
®

System Programmer Reference
(Cray SV1™ Series)

108-0245-003

Cray Proprietary

(c) Cray Inc. All Rights Reserved. Unpublished Proprietary Information. This unpublished work is protected by trade
secret, copyright, and other laws. Except as permitted by contract or express written permission of Cray Inc., no part
of this work or its content may be used, reproduced, or disclosed in any form.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE: The Computer Software is delivered as "Commercial
Computer Software" as defined in DFARS 48 CFR 252.227-7014. All Computer Software and Computer Software
Documentation acquired by or for the U.S. Government is provided with Restricted Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or
DFARS 48 CFR 252.227-7014, as applicable. Technical Data acquired by or for the U.S. Government, if any, is
provided with Limited Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions
described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Autotasking, CF77, Cray, Cray Ada, Cray Channels, Cray Chips, CraySoft, Cray Y-MP, Cray-1, CRInform,
CRI/TurboKiva, HSX, LibSci, MPP Apprentice, SSD, SuperCluster, UNICOS, UNICOS/mk, and X-MP EA are
federally registered trademarks and Because no workstation is an island, CCI, CCMT, CF90, CFT, CFT2, CFT77,
ConCurrent Maintenance Tools, COS, Cray Animation Theater, Cray APP, Cray C90, Cray C90D, Cray CF90,
Cray C++ Compiling System, CrayDoc, Cray EL, CrayLink, Cray J90, Cray J90se, Cray J916, Cray J932, Cray MTA,
Cray MTA-2, Cray MTX, Cray NQS, Cray/REELlibrarian, Cray S-MP, Cray SSD-T90, Cray SV1, Cray SV2,
Cray T90, Cray T94, Cray T916, Cray T932, Cray T3D, Cray T3D MC, Cray T3D MCA, Cray T3D SC, Cray T3E,
CrayTutor, Cray X-MP, Cray XMS, Cray-2, CSIM, CVT, Delivering the power..., DGauss, Docview, EMDS,
GigaRing, HEXAR, IOS, ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools,
OLNET, RQS, SEGLDR, SMARTE, SUPERLINK, System Maintenance and Remote Testing Environment,
Trusted UNICOS, and UNICOS MAX are trademarks of Cray Inc.

All other trademarks are the property of their respective owners.

Direct requests for copies of publications to:

Mail: Cray Inc. Logistics
PO Box 6000
Chippewa Falls, WI 54729-0080
USA

E-mail: spares@cray.com
Web: http://techinfo.cray.com/pubscat/data/pubscat.htm
Select the Order Form button that is located at the bottom of the Web page.
Fax: +1 715 726 4602

Direct comments about this publication to:

Mail: Cray Inc.
Technical Training and Documentation
P.O. Box 6000
Chippewa Falls, WI 54729-0080
USA

E-mail: fiona@cray.com
Fax: +1 715-726-4991

mailto:spares@cray.com
http://techinfo.cray.com/pubscat/data/pubscat.htm
mailto:fiona@cray.com

System Programmer Reference
System Programmer Reference
108-0245-003
Cray SV1 Series
Last Modified: February 2002

Record of Revision . 10

Cray SV1 Series System Overview . 11

Cray SV1e Processor . 12

Cray SV1ex-1 and Cray SV1ex-1A Systems . 12

Mainframe Overview . 13

SIO Overview . 15

GigaRing Overview . 15

VME-based I/O Subsystem Overview . 17

Network Interfaces . 18

Maintenance Platform . 19

Central Memory . 19

Memory Instructions . 20

Logical Organization . 22

Port Utilization . 24

Conflict Resolution . 27

Guaranteeing Memory Access Order . 30

Calculating Absolute Memory Address . 32

Address Range Checking . 33

Error Detection and Correction . 34

Central Memory Performance Summary . 37

VME I/O Section . 39

Y1 Channel Pairs . 40

Error Handling . 46

High Performance Parallel Interface (HIPPI) . 47

GigaRing I/O Section . 52

MPN-1 Functional Overview . 53

IPN-1 Functional Overview . 54
108-0245-003 Cray Proprietary 1

System Programmer Reference
FCN-1 and FCN-2 Functional Overview . 56

HPN Functional Overview . 57

BMN-1 Functional Overview . 58

ESN-1 Functional Overview . 59

FOX Overview . 60

Error Reporting and Handling . 61

Interprocessor Communication . 62

Clusters . 62

Shared Registers . 63

Semaphore Registers . 63

Test and Set Control . 66

Deadlock . 66

Interprocessor Interrupts . 67

Real-time Clock . 68

Exchange Mechanism . 70

Exchange Package . 70

Exchange Sequence . 79

Exchange Package Management . 82

Instruction Fetch Sequence . 83

Instruction Fetch Hardware . 83

Instruction Issue . 87

Instruction Issue Hardware . 87

Reservations and Hold Issue Conditions . 96

Programmable Clock . 97

Interrupt Interval Register . 98

Operation . 98

Status Register . 98

Performance Monitor . 99

Selecting and Reading Performance Events . 102

Testing Performance Counters . 104

Cache Memory . 104

Detailed Operation of Cache Memory . 106
2 Cray Proprietary 108-0245-003

System Programmer Reference
CPU Computation . 109

Operating Registers . 110

Address (A) Registers . 110

Intermediate Scalar (T) Registers . 124

Vector (V) Registers . 125

Vector Instruction Issue Timing . 132

Vector Instruction Issue Conflict Timing . 133

Vector Control Registers . 136

Vector Length Register . 137

Vector Mask Register . 137

User Mode Vector Instruction Timing . 137

Bit Matrix Multiply (BMM) Register . 141

Functional Units . 141

Address Functional Units . 142

Scalar Functional Units . 143

Vector Functional Units . 144

Floating-point Functional Units . 147

Bit-matrix Multiply Functional Unit . 149

Functional Unit Operations . 155

Logical Operations . 156

Integer Arithmetic . 157

24-bit Integer Multiplication . 157

Multiplication of Operands Greater than 24 Bits . 158

Floating-point Arithmetic . 159

Parallel Processing Features . 172

Pipelining and Segmentation . 173

Functional Unit Independence . 174

Multiprocessing and Multitasking . 175

Autotasking Feature . 176

Enabling and Disabling the Maintenance Mode . 176

Using Maintenance Mode . 177

CPU Instructions . 179
108-0245-003 Cray Proprietary 3

System Programmer Reference
Quick-reference Table of CPU Instructions . 180

Notational Conventions . 188

Instruction Formats . 188

1-parcel Instruction Format with Discrete j and k Fields 189

1-parcel Instruction Format with Combined j and k Fields 189

2-parcel Instruction Format with Combined i, j, k, and m Fields 190

3-parcel Instruction Format with Combined m and n Fields 190

Special Register Values . 191

Monitor Mode Instructions . 192

Special CAL Syntax Forms . 192

CPU Instruction Descriptions . 193

Functional Units Instruction Summary . 194

Instruction 000000 . 195

Instructions 0010 through 0013 . 196

Instructions 0014 and 0016j1 . 199

Instructions 0015 through 001551 . 201

Instruction 0020 . 203

Instructions 0021 through 0027 . 205

Instructions 002703 through 002707 . 206

Instructions 0030, 0034, 0036, and 0037 . 207

Instruction 0040 . 209

Instruction 0050 . 210

Instruction 0060 . 211

Instruction 0070 . 212

Instructions 010 through 013 . 213

Instructions 014 through 017 . 215

Instructions 020 through 022 . 217

Instruction 023 . 219

Instructions 024 through 025 . 220

Instruction 026 . 221

Instruction 027 . 222

Instructions 030 through 031 . 223
4 Cray Proprietary 108-0245-003

System Programmer Reference
Instruction 032 . 224

Instruction 033 . 225

Instructions 034 through 037 . 227

Instruction 040 through 041 . 230

Instructions 042 through 043 . 231

Instructions 044 through 051 . 232

Instructions 052 through 055 . 236

Instructions 056 through 057 . 237

Instructions 060 through 061 . 239

Instructions 062 through 063 . 240

Instructions 064 through 067 . 242

Instruction 070ij0 . 243

Instruction 070ij6 . 244

Instruction 071 . 246

Instructions 072 through 073 . 248

Instructions 074 through 075 . 252

Instructions 076 through 077 . 253

Instructions 10h through 13h . 255

Instructions 140 through 147 . 258

Instructions 150 through 151 . 262

Instructions 152 through 153 . 264

Instructions 154 through 157 . 270

Instructions 160 through 167 . 273

Instructions 170 through 173 . 276

Instruction 174 . 278

Instruction 174ij1 through 174ij2 . 280

Instruction 174ij3 . 282

Instruction 1740j4 . 283

Instruction 174ij6 . 285

Instruction 175 . 288

Instruction 176 through 177 . 292
108-0245-003 Cray Proprietary 5

System Programmer Reference
Appendix A - Block Transfer Engine and Translate Look-Aside Buffer 298

BTE . 298

TLB . 300

JTAG Interface . 302

Power up/Reset Procedures . 302

Memory Clear Process . 302
6 Cray Proprietary 108-0245-003

System Programmer Reference
Figures

Figure 1. Cray SV1 Mainframe Block Diagram . 14

Figure 2. Cray SV1 Four-node GigaRing Channel Configuration 16

Figure 3. Cray SV1 I/O Node . 16

Figure 4. IOS Block Diagram . 17

Figure 5. SV1 CPU Central Memory Architecture 23

Figure 6. Exchange Package . 26

Figure 7. I/O IOTCB Format . 42

Figure 8. Console IOTCB Format . 43

Figure 9. Relation between SM Registers and S Register Bits 64

Figure 10. Instruction Fetch Block Diagram . 84

Figure 11. IBAR . 84

Figure 12. P Register . 85

Figure 13. P Register and IBAR Address Formats . 85

Figure 14. Instruction Issue Block Diagram – General Flow 88

Figure 15. Instruction Issue Block Diagram – Parcels Held 90

Figure 16. Instruction Flow through Issue Registers (CPn + 1) 91

Figure 17. Instruction Flow through Issue Registers (CPn + 2) 91

Figure 18. 1-parcel Instruction Holding 1 CP for Conflict (CPn + 3) 92

Figure 19. Instruction Flow through Issue Registers (CPn + 4) 92

Figure 20. 2-parcel Instruction Holding 1 CP for Conflict (CPn + 5) 93

Figure 21. Instruction Flow through Issue Registers (CPn + 6) 93

Figure 22. Instruction Flow through Issue Registers (CPn + 7) 94

Figure 23. 3-parcel Instruction Holding 1 CP for Conflict (CPn + 8) 94

Figure 24. Instruction Flow through Issue Registers (CPn + 9) 95

Figure 25. Contents of an S Register During Execution of 073i11
Instruction . 103

Figure 26. 1-word Line, 4-way Associative 4096-word Cache per
Memory Section . 108

Figure 27. A Register Block Diagram . 111

Figure 28. Scalar Register Block Diagram . 117

Figure 29. V Register Block Diagram . 126
108-0245-003 Cray Proprietary 7

System Programmer Reference
Figure 30. Vector Chaining Example . 134

Figure 31. Vector Tailgating Example . 135

Figure 32. Row Matrix for N = 20 . 153

Figure 33. Square Matrix for N = 20 . 154

Figure 34. Integer Data Formats . 157

Figure 35. 24-bit Integer Multiply Performed in a Floating-point
Multiply Functional Unit . 158

Figure 36. 32-bit Integer Multiply Performed in a Floating-point
Multiply Functional Unit . 159

Figure 37. Floating-point Data Format . 160

Figure 38. Internal Representation of a Floating-point Number 160

Figure 39. Biased and Unbiased Exponent Ranges . 161

Figure 40. Floating-point Add and Floating-point Multiply Range Errors . . 163

Figure 41. Exponent Matrix for a Floating-point Multiply Functional Unit . 164

Figure 42. Floating-point Reciprocal Approximation Range Errors 165

Figure 43. Floating-point Multiply Partial-product Sums Pyramid 168

Figure 44. Newton’s Method of Approximation . 170

Figure 45. Segmentation and Pipelining Example . 174

Figure 46. Instruction 001541 Operation . 179

Figure 47. General Instruction Format . 188

Figure 48. 1-parcel Instruction Format with Combined j and k Fields 189

Figure 49. 1-parcel Instructions with j and k as a Combined 6-bit Field 190

Figure 50. 2-parcel Instruction Format with Combined i, j, k, and m Fields . 190

Figure 51. 3-parcel Instruction Format with Combined m and n Fields 191

Figure 52. Vector Left Double Shift, First Element, VL Greater than 1 266

Figure 53. Vector Left Double Shift, Second Element, VL Greater than 2 . . 267

Figure 54. Vector Left Double Shift, Last Element . 267

Figure 55. Vector Right Double Shift, First Element 268

Figure 56. Vector Right Double Shift, Second Element, VL Greater than 1 . 269

Figure 57. Vector Right Double Shift, Last Operation 269

Figure 58. Compressed Index Example . 291

Figure 59. Gather Instruction Example . 295
8 Cray Proprietary 108-0245-003

System Programmer Reference
Figure 60. Scatter Instruction Example . 296

Figure 61. TLB Address Fields . 301

Tables

Table 1. CPU Memory Instructions . 20

Table 2. Port Specifications . 24

Table 3. CA ASIC Register Parity Error . 25

Table 4. Memory Priority Scheme . 28

Table 5. SV1 Coding Requirements for Memory Operations 31

Table 6. Check-bit Generation . 36

Table 7. Timings for Memory Operations . 38

Table 8. Processor Modules and Associated Y1 Channel Numbers 40

Table 9. Y1 Channel Instructions . 41

Table 10. HIPPI or Y1 Channel Configurations . 50

Table 11. Error Reporting MMRs . 62

Table 12. Shared Register Instructions . 63

Table 13. SM Register Instructions . 64

Table 14. Interprocessor Interrupt Instructions . 67

Table 15. RTC Instructions . 69

Table 16. Exchange Package Read Mode and Port Translations 73

Table 17. Instruction Issue Sequence . 95

Table 18. Programmable Clock Instructions . 97

Table 19. Si Bit Positions and Bit Descriptions . 99

Table 20. Performance Counter Group Descriptions 101

Table 21. Performance Monitor User Instructions . 102

Table 22. Cray SV1 Series Cache Operations . 106

Table 23. Special A0 Register Values . 113

Table 24. A Register Instructions . 114

Table 25. B Register Instructions . 116

Table 26. Special S0 Register Values . 119

Table 27. S Register Instructions . 120

Table 28. T Register Instructions . 125
108-0245-003 Cray Proprietary 9

Record of Revision System Programmer Reference
Table 29. V Register Instructions . 129

Table 30. Vector Mask Instructions . 136

Table 31. Vector Instruction Issue and Execution . 138

Table 32. Bit-matrix multiply instructions . 149

Table 33. 0051j1 Instruction Operation . 178

Table 34. Quick-reference Table of CPU Instructions 180

Table 35. Special Register Values . 192

Record of Revision

October 1999

Original printing.

June 2001

Added 5 CPU instructions and additional information for the Cray SV1ex
series machines.

February 2002

Clarified the description of SV1-1, SV1-1A, SV1ex-1, and SV1ex-1A
memory, corrected block diagrams, clarified the bit matrix multiply (BMM)
register, added Appendix A containing a description of the block transfer
engine (BLT) and translate look-aside buffer (TLB), and made several
corrections to the text.
10 Cray Proprietary 108-0245-003

System Programmer Reference Cray SV1 Series System Overview
Cray SV1 Series System Overview

Cray SV1 series systems (hereinafter referred to as SV1) are available in four
models: the Cray SV1-1A and SV1ex-1A, and the Cray SV1-1 and SV1ex-1.
Each model includes a mainframe cabinet and a minimum of one scalable
input/output (SIO) peripheral cabinet (PC-10). The mainframe cabinet houses
the processor and memory modules along with the system clock. The processor
modules contain the central processing unit (CPU) components, and the
memory modules contain the memory components; both reside in a backplane
or midplane card cage.

The SV1-1A or SV1ex-1A mainframe cabinet contains four memory modules
and from two to four processor modules. The SV1-1 or SV1ex-1 mainframe
cabinet includes eight memory modules and from two to eight processor
modules. A memory module contains dynamic random-access memory
(DRAM) chips on the SV1-1A or SV1-1 or static dynamic random-access
memory (SDRAM) chips on the SV1ex-1A or SV1ex-1. Each processor
module can support one GigaRing channel and up to four CPUs. Refer to the
Cray SV1 series System Overview, publication number 108-0196, for more
information on system configurations, including memory options and sizes.

Note: SV1 series publications are accessible on the techinfo web site:
http://techinfo.cray.com/

The SV1 processor and memory modules use application-specific integrated
circuit (ASIC) technology. Each module is composed of an array of ASICs,
which are based on very large-scale integration (VLSI) complementary metal
oxide semiconductor (CMOS) technology.

The SV1 is a redesign of the Cray J90 series systems with improved processor
performance and enhanced cache capability at the processor level with
system-level scalability up to 1,024 processors. The SV1 processor module
includes a faster processor clock, improved vector performance with a
dual-pipe vector processor, and a larger 256-Kbyte cache per processor. This
cache is common for all scalar and vector data and all instruction fetch request
data per processor. Each processor module includes four CPUs, each with its
own cache. The processor module CPUs share a common interface to memory.

Each processor module includes an optional I/O connection. The SIO
architecture provides scalable high-performance and high-resilience I/O
support for SV1 systems. SIO data and control information transmits over
GigaRing channels. The flexibility of the GigaRing channel architecture
enables multiple system configurations with system functionality and
performance that are appropriate to the needs of the customer.
108-0245-003 Cray Proprietary 11

http://techinfo.cray.com/
http://techinfo.cray.com/

Cray SV1 Series System Overview System Programmer Reference
Cray J90 series systems can be upgraded to Cray SV1 systems and Cray SV1
systems can be upgraded to Cray SV1ex systems.

Cray SV1e Processor

The Cray SV1e processor is an upgrade to SV1 processor modules.

The new processor design includes a newer and faster ASIC that combines the
functions of the PV and CA ASICs that are used on the Cray SV1-1 and
Cray SV1-1A in a single PVC ASIC. By combining functions in one ASIC,
CPU-to-cache bandwidth is increased and CPU-to-cache latency is decreased.
The processor upgrade also includes a faster (500-MHz) system clock.

Cray SV1ex-1 and Cray SV1ex-1A Systems

The Cray SV1ex-1 and SV1ex-1A systems include the processor module
upgrade described above as well as an upgrade to memory modules.

The Cray SV1ex-1 and Cray SV1ex-1A systems utilize synchronous dynamic
random-access memory (SDRAM) chips. The SDRAM chips have a 37.5-ns
access time. The Cray SV1ex-1 and Cray SV1ex-1A memory also includes
onboard secondary storage device (SSD) memory. SSD memory allows
high-speed transfer of data between main memory and SSD memory.

Note: For more information on SV1 and SV1ex memory, refer to the SV1
Series Processor and Memory Components manual.
12 Cray Proprietary 108-0245-003

System Programmer Reference Mainframe Overview
Mainframe Overview

The SV1 mainframe contains processor modules, an interprocessor
communication section, a real-time clock, and central memory. Each CPU has
a computation section that consists of operating registers, functional units, and
a control section. The control section determines instruction issue and
coordinates the three types of processing (vector, scalar, and address). The I/O
section, interprocessor communication section, real-time clock, and central
memory are shared by the CPUs and are called shared resources.

Figure 1 is a block diagram of the SV1 series mainframe. It shows the internal
organization of the CPU, with paths to central memory and I/O, and registers
that are distributed among all CPUs within a cluster.

Central memory, which holds program code and data, is shared among all
CPUs in the mainframe. It is available in various sizes and configurations. The
I/O section provides high-speed data transfers to and from the I/O subsystem
(IOS). The interprocessor communication section enables each CPU to
synchronize operation and transfer data to and from other CPUs.

The CPU architecture, with the cache, enables efficient computation and
memory access for both vector and scalar operations. Separate registers and
functional units, with the exception of the floating-point units, exist for vector
and scalar operations. All scalar floating-point operations execute in the vector
floating-point units without delay (because the unit is busy). Vector processing
uses a single instruction to perform a repeated operation on sets of ordered
data. With the dual-pipe vector design, two operand results are produced per
cycle per instruction. Scalar processing uses one instruction to perform one
operation and produce one result.

Sequential vector instructions cause sequential portions of each operation to
occur simultaneously. That, along with the dual-pipe design, generally causes
the computational rate for vector processing to greatly exceed that of scalar
processing. Scalar operations complement vector capability by providing
solutions to problems that are not readily adaptable to vector techniques.
Because the start-up time for vector operations is short, vector processing is
more efficient than scalar processing for vectors that contain as few as two
elements.

Multiple-processor systems enable multiprocessing and multitasking
techniques. Multiprocessing allows several programs to run concurrently on
multiple CPUs within the mainframe. Multitasking allows two or more parts of
a program to run in parallel in separate CPUs and to share a common memory
space.
108-0245-003 Cray Proprietary 13

Mainframe Overview System Programmer Reference
Figure 1. Cray SV1 Mainframe Block Diagram

V ector C ontrolV ector R egis ters

V ector Mas k

Logical 2 Logical 2

P op/P arity/LZ P op/P arity/LZ

S hift S hift

Logical

2

3

Logical

Add Add

P ipe 0

V ector
F unctional

Units

S hared V ector/S calar
F unctional Units

S calar
F unctional Units

Multiply

Add

Addres s
F unctional

Units

P ipe 1

P ipe 0 P ipe 1

I/O

T 77

T 00

B 77

B 00

S tatus

R eal-time C lock

P rog C lock Int

S calar R egis ters

E xchange
C ontrol

V ector
Length

V ector
C ontrolAddres s R egis ters

C entral
Memory

256-
K byte
C ache

S j

S i

S i

S j

V j

V k

V i

S j

S k

S i

S k

S j

S i

Aj

Ak

Ai

V j
V k
V i
S i
S j

S k

S j

S j

S i

V i

Ai

Ak

Ak

Ai

P

Ak
Ak

Ai

+1,+ 2, +3

20 + N

20
20

20 + N

G igaR ing/Y 1
C hannel
C ontrol

E xecution

Dis patch V ector
Ins truction

V ector Is s ue R egis ters

S hared R es is ters

C A

NIP C IP

LIP

LIP 1

C L
Ins truction

B uffers

B jk

XA

T jk

P ort D

(A0)

((Ah)+(nm))

((Ah)+(nm))

(A0)

Ak

1

4

V 7

V 6

V 5

V 4

V 3

V 2

V 1

V 0

S 7

S 6

S 5
S 4

S 3

S 2

S 1

S 0

A7

A6

A5
A4

A3

A2

A1

A0

S B 7
S B 6

S B 5

S B 4
S B 3

S B 2
S B 1

S B 0

S M37

S i S i S i S i S i S i S i S iAi Ai Ai Ai

S M0

S T 7
S T 6

S T 5

S T 4
S T 3

S T 2
S T 1

S T 0

00

77

((A0)+(Ak)),((A0)+(V k))

((A0)+(Ak)),((A0)+(V k))

((A0)+(Ak)),((A0)+(V k))

B it Matrix Multiply

P op/P arity/LZ

S hift

Logical

Add

F .P . R ec.Appr F .P . R ec.Appr

F .P . Multiply F .P . Multiply

F .P . Add F .P . Add

IB 7

IB 6

IB 5

IB 4

IB 3

IB 2

IB 1

IB 0
00

37

1 1

1

1

1

1

1 1 1 1

4

2

3

C ontrol and/or data from other proces s ors .

T he s econd vector logical functional unit s hares
hardware with the floating-point multiply functional
unit.

T he vector pop/parity/leading zero functional unit
s hares hardware with the floating-point reciprocal
approximation functional unit.

T he bit matrix multiply (B MM) unit s hares hardware
with the floating-point add functional unit. T he B MM
regis ter is contained in the bit matrix multiply unit.

Notes

V IR
14 Cray Proprietary 108-0245-003

System Programmer Reference SIO Overview
SIO Overview

The SV1 system supports the scalable I/O subsystem. SIO is a single-cabinet
or multicabinet subsystem that provides high-performance, high-resilience I/O
support; it is a collection of I/O nodes in which each node is an independent
unit that connects to a GigaRing channel.

GigaRing Overview

The GigaRing channel allows for high-speed communication among the
current mainframes and peripherals, as well as direct interconnections between
all Cray products.

The GigaRing channel incorporates a pair of unidirectional, counter-rotating
rings to support multiple nodes. Each of the two rings has a maximum transfer
rate of 500 Mbytes/s, which provides an effective total bandwidth of 800
Mbytes/s. The redundancy (two rings) and counter-rotation enable the
GigaRing channel to operate during a link or node failure at a reduced data
rate; the rings can be folded to map out faulty nodes or channel connections.
The counter-rotating rings also enable shortest-path communication.

