elemen to 0

Elemen t 1 0

Elemen t2 0

Elemen t3 0

Elemen t4 0

HTM-xxx-O
December 19, 1994

0

10

100

1000

10000

I
I

VS

Vector Shift
Functional

Unit

Figure 61. Vector Expand

Cray Research Proprietary
Preliminary Information

VL=5

Vi Elements (VMNR) Pipe 0 /1

0 0 Element 0

Unchanged Element 1

Unchanged Element 2

0 10 Element 3

0 100 Element 4

113

)

)

)

)

VECTOR POPI POP PARITY AND LEADING ZERO

HTM-xxx-O
December 19, 1994

The vector population/parity functional unit performs population counts
and parity for vector operations and executes instructions 174ijl vector
population count and 174ij2 vector parity.

Refer to Figure 62 for a vector population/parity/leading zero block
diagram. This functional unit shares logic with the floating-point
reciprocal approximation functional unit. The k field of the instruction
determines the type of operation to be performed.

Because the vector population/parity functional unit shares logic with the
floating-point reciprocal approximation functional unit, all vector
operations reserve the associated functional unit. The floating-point
reciprocal approximation functional unit is reserved when the vector
population/parity functional unit is reserved and vice versa.

Both scalar and vector register operations share the floating-point
reciprocal functional unit. Therefore, when vector reciprocal or vector
population/parity instructions are executed, any scalar reciprocal
instruction holds issue until the vector operation is finished.

The 174ijl instruction counts the number of 1 bits in each element of a
vector register specified by Vi. Each element is counted individually, and
the result is stored in the respective element of Vi. For example, the count
of 1 bits in element 0 of Vj is stored in element 0 of Vi; the count of 1 bits
in element 1 of V j is stored in element 1 of Vi; and so on. This process
continues for the number of elements equal to the VL.

The 174ij2 instruction counts the number of 1 bits in each element of a
vector register specified by Vj and stores a I-bit parity result in a vector
register specified by Vi. The 174ij2 instruction uses the same logic as the
174ijl but outputs only bit 0 of the result. Bits 1 through 6 are forced to
O's. This instruction determines whether an odd or even number of bits
are set in each element of a vector register. If the result equals 0, there is
an even number of bits. If the result equals 1, there is an odd number of
bits.

Cray Research Proprietary
Preliminary Information

115

Vector Pop/Pop Parity and Leading Zero CPU

VM011 Bits 28 - 31 :

VR011 Bits 24 - 27

VM010 Bits 20 - 23 \ i...-
VR010 Bits 16 19 I -- VM009 Bits 12 15 I -- VR009 Bits 8 -11 1 - VM008 Bits 4 - 7 1 \ - VR008 Bits 0 - 3 RA001

- IBA-IBP

~ -- Vector Registers
Pipe 1

I IAA-IAP
VM015 Bits 60 - 63 I

VR015 Bits 56 - 59 OEA-OEG
IDA-lOP

VM014 Bits52-55 \ ICA-ICP -- / VR014 Bits 48 51 I -- VM013 Bits44-47 : -- (Force 0) Go Scalar lEA
VR013 Bits40-43 I -- (IC002) KO IEB Pipe 1

VM012 Bits36-39 J -- (IC002) K1 IEC
VR012 Bits 32 -35 -- (BTOOD) Go Recip lED

..... Vector Registers Recip
Pipe 1 Data Valid lEE

(VF002)

VR007 Bits 56 59 I

VR006 Bits 48 - 51

VR005 Bits 40 - 43 1 \ - I
VR004 Bits 32 - 35 I - • VR003 Bits 24 - 27 •

~
-- 1 VR002 Bits 16 -19 -- VR001 Bits 8 - 11 RAOOO -- VROOO Bits 0 - 3

~
.....

Vector Registers IBA-IBP - Pipe 0

VM007 Bits 60 63 I IAA-IAP
OEA-OEG . "

VM006 Bits 52 - 55
IDA-lOP

VM005 Bits 44 - 47 .1

" ICA-ICP

/ - 39 I VM004 Bits 36 - VM003 Bits 28 - 31 I (JAOOO) Go S Recip lEA - I VM002 Bits 20 - 23
(ICOOO) KO IEB Pipe 0 - I VM001 Bits 12 -15
(ICOOO) K1 IEC

i...-

VMOOO Bits 4 - 7
(BTOOO) Go Recip lED i...-

..... Vector Registers Recip
Pipe 0 (VFOOO) Data Valid lEE

Figure 62. Vector Population/Parity/Leading Zero Block Diagram

116 Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

)

CPU Vector Pop/Pop Parity and Leading Zero

Pop/Parity/Leading Zero Functional Units

The RA options contain part of the reciprocal approximation unit; these
options also contain the logic for vector pop, vector pop parity, and vector
leading zero. There are two RA options per CPU: RAOOO handles pipe 0,
or the even elements; and RAOO 1 handles pipe 1, or the odd elements.

Vector Leading Zero Count 174ij3

HTM-xxx-O
December 19, 1994

This instruction counts the number of a's that precede the first bit set in
each element of a vector. The count will be from a (bit 63 of the element
set) to 100 (no bits in the element set).

Cray Research Proprietary
Preliminary Information

117

Vector Pop/Pop Parity and Leading Zero CPU

Vector Population/Parity Instructions

Refer to Table 22 for a list of the vector population/parity instructions.

Instruction

174ij1

174if2.

175ifJ

118

Table 22. Vector Population/Parity Instructions

CAL

ViPVj

ViQVj

ViZVj

Description

Population count (VJ) to Vi

Parity of (VJ) to Vi

Transmit leading zero count of (V)) to Vi

",e'

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

)
./

)

GATHER/SCATTER INSTRUCTIONS

The 176i1k and 1771jk instructions transfer blocks of data between
common memory and the vector registers. The 176 invokes the gather, or
read function; the 177 invokes the scatter, or write function. When the
176i1k instruction is preceded by a 005400 instruction parcel, it performs
a double gather function, which utilizes the dual-pipe capability of the
computer system. The contents of the vector length (VL) register
determine the number of words transferred.

Gather Instructions

HTM-xxx-O
December 19, 1994

The 176i1k instruction transfers data from common memory to the Vi
register. Register AO contains the initial (base) address; the Vk register
contains the address indices.

For each element transferred to Vi, the memory address is the sum of (AO)
and the corresponding element of register Vk. For example, during a
176213 instruction, V2[0] is loaded from address (AO) + (V3[0]); V2[1] is
loaded from address (AO) + (V3[1]); etc.

The 005400 176ijk instruction performs the double gather operation. Data
is transferred from common memory to Vi and Vj in two separate data
transfers that occur simultaneously. The AO register contains the base
address for the transfer to Vi. The Ak register contains the base address
for the transfer to Vj. The Vk register contains the address indices for
both transfers.

For each element transferred to Vi, the memory address is the sum of (AO)
and the corresponding element ofVk. For example, during a 005400
176213 instruction, V2[0] is loaded from address (AO) + (V3[0]); V2[1] is
loaded from address (AO) + (V3[1]); etc. Simultaneously, V1[0] is loaded
from address (A3) + (V3[0]); V1[1] is loaded from address (A3) +
(V3[1]); etc.

Cray Research Proprietary
Preliminary Information

119

Gather/Scatter Instructions CPU

Scatter Instructions

120

The 1771jk instruction transfers data from Vj to common memory. The
AO register contains the initial address. Vk contains the address indices.

For each element transferred from register Vi, the memory address is the
sum of (AO) and the corresponding element of register Vk. For example,
element 0 of Vi is stored to address (AO) + (Vk[O]); element 1 of Vi is
stored to address (AO) + (Vk[1]); etc.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

FLOATING-POINT ADD

HTM-xxx-O
December 19, 1994

Refer to Figure 63 for a block diagram of floating-point add. The
floating-point add unit consists of two option types: the FA and the FB
options. Each pipe has one FA option and one FB option. FAOOO and
FBOOO represent pipe 0, and FAOOI and FBOOI represent pipe 1. The use
of dual pipes allows two floating-point add functions to occur at the same
time. The even elements of the vector go to pipe 0; the odd elements go to
pipe 1. This feature helps in troubleshooting; if you identify which
element is failing, you can identify which pipe and associated options are
failing. For scalar floating-point add instructions, only pipe 0 is used.

The floating-point add unit must do several things to produce a result.
First, the exponents of the input operands must be compared to determine
which is larger. Then, the coefficient of the smaller must be right shifted
until the exponents become equal. When this is done, the coefficient is
then added. If the sign bits are different, or if the sign bits are the same
and a subtract instruction is decoded, then a two's complement addition is
performed.

Next, the results have to be normalized and the exponent adjusted. The
results are then sent to the result registers (either scalar or vector
registers). Finally, if the resulting exponent is greater than 600008 or less
than 177778, the results are checked for overflow and underflow
conditions. If an overflow condition exists, the exponent is forced to
600008, the coefficient is left intact, and an error flag is set in the
exchange package. If an underflow condition exists, the exponent and the
coefficient are forced to 0 and no flag is set. The result coefficient is also
checked for a zero value. If it is 0, both the result exponent and
coefficient are zeroed out.

The issuing of a 005400 extended instruction set (EIS) instruction just
before a floating-point add instruction enables the extended accuracy
mode. This adds a rounding bit if all the necessary conditions are
satisfied. This is accomplished with the use of sticky bits. When the
operand of the smaller exponent number is right shifted to equalize the
exponents, the coefficient may be shifted more than 478 places, resulting
in a coefficient of O. What actually takes place is the bits are shifted right
into another register as bit -1 to -15, as shown in Figure 64. If any of
these bits set and EIS sets, a rounding bit is added to the result coefficient
at bit position O.

Cray Research Proprietary
Preliminary Information

121

.......
I\.)
I\.)

-oQ
m~
3:I1 _.(1)
::lCl)
1»(1)

-<~ _0
::l::r

0'-0
3 0
I»"Q
:::!: cs· 0_
::ll»

-<

CJ
(I)

g
3
0-
~:r:
....... -1
<oS::
~ .
....... ~ co)(co •
.j:>.o

(AR, AS, P\

(AR, AS, P\

(VM, VR)

(VM, VR)

(JA)

\~,

(An

(Bn

(VF)

(BT)

FB

r, AU) SjO 63 IAA-ICL

r,AU) SkO-63 IDA-IFL r<

I SjCopyNjO - 63 IGA -ilL

VkO-63 IJA-ILL

Go Scalar FA IXA-IXB

tlJ - h1 Field IXC-IXD

Go Vector FA IXE

SO ResulWalid IXF

EIS Mode IXG

FPE Mode IXH

(AR, AS, AT, AU) Sj 0 - 53, 63 IAA-ICC

(AR, AS, AT, AU) Sk 0 - 53, 63 IDA-IFC

(VM, VR) SiCopvNiO-53 63 IGA-IIC

(VM, VR) VjO-53, 63 IJA-IJC

(JA) Go Scalar FA IXA-IXB

(AT) hO - h1 Field IXC-IXD

(Bn Go Vector FA IXE

(Bn EIS l"Iode IXG

j Exponent J- OMA - OMC Exp i = Exp k 6 - 14 IMA-IMF

~ k Exponent '"' ONA-ONB Exp k> Expj6 -14 INA-IND

~ Calculation ~ OOA - OOB Exp j + 1 = Exp k 6 - 14 10A-IOD
. of Exponent

OPA-OPB Expj=Expk+1 6-14 IPA-IPD

OCA Exponent Underflow IMW

~ Adjusted I
Exponent OAA - OAO SiNi Exponent

(JA)

f--ll Coefficient
I

~ kCoefficient I
I

Early Sign OAP SiNi Sign Bit
Bit (JA)

Calculation

Figure 63. F1oating~point Add

~

FA

Exponent I
I BitsO-5

I Coefficient
Adjustment

t
I Leading Zero Countl

t
Coefficient Add

• I j Coefficient I
t

I k Coefficient I

SiNi
Coefficient

OAA - OBV Results

,
.)
'-.--'

::.n g
!s-

eQ

"6 o
5~ -)::.
2:

~

)

CPU Floating-point Add

Bits 631 481 0 1 -35

I ~xponent Coefficient Sticky Bits I
~_~ ___ ~_----t

Sign Bit

Figure 64. Floating-point Add Sticky Bits

Floating-point Add Functional Unit Instructions

Refer to Table 23 for a list of the floating-point add functional unit
instructions.

Table 23. Floating-point Add Functional Unit Instructions

Instruction CAL Description

062ijkSi Sj+ FSk Scalar floating-point sum of (S}) and (Sk) to Si

062'{)k Si+ FSk Transmit normalized (Sk) to Si

063ijk SiSj- FSk Scalar floating-point difference of (S}) minus (Sk) to Si

063IDk Si-FSk Transmit normalized negative of (Sk) to Si, normalize the
coefficient and toggle the sign bit

170ijk ViSj+ FVk Vector floating-point sum of (S}) and (V k elements) to Vi

171 ijk ViVj+ FVk Vector floating-point sum of (Vi elements) and (V k elements) to
Vi

172ijk ViSj- FVk Transmit normalized negatives of (Vkelements) to Vi,
normalize the coefficient and toggle the sign bit

173ijk ViVj- FVk Vector floating-point difference of (Vj elements) minus (Vk
elements) to Vi

Floating-point Format

Refer to Figure 65 for an illustration of floating-point format. A number
is referred to as normalized if the upper bit of the coefficient (bit 47) is set.

B~6r 48
1 I Exponent .

Sign Bit

HTM-xxx-O
December 19, 1994

Coefficient

Figure 65. Floating-point Format

Cray Research Proprietary
Preliminary Information

o

I

123

Floating-point Add CPU

Floating-point Add Examples

Refer to the following subsections for some examples of floating-point
add.

Add Instruction (Subtract Operation)

124

j= 040002 140000 000000 000000 + 38
k= 140003 140000 000000 000000 + -68

Subtract Operation

Shiftj 040003 060000

Retain k 040003 060000

Togglek 140003 037777

Add
coefficients 140003 117777

eBP (carry across binary point)

Retain exponent and sign of larger

Toggle result

Normalize

140003 0600000

140002 140000

Cray Research Proprietary
Preliminary Information

-38

000000

000000

177777

177777

00000

000000

000000

000000

177777

177777

000000

000000

HTM-xxx-O
December 19, 1994

)

)

)

~ ~

)

)

CPU Floating-point Add

Subtract Instruction (Add Operation)

j = 040003 140000 000000 000000 68
k= 140002 140000 000000 000000 - -38

118

Add Operation

J operand 040003 140000 000000 000000

Complement k
sign bit 040002 140000 000000 000000

Retainj 040003 140000 000000 000000

Shift k 040003 060000 000000 000000

Add
coefficients 040003 1.020000 000000 000000

CBP

040004 110000 000000 000000

Shift right to normalize; adjust exponents

Add Instruction (Subtract Operation with Carry across Binary Point)

HTM-xxx-O
December 19, 1994

j = 040004 004000 000000 000000 .4&
k= 140003 140000 000000 000000 + -6.08

Subtract Operation

Retainj

Shift k

Togglej

Add
~ coefficients

CBP

040004 004000

140004 060000

040004 173777

140004 060000

040004 1.053777

Cray Research Proprietary
Preliminary Information

-5.4&

000000

000000

177777

000000

177777

000000

000000

177777

000000

177777

125

Floating-point Add CPU

Retain exponent and sign of larger

040004 053777 177777 177777

+1 End-around carry

Toggle sign bit 140004 054000 000000 000000

Normalize 140003 130000 000000 000000

Add Instruction (Add Operation)

FA Option

126

j= 040003 140000 000000 000000 68
k= 040002 140000 000000 000000 + 38

118
Add Operation

Retainj 040003 140000 000000 000000

Shift k 040003 060000 000000 000000

Add
coefficients 040003 1.020000 000000 000000

040004 110000 000000 000000

CBP

Normalize result

The FA option operates on the coefficient portion of the floating-point add
operation. The FA does the actual addition of the j and k operands. It also
determines from the sign bit and the instruction issued whether to perform
an add or subtract operation.

If the extended accuracy mode is set by an EIS instruction, a rounding bit
is inserted into the result coefficient if all the necessary conditions are
satisfied.

The FA option also uses the lower 6 bits of the exponent (48 through 53)
and control signals sent from the FB option to make the fmal
determination of the right shift, which aligns the coefficient.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

')

)

)

)

)

)

CPU

FB Option

Floating-point Add

The FB option operates on the exponent portion of the floating-point add
operation. The FB also receives the coefficient bits so it can compute the
final exponent.

The FB option also does a calculation based on the state of the initial
operand as to the sign of the final results. If the result sign bit can be
determined, a valid signal is sent and the sign bit is sent to the JA option.
This information can be used if the JA is processing a jump on a sign bit
instruction. This calculation can be done only for a scalar floating-point
add instruction.

The FB option does the initial calculation to determine which exponent is
larger. To detect the number of right shifts, the exponent is divided into
bits 0 through 5 and 6 through 14. This way, the FA can start shifting
using bits 0 through 5, and the full shift count can be sent from the FB
option. This is done by comparing the following five conditions:

• exponent j = exponent k
• exponent k > exponent j
• exponent j > exponent k
• exponent j + 1 = exponent k
• exponent k+ 1 = exponent j

Determining Exponent Size

HTM-xxx-O
December 19,1994

If the upper bits are equal, the lower 6 bits determine the shift count of the
coefficient.

• j = k (14 - 6) and j > k (0 - 5) then right shift k by j - k (0 - 5)

• j 040012
k 040001 Right shift coefficient k by 12 - 1 = 11

Increase k exponent by 11

• j = k (14- 6) and k > j (0 - 5) then right shiftjby k- j (0 - 5)

• j 040001
k 040012 Right shift j coefficient by 12 - 1 = 11

Increase k exponent by 11

If the upper bits (6 through 14) differ by 1, the lower bits can still be used
to determine the full shift count.

Cray Research Proprietary
Preliminary Information

127

Floating-point Add

128

CPU

• j = k+1 (14- 6); that isj> k (14- 6) by 1 andj < k (0 - 5) then right \
shift k by j - k (0 - 5) ,

• j 040100
k 040077 Right shift k coefficient by 1

Increase k exponent by 1

• j = k+ 1 (14 - 6); that is j > k (14 - 6) by 1 and j > k (0 - 5) then
overshift occurs.

• j 040177
k 040076 Right shift k coefficient by 101 places

(overshift)

• j+1 = k (14- 6); that is k > j (14- 6) by 1 and k <j (0 - 5) then right
shiftjby k-j (0-5)

• j 040077
k 040100 Right shift j coefficient by 1

Increase j exponent by 1

• j+ 1 = k (14 - 6); that is k > j (14 - 6) by 1 and k > j (0 - 5) then
ovel'shift will occur

• j 040000
k 040177 Right shift k coefficient by 177 places

(overshift)

If the upper bits differ by more than 1, the lower bits can be ignored
because the effect is to zero out the coefficient of the smaller exponent.
This is why only the + 1 case needs to be determined for the upper bits.

• j 040200
k 040077 Right shift k coefficient by 177

Increase k exponent by 177

Refer to Figure 66 for a floating-point add flowchart.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

J

)

)

)

)

CPU

(FA)

Sign bH of i = k. add instruction = add operation

Sign bH of i* k. add instruction = subtract operation (FA)

Sign bH of i = k. subtract instruction = subtract operation

Sign bH of i" k. subtract instruction = add operation

(FB)

(FA,FB)

(FA)

(FB)

NOTE: Both options are involved in most aspects
of this unH. This diagram shows the option
that does most of tha work.

Yes

(FA,FB)

Coefficient
undarflow
zero resu~
exponent and
coefficient

(FB)

(FA,FB)

(FA)

(FA)

(FA)

(FB)

Figure 66. Floating-point Add Flowchart

HTM-xxx-O
December 19, 1994

Cray Research Proprietary
Preliminary Information

Floating-point Add

129

)

)

)

FLOATING-POINT RECIPROCAL APPROXIMATION

Refer to the following subsections for information about floating-point
reciprocal approximation.

Floating-point Division Algorithm

HTM-xxx-O
December 19,1994

A eRA Y T90 series computer system does not have a single functional
unit dedicated to the division operation; rather, the floating-point multiply
and reciprocal approximation functional units together carry out the
algorithm. The following paragraphs explain the algorithm and how it is
used in the functional units.

Finding the quotient of two floating-point numbers involves two steps, as
shown below in the example of fmding the quotient AlB.

Step Operation

1 The B operand is sent through the reciprocal
approximation functional unit to obtain its reciprocal,
liB.

2 The result from Step 1 along with the A operand is
sent to the floating-point multiply functional unit to
obtain the product A x liB.

The reciprocal approximation functional unit uses an application of
Newton's method for approximating the real root of an arbitrary equation,
F(x) = 0, to fmd reciprocals. .

To fmd the reciprocal, the equation F(x) = lIx - B = 0 must be solved. To
do this, A must be found so that F(A) = 11 A - B = O. That is, the number
A is the root of the equation lIx - B = O. The method requires an initial
approximation or guess (shown as Xo in Figure 67), sufficiently close to
the true root (shown as Xt in Figure 67). Xo is then used to obtain a better
approximation; this is done by drawing a tangent line (line 1 in Figure 67)
to the graph of y = F(x) at the point [xo, F(xo)]. The x-intercept of this
tangent line becomes the second approximation, x 1. This process is
repeated using tangent line 2 to obtain X2, and so on.

Cray Research Proprietary
Preliminary Information

131

Floating-point Reciprocal Approximation CPU

132

y

~---+--Tangent Line 1

~--Ir-+----+--Tangent Line 2

x

Figure 67. Newton's Method for Approximating Roots

The following iteration equation is derived from the above process:

X(i+l) = 2Xi - Xi2B = Xi (2 - xiB)

In the equation, X(i+l) is the next iteration, Xi is the current iteration, and B
is the divisor. Each X(i+ 1) is a better approximation than Xi to the true
value, Xt. The exact answer is generally not obtained at once because the
correction term is not exact. The operation is repeated until the answer
becomes sufficiently close for pr~ctical use.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

CPU

HTM-xxx-O
December 19,1994

Floating-point Reciprocal Approximation

The mainframe uses this approximation technique based on Newton's
method. A hardware look-up table provides an initial guess, Xo, which is
accurate to 8 bits. The following iterations are then calculated.

Iteration Operation Description

1 Xl = xo(2 - xoB) The fIrst approximation is done
in the reciprocal approximation
functional unit and is accurate to
16 bits.

2 X2 = xI(2 - xIB) The second approximation is
done in the reciprocal
approximation functional unit
and is accurate to 30 bits.

3 X3 = x2(2 - x2B) The third approximation is done
in the floating-point multiply functional
unit to calculate the correction term.

The reciprocal approximation functional unit calculates the fIrst two
iterations, while the floating-point multiply functional unit calculates the
third iteration. The third iteration uses a special instruction within the
floating-point multiply functional unit to calculate the correction term.
This iteration is used to increase accuracy of the reciprocal approximation
functional unit's answer to full precision (the floating-point multiply
functional unit can provide both full- and half-precision results).

The reciprocal iteration is designed for use once with each half-precision
reciprocal generated. If the third iteration (the iteration performed by the
floating-point mUltiply functional unit) results in an exact reciprocal, or if
an exact reciprocal is generated by some other method, performing
another iteration results in an incorrect fInal reciprocal. A fourth iteration
should not be done.

Cray Research Proprietary
Preliminary Information

133

Floating-point Reciprocal Approximation CPU

134

An example of calculating the reciprocal of 2 is provided below. Values
from the look -up table in Table 24 are used. .)

B
Ao

2, start with
0.2

2(0.2) - (0.2)22
2(0.491602) - (0.491602)22

0.4- 0.08
0.983204 - 0.483345

0.32
0.499859

2(0.32) - (0.32)22
2(0.499859) - (0.499859)22

0.64 - 0.2048
0.999718 - 0.499718

0.4352
0.50000

2(0.4352) - (0.4352)22
2(0.5) - (0.5) 22

0.8704 - 0.378798
1.0 - 0.5

0.491602
0.5

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)
./

CPU

HTM-xxx-O
December 19, 1994

Floating-point Reciprocal Approximation

Table 24. Reciprocal Approximation Values

B

1.000
1.004
1.010
1.014
1.020
1.024
1.030
1.034
1.040
1.044
1.050
1.054
1.060
1.064
1.070
1.074
1.100
1.104
1.110
1.114
1.120
1.124
1.130
1.134
1.140
1.144
1.150
1.154
1.160
1.164
1.170
1.174
1.200
1.204
1.210
1.214
1.220
1.224
1.230
1.234
1.240
1.244
1.250

Ao A02

0.776 0.774004
0.772 0.764044
0.766 0.754144
0.762 0.744304
0.756 0.734504
0.752 0.724744
0.750 0.721100
0.744 0.711420
0.740 0.702000
0.734 0.672420
0.732 0.666644
0.726 0.657344
0.722 0.650104
0.720 0.644400
0.714 0.635220
0.710 0.626100
0.706 ·0.622444
0.702 0.613404
0.700 0.610000
0.674 0.601020
0.672 0.575444
0.666 0.566544
0.664 0.563220
0.660 0.554400
0.656 0.551104
0.652 0.542344
0.650 0.537100
0.646 0.533644
0.642 0.525204
0.640 0.522000
0.636 0.516604
0.632 ·0.510244
0.630 0.505100
0.626 0.501744
0.624 0.476620
0.620 0.470400
0.616 0.465304
0.614 0.462220
0.612 0.457144
0.610 0.454100
0.604 0.446020
0.602 0.443004
0.600 0.440000

Cray Research Proprietary
Preliminary Information

- 2Ao

0.000
0.010
0.020
0.030
0.040
0.050
0.054
0.064
0.074
0.104
0.110
0.120
0.130
0.134
0.144
0.154
0.160
0.170
0.174
0.204
0.210
0.220
0.224
0.234
0.240
0.250
0.254
0.260
0.270
0.274
0.300
0.310
0.314
0.320
0.324
0.334
0.340
0.344
0.350
0.354
0.364
0.370
0.374

135

Floating-point Reciprocal Approximation CPU

Table 24. Reciprocal Approximation Values (continued)

B

1.254
1.260
1.264
1.270
1.274
1.300
1.304
1.310
1.314
1.320
1.324
1.330
1.334
1.340
1.344
1.350
1.354
1.360
1.364
1.370
1.374
1.400
1.404
1.410
1.414
1.420
1.424
1.430
1.434
1.440
1.444
1.450
1.454
1.460
1.464
1.470
1.474
1.500
1.504
1.510
1.514
1.520
1.524

136

Ao A02

0.576 0.435004
0.574 0.432020
0.572 0.427044
0.570 0.424100
0.566 0.421144
0.564 0.416220
0.562 0.413304
0.560 0.410400
0.556 0.405504
0.554 0.402620
0.552 0.377744
0.550 0.375100
0.546 0.372244
0.544 0.367420
0.542 0.364604
0.540 0.362000
0.536 ·0.357204
0.534 0.354420
0.532 0.351644
0.530 0.347100
0.526 0.344344
0.524 0.341620
0.522 0.337104
0.520 0.334400
0.520 0.334400
0.516 0.331704
0.514 0.327220
0.512 0.324544
0.510 0.322100
0.506 0.317444
0.506 0.317444
0.504 0.315020
0.502 0.312404
0.500 0.310000
0.476 0.305404
0.476 0.305404
0.474 0.303020
0.472 0.300444
0.470 0.276100
0.470 0.276100
0.466 0.273544
0.464 0.271220
0.462 0.266704

Cray Research Proprietary
Preliminary Information

- 2Ao

0.400
0.404
0.410
0.414
0.420
0.424
0.430
0.434
0.440
0.444
0.450
0.454
0.460
0.464
0.470
0.474
0.500
0.504
0.510
0.514
0.520
0.524
0.530
0.534
0.534
0.540
0.544
0.550
0.554
0.560
0.560
0.564
0.570
0.574
0.600
0.600
0.604
0.610
0.614
0.614
0.620
0.624
0.630

HTM-xxx-O
December 19,1994

)

CPU

HTM-xxx-O
December 19,1994

Floating-point Reciprocal Approximation

Table 24. Reciprocal Approximation Values (continued)

B

1.530
1.534
1.540
1.544
1.550
1.554
1.560
1.564
1.570
1.574
1.600
1.604
1.610
1.614
1.620
1.624
1.630
1.634
1.640
1.644
1.650
1.654
1.660
1.664
1.670
1.674
1.700
1.704
1.710
1.714
1.720
1.724
1.730
1.734
1.740
1.744
1.750
1.754
1.760
1.764
1.770
1.774

Ao A02

0.462 0.266704
0.460 0.264400
0.456 0.262104
0.456 0.262104
0.454 0.257620
0.452 0.255344
0.452 0.255344
0.450 0.253100
0.446 0.250644
0.446 0.250644
0.444 0.246420
0.442 0.244204
0.442 0.244204
0.440 0.242000
0.436 0.237604
0.436 0.237604
0.434 . 0.235420
0.434 0.235420
0.432 0.233244
0.430 0.231100
0.430 0.231100
0.426 0.226744
0.426 0.226744
0.424 0.224620
0.422 0.222504
0.422 0.222504
0.420 0.220400
0.420 0.220400
0.416 0.216304
0.416 0.216304
0.414 0.214220
0.412 0.212144
0.412 0.212144
0.410 0.210100
0.410 0.210100
0.406 0.206044
0.406 0.206044
0.404 0.204020
0.404 0.204020
0.402 0.202004
0.402 0.202004
0.400 0.200000

Cray Research Proprietary
Preliminary Information

- 2Ao

0.630
0.634
0.640
0.640
0.644
0.650
0.650
0.654
0.660
0.660
0.664
0.670
0.670
0.674
0.700
0.700
0.704
0.704
0.710
0.714
0.714
0.720
0.720
0.724
0.730
0.730
0.734
0.734
0.740
0.740
0.744
0.750
0.750
0.754
0.754
0.760
0.760
0.764
0.764
0.770
0.770
0.774

137

Floating-point Reciprocal Approximation CPU

Handling of B Exponent

138

The following example show how the floating-point reciprocal
approximation unit handles the B exponent:

B= I 40000+E

Exponent

lXXXXX

Coefficient

XXXXXX XXXXXX

Value of B = 2E x O.lXXX --X Normalize floating-point number

B = 2E-l X 1.XXX --X Left shift by 1

Letb= 1.XXX-X

1.= 1 =_I_x 1
B 2E - 1 x b 2E - 1 b

Letn =E-1

1 2-0 1 2-<E- 1) 2-E + 1

20 = -1- OR 2E - 1 -1- = -I-

I = 2-E + 1 xl)
BIb

The following method is used in the CRAY T90 series system:

51132 Exponent

Perform 1 's complement 26645
1 Add one for normalization
1 Add one for two's complement

26647

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

CPU Floating-point Reciprocal Approximation

Floating-point Reciprocal Approximation Instructions

Refer to Table 25 for a list of the floating-point reciprocal approximation
instructions. Figure 68 is an illustration of the reciprocal approximation
functional unit.

Table 25. Floating-point Reciprocal Approximation Instructions

Instruction CAL Description

070;P

174;P

030iOk

RA Option

RB Option

RC Option

HTM-xxx-O
December 19,1994

SilHSj Floating-point reciprocal approximation of (SJ) to Si

VilHVj Floating-point reciprocal approximation (VJ) to Vi

AiAk Transmit Akto Ai

There is one RA option used; it is the first option in the reciprocal
approximation functional unit. It performs all of the vector pop operations
as well as the exponent, floating-point range error, look-up table and first
iteration of the reciprocal function. The RA receives and decodes the
control necessary to gate the data to the correct unit and generates the
control for the rest of the reciprocal approximation functional unit.

There is one RB option used; it is the second option in the reciprocal
approximation functional unit. The RB option gets the Al iteration data
from the RA option and performs the Al2 function to send it to the RC
option [mal iteration pyramid. The B2 operand data is also delayed on the
RB option before being sent to the RC.

When the Al2 and the B2 data is·available, the RB option generates the
jagged portion of the A2 pyramid. After a couple of levels of adds, those
bits are sent to the RC option to be included in the rest of the pyramid.

The RC option is the last option in the unit. It performs the [mal iteration
of the reciprocal approximation function. It receives the A12, AI, and B2
data from the RB option; forms the pyramid; and adds all the data to get
A2. The outputs of the RC option are all forced to D's by the input control
during any operation of the vector pop unit.

Cray Research Proprietary
Preliminary Information

139

~ o

-oQ
CD~
3'JJ
-"(I) :::Jf/)
1»(1)

-<~ _0
:::J:::J"
0'-0
3 0
1»"0
g: ffi"
:::JS"

-<

o
(I)

g
3
0"
~::r:
...... -1
co~

W I
...... x
COX
CO >0<
~o

Sj/Vj
Operand

\"-.--/

RA

B1 (Sj/Vj24-47)

B1 (Sj/VjO - 23) 1 RB

BO(SjNj
40-46)

B1 I B1 (24-47) B2 Data A1

A1~
A1 Data ! .

~
,'1

, I

A12

<
Look-up IAo2

-1 -16 I
Table •

A02

GoS Recip lEA

kO IEB I Control I OFA
k1 IEC

Recip Data Valid lED
B2

Go Recie lEE

Enable Ral1g~ Error IEF

Exponent, Sign 47 - 63

Gate Recip Results

Floating-point Range Error to HD

Figure 68. Reciprocal Approximation Functional Unit

~'

A12 Data

~
A2
Pyramid

RC

A12

J
-I

I B2

~
1

I A2 Pyramid Results I
1-2A 1 + A2 Pyramid I
I Final Summation I

i

Result Data to
Vectors and Scalars

.)
'-"

::n
2
:::!" ;::,"

CC?
1:)
o
5"
~
is" a
2 -):.
:g
a
~
S"
D)

g.
;::,

~

)

CPU

Multiply Algorithm

HTM-xxx-O
December 19, 1994

Floating-point Reciprocal Approximation

The reciprocal approximation functional unit uses a recode multiply
algorithm known as Booth Recode algorithm. It is used on several pieces
of the various pyramids. This algorithm was used instead of the standard
pyramid formations to save space on the options and make them easier to
route.

Cray Research Proprietary
Preliminary Information

141

FLOATING-POINT MULTIPLY

HTM-xxx-O
December 19, 1994

The scalar and vector registers share the floating-point multiply functional
unit. Two floating-point operands are sent to the multiply functional unit
by either the scalar or the vector registers. The signs of the two operands
are combined through an exclusive OR operation, the exponents are added
together, and the two 48-bit coefficients are multiplied. Multiplying two
48-bit numbers produces a 96-bit result. Because the result register (either
a scalar or a vector register) can hold only 48 bits in the coefficient, only
the upper 48 bits of the 96-bit result are kept. The lower 48 bits are lost;
in fact, most are not generated.

The floating-point multiply functional unit also passes operands to the AM
option for the integer multiply operation. Sj and Vk data are relayed
through the NA and NB options for use by the AM option during integer
mUltiply operations. The floating-point mUltiply functional unit no longer
perfonns integer multiply.

The floating-point multiply functional unit can also be used to generate a
third iteration in conjunction with the reciprocal approximation functional
unit. Generating the third iteration creates a full-precision coefficient,
utilizing all 48 bits of the coefficient. The full-precision reciprocal
number can then be multiplied by the multiplier to fmish the division. If
full precision is not needed, then there is no need to generate a third
iteration. Instead, the results from the reciprocal approximation functional
unit are multiplied by the multiplier using a multiply instruction. The
following multiply instructions add 2 rounding bits and truncate the lower
19 bits of the coefficient: 065ijk, 162ijk, or 163ijk.

The floating-point multiply functional unit has the same range error
conditions as the floating-point add. If an overflow condition exists, the
floating-point number has exceeded the limits of the computer system.
When an overflow condition occurs, the result register receives the
calculated coefficient with an exponent forced to 600008. An overflow
condition also causes a flag to be set in the exchange package if the
interrupt on floating-point error mode bit is set. An underflow condition
exists when the result exponent is equal to or less than 177778. When an
underflow condition exists, both the fmal exponent and the coefficient are
forced to O's, but no flag sets in the exchange package.

Cray Research Proprietary
Preliminary Information

143

Floating-point Multiply

144

CPU

The floating-point multiply functional unit performs the 064ijk through
067ijk instructions for the scalar registers and performs the 160ijk through
167ijk instructions for the vector registers. Because the multiply unit is
shared by both the scalar and vector registers, a functional unit reservation
must be checked before one of these instructions can issue.

The floating-point multiply unit is controlled by the mode bits, which are
taken from h field bits 1 and 0 for the 064ijk through 067ijk instructions,
or from h field bits 2 and 1 for the 160ijk through 167ijk instructions. The
064ijk instruction, which is the scalar equivalent of the 160ijk and 161 ijk
instructions for the vector registers, performs a floating-point multiply of
two scalar registers.

The 065ijk instruction, which is the equivalent of the 162ijk or 163ijk
instruction for vector registers, is used with the reciprocal approximation
functional unit to complete a divide sequence. In other words, a 065ijk
instruction would be issued after a 070ijk instruction. The 065ijk instruction
adds 2 bits into the final summation in bit positions 16 and 17. These 2 bits
are called strong rounding bits because they have a major effect on the
answer. When the final summation is completed, the 065ijk instruction also
causes the lower 19 bits to be truncated; the control term that enables this is
called strong round.

The 066ijk instruction, which is the equivalent of the 164ijk through)
165ijk instruction for the vector register, is used only after the third
iteration has been completed within the floating-point multiply functional
unit. The 066ijk instruction generates 2 weak rounding bits. These 2 bits
are called weak rounding bits because they are added into the lower
portion of the summation, having only a minimal effect on the final
summation.

The 067ijk instruction, which is the equivalent of the 167ijk instruction for
the vector registers, forms part of the third iteration as follows.

The third iteration is equal to A3 ~ (2A2 - A22B). The 067ijk instruction
solves for (-2 + A2 * B) by first multiplying A2 times B, and then adding
-2 to the product. The -2 addition is accomplished by adding 1 to each
sum in bit position 0 through 46 during the summation of (A2 * B). These
1 bits actually comprise 49 1 bits and are generated by the control terms,
which are decoded from a 067ijk or a 167ijk instruction.

The 067ijk instructions also complement or toggle their final result to
convert -A3 = (-2 + A2 * B) to A3 = (2 - A2 * B). At this point, the
064ijk instruction completes the third iteration by multiplying A2 times
the result of the 067ijk instruction. In other words,
A2 * (2 - A2 * B) = (2A2 - A22B). In conclusion, the 067ijk instruction,

Gray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)
~

)

CPU Floating-point Multiply

along with the 064ijk instruction, generates the third iteration equation
A3 = (2A2 - A22B).

Divide Sequence

HTM-xxx-O
December 19, 1994

A divide sequence produces an answer accurate to 29 places. The
instructions used to perform this divide sequence are shown below. If an
answer accurate to 48 places is required, a software algorithm (shown
below) produces the desired results.

S6 = Sl/S2

Accurate to 29 Bits:

#1 070320 S3 = 1/S2

#2 065613 S6 = SI * FS3

Accurate to 48 Bits:

S6 = S1/S2

#1 070320 S3 = 1/S2

#2 067432 S4 = (2 - [S3*S2])

#3 064543 S5 =S4*S3

#4 066651 S6 = S5*SI

#1 Al = 2Ao - A02B First Iteration

A2 = 2Al- AI2B Second Iteration

Cray Research Proprietary
Preliminary Information

145

Floating-point Multiply

#2

#3

#4

S4 = (2 - (A2*B»

A3 = A2(2 - (A2*B»

or

CPU

Third Iteration

Third Iteration * S 1

Floating-point Multiply Functional Unit Instructions

146

Refer to Table 26 for a list of the floating-point mUltiply functional unit
instructions.

Table 26. Floating-point Multiply Functional Unit Instructions

Instruction CAL Description

064ijk

065ijk

066ijk

067ijk

160ijk

161 ijk

162ijk

163ijk

164ijk

165ijk

166ijk

167ijk

SlSfFSk Scalar floating-point product of (S)) times (Sk) to (S/)

SlSfHSk Scalar floating-point product, half precision, (S)) times (Sk) to
(S/)

SlSfRSk Scalar floating-point product, full precision, (S)) times (Sk) to
(S/)

SlSflSk Scalar floating-point product, 2 minus the product of (S/) times
(Sk) to (S/)

VlSfFVk Vector floating-point product (S)) times (V k elements) to Vi

VNj*FVk Vector floating-point product (Vj elements) times (elements) to
Vi

VlSfHVk Half precision, (S)) times (Vkelements) to Vi

VNfHVk Half precision, (Vjelements) times (Vkelements) to Vi

VlSfRVk Full precision, (S)) times (Vkelements) to Vi

VNfRVk Full precision, (Vjelements) times (Vkelements) to Vi

VlSfVk 32-bit integer products of (S)) and (Vk) to Vi (C90 mode)

VNfVk Iteration, two minus (Vj elements) times (Vkelements) to Vi

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

CPU

NA Option

NB Option

NC Option

HTM-xxx-O
December 19, 1994

Floating-paint Multiply

Because this is a dual-pipe functional unit, there are two options. The
even elements are processed by pipe 0, which is option number 000; and
the odd elements are processed by pipe 1, which is option number 001.

The NA option forms the upper right portion of the pyramid. The
pyramid is 24 bits deep from sum bits 40 to 65. It is generated fromj
operand bits 17 through 47, and k operand bits 0 through 41. The scalar
jlk and vector jlk operands are multiplexed (muxed) before the pyramid is
formed.

The NA option relays a copy of Sj bits 40 through 47 and Vk bits 0
through 41 to the AM option for the 166 instruction (integer multiply).

The NB option forms the lower right portion of the pyramid. The pyramid
increments from 17 bits deep at sum bit 40, to 24 bits deep at sum bit 47,
and then tapers down to 6 bits deep at sum bit 65. It remains at 9 bits
from sum bit 65 to sum bit 78.

It is generated from j operand bits 0 through 39 and k operand bits 24
through 47. The scalar jlk and vector jlk operands are muxed before the
pyramid is formed.

The NB option also forms rounding bits for all floating-point multiply
instructions at sum bits 78 through 40. The first two-level results are then
sent to the ND option for final summation.

The NB option relays a copy of Sj bits 0 through 39 and Vk bits 42
through 47 to the AM option for the 166 instruction (integer multiply).
The NB option also sends the control signal Go V 166 to the AM option.

The NC option forms the lower left portion of the pyramid. The pyramid
decrements from 20 bits deep at sum bit 66, to 8 bits deep at sum bit 78.
The pyramid then starts from 16 bits deep at sum bit 79 and tapers to 1 bit
deep at sum bit 94.

Cray Research Proprietary
Preliminary Information

147

Floating-paint Multiply

NO Option

148

CPU

The pyramid is generated from j operand bits 28 through 62 and k operand
bits 16 through 47. The scalar jlk and vector jlk operands are muxed ')
before the pyramid is formed. The NC option also forms rounding bits for
all floating-point multiply instructions at sum bits 79 through 94. The first
two-level results are then sent to the ND option for [mal summation.

The NC option also computes the exponent, underflow, and range error.
The exponent value is sent to the ND option to compute the exponent -1
and to multiplex the correct exponent. The NC option also computes the
final sign bit and sends it to the result register. The NC sends the sign bit
back to the JA for possible early branch determination.

The NC option relays a copy of Sj bits 48 through 62 to the AM option
for the 166 instruction (integer multiply).

The ND option does the final summation for the floating-point multiply
pyramid. The ND sends the final coefficient and exponent to the result
registers. The NC also transmits the range error signal to the HD option.