Each Cray SV1 processor module can be configured with one GigaRing
channel adapter. Each GigaRing adapter is a single node with a full duplex
bandwidth of 400 Mbytes/s (200 Mbytes/s input and 200 Mbytes/s Output).
The I/O bandwidth requirements of the system determine the quantity of
channel adapters needed in the system. Typically there will be processor
modules in the system that are configured without channel adapters.

A GigaRing channel consists of two or more GigaRing node chips that are
connected and that use GigaRing protocol. Based on the Scalable Coherent
Interface (SCI) standards, GigaRing protocol supports direct memory access,
peer-to-peer messaging, and remote memory data transfers. I/O data and
control information messages pass among mainframes and nodes via the
GigaRing channel. Figure 2 shows two possible GigaRing channel
configurations.
108-0245-003 Cray Proprietary 15

SIO Overview System Programmer Reference
Figure 2. Cray SV1 Four-node GigaRing Channel Configuration

The GigaRing node chip implements the logical layer of the GigaRing channel
and supports the I/O protocol. A GigaRing node chip contains a client port
interface, incoming and outgoing positive links, and incoming and outgoing
negative links. Figure 3 shows an SV1 I/O node. The node chips use a
packet-based protocol and balance the communication loads of the devices
automatically.

Figure 3. Cray SV1 I/O Node

Note: Each processor module contains a new channel adapter board that
provides one GigaRing node chip. This new channel adapter (client
interface) and the GigaRing interface board provide the interface to
the GigaRing node.

Client

GigaRing
Interface

Client

Client

GigaRing
Interface

Client
GigaRing
Interface

GigaRing
Interface

Client Port

CPU Board

GigaRing
Interface
Board

Cray SV1 Processor Module

GigaRing Channel
+

–

Client
Interface
Board
16 Cray Proprietary 108-0245-003

System Programmer Reference VME-based I/O Subsystem Overview
Communication between nodes occurs when the source node sends packets of
information to a target node. When a client transmits a packet, the packet is
placed in the send buffer of its local interface.This client and its local interface
become the source node. The source node then transmits the packet around the
ring until the packet reaches its target node. Each transfer is protected by a
cyclic redundancy checksum (CRC).

VME-based I/O Subsystem Overview

SV1 systems may include an IOS VME 64-bit bus architecture for data
transfers from central memory to peripherals and networks. The VME 64-bit
bus is a high-performance industry standard backplane that can connect
vendor-compatible I/O controllers to the IOS. Refer to Figure 4 for a block
diagram of the IOS and examples of the peripheral devices that may be
included in an SV1 system.

Figure 4. IOS Block Diagram

Cray SV1 Series
Mainframe

VME Card Cage

Master IOP
(SPARC based

Processor)

Disk
Controller

Disk
Controller

SCSI
Controller

Network
Controller(s)

Tape
Controller

Tape
Controller

SCSI Tape Drives,
SCSI Disk Drives,
SCSI Tape Storage
Subsystems

Ethernet, FDDI,
ATM

Y1 Channel

Tape Drive Option

Tape Drive Option

I/O Buffer
Board

Disk Drive Option

Disk Drive Option
108-0245-003 Cray Proprietary 17

Network Interfaces System Programmer Reference
Data travels from a peripheral device across a data channel to the device
controller, and then from the device controller to the input/output buffer board
(IOBB) across the VMEbus. From the I/O buffer board, data travels to
mainframe memory through the Y1 50-Mbyte/s data channel. There are four
Y1 channels for each processor module.

The IOS input/output processor (IOP) is the CPU for the IOS. The IOP
performs I/O functions for the I/O controllers, processes external interrupts and
CPU I/O requests, and executes peripheral driver routines.

The VME controller boards enable the IOS to support the following operations
and devices:

• System console operation
• Disk subsystems
• Tape subsystem
• Network subsystem

An SV1 system can contain up to 16 IOSs, and each processor module can
handle up to 4 IOSs each. Each of the four possible peripheral cabinets may
contain from 1 to 4 IOSs.

Each IOS can support either two or four I/O controllers, plus two required
boards: the IOP and IOBB. The number of controllers that are supported
depends on the type of VME backplane.

Note: A channel adapter board is connected to the processor module to
provide for the IOS interface. A different channel adapter board is
required for the GigaRing channel.

Network Interfaces

An SV1 series system is designed to communicate easily with front-end
computer systems and computer networks and can function as a stand-alone
system or can be networked into an existing computing environment. The
system can be connected to a multiple-system network with an Ethernet
connection or a fiber-distributed data interface (FDDI) local area network
using Transmission Control Protocol/Internet Protocol (TCP/IP). SV1 systems
also support asynchronous transfer mode (ATM) protocol UNICOS 10.0.0.4
(SWS-ION 4.0).
18 Cray Proprietary 108-0245-003

System Programmer Reference Maintenance Platform
Maintenance Platform

The SV1 systems maintenance platform includes a Cisco router. The system
console is a Sun Microsystems SPARCstation 5 Workstation or an
Ultra 5 Workstation.

Central Memory

The Cray SV1-1 and Cray SV1-1A machines include central memory that
consists of solid-state, dynamic random-access memory (DRAM) that is
shared by all the CPUs and the I/O section in a mainframe. Each memory word
consists of 72 bits: 64 data bits and 8 error-correction bits. These 8 bits perform
single-error correction/double-error detection (SECDED). DRAM chips
provide storage for data and correction bits. The DRAM chips have a 50-ns
access time. In order to improve memory access speed, central memory has
multiple banks that can be active simultaneously. Each central memory bank
can be accessed once every 14 system clock periods (140 ns).

The Cray SV1ex-1 and Cray SV1ex-1A systems utilize synchronous dynamic
random-access memory (SDRAM) chips. The SDRAM chips have a 37.5-ns
access time. Cray SV1ex memory also includes on-board SSD memory, which
enables high-speed transfer of data between main memory and SSD memory.

Cray SV1 central memory consists of 8 sections. Each Cray SV1-1 memory
section contains 8 subsections, and each Cray SV1-1A memory section
contains 4 subsections. Cray SV1ex-1A and Cray SV1ex-1 memory contain 8
sections with 16 subsections per section.

Note: For more information on SV1 and SV1ex memory, refer to the
Processor and Memory Components manual, publication number
108-0197.

In each SV1 CPU, the operating registers, instruction buffers, and exchange
package have access to central memory through two memory ports, port A and
port B. At the CPU interface these two ports are expanded to four physical
request ports with the CPU cache for up to two write requests and two read
requests per cycle. The CPU generates all fetch requests instead of using port
D for these requests. All I/O operations with memory use the separate port D.
108-0245-003 Cray Proprietary 19

Central Memory System Programmer Reference
Memory Instructions

Table 1 shows the CPU memory instructions that transfer data between CPU
registers and central memory or cache. The contents of the database address
(DBA) register are added to instruction-generated memory addresses to form
absolute memory addresses.

Note: Instructions 002703 through 002707 are for the SV1ex series
machines only.

Table 1. CPU Memory Instructions

Machine
Instruction

CAL
Syntax Description

Types of
Memory

References

10hi00mn Ai exp,Ah Load Ai from address ((Ah) + exp + (DBA)) exp = nm Scalar

11hi00mn exp,Ah Ai Store (Ai) to address ((Ah) + exp + (DBA)) exp = nm

12hi00mn Si exp,Ah Load Si from address ((Ah) + exp + (DBA)) exp = nm

13hi00mn exp,Ah Si Store (Si) to address ((Ah) + exp + (DBA)) exp = nm

034ijk Bjk,Ai, ,A0 Load (Ai) words from Bjk to address (A0 + (DBA)) to Bjk Block

035ijk ,A0 Bjk,Ai Store (Ai) words to (A0 + (DBA)) from Bjk

036ijk Tjk,Ai ,A0 Load (Ai) words from address (A0 + (DBA)) to Tjk

037ijk ,A0 Tjk,Ai Store (Ai) words from Tjk to address ((A0 + (DBA))

176i0k Vi ,A0,Ak Load (VL) words from ((A0 + (DBA)) incremented by (Ak) to
Vi elements

Stride

1770jk ,A0,Ak Vj Store (VL) words from (Vj elements) to address (A0 + (DBA))
incremented by (Ak)

176i1k Vi ,A0,Vk Load (VL) words from ((A0) + (DBA) + (Vk)) to Vi elements Gather

1771jk ,A0,Vk, Vj Store (VL) words from Vj elements to address ((A0) +
(Vk elements) + (DBA))

Scatter

002300 ERI Enable interrupt on operand range error None

002400 DRI Disable interrupt on operand range error

002500 DBM Disable bidirectional memory transfers

002600 EBM Enable bidirectional memory transfers

002700 CMR Complete memory references

002703 ETSI Enable test and set invalidate

002704 CPA Hold if port A or B busy

002705 CPR Hold if port A or B busy

002706 CPW Hold ports if block store or scalar load/store busy

002707 DTSI Disable test and set invalidate
20 Cray Proprietary 108-0245-003

System Programmer Reference Central Memory
Instructions 10hi00 through 13hi00 perform scalar references. The 11hi00 and
13hi00 instructions transfer 1 word from a specified register to cache and to
memory. The 10hi00 and 12hi00mn instructions in the SV1 system transfer 8
words from memory to cache, and 1 word is then transferred into the
CPU-specified resister. Instructions 034ijk through 037ijk perform block
transfers. Each instruction transfers a block of 1 or more words to or from
consecutive memory locations. Instructions 176i0k and 1770jk perform stride
references. From 1 to 64 words are transferred to or from memory locations
that are separated by a constant increment (stride). Instructions 176i1k and
1771jk perform gather and scatter references. These instructions transfer 1 to
64 words to or from randomly programmable locations in memory.

Instructions 002300 through 00270k affect memory operation. Instructions
002300 and 002400 set and clear the interrupt-on-operand range (IOR) error
bit in the exchange package (Figure 6) mode register. Instructions 002500 and
002600 clear and set the bidirectional memory (BDM) bit in the mode register.
Instruction 002700 performs no operation, but it holds issue until all previously
issued instructions complete all memory references. Refer to “Port Utilization”
for an explanation of the BDM bit and the 002700 instruction.

Instructions 002703 through 002707 are added for the SV1s with enhanced
processors and the SV1ex machine. Instruction 002703 sets the ECI (Enable
Cache Invalidate) bit in the cache-enable field (bit 34 of word 7) of the
exchange package, which enables any subsequent test-and-set instructions to
invalidate cache. Instructions 002704 and 002705 perform a CPA (complete
ports all). Instruction 002706 performs a CPW (complete port writes).
Instruction 002707 clears bit 2 in the cache-enable field (bit 34 of word 7),
which prevents any subsequent test-and-set instructions from invalidating
cache.

In addition to direct memory references that are generated by CPU machine
instructions, there are three ways that memory references are generated
indirectly. First, a no-coincidence condition in a CPU causes an instruction
fetch sequence to begin, which causes 32 consecutive words to be read from
central memory into an instruction buffer. Second, an exchange sequence in a
CPU causes 16 words to be read from central memory and 16 words to be
written into central memory. The third indirect memory reference method
occurs when an I/O transfer to or from an external device causes a block of
words to be read from or written into central memory. Refer to the “VME I/O
Section” or “GigaRing I/O Section” for details on I/O transfers.
108-0245-003 Cray Proprietary 21

Central Memory System Programmer Reference
Logical Organization

Figure 5 shows a CPU’s memory ports and paths to cache and to the
mainframe central memory. Refer to this figure while you read the following
paragraphs. The cache is located between the CPU and the interface to
memory. All CPU requests to memory, including fetch requests, pass through
the CPU cache. Ports A and B are functional, but these ports are internal to the
CPU. Four paths, independent of the ports, are used for requests to cache and
from the cache to the memory interface.

In an SV1-1 series system, central memory is divided into 8 sections; each
contains 8 subsections. Each subsection contains 16 pseudobanks. Memory
contains 1,02410 banks. In an SV1-1A series system, central memory is
divided into 8 sections and each section contains 4 subsections. Each
subsection contains 16 pseudobanks. Each central memory bank can be
accessed once every 14 CPs.

In an SV1ex-1 series system, central memory is divided into 8 sections; each
section contains 16 subsections. In an SV1ex-1A series system, central
memory is divided into 8 sections; each section contains 8 subsections. Each
subsection contains 8 memory banks.

Note: For more information on SV1 and SV1ex memory, refer to the SV1
Series Processor and Memory Components manual.

Each memory section processes the requests from all processor modules in the
system. Each memory section buffers the requests as required by bank busy
signals and requests activity from all CPUs in the system. A memory section
guarantees order for the request from a single CPU but not between CPUs.
22 Cray Proprietary 108-0245-003

System Programmer Reference Central Memory
Figure 5. SV1 CPU Central Memory Architecture

A/S/B/T
CPU

Registers

Instruction
Buffers

Port
A

Port
B

CPU 0
Processor Module 0

CPU 1

To/From

Section
0

Section
1

Section
2

Section
3

Section
4

Section
5

Section
6

Section
7

Section

Section
0

I/O
Control

Port
D

I/O
Section

Processor Module 7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

Central MemoryMemory Path
Selection

Vector
Registers

Request
and
Data

Queues

CPU 3

CPU 2

256
Kbyte
Cache

CPU 0 Cache

Request x4

Write Data x2

Read Data x4

CPU 1
CPU 2
CPU 3

I/O Control

CPU 1
Cache

CPU 2
Cache

CPU 3
Cache

Note:
The Section 0 CPU and I/O connections
shown go to all sections on the board.

Each memory section
has PB0 through PB7
connections.

Section
1

Section
2

Section
3

Section
4

Section
5

Section
6

Section
7

x2
x4

x2
Request

x2
x4
108-0245-003 Cray Proprietary 23

Central Memory System Programmer Reference
Port Utilization

Each CPU has two ports. Ports A and B are both read and write ports that have
only one write operation active at a time (refer to Table 2). This enables a read
on port A and a write on port B or the opposite (a write on port A and a read on
port B) if the BDM (bidirectional memory) mode bit is set in the exchange
package. Both Ports A and B can generate two requests per clock period. Also,
both ports can also be active with a read operation

Although the ports are listed as A, B, and D, only port D is an actual physical
port. Ports A and B are used as identification codes because they do not
physically exist external to the PV ASIC (SV1 series) or PVC ASIC
(SV1ex series).

Each processor module can generate a maximum of 17 read references (4 from
each processor plus 1 from I/O) or a maximum of 9 write references (2 from
each processor plus 1 from I/O) per clock period. These references must share
8 section paths to memory across the backplane. In other words, if a processor
module generates 17 read references, a maximum of 8 references can be issued
at a time (one per section). Simultaneous and overlapping memory references
from different processor modules are permitted within a section on a memory
module.

Table 2. Port Specifications

Port
Type of

Reference Port Usage

A Read or Write
Memory

A registers (10h, 11h instructions)
S registers (12h, 13h instructions)
B registers (034, 035 instructions)
T registers (037 write instruction
V registers (176, 177 instructions)
Exchange (Read and Write)

B Read or Write
Memory

B registers (035 write instruction)
T registers (036, 037 instructions)
V registers (176, 177 instructions)

D Read or Write
Memory

I/O Write Memory and/or
I/O Read Memory

Read Memory Fetch (really portless in the SV1)
24 Cray Proprietary 108-0245-003

System Programmer Reference Central Memory
The exchange sequence uses port A only. Before an exchange can occur, all
CPU and memory activity for that CPU must go inactive. The exchange
package contains 16 words. The SV1 sends all new exchange package read
requests to memory on port A followed by the 16 write requests for the old
exchange package, also on port A. Fetch requests are sent to memory after the
appropriate new exchange package data is available in the CPU. All SV1 CPU
requests to memory must pass through that CPU’s cache.

Refer to Figure 6 and to “Exchange Package” on page 70 for an illustration and
description of the SV1 exchange package. Figure 6 also includes information
on the SV1 read mode error reporting and processor type. Refer to Table 3 for
cache register (CRPE) parity error CA ASIC identifiers.

Memory error reporting occurs in the uppermost byte of exchange package
words 0 through 4 after an uncorrectable or correctable error interrupt. A cache
register parity error reports a syndrome code of all zeroes. The upper 2 bits of
Word 7 define the processor type. The UNICOS operating system compensates
for the difference among the Cray J90 and SV1 series processor modules.
Some library routines have been altered to accommodate the difference in
processor performance.

A fetch operation reads 32 words from memory and loads the data into one of
eight instruction buffers. The fetch operation must complete as soon as
possible to ensure that instructions continue to issue. The SV1 processor
generates all 32 requests to cache and sends the requests through to memory.
Read data is returned to the instruction buffer in mixed order. Cache supplies
the fetch operands when they are available in cache or automatically requests
them from memory if not in cache. Fetch requests are not assigned to any
specific port.

Table 3. CA ASIC Register Parity Error

Reported Section Number
Error Address Bits (2:0)

CPU
Number CA ASIC

0, 2, 5, or 7 0 CA 0

1, 3, 4, or 6 0 CA 1

0, 2, 5, or 7 1 CA 2

1, 3, 4, or 6 1 CA 3

0, 2, 5, or 7 2 CA 4

1, 3, 4, or 6 2 CA 5

0, 2, 5, or 7 3 CA 6

1, 3, 4, or 6 3 CA 7
108-0245-003 Cray Proprietary 25

Central Memory System Programmer Reference
Figure 6. Exchange Package

Hardware

numbering

Software

numbering

Bits 63

CLNVLXA

56 55

X X X 4 3 2 1 0

7 6 5 4 3 2 1 0 31 24 20 16 12

7 6 5 4 3 2 1 0 31

X X X X X X 9 8 31

X X X X X X X X 11 4 6

4 3 2 1 0 -1 -2

48 47 41 37 32 31 0

0 X X X 5 4 3 2 1 0

10 X X

10 X X

10 X X

10 X X

21 20 19 18 17 16 12 8

PN Program Address Register

Instruction Base AddressSyndrome

Instruction Limit AddressMemory Error Address

Data Base Address

Data Limit Address

Word 0

A0

Word 1

A1

Word 2

A2

Word 3

A3

Word 4

A4

Word 5

A5

Error
Type
U C

 Port

A B D

 Read
 Mode
 1 0 X 31

Status Flags Modes

0 0 X

V

N W

U S X X X X X X X

Word 6

A6

Word 7

A7

Proc
Type

 I D P M F O P M I E N

 C L C C P R R E O E E

 P I U E E E I X X

E

S B F B I I I I S I M

V M P D O F U C E M M

L L S M R P M M X I M

S0
S1
S2
S3
S4
S5
S6
S7

Write Only

0 63

 Bit Bit Port D Operation

 1 0 Port A Port B Channel with Error

 Bit Bit

 31 30 Type

 0 0 Cray J90

 0 1 Cray J90se

 1 0 Cray SV1

 1 1 Cray SV1e

 0 0 1 0 0 Exchange

 0 0 0 1 0 Fetch

 0 1 1 0 0 B

 0 1 0 1 0 T

 1 0 0 0 0 Vector

 1 1 1 0 0 A or S

 0 0 0 0 1 Channel n+1

 0 1 0 0 1 Channel n+3

 1 0 0 0 1 Channel n+5

 1 1 0 0 1 Channel n+7

n = Processor board number X 10 + 20

Processor Type

Cray SV1 Read Mode Error Reporting

X X X X X X X X X X XX X X X X X X X X X X

D

V

C

H

D

F

C

H

D

B

C

H

D

S

C

H

E

C

I

E

C

F

E

C

D

26 Cray Proprietary 108-0245-003

System Programmer Reference Central Memory
I/O is controlled by the channel interface (CI) ASIC. When I/O requests on
port D arrive at the memory interface ASICs on the processor module, they
have the lowest priority when they conflict with the other processor ports for
the same section of memory. A lockout counter keeps track of how often port
D is denied access (per section). When a limit is reached, port D receives the
highest priority for one cycle. A configuration file controls the lockout count
value. This lockout count is set at the initial start-up of the system. A separate
lockout counter exists for each section of memory.

Conflict Resolution

A memory conflict occurs whenever a memory port tries to access a part of
memory that is in use, or whenever two or more ports try to access the same
part of memory at the same time. Intra-CPU conflicts involve ports in the same
CPU. Inter-CPU conflicts involve ports in different CPUs. The SV1 CPU
intra-CPU conflicts cannot occur external to the CPU because no request
leaving the CPU is associated with a port. Inter-CPU conflicts involve requests
from different CPUs on the same processor module. Conflict resolution logic
uses a predefined priority scheme to sequence the conflicting memory
references and to maximize overall machine throughput.

There are four types of memory conflicts: section, bank busy, pseudobank
busy, and subsection busy. The following paragraphs explain each type of
conflict and how the conflict is resolved.

Each processor module contains four CPUs and an I/O channel. A section
conflict can be caused by either an intra-CPU conflict or an inter-CPU conflict.
An inter-CPU section conflict occurs when two or more CPUs or two or more
I/O processors try to access the same section of memory. To resolve the
inter-CPU section conflict, a four-slot priority is used in which access to the
next higher-numbered section of memory receives one of four requesting
processors during each cycle. The four slots have a rotating priority through
the eight sections of memory with two-section spacing between the slots. Two
sections are grouped together to accommodate the four slots. The two-section
separation is required because requests are sent to memory in a read/write pair
grouping that requires two cycles for transmission of write data to memory. In
the absence of a write request, a second read request can be sent. The
maximum request transmission rate across the backplane for a processor
module is eight requests per cycle. This transmission rate can consist of eight
reads or a combination of reads and writes, with a maximum of four write
requests per cycle.
108-0245-003 Cray Proprietary 27

Central Memory System Programmer Reference
The four slots (each a two-section group) have a rotating priority through the
eight sections of memory with two-section spacings between slots. Each slot
has top priority to one section of memory during each cycle. This is the slot’s
natural priority. A natural slot priority that is not in use can be borrowed by
another slot; the three non-natural slots use a priority scheme for borrowing.
I/O is unslotted and uses any available slot. The user can configure I/O priority
from lowest to highest priority, depending on system requirements. All read
and write requests to memory per CPU share the same slot: CPU 0 requests
share slot 0, CPU 1 requests share slot 1, CPU 2 requests share slot 2, and CPU
3 requests share slot 3. Table 4 shows this priority scheme.

A processor module has an independent path into each memory section. Any
conflicts between read and write requests to memory from a CPU are resolved
before these requests leave that CPU. The general rule is that read requests
have priority over write requests within a CPU. This priority is honored all the
way through memory per CPU (per section of memory).

For requests from different CPUs on the same processor module as well as
different processor modules, the order of access to a shared memory bank can
be unrelated to the order in which these requests were sent to the section of
memory.

The memory interface ASICs on the processor module process requests from
six sources per section of memory: one request from each of the four CPUs and
one I/O read request and one I/O write request. The logic within these ASICs
determines which of the six requests has the highest priority for that particular
cycle. The priority network rotates among the CPUs and is updated every other
cycle. If the highest priority CPU has no pending request to be issued, the
priority network checks the CPU that has the next highest priority for any
pending requests. It continues traversing the priority tree until it finds a request
to issue that cycle.

Table 4. Memory Priority Scheme

Slot Number Groups

Priority 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Natural slot 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Borrowed first 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0

Borrowed second 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0

Borrowed third 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0

Slot number 0 1 2 3
28 Cray Proprietary 108-0245-003

System Programmer Reference Central Memory
Fetch requests are given priority within that CPU and are not identified as fetch
requests after leaving that CPU. Thus, they are not given higher priority at the
processor module memory interface. I/O requests are generally given the
lowest priority in this memory interface. To prevent an I/O port from being
locked out during intense CPU memory request activity, an I/O lockout
counter gives the I/O request highest priority until that one request is issued.
This count is configurable so that systems with a high rate of I/O activity can
obtain better memory bandwidth.

A CPU is given priority to two sections of memory during a 2-cycle rotating
slot time. During this 2-cycle slot time, two read requests to the same section
of memory, or a read and a write request, can be processed. A write request to
memory is processed only during the second cycle of this slot time. Priority
can be lent to another CPU to send a read request the first cycle while the
original CPU sends the write request the second cycle.

A processor module sends a reference to one of eight sections of memory. This
is true for all eight processor modules. Within a section, the reference is routed
to one of eight subsections. In a subsection, the bank that is referenced is
checked against the 16 banks within a subsection. The reference is held as long
as the requesting bank remains busy. The memory arbiter (MAR) ASIC tracks
two bank busy situations. One situation is called primary bank busy; this is the
situation in which a bank that is referenced remains busy. The other bank busy
situation is pseudobanking, in which a pair of banks shares an address and data
bus. The time during which the pseudobank uses the bus is called the
pseudobank busy time (8 CPs) and is considerably shorter than the primary
bank busy time.

Memory conflicts are resolved on a subsection basis. In an SV1-1 series
system, central memory is divided into 8 sections with each containing 8
subsections. Each subsection contains 16 pseudobanks. Memory contains
1,02410 banks. In an SV1-1A series system, central memory is divided into 8
sections, and each section contains 4 subsections. Each subsection contains 16
pseudobanks. Each central memory bank can be accessed once every 14 CPs.
Eight paths from the MAR ASIC lead to the 8 memory subsections, one path to
each subsection. When more than one reference attempts to use the same
subsection within the same clock period, a subsection conflict occurs. A
rotating priority scheme establishes priority across the processor modules.
When all processor modules are active, each processor module receives access
to a subsection once every four cycles.
108-0245-003 Cray Proprietary 29

Central Memory System Programmer Reference
Guaranteeing Memory Access Order

When the CPUs and memory must be synchronized, the complete memory
reference (CMR) instruction must be issued. The CMR instruction holds issue
until all references from that CPU are granted bank access. This is important in
a multitasking environment in which a write operation must be complete
before a write reservation is dropped. Other methods (for example, tracking
port reservations or register reservations) ensure that the order of memory
reservations for one CPU is correct, but they do not guarantee that the data
reached memory.

Clearing the BDM bit in the exchange package mode register prevents
out-of-sequence memory references. When the BDM bit is cleared, a memory
read and write cannot occur simultaneously for that CPU. The memory read
instruction holds issue until all write instruction requests are sent to the
memory sections, and the memory write instruction holds issue until all read
requests are sent to memory. The BDM bit has no effect on CPU operations.

A zero-length B- or T-register memory write instruction (pseudo-CMR) can be
used to ensure the correct order of a write instruction and a subsequent read
instruction issued by one CPU. When the zero-length B- or T-register memory
write instruction is issued between the write and read instructions, subsequent
reads of the same memory words do not occur ahead of the write. It does not
guarantee that the write data is in memory.

A hardware limitation of the SV1 is that only one write to memory operation
request can be active at a time.

Any active block transfer (B/T) or vector transfer prevents a scalar reference
from issuing. The scalar reference issues when the internal requesting ports in
the CPU are all quiet.

For vector references, the hardware guarantees memory ordering for a vector
load followed by a vector store where both vector memory references have the
same starting address and same stride.

For block transfers (B/T) a B read following a B write is not guaranteed to be a
safe memory access if the B read is to memory addresses that the B write is
writing to. Block T transfers of this type are also not guaranteed.

The hardware must ensure that all reads are complete before it grants write
requests to memory with the same starting address and the same stride. A write
operation before a read operation is not ensured.

Refer to Table 5 for the SV1 coding requirements for memory operations.
30 Cray Proprietary 108-0245-003

System Programmer Reference Central Memory
Table 5. SV1 Coding Requirements for Memory Operations

Second Operation

vw vr sw sr bw br tw tr tas fetch

F

i

r

s

t

O
p
e
r
a
t
i
o

n

vw OK ad OK OK OK a OK a OK f

vr bde OK OK OK c OK c OK OK OK

sw OK OK OK OK OK OK OK OK OK f

sr OK OK OK OK OK OK OK OK OK OK

bw OK a OK OK OK a OK a OK f

br c OK OK OK OK OK c OK OK OK

tw OK a OK OK OK a OK a OK f

tr c OK OK OK c OK OK OK OK OK

tas OK OK OK OK OK OK OK OK OK h

fetch g OK g OK g OK g OK h OK

v = vector, s = scalar, b = B register, t = T register, w = write, r = read, tas = test-and-set invalidate

All prior operations are guaranteed complete (with the exception of scalar prefetches) before an
exchange can start.

OK = A safe sequence.

a = Must be protected by software by inserting one of the following instructions between them.
- any scalar reference
- any write reference
- pseudo-CMR (zero length B/T write)
- CMR

b = Must be protected by software by inserting one of the following instructions between them.
- any scalar reference
- 076 instruction using the Vi of the vector read
- CMR

c = Must be protected by software by inserting one of the following instructions between them.
- any scalar reference
- CMR

d = The special case of gather/scatter or scatter/gather is protected by hardware. Gathers will
hold issue until scatters have completed and vice versa.

e = The special case of same base, same stride is protected by hardware.
108-0245-003 Cray Proprietary 31

Central Memory System Programmer Reference
Calculating Absolute Memory Address

CPU memory reference instructions (listed in Table 1) calculate absolute
memory addresses by adding combinations of the following values:

• A register contents
• V register contents
• DBA register contents
• 3-parcel instruction nm field contents

Each time an instruction makes a memory reference, the memory address that
the instruction generates is added to the content of the DBA register to form
the absolute memory address.

Only the following elements are used to calculate memory addresses: bits 0
through 31 of the A register, the V register, DBA register, and 3-parcel
instruction nm field contents. Addressing memory where the upper address
limit is greater than the amount of memory in the system will result in memory
wraparound.

f = There is no guarantee that an earlier write modification will reach memory before a later
fetch to memory. This guarantee would have to be protected with one of the following
instructions (which must be either in the same instruction buffer as the write modification or at
least in an earlier buffer than the buffer that contains the modified data.)
- any scalar reference
- any write reference
- pseudo-CMR (zero length B/T write)
- CMR

g = There is no guarantee that a fetch will reach memory before a write reference that is inside the
instruction buffer. Execution starts as soon as the word is returned from memory. If the first
thing done is a write to a location being fetched, the write could reach memory before the fetch.
A write to an address inside the current instruction buffer is not allowed.

h = There is no communication between a test-and-set invalidate and a fetch. There could be
instructions in cache after a test-and-set invalidate if a fetch was in progress.

Table 5. SV1 Coding Requirements for Memory Operations (continued)

Second Operation

vw vr sw sr bw br tw tr tas fetch
32 Cray Proprietary 108-0245-003

System Programmer Reference Central Memory
Address Range Checking

Four registers in the exchange package place a program’s data and instruction
areas in specific locations in memory and allocate specific amounts of memory
to the areas. These registers allow all programs to be relocated. When a
program is written, the programmer does not need to know the memory
location of the instruction and data areas. These registers also enable the
programmer to restrict certain parts of memory from any program. A program
may halt if it tries to perform an instruction outside its allowed instruction area,
or if it tries to read or write data outside its allowed data area. When more than
one program occupies memory at the same time, programs may not be able to
perform instructions or operate on data that belongs to other programs.

The DBA register determines where in memory a program’s data area begins.
Addresses generated by memory reference instructions are relative to the DBA
register.

Each time an instruction makes a memory reference, the memory address that
the instruction generates is added to the contents of the DBA register to form
the absolute memory address. Refer again to Table 1 for a list of memory
reference instructions.

The data limit address (DLA) register determines the highest absolute memory
address that the program can use for reading or writing data. Each time an
instruction makes a memory reference, the absolute memory address that the
instruction generates is compared to the contents of the DLA and DBA
registers. If the absolute memory address is less than the DLA register contents
and equal to or greater than the DBA register contents, the reference proceeds.
If the absolute memory address is equal to or greater than the DLA register
contents or less than the DBA register contents, an out-of-range condition
exists and the memory reference is aborted for a write to memory. For a read
from memory, the read occurs but the data is forced to all zeroes in the CPU.

If the interrupt-on-operand range error (IOR) bit in the mode register of the
exchange package is set, the out-of-range condition sets the operand range
error (ORE) flag in the exchange package flag register and causes an exchange
sequence to begin. If the IOR bit is clear, the program continues to run.

The instruction base address (IBA) register functions similarly to the DBA
register, except that it operates on a program’s instruction area. Each time an
instruction fetch sequence takes place, absolute memory addresses are formed
by adding the relative addresses that are generated by the fetch control logic to
the contents of the IBA register.
108-0245-003 Cray Proprietary 33

Central Memory System Programmer Reference
The instruction limit address (ILA) register functions similarly to the DLA
register, except that it operates on a program’s instruction area and has no
provision for continuing program execution when an out-of-range condition
occurs. If an absolute memory address generated by an instruction fetch
sequence is less than the ILA register contents and equal to or greater than the
IBA register contents, the fetch sequence proceeds. If the absolute memory
address is equal to or greater than the ILA register contents or less than the
IBA register contents, an out-of-range condition exists. An out-of-range
condition sets the program range error flag in the exchange package and causes
an exchange sequence to begin.

The DBA, DLA, IBA, and ILA registers contain only address bits 10 and
above. Bits 0 through 9 are always 0; therefore, the content of these registers is
always a multiple of 2000 (octal) (1,024 decimal). The data and instruction
areas must begin on a 2000 (octal) word boundary and must be a multiple of
2000 (octal) words.

Address range checking does not occur during exchange sequences and I/O
transfers. Memory addresses that are generated by these operations are
absolute memory addresses.

Error Detection and Correction

Single-error correction/double-error detection (SECDED) circuitry monitors
central memory for data errors. Memory errors that involve only 1 bit in each
data word (single-bit errors) can be detected and corrected by the hardware.
Double-bit errors can be detected but cannot be corrected. Errors that involve
more than 2 bits cannot be reliably detected.

When a 64-bit word (bits 0 through 63) is written to memory, an 8-bit
checkbyte is generated and stored in memory with the data word. The check
bits are numbered 0 through 7 and are stored as data bits 64 through 71. When
the word is read from memory, a checkbyte is again generated and compared
with the original checkbyte, using an exclusive OR (XOR) operation. The
result of the comparison is called a syndrome code. If all the bits in the
syndrome code are 0, the 2 checkbytes are identical and no memory error
occurred.

If the syndrome code contains one or more 1 bits, some type of memory error
occurred. The type of memory error (single-bit or double-bit) can be
determined by interpreting the syndrome code. If a single-bit error occurs, the
syndrome indicates the bit in error and the SECDED logic toggles the incorrect
bit to its correct value. If a double-bit error occurs, the syndrome code
indicates that there is an error, but it cannot determine the incorrect bits. Errors
that involve more than 2 bits produce unpredictable results. In some cases,
34 Cray Proprietary 108-0245-003

System Programmer Reference Central Memory
errors produce unique syndrome codes that can be detected by the SECDED
logic. In other cases, the syndrome code appears to be a no-error condition or a
single- or double-bit error.

Table 6 shows the data bits that are used to generate each bit in the checkbyte.
All data bits that are marked with an X contribute to the corresponding check
bit. The parity of all data bits that are marked with an X determines the state of
the check bit. If the parity is even, the check bit is set to 0. If it is odd, the check
bit is set to 1. For example, the data bits that make up check bit 0 are bits 1
through 29 (odd) and 31 through 55 (all). If an even number of these bits is 1,
check bit 0 is set to logic 0; otherwise, it is set to logic 1.

If a syndrome code other than all 0’s is generated, memory error information is
recorded to help isolate the hardware failure. A nonzero syndrome code may
also initiate an exchange sequence, depending on the state of 2 bits in the
exchange package mode register. If the interrupt-on-correctable memory error
(ICM) bit is set, a single-bit (correctable) memory error sets the memory error
flag in the exchange package flag register and starts an exchange sequence. If
the interrupt-on-uncorrectable memory error (IUM) bit is set, a double-bit or
detectable multiple-bit (uncorrectable) error sets the memory error flag and
starts an exchange sequence. If either the ICM or the IUM bit is clear, the
corresponding memory error does not start an exchange sequence and does not
set the memory error flag.

In an SV1 system, all data that is written to memory must pass through the
cache (CA) ASICs, in which the 8 checkbits are generated. For read data, the
cache ASICs perform SECDED on the data. A read operand with a double-bit
error is returned to the CPU as all-zero data. The CA ASICs report any single
or double-bit errors to the CPU for recording.
108-0245-003 Cray Proprietary 35

Central Memory System Programmer Reference
Table 6. Check-bit Generation

Data Bits Data Bits

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

Check Bit 0 x x x x x x x x

Check Bit 1 x x x x x x x x x

Check Bit 2 x x x x x x x x x x x x x x x x

Check Bit 3 x x x x x x x x x x x x x x x x

Check Bit 4 x x x x x x x x

Check Bit 5 x x x x x x x x

Check Bit 6 x x x x x x x x

Check Bit 7 x x x x x x x x

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Check Bit 0 x x x x x x x x x x x x x x x x

Check Bit 1 x x x x x x x x x x x x x x x x

Check Bit 2 x x x x x x x x

Check Bit 3 x x x x x x x x

Check Bit 4 x x x x x x x x

Check Bit 5 x x x x x x x x

Check Bit 6 x x x x x x x x

Check Bit 7 x x x x x x x x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Check Bit 0 x x x x x x x x

Check Bit 1 x x x x x x x x

Check Bit 2 x x x x x x x x

Check Bit 3 x x x x x x x x

Check Bit 4 x x x x x x x x

Check Bit 5 x x x x x x x x

Check Bit 6 x x x x x x x x x x x x x x x x

Check Bit 7 x x x x x x x x x x x x x x x x

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Check Bit 0 x x x x x x x x x

Check Bit 1 x x x x x x x x

Check Bit 2 x x x x x x x x

Check Bit 3 x x x x x x x x

Check Bit 4 x x x x x x x x x x x x x x x x

Check Bit 5 x x x x x x x x x x x x x x x x

Check Bit 6 x x x x x x x x

Check Bit 7 x x x x x x x x
36 Cray Proprietary 108-0245-003

System Programmer Reference Central Memory
Central Memory Performance Summary

Access time is the time an instruction requires to transfer one or more operands
from central memory to an operating register. Access time depends on the type
of register that receives the operand(s) and the number of operands that are
transferred. Timings for memory operations are listed in Table 7. If no memory
conflicts occur, each register type has access times as listed in the table. Access
times from cache are also given.

The SV1 uses a 100-MHz system clock and a 300-MHz CPU clock. The
SV1ex uses a 100-MHz system clock and a 500-MHz CPU clock.

SV1ex memory uses 3 different clocks:

• Chip-to-chip is 200 MHz
• The internal chip clock is 100 MHz for some tasks and 200 MHz for other

tasks
• SDRAM interface is 133 MHz

SV1ex I/O uses a 100-MHz clock for shared areas and the backplane.

The system clock is used in the memory area and for transmission of signals
across the backplane to and from memory. It is also used in the I/O and shared
areas. The CPU clock is used in the CPU and cache ASICs and in about half of
the processor module memory interface.
108-0245-003 Cray Proprietary 37

Central Memory System Programmer Reference
Ta
bl

e
7.

Ti
m

in
gs

fo
r

M
em

or
y

O
pe

ra
tio

ns

N
ot

es
:

1.
C

=
cl

oc
k

ti
m

es
.T

im
es

fo
r

th
e

S
V

1
ar

e
in

30
0-

M
H

z
C

P
U

cl
oc

ks
.T

im
es

fo
r

th
e

S
V

1e
an

d
SV

1e
x

ar
e

in
50

0-
M

H
z

C
PU

cl
oc

ks
.

2.
N

=
na

no
se

co
nd

s.

3.
T

im
es

fo
r

bl
oc

k
tr

an
sf

er
s

(V
,B

,T
re

gi
st

er
s)

ha
ve

an
im

pl
ic

it
L

/2
ad

de
d

to
th

e
gi

ve
n

tim
e,

w
he

re
L

is
th

e
nu

m
be

r
of

w
or

ds
tr

an
sf

er
re

d.

4.
Fo

r
lo

ad
s,

th
e

re
gi

st
er

re
ad

y
tim

e
is

w
he

n
th

e
da

ta
is

av
ai

la
bl

e
in

th
e

re
gi

st
er

.F
or

st
or

es
,t

he
re

gi
st

er
re

ad
y

ti
m

e
is

w
he

n
th

e
re

gi
st

er
is

fr
ee

fo
r

a
su

bs
eq

ue
nt

us
e.

T
he

tim
es

(C
s)

lis
te

d
fo

r
th

es
e

in
st

ru
ct

io
ns

do
es

no
ti

nc
lu

de
ch

ai
ni

ng
or

ta
il

ga
ti

ng
.D

at
a

tim
es

w
ith

ca
ch

e
an

d
m

em
or

y
in

cr
ea

se
by

5
C

s
w

he
n

ch
ai

ni
ng

or
ta

il
ga

ti
ng

oc
cu

rs
.H

ow
ev

er
,t

he
se

in
st

ru
ct

io
ns

m
ay

be
gi

n
ex

ec
ut

io
n

m
an

y
C

s
ea

rl
ie

r.

5.
T

im
es

ar
e

th
e

m
in

im
um

fo
r

ea
ch

ca
se

.L
on

ge
r

ti
m

es
m

ay
re

su
lt

fr
om

m
em

or
y

co
nt

en
ti

on
.

O
p

er
at

io
n

P
o

rt
B

u
sy

R
eg

is
te

r
R

ea
d

y
(d

at
a

in
ca

ch
e)

R
eg

is
te

r
R

ea
d

y
(d

at
a

n
o

t
in

ca
ch

e)

S
V

1
S

V
1e

S
V

1e
x

S
V

1
S

V
1e

S
V

1e
x

S
V

1
S

V
1e

S
V

1e
x

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

V
ec

to
r

L
o

ad
10

20
10

20
10

20
25

83
22

44
22

44
10

9
36

3
17

3
34

6
15

9
31

8

V
ec

to
r

S
to

re
13

43
15

30
15

30
2

7
2

4
2

4
2

7
2

4
2

4

V
ec

to
r

G
at

h
er

13
43

14
28

14
28

28
93

25
50

25
50

11
5

38
3

17
6

35
2

16
2

32
4

V
ec

to
r

S
ca

tt
er

16
53

15
30

15
30

2
7

2
4

2
4

2
7

2
4

2
4

B
/T

L
o

ad
5

17
10

20
10

20
25

83
20

40
20

40
10

8
36

0
17

1
34

2
15

7
31

4

B
/T

S
to

re
5

17
11

22
11

22
5

17
5

10
5

10
5

17
5

10
5

10

A
/S

L
o

ad
11

22
11

22
22

73
17

34
17

34
10

5
35

0
16

8
33

6
15

4
30

8

A
/S

S
to

re
10

20
10

20
2

4
2

4
2

4
2

4

38 CrayProprietary 108-0245-003

System Programmer Reference VME I/O Section
The maximum central memory data transfer rate per processor module is 8
requests per system CP, one request to each of the 8 sections of memory (8
read requests or 4 read requests and 4 write requests per CP). Each of the 4
CPUs is capable of generating a maximum of 4 read requests per CPU CP or 2
read requests and 2 write requests per CPU CP (12 CPU requests per system
CP). Any one CPU has full access to memory via the backplane if the other 3
CPUs are not actively making such memory requests.

The maximum data transfer rates for a CPU per requesting register are as
follows:

• 1 word (read or write) per 2 CPs for A and S registers
• 4 words (2 read and 2 read) per CP for B, and T registers together or,
• 4 words (2 read and 2 write) per CP for B, and T registers together
• 4 words (2 read and 2 read) per CP for V registers
• 4 words (2 read and 2 write) per CP for V registers
• 2+ words (read) per CP for an instruction fetch (32 requests in 14 CPs)
• 4 words (read) per CP for an exchange sequence (4 CPs) followed by
• 2 words (write) per CP for an exchange sequence (8 CPs for 12 CPs total)
• 2 words (read and write) per CP for an I/O transfer

If memory conflicts occur, access times increase and data transfer rates
decrease. Addressing conflicts within the CPU also cause a data transfer rate
decrease.

VME I/O Section

A wide selection of peripherals can interface with the system through the
64-bit architecture VME IOS, which communicates with the CPU through a
Y1 channel. Each processor supports four Y1 channel pairs. The I/O section
uses port D in each processor module to transfer data between central memory
and I/O channels. Table 8 shows each CPU and its associated I/O channels.
108-0245-003 Cray Proprietary 39

VME I/O Section System Programmer Reference
The CC ASIC controls all channel activity. There are 2 CC ASICs on each
processor module. Each CC ASIC controls 2 paddle cards/slots: CC0 controls
J1:J2 and CC1 controls J2:J3.

Y1 Channel Pairs

Each Y1 channel has two registers that can be loaded from any CPU. The
channel address (CA) register contains the address of the next word in central
memory to be transferred. When an I/O transfer begins, the CA register
contains the address of the first word to be transferred. After the first word is
transferred, the CA register increments. The next word is transferred and the
CA register increments again. This process continues until all words are
transferred.

The contents of the channel limit (CL) register determine the address of the last
word in central memory to transfer. An I/O transfer completes when the
contents of the CA register equal the contents of the CL register. The word at
address (CL) is not transferred; address (CL) - 1 contains the last word
transferred.

Channel Programming

Any CPU that is in monitor mode can initiate data transfers through a Y1
channel. Once a transfer is initiated, the transfer operates as a background
activity and the CPU may resume other processing. When the transfer

Table 8. Processor Modules and Associated Y1 Channel Numbers

Processor
Module
Number

CC0 CC1

Y1 Channels Y1 Channels Y1 Channels Y1 Channels

Input Output Input Output Input Output Input Output

0 20 21 22 23 24 25 26 27

1 30 31 32 33 34 35 36 37

2 40 41 42 43 44 45 46 47

3 50 51 52 53 54 55 56 57

4 60 61 62 63 64 65 66 67

5 70 71 72 73 74 75 76 77

6 100 101 102 103 104 105 106 107

7 110 111 112 113 114 115 116 117

Note: All channel numbers listed are octal numbers.
40 Cray Proprietary 108-0245-003

System Programmer Reference VME I/O Section
completes, the channel sets an I/O interrupt request (IOI) flag in a CPU. The
CPU that receives the interrupt request is not necessarily the same CPU that
initiated the transfer.

Table 9 lists the instructions that are applicable to the Y1 channels.
Instructions 0010jk through 0012j1 perform channel control and can be
executed only by a CPU that is in monitor mode. There is no hardware
interlock between CPUs; the programmer must ensure that two CPUs do not
try to control the same channel at the same time. Instructions 033i00 through
033ij1 transmit I/O status information to register Ai. These instructions are not
limited to monitor mode, and any number of CPUs can execute them
simultaneously.

The following sequence of instructions initiates a data transfer through a Y1
channel.

Table 9. Y1 Channel Instructions

Machine
Instructions

CAL
Syntax Description

0010jka CA,Aj Ak Set channel (Aj) CA register to (Ak) and begin I/O sequence

0011jka CL,Aj Ak Set channel (Aj) CL register to (Ak)

0012j0a CI,Aj Clear channel (Aj) interrupt and error flags Clear device master clear
(output channel)

0012j1a MC,Aj Clear channel (Aj) interrupt and error flags Set device master clear
(output channel) Clear device ready held (input channel)

033i00 Ai CI Transmit interrupting channel number to Ai

033ij0 Ai CA,Aj Transmit (CA) of channel (Aj) to Ai

033ij1 Ai CE,Aj Transmit channel (Aj) error flag to Ai
a This instruction is privileged to monitor mode.

Step
Machine

Instruction CAL Comment

1 0011jk CL,Aj Ak Sets the CL register to (Ak), where Ak
contains the address of one word after the
last word to be transferred.

2 0010jk CA,Aj Ak Sets the CA register to (Ak), where Ak
contains the address of the first word to
be transferred.
108-0245-003 Cray Proprietary 41

VME I/O Section System Programmer Reference
This sequence starts the I/O transfer and increments the CA register after each
data word transfers to or from the mainframe. On an output channel, the
transfer stops when the contents of CA equal the contents of CL. On an input
channel, the transfer stops when the contents of the CA register equal the
contents of the CL register.

It is important to remember two characteristics of the Y1 channels when you
program an I/O transfer. First, the CL register must be loaded before the CA
register; the transfer begins when the CA register is loaded regardless of the
contents of the CL register. Second, the CA register must be loaded with a
value that is less than the contents of the CL register; if the CA register is
loaded with a value that is equal to or greater than the CL register contents,
unpredictable results occur.

Channel Operations

The SV1 has two types of logical channels: command and data. CPU
instructions control command input and command output channels. The CPU
uses command output channels to send commands to the IOS; it uses command
input channels to receive status from the IOS. The IOS uses data channels to
transfer data between mainframe memory and I/O buffer board (IOBB)
memory.

The multiplexer I/O processor (MIOP) initiates all of the actual channel
operations as I/O task control blocks (IOTCBs). The MIOP must set up an
IOTCB in IOBB memory for every transfer between mainframe memory and
the IOBB (a maximum of seven outstanding IOTCBs is allowed). There are
two types of IOTCBs: I/O IOTCBs (S = 0) and console IOTCBs (S = 1).
Figure 7 and Figure 8 show the formats of the IOTCBs.

Figure 7. I/O IOTCB Format

Mainframe Memory Address

CMD R xx S IOBB Memory AddressIOTCBptr
IOTCBptr + 1
IOTCBptr + 2
IOTCBptr + 3

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 0

xx Block Length

Next IOTCBptr

rr = reserved All xx’s can be 1 or 0.