Refer to Figure 69 for a block diagram of floating-point multiply and to
Figure 70 for an illustration of the floating-point multiply first-level
summation.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

.~

)

)

CPU

HTM-xxx-O
December 19, 1994

Sj Bits 17 - 47

SkBitsO-41

VkBits 0 -41

SjNkCopy
Bits 17 -47

I1J

Go Scalar FM

Go Vector FM

SjBits 0 39

Sk Bits 24 - 47

VjBits 0-39

Vk Bits 24 - 47

h Bits 0-2

Go Scalar FM

Go Vector FM

Sj Bits 28 - 63

SkBits 16-63

Vj Bits 28 - 63

VkBits 16 - 63

Go Scalar FM

Go Vector FM

FPE Mode

IAA-IBE
NAOOO

ICA-IDP

IGA- IHP
/

IEA-IFE

V IXA

IXC,IXD

IXE

IAA IBN
NBOOO

ICA-ICX

IEA-IFN

IGA-IGX

cJ IXA-IXC

IXD,IXE

IXF

Use Vjdata

Go Vector FM

Mode 0, 1

Address Multiply

IIXC,IXD NCOOO

IXA,IXB

IXK

IXG

IAA-IBJ

ICA-IDV

IEA-IFG

IGA-IHV

IXI,IXJ

IXK

IXM

NDOOO
OCA-OCD 1 st Pyramid Results IDA-IDF

OAA OBO 1 st Pyramid Results IGA IHO

OCA-ODK 1st Pyramid Results IAA-IBK

OED Address Multiply IXC

OEE Iteration IXB

OEF Strong Round IXF

OEC

OEA,OEB

OEG

OFA

OAA-OBZ 1 st Pyramid Results IIA-IJZ

ODA-ODM 1st Pyramid Results ICA-ICM

OEA-OEO Exponent Results IKA-IKO

OFA Underflow IXE

OFB Range Error IXG

OFC Integer Multiply IXD

OFD GoFM IXA

OFE FPE Mode IXH

OEP Sign Bit to V* I A*

OFF Jump Sign Bit to JA

Figure 69. Floating-point Multiply Block Diagram

Cray Research Proprietary
Preliminary Information

Floating-point Multiply

OAA,OBV Si / Vi Coeff Results to V* / A*

OCA,OCO Si / Vi Exponent Results to V* / A*

ODA Si / Vi Ranae Error to HD

149

)

)

CPU

.--
.--

r1

HTM-xxx-O
December 19, 1994

--.--
.--

.--
.--.....

.--,.....
...... ,.....

.-- NC ,......
~ -

NC NB

.....

..... ,.....
,..... --,.....

r--
r--

..-...... ------.----:--

I--'
I--

I--
~

~

Figure 70. Floating-point Multiply First-level Summation

Cray Research Proprietary
Preliminary Information

~ -~

r--,..... ,.....

NA

~
I--'

1--1
~

io-

~
~

I--'

NB

r----

~ --

~

'"---I-

Floating-point Multiply

,.....
I--.....

Bits

o

23

24

40

47

k

o
p
e
r
a
n
d

151

')

)

BIT MATRIX MULTIPLY

The OA option performs the bit matrix multiply operation. The functional
unit consists of six OA options.

The OA option performs two functions related to bit matrix multiply. The
first function is to load the B array with the Vj operand. The second
function is to perform the A x BT operation where A is either the Sj or Vj
operand and BT is the B array transposed. The scalar operation produces a
scalar result, and the vector operation produces a vector result.

Each OA option receives 22 bits of the operand. OA002 and OA005
receive 20 bits, and the last two inputs are forced to zero. Each OA option
holds 32 elements x 22 bits. When performing the A x BT operation,
each OA produces a partial result for each of the 32 elements. The partial
results are then sent the appropriate OA option to complete the [mal
results. There is only one copy of each control bit coming into the
functional unit, so OAOOI and OA004 relay the control bits to the other
options.

Bit Matrix Multiply Theory of Operation

HTM-xxx-O
December 19, 1994

The bit matrix multiply (BMM) functional unit performs a logical
multiplication of two matrices, designated A and B, resulting in a
single-bit result for each pair of elements multiplied. The matrices, which
are held in vector registers, may vary in size from 1 bit x 1 bit (1 xl) to
64 x 64 bits. The size of the matrix is specified by the vector length (VL)
register (example: VL = 20 specifies 20 x 20 matrices).

The following conditions are necessary to obtain valid results:

• The two matrices must be square and of equal size.

• The two matrices must be left-justified in the vector registers to
element 0, bit 63.

• Unused bits of each element that contain part of the matrix must be
zeroed.

• Elements not containing parts of a matrix are unaffected.

Cray Research Proprietary
Preliminary Information

153

Bit Matrix Multiply

154

CPU

Result matrix C is the product of matrix A and matrix B transposed (Bt).
Bt is formed from matrix B by interchanging its rows and columns.

In addition to performing full 64 x 64 matrix multiply operations, the
BMM functional unit performs a scalar-vector multiply operation and
stores the result in an S register.

Figure 71 is an illustration of 20 x 20 and 50 x 50 matrices as stored in
vector registers.

Bits 63 44 43 o Bits 63 14 13 o
Element 0 .-----.,.-------. Element 0 .-------.,....---...

Valid
Data Zeroes

Element 19 t-----------I
Element 20

Don't Care Element 49
Element 50

Valid Data Zeroes

~------~----~

Don't Care

Element63 _________ Element 63 L-.. _________ -I

VL= 2010

Figure 71. Vector Storage of Bit Matrices

In this section, the notation used to represent individual bits of a matrix
consists of a lower-case letter followed by a subscripted numeric field.
The letter represents the name of the matrix; the numerics denote,
respectively, the element and bit of the vector register data. Elements and
bits numbered from 1 to 9 are represented as a 2-digit number; elements
and bits numbered upward from 10 are separated by a comma. For
example:

a3,7 represents matrix A, element 3, bit 7

b15,43 represents matrix B, element 15, bit 43

a3,12 represents matrix A, element 3, bit 12

Mathematically, matrices A and B can then be represented as shown in
Figure 72. Note that the ultimate degree of both element and bit can be
represented by n because these must be square matrices. Each row of a
matrix corresponds to an element of a vector register.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

CPU

HTM-xxx-O
December 19, 1994

Bit Matrix Multiply

A=

all al2 al3
a21 a22 a23

B=

bll bl2 bl3
b21 b22 ~3

Figure 72. Mathematical Representation of Matrices A and B

The BMM functional unit transposes matrix B as it is loaded into the
BMM storage area. The elements (rows) of the B matrix data are
interchanged with the bit positions (columns) as shown in Figure 73.

bll bl2 b13
b21 ~2 ~3

B = b31 b32 b33

bll b21 b31
bl2 b22 b32

Bt = b13 b23 b33

Figure 73. B Matrix and Bt Matrix Relationships

Cray Research Proprietary
Preliminary Information

155

Bit Matrix Multiply

all a12
a2I a22
a3I a32

ABt=

A

156

CPU

The product C = ABt is defmed as shown in Figure 74.

a13 ain bll lni b3I bul Cll CI2 C13 Cin
a23 a2n b12 ln2 b32 bu2 C2I C22 C23 C2n
a33 a3n b13 ln3 b33 bu3 c3I c32 C32 C3n

Cni Cn2 Cn2 Cnn

C

where:
Cu=allbllffia12bI2ffia13b13ffi ... ffiainbin t
C12=allb21ffia12b22ffia13b23ffi ... ffiaInb2n
C13=allb31ffia12b32ffia13b33ffi ... ffiaInb3n

.
t EB indicates an exclusive OR operation.

Figure 74. Multiplication of A and Bt

Gray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

-)

)

)

CPU Bit Matrix Multiply

Instructions

Refer to Table 27 for a list of the bit matrix multiply instructions.

Table 27. Bit Matrix Multiply Instructions

Instruction CAL Description

1740j4

1740j5

174jp

070jp

002210

HTM-xxx-O
December 19, 1994

BMM lVj Transmit Vj elements 0 - 63 to B matrix

BMM UVj Transmit Vj elements 64 -127 to B matrix

Vi Vj* BT Transmit the value of V j multiplied by the transposed B matrix
to Vi

Si Sj* BT Transmit the value of Sjmultiplied by the transposed B matrix
to Si

CBl Clear the bit matrix loaded (BMl) flag

Refer to Figure 75 for a BMM block diagram for pipe 0 and to Figure 76
for a BMM block diagram for pipe 1.

Cray Research Proprietary
Preliminary Information

157

)

)

)

)

HHTM-xxx-O
December 19,1994

I VROOO Bits 0-3

I VMOOO B;ts4_71
I VR001 Bits 8 -11 ~

I VM001 Bits 12 -15 -

I VR002 Bits16-19 I-

VMOO2 Bits20-21
...

~

I VMOO2 Bits22-23

I VROO3 Bits 24 - 27 ~
I VM003 Bits 28 - 31 I-

1 VR004 Bits 32 - 35 I-
J VM004 Bits 36 - 39 ~

VR005 Bits 40 - 43 -

[j

I VMOO5 Bits 44-47
I VROO6 Bits48-51

I VMOO6 Bits 52-55 ..
I VROO7 Bits 56-59 -

VMOO7 Bits 60-63 I-
!-

J

IAA-IAV

IAA-IAV

IAA-IAU

IAA-IAV

IAA-IAV

IAA-IAU

OAOOO Bits 0 - 21 IDA-IDK OAOOO
OCK-OCU

OCA-OCJ IEA-IEK Bits 42, 44 - 62

OCV-ODF ICA-ICK Partial Results

OA001 Bits 22 - 43 OCK-OCU IDA-IDK OAOO1

OCV-ODF ICA-ICK Bits 20, 22 - 40

OCA-OCJ
IEA-IEK

Partial Results

OA002 Bits 44 - 63 OCV-ODF
IDA-IDJ OAOO2

Bits 0, 2 -18
OCK-OCU

ICA ICJ

OCA-OCJ IEA-IEJ Partial Results

OA003 Bits 0 - 21 OCK-OCU IDA-IDK OAOO3

IEA-IEK Bits 43, 45 - 63
OCA-OCJ

OCV-ODF ICA-ICK Partial Results

OA004 Bits 22 - 43 OCK-OCU IDA-IDK OAOO4

OCV-ODF
ICA-ICK Bits 21, 23 -41

OCA-OCJ IEA-IEK
Partial Results

OCV-ODF OA005 Bits 44 - 63 IDA-IDJ OAOO5

OCK-OCU Bits 1, 3 -19
ICA-ICJ

OCA-OCJ IEA-IEJ Partial Results

Figure 75. Bit Matrix Multiply Block Diagram Pipe 0

Cray Research Proprietary
Preliminary Information

Bit Matrix Multiply

VMOOO/AROOO

OAA-OAK Final Result Bits I VMOO1/ASOOO
Odd Bits 1 - 21 7 VMOO2/ASOO1 l--L-

OAA-OAK Final Result Bits
Odd Bits 23 - 43

OAA-OAJ Final Result Bits
Odd Bits 45 - 63

VMOO2lASOO~ I VMOO3/ASOO2

7 I VMOO4/ATOOO

L VMOO5/ATOO1

OAA-OAK Final Result Bits
Even Bits 0 - 20

OAA-OAK Final Result Bits
Even Bits 22 - 42 VMOO5/ATOO1

7 I VMOO6/AUOOO ...
L VMOO7/AUOO1 -

OAA-OAJ Final Result Bits
Even Bits 44 - 62

159

)

(Jt'u

HTM-xxx-O
December 19, 1994

I VROO8 Bits 0-3

I VMOO8 Bits 4-7

I VROO9 Bits 8-11 -
I VMOO9 Bits 12 -15 ~

I VR010 Bits 16 -19 ~

VM010 Bits 20-21 ~

~

IJ

I VM010 Bits22-23

I VR011 Bits 24 - 27

IVMOl1 28-31 1/
I VR012 Bits 32 -35 ~

I VM012 Bits 36-39 ~

VR013 Bits 40 - 43 ~
~

II
I VM013 Bits 44-47

I VR01. ...48_
517 I VM014 Bits 52-55 ~

I VR015 Bits 56 - 59 I-

VM015 Bits 60 - 63 ... -
J

IBA-IBV

IBA-IBV

IBA-IBU

IBA-IBV

IBA-IBV

IBA-IBU

OAOOO Bits 0 - 21 IGA-IGK OAOOO OEK-OEU

OEA-OEJ IHA-IHK Bits 42, 44 - 62

OEV-OEF IFA-IFK
Partial Results

OEK-OEU IGA-IGK OAOO1
OA001 Bits 22 - 43

OEV OEF
IFA-IFK Bits 20, 22 - 40

IHA-IHK
OEA-OEJ Partial Results

OEV OEF
IGA-IGJ OAOO2

OA002 Bits 44 - 63

OEK-OEU BitsO,2-18
IFA IFJ

OEA-OEJ IHA-IHJ Partial Results

OA003 Bits 0 - 21 OEK-OEU IGA-IGK OAOO3

IHA-IHK
Bits 43, 45 - 63 OEA-OEJ

OEV-OEF IFA-IFK Partial Results

OAOO4 OEK-OEU IGA-IGK
OA004 Bits 22 - 43

OEV-OEF
IFA IFK Bits 21, 23 -41

OEA-OEJ IHA-IHK
Partial Results

OA005 Bits 44 - 63 OEV-OEF
IGA-IGJ

OAOO5

OEK-OEU Bits 1, 3 -19
IFA-IFJ

OEA-OEJ IHA-IHJ Partial Results

Figure 76. Bit Matrix Multiply Block Diagram Pipe 1

Cray Research Proprietary
Preliminary Information

Bit Matrix Multiply

OBA OBK Final Result Bits ;-1VMOO8

Odd Bits 1 -21 7 VMOO9

L VM010 ~

OBA-OBK Final Result Bits
Odd Bits 23 - 43

OBA-OBJ Final Result Bits
Odd Bits 45 - 63

VM010

7 r VM011 I-

L
VM012 l-

VM013 i-

OBA-OBK Final Result Bits
Even Bits 0 - 20

OBA-OBK Final Result Bits
Even Bits 22 - 42 VM013

7 r VM014 j-
L VM015

OBA-OBJ Final Result Bits
Even Bits 44 - 62

161

)

INSTRUCTION BUFFERS

Bit Type

Instruction data bits

B address bits

Fetch address bits

The instruction buffers are located on four Ie options; Table 28 shows
how the four Ie options are partitioned. Each Ie option contains 8
buffers, and each buffer holds 32 16-bit words. The Ie options also hold
data for functions other than instructions.

Table 28. Ie Options

ICOOO IC001 IC002 IC003

0-7 and 8-15 and 16 -23 and 24 - 31 and
32-39 40-47 48-55 56-63

0-7 8-15 16-23 24 -31

0-7 8-15 16-23 24 -31

Logical address translation 0-7 and 8-15 and 16 -23 and 24 - 31 and
(LAT) address bits 32-39 40-47 48-55 56-63

Exchange P address bits 0-7 and 8 -15 and 16 -23 and 24 - 31 and

Fetch destination code
fan-out bits

Fetch

HTM-xxx-O
December 19, 1994

32-39 40-47 48-55 56-63

0,1 2,3 4,5 6,7

The Ie options generate a deadstart fetch after the first 208 words have
been received; this is the number of words in the exchange package. The
Ie option counts the number of common memory valid codes received,
and this count enables the deadstart fetch signal to be generated.

When data is fetched from memory, it is requested as a block of 32 words
(4 blocks of 8 words with the first word of this block being the first word
that is needed). For example, if a branch is made to address 1005, that
address is requested first, followed by addresses 1006 to 1037, then 1000
to 1004.

When the common memory data arrives, the Ie compares the incoming
code with the expected code. This code tells the Ie option where to put
the data in the buffer. Data can arrive at the Ie from memory in any
order; it is reordered inside the buffer. The memory code enables this to
happen. Along with every 16 bits of memory data, a 9-bit code is also

Cray Research Proprietary
Preliminary Information

163

Instruction Buffers CPU

Prefetch

164

sent. This code specifies the buffer and the element in the buffer into .\
which the word is to be loaded. The following illustration shows a)
breakdown of the code.

Valid Buffer Element

The data arrives at the Ie options 2 words at a time. When the data starts
arriving, the Ie options look for the first 4 words. These words go
through a bypass path, to the read-out registers, and then to the JA options
for issue.

Two pointers are associated with bypass: a read pointer and a write
pointer. As long as the write pointer stays ahead of read issue, the first 4
words will issue. The buffers will continue to fill while the first 4 words
are issuing. If the first 4 words issue and the buffers are not full, then
issue stops until the buffers fill and the buffer valid bit is set. The
instruction parcels will then start leaving the buffers for the JA options.

A prefetch is initiated when the buffer read-out pointer reaches address
308 in the buffer or a branch occurs to addresses 30 to 378.

The prefetch checks to determine whether the next sequential buffer is
already in-stack. If it is not, a fetch is initiated to the next sequential
common memory address. When the count in the buffer reaches 378, the
Ie advances the buffer pointer and checks to ensure that the read data
valid bit is set. If the read data valid bit is not set, the Ie option enables
the wait first word flag and waits for the first word to be received from
common memory.

NOTE: The prefetch will always occur, but it can be blocked or aborted
by any branch sequence in progress.

Prefetch can, in some cases, cause a decrease in performance. For
example, if the first word of the next sequential instruction block is
needed while the current instruction block is being fetched, a delay occurs.
In this case, issue stops until the last word of the next block is fetched.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

CPU

HTM-xxx-O
December 19, 1994

Instruction Buffers

If an out-of-stack branch occurs while the next sequential block is waiting
to be prefetched, the prefetch is aborted and the block containing the
branch address is fetched instead. Issue of instructions at the branch
address are delayed until the fetch of the current block is completed and a
fetch of the current block containing the branch address begins.

Another problem with prefetch occurs when executing an instruction at
the top of logical address translation (LAT) space. The code may execute
a branch to lower memory but the prefetch may try to initiate a fetch from
the next sequential memory location. If the next sequential memory
location is out of the LAT range, a range error may occur. This will
happen if the branch is within 8 words of the last valid LAT address.

Refer to Figure 77 for the Ie options bit layout, to Figure 78 for an Ie
block diagram, and to Figure 79 for the Ie option terms.

Figure 80 is a block diagram of the memory-to-instruction buffers for
path 1, and Figure 81 is a block diagram of the memory-to-instruction
buffers for path 2. Figure 82 is a block diagram of the common memory
path code 1 fanouts, and Figure 83 is a block diagram of the common
memory path code 2 fanouts.

Cray Research Proprietary
Preliminary Information

165

Instruction Buffers CPU

166

IC003
Instruction Data Bits 24 - 31 and 56 - 63
B Bits 24 - 31
Fetch Bits 24 - 31
LAT Address Bits 24 - 31 and 56 - 63
Exchange P Data Bits 24 - 31 and 56 - 6~

ICOOO

IC002

IC001

Instruction Data Bits 16 - 23 and 48 - 55
B Bits 16 -23
Fetch Bits 16 - 23
LAT Address Bits 16 - 23 and 48 - 55
Exchange P Data Bits 16 - 23 and 48 - 5E

Instruction Data Bits 8 -15 and 40 - 47
B Bits 8-15
Fetch Bits 8 - 15
LAT Address Bits 8 - 15 and 40 - 47
Exchange P Data Bits 8 - 15 and 40 - 47

Instruction Data Bits 0 - 7 and 32 - 39
B Bits 0-7
Fetch Bits 0 - 7
LAT Address Bits 0 - 7 and 32 - 39
Exchange P Data Bits 0 - 7 and 32 - 39

RAM Array 0

Buffer 0 - 3
Even Words

0-30

RAM Array 1

Buffer 4 - 7
Even Words

0-30

RAM Array2

Buffer 0 - 3
Odd Words

0-30

RAM Array3

Buffer 4-7
Odd Words

0-30

Figure 77. Ie Options Bit Layout

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

-)

)

)
/

CPU

(JA)

(IC)

(IC)

(CH)

(CH)

(IC)

(IC)

(IC)
(IC)

(BT)

Path 1 Code
(Array Write!
Read Address)

Path 1 Valid
(Write Enable)

Path 1 Data

Path 2 Data
Path 1 Valid
(Write Enable)

Path 1 Code
(Array Write!
Read Address)

P Bits 0-15
P Bits 16-31

IPA IPP

IAQ-IAX

lAX

IAA-IAP

IBA-IBP

IBX

IBQ-IBX

IDA-IDP
IEA-IEP

ICA-ICH

HTM-xxx-O
December 19, 1994

IC
-: Fan-out Dat~

Coincidence Buffer

Parcel Data I
P Reg Data I I h, i, j, k Bits

Buffer Match

.1 Branch or LAT I
Address

Array 0 Buffer
0-3 Even

Words

1 0-15 r--
Array 1 R
Buffer e

4-7 Even a

~ Words d
0-15 -... 'Array 2

0
u

Buffer t
0-30dd

Words R
0 15 e

J Array 3 9
Buffer ""--

4-70dd - Words
0 15

:: Bypass ~
1 Fetch Address I
L Register I

1 Fan-out Data :
1

Figure 78. Ie Block Diagram

Gray Research Proprietary
Preliminary Information

Instruction Buffers

OWA-OWC
OWD-OWE (HM)
OWI-OWK (RA)
OWQ-OWS

HD) tM
) OXA-OXC

OXD-OXF NA,NB)
(VS, FA , FB)

Branch Address
OEA OEH

LAT Address OEI - OEP

Parity Error to OUA

Inst Data to OAA - OAP

New P to OAA - OAH

OCA-OCH
OCI - OCP BjklP Fanout

(CC)

CC) (

(OA)

(JA)

(BT)

(IC)

167

Instruction Buffers

(CH)

(IC)

(CK)

(CH)

(IC)

(CK)

(BT)

(BT)

(BT)

(JA)

(JA)

(JA)
(JA)

(JA)
(JA)

(JA)

(JA)

(JA)

(HA)

(CC)
(HD)

(VA)

(HA)

(CC)
(HA)

(Force)

(CC)

168

IAA
CM Path 1 Data lAP

lAO
CM Path 1 Code lAY

IVC
CM Path 1 Code to Fanout IVD

IBA
CM Path 2 Data IBP

IBO
CM Path 2 Code IBY

IVE
CM Path 2 Code to Fanout IVF

ICA
Bjk Exchange P to Fanout ICH

IDA
Bjk Exchange P Bit 0 - 15 IDP

lEA
BjkExchange P Bit 16-31 IEH

IPA
Parcel Data IPP
Enter Rank 1 lOA
Enter Rank 2 IOE
Clear Rank 2 lOA
Data Resume 10M
Branch Issue 100
Go Branch lOR
Branch Fall Through lOS
Interrupt Request IOU

CPU MC to Fanout IRA
Exchange Active to Fanout IRB
Triton Mode to Fanout IRC
VL#2 or CM B to Fanout IRD

CM MC to Fanout IRE
Fetch Done ISA
MaintMode ITA

IUA
ICSelect IUB
Enter Exchange P IVB

IC

Figure 79. Ie Option Terms

Cray Research Proprietary
Preliminary Information

OAA
OAP

OAO

OCA
OCH

OCI
OCP

ODA
ODH

ODI

ODJ

OEA
OEH

OEI
OEP

OEO

OER

ODJ

OVA
OVD

OVE
OVH

OWA
OWC

OWD
OWE

OWK
OWl

OWO
OWS

OXA
OXC

CPU

Instruction Data
(JA)

Instruction Data Ready
(JA)

Bjk Exchange P to Fanout
(BT)

Bjk Exchange P to Fanout
(BT)

NewP
(BT)

Enter New P/Dump Mode
(BT)

Go Branch/Exchange Enable
(JA)

Branch Address
(CC)

Exchange LAT
(CC)

Fetch Requests
(CC)

Go Dump
(CB)

Buffer Load Pointers
(JA)

CM Path 1 Read Code Fanout
(IC)

CM Path 2 Read Code Fanout
(IC)

1<0, k1, Kl. at Phase 3 (HM)

1<0, k1 at Phase 2
(RA)

Vjat Phase 3
(HM)

Viat Phase 2 (HF)

00, hi, ff2. at Phase 2
(NA, N)

HTM-xxx-O
December 19, 1994

-j

)

)

)

CPU

CHOOO
OMA- IAA-

ICOOO OMD Bits 0-3 lAD CH008 OMA-
OMD Bits 16-19

OME- IAI-
OMH Bits 32 -35 IAL

OME-
OMH Bits 48-51

IAE-
CH002

OMA-
OMD Bits 4-7 IAH CH010 OMA-

OMD Bits 20-23

OME- IAM-
OMH Bits 36-39 lAP

OME-
OMH Bits 52-55

CH004 OMA- IAA- IC001 OMD Bits8-11 lAD CH012 OMA-
OMD Bits 24-27

OME- IAI-
OMH Bits 40-43 IAL

OME-
OMH Bits 56-59

IAE-
CH006

OMA-
OMD Bits 12-15 IAH CH014

OMA-
OMD Bits 28-31

OME- IAM-
OMH Bits 44-47 lAP

OME-
OMH Bits 60-63

Figure 80. Memory-to-instruction Buffers (Path 1)

HTM-xxx-O
December 19,1994

Cray Research Proprietary
Preliminary Information

Instruction Buffers

IAA- IC002
lAD

IAI-
IAL

IAE-
IAH

IAM-
lAP

IAA- IC003
lAD

IAI-
IAL

IAE-
IAH

IAM-
lAP

169

Instruction Buffers

CH001 OMA-
OMD

OME-
OMH

CH003 OMA-
OMD

OME-
OMH

CH005 OMA-
OMD

OME-
OMH

CH007 OMA-
OMD

OME-
OMH

170

IBA- ICOOO
Bits 0-3 IBD

CH009 OMA-
OMD Bits 16-19

IBI-
Bits32-35 IBL

OME-
OMH Bits48-51

IBE-
Bits4-7 IBH

CH011 OMA-
OMD Bits 20-23

IBM-
Bits 36-39 IBP

OME-
OMH Bits 52-55

IBA-
IC001 Bits 8-11 IBD

CH013 OMA-
OMD Bits 24-27

IBI-
Bits 40-43 IBL

OME-
OMH Bits 56-59

IBE-
Bits 12 -15 IBH

CH015 OMA-
OMD Bits 28-31

IBM-
Bits 44-47 IBP

OME-
OMH Bits 60-63

Figure 81. Memory-to-instruction Buffers (Path 2)

Cray Research Proprietary
Preliminary Information

CPU

IBA- IC002
IBD

IBI-
IBL

IBE-
IBH

IBM-
IBP

IBA- IC003

IBD

IBI-
IBL

IBE-
IBH

IBM-
IBP

HTM-xxx-O
December 19, 1994

)
j

)

~\

)

)

)

CPU

CKOOO

Element Bit 0

Element Bit 1

Element Bit 2

Element Bit 3

Element Bit 4

Buffer Bit 0

Buffer Bit 1

Buffer Bit 2

ONB ONA

HTM-xxx-O
December 19,1994

ONF

ONG

ONH

ONI

ONJ

ONC

ONO

ONE

ICOOO

IVC_ OVA

IVO OVC

ICOO1

IVC
OVA

IVO
OVC

ICOO2
OVA

IVC

OVC

IVO

ICOO3
OVA

IVC_

OVC

IVO

Valid

r ICOO1

ICOOO

lAO Element Bit 0

IAR
Element Bit 1

lAS
Element Bit 2

IAT
Element Bit 3

IAU
Element Bit 4

IAV
Buffer Bit 0

lAW
Buffer Bit 1

lAX
Buffer Bit 2 ~ ..

lAY

Figure 82. Common Memory Path Code 1 Fanouts

Cray Research Proprietary
Preliminary Information

ICOOO

ICOO1

ICOO2

ICOO3

Instruction Buffers

OVB

OVO

r ICOO3

ICOO2

lAO
Element Bit 0

IAR
Element Bit 1

OVB lAS
Element Bit 2

OVO IAT
Element Bit 3

OVB IAU
Element Bit 4

OVO IAV _
Buffer Bit 0

lAW
Buffer Bit 1

lAX _
Buffer Bit 2

~

OVB lAY

OVO

Valid

171

)

CPU

CKOO1

Element Bit 0

Element Bit 1

Element Bit 2

Element Bit 3

Element Bit 4

Buffer Bit 0

Buffer Bit 1

Buffer Bit 2

ONB ONA

HTM-xxx-O
December 19,1994

ONF

ONG

ONH

ONI

ONJ

ONC

OND

ONE

ICOOO
IVC OVE

IVD OVG

ICOO1

IVC
OVE

IVD

OVG

ICOO2

OVE
IVC

OVG

IVD_

ICOO3
OVE

IVC

OVG

IVD

Valid

r ICOO1

ICOOO

IBO
Element Bit 0

IBR_
Element Bit 1

IBS
Element Bit 2

IBT
Element Bit 3

IBU_
Element Bit 4

IBV
Buffer Bit 0

IBW
Buffer Bit 1

IBX
Buffer Bit 2

IBY

Figure 83. Common Memory Path Code 2 Fanouts

Cray Research Proprietary
Preliminary Information

ICOOO

ICOO1

ICOO2

ICOO3

Instruction Buffers

OVF

OVH

r ICOO3

ICOO2

IBO
Element Bit 0

IBR
Element Bit 1

OVF IBS
Element Bit 2

OVH IBT
Element Bit 3

OVF IBU
Element Bit 4

OVH IBV
Buffer Bit 0

IBW
Buffer Bit 1

IBX _
Buffer Bit 2 I"'""

... ~

OVF IBY

OVH

Valid

173

)

)

INSTRUCTION ISSUE

HTM-xxx-O
December 19, 1994

A CRA Y T90 series computer system uses a process called instruction
issue to introduce instructions into the central processing unit (CPU).

The first instruction parcel is read from of one of eight instruction buffers
(IBs) and sent to the next instruction parcel (NIP) register where it is
partially decoded to determine whether it is a 1-,3- or 4-parcel instruction.

Refer to Figure 84 for an instruction issue block diagram. The program
address (P) register points to the next parcel to be read out of the
instruction buffer. If it is a I-parcel instruction, the NIP moves to the
current instruction parcel (CIP), the parcel from the instruction buffer
moves to NIP, and P is incremented by 1. If it is a 3-parcel instruction, as
NIP moves to CIP, the second parcel moves into LIPO, the third parcel
moves into LIP 1 , and P is incremented by 3. If it is a 4-parcel instruction,
as the first parcel moves from NIP to CIP, the second and third parcels
move to LIPO and LIPI. Then, the fourth parcel goes to NIP and then to
CIP as the other three parcels are leaving. In the next clock period, the
fourth parcel leaves CIP, and P is incremented by 4.

+1,+3,+4

IB 0

Figure 84. Instruction Issue Block Diagram

Cray Research Proprietary
Preliminary Information

175

Instruction Issue CPU

Instruction Formats

There are three instruction formats: 1-, 3-, or 4- parcel instructions. The
first parcel always contains the operation code. The operation code is
pre-decoded in NIP to determine whether it is an exit instruction (000000
or 004000) or a 1-, 3-, or 4- parcel instruction.

One-parcel Instructions

The gh portion generally is the operation code, although some instructions
also use the i, j, or k fields. The i field is usually the result designator, and
the jk portions are generally operand register designators. Some
instructions use the i field or bit 2 of the j field to provide additional bits
for the operation code.

Some I-parcel instructions are part of the extended instruction set (EIS)
and perform different operations when immediately preceded by the EIS
parcel (005400).

Figure 85 shows the format of a I-parcel instruction.

7

9 h

15-9

3

8-6

3

j

5-3

3 Bits

k

2-0

Figure 85. Format for a I-parcel Instruction

Three-parcel Instructions

176

The 3-parcel instruction is used in both Triton mode and e90 mode. The
nm fields hold the 32-bit address or constant value. Refer to Figure 86 for
an illustration of a 3-parcel instruction format.

NOTE: The n portion holds the most significant bits, and the m portion
holds the least significant bits.

4

9

15-12

3 3 3 3 16 16 Bits

h j k I I n II m

11 -9 8-6 5-3 2-0 15-0 15-0

Figure 86. Format for a 3-parcel Instruction

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

)

CPU Instruction Issue

Four-parcel Instructions

4

9

Four-parcel instructions are used exclusively in Triton mode. The
instruction field mnemonic pmn represents a 48-bit field with the p field
being the most significant parcel. Refer to Figure 87 for an illustration of
a 4-parcel instruction format.

3 3 3 3 16 16 16 Bits

h j k I I p II n II m
15 -12 11 -9 8-6 5-3 2-0 15-0 15-0 15-0

Figure 87. Format for a 4-parcel Instruction

Four-parcel instructions are used for A and S register memory references
that use extended addressing. The h field selects an A register to be used
as an address index. The i field designates an A or S register to be used as
the source or destination of the data. For read references, j field bit 1
disables or enables cache bypass. Bit 2 of the j field must be set to a 1 to
indicate a 4-parcel instruction. The k field is not used.

Triton-mode Instructions

Triton mode is active when the Triton mode bit (TRI) is set in the
exchange package. Some instructions execute correctly only in Triton
mode. If a Triton mode instruction is executed while the machine is in
C90 mode, the results are undefined. Refer to the instruction set for
Triton-mode only instructions.

Instruction Decode

HTM-xxx-O
December 19, 1994

After the instruction parcel is in NIP, it is pre-decoded to determine its
size. If it is a 1-parcel instruction, it moves to CIP for further decoding to
determine which registers, functional units, and memory ports are
required.

Cray Research Proprietary
Preliminary Information

177

Instruction Issue

P Register

Coincidence

CPU

The P register is 32 bits wide and resides on the BTO and BTl options.
The P register points to the relative memory address of the next instruction
to be read out of the instruction buffer read-out register and sent to either
NIP or LIPO. The lower 2 bits (bits -1 and -2) point to the parcel, and the
upper 30 bits (bits 8 through 29) point to the word address. There are
three ways to load the P register:

• Multiplex 8 bits at a time during an exchange sequence

• Load from Bjk as a result of a 005ijk instruction

• Load from the ijk or nm fields of a 006ijk, 007ijk, or 01xjk
instruction

Every time a parcel issues, the JA option sends an Advance P signal to
the BT options, advancing the P register by 1.

A condition called coincidence exists if the next parcel needed is in one of
the eight instruction buffers. A coincidence check compares the upper)
25 bits of the P register to the 25-bit buffer address (A) register as well as .
determines whether the buffer valid bit is set. All 25 bits must match, and
the buffer valid bit must be set in order for a coincidence condition to
exist. If there is no coincidence, a fetch operation is initiated.
Coincidence is checked only on branch instructions to determine if the
next instruction will be in the stack.

Reading the Instruction Buffer

178

When a buffer read occurs, both the even and odd words are read out of
the buffer to a read-out register. The content of the P register on the BT
options directs one of these words to NIP or LIP for decoding.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

CPU"

JA Option

Instruction Issue

There are two JA options on the CP module; they provide the issue control
signals for the processor. These options receive the instruction word from
the IC options, select and decode the correct parcels, and provide control
to the rest of the CPU. The JA option also has all the resource
reservations and holds issue if a resource is busy. The JA options are
responsible for the functions described in the following subsections.

Parcel Data Distribution

HTM-xxx-O
December 19, 1994

The JA option transmits parcel data to the AR, AS, AT, AU, BT, and VA
options and alters the j field going to the AR, AS, AT, and AU options for
certain instruction types. This occurs on the following instructions:

• Wh, llh, 12h, 13h; the Ajbecomes the Ah field
• 0013jO; the Ai field becomes the Aj field

The JA option also transmits a read-out pointer code to the A and S
registers; the read-out pointer code selects the read-out path. Refer to
Table 29 for a list of these codes.

Code

00

01

11

00

01

10

11

00

11

00

01

10

11

00

Table 29. Read-out Path Codes

Instruction

075, 13h

034,036,025,11h

035,037

0013.,0, 027jf2.13, 027ij317

073jf2.,073lj3,073lj5,073ij3

0010jk,0011jk

0014.,0, 0014j4

057, 0030»/1 , 026~/1 , 027 iIJ
052 -056

176

034,036

035,037,177

Cray Research Proprietary
Preliminary Information

Description

Sito BT path

Aito BT path

Aito BT path

Aito SR path

Sito SR path

Akto SR path

Sjto SR path

Sjto shift path

Sito shift path

Sj to vector pipe 0

AO to vector pipe 0

AO to vector pipe 0

AO to vector pipe 0

Sjto vector pipe 1

179

I

Instruction Issue CPU

Table 29. Read-out Path Codes (continued)

Code Instruction Description

01 176 Ak to vector pipe 1

10 034,036 Aito vector pipe 1

11 035,037,177 AO to vector pipe 1

00 10h, 12h, 13h, 0017jk Ah (AJ) to CM port B/E

01 00200k Akto CM port B/E

10 11h Ah (AJ) to CM port B/E

11 177 Ak to CM port B/E

A/SN/B/T Register Requests

The JA option checks for register conflicts and receives a register release
signal from the shared resource control and from common memory for the
A and S registers. The JA option also receives a vector read/write (R/W)
release for V registers and a BIT read/write release. The JA option also
transmits A and S register entry codes. These codes, along with the ghijk
field, the instruction, and the 2-bit register read-out code are used by the A
and S registers to define the instruction to be performed and to reserve the
needed path.

Functional Unit Requests

180

The JA option checks for functional unit conflicts in the following
functional units:

• Logical #1: 140 - 147 I 175
• Logical #2: 140 - 145 if Logical #1 busy I Logical #2 enabled
• Vector Mask: 146 - 147 I 175 I 070ijl lEIS 153ijO,1
• Vector Shift: 150 - 153
• Vector Add: 154-157
• Floating Multiply: 160 - 167
• Floating Add: 17 - 173
• Reciprocal (V pop, parity, leading zero, iota: 174ij(0 - 3) I 070ijl
• Matrix Multiply: 174ij(4-7) I 070ij(6 -7)

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

CPU Instruction Issue

Constant Data Requests

The JA option checks for constant data present on multiple-parcel
instructions such as jumps, branches, and instructions using the pmn
fields. Each JA option handles 32 bits of the constant data distribution.
JAO transmits data to the AR, AS, and CD options via the A series I
options, and JAI transmits data to the AT, AU, and CD options via the A
series options. JAO also provides the jk data on the constant path when
needed.

EIS (Extended Instruction Set) Requests

The JA option issues 005400 as a normal instruction; however, the next
parcel is decoded using the extended instruction set. If an EIS instruction
is issued without the 005400 preceding it, the instruction issues and
performs its normal function. For example:

044ijk Transmit logical product of (S)) and (Sk) to Si

044ijk In EIS mode, the same instruction transmits logical
product of (A)) and (Ak) to Ai

) Common Memory Requests

)

HTM-xxx-O
December 19, 1994

The JA options receive the following external common memory control
signals:

• Release Port A

• Release Port B

• Release Port C

• Bidirectional Mode: (Mode = 1) enable block reads and writes at
the same time

• Common Memory Quiet: This signal indicates that all memory
activity in the CPU has been completed. It requires that all ports are
quiet, conflict logic is quiet, memory sections are quiet, and all read I
and write operations are complete.

• Hold Common Memory Issue: No more references can issue

• Cache Miss In Progress: Indicates a cache miss is pending

Cray Research Proprietary
Preliminary Information

181

Instruction Issue CPU

• Read Quiet: Read references have cleared all conflict checks

• Write Quiet: Write references have cleared all conflict checks

• Exchange Active: Indicates an exchange has not completed

Shared Resource Requests

Branch Requests

The JA options receive the following external signals, which control the
shared resource path, from the HD option:

• AlS Register Shared Resource Release: Releases a specific A or S
register (0 - 7) path

• Release Shared Resource: Used in combination with Go
Semaphore Branch to cause issue to resume or P to advance

• Go Semaphore Branch: Signals that the conditions of a semaphore
branch have been satisfied

The JA options check the branch test conditions to determine whether the
condition is met; if it is, the JA option issues a Go Branch signal to the Ie
options.

Exchange Requests

182

The JA options perform the following actions during an exchange
sequence:

• 000000 (error exit) issues .. Issue stops, P advances

• 0040jk (exit k) issues. Issue stops, P stops

• The shared path is released. The state of Go Semaphore Branch
determines whether P advances on a 0040jk. Two conditions of the
0040jk instruction could occur:

1. A normal exit occurs and P advances when the shared path is
released and Go Semaphore Branch is a O.

2. An error exit occurs, P will not advance when the shared path is
released, and Go Semaphore Branch is a 1.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

CPU

Interrupt Requests

Instruction Issue

An interrupt request can be generated in one of three ways:

• A 000000 (error exit) instruction issues
• A 0040jk (Exit k) instruction issues
• A hardware error condition occurs

Interrupt requests are processed in two phases. In phase 1, the following
conditions are checked:

• No multiparcel instructions are in process
• No EIS type waiting for second parcel
• No branch sequence in progress

In phase 2, the following conditions are checked, and then the Go
Exchange signal is sent to the HD, IC, and CC options.

• No branch sequence in progress
• Shared path available
• All registers available
• Common memory quiet

When a hardware interrupt request occurs, the JA option performs the
phase 1 checks and stops issue. If the phase 2 checks are all valid, the J A
option sends a Go Exchange signal to the IC options. If any of the shared
type instructions have issued during this shut-down time, the HD option
must release the shared path and the following actions must occur:

• If a 0034 (test and set semaphore) was issued, a Release signal and a
Go Branch signal must be sent before Go Exchange can occur.

• If a 000000 (error exit) or a 0040jk (exit jk) was issued, a release
path must occur to clear the JA option control.

Issue will resume when Go Branch occurs.

Control Signal Distribution

HTM-xxx-O
December 19, 1994

The JA option transmits the following control signals:

• Issue group 0, 1, and 2: These signals are combined on the BT and
VA options to complete the issue signal.

• Issue: This signal is transmitted to the AN option for fanout.

Cray Research Proprietary
Preliminary Information

183

Instruction Issue

•

•

•

•

•

•

•

•

•

•

•

•

•

•

184

CPU

Enter Vector Length: This signal is sent to the AR option on the
decode of a 00200k (Ak to VL) instruction.

Read Vector Mask: This signal is sent to the SS option on a 073i
(0 - 3) 0 (VMO or VMl to Si or Ai) instruction.

Enter Vector Mask: This signal is sent to the SS option on a 0030j
(0 - 3) (Si or Ai to VMO or VM1) instruction.

Go Scalar PoplParitylLz: This signal is sent to the SS option on a
026ij (0 - 3) or 027ij (0 - 1).

Go Scalar Double Shift: This signal is sent to the SS option on a
056ijk Shift (Si) and (S}) left Ak places to Si.

Go A Type: This signal is sent to the SS option when a 005400
(EIS) is issued using A register data.

Go Scalar Reciprocal: This signal is sent to the RA option on a
070ijO instruction.

Go Scalar Floating Add: JAI sends this signal to the FA option
when a 062ijk (sum) or 063ijk (difference) issues.

Go Scalar Floating Multiply: This signal is sent to the NA and NC
options when a 064ijk through 067ijk instruction issues.

Go Address Multiply: This signal is transmitted to the AR option
when a 032ijk issues.

Common Memory A or S Requests: This signal is sent to the CD
options when a memory load or store issues. JAO sends out an A
register request, and JAI sends out S register requests.

Common Memory A or S Writes: This signal is sent to the CD
options when a memory write Ilhixxpnm or 13hixxpnm issues. JAO
sends out A register write requests,and JAI sends out S register
write requests.

CM Port B Enabled: This signal is sent to the VA option via the
JAO option and to the BT option via the JAI options to select the
vector read ports.

Vector Logical #2 Enabled: JAO sends this signal to the VA options
to select vector logical functional units.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

)
""

)

CPU

HTM-xxx-O
December 19,1994

Instruction Issue

• Data Resume: This signal is sent to the instruction stack (IC
options) to indicate that the JA can accept another word.

• Go Exchange: This signal is sent to the IC options to indicate that
an exchange is required. Another copy is sent to the HD option and I
is used by the HD's to clear the SIB bit (taking 110 interrupt). The
Go Exchange signal is also sent to the CC option to signal the CC to
start swapping exchange packages in memory.

• Go Branch: This signal is sent to the IC options to indicate that a
conditional branch has passed the test.

• Branch Fall Through: This signal is sent to the IC options to
indicate that a conditional branch has failed the test.

• Branch Issued: This signal is sent to the IC options to indicate that
a branch has issued.

• Enter Rank 1, Enter Rank 2, or Clear Rank 2: These three
signals are sent to the IC options to move parcel data into or out of
the ranks into issue.

e

•

The following signals are transmitted to the performance (HF)
monitor to indicate a hold issue condition:

• . Holding Issue on A Registers

• Holding Issue on S Registers

• Holding Issue on Bff Registers

• Holding Issue on V Registers

• Holding Issue on Common Memory

• Holding Issue on Functional Unit

• Holding Issue on Shared Resources

Advance P: This signal is sent to the P register (BT options) to
advance P by 1 as each parcel is issued.

Cray Research Proprietary
Preliminary Information

185

Instruction Issue CPU

Branch Instruction Control

The JA options decode and control the execution of branch instructions.
When a conditional branch passes or fails a test, it returns either the Go
Branch control signal or the Branch Fall Through control signal to the
IC options. Issue is halted until the Go Branch signal is received by the
IC options. Another signal, Branch Issued, is also sent to the ICs when a
branch is in progress.

Conditional Branch Instructions

Conditional branches use instructions OlOijk through 017ijk. Once the
instruction issues, branch control logic examines either the AO or SO
register for the condition defined by the operation code. If the condition is
met, the value of the P register is replaced with the nm field, and program
flow is passed to the instruction specified by P. If the condition is not met,
program flow drops through to the instruction that follows the branch.