CMD = 00: Input command channel
01: Output command channel
10: Data channel input (from IOS to mainframe CPU)
11: Data channel output (from mainframe CPU to IOS)

R = 0: No retry (always set to zero by software)
1: Automatic hardware retry, one time

Parity Test
Code

Test Parity Bits
42 Cray Proprietary 108-0245-003

System Programmer Reference VME I/O Section
Figure 8. Console IOTCB Format

IOBB Memory Address

The IOBB memory address is the starting address in IOBB memory from
which data should be read or to which data should be written. The IOBB
address must be divisible by 32 (that is, bits 0 through 4 = 00000) for a 32-,
64-, and 128-word burst.

Mainframe Memory Address

The mainframe I/O memory address is a starting address in mainframe
memory from which data should be read or to which data should be written.
This field is ignored by the CC ASIC if CMD = 0x.

Block Length

The number of 32-bit words to be transferred is limited by the total amount of
memory on the IOBB. The length must be even (that is, the CC ASIC ignores
bit 0). This field is ignored by the CC ASIC if CMD = 0x.

Next IOTCBptr

The next IOTCBptr (IOTCB pointer) is the IOBB memory address where the
next IOTCB resides.

Data 1

WR R CC EX xx S IOBB Memory AddressIOTCBptr
IOTCBptr + 1
IOTCBptr + 2
IOTCBptr + 3

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 0

Data 2 Block Length (Valid if Ex = 1)

MC # CMD Next IOTCBptr

MC# = 00: Command is for MC ASIC of processor number 0
01: Command is for MC ASIC of processor number 1
10: Command is for MC ASIC of processor number 2
11: Command is for MC ASIC of processor number 3

CC = 1: Local operation (local to CC), no need to
initiate any console bus cycles

EX = 1: Extra data; the following fields are valid:
IOBB memory address - starting address
length - number of 32-bit words transferred

WR = 0 - write from IOBB
WR = 1 - write to IOBB
R = 0: No retry (same as I/O IOTCB)

1: Automatic hardware retry, one time

xx
108-0245-003 Cray Proprietary 43

VME I/O Section System Programmer Reference
Note: The Next IOTCBptr signal is a 32-bit word address and must be
divisible by 4 (that is, bits 1 and 0 = 00).

If the block length is 0, a no-operation instruction occurs (data
channel only); however, the IOTCBptr is loaded and a completion
interrupt is generated normally.

Command Input Channel

Five registers in the CC ASIC correspond to each input channel:

• Channel address (CA): the starting memory address in mainframe
memory

• Channel limit (CL): the limiting memory address in mainframe memory

• Channel error flag (CE)

• Channel interrupt flag (CI)

• Channel number (C#)

The operating sequence of an input channel is as follows:

1. The CPU loads the CL register.

2. The CPU loads the CA register; the corresponding input channel (C#) is
opened.

3. The CC ASIC sends a Ready to Receive Return Status Block (RSB)
interrupt signal to the MIOP through the IOBB.

4. The MIOP sets up an RSB in IOBB memory.

5. The MIOP sets up an IOTCB (CMD = 00; IOBB memory address =
starting address for RSB to be read).

6. The MIOP sends an IOTCB Pending interrupt signal to the CC ASIC
through the IOBB.

7. The CC ASIC fetches IOTCB (designated by IOTCBptr), picks up the
IOBB memory address, uses the CA and CL registers instead of the
mainframe memory address from the IOTCB, and completes the transfer.

8. The CC ASIC interrupts the CPU when CA = CL.
44 Cray Proprietary 108-0245-003

System Programmer Reference VME I/O Section
9. The CC ASIC sends an IOTCB Done interrupt signal to the MIOP
through the IOBB.

Command Output Channel

Five registers in the CC ASIC correspond to each output channel:

• Channel address (CA): the starting memory address in mainframe
memory

• Channel limit (CL): the limiting memory address in mainframe memory

• Channel error flag (CE)

• Channel interrupt flag (CI)

• Channel number (C#)

The following steps describe the operating sequence of an output channel:

1. The CPU sets up a control block (CB) in mainframe memory.

2. The CPU loads the CL register.

3. The CPU loads the CA register; the corresponding output channel (C#) is
opened.

4. The CC ASIC sends a CB Pending interrupt signal to the MIOP through
the IOBB.

5. The MIOP sets up an IOTCB (CMD = 01; IOBB memory address =
starting address for loading CB).

6. The MIOP sends an IOTCB Pending interrupt signal to the CC ASIC
through the IOBB.

7. The CC ASIC fetches IOTCB (designated by IOTCBptr), picks up the
IOBB memory address, uses the CA and CL registers instead of the
mainframe memory address from IOTCB, and completes the transfer.

8. The CC ASIC interrupts the CPU when CA = CL.

9. The CC ASIC sends an IOTCB Done interrupt signal to the MIOP
through the IOBB.
108-0245-003 Cray Proprietary 45

VME I/O Section System Programmer Reference
Data Channels (Input and Output)

The following steps describe the operating sequence of a data channel:

1. The MIOP sets up an IOTCB (CMD = 10 or 11,...).

2. The MIOP sends an IOTCB Pending interrupt signal to the CC ASIC
through the IOBB.

3. The CC ASIC fetches IOTCB (designated by IOTCBptr), interprets all
parameters from IOTCB, and completes the transfer.

4. The CC ASIC sends an IOTCB Done interrupt signal to the MIOP
through the IOBB.

Error Handling

Error detection is applicable to parity across the data bus portion of the Y1 bus.
Data as well as address and control are multiplexed into the 32-bit data bus.
Therefore, all errors are parity errors that occur at different instances across the
Y1 bus.

Two types of parity errors occur: those associated with IOTCB fetch and those
associated with IOTCB execution. If a parity error occurs while an IOTCB is
fetched, the IOTCB does not execute. The IOTCB controller clears its IOTCB
pending queue, resets IOTCBptr to zero, and sends an IOTCB Fetch Error
Interrupt signal to the MIOP through IOBB, which is the default beginning of
the IOTCB chain.

Two types of parity errors occur during IOTCB execution: command channel
errors (CMD = 0x) and data channel errors (CMD = 1x). In both cases, when a
parity error is detected, the IOTCB execution continues. When the entire
transfer is finished, if the retry bit in the IOTCB is set, hardware automatically
retries once. If successful, IOBB receives a normal IOBB Done interrupt
signal, and a scan-only flip-flop indicates that a successful retry occurred. If
the retry is not successful, an IOTCB Execution Error interrupt signal is sent to
the MIOP through the IOBB. The MIOP must then take appropriate actions.
The IOTCB controller then fetches the next IOTCB if one is pending. In
addition, if the IOTCB in error is command-channel related, the corresponding
channel error (CE) flag does not set. The 033ij1 instruction reads the status of
the CE flag.
46 Cray Proprietary 108-0245-003

System Programmer Reference VME I/O Section
High Performance Parallel Interface (HIPPI)

The High Performance Parallel Interface (HIPPI) is a 100-Mbyte/s channel
that transfers data between data-processing equipment on multiple
twisted-pairs of copper cable at distances up to 82 ft (25 m).

The HIPPI signal protocol is designed to be independent of distance; it
therefore enables the average data rate to approach the peak data rate, even at
distances longer than specified for the HIPPI channel.

The following list describes other characteristics of the HIPPI interface:

• The HIPPI is a simplex interface; it can transfer data in one direction only.
Two HIPPI channels may be used to implement a full-duplex interface.

• Data transfers are performed and flow is controlled in increments of
bursts; each burst normally contains 256 words.

• Signals and control sequences are simple, and a look-ahead flow control
enables average transfer rates for large file transfers to approach the peak
transfer rate, even at distances longer than specified for HIPPI cables.

• The HIPPI provides support for low-latency, real-time, and variable-size
packet transfers.

• The HIPPI is also designed to transmit multiple packets after a connection
is established. No round-trip cable delays are required between packets.

HIPPI Channel Operational Overview

The following paragraphs describe the seven channel instructions. All
instructions except the 033i00, 033ij0, and 033ij1 instructions are privileged to
monitor mode.

Load Control Registers and Start Channel (0010jk)

The content of Aj specifies the channel number, and the contents of Ak are
loaded into the next register in the sequence. This sequence is specified by the
bit map register, and processing occurs from the right to the left, or from the
least-significant bit (LSB) to the most-significant bit (MSB).

This instruction is used to load the control word, D1 address, D1 block length,
D2 address, D2 block length, and connection control information registers.
This instruction is executed multiple times, once for each register that is to be
loaded. The bit map register is used to specify how many and which registers
108-0245-003 Cray Proprietary 47

VME I/O Section System Programmer Reference
are to be loaded. The channel operation is started when the last specified
register is loaded, unless bit 15 of the bit map register is set, which inhibits
channel activation. There is no time limit in which to complete the loading. If
the bit map register is reloaded, then this becomes the new load sequence and
the previous sequence is ignored.

Load Register Bit Map (0011jk)

The content of Aj specifies the channel number and the content of Ak is loaded
into the bit map register for that channel. This specifies the load and read
sequence for the remaining registers. This instruction should be executed
before each sequence of 0010jk and 033ij0 instructions because the register is
cleared during processing. Each time this register is loaded, a new sequence is
started.

Clear Pending Interrupt (0012j0)

The content of Aj specifies the channel number for a clear pending interrupt
and sets an error flag. This instruction clears the pending interrupt, error flags,
and real-time status register and advances the sequence of operation in the
channel control word to the next field. It also restarts the channel if processing
was discontinued during a normal interrupt.

Reset Channel (0012j1)

The content of Aj specifies the channel number for this instruction. This
instruction resets the corresponding HIPPI channel. The interrupt is cleared if
one is pending; any error flags are reset, and all channel operations are
terminated. The channel returns to its initial state.

This instruction executes before the channel is used for the first time and after
any sequence that places the channel into a test mode configuration. After
some channel error conditions, a reset is required before the channel can be
reactivated.

Read Highest Priority Interrupting Channel Number (033i00)

The channel number of the interrupting channel that has the highest priority is
placed into Ai. This instruction operates in the same manner as it does on the
Y1 interface channels.
48 Cray Proprietary 108-0245-003

System Programmer Reference VME I/O Section
Read Control Registers (033ij0)

The content of Aj specifies the channel number and Ai is loaded from the
register specified by the bit map register. The bit map register must be loaded
for each new register selection. No sequencing is provided for read operations.

This instruction is used to read the control word, D1 address, D1 block length,
D2 address, D2 block length, connection control information, real-time status,
LLRC, operational status, sequence error idle (SEI) disable status, flow status
word 1, and flow status word 2 registers (if they exist for that channel). This
instruction is executed multiple times, once for each register that is to be read
from. The bit map register specifies which register is to be read from.

If this instruction is executed with no bits set in the bit map register, then the
channel address of the currently processing data area is returned. Execution of
this instruction in non-monitor mode should return the current data area
address. The bit map register should be cleared before user mode is entered.

The RT status register is read if this is the first channel operation after a reset
operation. (0012j1)

Read Channel Error Flag (033ij1)

The contents of Aj specify the channel numbers, and Ai is loaded with the error
flag for the specified channel. Bit 0 is the error flag; if it is equal to 1, that
indicates an error was detected. If no error was detected, then Ai contains 0’s
for all bit locations.

HIPPI Channel Configurations

Table 10 shows the possible input/output channel configurations for the Y1
channel, the HIPPI input channel (HI-I), and the HIPPI output channel (HI-O).
The configuration has a physical limitation because HIPPI channels and Y1
channels cannot be combined on the same CC ASIC.
108-0245-003 Cray Proprietary 49

VME I/O Section System Programmer Reference
VME IOS and HIPPI I/O Interrupts

I/O interrupts originate at the interrupting channel. The CI ASIC passes the
necessary information to the global JS ASIC logic. When an I/O interrupt
occurs, the CI sends an I/O interrupt command to the JS ASIC along with the
number of the interrupting channel. Then, this information is sent over the
JS/JS bus to the global JS logic on each shared resources JS ASIC.

The global JS logic routes the interrupt information to the I/O interrupt
handling logic. There, the appropriate bit in the I/O interrupt register is set. An
interrupt to one of the PV ASICs (SV1 series) or PVC ASICs (SV1ex series) is
generated according to the following rules:

1. If any processor is in monitor mode, no interrupt is generated.

2. If all processors are in user mode and any processor has its sequence error
idle (SEI) bit set, the interrupt is directed to the lowest-numbered
processor that has its SEI bit set.

3. If all processors are in user mode, none of them have the SEI bit set, and a
processor is waiting on semaphore, the interrupt is directed to the
lowest-numbered processor that is waiting on semaphore.

Table 10. HIPPI or Y1 Channel Configurations

Proc Mod
0

Proc Mod
1

Proc Mod
2

Proc Mod
3

Proc Mod
4

Proc Mod
5

Proc Mod
6

Proc Mod
7

Paddle Card Slot J1

*20/21, Y1 *30/31, Y1
*30, HI-I

40/41, Y1
40, HI-I

50/51, Y1
50, HI-I

60/61, Y1
60, HI-I

70/71, Y1
70, HI-I

100/101, Y1
100, HI-I

110/111, Y1
110, HI-I

Paddle Card Slot J2

*22/23, Y1 *32/33, Y1
*33, HI-O

42/43, Y1
43, HI-O

52/53, Y1
53, HI-O

62/63, Y1
63, HI-O

72/73, Y1
73, HI-O

102/103, Y1
103, HI-O

112/113, Y1
113, HI-O

Paddle Card Slot J3

24/25, Y1
24, HI-I

34/35, Y1
34, HI-I

44/45, Y1
44, HI-I

54/55, Y1
54, HI-I

64/65, Y1
64, HI-I

74/75, Y1
74, HI-I

104/105, Y1
104, HI-I

114/115, Y1
114, HI-I

Paddle Card Slot J4

26/27, Y1
27, HI-O

36/37, Y1
37, HI-O

46/47, Y1
47, HI-O

56/57, Y1
57, HI-O

66/67, Y1
67, HI-O

76/77, Y1
77, HI-O

106/107, Y1
107, HI-O

116/117, Y1
117, HI-O

* Either paddle card 0 or paddle card 1 can be configured as the deadstart channel.
By default, paddle card 0, Y1 channel 20/21, is configured as the deadstart channel.
50 Cray Proprietary 108-0245-003

System Programmer Reference VME I/O Section
4. If all processors are in user mode, none have SEI set, and none are waiting
on semaphore, then the interrupt is directed to the last processor to clear
an I/O channel. The interrupt is directed to the last processor that cleared
any channel.

Once the software determines which processor to interrupt, the JS associated
with that processor sends the I/O interrupt command over the PV/JS bus. If one
of the processors is in monitor mode and no interrupt is generated, it is
assumed that the processor in monitor mode will handle I/O interrupts before it
exchanges into user mode. It is possible that an I/O interrupt could arrive after
the processor in monitor mode has finished handling I/O interrupts but before
it exchanges back to user mode. In that case, the I/O interrupt logic on the JS
senses that none of the processors are in monitor mode and I/O interrupts are
still pending. The criteria listed above are applied, and an I/O interrupt is
posted to one of the processors.

A processor handles I/O interrupts by issuing 033i00 instructions until Ai = 0.
When a 033i00 instruction is executed, the PV sends the command to the local
JS ASIC. The local JS ASIC determines the channel number of the
highest-priority interrupting channel and returns it to the originating PV on the
PV/JS bus.

When a processor clears a channel, the processor sends the clear channel
command to the local JS. The local JS passes it on to the other JS ASICs on the
JS/JS bus. This command is then forwarded to the CI, which handles the
channel clear operation, and to the I/O interrupt logic, which clears the
interrupt flag for that channel in its I/O interrupt register.

For each channel, there is a single priority bit that indicates whether it is a
high- or low-priority channel. When a processor requests the highest priority
channel, that channel access is determined as follows:

1. If any high-priority channels have an interrupt pending, the
lowest-numbered channel is the one returned.

2. If no high-priority channels have an interrupt pending, the
lowest-numbered, low-priority channel with an interrupt pending is
returned.
108-0245-003 Cray Proprietary 51

GigaRing I/O Section System Programmer Reference
The priority is set via the joint test action group (JTAG) control of the system.
Normally, this priority scheme is configured at system power-up, but it is
possible to change it while the system is running.

VME IOS and HIPPI I/O Memory Errors

Memory errors that occur during I/O operations present a challenge for
Cray SV1 series systems. When a memory error occurs, the associated
processor is notified. On the SV1 system, the I/O channels do not share
memory ports with specific processors. Each I/O channel is loosely associated
with the four processors that share its processor module.

One of the processors is selected to handle I/O memory errors by using JTAG.
When a memory error occurs on I/O, the CI passes the error information to the
local JS. The JS then posts the memory error to one of the four local processors
that are configured to handle the I/O memory errors.

GigaRing I/O Section

Peripherals are connected to the SV1 system via the GigaRing I/O system.
GigaRing technology defines a standard that enables a system integrator to
connect various devices on a ring topology. Refer to the “GigaRing Overview”
section for more information about the GigaRing channel and its operation.

The GigaRing node contains client logic, a GigaRing node chip, and a fully
duplexed, bidirectional client-port interface. The GigaRing node chip, a single
application-specific integrated circuit (ASIC), contains an input and an output
link for both the positive and negative rings and a bidirectional client-port
interface. The data path is 32 bits wide on each of the counter-rotating rings
and 64 bits wide on the client port. The client port may be configured to
operate in half-width mode (32 bits) for clients that do not require the
bandwidth of the 64-bit interface.

A single-purpose node (SPN), a Cray computer system, or a multipurpose node
(MPN-1) is referred to as a client node on the GigaRing channel. Each client
node contains its own client logic and a GigaRing node chip. Each client node
communicates with the other client nodes through the GigaRing node chip.
(The client nodes are referred to hereafter as clients.)
52 Cray Proprietary 108-0245-003

System Programmer Reference GigaRing I/O Section
The “GigaRing I/O Section” addresses the following related topics:

• MPN
• IPN
• FCN
• HPN-1 and HPN-2
• BMN
• ESN
• FOX
• Error Handling and Reporting

MPN-1 Functional Overview

The multipurpose node (MPN) connects specific industry standard SBus-based
I/O peripherals or proprietary channels to the GigaRing channel to provide I/O
services for the mainframe node.

The MPN logic components and SBus controllers reside inside the
multipurpose node subrack (MPN-1). The MPN-1 provides forced-air cooling
and supplies power to the MPN logic and SBus controllers.

A maximum of eight industry standard SBus controllers or Cray proprietary
channels can reside within the MPN-1. The MPN-1 supports the following
SBus controllers:

• Small computer system interface (SCSI) disk and tape drive interface
• Ethernet network interface
• Asynchronous transfer mode (ATM) network interface
• Fiber distributed data interface (FDDI) network interface
• Cray proprietary supervisory channel

The MPN-1 subrack and all associated MPN-1 peripheral subracks (such as
SCSI disk or tape) reside in the PC-10 cabinet.

All GigaRing based systems require one MPN-1 subrack to be configured with
one SBus Ethernet and one SBus SCSI disk interface.

All peripheral and GigaRing channel cable connections occur at the rear of the
MPN-1. The front of the MPN-1 displays various MPN-1 messages and node
activity.
108-0245-003 Cray Proprietary 53

GigaRing I/O Section System Programmer Reference
MPN-1 Operation Overview

The MPN-1 is based on a memory-mapped bridge architecture that enables the
SBus Peripheral Interface (SPI) hyperSPARC processor to address the
memory of other IONs on the GigaRing channel.

The SBus controller takes information from its I/O peripheral device and
places it on the SPI’s SBus when requested. The SBus controller manages the
peripheral data transfer. The SPI controls the SBus. The SPI converts the SBus
data into MBus data and places it on the MBus. The MBus interface follows
the level 1 device specification, which identifies how MBus transactions
(MBus read or write operations) are performed. The MBus interface controls
the data that is transferred to and from the translation windows and between
the SPI and SSB.

The hyperSPARC processor opens enough translation windows to store the
data from the peripheral device and generates the tag that each translation will
use.

The tag is made up of the command tag and the address tag. The command tag
contains the transfer type, transfer size, target node address, information used
to manage the MBus translation, and GigaRing channel control information.
The address tag contains the memory address of the target node to be accessed.

The event and receive processors generate or decode the GigaRing packet
header and control the flow of information between the translation windows
and the FIFOs to the GigaRing node chip. The processors also use parts of the
tag to form the GigaRing packet header. This header is used by the GigaRing
node chip to send data to or receive data from another node.

When the transfer is complete, the hyperSPARC processor closes the
translation windows, which allows them to be reused for another transfer.

IPN-1 Functional Overview

The intelligent peripheral node interface (IPN-1) provides an interface between
the GigaRing channel and the single-disk or disk array devices that support
level 2 intelligent peripheral interface (IPI-2) protocol. Functionally, the IPN-1
is identical to five DCA-2 disk controllers, or to one DCA-3 disk controller
that is installed with Cray IOS model E systems.

The IPN-1 allows existing Cray intelligent peripheral interface (IPI-2)
products to connect to the GigaRing architecture. The IPN-1 supports the
following single-drive configurations:
54 Cray Proprietary 108-0245-003

System Programmer Reference GigaRing I/O Section
• DD-301 (1.377 Gbytes and 8.2 Mbytes/s)
• DD-302 (1.8 Gbytes and 9.3 Mbytes/s)
• DD-60 (1.96 Gbytes and 20 Mbytes/s)
• DD-62 (2.73 Gbytes and 8.1 Mbytes/s)

The IPN-1 supports the following RAID 3 (4 data units + 1 parity unit)
configurations:

• DA-301 (5.5 Gbytes and 32.8 Mbytes/s)
• DA-302 (7.2 Gbytes and 37.0 Mbytes/s)
• DA-60 (7.84 Gbytes and 80.0 Mbytes/s)
• DA-62 (10.92 Gbytes and 32.5 Mbytes/s)

The IPN-1 attaches to existing disk enclosures such as the DE-60 and DE-100.

IPN-1 Components

The following paragraphs describe the major components of the IPN-1
GigaRing interface PCB (motherboard).

• The GigaRing option supports the data connection between the IPN-1 and
the GigaRing channel.

• The motherboard uses two buses to transfer data between the various
options. The SBus operates at 25 MHz. The IBus operates at 100 MHz.
Neither bus has data protection.

• The client interface option (CLI) manages the data connection from the
GigaRing option to the IPI-2 channel PCB. The CLI option also transfers
data and control among the GigaRing node chip and the channel and
SPARC support option (CSS) via the IBus.

• The microSPARC microprocessor chip is responsible for all control
functions within the node. It communicates with the CSS option via the
SBus.

• The microSPARC DRAM consists of 2 banks of 1, 4, or 16 Mbytes of
memory mounted on single inline memory modules (SIMMs).

• The CSS option transfers data and control between the SBus and the IBus.
The CSS also buffers information between the microSPARC chip and the
rest of the IPN-1. The CSS controls the IPI logic and supports the
microSPARC boot RAM, RS-232 interface, and SBus-to-channel
memory.
108-0245-003 Cray Proprietary 55

GigaRing I/O Section System Programmer Reference
FCN-1 and FCN-2 Functional Overview

The fibre channel node (FCN-1 and FCN-2) is an interface between a
GigaRing channel and up to five fibre channel arbitrated loops (FC-AL). The
FCN-1 uses the standard node/client interface that all GigaRing channel
single-purpose nodes (SPNs) support. The FCN-1 and FCN-2 are nearly
identical in design, except as noted below.

• The FCN-1 can connect to the DSF-1 or DSF-2 subracks via copper
cables that have a maximum cable length of 98 ft (30 m).

• The FCN-2 has the added capability to connect, through fiber-optic
cables, to DSF-2 subracks at a maximum distance of 983 ft (300 m).

FC-AL is an ANSI-standard serial communications channel that provides a
peak bandwidth of 100 Mbytes/s. The ANSI FC-AL standard specifies a loop
topology that supports up to 126 devices on a copper or a fiber-optic ring.

Cray’s implementation of the FC-AL uses a copper connection and supports a
maximum of 80 disk devices on each fibre channel (40 primary path, 40
alternate path). An FCN-1 and FCN-2 have connections for five FC-ALs; this
provides a total peak bandwidth of 500 Mbytes/s.

The FCN-1 and FCN-2 support the following disk configurations:

• DD-308 single-spindle drives; 9.5-Gbyte capacity, with 8- to 12-Mbyte/s
transfer rates

• DA-308 serial RAID 3 4+1 (4 data drives and 1 parity drive) arrays;
38-Gbyte capacity, with 32- to 48-Mbyte/s transfer rates

• DD-309 single-spindle drives; 18.2-Gbyte capacity, with 13.8- to
21-Mbyte/s transfer rates

• DA-309 serial RAID 3 4+1 (4 data drives and 1 parity drive) arrays;
72.8-Gbyte capacity, with 55- to 84-Mbyte/s transfer rates

• DD-331 single-spindle drives; 36-Gbyte capacity, with 18- to 30-Mbyte/s
transfer rates

• DA-330 serial RAID 3 4+1 (4 data drives and 1 parity drive) arrays;
144-Gbyte capacity, with 72- to 120-Mbyte/s transfer rates

The FCN-1 and FCN-2 attaches to the DSF-1 subrack. The DSF-1 can contain
a maximum of ten DD-308 disk drives. Up to eight DSF-1 subracks can be
attached to a single FC-AL.
56 Cray Proprietary 108-0245-003

System Programmer Reference GigaRing I/O Section
FCN-1 and FCN-2 Hardware Description

FCN-1 and FCN-2 modules plug into any one of the four I/O node slots in the
scalable I/O (SIO) node subrack (NSR-1). GigaRing and FC-AL cables attach
to the front panel of the module.

The FCN-1 and FCN-2 contain three printed-circuit boards (PCBs) that are
enclosed in a metal canister. These three PCBs include the following
components:

• Power supply board
• GigaRing interface board (motherboard)
• Fibre channel client board (daughter board)

The FCN-1 and FCN-2 hardware support CRC generation, parity data
generation, and data reconstruction for RAID 3 and RAID 5 configurations.
These features support the error-recovery functions of the disk devices that are
attached to the fibre channel loop.

HPN Functional Overview

The HPN-1 and HPN-2 are single-purpose nodes (SPNs). They provide an
interface between the GigaRing channel and the networks and between the
channel and the network disk arrays that support HIPPI data transmission. The
HPN-1 and HPN-2 support HIPPI networks and switched networks.

The HPN-1 transfers data at 100 Mbytes/s and provides two 32-bit
input/output channels (one input and one output connection per channel with a
total of two input and two output connections). An HPN-1 can simultaneously
support a HIPPI network on one input/output channel and network disks on the
other.

The HPN-2 transfers data at 200 Mbytes/s and provides one 64-bit input/output
channel (2 input and 2 output connections). The HPN-2 can be configured as a
single 32-bit, 100-Mbyte/s input/output channel with one input and one output
connection.

Note: The HPN-2 can be configured either as a single 200-Mbyte/s
channel or a single 100-Mbyte/s HIPPI channel but not both
simultaneously.
108-0245-003 Cray Proprietary 57

GigaRing I/O Section System Programmer Reference
Network Disk Arrays

Network disk array systems provide a large amount of data storage in a small
area. The HPN-1 and HPN-2 support the following network disk arrays:

• ND-12 network disk array
• ND-14 network disk array
• ND-30 network disk array
• ND-40 network disk array

The HPN-1 and HPN-2 support HIPPI networks and switched networks.
Additionally, the HPN-1 and HPN-2 attach to network disk array system
enclosures.

Hardware Description

HPN-1 and HPN-2 modules plug into any of the four SPN slots in the scalable
I/O (SIO) node subrack (NSR-1). GigaRing and HIPPI cables attach to the
front panel of the module.

The HPN-1 and HPN-2 each consist of three printed circuit boards (PCBs) that
are enclosed in a metal canister.

These three PCBs include the following components:

• Power supply board
• GigaRing interface board (motherboard)
• HIPPI channel board (daughter board)

The HPN-1 and HPN-2 hardware supports odd-byte parity and
length/longitudinal redundancy checkword (LLRC) error detection.

BMN-1 Functional Overview

The BMN-1 node is a single-purpose node (SPN) that is located in the node
subrack (NSR-1) in the PC-10 cabinet.

The BMN-1 node connects systems on a GigaRing channel to mass-storage
magnetic tape devices. The BMN-1 supports the Federal Information
Processing Standards (FIPS) 60 interface specification. The BMN-1 has two
independent tape channels.
58 Cray Proprietary 108-0245-003

System Programmer Reference GigaRing I/O Section
Each of the two channels supports the following transfer modes:

• Interlock mode
• 1.5-Mbyte/s high-speed mode
• 200-ft offset interlock mode
• 3-Mbyte/s data streaming mode
• 4.5-Mbyte/s data streaming mode

The BMN-1 node supports any tape drive system that supports the FIPS 60
specification, which includes the following devices and tape library robots:

• IBM 3480 (18-track)
• STK 4480 (18-track)
• IBM 3490 (36-track)
• STK 4490 (36-track)
• 9-track reel tapes (3420 compatible)
• STK 4400
• STK 9310
• STK 9360

BMN-1 Hardware Description

BMN-1 modules plug into any of the four I/O node slots in the scalable I/O
(SIO) node subrack (NSR-1). GigaRing and tape channel cables attach to the
front panel of the module.

The BMN-1 module contains three printed circuit boards (PCBs), which are
enclosed in a metal canister:

• Power supply board
• GigaRing interface board (motherboard)
• Tape channel board (daughter board)

ESN-1 Functional Overview

The ESN-1 connects the mainframe node on a GigaRing channel to
mass-storage magnetic tape devices via an Enterprise Systems Connection
Architecture (ESCON) interface.

The ESN-1 provides an optical-fiber communication link between channels
and control units that implement the Enterprise Systems Architecture/390
specification. The ESN-1 has four independent ESCON channels. Each
ESCON channel has a bandwidth of 17 Mbytes/s.
108-0245-003 Cray Proprietary 59

GigaRing I/O Section System Programmer Reference
The ESN-1 supports the following tape devices:

• IBM 3490E (36-track enhanced tape device)
• STK 4490 (36-track tape device)
• STK 9490 (TimberLine)
• STK SD-3 (RedWood)
• IBM 3590 (Magstar)

The ESN-1 supports the following libraries and robots:

• IBM 3494
• IBM 3495
• STK 4400
• STK 9310
• STK 9360

ESN-1 Hardware Description

ESN-1 modules plug into any of the four I/O node slots in the scalable I/O
(SIO) node subrack (NSR-1). GigaRing and tape channel cables attach to the
front panel of the module.

The ESN-1 module contains three printed circuit boards (PCBs), which are
enclosed in a metal canister:

• Power supply board
• GigaRing interface board (motherboard)
• Tape channel board (daughter board)

FOX Overview

The FOX-1 is a transparent and nodeless extension to the standard GigaRing
channel. The FOX-1 extends the distance between nodes on the GigaRing
channel to 656 ft (200 m). The standard copper-based distance limit is 36 ft
(11 m).

The FOX-1 can extend the length of the channel for any of the GigaRing
interconnected nodes that reside within or communicate with the SIO
architecture. The FOX-1 physically connects to the GigaRing channel like any
node, but it does not interface directly with any of the GigaRing channel
protocol.
60 Cray Proprietary 108-0245-003

System Programmer Reference GigaRing I/O Section
A subrack houses the FOX-1 hardware. The FOX-1 subrack usually resides
inside a PC-10 cabinet; however, for mainframe nodes, the FOX-1 subrack can
be located outside the PC-10.

GigaRing Implementation

Two FOX-1 subracks complete the optical extension of the GigaRing channel.
Standard GigaRing channel copper cables bring data into and out of the FOX-1
just as they do for other GigaRing interconnected nodes. Eight-fiber ribbon
cables establish the optical link between FOX-1 subracks.

GigaRing Configurations

The FOX-1 subrack functions as a transparent node, even when the GigaRing
channel is reconfigured. The FOX-1 does not affect the information flow in
either a folded or masked ring.

Hardware Overview

The FOX-1 hardware resides in a 2-SU 19-in. rackmount enclosure. This
subrack contains the necessary power supplies and cooling hardware needed to
ensure reliable operation of the FOX-1.

The FOX-1 receives GigaRing information over standard copper GigaRing
cables. The FOX-1 converts the information from an electrical format to an
optical format, and then retransmits the information onto a fiber-optic cable to
a receiving FOX-1, where the process is reversed. The FOX-1 uses an array of
optical transceivers and supporting circuitry to convert the information that is
transmitted on the GigaRing channel.

Error Reporting and Handling

Each GigaRing interface maintains an error monitor that any node on the ring
can access. This feature enables error monitor software to access all nodes on a
given ring and provide a cumulative status of the system. Table 11 provides a
description of each MMR that is associated with error reporting.
108-0245-003 Cray Proprietary 61

Interprocessor Communication System Programmer Reference
Interprocessor Communication

The mainframe interprocessor communication section possesses three features
that enable data and control information to transfer between CPUs:

• Shared registers
• Semaphore registers
• Interprocessor interrupts

Shared registers pass data between CPUs. Semaphore (SM) registers enable
synchronization of programs that are operating in different CPUs.
Interprocessor interrupts allow a CPU to initiate an exchange sequence in other
CPUs. These features are especially useful in multitasking environments.

The shared and semaphore registers are arranged in groups called clusters. The
following paragraphs explain clusters, the shared and semaphore registers, test
and set control, and interprocessor interrupts.

Clusters

The shared and semaphore registers are divided into (number of CPUs +1)
identical clusters. A CPU can reference only one cluster at a time. The cluster
number (CLN) register in the exchange package determines to which cluster a
CPU is assigned. Clusters are numbered beginning with 1 (octal). A CLN
value of 0 prevents a CPU from accessing all shared and semaphore registers.

Table 11. Error Reporting MMRs

Add.
(Octal)

Bits in
Field Field Name Description Access

30 24 ERROR_COUNTER Counter for ring and client errors GR RAZ

31 19 NEG_RING_ERRORS Ring error bit map GR RAZ

32 19 POS_RING_ERRORS Ring error bit map GR RAZ

33 8 CLIENT_ERRORS Client error bit map GR RAZ

36 32 NEG_BUFFER_PE_STATU
S

Bit map of buffer parity errors GR RAZ

37 32 POS_BUFFER_PE_STATU
S

Bit map of buffer parity errors GR RAZ

40 32 CRC_CAPTURE CRC and sendtag of send packet
with CRC error

GR RAZ
62 Cray Proprietary 108-0245-003

System Programmer Reference Interprocessor Communication
There are two ways to load the CLN register: automatically during an
exchange sequence or by executing instruction 0014j3 when the CPU is in
monitor mode.

Shared Registers

Shared registers provide a way to transfer data between operating registers in
different CPUs; one CPU loads a shared register from its own operating
registers. Other CPUs can then transfer the data from the shared register to
their own operating registers. There are two types of shared registers: shared
address (SB) and shared scalar (ST).

Each cluster contains eight 32-bit SB registers, numbered SB0 through SB7.
Data is transmitted between the SB registers and the A registers in each CPU
that are assigned to the cluster.

Each cluster contains eight 64-bit ST registers, numbered ST0 through ST7.
Data is transmitted between the ST registers and the S registers in each CPU
that is assigned to the cluster.

Table 12 lists all instructions that transmit data to or from the shared registers.
In a CPU where the contents of the CLN register equal 0, instructions 026ij7
and 072ij3 return a value of 0, and instructions 027ij7 and 073ij3 perform no
operation.

Semaphore Registers

SM registers allow a CPU to temporarily suspend program operation in order
to synchronize operation with other CPUs. Each cluster contains thirty-two
1-bit SM registers numbered SM0 through SM37 (octal). Each CPU that is
assigned to the cluster can set or clear each SM register and can perform a test

Table 12. Shared Register Instructions

Machine
Instruction

CAL
Syntax Description

026ij7 Ai SBj Transmit (SBj) to Ai

027ij7 SBj Ai Transmit (Ai) to SBj

072ij3 Si STj Transmit (STj) to Si

073ij3 STj Si Transmit (Si) to STj
108-0245-003 Cray Proprietary 63

Interprocessor Communication System Programmer Reference
and set instruction, which is explained in the following paragraph. Each CPU
in the cluster can also transmit the contents of all 32 SM registers to or from an
S register. CPUs use the shared paths to set and clear semaphore registers.

Table 13 lists all machine instructions that use the SM registers. The 0034jk
test and set instruction tests the state of the SMjk register. If the content of the
SMjk register is 0, the instruction executes immediately. If the content of the
SMjk register is 1, the instruction holds issue until another CPU that is
assigned to the same cluster clears the SMjk register. When the instruction
issues, it sets the SMjk register. Instructions 0036jk and 0037jk clear and set
the SMjk register.

Instructions 072i02 and 073i02 transmit the SM register contents to or from the
upper half of the S register. Figure 9 shows the relation between the SM
registers and the bits of an S register.

Figure 9. Relation between SM Registers and S Register Bits

If a CPU is not assigned to any cluster (that is, CLN = 0), instructions 0034jk,
0036jk, 0037jk, and 073i02 perform no operation. Instruction 072i02 sets
register Si to 0.

The following example shows how an SM register is used to synchronize the
operation of two CPUs in a multitasking program. In this example, CPU 0
computes a partial result needed by CPU 1 while CPU 1 computes a second
partial result. CPU 1 then uses the two partial results as operands for further
processing.

Table 13. SM Register Instructions

Machine Instruction
CAL

Syntax Description

0034jk SMjk 1,TS Test and set semaphore jk

0036jk SMjk 0 Clear semaphore jk

0037jk SMjk 1 Set semaphore jk

072i02 Si SM Transmit (SM) to Si

073i02 SM Si Transmit (Si) to SM

63 62 32 31 30

Instruction 072i02 sets these bits to 0.
Instruction 073i02 does not use these bits.

0S Register Bits

SM08 SM18 SM378SM Registers
64 Cray Proprietary 108-0245-003

System Programmer Reference Interprocessor Communication
In Step 1, CPU 0 begins processing by setting register SM0, which indicates
that it has not yet computed its partial result. In Steps 2 and 3, CPUs 0 and 1
begin to compute the partial results. At the end of Step 3, CPU 1 places its
partial result in register S1. CPU 1 needs CPU 0’s partial result before it can
proceed. In Step 4, CPU 1 performs a test and set instruction on register SM0.
Because register SM0 is already set, CPU 1 holds issue.

CPU 0 continues its computations and transfers its partial result to the S1
register. CPU 0 then transfers the partial result from S1 to register ST0 (Step
5). In Step 6, CPU 0 indicates that the partial result is ready in register ST0 by
clearing register SM0. In Step 7, CPU 0 can now continue with other
processing. SM0 is now cleared and the test and set instruction in CPU 1
issues, setting register SM0. CPU 1 then transfers CPU 0’s partial result from
register ST0 to register S2 (Step 8). CPU 1 now has its own partial result in
register S1 and CPU 0’s partial result in register S2 and can continue
processing (Step 9).

CPU 0 CPU 1

1. SM0 1 (003700)

2. Compute partial result 3. Compute partial result

X X

X X

X Place partial result in S1

X

X 4. SM0 1, TS (003400)

X

Place partial result in S1

5. ST0 S1 (073103)

6. SM0 0 (003600)

7. Continue processing 8. S2 ST0 (072203)

X

X 9. Continue processing

X X

X X

X X
108-0245-003 Cray Proprietary 65

Interprocessor Communication System Programmer Reference
Test and Set Control

The test and set control logic handles 0034jk instructions for the processors.
When a processor executes an 0034jk instruction and the ECI (Enable Cache
Invalidate) flag is set, it invalidates the cache for that CPU and sends a test and
set command to the JS, which then passes it to the global logic via the
interprocessor JS/JS bus. This command is passed to the global test and set
control. The test and set command that is passed to the global JS logic is a
1-word command. It uses the JS/JS bus for 1 CP, after which the JS/JS bus is
available for commands from other PV ASICs (SV1 series) or PVC ASICs
(SV1ex series).

The global test and set logic contains the following information about each
processor:

• Whether it is doing a 0034jk instruction
• Cluster number
• Semaphore register number

When the test and set command gets to the test and set logic, the logic checks
the semaphore register to determine whether it is set. If the register is not set,
the logic sets it and returns a completion command to the originating
processor. If it is set, it enters a waiting-on-semaphore state and notifies the
originating processor.

Whenever a 0036jk (clear SM) or 073i02 (load SM) instruction is executed, the
status module for each CPU checks to determine whether the semaphore it is
waiting on was cleared. If so, it requests to set it. One of the requesting CPUs
receives access, sets the SM, and notifies its requesting CPU that it has
completed.

Simultaneously, the processor that originated the 0034jk is holding issue. It
holds issue until it receives a response from the JS. If the JS returns a
completion command to the processor, then the 0034jk issues and execution
continues. If the JS returns a deadlock command, the P register decrements and
the processor exchanges with a deadlock flag set.

Deadlock

A deadlock condition occurs when all CPUs that are assigned to a cluster are
holding issue on a test and set (0034jk) instruction; that is, each CPU within the
cluster is waiting for another CPU to clear an SM register. When this condition
occurs, no further execution is possible in any of the CPUs assigned to the
cluster; each CPU waits for another CPU to clear an SM register.
66 Cray Proprietary 108-0245-003

System Programmer Reference Interprocessor Communication
Deadlock occurs in two situations:

• All CPUs in the same cluster hold issue on a test and set instruction.

• A single CPU holds issue on a test and set instruction and there are no
other CPUs in the same cluster. This situation can occur in either of two
ways:

• Only one CPU is assigned to a particular cluster, and that CPU
issues a test and set instruction for an SM register that is currently
set.

• Several CPUs are assigned to the same cluster, one of which is
holding on a test and set instruction. Then, all the other CPUs
exchange to new programs with different cluster numbers.

To resolve the deadlock condition, a deadlock interrupt occurs. This interrupt
sets the deadlock (DL) flag in the current exchange package of each CPU that
is assigned to the cluster in which the deadlock has occurred. This causes each
affected CPU that is not in monitor mode to perform an exchange sequence. A
deadlock chain passes the WS bit and CLN of each CPU to all of the CPU
status modules.

Interprocessor Interrupts

Interprocessor interrupts allow a CPU to interrupt program execution in other
CPUs. Table 14 shows the two instructions that involve interprocessor
interrupts. These instructions can be executed only by a CPU in monitor mode.

When a CPU executes instruction 0014j1, the interrupt-from-internal CPU
(ICP) request flag is set in the CPU that is designated by the contents of
register Aj. If this CPU is not in monitor mode, it begins an exchange
sequence. The program that begins running as the result of the exchange
sequence should be in monitor mode and should execute instruction 001402 to

Table 14. Interprocessor Interrupt Instructions

Machine Instruction CAL Syntax Description

0041j1a SIPI Aj Set interprocessor interrupt request to
CPU (Aj)

001402a CIPI Clear interprocessor interrupt request
a These instructions are privileged to monitor mode.
108-0245-003 Cray Proprietary 67

Real-time Clock System Programmer Reference
clear the ICP flag. If this instruction is not executed, the ICP flag initiates
another exchange sequence when the monitor mode program exits to a
nonmonitor mode program.

There is one special case involving the 0014j1 instruction. If instruction 0014j1
is executed with the contents of register Aj equal to the number of the CPU that
is executing the instruction (that is, if a CPU tries to interrupt itself), the
instruction performs no operation. The interprocessor interrupt logic is part of
the global logic on the JS. It routes interprocessor interrupts to the correct
CPU. When a processor issues a 0014j1 (SIPI) instruction, it sends a SIPI
command to the local JS, which then passes it to the other JS ASICs via the
interprocessor bus. The JS/JS bus interface logic in the global logic routes the
SIPI to the correct processor.

Real-time Clock

Each JS contains a copy of the global real-time clock (RTC). When the RTC is
written, all global copies are updated at the same time. Each individual JS is
then responsible for updating the copies of the RTC that are local to each PV
ASIC (SV1 series) or PVC ASIC (SV1ex series). This is done by requesting
access to the PV/JS bus and sending a copy to the PV. When a processor reads
the RTC, it reads from the local copy on the PV ASIC (SV1 series) or PVC
ASIC (SV1ex series). The PV does not check whether a change to the RTC is
pending. If one processor is changing the RTC at about the same time another
is reading the RTC, the processor that is reading the RTC may not get the new
value.

When the global RTC unit receives a load RTC command, it causes all other JS
activity to halt. When all has gone quiet, the new RTC value is transferred to
all PV ASICs (SV1 series) or PVC ASICs (SV1ex series at the same time.
68 Cray Proprietary 108-0245-003

System Programmer Reference Real-time Clock
Table 15 shows the two instructions that write data to and read data from the
RTC.

Instruction 0014j0 can be issued only by a CPU in monitor mode; the CPU that
issues this instruction updates the value of the local clocks on all other CPUs.
Two or more CPUs should not execute this instruction simultaneously because
there is no hardware to detect this condition, and unpredictable results can
occur. The programmer must avoid this situation. Instruction 072i00 may be
issued simultaneously by any number of CPUs.

Note: On the SV1 CPU, the real-time clock increments at the system clock
rate, not the CPU clock rate (three times the system clock rate).
Therefore, on an SV1 CPU, two successive 072i00 instructions that
issue during the same system clock period will return the same
value.

The RTC is normally used to determine the running time of a program or a
segment of program code. The following example shows an instruction
sequence that is used to determine the running time of a program.

At the end of this sequence, if no interrupts occur, register S1 equals 1 plus the
number of system CPs required to execute Step 2.

Table 15. RTC Instructions

Machine Instruction CAL Syntax Description

0014j0a RT Sj Transmit (Sj) to RTCb

072i00 Si RT Transmit (RTC) to Si
a This instruction is privileged to monitor mode.

b RTC bits 0–63 are forced to 0’s if j=0.

Step
Machine

Instruction CAL Comment

1 072100 S1 RT Load S1 with starting time.

2 - - Insert code to be timed here. Code must
not use S1.

3 072200 S2 RT Load S2 with ending time.

4 061121 S1 S2-S1 Load S1 with difference between ending
and starting time.
108-0245-003 Cray Proprietary 69

Exchange Mechanism System Programmer Reference
Exchange Mechanism

Exchange sequences, fetch sequences, and issue sequences are closely related.
When an initial deadstart program or a new program runs, an exchange
sequence occurs. An exchange sequence brings several important parameters
of the program into some of the central processing unit’s (CPU’s) operating
registers. A fetch sequence begins immediately after the exchange sequence. A
fetch sequence transfers a block of instructions from memory to an instruction
buffer. The issue sequence then selects the instruction that is indicated by the
program address (P) register, decodes it, and passes it on to be executed.

As the instruction executes, the P register increments, which causes new
instructions to move through the issue sequence. When a desired address is not
currently in an instruction buffer, another fetch sequence occurs. This overall
process continues until the program either terminates or is interrupted, at which
time another exchange sequence occurs and the entire process starts over.

This section describes the exchange mechanism, the instruction fetch
sequence, and the instruction issue sequence, which are unique to each CPU. It
also briefly describes the programmable clock, the status register, and the
performance monitor.

Each CPU uses an exchange mechanism to switch instruction execution from
program to program. This exchange mechanism uses blocks of program
parameters called exchange packages and a CPU operation called an exchange
sequence.

The following subsections explain the exchange package and the exchange
sequence in more detail.

Exchange Package

The exchange package (refer back to Figure 6) is a 16-word block of data in
memory that is associated with a particular computer program. The exchange
package contains the basic parameters that provide continuity when a program
stops one section of the program and starts the next.

The exchange package holds the contents of the address (A) and scalar (S)
registers. The contents of the intermediate address (B), intermediate scalar (T),
vector (V), vector mask (VM), shared B (SB), shared T (ST), and semaphore
(SM) registers are not saved in the exchange package. Data in these registers
must be stored and replaced as required by the program that is supervising the
object program or by any program that needs this data.
70 Cray Proprietary 108-0245-003

System Programmer Reference Exchange Mechanism
Refer again to Figure 6 for the format of the exchange package. Table 16 lists
the exchange package assignments. The following subsections define and
explain the fields of the exchange package.

Note: For software, the exchange package bits are numbered from left to
right with the high-order bit (most significant bit) assigned to bit
position 0. For hardware, the exchange package bits are numbered
from right to left with the low-order bit (least significant bit)
assigned to bit position 0. This document uses the hardware
convention.

Processor Number Field

The contents of the processor number (PN) field indicate which CPU
performed the exchange sequence. This value is inserted into the exchange
package from the configuration file bits (13 through 9) that are located on the
PV ASIC (SV1 series) or PVC ASIC (SV1ex series).

P Register Field

The program address (P) register contents are stored in the program address
register field of the exchange package. The instruction that is stored at this
location is the first instruction to issue when the program that corresponds to
the exchange package begins execution.

Memory Error Data Fields

Memory error data, which consists of six fields of information, is valid only if
one of two conditions is met. The first condition is that the
interrupt-on-correctable memory (ICM) bit is set in the mode (M) register and
a correctable memory error is detected. The second condition is that the
interrupt-on-uncorrectable memory (IUM) bit is set in the M register and an
uncorrectable memory error is detected. The following subsections describe
the memory error data fields.

Syndrome Field

The 8-bit syndrome field defines the syndrome code that is generated by
SECDED logic for a memory read operation or an I/O channel transfer. The
syndrome code will be all zeroes for a cache register parity error.
108-0245-003 Cray Proprietary 71

Exchange Mechanism System Programmer Reference
Memory Error Address

If an error occurs during a memory read operation, the number of the bank that
is being read when the error occurred is stored in the 10-bit read address bank
field. The bank number is contained in bits 0 through 9 of the read address.