Another type of conditional branch instruction for a CRA Y T90 series
computer system is called test and set branch (0064jkmn). If a specified
semaphore register equals 0, the bit is made a 1 and the next instruction
issues. If the semaphore is aI, the P register is replaced with the value in
the nm field.

Unconditional Branch Instructions

186

Unconditional branches use instructions 0050jk through 007ijkmn, and
each code operates differently, except that none of them depends on a
condition being met before the branch takes place. In other words, they
always take the branch in the ijkm or nm fields.

The jump to Bjk instruction (0050jk) branches to the parcel address
specified by the contents of Bjk. The unconditional jump instruction
(006000mn) branches to the nm field. A new unconditional jump
instruction is the branch to the address in nm field (006100mn). This
instruction is a Triton-mode only instruction; if executed in C90 mode, the
results are undefmed.

The return jump instruction (007000mn) jumps to the address in the
address field and places P + 3 (the address of the next instruction) into
BOO. The return jump allows a jump to a subroutine, the last instruction of
which must be a 005000 instruction, which is a jump to BOO.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

)

CPU

Issue Control

HTM-xxx-O
December 19, 1994

Instruction Issue

Another new jump instruction is the 0071 OOnm, which is an indirect jump.
The instruction stores the address of the next sequential instruction in the
BOO register; then the instruction uses the nm field to specify a common
memory address. The lower 32 bits of the contents of that address are
transferred to the P register, causing program execution to continue at that
point. When this instruction executes, the instruction buffers are set
invalid.

The first parcel of the instruction leaves NIP and moves into all the CIPs
on options HFOOO, HDOOO, and HDOO 1. The CIP located on the HF
options is responsible for the instructions that affect the exchange package
and performance monitor.

The HD option CIP is used for NS path release and provides NS i
designators and shared path release. The JA options determine whether
any register or functional unit reservations exist. If not, these options send
the Issue signal to the HD and HF options and the instruction issues,
reserving the appropriate registers· and! or functional unit. If resource
conflicts do exist, the JA option does not send the Issue signal, and the
instruction remains in CIP until the conflict is resolved. This is called a
hold issue condition.

The JA options are responsible for providing issue control, and checking
and making functional unit and path reservations for the following items:

• Vector registers
• Vector functional units
• NS shared resource control
• Memory ports
• CM path/cache
• A/S register entry codes
• BIT register

The functional units must send a release back to the JA options to indicate
that the units are available.

The JA options also send out the h, i, j, and k fields to the A/S registers for
further instruction decode.

Refer to Figure 88 through NO TAG for related instruction issue block
diagrams.

Cray Research Proprietary
Preliminary Information

187

Instruction Issue

OEA-
BTOOO OEH BitsO-7

OEI-
OEP Bits 8 -15

BT001
OEA-
OEH Bits 16-23

OEI-
OEP Bits 24-31

188

- -
ICOOO OCH BitsO-7 10H IICOOO IOOH

OCA IDA OOA

1 IDA -. r
10H IIC001

1 ICA- 10A--' OCI-
ICH OCP BitsO-7 10H IIC002 1 1 10A_l

10H IIC003 -I
1

OCA- 101-
ICA- IC001 OCH Bits 8 -15 lOP rlCOOO

lOOA-ICH 1 101
lOP J IC001 IOOH

I I
OCI- 101-
OCP Bits 8 -15 lOP IIC002

1 1 101- 1

lOP IIC003
1 I

OCA - lEA -
IC002 OCH Bits 16-23 IEH IICOOO

1 1 IEA~I
IEHIIC001

IOOA_ OCI- IEA~I
ICA- OCP Bits 16 - 23 IEH IIC002 lOOH
ICH

1 lEA-I I

IEH IICOO3 I I
OCA- IEI-

IC003 OCH Bits 24 - 31 IEP IICOOO -I ICA-

1
-I

ICH IEI-
IEP IIC001 1

OCI-
--.

IEI-
OCP Bits 24 - 31 IEP J IC002

IOOA_ I IEI-
I

IEP J IC003 lOOH
I I

Figure 88. Bjk (Exchange P) Fan-out Bits

Cray Research Proprietary
Preliminary Information

CPU

BTOOO
IGA-

Bits 0-7 IGH

IGI-
Bits 8-15 IGP

IGA- BT001
Bits 16-23 IGH

IGI-
Bits 24-31 IGP

HTM-xxx-O
December 19, 1994

)

)

)

CPU

JAOO1 IICOO1 JAOO1

OKE- IPA-
ICOOO OKM-

OKH a Field Bits 0 - 3 IPO OKP !J Field Bits 0 - 3

OKB- IPE- OKJ-
OKO h Field Bits 0 - 2 IPG OKL h Field Bits 0 - 2

OKA iField Bit 2 IPJ OKI iField Bit 2

JAOOO OKG- IPH- JAOOO OKO-
OKH i Field Bits 0 - 1 IPI OKP i Field Bits 0 - 1

OKO- IPK- OKL-
OKF j Field Bits 0 - 3 IPM OKN j Field Bits 0 - 3

OKA- IPN- OKI-
OKC k Field Bits 0 - 3 IPP OKK k Field Bits 0 - 3

~

Figure 89. JA-to-IC Parcel Data for Branches

HTM-xxx-O
December 19, 1994

Cray Research Proprietary
Preliminary Information

Instruction Issue

IIC003

IPA-
ICOO2

IPO

IPE-
IPG

IPJ

IPH-
IPI

IPK-
IPM

IPN-
IPP

I--

189

Instruction Issue

OMA-

CHOOO OMD

OME-
OMH

OMA-

CH002 OMD

OME-
OMH

OMA-

CH004 OMD

OME-
OMH

OMA-

CH006 OMD

OME-
OMH

OMA-

CH008 OMD

OME-
OMH

OMA-

CH010 OMD

OME-
OMH

OMA-

CH012 OMD

OME-
OMH

OMA-

CH014 OMD

OME-
OMH

190

IAA-
BitsO-3 lAD ICOOO

IAI-
Bits 32 -35 IAL OAA-

OAH Bits 0-7

IAE-
Bits4-7 IAH

OAI-
lAM OAP Bits 32-39

Bits 36-39 lAP

IAA-
Bits8-11 lAD IC001 OAA-

IAI- OAH Bits 8-15
Bits 40-43 IAL

IAE- OAI-
Bits 12 -15 IAH OAP Bits 40-47

IAM-
Bits 44-47 lAP

IAA-
Bits 16 -19 lAD IC002 OAA-

IAI- OAH Bits 16-23
Bits48-51 IAL

IAE- OAI-
Bits 20-23 IAH OAP Bits 48-55

IAM-
Bits52-55 lAP

IAA-
Bits 24-27 lAD IC003

IAI- OAA-

Bits 56-59 IAL OAH Bits 24-31

IAE-
Bits 28 -31 IAH OAI-

OAP Bits 56-63
IAM-

Bits 60-63 lAP

Figure 90. Path 1 CH to IC to JA Option

Cray Research Proprietary
Preliminary Information

IDA-
IDH

IBA-
IBH

101-
lOP

IBI-
IBP

ICA-
ICH

IAA-
IAH

ICI-
ICP

IAI-
lAP

CPU

I JA001

JAOOO

-

HTM-xxx-O
December 19, 1994

)

)

CPU

OMA -
CH001 OMD

OME-
OMH

OMA-
CH003 OMD

OME-
OMH

OMA-
CH005 OMD

OME-
OMH

OMA-
CH007 OMD

OME-
OMH

OMA-
CH009 OMD

OME-
OMH

OMA-
CH011 OMD

OME-
OMH

OMA-
CH013 OMD

OME-
OMH

OMA-
CH015 OMD

OME-
OMH

HTM-xxx-O
December 19, 1994

IBA-
Bits 0-3 IBD ~ ICOOO

IBI-
Bits 32 -35 IBL OAA-

OAH Bits 0-7

IBE-
Bits4-7 IBH ~

OAI-
IBM- OAP Bits 32 -39

Bits 36-39 IBP ~

IBA-
Bits 8 -11 IBD IC001

OAA-
IBI- OAH Bits8-15

Bits 40-43 IBL ~

IBE- OAI-
Bits 12 -15 IBH ~ OAP Bits 40-47

IBM-
Bits 44-47 IBP

IBA-
Bits 16-19 IBD IC002 OAA-

IBI- OAH Bits 16-23
Bits48-51 IBL

IBE- OAI-
Bits 20-23 IBH OAP Bits 48-55

IBM-
Bits 52 -55 IBP ~

IBA-
Bits 24-27 IBD IC003

IBI- OAA-

Bits 56-59 IBL ~ OAH Bits 24-31

IBE-
Bits28-31 IBH OAI-

OAP Bits 56-63
IBM-

Bits 60-63 IBP

Figure 91. Path 2 CH to IC to JA Option

Cray Research Proprietary
Preliminary Information

Instruction Issue

r
JAOOO

IDA-
IDH

IBA-
IBH

101-
lOP

IBI-
IBP

ICA-
ICH

IBA-
IBH

ICI-
ICP

IBI-
IBP

I-

191

)

)

)
/

)

CPU

IGA Vector logical 1
1GB Vector logical 2
IGC Vector Shift
IGD Vector Add
IGE Vector FP Mult
IGF Vector FP Add
IGG Vector Recip
IGH BMM
IGI Vector Mask
IGJ B Reg Release
IGK T Reg Release

HTM-xxx-O
December 19,1994

VAO
VA1

VAO
VA1
VAO
VA1
VAO
VA1
VAO
BTO
BT1

V Reg Read Release VA1 (8) IEA-IEH

V Reg Write Release VAO (8) IFA-IFH

V FU Release VAONA1 (11) IGA-IGK

AlS Register (Shared Resource) IIA-IIE

AlS Path (Shared Resource) IIF

Release Mem Port A, B, C ILA-llC

CM Path/Cache Release (Even) IJA-IJE
(Odd) IJI-IJM

Instruction Data from ICs (64) IAA -lOP

Instruction Data Ready IKA IKA
Parcel Pointers Bit 0 and Bit 1 IKB,IKC

Interrupt from HD IKF

Exchange Active from CC IPB

FA (SO) Test Valid IKG

FA (SO) Sign State IKH

FM (SO) Sign State IKJ

AO=O INA-INH

AO Neaative INA-INJ

SO=O 10A-IOH

SO Negative 101

JAOOO / JA001

I--
V Reg Reservation

~
V FU Reservation I-- Conflict

f- Issue Check

Shared Reservation I---

Memory Port Reservation I--

CM Path/Cache Reservation

Decode
(NIP)

I
,.- 0 0

~ 1 1

~ 2 2

- 3 3

Reg Translation

I
Inst Translation

I I
-I

P
a
r
c
e
I

0
a
t
a

!.eo
g, h, i, j, kto CIP

~

Go Exchange

Sign Bit Test

Figure 92. JA Option Block Diagram

Cray Research Proprietary
Preliminary Information

OOA - 000 Hold Issues to Performance Monitor

ODE JAOOO Advance P BTO, BT1

ODE JA001 Go FP Multiply NB

ODA Issue Group 0 Valid VAO and VA 1 (JAO)
ODA Issue Group 0 Valid BTO and BT1 (JA 1)

ODB Issue Group 1 Valid VAO and VA 1 (JAO)
ODB Issue Group 1 Valid BTO and Bn (JA1)

ODC Issue Group 2 Valid VAO and VA 1 (JAO)
ODC Issue Group 2 Valid BTO and BT1 (JA 1)

OlG JAOOO Issue CIP HDO, HD1

ODD JAOOO Issue CIP HFO via ANO

h, i, j, k Field to AlS
OM-~AL Registers AR, AS, AT, AU

h, i, j, k Field to AlS
OBA-OBl Reaisters AR, AS, AT, AU

OCA - OCP 0, h, i, j, k Field to VAlBT Registers

AlS Read-out Code Bit 0
OPA,OPC to AR, AS, AT, AU

AlS Read-out Code Bit
OPB,OPD 1 to AR, AS, AT, AU

AlS Entry Code Bit 0, 1, 2
OFA-OFF to AR, AS, AT, AU

OGA - OGH NS Constant Bits to ARO or ATO

OHA - OHH AlS Constant Bits to ASO or AT1

OIA-OIH NS Constant Bits to AS 1 or AUO

OJA-OJH NS Constant Bits to AS2 or AU1

OKA-OKH Parcel Data to Stack

OKI-OKP Parcel Data to Stack

To HDs via Fanout AlS Path Release

To HF via Fanout Shared Path Release/Exchange Data

ODF Go Exchange to ICs

OOAto ICs Branch Issued

OOBto ICs Branch Fall Through

OOCto ICs Go Branch

Instruction Issue

KEY

Group 0 V Registers, A Registers
Group 1 S Registers, BIT Registers,
Vector logical, Vector Shift, Reciprocal,
Vector Read Port AlPort B
Group 2 Shared Resource, Memory Ouiet,
AO/SO Sign Test, Others (hold issue,
exchange, etc.)

193

)

CPU

JAOOO JASOOO
OAA - OAC k Bits IPG -IPI AROOO

OAO - OAF iBits IPO - IPF

OAG-OAI 'Rit'" IPA-IPC

OAJ - OALh Bits IPJ - IPL l-

I ASOO2
OBA - OBC k Bits IPG -IPI ASOO1

OBO - OBF i Bits IPO - IPF

OBG-OBI . !:lit., IPA - IPC

OBJ-OBL h Bits IPJ - IPL ...

OCA - OCC k Bits IPG - IPI
. 1 VAOO1

VAOOO
OCO - OCF i Bits IPO - IPF

OCG-OCI r!:lit., IPA-IPC

OCJ - OCL h Bits IPJ -IPL

OCM - OCP D Bits IPJ - IPL ~

JAOO1 ATOO1
OAA-OAC IPG-IPI ATOOO

OAO-OAF IPO-IPF

OAG-OAI IPA-IPC

OAJ-OAL IPJ -IPL

AUOO1
OBA-OBC kBit IPG-IPI AUOOO

OBO-OBF IPO-IPF

OBG-OBI IPA-IPC

OBJ-OBL IPJ -IPL

BTOO1
OCA-OCC kBit IPG-'"IPI BTOOO
OCO-OCF IPO-IPF

OCG-OCI IPA-IPC

OCJ-OCL IPJ -IPL

OCM-OCP IPJ -IPL

Figure 93. Instruction Data Distribution A/S/B/T Registers

HTM-xxx-O
December 19, 1994

Cray Research Proprietary
Preliminary Information

Instruction Issue

195

Instruction Issue

JAOO1

OBA-OBC

OKD-OKF

OBJ-OBL

OMA-OMB

JAOOO

OMA-OMB

OLG

196

AUOOO
IPG-IPI

OWJ-OWL kBits

ICOO1

IPK-IPM OWQ-OWS jBits

ICOOO

IPH-IPJ OWQ-OWS iBits

AUOOO
IPJ -IPL

OWA-OWC hBits

IGH-IGI ANOOD

OGI-OGL gBits

IGF-IGG

Issue

Figure 94. elP Distribution.

Cray Research Proprietary
Preliminary Information

CPU

I HDOD1

HDOOO

IEA-IEC

IED-IEF

lEG-lEI

IEJ -IEL

IEM-IEP

IEQ -

HTM-xxx-O
December 19, 1994

)

)

)

CPU

JAOOO
JAOO1

JAOO1 OBA-OBC

JAOOO
OKL-OKN

JAOOO OKO-OKP

JAOO1 OKI

JAOO1
OBJ-OBL

JAOO1
OMA-OMB

JAOOO
OMA-OMB

JAOOO 000

HTM-xxx-O
December 19, 1994

AUOO1

IPG-IPI
OWJ-OWL kBits

ICOO3

IPK-IPM owo-ows iBits

ICOO2
IPH-IPI owo-ows iBits

IPJ

AUOO1

IPJ -IPL
OWA-OWC h Bits

IGH-IGI ANOO1

OGE-OGH oBits

IGF-IGG

Issue via ANOOO

Figure 95. CIP Distribution to HF Option

Cray Research Proprietary
Preliminary Information

Instruction Issue

HFOOO

IOA-IOC

IOO-IOF

IOG-IOI

IOJ -IOL

10M-lOP

100

197

Instruction Issue

198

CPU

JAOOO I VAOO1
OCA - OCC k Bits IAN - lAP VAOOO
OCD - OCF i Bits IAK - lAM

OCG-OCI r Rite> IAH -IAJ

OCJ - OCl h Bits 1M - lAC

OCM - OCP a Bits lAD -lAG
~

JAOO1

OCA - OCC k Bits IJK - IJM
I BTOO1

BTOOO
OCD - OCF i Bits IJN - IJP

OCG-OCI 'Rite> IJH - IJJ

OCJ - OCl h Bits IJE - IIJG

OCM - OCP a Bits IJA - IJD
~

Figure 96. Instruction Data Distribution to VA and BT Options

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

CPU

JAOO1

OBA-OBC

OKD-OKF

OBJ -OBl

OMA-OMB

JAOOO

OMA-OMB

OlG

HTM-xxx-O
December 19, 1994

AUOOO
IPG-IPI ~

OWJ-OWl

ICOO1

IPK-IPM ~ OWo-ows

ICOOO

IPH-IPJ
OWo-ows

AUOOO
IPJ -IPl ~

OWA-OWC

IGH-IGI ~ ANOOO

OGI-OGl

IGF-IGG~

Issue

Figure 97. CIP Distribution

Gray Research Proprietary
Preliminary Information

Instruction Issue

r HDOO1

HDOOO

kBits IEA-IEC

jBits IED-IEF

iBits lEG-lEI

hBits IEJ -IEl

qBits IEM-IEP

lEO
f--

199

Instruction Issue

JAOOO
JAOO1

JAOO1 OBA-OBC

JAOOO
OKL-OKN

JAOOO OKO-OKP

JAOO1 OKI

JAOO1
OBJ-OBL

JAOO1
OMA-OMB

JAOOO
OMA-OMB

JAOOO ODD

200

AUOO1

IPG-IPI
OWJ-OWL kBits

ICOO3

IPK-IPM
OWQ-OWS LBits

ICOO2
IPH-IPI

OWQ-OWS iBits

IPJ

AUOO1

IPJ-IPL
OWA-OWC h Bits

IGH-IGI ANOO1

OGE-OGH gBits

IGF-IGG

Issue via ANOOO

Figure 98. CIP Distribution to HF Option

Cray Research Proprietary
Preliminary Information

CPU

HFOOO

IDA-IDC

IDD-IDF

IDG-IDI

IDJ-IDL

IDM-IDP

IDQ

HTM-xxx-O
December 19, 1994

)

)
. ./

EXCHANGE
)

~ I ~ fY\Gqo
1J0 fJeo-d.sd-~·

\ \ Ai is ~ 0
Y\. e The exchange mechanism in a CRAY 1'90 series computer system has the

e ~eJ 1 Q-'V" (' ¢-f~~) e i!(following features:

v-> ':\ ..,\-- '" \ . • Means of switching execution from program to program

• Exchange package - Block (408 words) of program parameters that:

• Must be present in order for any program to execute; defines
where and how the program runs

• Must be 408 words long

• Must reside in lower 2 MW of memory

• Must start on a 408 word boundary

) Exchange Process

)

HTM-xxx-O
Oecennber19,1994

The exchange sequence is the process that deactivates the current
exchange package and puts it into memory. It then loads a new exchange
package from memory and activates it.

The CRAY 1'90 series systems have a new feature in the exchange
package. This feature allows a process to exchange to either the address
specified by the exchange address (XA) register or to one of five different
addresses specified by one of the five exit address (EA) registers. With
this capability, a user job could.exchange to another user job, or could
exchange to specific areas in the kernel, without first exchanging to the
monitor.

Other features that are now implemented in the CRAY T90 series system
include the following: when an exchange occurs, the CPU that exchanges
out will retain the cluster number it was initially assigned unless the
system is operating in C90 mode or unless AutoBCD (automatic broadcast
cluster detach) is active. In addition, when a CPU is master cleared and
then exchanged out, the pending interrupt bits are retained. This is done
so that the maximum amount of information about the process is available.
A second exchange sequence can retrieve this information.

Cray Research Proprietary
Preliminary Information

201

Exchange

Deadstart

I

202

CPU

If an exchange occurs and the program is in monitor mode, the monitor
needs to save the B registers, T registers, shared registers, scalar (S)-)
registers, and vector (V) registers. If the vector not used (VNU) bit is ai,
the V registers do not need to be saved. If the exchange is to another user
job, it is up to the user to save the register values.

Four conditions cause an exchange sequence:

• Deadstart sequence (SIPI)
• Interrupt flag set (F register)
• Program exit (004000, 00000o instruction)
• Hardware error causing a flag to set, which causes an exchange

A CRAY T90 series system does not use a deadstart signal or command;
instead, the system uses Set Interprocessor Interrupt (SIPI) signals, via
a 0014jl instruction [send inter-CPU interrupt to CPU (AJ)] or, on an
initial deadstart, a CPU loop controller function of 768 issued by the
maintenance channel will start an exchange.

The sequence of events to start execution of MME:

• SetCPUMC

• Load data to memory address 0 via the maintenance channel.

• Issue a loop controller function of 1768 via the maintenance channel
to allow CPU maintenance instructions.

• Issue a loop controller function of 1418 via the maintenance channel
to allow cpu instruction exchange and halt.

The exchange package at location 0 goes into the CPU, and
what was in the CPU goes to location O. There is no fetch
after this exchange.

• Drop CPU Master Clear via the maintenance channel.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19.1994

)

)

)

CPU

Interrupt Flag Set

Program Exit

Exchange

• Issue the loop controller function of 768 via the maintenance
channel.

The dropping of CPU Master Clear works as an enable; the
function 768 must be present along with the Master Clear
signal for the exchange to occur.

• Interrupted CPU exchanges to address 0, a fetch is done and issue
starts.

In this case, because I/O is handled by the maintenance channel, the return
path for output depends on how the sanity tree was configured. From this
point, the initially started CPU could issue SIPI commands to the other
CPUs.

In the CRA Y T90 series system, each interrupt flag has an enable interrupt
mode bit. The interrupt modes are enabled by the enabled interrupt mode
(ElM) flag; an exchange to non-monitor mode sets the ElM flag.

An exchange to monitor mode clears the ElM flag. While the program is
in monitor mode, a 001302 instruction sets the ElM flag, and an 001303
instruction clears the ElM flag.

Each CPU has an ElM flag. In monitor mode, the ElM flag is cleared and
all interrupt modes are disabled, except enable flag on normal exit (FNX),
enable flag on error exit (FEX), and enable interrupt on program range
error (IPR); this provides a stable environment within monitor mode
immediately following an exchange.

Program exit occurs following the decode of instructions 00000o
and 004000. Instruction 00000o is an error exit instruction, and
instruction 004000 is a normal exit.

Exchange Sequence

HTM-xxx-O
Decen]ber19,1994

Before a CPU can perform an exchange, the CPU must first finish all
active instructions. If a test and set instruction (OO34jk) is in the next
instruction parcel (NIP) or entering the current instruction parcel (CIP),
the program (P) register is decremented by 2, or by 1 if the test and set
instruction is in the CIP or NIP respectively. The JA option transmits a

Cray Research Proprietary
Preliminary Information

203

Exchange CPU

signal to the BT options that decrements the P register before it is loaded
into memory. The JA then waits until the condition is resolved to advance ~)
P. Memory must also be quiet, and all memory writes must have
completed.

The processor performing the exchange clears out the buffer valid bits and
buffer counter. Clearing the buffer valid bits causes a fetch to occur after
the exchange has completed. Clearing the instruction buffer address
register (mAR) counter causes the data that was fetched from memory to
be loaded into instruction buffer 0 fIrst. Also, issuing a 0051jk instruction
clears the buffer valid bits. The 0051jk is a maintenance instruction that
loads the P register from Bjk and invalidates the instruction buffers if the
CPU is in maintenance mode (MM).

Exchange Package Descriptions

204

Refer to Figure 99 for an illustration of the exchange package. The
exchange parameters are located on two options: HDOOO and HDOO 1.
HDOOO handles bits 0 through 31 for words 0 through 17, and HDOOI
handles bits 32 through 63 for words 0 through 17.

P register - program register, word 10 bits 0 through 31

The P register contains 32 bits, the lower 2 bits of which are
used for parcel selects. The P register contains bits -2 through
29, which allow 1 gigaword of memory to be addressed.

Modes - MM, BDM, ESL, TRI, SCE, BDD word 11, bits 0 through 7

The modes tell the program what it can or cannot do, thereby
determining what effect the instructions issued will have on
the program.

MM - monitor mode, word 11, "bit 0

Certain instructions are privileged to MM: controlling the
channel, setting the real-time clock, setting the programmable
clock, and so on. These instructions perform specialized
functions that are useful to the operating system. If an MM
instruction issues while the CPU is not in MM, it is treated as
a no-operation instruction. If an MM instruction issues while
the IMI flag is set, the MIl flag sets, causing an exchange.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

)

)

CPU

HTM-xxx-O
Decenlber19,1994

BDM - bidirectional memory, word 11, bit 1

When BDM is set, block reads and writes may occur
concurrently.

ESL - enable second vector logical, word 11, bit 2

Exchange

IfESL is set and any 140ijk through 145ijk instructions issue,
the instruction is routed to the second vector logical unit. If
ESL = 0, the second vector logical unit is not used. The
second vector logical unit is used before the full vector logical
unit if a choice exists.

TRI - Triton mode, word 11, bit 3

The Triton mode allows the new instruction to run in the
CRA Y T90 series system. If the Triton mode bit equals a 0,
then the instruction will run only CRAY C90 instructions.

SCE - scalar cache enabled, word 11, bit 24

If SCE is set to aI, onboard scalar cache is enabled.

BDD - bidirectional memory disable, word 11, bit 27

When BDD is set to a 1, bidirectional block reads and writes
are disabled.

Status (VNU, FPS, WS, PS), word 12, bit 0 through 3

The status register reflects the condition of the CPU at the
time of an exchange. The bits in the status field are set during
program execution and are not user selectable.

VNU - vectors not used, word 12, bit 3

After a program has been exchanged into memory, the B and
T registers must be saved as well as the SB, ST, and SM
registers of the cluster that the program is using. If the VNU
bit is equal to 1, then this indicates that the vector registers
were not used so the vector registers do not need to be saved.
However, if the VNU bit is 0, then the vector registers must be
saved as well. The VNU bit is set when a 077xxx or a 140
through 177xxx instruction issues.

Cray Research Proprietary
Preliminary Information

205

Exchange

63 48 47 3231

11

16

17 LAT 7 Physical Bias
Exchange Address

206

Words 20 - 27: A Registers 0 - 7
Words 30 - 37: S Registers 0 - 7

Figure 99. Exchange Package

Cray Research Proprietary
Preliminary Information

16 15

CPU

Exit Address 0

HTM-xxx-O
December 19,1994

)

)

)

)

)

CPU

HTM-xxx-O
December 19, 1994

Exchange

FPS - floating-point status, word 12, bit 2

A floating-point error sets the FPS flag regardless of the state
of the floating-point error flag (FPE). The FPE flag sets when
an underflow or overflow condition exists in the floating-point
functional units.

The FPS bit is cleared whenever the interrupt on floating-point
error (IFP) mode bit is set or cleared by a 002100 or 002200
instruction.

The FPS bit is also cleared when the bit matrix loaded (BML)
flag is cleared; the BML flag is cleared when a 002210
instruction issues.

WS - waiting on semaphore, word 12, bit 1

The WS bit sets when a oo34jk instruction is in CIP and
holding issue.

BML - bit matrix loaded, word 12, bit 0

The BML bit indicates the Bt (B transposed) registers have
been successfully loaded by a 1740j4 instruction.

Interrupt modes, word 11, bits 15 through 31

Refer to Table 30 for a list of the bit assignments for the
modes field in the exchange package. All modes except IPR,
FEX, and FNX must be enabled by the ElM flag to be
effective. The ElM flag sets on an exchange to nonmonitor
mode and clears on an exchange to monitor mode. The ElM
flag enables interrupt modes if set.

The ElM bit can be set or cleared by a 001302 or a 00 1303
instruction, respectively.

Cray Research Proprietary
Preliminary Information

207

Exchange

Word

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

208

CPU

Table 30. Interrupt Modes Register Bit Assignments

Binary
Exponent Acronym Name

31 IRP Interrupt on Register Parity Error

30 IUM Interrupt on Uncorrectable Memory Error

29 IFP Interrupt on Floating-point Error

28 lOR Interrupt on Operand Range Error

27 IPR Interrupt on Program Range Error

26 FEX Enable Flag on Error Exit (does not disable
exchange)

25 IBP Interrupt on Breakpoint

24 ICM Interrupt on Correctable Memory Error

23 IMC Interrupt on MCU Interrupt

22 IRT Interrupt on Real-time Interrupt

21 liP Interrupt on Interprocessor Interrupt

20 110 Interrupt on 1/0

19 IPC Interrupt on Programmable Clock

18 IDL Interrupt on Deadlock

17 IMI Interrupt on 001 ij¢. 0 or 033 instruction

16 FNX Enable Flag on Normal Exit (does not disable
exchange)

15 lAM Interrupt on Address Multiply Range Error

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19.1994

)

)

)

CPU

HTM-xxx-O
December 19, 1994

Word

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

Exchange

Refer to Table 31 for a list of the bit assignments for the
interrupt flags field in the exchange package.

Table 31. Flag Register Bit Assignments

Binary
Exponent Acronym Name

31 RPE Register Parity Error

30 MEU Uncorrectable Memory Error

29 FPE Floating-point Error

28 ORE Operand Range Error

27 PRE Program Range Error

26 EEX Error Exit (000 issued)

25 BPI Breakpoint Interrupt

24 MEC Correctable Memory Error

23 MCU MCU Interrupt

22 RTI Real-time Interrupt

21 ICP Interrupt from Internal CPU

20 101 I/O Interrupt (if "0 and SIE)t

19 PCI Programmable Clock Interrupt

18 DL Deadlock Interrupt

17 Mil 001 ij¢ 0 or 033 Instruction Interrupt (if IMI
and not MM)

16 NEX Normal Exit (004 issued)

15 AMI Address Multiply Interrupt

t SIE = System VO interrupt enabled.

Cray Research Proprietary
Preliminary Information

209

Exchange

210

CPU

VL - vector length, word 13, bits 0 through 7

The VL register holds the content of the VL register. The
8-bit field contains the number of elements to be operated on
in the vector register. In a eRA Y T90 series system, if VL =
000 or VL = 200, all 2008 vector elements are used within the
vector register.

XA - exchange address, word 17, bits 16 through 31

The 16-bit field specifies the address of the first word of the
next exchange package. This exchange package is loaded
when anyone of the following conditions occurs:

• An interrupt occurs that sets any of the following flags:
RPE, MEU, FPE, OPR, BPI, MEC, MCU, RTI, ICP, 101,
PCI, DL, MIl, NEX, or AMI

• A 000 is issued

• A oo40jk is issued with k being an illegal value (5, 6,
or 7)

The XA field contains only bits 5 through 20. The lower bits .. '.)
are assumed to be O's.

EXIT Address 0 through 4, words 15, 16, 17 bits 0 through 31

Each of the five 16-bit fields specifies the starting address of a
32-word exchange package. The k field of the 0040jk
instruction specifies the exchange package to use. Only k
fields equal to 0 through 4 are valid; if an invalid value is
used, the exchange is to the XA address. Exit Address (EA) 0
is expected to be used for normal exits to maintain
compatibility with existing systems.

Each EA field contains only bits 5 through 20. The lower bits
are assumed to be O's.

CLN - cluster number, word 13, bits 24 through 31

The CLN contains a 8-bit field. There are up to 368 clusters in
the system, depending on the system configuration.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

CPU

HTM-xxx-O
December 19, 1994

Exchange

PPN - Processor number, word 13, bits 16 through 22

The contents of the 7 -bit field in the exchange packages show
the logical number of the CPU in which the exchange was
executed. The maximum number is 127.

LATS - Words 0 through 17. Refer to the exchange package diagram for
bit layouts.

Each LAT has four associated fields; Table 32 identifies those
fields.

Table 32. LAT Fields

Field Name Description

Logical Base First logical address of this LAT

Logical Limit Last address +1 of this LAT

Physical Bias Physical bias = Physical base address - Logical base address

Modes The controlling bits for each LAT
R(ead), W(rite), X(ecute), C(achable), O(irty)

The use of LATs allows programs to share memory space. For example,
two user jobs could reference the same library routine in memory while
keeping their local code private.

Cray Research Proprietary
Preliminary Information

211

)

)

REAL-TIME CLOCK
PROGRAMMABLE CLOCK INTERRUPT
STATUS REGISTER
PERFORMANCE MONITOR

Real-time Clock

HTM-xxx-O
December 19,1994

Refer to the following subsections for information about the real-time
clock, programmable clock interrupt, status register, and the performance
monitor.

A CRAY T90 series computer system contains one 64-bit real-time clock
(RTC) per central processing unit (CPU). The RTC is synchronized when
a CPU issues a 00 14jO instruction~ The 00 14jO instruction causes all
CPUs in the same cluster to be loaded with the contents of Sj. The RTC is
located on two HD options, each of which handles 32 bils. The HDOOO
option handles bits 0 through 31; the HDOO 1 option handles bits 32
through 63.

HDOOO will detect a carry, out of the RTC, at a count of 37777777776
during normal operation. HDOO 1 then increments the upper bits during
the next clock period, and HDOOO suppresses any toggles.

The RTC is incremented once every clock period. The RTC allows for
clock -period timing of program execution. When the machine is
deadstarted, the RTC must be loaded in order to synchronize all the CPU s.
If they are not synchronized, each CPU will have a different RTC value.

Writing to the RTC with the 0014jO instruction sends a copy of the Sj
register from the CPU issuing the instruction to all RTC registers via the
issue paths of the shared registers. Reading the RTC with a 072iOO
instruction copies the RTC register of the CPU that issued the 072iOO
instruction into the scalar registers.

Refer to Figure 100 for an RTC and programmable clock interrupt (PCI)
block diagram.

Cray Research Proprietary
Preliminary Information

213

RTC, PCI, Status Register, Performance Monitor CPU

SjData from HFOOO

Shared Module OM-OCl

Shared Data Path
(RTC Data or PC I)

ICA-IDF
HOOOO

RTCto Si
OAA-OBF Bits 0 -31

PCI logic Used on

CIP from Issue IEA-IEP
This Option Only

ONA

Carry to RTC

IKB HDOO1

RTCto Si
OAA-OBF Bits 32-63

ICA-IDF

IEA-IEP

Figure 100. RTC and PCI Block Diagram

Programmable Clock

214

Each CPU has one programmable clock (PC), which is a 32-bit counter.
The programmable clock decrements every clock period; the clock is
located on the HDOOO option.

The programmable clock is loaded by the 00 14j4 instruction when the
program is in monitor mode. When the programmable clock equals zero,
an interrupt request (PCI) is generated. To generate a PCI, the IPC mode
bit must be set. In user mode, IPC must have been set in the user's
exchange package. If the CPU is in monitor mode, either IPC was set in

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

)

CPU RTC, PCI, Status Register, Performance Monitor

the monitor's exchange package, or a 001406 instruction was issued. The
interrupt request remains set until cleared by a 001405 instruction. If the
CPU is in monitor mode, and if the interrupt request is not desired, use a
001407 instruction to disable the IPC mode bit.

The PCI request is enabled and disabled on the HD option, which contains
the exchange parameters.

RTC and PC Instructions

Refer to Table 33 for a list of the RTC and PC instructions.

Table 33. RTC and PC Instructions

Instruction CAL Description

0014ft) t RTSj Enter RTC register with Sj

072'{)0 SiRT Transmit RTC to Si

0014j4 t PCI Sj Transmit Sjto programmable clock

001405 l' CCI Clear PCI request

001406 "!" ECI Enable PCI request

001407 t DCI Disable PCI request

t Data cache is a monitor mode instruction.

Performance Monitor

HTM-xxx-O
December 19,1994

The performance monitor (PM) is normally used to monitor software
performance. With the results of the performance monitor, a programmer
can determine how efficiently a program is running in the system. If, for
example, the program is performing too many instruction fetches or too
many hold issue conditions are occurring, the programmer can review the
program structure and modify it to minimize these occurrences.

Each CPU contains a performance monitor; because each CPU is
identical, all references in this section pertain to a single CPU. Each CPU
contains 32 performance counters and each counter is 48 bits wide.
Table 34 shows which event each counter monitors. Each counter
increments each time a particular event occurs in the CPU while the CPU
is in nonmonitor mode (IMI bit is not set). The counters related to
memory references may be incremented by as many as eight times per
clock period (CP). Counters related to vector operations are incremented
by the value in the vector length register at the time the instruction issues.

Cray Research Proprietary
Preliminary Information

215

RTC, PCI, Status Register, Performance Monitor CPU

Counter

0

1
2

3
4

5
6
7

10
11
12
13
14
15
16
17

20
21
22

23
24

25

26
27

30

31
32

33
34
35

36
37

216

Table 34. Performance Monitor

Event Monitored Instructions Increments

Number of:

Clock periods monitored +1

Instructions issued +1
Clock periods holding issue +1
Instruction fetches +1
CPU memory references (ports A, B, C) +8
Clock periods for references (ports A, B,C) +2047
I/O memory references (port D, I/O only) +2
Cache misses +1

Holding issue on:

A registers and access conflicts +1
S registers and access conflicts +1
V registers +1
BfT registers +1
Functional units +1
Shared registers +1
Memory ports +1
Number of cache hits +1

Number of instructions:

Instructions 000000 through 004000 000 -004 +1
Branches 005-017 +1
Address instructions 02x, 030 - 033, EIS 042 - 057 +1

,073120, 073130
BfT memory instructions 034-037 +1
Scalar instructions 040 - 043, 071 - 077 except +1

073120, 073130
Scalar integer instructions 044 - 061, 070ij6
Scalar floating-point instructions 062-070
S/A memory instructions 10x-13x

Number of operations:

Vector logical 070ij1, 140 -147,
1740j4-1740j6,175

Vector shifts, pop., leading zero 150-153,174xx(1-3)
Vector integer adds 154-157
Vector floating-point multiplies 160-167
Vector floating-point adds 170 -173
Vector floating-point reciprocals 174xxO
Vector memory reads 176
Vector memory writes 177

Cray Research Proprietary
Preliminary Information

+1
+1
+1

+VL

+VL
+VL

+VL
+VL
+VL
+VL
+VL

HTM-xxx-O
December 19, 1994

)

)

)

CPU RTC, PCI, Status Register, Performance Monitor

Performance Monitor Instructions

Table 35 lists all the instructions associated with the performance monitor.

Table 35. Performance Monitor Instructions

Instruction CAL Description

001500 Clear all performance counters

073ij1 SiSRj Transmit (SR}) to Si (monitor mode only for
j=2-7)

073K>5 SROSi Transmit (SI) bits 48 - 52 to SRO

073125 SR2 Si Advance performance monitor pOinter

073175 SR7Si Transmit (SI) to maintenance channel

Clearing the Performance Counters

Instruction 001500 clears all performance counters. This instruction must
be issued while the CPU is in mOIiitor mode in order for the instruction to
operate correctly.

Reading the Performance Monitor

HTM-xxx-O
December 19,1994

The performance monitor is read with the 073i21 and 073i31 instructions.
Each counter is read 48 bits at a time and requires that two instructions be
issued to read all the counters. The 48 bits of the counter read are stored
in the Si register. When the 073i21 instruction is issued, counters 0
through 17 are sent to Si. The 073i31 instruction, when issued, reads
counters 20 through 37 and sends the bits to Si.

The system hardware requires a minimum of 3 CPs between issuing
073ixl instructions. Also, the PM Busy Status (PMBY) bit (bit 47 of
SRO) must be cleared before reading the counters. If the 3-CP wait is not
written into the program, an undeterminable corruption of performance
monitor data occurs.

Cray Research Proprietary
Preliminary Information

217

RTC, PCI, Status Register, Performance Monitor CPU

Performance Monitor Block Diagram

Status Register

218

Refer to Figure 101 for the performance monitor block diagram. The
performance monitor is composed of the HFOOO, HDOOO, and HD001
options. The HFOOO option contains the lower bits (0 through 31) and the
HDOOO and HD001 options contain the upper bits (32 through 47) for all
32 counters; there is one counter for each event tracked by the
performance monitor. These 48-bit counters are incremented as each
event occurs, as long as the CPU is not in monitor mode.

A CRA Y T90 series computer system has eight status registers, which are
located on the HD and HF options. The status register is no longer part of
the exchange package as it was in previous systems. Figure 102 shows the
status register format and bit assignments of each register. The status
registers are read by the 073ij1 instruction.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)
/

)

CPU

JAOOO JASOOO
OAA - OAC k Bits IPG -IPI AROOO

OAO - OAF iBits IPO - IPF

OAG-OAI 'Rit'" IPA-IPC

OAJ - OALh Bits IPJ - IPL l-

I ASOO2
OBA - OBC k Bits IPG -IPI ASOO1

OBO - OBF i Bits IPO - IPF

OBG-OBI . !:lit., IPA - IPC

OBJ-OBL h Bits IPJ - IPL ...

OCA - OCC k Bits IPG - IPI
. 1 VAOO1

VAOOO
OCO - OCF i Bits IPO - IPF

OCG-OCI r!:lit., IPA-IPC

OCJ - OCL h Bits IPJ -IPL

OCM - OCP D Bits IPJ - IPL ~

JAOO1 ATOO1
OAA-OAC IPG-IPI ATOOO

OAO-OAF IPO-IPF

OAG-OAI IPA-IPC

OAJ-OAL IPJ -IPL

AUOO1
OBA-OBC kBit IPG-IPI AUOOO

OBO-OBF IPO-IPF

OBG-OBI IPA-IPC

OBJ-OBL IPJ -IPL

BTOO1
OCA-OCC kBit IPG-'"IPI BTOOO
OCO-OCF IPO-IPF

OCG-OCI IPA-IPC

OCJ-OCL IPJ -IPL

OCM-OCP IPJ -IPL

Figure 93. Instruction Data Distribution A/S/B/T Registers

HTM-xxx-O
December 19, 1994

Cray Research Proprietary
Preliminary Information

Instruction Issue

195

Instruction Issue

JAOO1

OBA-OBC

OKD-OKF

OBJ-OBL

OMA-OMB

JAOOO

OMA-OMB

OLG

196

AUOOO
IPG-IPI

OWJ-OWL kBits

ICOO1

IPK-IPM OWQ-OWS jBits

ICOOO

IPH-IPJ OWQ-OWS iBits

AUOOO
IPJ -IPL

OWA-OWC hBits

IGH-IGI ANOOD

OGI-OGL gBits

IGF-IGG

Issue

Figure 94. elP Distribution.