The memory error address contains address bits 0 through 7, and the memory
error address (continued) contains overflow bits 8 and 9. The address field
identifies the memory section for a cache register parity error per CPU on a
processor module as shown previously in Figure 6.

Read Error Type Field

The 2-bit read error type field determines the type of memory or I/O error that
occurred; bit 0 sets if the error is uncorrectable, and bit 1 sets if the error is
correctable.

Read Mode Field

The read mode bits are used with the port bits to determine what kind of read
operation was in progress when the memory error occurred. Table 16 shows
the read mode and port value translations. Although the ports are listed as A
and B and D, only port D is an actual physical port. Ports A and B are used as
identification codes because they do not physically exist external to the PV
ASIC (SV1 series) or PVC ASIC (SV1ex series).

Memory Register Fields

Four registers test the area limits for memory references: the data base address
(DBA) register, the data limit address (DLA) register, the instruction base
address (IBA) register, and the instruction limit address (ILA) register.

Data Base Address Register Field

The DBA register holds the base address of the user’s data area (the location in
memory where a program’s data area begins). Each time an instruction in the
program makes a memory reference, the memory address that is generated by
the instruction is added to the contents of the DBA register to form the absolute
memory address. An address less than the address stored in the DBA generates
an out-of-range condition.

Bits 10 through 31 of the DBA register are stored in the DBA field of the
exchange package. Bits 0 through 9 of the register are always 0 and therefore
do not need to be stored.
72 Cray Proprietary 108-0245-003

System Programmer Reference Exchange Mechanism
Data Limit Address Register Field

The DLA register holds the limit address of the user’s data area, which is used
to determine the highest absolute memory address that the program can use for
reading or writing data. Each time an instruction makes a memory reference,
the absolute memory address that the instruction generates is compared to the
address in the DLA register. If the absolute memory address is less than the
DLA register, the reference proceeds. If the absolute memory address is equal
to or greater than the DLA register, an out-of-range condition exists. If the
interrupt-on-operand range error (IOR) flag in the mode register is set, the
out-of-range condition sets the operand range error (ORE) flag in the flag
register, which initiates an exchange sequence.

A memory read reference that is beyond the limits of the assigned area issues
and completes, but a zero value is transferred from memory. A memory write
reference that is beyond the assigned area issues, but no write operation occurs.

Table 16. Exchange Package Read Mode and Port Translations

Port
Value

Mode
Value

Type of
Transfer when
Error Occurred Explanation

0 2 V Error during vector read from memory

4 = A 0 EX Error while reading the exchange package

4 = A 1 B Error during block memory read to the B registers

4 = A 3 A, S Error during a memory read to the A or S register

2 = B 0 Fetch Error during memory read for fetch instructions

2 = B 1 T Error during block memory read to the T registers

6 = A, B 3 CRPE Cache register parity error during a read from one of two CA
ASICs per CPU per processor module

1 = D 0 Y1 or
HIPPI

SECDED error in CI ASIC during a memory read for channel (n)
output

1 = D 1 Y1 or
HIPPI

SECDED error in CI ASIC during a memory read for channel
(n+3) output

1 = D 2 Y1 or
HIPPI

SECDED error in CI ASIC during a memory read for channel
(n+5) output

1 = D 3 Y1 or
HIPPI

SECDED error in CI ASIC during a memory read for channel
(n+7) output

n = Processor board number

Section 0, 2, 5, and 7 errors are on CA 0, 2, 4, or 6 per CPU 0, 1, 2, or 3; and section 1, 3, 4, and 6 errors are on
CA 1, 3, 5, or 7 per CPU 0, 1, 2, or 3 respectively.
108-0245-003 Cray Proprietary 73

Exchange Mechanism System Programmer Reference
Bits 10 through 31 of the DLA register are stored in the DLA field of the
exchange package. Bits 0 through 9 of the register are always 0 and therefore
do not need to be stored. The highest absolute memory address that a program
can reference for data is defined by [(DLA) x 2 exp10] - 1 memory range.

Instruction Base Address Register Field

The IBA register holds the base address of the user’s instruction area (the
location in memory where a program’s instruction area begins). During an
instruction fetch sequence, an absolute memory address is formed by adding
the relative address that is generated by the fetch control logic to the contents
of the IBA register.

The absolute memory address for an instruction fetch is formed by adding the
IBA register to the higher-order 22 bits of the P register. Bits 10 through 31 of
the IBA register are stored in the IBA field of the exchange package. Bits 0
through 9 of the register are always 0 and therefore do not need to be stored.

Instruction Limit Address Register Field

The ILA register holds the limit address of the user’s instruction area, which is
used to determine the highest absolute memory address that can be accessed
during an instruction fetch sequence.

If the absolute memory address used in an instruction fetch sequence is not
between the area of addresses contained within the IBA and ILA registers of
the active exchange package, the CPU generates a program range error
interrupt. Bits 10 through 31 of the ILA register are stored in the ILA field of
the exchange package. Bits 0 through 9 of the register are always 0 and
therefore do not need to be stored. The highest absolute instruction address of a
program is defined by [(ILA) x 2 exp10]-1 memory range.

Exchange Address Register Field

The 8-bit exchange address (XA) register specifies the first word address of a
16-word exchange package that is loaded by an exchange sequence. The XA
register field contains the higher-order 8 bits of a 12-bit XA register that
specifies the absolute memory address. The low-order bits of the area are
always 0; an exchange package must begin on a 16-word boundary. The 12-bit
limit requires that the absolute memory address be in the lower 10000 (octal)
words of memory. (The DBA is not added to the XA register.) The exchange
sequence exchanges the contents of the registers with the contents of the
exchange package at the beginning XA register in memory.
74 Cray Proprietary 108-0245-003

System Programmer Reference Exchange Mechanism
Vector Length Register Field

The 7-bit vector length (VL) register specifies the length of all vector
operations that are performed by vector instructions and the number of
elements that are held in the V registers. The value in the VL register can be
changed during program execution by using the 00200k instruction.

Cluster Number Register Field

The cluster number (CLN) register determines the CPU’s cluster. There are 33
(decimal) clusters of SB, ST, and SM registers (for the largest system). A value
of 1 (octal) through 41 (octal) in the CLN register determines which cluster the
CPU can access. If the content of the CLN register is 0, then the CPU does not
have access to any SB, ST, or SM register. The contents of the CLN register in
all CPUs are also used to determine a deadlock interrupt condition. The
formula for determining the number of the cluster for the various SV1 series
configurations is the number of CPUs + 1.

Vector Not Used Field

The state of the vector not used (VNU) bit in the exchange package indicates
whether instruction 077 or instructions 140 through 176 were issued during the
execution intervals. The VNU bit is set if none of the instructions issued; it is
not set if one or more of the instructions issued.

Waiting for Semaphore Field

The waiting for semaphore (WS) bit in the exchange package is set to indicate
that the CPU exchanged when the test and set instruction was holding in the
current instruction parcel (CIP) register.

Flag Register Field

The flag (F) register contains 11 flags for the active program. The setting of a
flag can initiate an exchange sequence. The monitor program analyzes the flag
to identify the cause of an exchange sequence. Before the monitor program
exchanges back to the program, it must clear the flags in the F register area of
the exchange package. If any flag remains set, another exchange occurs
immediately. The contents of the F register are stored in memory with the rest
of the exchange package.
108-0245-003 Cray Proprietary 75

Exchange Mechanism System Programmer Reference
Some of the F register flags are disabled when a program is running in monitor
mode or interrupt in monitor mode (refer to the following “Mode Register
Field” subsection in this section for more information on the MM and IMM
bits). If a flag is disabled and the conditions for setting the flag are present, the
flag remains clear and no exchange sequence is initiated.

The F register contains the following flags:

Bit Position
SW/HW Flag Description

8/55 (not used)

9/54 Interrupt-from-internal CPU (ICP) - is set when another
CPU issues instruction 0014j1.

10/53 Deadlock (DL) - is set when all CPUs in a common cluster
are holding issue on a test and set instruction.

11/52 Programmable clock interrupt (PCI) - is set when the
interrupt countdown counter in the programmable clock
equals 0.

12/51 MCU interrupt (MCU) - is set when the CPU Interrupt
signal is active on Deadstart of a CPU. This signal is part of
I/O channel 20.

13/50 Floating-point error (FPE) - is set when a floating-point
range error occurs in any of the floating-point functional
units and when the interrupt-on-floating-point error (IFP) bit
in the M register is set.

14/49 Operand range error (ORE) - is set when a data reference is
made outside the boundaries of the DBA and DLA registers
and when the interrupt-on-operand range error bit in the M
register is set.

15/48 Program range error (PRE) - is set when an instruction fetch
is made outside the boundaries of the IBA or ILA registers.

16/47 Memory error (ME) - is set when a correctable or
uncorrectable memory error occurs and the corresponding
interrupt-on-correctable memory error (ICM) bit or
interrupt-on-uncorrectable memory error (IUM) bit in the M
register is set.

17/46 I/O interrupt (IOI) - is set when an I/O interrupt occurs after
an I/O channel completes a transfer.

18/45 Error exit (EEX) - is set by an error exit (000) instruction if
the program is not in monitor mode or the
interrupt-in-monitor mode (IMM) is set.

19/44 Normal exit (NEX) - is set by a normal exit (004) instruction
if the program is not in monitor mode.
76 Cray Proprietary 108-0245-003

System Programmer Reference Exchange Mechanism
Mode Register Field

The mode (M) register contains 10 user-selectable bits for the active program;
it also contains 1 status bit: floating-point error status. The M register contains
the following bits:

Bit Position
SW/HW

Mode or Status Description

20/43 Enable second vector logical (ESVL) - when set, this bit
enables the second vector logical functional unit.
Instructions 140 through 145 use the second vector logical
functional unit if it is enabled and not reserved by another
instruction.

21/42 Bit matrix loaded (BML) - is set by the load bit matrix
(1740j4) instruction to indicate to the operating system that
the BMM register contains valid data. The 002210
instruction clears this bit.

22/41 Floating-point error status (FPS) - when set, this bit indicates
that a floating-point error occurred, regardless of the state of
the floating-point error flag.

23/40 Bidirectional memory (BDM) - when set, this bit indicates
that block read and write operations can operate
concurrently. The BDM bit can be set or cleared during a
program by using instructions 002600 (enable bidirectional
memory transfers) and 002500 (disable bidirectional
memory transfers).

24/39 Interrupt-on-operand range error (IOR) - when set, this bit
enables interrupt-on-operand address range errors. The IOR
bit can be set or cleared during the execution interval of a
program by using instructions 002300 (enable
interrupt-on-operand range error) and 002400 (disable
interrupt-on-operand range error).

25/38 Interrupt-on-floating-point error (IFP) - when set, this bit
enables interrupts on floating-point errors. The IFP bit can be
set or cleared during the execution interval of a program by
using instructions 002100 (enable interrupt-on-floating-point
error) and 002200 (disable interrupt-on-floating-point error).

26/37 Interrupt-on-uncorrectable memory error (IUM) - when set,
this bit enables interrupts on uncorrectable memory data
errors and/or cache register parity errors.

27/36 Interrupt-on-correctable memory error (ICM) - when set, this
bit enables interrupts on correctable memory data errors
and/or cache register parity errors.

28/35 This bit position is not used.
108-0245-003 Cray Proprietary 77

Exchange Mechanism System Programmer Reference
The FPS bit indicates the state of the CPU at the time of the exchange
sequence. The remaining bits are not altered during the execution interval for
the exchange package and can be altered only when the exchange package is
inactive in memory.

The FPS, BML, BDM, IOR, and IFP bits can be read to an S register with
instruction 073i01.

Cache Enable

For the SV1 series machines, each PV ASIC includes a 32-Kword or
256-Kbyte cache on two CA ASICs. The cache is enabled for data use when
the ECD mode bit is set to a 1 and for instruction fetch use when the ECF bit is
set to a 1.

For the SV1ex series machines, each PVC ASIC includes a 256-Kbyte, 4-way,
set associative cache array.

Processor Type

The processor type is identified using bits 63 and 62 of word 7 of the exchange
package:

00 - Cray J90
01 - Cray J90se
10 - Cray SV1
11 - Cray SV1e

29/34 Selected for external interrupts (SEI) - when set, this CPU is
preferred for I/O interrupts. When an I/O channel completes
a transfer, the channel can interrupt only one CPU. The CPU
with this bit set gets the interrupt. Refer to “I/O Interrupts”
for more information on I/O interrupts.

30/33 Interrupt in monitor mode (IMM) - this bit is used only when
the MM bit is set; this bit then enables the DL, FPE, ORE,
and PRE interrupts along with interrupts allowed when MM
is also set.

31/32 Monitor mode (MM) - when set, this bit allows access to
privileged monitor mode instructions and inhibits all
interrupts except ME, NEX, and EEX.

Bit Position
SW/HW

Mode or Status Description
78 Cray Proprietary 108-0245-003

System Programmer Reference Exchange Mechanism
Performance Monitor

The performance monitor tracks groups of hardware-related events. These
results can be used to indicate the relative performance of a program. The
performance monitor contains eight performance counters that track four
groups of hardware-related events.

The SV1 series system has a large 32-Kword cache that is used for both data
and instruction caching. Cache is enabled by 2 bits in word 7 of the exchange
package: ECD and ECF. Effective cache hit counting is simplified by the
addition of 4 bits in word 7 of the exchange package that selectively disables
cache hit counting. These bits are:

• Disable scalar cache hits - scalar A or S data (DSCH)
• Disable B or T cache hits - B or T data (DBCH)
• Disable fetch cache hits - instruction operands (DFCH)
• Disable vector cache hits - vector data (DVCH)

For more information, refer to “Performance Monitor” on page 99.

Cache Invalidate

The Enable Cache Invalidate (ECI) bit in word 7 of the exchange package is
used by the 0034jk instruction to invalidate cache.

A Register Fields

The current contents of all A registers are stored in bits 0 through 31 of words
0 through 7 during an exchange sequence.

S Register Fields

The current contents of all S registers are stored in bits 0 through 63 of words 8
through 15 during an exchange sequence.

Exchange Sequence

The exchange sequence moves an inactive exchange package from memory
into the operating registers. Simultaneously, the exchange sequence moves the
active exchange package from the operating registers back into memory. This
swapping operation occurs in a fixed sequence when all computational activity
associated with the active exchange package stops.
108-0245-003 Cray Proprietary 79

Exchange Mechanism System Programmer Reference
The exchange sequence involves 16 memory read references (sent in 4 CPs)
and 16 memory write references (sent in 8 CPs). A single 16-word block of
memory is the source of the inactive exchange package and the destination of
the active exchange package. Word 0 of the active exchange package is
swapped with word 0 of the inactive exchange package. The location of this
block is specified by the contents of the XA register and is a part of the active
exchange package.

Exchange Sequence Timing

The following subsections define the hold conditions, execution time, and
special case conditions for an exchange sequence.

Hold Conditions

The following conditions can delay the start of an exchange sequence:

• Incomplete memory references
• Any active A, S, or V registers within the CPU

Execution Time

Any exchange takes a minimum of approximately 220 CPs: approximately 108
CPs for the exchange sequence and approximately 112 CPs for the fetch
operation. (This time is longer when memory conflicts occur.) Memory
conflicts are possible during an exchange sequence and a fetch operation.

Special Case Conditions

If the test and set instruction is holding in the current instruction parcel (CIP)
register, both the CIP and next instruction parcel (NIP) registers are cleared.
The exchange occurs with the WS flag set and the P register pointing to the
address of the test and set instruction.

Initiating an Exchange Sequence

The exchange sequence can be initiated by a deadstart sequence, a program
exit, or an interrupt. The following subsections describe conditions that cause
an exchange sequence and the results of the exchange.
80 Cray Proprietary 108-0245-003

System Programmer Reference Exchange Mechanism
Deadstart Sequence

The deadstart sequence starts a program in the mainframe after a
power-off/power-on operation or whenever the operating system is
re-initialized in the mainframe. All control latches, words in memory, and the
contents of all registers are invalid after a power-off/power-on operation.
During the power-on sequence, the reset logic is asserted automatically to all
flip-flops (FF options) in the system. JTAG control logic loads all of the
configuration registers using JTAG scan circuitry and then enables the Reset
and Stopclk signals. Next, JTAG control proceeds with the start-up sequence
to synchronize all ASICs and leave the system idle. Memory can now be
loaded through I/O channel 20 (octal).

The external device then loads an initial exchange package and monitor
program. Because a deadstart sequence forces the contents of the XA register
to 0, this initial exchange package must be located at memory address 0.

Through JTAG, the processor is chosen to do the deadstart exchange by
forcing an interrupt on that CPU. These actions cause an exchange sequence
that issues the exchange package at memory address 0. This exchange package
then moves into the operating registers and initiates a program that uses these
parameters.

The exchange package that was originally used as the deadstart sequence is
swapped back into memory address 0 and is indeterminate because of the
deadstart operation. New data is entered into this exchange package in
preparation for deadstarting subsequent CPUs by an interprocessor interrupt.
When instruction 0014j1 is issued in the first CPU, the next CPU exchanges to
memory address 0. This sequence continues until all CPUs are deadstarted.

Each exchange package resides in an area that was defined during system
deadstart. The defined area must be in the lower 4,096 (10000 [octal]) words of
memory. The package at memory address 0 is the deadstart monitor’s
exchange package. Only the monitor has a defined area so that it can access all
of memory, including exchange package areas. This area allows the monitor to
define or alter all exchange packages other than its own when it is the active
exchange package. Other exchange packages provide for object programs and
other monitor tasks and are located outside of the program’s instruction and
data areas.

Program Exit Instructions

Two program exit instructions initiate an exchange sequence: error exit (000)
and normal exit (004). The two instructions enable a program to request its
own termination. A program usually uses the normal exit instruction to
108-0245-003 Cray Proprietary 81

Exchange Mechanism System Programmer Reference
exchange back to the monitor program. The error exit instruction allows
termination of an object program if an abnormal condition occurs; the
exchange address selected is the same address that is used for a normal exit
instruction.

Depending on which instruction issues, either an error exit or normal flag is set
in the F register, which forces an interrupt. (Refer to the previous “Flag
Register Field” subsection for more information on the flags.) The appropriate
flag is set only if the active exchange package is not in monitor mode. The
inactive exchange package that is sent during the exchange sequence normally
has its monitor mode bit set.

Interrupts

An exchange sequence can also be initiated by setting any of the interrupt flags
in the F register (refer to “Flag Register Field” for more information on the
flags). Setting one or more flags causes a Request Interrupt signal to initiate an
exchange sequence.

Exchange Package Management

Exchange package management dictates that a user program always exchanges
back to the monitor that caused the non-monitor program to start execution.
This exchange back to the monitor ensures that the program information is
always exchanged into its proper exchange package.

For example, a monitor begins an execution interval following a deadstart
sequence. No interrupts (except memory) can terminate its execution interval
because it is in monitor mode. Before the monitor program exits, the monitor
sets the contents of the XA register to point to a user program’s exchange
package, so that a user program runs next. Then, the monitor sets the contents
of the XA register in the user program’s exchange package to the appropriate
location in the monitor program. The monitor voluntarily exits by issuing a
normal exit instruction (004).

The exchange sequence moves the inactive exchange package (in this case, the
user program’s) from memory into the operating registers and at the same time,
moves the active exchange package (in this case, the monitor’s) from the
operating registers into memory. The contents of the XA register in the user
program’s exchange package point to the monitor that originally allowed the
user program to exchange. When the exchange is complete, the user program
begins to run.
82 Cray Proprietary 108-0245-003

System Programmer Reference Instruction Fetch Sequence
If an interrupt occurs while the user program is running, an exchange sequence
is initiated. Because the contents of the XA register in the user’s program
exchange package point to the monitor, the exchange is back to the monitor.
(Note that a user program cannot alter the contents of the XA register.)

When the exchange back to the monitor is complete, the monitor determines
which interrupt caused the exchange and sets the contents of the XA register to
call the proper interrupt-processing program to run. To do this, the monitor sets
the XA register to point to the exchange package for the relevant
interrupt-processing program. The monitor then clears the interrupt and
executes a normal exit (004) instruction, which causes the interrupt-processing
program to run. Depending on the operating task, the interrupt-processing
program can run in monitor mode or user mode.

Note: There is no interlock between an exchange sequence in a CPU and
memory transfers in another CPU; therefore, avoid modifying
exchange packages used by other CPUs except under
software-controlled situations.

Instruction Fetch Sequence

An instruction fetch sequence retrieves program code from memory and places
it in an instruction buffer. The program code is held in the instruction buffer
before it is delivered to the instruction issue registers. The following
subsections describe the hardware that is associated with the instruction fetch
sequence and define the fetch operation.

Instruction Fetch Hardware

A Cray SV1 series system uses the P register to initiate an instruction fetch
sequence; it uses eight instruction buffers to store the instructions that are
retrieved from central memory. Figure 10 shows the P register and instruction
buffers.
108-0245-003 Cray Proprietary 83

Instruction Fetch Sequence System Programmer Reference
Figure 10. Instruction Fetch Block Diagram

Instruction Buffers

Each of the eight instruction buffers (IB0 through IB7) holds 40 (octal) (00
through 37 octal) words. Each word contains four 16-bit instruction parcels;
therefore, each buffer holds 128 parcels. Instruction parcels are held in the
buffers before they are delivered to the issue registers.

The first instruction parcel in a buffer always has a word address that is a
multiple of 40 (octal). This word address allows the entire area of addresses for
instructions in a buffer to be defined by the high-order 17 bits of the P register.

Each instruction buffer has an associated instruction buffer address register
(IBAR). The IBAR contains the high-order 17-bit address and an IBAR valid
bit for the instruction in that buffer. When set, the IBAR valid bit indicates that
the buffer contains valid data. During an exchange sequence, the IBAR valid
bit is cleared to invalidate the previous program’s instructions and to force the
CPU to fetch new instructions. Once the fetch operation begins, the
appropriate IBAR is loaded with the upper 17 bits of the P register, and its
valid bit is set. Figure 11 shows the IBAR.

Figure 11. IBAR

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

Instruction
Buffers

00
•
•
•

37

P
Register

-1/-2

To Issue Registers
Central
Memory

Note: If the ECF bit is set cache is enabled.

Valid Bit Word Address

Bits 21 5
84 Cray Proprietary 108-0245-003

System Programmer Reference Instruction Fetch Sequence
Program Address Register

The 24-bit P register indicates the next parcel of program code to enter the next
instruction parcel (NIP) register. As shown in Figure 12, the high-order 22 bits
of the P register indicate the word address of the program code in memory
relative to the base address. The low-order 2 bits indicate the parcel within the
word. Because 22 bits specify the word address, the maximum program length
is approximately 4 Mwords with approximately 16 million parcels.

Figure 12. P Register

Under normal circumstances, the P register increments sequentially as
instructions issue. For 1- and 2-parcel instructions, the P register increments by
1; for 3-parcel instructions, the P register increments by 2. These increments
allow both 2- and 3-parcel instructions to issue in 2 CPU CPs. Branch
instructions can load the P register with any value. When the program
exchanges out, the saved P register contains the address of the instruction
immediately after the last instruction that executed.

Instruction Fetch Operation

An instruction fetch operation refers to the series of steps that move program
code from memory to an instruction buffer. Refer to Figure 13 for an
illustration of the P register and IBAR address formats.

Figure 13. P Register and IBAR Address Formats

The P register always contains the parcel address of the next instruction to be
decoded. The fetch operation is based on a comparison check of the P register
against the values held in the eight IBARs; this comparison is done each clock

Parcel
SelectWord Address

Bits 21 -2-10

Parcel
Select

Upper 17 Bits of Instruction Word Address

Bits 21 045

Selects Word
within Buffer

-1 -2

Valid Bit Upper 17 Bits of Instruction Word Address

5

P Register

IBAR
Bits 21
108-0245-003 Cray Proprietary 85

Instruction Fetch Sequence System Programmer Reference
period (CP). If the content of one of the IBARs is equal to the upper 17 bits in
the P register and the IBAR valid bit is set, an in-buffer (or coincidence)
condition exists.

If the high-order 17 bits of the P register do not match any IBARs, or the valid
bit is not set, an out-of-buffer (or no-coincidence) condition exists and the
instruction fetch sequence starts.

Once the instruction buffers are loaded, or if the comparison between the P and
IBAR registers produced a coincidence condition, the proper instruction parcel
is selected from the instruction buffer. The instruction parcel is sent to the NIP
register and then to the CIP register, from which the instruction issues. Refer to
Figure 14. Instruction issue is explained later in this section.

The instruction fetch sequence sends 32 requests in 14 CPU CPs to transfer 32
words (128 parcels) from memory into the instruction buffer (refer to “Port
Utilization” for more information on memory ports). Two words are
transferred during each CPU CP.

The buffers are filled circularly: 128 parcels fill the first instruction buffer;
then another fetch sequence occurs to fill the second instruction buffer with
128 parcels, and so on, until all eight buffers are filled. If the program code
exceeds 1,024 parcels, the ninth fetch invalidates the first instruction buffer
and reloads it with the new instructions.

The loading of the instruction buffer occurs in whatever order the instruction
words arrive from memory (or cache).

Although optimizing the length of code segments for instruction buffers is not
a prime consideration when programming a CPU, the number and size of the
buffers and the capability for forward and backward branching can be used to
minimize fetches. Large loops that contain up to 1,024 consecutive instruction
parcels can be maintained in the eight buffers. Another method to minimize
fetches is to have a main program sequence in one or two of the buffers make
repeated calls to short subroutines in the other buffers. The program and
subroutines remain undisturbed in the buffers as long as no out-of-buffer
condition or exchange causes reloading of a buffer. The SV1 series CPU
includes the 32-Kword cache that is available for both data and instruction use.
Additional instructions may be available to the program for quick access from
this cache.

Forward and backward branches are possible within buffers. Branching does
not cause reloading of an instruction buffer if the address to which the
instruction branches is within one of the buffers. Multiple copies of instruction
parcels cannot occur in the instruction buffers.
86 Cray Proprietary 108-0245-003

System Programmer Reference Instruction Issue
Because instructions are held in instruction buffers and in cache, before issue
and until the buffer is reloaded, self-modifying code should not be used.
Self-modifying code may be impossible because of independent data and
instruction memory protection. As long as the address of the unmodified
instruction is in an instruction buffer, the modified instruction in memory is not
loaded into an instruction buffer. Cache must be invalidated when
self-modifying code is used.

Instruction Fetch Timing

During an instruction fetch sequence, instructions are moved from memory, or
cache, to an instruction buffer at the rate of 2 words per CPU CP. It takes about
109 CPs for the first word to arrive at the instruction buffer and an additional
3 CPs for the first instruction to arrive in the current instruction parcel (CIP)
register. Instruction issue can run concurrently with the fetch operation as long
as the required instruction parcel is in the instruction buffer. If no memory
conflicts occur, the instruction buffer is filled in about 124 CPs (109 CPs for
the first word and 15 CPs for remaining words). Memory conflicts can
lengthen the fetch sequence.

Instruction Issue

An instruction issue sequence is the series of steps that are performed to move
an instruction from an instruction buffer through the issue registers and into
execution.

Instruction Issue Hardware

The SV1 series system uses four registers to issue instructions. Figure 14
shows the registers and buffers, and the general flow of the instruction parcels
through them. CPU instructions are 1-, 2-, or 3-parcel instructions; refer to
“Instruction Formats” for information on instruction parcels.

Vector instructions are locally issued and dispatched to the vector unit for final
issue. The vector unit can queue five such vector instructions, which are then
issued in the order received. The vector issue unit checks for vector register
and functional unit conflicts before issuing these instructions. Vector register
and functional unit reservations are made by the vector issue unit upon final
issue of the instructions.
108-0245-003 Cray Proprietary 87

Instruction Issue System Programmer Reference
Figure 14. Instruction Issue Block Diagram – General Flow

Instruction Buffers

The instruction buffers hold the program code after it is retrieved from
memory and before it is passed to the issue registers. The instruction buffers
have two associated read-out registers to streamline the flow of instructions
from the buffers to the next instruction parcel (NIP) register. Even-numbered
words are loaded into the even read-out register, while odd-numbered words
are loaded into the odd read-out register. Bit 0 of the P register determines
which read-out register is used, and bits -1 and -2 of the P register select the
parcel to be sent to the NIP register.

Program Address Register

The 24-bit P register indicates the next parcel of program code to enter the NIP
register. The high-order 22 bits of the P register indicate the word address for
the program code in memory relative to the base address. The low-order 2 bits
indicate the parcel within the word. Under normal circumstances, the P register
increments sequentially as instructions issue. For 1- and 2-parcel instructions,
the P register increments by 1; for 3-parcel instructions, it increments by 2.
This allows both 2- and 3-parcel instructions to issue in 2 CPs. Branch
instructions and exchange sequences can load the P register with any value.

Next Instruction Parcel Register

The 16-bit NIP register receives an instruction parcel from one of the
instruction buffer read-out registers. While the parcel of program code is held
in the NIP register, it is decoded to determine whether the instruction is a 1-,
2-, or 3-parcel instruction. The parcel is then passed to the CIP register.

Instruction
Buffers P

+1/+2

Issue

Read-out
Registers

CIP

LIP

LIP 1

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

00
•
•
•

37

NIP
88 Cray Proprietary 108-0245-003

System Programmer Reference Instruction Issue
The NIP register cannot be master cleared. An undetermined instruction can
issue during the master clear sequence, before an interrupt condition blocks
data entry into the NIP register.

Current Instruction Parcel Register

The 16-bit CIP register receives the parcel of program code from the NIP
register and holds the instruction until it issues. Issue of an instruction that is
held in the CIP register can be delayed until conflicting operations are
completed (refer to “Reservations and Hold Issue Conditions”).

The issue control hardware associated with the CIP register is master cleared;
the register itself is not. An undetermined instruction can issue during the
master clear sequence.

Lower Instruction Parcel and Lower Instruction Parcel 1 Registers

The 16-bit lower instruction parcel (LIP) register holds the second parcel of a
2-parcel instruction (the first parcel of this instruction is always held in the CIP
register). The 16-bit LIP1 register holds the third parcel of a 3-parcel
instruction (again, the first parcel is held in the CIP register, and the second
parcel of this instruction is held in the LIP register).

Instruction Issue Operation

Control logic associated with the NIP register determines whether the
instruction is a 1-, 2-, or 3-parcel instruction and steers subsequent parcels to
the correct register. The general sequences for the three types of instructions
are described in the following paragraphs; specific examples of 1-, 2-, and
3-parcel instructions are provided on the following pages.

For 1-parcel instructions, the P register sends the instruction parcel to the NIP
register. From the NIP register, the instruction moves to the CIP register. If
there are no conflicts, the instruction executes.

For a 2-parcel instruction, the P register sends the first parcel to the NIP
register. Then the first parcel is sent to the CIP register, while the second parcel
goes directly to the LIP register. When the two registers are properly loaded
with the correct parcels and there are no conflicts, the first parcel issues from
the CIP register and the second parcel issues from the LIP register at the same
time. When the parcels of the 2-parcel instruction move from the CIP and LIP
registers to execution, the NIP register sends a blank parcel to the CIP register.
The control logic decodes this blank parcel as a no-operation instruction when
it issues from the CIP register. While this blank parcel is loaded into the CIP
108-0245-003 Cray Proprietary 89

Instruction Issue System Programmer Reference
register, a new parcel is loaded into the NIP register, and the control logic
determines whether the instruction is a multiparcel instruction. During this
sequence, a delay can occur if the new instruction is in a different buffer than
the previous instruction or if a fetch operation is required.

For a 3-parcel instruction, the P register sends the first parcel to the NIP
register. Then the first parcel is sent to the CIP register, while the second parcel
goes directly to the LIP register and the third parcel goes directly to the LIP1
register. When the three registers are properly loaded with the correct parcels
and there are no conflicts, the first parcel issues from the CIP register, the
second parcel issues from the LIP register, and the third parcel issues from the
LIP1 register at the same time. When the parcels of the 3-parcel instruction
move from the CIP and LIP registers to execution, the NIP register sends a
blank parcel to the CIP register. The control logic decodes this blank parcel as
a no-operation instruction when it issues from the CIP register. While this
blank parcel is loaded into the CIP register, a new parcel is loaded into the NIP
register and the control logic determines whether it is a multiparcel instruction.
Delays can occur if the new instruction is in a different buffer than the previous
instruction or if a fetch operation is required.

Figure 15 through Figure 24 and the following paragraphs show the steps that
occur as 1-, 2-, and 3-parcel instructions are steered in sequence through the
issue registers. The sequence assumes a 1-CP delay and is numbered CPn
through CPn+9. An instruction buffer with its two read-out registers, the P
register, and the relevant issue registers are shown for each CP.

Figure 15 shows parcels 20-0 through 21-3 being held in an instruction buffer
and read-out registers. The P register is pointing to parcel 20-0 as the next
parcel to be read into the NIP register.

Figure 15. Instruction Issue Block Diagram – Parcels Held

20-0

0

17
20
21
22

37

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

20-0

20-1

20-2

20-3

21-0

21-1

21-2

21-3

P Register

20-0

NIP CIP

+1
90 Cray Proprietary 108-0245-003

System Programmer Reference Instruction Issue
Figure 16 shows parcel 20-0 in the NIP register. The P register incremented by
1 and is pointing to parcel 20-1 to read out as the next parcel. While parcel
20-0 is in the NIP register, the issue hardware determines whether it is a 1-, 2-
or 3-parcel instruction.

Figure 16. Instruction Flow through Issue Registers (CPn + 1)

Because parcel 20-0 is a 1-parcel instruction, the logic steers parcel 20-0 into
the CIP register and parcel 20-1 into the NIP register. The P register
increments by 1 (refer to Figure 17).

Figure 17. Instruction Flow through Issue Registers (CPn + 2)

While the parcel in the NIP register is decoded to determine whether it is a 1-,
2-, or 3-parcel instruction, the issue hardware checks for any conflicts that
might prevent the instruction in the CIP register from issuing. If there are
conflicts, both the CIP and NIP registers hold their parcels, and the P register
does not increment (refer to Figure 18).

20-0

0

17
20

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

20-0

20-1

20-2

20-3

21-0

21-1

21-2

21-3

P Register

20-1

NIP CIP

20-0

+1

21
22

37

20-0

0

17
20

21
22

37

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

20-0

20-1

20-2

20-3

21-0

21-1

21-2

21-3

P Register

20-2

NIP CIP

20-1 20-0
108-0245-003 Cray Proprietary 91

Instruction Issue System Programmer Reference
Figure 18. 1-parcel Instruction Holding 1 CP for Conflict (CPn + 3)

This holding state is maintained until the conflict is resolved. If there are no
conflicts, or when the conflict is resolved, parcel 20-0 issues from the CIP
register (refer to Figure 19).

Figure 19. Instruction Flow through Issue Registers (CPn + 4)

Because parcel 20-1 is the first parcel of a 2-parcel instruction, the logic steers
parcel 20-2 into the LIP register and parcel 20-1 into the CIP register. Also, a
blank parcel is generated in the NIP register. The P register increments by 1 to
point to the next parcel (in this case, parcel 20-3). Issue hardware checks for
conflicts. If any conflicts are found, the CIP, LIP, and NIP registers hold their
parcels and the P register does not increment (refer to Figure 20).

20-0

0

17
20

21
22

37

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

20-0

20-1

20-2

20-3

21-0

21-1

21-2

21-3

P Register

20-2

NIP CIP

20-1 20-0

+1

20-0

0

17
20

21
22

37

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

20-0

20-1

20-2

20-3

21-0

21-1

21-2

21-3

P Register

20-3

NIP CIP

20-1Blank

+1

Issue
(20-0)

LIP

20-2
92 Cray Proprietary 108-0245-003

System Programmer Reference Instruction Issue
Figure 20. 2-parcel Instruction Holding 1 CP for Conflict (CPn + 5)

This holding state is maintained until the conflict is resolved. If there are no
conflicts, or when the conflict is resolved, parcels 20-1 and 20-2 issue together
in the next CP (refer to Figure 21).

Figure 21. Instruction Flow through Issue Registers (CPn + 6)

As the 2 parcels move from the CIP and LIP registers to issue, parcel 20-3 is
loaded into the NIP register and a blank parcel is loaded into the CIP register.
The P register increments by 1 and points to the next parcel (in this case, parcel
21-0). Because the P register no longer points to a parcel in word 20, a new
word is loaded into the even read-out register during the next CP. The blank
parcel in the CIP register is decoded as a no-operation instruction when it
issues during CPn+7 (refer to Figure 22).

20-0

0

17
20

21
22

37

21-0

20-1 20-2 20-3

21-321-221-1
Word

Instruction Buffer Even Odd

Read-out Registers

20-0

20-1

20-2

20-3

21-0

21-1

21-2

21-3

P Register

20-3

NIP CIP

20-1Blank

LIP

20-2

20-0

0

17
20

21
22

37

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

20-0

20-1

20-2

20-3

21-0

21-1

21-2

21-3

P Register

21-0

NIP CIP

20-3 Blank

+1

Issue
(20-1,
20-2)

LIP
108-0245-003 Cray Proprietary 93

Instruction Issue System Programmer Reference
Figure 22. Instruction Flow through Issue Registers (CPn + 7)

Because parcel 20-3 is the first parcel of a 3-parcel instruction, the logic steers
parcel 21-1 into the LIP1 register, parcel 21-0 into the LIP register, and parcel
20-3 into the CIP register. A blank parcel is generated in the NIP register. The
P register increments by 2 and points to the next parcel (in this case, parcel
21-2). Issue hardware checks for conflicts. If any conflicts are found, or when
the conflict is resolved, the issue registers hold their parcels, and the P register
does not increment (refer to Figure 23).

Figure 23. 3-parcel Instruction Holding 1 CP for Conflict (CPn + 8)

This holding state is maintained until the conflict is resolved. If there are no
conflicts, parcels 20-3, 21-0, and 21-1 issue together in the next CP (refer to
Figure 24).

20-0

0

17
20

21
22

37

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

22-0

22-1

22-2

22-3

21-0

21-1

21-2

21-3

P Register

21-2

NIP CIP

20-3Blank

+2

LIP

22-0 22-322-222-1

21-0

LIP 1

21-1

No
Operation

20-0

0

17
20

21
22

37

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

22-0

22-1

22-2

22-3

21-0

21-1

21-2

21-3

P Register

21-2

NIP CIP

20-3Blank

LIP

22-0 22-322-222-1

21-0

LIP 1

21-1
94 Cray Proprietary 108-0245-003

System Programmer Reference Instruction Issue
Figure 24. Instruction Flow through Issue Registers (CPn + 9)

As the 3 parcels move from the CIP, LIP, and LIP1 registers to execution,
parcel 21-2 enters the NIP register, and a blank parcel enters the CIP register.
The P register increments by 1 to point to the next parcel (in this case, parcel
21-3).

Instructions continue to flow through the issue registers until the program code
exits normally or is interrupted. In either case, an exchange sequence and a
fetch operation bring new code into the instruction buffers and a new value
into the P register, and the issue sequence starts over again.

Table 17 shows the issue sequence that is explained and illustrated in the
previous paragraphs. This chart shows the movement of the instruction parcels
at each CP as they pass through the issue registers.

Table 17. Instruction Issue Sequence

CPN n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9

P reg 20-0 20-1 20-2 20-2 20-3 20-3 21-0 21-2 21-2 21-3

NIP 20-0 20-1 20-1 Blank Blank 20-3 Blank Blank 21-2

CIP 20-0 20-0 20-1 20-1 Blank 20-3 20-3 Blank

LIP 20-2 20-2 21-0 21-0

LIP 1 21-1 21-1

21-0

0

17
20

21
22

37

22-0

21-1 21-2 21-3

22-322-222-1
Words

Instruction Buffer Even Odd

Read-out Registers

22-0

22-1

22-2

22-3

21-0

21-1

21-2

21-3

P Register

21-3

NIP CIP

21-2 Blank

LIP

LIP 1

Issue
(20-3,
21-0,
21-1)

+1
108-0245-003 Cray Proprietary 95

Instruction Issue System Programmer Reference
Reservations and Hold Issue Conditions

When the first parcel of an instruction is in the CIP register, hardware
determines whether any conflicts are preventing the instruction from
executing. These conflicts are referred to as hold issue conditions and cause the
instruction to be held in the issue registers until the conflict is resolved. Once
the instruction issues, reservations are immediately placed on the local
appropriate registers, paths, ports, or functional units as needed. These
reservations are usually held a few CPs before the instruction finishes
execution; the exact timing depends on the type of instruction.

Register reservations are placed in the following cases:

• A and S registers are reserved as result registers, but not as operand
registers.

• Access to the B or T registers is reserved during block transfers.

• Input paths are reserved for the CP during which the data is expected to
enter the A or S registers.

Port reservations are placed when the following conditions occur:

• Port A is reserved for memory reads to the B registers.

• Port B is reserved for memory reads to the T registers.

• Port A or port B is reserved for memory reads to the V registers.

• For a write to memory, if port A or port B is busy with a write reference,
or if ports A and B are busy.

Conflicts also occur when more than one CPU tries to access the shared path at
the same time. The shared path is used by all shared and semaphore registers,
and by I/O instructions, interprocessor interrupt signals, and the real-time and
programmable clocks.

For a detailed description of the hold issue conditions for each instruction,
refer to the “CPU Instruction Descriptions” section of this document for more
information. In several cases, these conditions are limited to a specific
instruction or instruction sequence. The following list describes a few
generalized hold issue conditions.
96 Cray Proprietary 108-0245-003

System Programmer Reference Programmable Clock
Scalar instructions hold issue if one of the following conditions occurs:

• The A or S register needed for a result is reserved.

• The input path is reserved for the CP during which incoming data enters
the register.

• The instruction references memory, and port A or port B is reserved.

Vector instructions hold issue if the following conditions occur:

• The instruction references memory and the needed port is reserved. Five
vector instructions have been dispatched to the vector unit and await issue
there.

For B and T register block transfers, a hold issue condition exists if the needed
port is reserved. For multiparcel instructions, a hold issue condition exists if
the second or third parcel of the instruction is in a different buffer (2-CP delay)
or not in any buffer.

Programmable Clock

Each CPU has a programmable clock that generates periodic interrupts at
specific preset intervals. Available intervals range between 9 and 232 -1 CPs.
Intervals shorter than 100 ms are not practical because of the monitor overhead
involved in processing the interrupt. Table 18 lists the monitor mode
instructions that are used to enable and disable the programmable clock.

Note: On the SV1 CPU, the programmable clock operates at the system
clock rate. Operation at the CPU clock rate is possible via a
configuration bit change.

Table 18. Programmable Clock Instructions

CAL Code Octal Code Description

PCI Sj 0014j4 Enter interrupt interval register with (Sj)

CCI 001405 Clear PCI request

ECI 001406 Enable PCI request

DCI 001407 Disable PCI request
108-0245-003 Cray Proprietary 97

Status Register System Programmer Reference
Interrupt Interval Register

The 32-bit interrupt interval (II) register is loaded with the number of CPs that
elapse between programmable clock interrupt requests. Instruction 0014j4
transfers the low-order 32 bits of the Sj register into the II register. Bit 3 is
always forced to a logical 1 for instruction 0014j4. The binary value entered
into the II register is the number of CPs. The interval is actually one more than
the value in the II register. For example, if Sj equals 0, the II register equals 8
(because bit 3 is always forced set), and the interval equals 9.

This value is held in the II register and is transferred to the programmable
clock each time the counter reaches 0 and generates an interrupt request. The
contents of the II register are changed only by another 0014j4 instruction.

Operation

The 32-bit programmable clock is preset to the value that the II register
contains when instruction 0014j4 executes. This clock runs continuously and
decrements by 1 at each CP until the content of the clock is 0. The
programmable clock then sets the programmable clock interrupt (PCI) request
and reads the interval value that is held in the II register. The programmable
clock repeats the countdown cycle and sets the PCI request at the intervals that
the contents of the II register determine.

A PCI request can set only if it is enabled (by instruction 001406), and it
remains set until instruction 001405 executes and clears the request. The PCI
request causes an interrupt only if the system is not in monitor mode. A request
set in monitor mode is held until the system exchanges out of monitor mode.

Following a deadstart sequence, the monitor program ensures the state of the
PCI request by issuing instructions 001405 and 001407 to clear and disable the
PCI request.

Status Register

The status register holds the status of several flags and bits. The contents of the
status register can be sent to the high-order bits of an S register with instruction
073i01. Table 19 shows the bit positions and describes the bits and flags in the
S register.

Instruction 073i01 sets the low-order 32 bits to 1’s and returns the status bits to
the high-order bits of the Si register. The 073i01 instruction is not privileged to
monitor mode; the processor number and cluster number bit position return a
98 Cray Proprietary 108-0245-003

System Programmer Reference Performance Monitor
value of 0 if the instruction is not executed in monitor mode. The processor
number is derived from the configuration register bits (bits 13 through 9) on
the PV ASIC (SV1 series) or PVC ASIC (SV1ex series).

The PN and CLN flags return a value of 0 if the system is not in monitor mode
when instruction 073i01 executes. The UME and CME flags are cleared during
an exchange or when any 073 instruction is issued.

Performance Monitor

The performance monitor tracks groups of hardware-related events. These
results can be used to indicate the relative performance of a program. The
performance monitor contains eight performance counters that track four
groups of hardware-related events.

Table 19. Si Bit Positions and Bit Descriptions

Si Bit Position Description

63 Clustered, CLN not equal to zero (CL)

57 Bit matrix loaded (BML)

53 Uncorrectable memory error occurred (UME)

52 Correctable memory error occurred (CME)

51 Floating-point error occurred (FPS)

50 Floating-point interrupt enabled (IFP)

49 Operand range interrupt enabled (IOR)

48 Bidirectional memory enabled (BDM)

44 Processor number bit 4 (PN4)

43 Processor number bit 3 (PN3)

42 Processor number bit 2 (PN2)

41 Processor number bit 1 (PN1)

40 Processor number bit 0 (PN0)

37 Cluster number bit 5 (CLN5)

36 Cluster number bit 4 (CLN4)

35 Cluster number bit 3 (CLN3)

34 Cluster number bit 2 (CLN2)

33 Cluster number bit 1 (CLN1)

32 Cluster number bit 0 (CLN0)
108-0245-003 Cray Proprietary 99

Performance Monitor System Programmer Reference
The SV1 series system has a large 32-Kword cache that is used for both data
and instruction caching. Cache is enabled by 2 bits in word 7 of the exchange
package: ECD and ECF. Effective cache hit counting is simplified by the
addition of 4 bits in word 7 of the exchange package that selectively disables
cache hit counting. These bits are:

• Disable scalar cache hits - scalar A or S data (DSCH)
• Disable B or T cache hits - B or T data (DBCH)
• Disable fetch cache hits - instruction operands (DFCH)
• Disable vector cache hits - vector data (DVCH)

Note: Selectively apply these disables to increase the effectiveness of
cache hit counting.

Cache hits are counted in either Group 0 or Group 2. Both 48-bit counters are
identical except that the Group 2 counter may (will) lose counts (due to a small
5-bit accumulator). The Group 0 counter will not lose any cache hit increments
and should be used when no cache hits are disabled.

Performance events are monitored only when the CPU is operating in
nonmonitor mode. Entering monitor mode disables the performance counters.
The groups are selected by the j field in instruction 0015j0; refer to Table 20
for events that are tracked in each group.

Note: Vector Length (VL) is the vector length of an instruction and ai is the
length of the B or T block transfer instruction operation. Cache can
be incremented by 1, 2, 3, or 4.

Refer to the “CPU Instruction Descriptions” section for more information on
the instructions. Two types of instructions are used with the performance
monitor: user instructions and maintenance instructions. The user instructions
allow the user to select and read the performance monitor. The maintenance
instructions test the logic of the performance monitor. The following
subsections explain how these instructions are used with the performance
monitor.
100 Cray Proprietary 108-0245-003

System Programmer Reference Performance Monitor
Table 20. Performance Counter Group Descriptions

Group
Performance

Counter Monitored Event Incremented

Number of:

0 0 Instruction issued +1

0 1 Clock period holding issue +1

0 2 Instruction fetches +1

0 3 Floating-point add operation +1 thru +2, +VL

0 4 Floating-point multiply operation +1 thru +2, +VL

0 5 Floating-point reciprocal operation +1 thru +2, +VL

0 6 CPU Memory references +1 thru +4, +VL, +Ai

0 7 Cache hits +1 thru +4

Holding issue on:

1 0 A registers +1

1 1 S registers +1

1 2 V registers +1

1 3 B, T registers +1

1 4 V functional units +1

1 5 Shared registers +1

1 6 Memory ports +1

1 7 Miscellaneous +1

Number of:

2 0 Instruction fetches +1

2 1 Cache hits +1 thru +4

2 2 Scalar memory writes +1

2 3 B, T memory references +Ai

2 4 Scalar memory references +1 thru +4

2 5 CPU memory writes +1 thru +2, +VL, +Ai

2 6 CPU memory references +1 thru +4, +VL, +Ai

2 7 CPU memory conflicts +1 thru +4

Number of:

3 0 000 – 017 instructions +1

3 1 020 – 077 instructions +1

3 2 100 – 137 instructions +1

3 3 140 – 157, 174 (k ≠ 0) instructions +1

3 4 160 – 173, 174 (k = 0) instructions +1

3 5 176, 177 instructions +1
108-0245-003 Cray Proprietary 101

Performance Monitor System Programmer Reference
Note: The events monitored in Group 1, performance counter 7 are listed
as miscellaneous. These miscellaneous events are defined as CMR
instruction issue conflicts, vector unit instruction conflicts, test
mode conflicts, vector logical busies, split parcel holds,
floating-point busies, memory busies, and status busies.