Cray Research Proprietary
Preliminary Information

CPU

I HDOD1

HDOOO

IEA-IEC

IED-IEF

lEG-lEI

IEJ -IEL

IEM-IEP

IEQ -

HTM-xxx-O
December 19, 1994

)

)

)

CPU

JAOOO
JAOO1

JAOO1 OBA-OBC

JAOOO
OKL-OKN

JAOOO OKO-OKP

JAOO1 OKI

JAOO1
OBJ-OBL

JAOO1
OMA-OMB

JAOOO
OMA-OMB

JAOOO 000

HTM-xxx-O
December 19, 1994

AUOO1

IPG-IPI
OWJ-OWL kBits

ICOO3

IPK-IPM owo-ows iBits

ICOO2
IPH-IPI owo-ows iBits

IPJ

AUOO1

IPJ -IPL
OWA-OWC h Bits

IGH-IGI ANOO1

OGE-OGH oBits

IGF-IGG

Issue via ANOOO

Figure 95. CIP Distribution to HF Option

Cray Research Proprietary
Preliminary Information

Instruction Issue

HFOOO

IOA-IOC

IOO-IOF

IOG-IOI

IOJ -IOL

10M-lOP

100

197

Instruction Issue

198

CPU

JAOOO I VAOO1
OCA - OCC k Bits IAN - lAP VAOOO
OCD - OCF i Bits IAK - lAM

OCG-OCI r Rite> IAH -IAJ

OCJ - OCl h Bits 1M - lAC

OCM - OCP a Bits lAD -lAG
~

JAOO1

OCA - OCC k Bits IJK - IJM
I BTOO1

BTOOO
OCD - OCF i Bits IJN - IJP

OCG-OCI 'Rite> IJH - IJJ

OCJ - OCl h Bits IJE - IIJG

OCM - OCP a Bits IJA - IJD
~

Figure 96. Instruction Data Distribution to VA and BT Options

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

CPU

JAOO1

OBA-OBC

OKD-OKF

OBJ -OBl

OMA-OMB

JAOOO

OMA-OMB

OlG

HTM-xxx-O
December 19, 1994

AUOOO
IPG-IPI ~

OWJ-OWl

ICOO1

IPK-IPM ~ OWo-ows

ICOOO

IPH-IPJ
OWo-ows

AUOOO
IPJ -IPl ~

OWA-OWC

IGH-IGI ~ ANOOO

OGI-OGl

IGF-IGG~

Issue

Figure 97. CIP Distribution

Gray Research Proprietary
Preliminary Information

Instruction Issue

r HDOO1

HDOOO

kBits IEA-IEC

jBits IED-IEF

iBits lEG-lEI

hBits IEJ -IEl

qBits IEM-IEP

lEO
f--

199

Instruction Issue

JAOOO
JAOO1

JAOO1 OBA-OBC

JAOOO
OKL-OKN

JAOOO OKO-OKP

JAOO1 OKI

JAOO1
OBJ-OBL

JAOO1
OMA-OMB

JAOOO
OMA-OMB

JAOOO ODD

200

AUOO1

IPG-IPI
OWJ-OWL kBits

ICOO3

IPK-IPM
OWQ-OWS LBits

ICOO2
IPH-IPI

OWQ-OWS iBits

IPJ

AUOO1

IPJ-IPL
OWA-OWC h Bits

IGH-IGI ANOO1

OGE-OGH gBits

IGF-IGG

Issue via ANOOO

Figure 98. CIP Distribution to HF Option

Cray Research Proprietary
Preliminary Information

CPU

HFOOO

IDA-IDC

IDD-IDF

IDG-IDI

IDJ-IDL

IDM-IDP

IDQ

HTM-xxx-O
December 19, 1994

)

)
. ./

EXCHANGE
)

~ I ~ fY\Gqo
1J0 fJeo-d.sd-~·

\ \ Ai is ~ 0
Y\. e The exchange mechanism in a CRAY 1'90 series computer system has the

e ~eJ 1 Q-'V" (' ¢-f~~) e i!(following features:

v-> ':\ ..,\-- '" \ . • Means of switching execution from program to program

• Exchange package - Block (408 words) of program parameters that:

• Must be present in order for any program to execute; defines
where and how the program runs

• Must be 408 words long

• Must reside in lower 2 MW of memory

• Must start on a 408 word boundary

) Exchange Process

)

HTM-xxx-O
Oecennber19,1994

The exchange sequence is the process that deactivates the current
exchange package and puts it into memory. It then loads a new exchange
package from memory and activates it.

The CRAY 1'90 series systems have a new feature in the exchange
package. This feature allows a process to exchange to either the address
specified by the exchange address (XA) register or to one of five different
addresses specified by one of the five exit address (EA) registers. With
this capability, a user job could.exchange to another user job, or could
exchange to specific areas in the kernel, without first exchanging to the
monitor.

Other features that are now implemented in the CRAY T90 series system
include the following: when an exchange occurs, the CPU that exchanges
out will retain the cluster number it was initially assigned unless the
system is operating in C90 mode or unless AutoBCD (automatic broadcast
cluster detach) is active. In addition, when a CPU is master cleared and
then exchanged out, the pending interrupt bits are retained. This is done
so that the maximum amount of information about the process is available.
A second exchange sequence can retrieve this information.

Cray Research Proprietary
Preliminary Information

201

Exchange

Deadstart

I

202

CPU

If an exchange occurs and the program is in monitor mode, the monitor
needs to save the B registers, T registers, shared registers, scalar (S)-)
registers, and vector (V) registers. If the vector not used (VNU) bit is ai,
the V registers do not need to be saved. If the exchange is to another user
job, it is up to the user to save the register values.

Four conditions cause an exchange sequence:

• Deadstart sequence (SIPI)
• Interrupt flag set (F register)
• Program exit (004000, 00000o instruction)
• Hardware error causing a flag to set, which causes an exchange

A CRAY T90 series system does not use a deadstart signal or command;
instead, the system uses Set Interprocessor Interrupt (SIPI) signals, via
a 0014jl instruction [send inter-CPU interrupt to CPU (AJ)] or, on an
initial deadstart, a CPU loop controller function of 768 issued by the
maintenance channel will start an exchange.

The sequence of events to start execution of MME:

• SetCPUMC

• Load data to memory address 0 via the maintenance channel.

• Issue a loop controller function of 1768 via the maintenance channel
to allow CPU maintenance instructions.

• Issue a loop controller function of 1418 via the maintenance channel
to allow cpu instruction exchange and halt.

The exchange package at location 0 goes into the CPU, and
what was in the CPU goes to location O. There is no fetch
after this exchange.

• Drop CPU Master Clear via the maintenance channel.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19.1994

)

)

)

CPU

Interrupt Flag Set

Program Exit

Exchange

• Issue the loop controller function of 768 via the maintenance
channel.

The dropping of CPU Master Clear works as an enable; the
function 768 must be present along with the Master Clear
signal for the exchange to occur.

• Interrupted CPU exchanges to address 0, a fetch is done and issue
starts.

In this case, because I/O is handled by the maintenance channel, the return
path for output depends on how the sanity tree was configured. From this
point, the initially started CPU could issue SIPI commands to the other
CPUs.

In the CRA Y T90 series system, each interrupt flag has an enable interrupt
mode bit. The interrupt modes are enabled by the enabled interrupt mode
(ElM) flag; an exchange to non-monitor mode sets the ElM flag.

An exchange to monitor mode clears the ElM flag. While the program is
in monitor mode, a 001302 instruction sets the ElM flag, and an 001303
instruction clears the ElM flag.

Each CPU has an ElM flag. In monitor mode, the ElM flag is cleared and
all interrupt modes are disabled, except enable flag on normal exit (FNX),
enable flag on error exit (FEX), and enable interrupt on program range
error (IPR); this provides a stable environment within monitor mode
immediately following an exchange.

Program exit occurs following the decode of instructions 00000o
and 004000. Instruction 00000o is an error exit instruction, and
instruction 004000 is a normal exit.

Exchange Sequence

HTM-xxx-O
Decen]ber19,1994

Before a CPU can perform an exchange, the CPU must first finish all
active instructions. If a test and set instruction (OO34jk) is in the next
instruction parcel (NIP) or entering the current instruction parcel (CIP),
the program (P) register is decremented by 2, or by 1 if the test and set
instruction is in the CIP or NIP respectively. The JA option transmits a

Cray Research Proprietary
Preliminary Information

203

Exchange CPU

signal to the BT options that decrements the P register before it is loaded
into memory. The JA then waits until the condition is resolved to advance ~)
P. Memory must also be quiet, and all memory writes must have
completed.

The processor performing the exchange clears out the buffer valid bits and
buffer counter. Clearing the buffer valid bits causes a fetch to occur after
the exchange has completed. Clearing the instruction buffer address
register (mAR) counter causes the data that was fetched from memory to
be loaded into instruction buffer 0 fIrst. Also, issuing a 0051jk instruction
clears the buffer valid bits. The 0051jk is a maintenance instruction that
loads the P register from Bjk and invalidates the instruction buffers if the
CPU is in maintenance mode (MM).

Exchange Package Descriptions

204

Refer to Figure 99 for an illustration of the exchange package. The
exchange parameters are located on two options: HDOOO and HDOO 1.
HDOOO handles bits 0 through 31 for words 0 through 17, and HDOOI
handles bits 32 through 63 for words 0 through 17.

P register - program register, word 10 bits 0 through 31

The P register contains 32 bits, the lower 2 bits of which are
used for parcel selects. The P register contains bits -2 through
29, which allow 1 gigaword of memory to be addressed.

Modes - MM, BDM, ESL, TRI, SCE, BDD word 11, bits 0 through 7

The modes tell the program what it can or cannot do, thereby
determining what effect the instructions issued will have on
the program.

MM - monitor mode, word 11, "bit 0

Certain instructions are privileged to MM: controlling the
channel, setting the real-time clock, setting the programmable
clock, and so on. These instructions perform specialized
functions that are useful to the operating system. If an MM
instruction issues while the CPU is not in MM, it is treated as
a no-operation instruction. If an MM instruction issues while
the IMI flag is set, the MIl flag sets, causing an exchange.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

)

)

CPU

HTM-xxx-O
Decenlber19,1994

BDM - bidirectional memory, word 11, bit 1

When BDM is set, block reads and writes may occur
concurrently.

ESL - enable second vector logical, word 11, bit 2

Exchange

IfESL is set and any 140ijk through 145ijk instructions issue,
the instruction is routed to the second vector logical unit. If
ESL = 0, the second vector logical unit is not used. The
second vector logical unit is used before the full vector logical
unit if a choice exists.

TRI - Triton mode, word 11, bit 3

The Triton mode allows the new instruction to run in the
CRA Y T90 series system. If the Triton mode bit equals a 0,
then the instruction will run only CRAY C90 instructions.

SCE - scalar cache enabled, word 11, bit 24

If SCE is set to aI, onboard scalar cache is enabled.

BDD - bidirectional memory disable, word 11, bit 27

When BDD is set to a 1, bidirectional block reads and writes
are disabled.

Status (VNU, FPS, WS, PS), word 12, bit 0 through 3

The status register reflects the condition of the CPU at the
time of an exchange. The bits in the status field are set during
program execution and are not user selectable.

VNU - vectors not used, word 12, bit 3

After a program has been exchanged into memory, the B and
T registers must be saved as well as the SB, ST, and SM
registers of the cluster that the program is using. If the VNU
bit is equal to 1, then this indicates that the vector registers
were not used so the vector registers do not need to be saved.
However, if the VNU bit is 0, then the vector registers must be
saved as well. The VNU bit is set when a 077xxx or a 140
through 177xxx instruction issues.

Cray Research Proprietary
Preliminary Information

205

Exchange

63 48 47 3231

11

16

17 LAT 7 Physical Bias
Exchange Address

206

Words 20 - 27: A Registers 0 - 7
Words 30 - 37: S Registers 0 - 7

Figure 99. Exchange Package

Cray Research Proprietary
Preliminary Information

16 15

CPU

Exit Address 0

HTM-xxx-O
December 19,1994

)

)

)

)

)

CPU

HTM-xxx-O
December 19, 1994

Exchange

FPS - floating-point status, word 12, bit 2

A floating-point error sets the FPS flag regardless of the state
of the floating-point error flag (FPE). The FPE flag sets when
an underflow or overflow condition exists in the floating-point
functional units.

The FPS bit is cleared whenever the interrupt on floating-point
error (IFP) mode bit is set or cleared by a 002100 or 002200
instruction.

The FPS bit is also cleared when the bit matrix loaded (BML)
flag is cleared; the BML flag is cleared when a 002210
instruction issues.

WS - waiting on semaphore, word 12, bit 1

The WS bit sets when a oo34jk instruction is in CIP and
holding issue.

BML - bit matrix loaded, word 12, bit 0

The BML bit indicates the Bt (B transposed) registers have
been successfully loaded by a 1740j4 instruction.

Interrupt modes, word 11, bits 15 through 31

Refer to Table 30 for a list of the bit assignments for the
modes field in the exchange package. All modes except IPR,
FEX, and FNX must be enabled by the ElM flag to be
effective. The ElM flag sets on an exchange to nonmonitor
mode and clears on an exchange to monitor mode. The ElM
flag enables interrupt modes if set.

The ElM bit can be set or cleared by a 001302 or a 00 1303
instruction, respectively.

Cray Research Proprietary
Preliminary Information

207

Exchange

Word

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

208

CPU

Table 30. Interrupt Modes Register Bit Assignments

Binary
Exponent Acronym Name

31 IRP Interrupt on Register Parity Error

30 IUM Interrupt on Uncorrectable Memory Error

29 IFP Interrupt on Floating-point Error

28 lOR Interrupt on Operand Range Error

27 IPR Interrupt on Program Range Error

26 FEX Enable Flag on Error Exit (does not disable
exchange)

25 IBP Interrupt on Breakpoint

24 ICM Interrupt on Correctable Memory Error

23 IMC Interrupt on MCU Interrupt

22 IRT Interrupt on Real-time Interrupt

21 liP Interrupt on Interprocessor Interrupt

20 110 Interrupt on 1/0

19 IPC Interrupt on Programmable Clock

18 IDL Interrupt on Deadlock

17 IMI Interrupt on 001 ij¢. 0 or 033 instruction

16 FNX Enable Flag on Normal Exit (does not disable
exchange)

15 lAM Interrupt on Address Multiply Range Error

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19.1994

)

)

)

CPU

HTM-xxx-O
December 19, 1994

Word

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

Exchange

Refer to Table 31 for a list of the bit assignments for the
interrupt flags field in the exchange package.

Table 31. Flag Register Bit Assignments

Binary
Exponent Acronym Name

31 RPE Register Parity Error

30 MEU Uncorrectable Memory Error

29 FPE Floating-point Error

28 ORE Operand Range Error

27 PRE Program Range Error

26 EEX Error Exit (000 issued)

25 BPI Breakpoint Interrupt

24 MEC Correctable Memory Error

23 MCU MCU Interrupt

22 RTI Real-time Interrupt

21 ICP Interrupt from Internal CPU

20 101 I/O Interrupt (if "0 and SIE)t

19 PCI Programmable Clock Interrupt

18 DL Deadlock Interrupt

17 Mil 001 ij¢ 0 or 033 Instruction Interrupt (if IMI
and not MM)

16 NEX Normal Exit (004 issued)

15 AMI Address Multiply Interrupt

t SIE = System VO interrupt enabled.

Cray Research Proprietary
Preliminary Information

209

Exchange

210

CPU

VL - vector length, word 13, bits 0 through 7

The VL register holds the content of the VL register. The
8-bit field contains the number of elements to be operated on
in the vector register. In a eRA Y T90 series system, if VL =
000 or VL = 200, all 2008 vector elements are used within the
vector register.

XA - exchange address, word 17, bits 16 through 31

The 16-bit field specifies the address of the first word of the
next exchange package. This exchange package is loaded
when anyone of the following conditions occurs:

• An interrupt occurs that sets any of the following flags:
RPE, MEU, FPE, OPR, BPI, MEC, MCU, RTI, ICP, 101,
PCI, DL, MIl, NEX, or AMI

• A 000 is issued

• A oo40jk is issued with k being an illegal value (5, 6,
or 7)

The XA field contains only bits 5 through 20. The lower bits .. '.)
are assumed to be O's.

EXIT Address 0 through 4, words 15, 16, 17 bits 0 through 31

Each of the five 16-bit fields specifies the starting address of a
32-word exchange package. The k field of the 0040jk
instruction specifies the exchange package to use. Only k
fields equal to 0 through 4 are valid; if an invalid value is
used, the exchange is to the XA address. Exit Address (EA) 0
is expected to be used for normal exits to maintain
compatibility with existing systems.

Each EA field contains only bits 5 through 20. The lower bits
are assumed to be O's.

CLN - cluster number, word 13, bits 24 through 31

The CLN contains a 8-bit field. There are up to 368 clusters in
the system, depending on the system configuration.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

CPU

HTM-xxx-O
December 19, 1994

Exchange

PPN - Processor number, word 13, bits 16 through 22

The contents of the 7 -bit field in the exchange packages show
the logical number of the CPU in which the exchange was
executed. The maximum number is 127.

LATS - Words 0 through 17. Refer to the exchange package diagram for
bit layouts.

Each LAT has four associated fields; Table 32 identifies those
fields.

Table 32. LAT Fields

Field Name Description

Logical Base First logical address of this LAT

Logical Limit Last address +1 of this LAT

Physical Bias Physical bias = Physical base address - Logical base address

Modes The controlling bits for each LAT
R(ead), W(rite), X(ecute), C(achable), O(irty)

The use of LATs allows programs to share memory space. For example,
two user jobs could reference the same library routine in memory while
keeping their local code private.

Cray Research Proprietary
Preliminary Information

211

)

)

REAL-TIME CLOCK
PROGRAMMABLE CLOCK INTERRUPT
STATUS REGISTER
PERFORMANCE MONITOR

Real-time Clock

HTM-xxx-O
December 19,1994

Refer to the following subsections for information about the real-time
clock, programmable clock interrupt, status register, and the performance
monitor.

A CRAY T90 series computer system contains one 64-bit real-time clock
(RTC) per central processing unit (CPU). The RTC is synchronized when
a CPU issues a 00 14jO instruction~ The 00 14jO instruction causes all
CPUs in the same cluster to be loaded with the contents of Sj. The RTC is
located on two HD options, each of which handles 32 bils. The HDOOO
option handles bits 0 through 31; the HDOO 1 option handles bits 32
through 63.

HDOOO will detect a carry, out of the RTC, at a count of 37777777776
during normal operation. HDOO 1 then increments the upper bits during
the next clock period, and HDOOO suppresses any toggles.

The RTC is incremented once every clock period. The RTC allows for
clock -period timing of program execution. When the machine is
deadstarted, the RTC must be loaded in order to synchronize all the CPU s.
If they are not synchronized, each CPU will have a different RTC value.

Writing to the RTC with the 0014jO instruction sends a copy of the Sj
register from the CPU issuing the instruction to all RTC registers via the
issue paths of the shared registers. Reading the RTC with a 072iOO
instruction copies the RTC register of the CPU that issued the 072iOO
instruction into the scalar registers.

Refer to Figure 100 for an RTC and programmable clock interrupt (PCI)
block diagram.

Cray Research Proprietary
Preliminary Information

213

RTC, PCI, Status Register, Performance Monitor CPU

SjData from HFOOO

Shared Module OM-OCl

Shared Data Path
(RTC Data or PC I)

ICA-IDF
HOOOO

RTCto Si
OAA-OBF Bits 0 -31

PCI logic Used on

CIP from Issue IEA-IEP
This Option Only

ONA

Carry to RTC

IKB HDOO1

RTCto Si
OAA-OBF Bits 32-63

ICA-IDF

IEA-IEP

Figure 100. RTC and PCI Block Diagram

Programmable Clock

214

Each CPU has one programmable clock (PC), which is a 32-bit counter.
The programmable clock decrements every clock period; the clock is
located on the HDOOO option.

The programmable clock is loaded by the 00 14j4 instruction when the
program is in monitor mode. When the programmable clock equals zero,
an interrupt request (PCI) is generated. To generate a PCI, the IPC mode
bit must be set. In user mode, IPC must have been set in the user's
exchange package. If the CPU is in monitor mode, either IPC was set in

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

)

CPU RTC, PCI, Status Register, Performance Monitor

the monitor's exchange package, or a 001406 instruction was issued. The
interrupt request remains set until cleared by a 001405 instruction. If the
CPU is in monitor mode, and if the interrupt request is not desired, use a
001407 instruction to disable the IPC mode bit.

The PCI request is enabled and disabled on the HD option, which contains
the exchange parameters.

RTC and PC Instructions

Refer to Table 33 for a list of the RTC and PC instructions.

Table 33. RTC and PC Instructions

Instruction CAL Description

0014ft) t RTSj Enter RTC register with Sj

072'{)0 SiRT Transmit RTC to Si

0014j4 t PCI Sj Transmit Sjto programmable clock

001405 l' CCI Clear PCI request

001406 "!" ECI Enable PCI request

001407 t DCI Disable PCI request

t Data cache is a monitor mode instruction.

Performance Monitor

HTM-xxx-O
December 19,1994

The performance monitor (PM) is normally used to monitor software
performance. With the results of the performance monitor, a programmer
can determine how efficiently a program is running in the system. If, for
example, the program is performing too many instruction fetches or too
many hold issue conditions are occurring, the programmer can review the
program structure and modify it to minimize these occurrences.

Each CPU contains a performance monitor; because each CPU is
identical, all references in this section pertain to a single CPU. Each CPU
contains 32 performance counters and each counter is 48 bits wide.
Table 34 shows which event each counter monitors. Each counter
increments each time a particular event occurs in the CPU while the CPU
is in nonmonitor mode (IMI bit is not set). The counters related to
memory references may be incremented by as many as eight times per
clock period (CP). Counters related to vector operations are incremented
by the value in the vector length register at the time the instruction issues.

Cray Research Proprietary
Preliminary Information

215

RTC, PCI, Status Register, Performance Monitor CPU

Counter

0

1
2

3
4

5
6
7

10
11
12
13
14
15
16
17

20
21
22

23
24

25

26
27

30

31
32

33
34
35

36
37

216

Table 34. Performance Monitor

Event Monitored Instructions Increments

Number of:

Clock periods monitored +1

Instructions issued +1
Clock periods holding issue +1
Instruction fetches +1
CPU memory references (ports A, B, C) +8
Clock periods for references (ports A, B,C) +2047
I/O memory references (port D, I/O only) +2
Cache misses +1

Holding issue on:

A registers and access conflicts +1
S registers and access conflicts +1
V registers +1
BfT registers +1
Functional units +1
Shared registers +1
Memory ports +1
Number of cache hits +1

Number of instructions:

Instructions 000000 through 004000 000 -004 +1
Branches 005-017 +1
Address instructions 02x, 030 - 033, EIS 042 - 057 +1

,073120, 073130
BfT memory instructions 034-037 +1
Scalar instructions 040 - 043, 071 - 077 except +1

073120, 073130
Scalar integer instructions 044 - 061, 070ij6
Scalar floating-point instructions 062-070
S/A memory instructions 10x-13x

Number of operations:

Vector logical 070ij1, 140 -147,
1740j4-1740j6,175

Vector shifts, pop., leading zero 150-153,174xx(1-3)
Vector integer adds 154-157
Vector floating-point multiplies 160-167
Vector floating-point adds 170 -173
Vector floating-point reciprocals 174xxO
Vector memory reads 176
Vector memory writes 177

Cray Research Proprietary
Preliminary Information

+1
+1
+1

+VL

+VL
+VL

+VL
+VL
+VL
+VL
+VL

HTM-xxx-O
December 19, 1994

)

)

)

CPU RTC, PCI, Status Register, Performance Monitor

Performance Monitor Instructions

Table 35 lists all the instructions associated with the performance monitor.

Table 35. Performance Monitor Instructions

Instruction CAL Description

001500 Clear all performance counters

073ij1 SiSRj Transmit (SR}) to Si (monitor mode only for
j=2-7)

073K>5 SROSi Transmit (SI) bits 48 - 52 to SRO

073125 SR2 Si Advance performance monitor pOinter

073175 SR7Si Transmit (SI) to maintenance channel

Clearing the Performance Counters

Instruction 001500 clears all performance counters. This instruction must
be issued while the CPU is in mOIiitor mode in order for the instruction to
operate correctly.

Reading the Performance Monitor

HTM-xxx-O
December 19,1994

The performance monitor is read with the 073i21 and 073i31 instructions.
Each counter is read 48 bits at a time and requires that two instructions be
issued to read all the counters. The 48 bits of the counter read are stored
in the Si register. When the 073i21 instruction is issued, counters 0
through 17 are sent to Si. The 073i31 instruction, when issued, reads
counters 20 through 37 and sends the bits to Si.

The system hardware requires a minimum of 3 CPs between issuing
073ixl instructions. Also, the PM Busy Status (PMBY) bit (bit 47 of
SRO) must be cleared before reading the counters. If the 3-CP wait is not
written into the program, an undeterminable corruption of performance
monitor data occurs.

Cray Research Proprietary
Preliminary Information

217

RTC, PCI, Status Register, Performance Monitor CPU

Performance Monitor Block Diagram

Status Register

218

Refer to Figure 101 for the performance monitor block diagram. The
performance monitor is composed of the HFOOO, HDOOO, and HD001
options. The HFOOO option contains the lower bits (0 through 31) and the
HDOOO and HD001 options contain the upper bits (32 through 47) for all
32 counters; there is one counter for each event tracked by the
performance monitor. These 48-bit counters are incremented as each
event occurs, as long as the CPU is not in monitor mode.

A CRA Y T90 series computer system has eight status registers, which are
located on the HD and HF options. The status register is no longer part of
the exchange package as it was in previous systems. Figure 102 shows the
status register format and bit assignments of each register. The status
registers are read by the 073ij1 instruction.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)
/

CPU

Shared Data

Performance Monitor
Increment Terms
(Registers 10 - 16)

IKI

ILA-
. ILH

IAA-
ICL

IKA
IKG

Cache Miss (ReQister 17) IKH

Cache Hit (Register 71 IKK

1/0 Reference Requests IKl -
(Register 6) IKM

HTM-xxx-O
December 19, 1994

HFOOO

Performance
Counter

Registers 0 - 37
Bits 0-31

Vector lenQth

Go Increment

Vector length
IAA
IBF

ICA-

HDOOO

Performance
Counter

Registers 0 - 37
Bits 32 -47

OMQ

OMA
OMH

OAA
OBF

Shared Data Path IDF IMI Allow Read

OAA-
OBF

OFI

OFO

OFK

OFA
OFE

OBG
OCl

Carry

IKO

IKP

IKM

IKH
IKl

ONB of HPM IJQ

OFA Carry Out

Busy

Hold

Select Pointers

Shared Data Path

IKM

IKP

IKO

IKH
IKL

ICA
IDF

Figure 101. Performance Monitor Block Diagram

Cray Research Proprietary
Preliminary Information

RTC, PCI, Status Register, Performance Monitor

S Register

Performance Monitor to Si Bits 0 - 31

HD001

Performance
Counter

Registers 0 - 37
Bits 32 -47

OAA
OBF

Performance Monitor
to Si Bits 32 - 47

219

OI
(1)-;
(')~
(1),
3x
o-X
(1)>;<
~o
.so
.....
co
~

()
-o~

CD~
=:D
3(1) -·en ::l(1)
1»1»
-<0
- ::T
3.-0 Q a
3-0 a ::l. _.(1)
0_
::ll»

-<

~

"-",--,J '~

Bits 63 57 52 48 47 40 39 32 31

C B I F I I B P Processor Cluster
SRO L M B P FOD M Number

017

Number
N L P S P RM B
;to y 6 0

SR1

SR2 Performance Monitors 0 - 17

47 32 31

SR3 Performance Monitors 20 - 37

47 32 31

SR4 U C
Error Type

Destination Code
M M
E E 13 0

SR5
Error Syndrome

11 0

Error Address
SR6

12 0

LAT Faults S RPE Chip SRREChip

Multiple Hit Miss R R Number Number

D C' C B' B A' A I D C' C B' B A' A
P R
E E 11 o 7 0

SR7

Bits 63 62 61 55 54 484746 43 32 31 24

t SRO bit 20 = monitor mode· maintenance mode· not (SR? busy)

Figure 102. Status Registers

~)

16 15 o

16 15 0

16 15 01

I

I

I

I

I

16 15 o

~

JJ o
~ .:-
C/)
S
t:
C/)

JJ
~ Ci).

CD .'"
~
~
3
£\)
::)

2
~
::)

a: ..,

RTC, PCI, Status Register, Performance Monitor CPU

The eight status registers are further defmed in Table 36 through Table 40.

Status register 0 (SRO).sbows the status of several bits in the active
exchange package. .' :j1;~:

Tahle'j6. Status Register (SRO)

Bits . N~fr'ne Description

63 CLN~O Cluster number not equal to zero

57 BML Bit matrix loaded

52 IBpt Interrupt on breakpoint
_". _~, w

51 FPSt Floating-point status

50 ' :i'F=F,) t Interrupt on floating-point error

49 ;iotft Interrupt on operand range error

48 ··SOMt Bidirectional memory ,
47 Y"pMBY Performance monitor busy

40 through 43 PN Processor number

32 through 39 'CLN Cluster number ,

t Designates that this was written by a 073JU5 instruction. All other bits of SRO
are read-only. '

Status register 1 (SR1}isnot defined.

Status register 2 (SR2) bits 0 through 47 are bits of the performance
monitor counters 0 through 17.

Status register 3 (SR3) bits 0 through 47 are bits of the performance
monitor counters 20 tJ;ttQ9gh 37.

Status register 4 (SR4) bits are shown in Table 37. SR4 contains the
, , ". correctable and uncorreciable memory error flags, port bits, and read

'" ~. x ... ':,f, , mode bits. The error infon:nation stored in SR4 is latched into the register

222

and held until the register is read. Once SR4 is read, the register is
;".,.' to, ,. • cleared, and new error data: can be stored in the register. If mUltiple errors
i\~~ ',', 't I. occur, only the first error.is held in SR4. Bits 32 through 45 define the

destination code associated' with the error. Table 37 is a decode of these
destination bits.

..(,

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19, 1994

)

)

)

)

CPU

HTM-xxx-O
December 19,1994

RTC, PCI, Status Register, Performance Monitor

, '.~

Table 37. Status Register 4 (SR4)
,ri'
..t~ .

Bits Name Description

47 UME Uncorrectable memory error

46 CME Correctable memory error

32 through 45 ~CODE Destination code (refer to Table 38)
..

, i~'" ,

Tabld''38. Destination Codes

' __ ..;.·, 7·

.:-,
Bit 1""

Destination 13 12 '+ti: 10 9 8 7 6 5 4 3 2 1 0 .
Cache read 1 1 -1!~: - Word

• - -""""'!' ~~ .. -
V register read 1 1 . oj '~!legister - Element

~

S register read 1 0 ,,'1" •
¥ •• Etegister 0 ----'-

A register read 1 0 f· __ .. Register 1 -.... ~
T register read 1 0 (p - 0 - Register -.- .",.."

B register read 1 0 O~; - 1 - Register

Fetch read 0 1 1 Group Word

I/O read 0 1 0 Type Word
>.,

Exchange read 0 0 1 - Word

I/O write 0 0 0·' ~(Type 1

Processor write 0 0 O· ~ t .•.

0 1 0 A/S l-

Reconfigure 0 0 0" - 1 1 0 .. -
r,~ .l . -.

Memory error 0 0 ()~ J(~'r1 0 0 0 -
. ~. -

?Ht) If},.. .
Status register 5 (SR5) bi~'i~2~$rough 43 contain the syndrome code of
the memory error. The inf~W1atiQn~is held until the. status register is read.

, .;'.

Status register 6 (SR6) bits~.3.7,~ough 44 contain the error address for the
memory error. These bits are latched into the SR6 on a memory error.
The information is held un!~!,the. status register is read.

Status register 7 (SR7) contains information on LAT faults, register parity
errors (RPE), and shared register errors (SRRE). Bits 48 through 54
contain an LAT miss flag for each memory port. Bits 55 through 61
contain an LAT multiple-hit flag for each memory port. Bit 47 is the RPE

Cray Research Proprietary
Preliminary Information

223

RTC, PCI, Status Register, Performance Monitor CPU

'c ."

::.:.C ., ,,'

_,··c c

~.-.-, .•.. - -
J. : ":)~2, ~c -':

L;',~,_S .:~]"~"~:~_ :;.~
i . 1 . ~.: ~.::
I

r-;" ~ .. - -.: '
~,

L_,._ .. ---

224

flag. If this bit sets, ttIen:.bits 32 through 43 contain the chip number. Bit_\,
46 is the SRRE flag, and if this flag is set, bits 24 through 31 contain the)
chip number.

f.

-~ .-' ."IIIt"; ~

:iJ : ~
Table 39;L-Status Register 7 Bit Definitions

, . .: -~ .-
Bits :'.ti~rrie Description

..

48 through 54 lAT fault ,LAT miss

55 through 61 LAT· fault Multiple LAT hit

46 .. SRRE Shared register read error

24 through 31 Shared register chip number

47 ' .. ~:.'-RPE Register parity error
-

32 through 43 ---+-. '" _ .. " --, RPE chip number

Octal

001 000

001 001

001 010

001 011

001 100

001 101

001 110

001 111

010000

010001

010010

010011

010100

010101

010110

010111

011 000

011 001

011 010

~,

Ta.ble ~40.; Register Parity Error Code
.~ t.J ~

, ,

" Option'" .. ,- Description
.~' "

VRO,'·- Vector register VO pipe 0 : '

'VR+--'- ' Vector register V1 pipe 0
" ",

VR:2-.i· " ',(ector register V2 pipe 0
", r. ;..

VR3·.;;...-·
, , " iJ ~ Vector register V3 pipe 0

VR4,"'",,· Vector register V4 pipe 0
i' '. ~

VR5::-1---.. (. ; Vector register V5 pipe 0

VR6"-- ' Vector register V6 pipe 0

VR7 Vector register V7 pipe 0

VR8 Vector register VO pipe 1

VR9 Vector register V1 pipe 1

VR10 Vector register V2 pipe 1

VR11 Vector register V3 pipe 1

VR12 Vector register V4 pipe 1

VR13 Vector register V5 pipe 1

VR14 Vector register V6 pipe 1

VR15 Vector register V7 pipe 1

CHO Data cache bits 0 - 3, 32 - 35 Sect. 0,1,6,7

CH1 Data cache bits 0 - 3, 32 - 35 Sect. 2,3,4,5

CH2 Data cache bits 4 - 7, 36 - 39 Sect. 0,1 ,6,7

CrayResearch Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

~,

)

)

)

CPU

HTM-xxx-O
December 19,1994

Octal

011 011

011 100

011 101

011 110

011 111

100000

100001

100010

100011

100100

100 101

100110

100111

101 000

101 001

101 010

101 011

110000

110001

110010

110011

RTC, PCI, Status Register, Performance Monitor

Table 40. Register Parity Error Code (continued)
, :: »1

Option Description

CH3 Data cache bits 4 - 7,36 - 39 Sect. 2,3,4,5
~. r~ ('

. "

CH4 Data cache bits 8 - 11 , 40 - 43 Sect. 0,1 ,6,7

CH5 .:~.~: Data cache bits 8 -11",40 - 43 Sect. 2,3,4,5
.:, : ;, .~~" ,

'C~~'·,'~'. e~:ta cache bits 12""' 115, 44 - 47 Sect. 0,1,6,7

GH7-- - r:oata cache bits 12 - ·15, 44 - 47 Sect. 2,3,4,5
I

CH.8.: . -: Data cache bits 16 - 19, 48 - 51 Sect. 0,1,6,7

CH9 -~:.:. ·Data cache bits 16 - 19, 48 - 51 Sect. 2,3,4,5

CH.1-Q··- Data cache bits 20 - 23,52 - 55 Sect. 0,1,6,7
. ~ --"\. ,~--:

CH11---- ·Data cache bits 20 - 23,52 - 55 Sect. 2,3,4,5

CH~·2-- Data cache bits 24 - 27,56 - 59 Sect. 0,1,6,7

CH13 Data cache bits 24 - 27, 56 - 59 Sect. 2,3,4,5

CH14 Data cache bits 28 - 31, 60 - 63 Sect. 0,1,6,7

CH15' ',.. "Data: cache bits 28 - 31,60 - 63 Sect. 2,3,4,5

ICO"T ··1nSlt1Jction buffer bits 0 - 7, 32 - 39

IC1 ",' ~struction buffer bits 8 - 15, 40 - 47

IC2'.!...._ J~truction buffer bits 16 - 23, 48 - 55

IC3. __ J~truction buffer bits 24 - 31 , 56 - 63

BTO',.! ~ ~nd Tregister bits a - 15, 32 - 47

BTLL ~rid. T-register bits 16 - 31 , 48 - 63

HMO.. __ .t~!-point buffer and logic monitor

HM1 ~._rest:point buffer and logic monitor
.J,

SR"
-.~.,.----.".""

i ~r-:~
.-"----' '

Cray Research ,Proprietary
Preliminary Information,

225

~·~Y'H~:.i: ~

j~ :;J";':j;<:'~~;l' _.,~~:.

)

'~~-rl1 n: ~, ..
,

.... 5!ff;:.r

)

.'

)

)

SCALAR CACHE

Cache Hit

HTM-xxx-O
December 19, 1994

Each CPU has a scalar data.cache. The cache accelerates .common
memory data access for address register and scalar register read requests.
Only address and scalar registers can access the cache.

The data cache has the following features:

• The cache is organized into 8 pages of data. Each Rage contains 8
lines of 16 words, thus providing 1,024 words of data in the cache.
Figure 103 illustrates .the logical layout of the cache.

• Cache is parity protected; each 8-bitbyte has an associated parity bit.
If enabled, a parity error on a cache read will cause an interrupt.

• When an A or S register memory reference is made, one of two
things may occur: a cache hit or a cache miss.

e A and S register store requests are write-through. The cache word
will be updated if there is a hit; if a miss occurs, no cache lines are
requested.

• B, T, and V register store requests cause corresponding cache lines to
be set invalid on a cache hit. Store requests on a cache miss have no
effect on the cache. B,. T, and V register load requests also have no.
effect on the cache.

A cache hit is determined using logical addresses, not physical addresses.
A cache hit occurs when the following conditions are met.

• A valid page address consisting of address bits 7 through 39, held
within the cache, matches the corresponding address bits of a
memory request.

• The cache line indicated by bits 4 through 6 of the requesting address
is valid within the cache.

Cray Research Proprietary
Preliminary Information

227

Scal8b Oache-

.' I Page L. __

I Page 6

I Page 5

I Page 4

I Page 3

I Page 2

I Page 1

.'-' -.-~'''-'------''''--

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Cache Miss
:111: ;""} :'1: ·.h!L "

':Y'lf~ "~ t' 'I \. '.'" J _' • _

I I I
, , J f., J I /I.. ,

Figure 103. Cache Layout
'. ; <''dY',: :j':~(..

: f ~ld d! >n.~~

CPU

I-

-
-

I-

A cache miss occurs when a request from an A or S register load request
does not match a page address. When this occurs, the corresponding line

:'::oi;rb,',::; ,':(~ 1Srequestedffomiliemoly':and;'1he previously valid page address is set to
Ao! 'tTie new page addfess!l AlHiiies in the new page are set invalid. As the

, , new requested line returns from memory, the new page address is set valid
" ,l"i, ,,":;.,'!1 ':;~ as is the cache line lhMfwa~If~uested.

5'1. 1) fIi" P~~:]t; ... ·'"r:r_ ; ~'-, :y,l', ,)! <·W ! ;~~:;2[JJ:;·J ~L

-~!'::' 6jr!il 7 pm : Arlbtherrtype of!nlissioccnr-s>when a memory reference matches the page
.~f;i2'Y! Lr l, if"· ~~ but 'not" any line iil the::~ige~ or the page is not valid. When this occurs, 16

:;~.\. } <2](,:;' 'sequenh~words ar-efreques!ed from memory, and the line is set valid.

Cray ~s~9tb)i'Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

)

)

)

)

CPU Scalar C-ach~

Cache Addressing' \' ;

Figure 104 shows how -memory addresses are used to determine a cache
bit or.m.iss __ , 'r _ •. <~~ ~ .. , •• ~,>:" -1-" ~ Fi > •

.. _'IiI'." ... _, " ... J~.M'O't. •-. ,.. ',,_

.~ ':'·7[.),.~ .'
_, __ •• ~.- .-""'"r ,...,. _.-__ ... -I._t..~ ... ,

.~~ .' .
. ~ .::y 'j~'.-:.

,-_._-- ~.- .. Subsection-'--'-' _, -<--'-';--"''''~::'.'
Word Select Bank Select Select Section Select (,' ,,clio" i

________ ~--~A~----------~-----JA A A ____ ~ r - y- .. Y y - , I

Igl-s--·=t'lsls 41~2-T-~"---ol~il~.j
' .. - . ±. "._.'" - .---~-..: .-_. .

\ ."... -y:A_. _ A ". -n--' .:'" " I !
y" y , ,y" I

_"-.Cach":.~'~~'>~ Cache Line "._ca_ch_e_W~~j f:,',:,
~,., · ... r--!--·-~ .-'~

~he Addrr~.'
'-'''--':r:;---:--- -

Figure 1 04. Mempry Addresses
, t

_ _" '_L-.. ,_

,

.-., ~--r-"""''-'._
~ . . ,

__ l __ ;_,;i

_. ,-" -.....,... --1
I

i,

.,:" Sf.; : I
- -.-~.. _ .. ~ _'-, t

Potential Cache Problems 1_ 1
f:,.. J: ~l .. : I

HTM-xxx-O
December 19, 1994

:. -r· n

, .
Because nO.c.ommunic.ation..ac.CDrs between caches in different CPUs, the
following prOlnem can-Mise:! "TWp of'more CPUs can have data in their
respective caches.irQ~.e..p'hys.ical address in memory, and one of
the CPUs can wrife aafirt~armeiiiory address. The CPU that wrote the
data will update its ca<;;h~.amUb.e ,Qther CPUs will contain old data. This :
problem can be InaIlageaiii'SeVefaI ways: .,._,,_,~....l

i>~) ,UJ,
• There are load instructions that bypass cache. These instructions

cause the cache line to be invalidated on a cache hit.

• LATs can be serup mcretine-areR'S-OfIDemoty tlrat 3.i'elIDfCactre-'"
enabled. ", ,fl~[:V.f,' ,l''::: ".,;:;a·j ,,,i;;, /i

.. '2:Ji:ib.G : qr :~ ~·;~:~t.~·.~0 J "; 'J 2'" ".~~

• If the SCE (scal':lI·1~ • .ffi~p1~l bit"is not set W the exchange
package, it will,pryy~w~ ~¥,se_ofcache for !lwtjob.

"{: ;~ff·];·; ')1 .. ::L - "".1 '.ft: 1~"

Another problem that\~:.qf~Jmis ~pen~ugo through memory with a
stride value of 128; this causes memory to thrash. A stride of 128 will use
1 word of 1 line from-e'lG~:.cj\91!~n~~ge; theJl1wA~!}[you start replacing
lines, you will get 16 ~o~o~~ fr.oD;), meP.lPryto cache but will be using
only 1 word. This proqJ~~~,J~§ avoideCj\Ji>N:re,4e,signing user code.

Scalar Cache CPU

CH Option

, .' .. ~" ; ,- IThere are 16CH options; these options coIitaiillhll of the cache memory
,';,: oj!, ''';OH; ;-~'RAlvls. The even-numberedCHs hold dalWffam memory sections 0, 1,6,

and 7; the odd-numbered·CHs hold data from memory sections 2,3,4,

, !, ,; ~ ,; -:, '1)\): ;fp,~: 3.,.:

On a memory write, eadGiCit wnt6s 4 bits if;;;II titemory sections.

Table 41 shows the bit~~fioP~~~:.i(.'; ','

Table 41. CH Option Bits ;rL.

CHOOO CH002 CH004 CH006 CH008 CH010 CH012 CH014

Read'pata- c_ -0 ;:;:'3 _ v.' •

4-7 8-11 " 'lZ~'15 .- 16- 1'9 20-23 24-27 28-31
Sect '0,,1,6,7 32-35 36-39 40-43 44-47 48-51 52-55 56-59 60-63

Write, 'Data .073, 4-7 8 -11 ·12 7".191"," .16-19 20-23 24-27 28-31
Soot1l0"Lt " 'Cl3 0\1.1 H, CB1 CB2

Jr :L tiB'3' .~; , '" I GBA CB5 CB6 CB7

CH001 CH003 CH005 CH007 CH009 CH011 CH013 CH015

ReaaOata 0::":3
~~-'- ~

4-7 8 -11 12,:-15 16-19 20-23 24-27 28-31
Sect,2,3A, 5 .' 32-35· 36-39 40 - 43'" 44--:-.... -47 48""'- 51 - 52-55 56-59 60-63

Write-Data 32-35 ·36 -39 40-43 " 44~-47' ' 48 '51 - 52-55 56-59 60-63
Sect. 0-7 CB8 CB9 CB10, "~~ 11 ',1;",:

.' ..

Scalar Cache Instructions
. - -::.-.... ~t; -:',",

Refer to Table 42 for ~'list of the scalar cache instructions.

. _. . .- '.- -- ----... -~ ...

, Instruction
....

002501
.. '

90290t~.{. .-1: i
.•... ~ !W1,/fOm,n ';~~f';

.
I" " 'fl;:"i~)~l~

10hKlOpmn

12hf2.0mn

1~JlPif. '
; "..l;,,-Il' ,,,,,·,s,,,,,,;x..-,,,,_,,,,

. ,~" ... ,: .'~ : ..

230

L'

_. Table 42. ,Scalar.Cache Instructions

CAL ;oi:wnmh Description

ESC Enable scalar cache

DSC Q~~~I~¥~J!n'{~i8~te scalar cache :[1" ", '((',

(\j.~I(,AfbBC): " ·l;oaCii A-tfroro':(~h}t,exp) bypassing data cache and invalidating

II '}V . - •. th ~,; ,cache I~ ~ ,:" . ,-•....
.• "'_ .. J."._ i. '. \'.~1.t,.;:.. .~ ... ,; ,l ' .• ·It ... :' v , ..

Ai exp,Ah,BC Load Aifrom ((Ah)+exp) bypassing data cache and invalidating
cache line

Si exp,Ah,BC Lo~q ~jJrom HAh)+exp) bypassing data cache and invalidating
cache line

=~~P'~'8.9 Load Sifrom ((Ah)+exp) bypassing data cache and invalidating
caclle 'fine-' _. ,. - -_.',. .,.

,. ~' ..
" .- ~."-'

1b' ~'. .:;.~~~j' i. ":J.

Cray Research Proprietary
Preliminary Information

HTM-xxx-O
December 19,1994