Selecting and Reading Performance Events

Table 21 lists the two instructions that select and read the performance
monitor. The primary function of instruction 0015j0 is to select one of the four
groups of performance events to be tracked. It also clears the performance
counters and the performance counters’ pointer (explained later in this
subsection). After instruction 0015j0 selects a group, the performance counters
advance their totals according to the number of monitored events that occur.
The performance counters can continuously monitor events for approximately
65 hours before they must be reset. Fifty CPs must elapse before another
performance monitor instruction issues. The performance counter operates at
the CPU clock rate (CPU CPs)

Instruction 073i11 is used for performance monitoring and is privileged to
monitor mode. Each execution of the 073i11 advances a pointer. Instruction
073i11 performs two functions. Its primary function is to read 16-bit segments
of the performance counters into bits 32 through 47 of an S register (Si) (refer
to Figure 25). Its secondary function is to read bits 48 through 63 of the status
register into bits 48 through 63 of the same S register.

3 6 Vector integer operation (from #3) +1, +VL

3 7 Vector floating-point operation (from #4) +1, +VL

Table 21. Performance Monitor User Instructions

Octal
Instruction Primary Function Secondary Functions

0015j0a Selects the performance monitor. The j field
selects the group to be monitored.

Clears all performance counters and clears
the performance counter pointer.

073i11a Reads 16 bits of the performance counter
into Si.

Reads 16 bits of status register into Si and
increments the performance counter
pointer.

a This instruction is privileged to monitor mode.

Table 20. Performance Counter Group Descriptions (continued)

Group
Performance

Counter Monitored Event Incremented
102 Cray Proprietary 108-0245-003

System Programmer Reference Performance Monitor
Figure 25. Contents of an S Register During Execution of 073i11 Instruction

Each performance counter is 48 bits wide and is divided into three 16-bit
segments. A performance counter pointer selects which 16-bit segment to read
into the S register. The performance counter pointer is cleared either on entry
from or exit to monitor mode, or by instruction 0015j0 or 073i31.

The following example shows a sequence for reading a set of performance
counters:

In Step 1, instruction 073i11 reads bits 0 through 15 of counter 0 into the Si
register and increments the performance counter pointer. In Step 3, instruction
073i11 reads bits 16 through 31 of counter 0 into the Si register and increments
the performance counter pointer. In Step 5, instruction 073i11 reads bits 32
through 47 of counter 0 into Si and increments the performance counter
pointer. In Step 7, the process begins again, transferring the three 16-bit
segments of counter 1 into the Si register. After each 073i11 instruction, the
performance counter pointer advances by 1; a 4-CP delay must occur between
sequential issues of instruction 073i11.

Step Octal Code Description

1 073i11 Bits 0 through 15 of counter 0 to Si bits 32 through 47.

2 4-CP delay

3 073i11 Bits 16 through 31 of counter 0 to Si bits 32 through 47.

4 4-CP delay

5 073i11 Bits 32 through 47 of counter 0 to Si bits 32 through 47.

6 4-CP delay

7 073i11 Bit 0 through 15 of counter 1 to Si bits 32 through 47.

8 4-CP delay

- - -

- - -

- - -

n 073i11 Read bits 32 through 47 of counter n to the Si register.

48 47 32 31 0

63 through 48 of the
Status Register Selected PC 16-bit Segment Unpredictable Results

Bits 63
108-0245-003 Cray Proprietary 103

Cache Memory System Programmer Reference
Testing Performance Counters

Instructions 073i21, 073i31, and 073i61 test the operation of the performance
counter. Instruction 073i21 adds 4000020000000 (octal) to the contents of the
performance counter by injecting 1’s at bit positions 22 and 38. Each of these
bit positions contains bit 7 of the middle parcel and bit 7 of the most significant
parcel. The performance counter pointer is advanced to the next counter. This
instruction also reads the status register into the Si register.

Instruction 073i31 clears the performance counter pointer and clears all
maintenance modes. It also reads the status register into Si.

Instruction 073i61 increments the selected performance counter by adding 1 to
bit position 0. Instruction 073i61 also reads status register bits 32 through 63 to
a selected S register.

Cache Memory

The concept of a cache memory allows operations of the main memory address
space to be mapped into a small fast memory associated with, and located in or
near a CPU. The cache is split into a number of lines, or groups, of data words,
which represent main memory locations. Each cache line has a tag that
identifies the main memory address that the line represents.

The SV1 series cache is organized as a 4-way set associative, single word line
write-through cache, tag supported for single 64-bit references (coherency
supported by software). Both scalar and vector data is cached along with
instructions. Scalar read references prefetch 8 words from memory into cache
by allocating 8 single word lines for each scalar reference. This provides
spatial locality for scalar code.

The SV1 series, with up to 32 CPUs possible per mainframe, has main memory
divided into 8 sections. These sections are selected by the lowest 3 address
bits, bits [2:0], on a reference to memory. Each of the 32 CPUs has its own
cache which is further divided into 8 separate units, one for each section of
memory. Each CPU has 256 Kbyte, 32 Kwords, of cache divided into
4 Kwords per section. The 4 Kwords of cache for each section are arranged in
a 1,024 by 4-word array. Address bits [12:3] select one of the 1,024 locations,
and address bits [31:13] are part of the tag for each word. When all 4 words per
location are reserved, then the least recently used (LRU) word is reallocated
upon another request.
104 Cray Proprietary 108-0245-003

System Programmer Reference Cache Memory
Cache is organized on a section basis. Due to hardware limitations, the 8
sections of cache per CPU must share four request buses, two sections per bus,
which are arranged as follows:

• Sections 0 and 2 requests, and sections 5 and 7 requests share one write
bus

• Sections 4 and 6 requests, and sections 1 and 3 requests share one write
bus

This section grouping was selected to support stride references to memory.
Each cache section is busy for 2 CPU CPs due to the cache chip design. This
design requires one clock period between references and the request busses are
assigned specific section pairs for efficiency.

The SV1 cache is enabled by 2 bits in word 7 of the exchange package. The
Enable Cache Data (ECD) bit enables cache for data use by A, S, B, T, and
vector requests. The Enable Cache Fetch (ECF) bit enables cache for
instruction use. Cache for a CPU, when enabled, is common for all data
references and instruction references. Although self-modifying code will be
current in the cache, it will not be current in the instruction buffers for a CPU
because these are not updated. Instruction buffers must be flushed to keep them
current.

The SV1 cache is a write-through cache where the write request data is put into
the cache and a write request is also sent to memory to update that location. A
read request to cache that results in a cache hit (the data is in cache) will not
send that read request to memory. This reduces unnecessary memory activity.
Only read or write requests that “miss” in cache allocate cache lines. The read
data from memory for a missed read request updates cache and is also sent to
the CPU. Refer to Table 22, which summarizes the general cache operation.

Cache is invalidated in three ways:

• By another CPU using the 0016j1 instruction where (Aj) is the CPU
number

• At the beginning and end of each exchange operation for this CPU

• By the 0034jk test and set instruction for this CPU (if enabled). The
0034jk instruction invalidates cache only when enabled by the Enable
Cache Invalidate (ECI) bit in word 7 of the exchange package.
108-0245-003 Cray Proprietary 105

Cache Memory System Programmer Reference
Detailed Operation of Cache Memory

Figure 26 shows the physical organization of the cache for a section of
memory. Each cache line consists of a Tag Valid, a Data Valid, and an Address
Tag and 1 word of data as shown in Figure 26. Not shown are bits used for
LRU purposes. The 1024 X 4 cache array per section has 4 such cache lines per
location. Address bits [12:3] of the read or write request select the location and
address bits [31:13] are used for the Address Tag. Address bits [2:0] select the
section. The key concepts concerning the operation of the cache are as follows:

• A cache line can be allocated only when not already requested.

• A cache word is valid when both the Tag Valid and Data Valid bits are set.

• A cache line state is requested when either, not both, valid bits are set.

• A read request is sent to memory when not allocated or data is not
present.

• A cache line hit normally occurs on a tag match with the Tag Valid bit set.

• A write request to memory following an outstanding read request for the
same word writes the data into cache, sets the Data Valid bit, and clears
the Tag Valid bit. The returned read data is sent to the CPU and only sets
the Tag Valid bit.

Table 22. Cray SV1 Series Cache Operations

Operand/
Operation

Read/
Write Hit/Miss

Request
to Memory Allocate

Update
on Return

Update
on Write

Invalidate
Cache

Fetch Read Hit

Miss X X X(b)

Scalar Read Hit

B or T Miss X X X(b)

Vector Write Hit X X

Miss X X X

Exchange - - X X

Flush(a) - - X

(a) Cache is flushed (invalidated) by another CPU (0016j1), 0034jk (if ECI set), and before
and after every exchange operation.

(b) Update except for special Read/Write request sequence.
106 Cray Proprietary 108-0245-003

System Programmer Reference Cache Memory
Invalidating all of cache clears both state bits: Tag Valid and Data Valid.
Replacing an allocated cache line, per the LRU, clears both Tag Valid and
Data Valid (both must have been set), reloads the Address Tag, and resets the
valids as required. A request to memory that misses the cache and cannot
allocate a new cache line makes a normal memory request and does not affect
the cache.

A read/write/read request combination for the same word results in the second
read being queued in a cache first-in-first-out (FIFO) buffer without the read
request being sent to memory.

The cache area for each section of memory has a FIFO port queue that is used
for all read requests that are sent to memory. Read data from memory, per CPU
section, is returned in the same order that the read requests were sent to
memory. In addition to indicating where in the CPU the read data is to be
delivered (if at all), the FIFO port queue also includes cache information that is
related to the read request. A cached read request stores a return-to-cache
valid, the request address bits [12:3], and a 2-bit code that identifies the
one-of-four words per location for this request. The cache line itself then
determines whether the word should be written to cache. Seven of eight scalar
A or S read operands are normally written to cache but not sent to the CPU.
108-0245-003 Cray Proprietary 107

Cache Memory System Programmer Reference
Figure 26. 1-word Line, 4-way Associative 4096-word Cache per Memory Section

Tag
Valid

Data
Valid

Tag Address Bits Data Word Bits

0000

1023

0000

1023

0000

1023

0000

1023

Word 0 Word 1 Word 2 Word 3

Single Cache Set

1024 Cache Set by 4 Array

Tag
Valid

Data
Valid Definition

0

1

1

0

0

0

1

1

Not allocated

Allocated, but without data from memory

Allocated and data is present

Allocated and data is present, but earlier read data is not yet
back from memory (for read/write combination)

Transitions: 00 can go to 10 on a read request, or 11 on a write request

10 can go to 11 on a read data from memory, or 01 on a write request

01 can go to 11 on a read valid from memory (for a read/write combination)

11 will remain at 11 on either a no change or a new write request

31 13 63 0
108 Cray Proprietary 108-0245-003

System Programmer Reference CPU Computation
CPU Computation

Each CPU is an identical, independent computation section that consists of
operating registers, functional units, and an instruction control network. The
operating registers and functional units are associated with three types of
processing: address, scalar, and vector.

Address processing operates on internal control information, such as addresses
and indexes. The address (A) registers, intermediate address (B) registers, and
two functional units are dedicated solely to address processing.

Scalar processing is sequential and uses one operand or operand pair to
produce a single result. Scalar processing uses the scalar (S) registers and the
intermediate scalar (T) registers. Scalar processing also uses four functional
units that are dedicated to scalar processing and three floating-point functional
units that it borrows from the vector area and uses as required.

Vector processing allows a single operation to be performed concurrently on a
set (or vector) of operands, repeating the same function to produce a series of
results. Vector processing uses the vector (V) registers. Vector processing also
uses dual-pipe functional units that are dedicated to vector processing plus
three dual-pipe floating-point functional units that it shares with scalar
processing (pipe 0 units only).

Data flow in a computation section is from central memory to registers and
from registers to functional units. Results flow from functional units to
registers and from registers to central memory or back to functional units.
Depending on the instruction sequence, data flows along either the scalar or
vector path, or both simultaneously.

The computation section performs integer or floating-point arithmetic
operations. Integer arithmetic is performed in two’s complement mode;
floating-point quantities have signed magnitude representation.

Integer (or fixed point) operations are integer addition, integer subtraction, and
integer multiplication. No integer division instruction is provided; the
operation is accomplished through a software algorithm using floating-point
hardware.

Floating-point instructions allow addition, subtraction, multiplication, and
reciprocal approximation operations. The reciprocal approximation
instructions provide a floating-point division operation that uses a multiple
instruction sequence.
108-0245-003 Cray Proprietary 109

Operating Registers System Programmer Reference
The instruction set includes logical operations for AND, inclusive OR,
exclusive OR, exclusive NOR, and mask-controlled merge operations. Shift
operations allow the manipulation of either 64-bit or 128-bit operands to
produce 64-bit results. Most operations are used in vector or scalar
instructions, including 32-bit integer arithmetic.

The 32-bit integer product is a scalar instruction that is designed for index
calculation. A full-indexing capability is possible throughout central memory
in either scalar or vector modes. The index can be positive or negative in either
mode. Indexing allows matrix operations in vector mode to be performed on
rows or on the diagonal as well as allowing conventional column-oriented
operations.

The SV1 includes a bit-matrix multiply (BMM) unit that is available for both
scalar and vector operations.

The following subsections describe the operating registers and their associated
functional units.

Operating Registers

Each CPU has three primary and two intermediate sets of operating registers.
The primary sets of operating registers are the address (A), scalar (S), and
vector (V) registers. These registers are considered primary because functional
units and central memory can access them directly.

For the A and S registers, an intermediate level of registers exists; they are not
accessible to the functional units, but they act as a buffer for the primary
registers. To reduce the number of memory reference instructions for scalar
and vector operations, block transfers are possible between these intermediate
registers and central memory. The intermediate address (B) registers support
the A registers, while the intermediate scalar (T) registers support the S
registers. The V registers do not have intermediate registers.

In the SV1 series system, the vector unit includes an additional set of 64
registers, the matrix BT registers, which are used with the scalar and vector
bit-matrix multiply operations.

Address (A) Registers

Figure 27 shows the eight A registers and their associated CPU hardware. The
A registers are designated A0 through A7.
110 Cray Proprietary 108-0245-003

System Programmer Reference Operating Registers
The A registers and address functional units run at a full 32-bit width and the
instruction set includes 3-parcel instructions. The following subsections
explain A register functions, special uses, and instructions.

Figure 27. A Register Block Diagram

A Register Functions

The A registers serve as address registers for memory references and as index
registers. A registers transfer and receive 32 bits. Refer to “Calculating
Absolute Memory Address” for additional information. The A registers index
the base address for scalar memory references and provide both a base address
and an address increment for vector memory references. The A registers also
provide values for shift counts, loop control, and channel I/O operations
(setting the channel limit [CL] and current address [CA] registers) and serve as
result registers for the scalar population/parity/leading zero functional unit.

((Ah) + (jkm)), ((Ah) + (nm))

Address Registers

B77

B00

(A0)

Central
Memory

Multiply

Add
Address

Functional
Units

Vector
Length

XA

Vector
Control

Exchange
Control

Ai

CA

P

+1,+2, +3

20

37

Ak Ai
* *

CL20

37

Ak
*

Ak

Leading Zeroes

Shift

Population/Parity

Scalar
Functional

Units

Ak

Note: * Control and/or data from
other CPUs.

SB0

SB1
SB2

SB3
SB4

SB5
SB6

SB7

Ai

Shared Registers

Ai AiAi* *

Shift

Vector
Functional

Units

A0-7

CA
1

5
11

15

Ak Ai
* *

Ak

Ai

Aj

Ai

Bjk
256-Kbyte

Cache
108-0245-003 Cray Proprietary 111

Operating Registers System Programmer Reference
The A registers are connected to the vector length (VL) and exchange address
(XA) registers. The VL register is loaded by the 002 instruction. The XA
register is loaded by the 0013j0 instruction only while the system is operating
in monitor mode. Refer to the “Vector Length Register” section for more
information on the VL register. Refer to the “Exchange Address Register
Field” section for more information on the XA register.

Data either moves between central memory, a 32-Kword cache, and the A
registers, or it is placed in the B registers. The B registers buffer the data
between A registers and central memory. Data can also be transferred between
A and S registers and between A registers and shared address (SB) registers.

The following list summarizes the functions of the A registers:

• Generate addresses for memory references and function as index
registers.

• Set the CA and CL registers (I/O control).

• Provide values for shift counts and loop controls.

• Serve as result registers for the scalar population/parity/leading zero
functional unit.

• Set the XA register (exchange control).

• Set and read the VL register (vector control).

• Transfer data between the A and S registers.

• Transfer data between the A and SB registers.

The address functional units support address and index generation by
performing 32-bit integer arithmetic on operands that are obtained from A
registers and by delivering the results to A registers. Refer to the “Address
Functional Units” section for more information on the address functional units.
112 Cray Proprietary 108-0245-003

System Programmer Reference Operating Registers
Special A Register Values

If register A0 is referenced in the h, j, or k fields of an instruction, the contents
of the register are not used; instead, a special operand is generated. The special
value is available regardless of existing A0 register reservations (they are not
checked in this instance, and this special value does not alter the actual value of
the A0 register. Table 23 shows the special A0 register values.

If the i field equals 0, then the contents of register A0 are used. The i field is
not used as a special case.

A Register Instructions

Only one result per CP can be transferred to the A registers. When an
instruction that delivers new data to an A register issues, a reservation is set for
that register. The reservation prevents the issue of instructions that use the
register until the new data is delivered. Instructions reference A registers by
specifying the register number as the h, i, j, or k designator (refer to the
“Instruction Formats” section for more information on instruction fields). A0 is
the only A register that can be referenced when it is not specified in one of the
instruction fields.

Table 24 lists A register instructions and provides octal and CAL codes. The
content of the DBA register is added to instruction-generated memory
addresses to form absolute memory addresses. Refer to the “Calculating
Absolute Memory Address” section. Refer to the “CPU Instruction
Descriptions” section for complete information on these instructions.

Only one input path to the A registers exists; therefore, all instructions that
write data into the A registers must reserve the path for the CP when data
arrives. The issue hardware determines which CP to reserve the path for the
instruction, and it reserves the path for that CP. If the path is already reserved,

Table 23. Special A0 Register Values

Field Operand Value

Ah, h = 0 0

Aj, j = 0 0

Ak, k = 0 1
108-0245-003 Cray Proprietary 113

Operating Registers System Programmer Reference
the instruction holds issue. The instruction continues to hold issue until the A
register path is available in the CP when the data arrives. The instruction then
issues and reserves the path for that CP.

Table 24. A Register Instructions

Machine
Instruction

CAL
Syntax Description Type of Instruction

020i00mn Ai exp Transmit nm to Ai Register entry

021i00mn Ai #exp Transmit one’s complement of exp to Ai exp = nm

022ijk Ai exp Transmit jk to Ai

031i00 Ai -1 Transmit -1 to Ai

10hi00mn Ai exp,Ah Load from ((Ah) + exp) to Ai exp = nm (h ≠ 0) Memory transfer

(Load)100i00mn Ai exp,0 Load from (exp) to Ai exp=nm

100i00mn Ai exp, Load from (exp) to Ai exp=nm

10hi0000 Ai ,Ah Load from (Ah) to Ai (h ≠ 0)

11hi00mn exp,Ah Ai Store (Ai) to ((Ah) + exp) exp = nm (h ≠ 0) Memory transfer

(Store)110i00mn exp,0 Ai Store (Ai)to exp exp=nm

110i00mn exp, Ai Store (Ai) to exp exp=nm

11hi0000 ,Ah Ai Store (Ai) to (Ah) (h ≠ 0)

0013j0 XA Aj Transmit (Aj) to XA register Interregister
transfer0014j3 CLN Aj Transmit (Aj) to CLN register

00200k VL Ak Transmit (Ak) to VL register

023ij0 Ai Sj Transmit (Sj) to Ai

023i01 Ai VL Transmit (VL) to Ai

024ijk Ai Bjk Transmit (Bjk) to Ai

025ijk Bjk Ai Transmit (Ai) to Bjk

027ij7 SBj Ai Transmit (Ai)to SBj

030i0k Ai Ak Transmit (Ak) to Ai

031i0k Ai -Ak Transmit the negative of (Ak) to Ai

071i0k Si Ak Transmit (Ak) to Si with no sign extension

071i1k Si + Ak Transmit (Ak) to Si with sign extension

071i2k Ai + FAk Transmit (Ak) to Si as unnormalized floating-point
number

030ijk Ai Aj + Ak Transmit integer sum of (Aj) and (Ak) to Ai Integer operation

030ij0 Ai Aj + 1 Transmit integer sum of (Aj) and 1 to Ai

031ijk Ai Aj-Ak Transmit integer difference of (Aj) and (Ak) to Ai

031ij0 Ai Aj - 1 Transmit integer difference of (Aj) and 1 to Ai

032ijk Ai Aj* Ak Transmit integer product of (Aj) and (Ak) to Ai
114 Cray Proprietary 108-0245-003

System Programmer Reference Operating Registers
Notes:In addition to the A register use by instructions, (A0) and (Ai) are used with the B and T load and store
instructions 034ijk, 035ijk, 036ijk, and 037ijk. Also, the (Ak) is used as the shift count in scalar shift instructions
056 and 057, and in vector shift instructions 150, 151, 152, and 153.

Intermediate Address (B) Registers

Sixty-four 32-bit B registers are designated B0 (octal) through B77 (octal). The
B registers serve as intermediate storage registers for the A registers. B
registers typically contain data to be referenced repeatedly over a long time,
which makes it inefficient to retain the data in either A registers or in central
memory. Examples of data that B registers store are loop counts, variable array
base addresses, and dimensions.

Instructions reference B registers by specifying the B register number in the jk
field. Refer to “Instruction Formats” for more information on instruction
fields.

010ijkm JAZ exp Jump to exp if (A0) = 0(i 2 = 0) Conditional jump

011ijkm JAN exp Jump to exp if (A0) ≠ 0 (i 2 = 0)

012ijkm JAP exp Jump to exp if (A0) positive (i 2 = 0)

013ijkm JAM exp Jump to exp if (A0) negative (i 2 = 0)

026ij0 Ai PSj Transmit population count of (Sj) to Ai Bit count

026ij1 Ai QSj Transmit population count parity of (Sj) to Ai

027ij0 Ai ZSj Transmit leading zero count of (Sj) to Ai

033i00 Ai Cl Transmit channel number of highest priority
interrupt request to Ai (j = 0)

Register channel

033ij0 Ai CA,Aj Transmit current address of channel (Aj) to Ai
(j ≠ 0, k = 0)

033ij1 Ai CE,Aj Transmit error flag of channel (Aj) to Ai
(j ≠ 0, k = 1)

0014j1 SIPI Aj Send interprocessor interrupt request to CPU (Aj) Interrupt

0016j1 IVC Send invalidate cache request to CPU (Aj) Invalidate cache

Table 24. A Register Instructions (continued)

Machine
Instruction

CAL
Syntax Description Type of Instruction
108-0245-003 Cray Proprietary 115

Operating Registers System Programmer Reference
Data transfers between an A and B register take 1 CP. A block of data transfers
between B registers and central memory at a maximum rate of two registers
per CP. During these block transfers, a reservation is made on all B registers
that are used in the block transfer.

The jk fields of the instruction specify the first register that is involved in a
block transfer; the low-order 7 bits of the contents of register Ai specify the
number of words that are transmitted. Successive transfers involve successive
B register pairs until B76/B77 is reached. Registers B00/B01 are processed
after registers B76/B77 if the count in register Ai is not equal to zero. Other
instructions can issue while a block of B registers is transferred to or from
central memory. B00 is the only B register that can be referenced when it is not
specified in one of the instruction fields. Table 25 lists the B register
instructions.

There are 64 B registers, but the length of the B register load or store operation
as specified by the 7-bit length in register Ai can be greater than 64 (up to 127).
For a load operation with a length greater than 64, the B register load control
operates for the length divided by 2 cycles, but it actually sends load requests
to cache/memory for the last 64 operands. For a store operation with a length
greater than 64, the B register store control operates for the length divided by 2
cycles and sends data to cache/memory for every cycle.

Table 25. B Register Instructions

Machine
Instructions CAL Syntax Description Type of Instruction

024ijk Ai Bjk Transmit (Bjk) to Ai Interregister transfer

025ijk Bjk Ai Transmit (Ai) to Bjk

034ijk Bjk,Ai ,A0 Load (Ai) words from memory starting at
address (A0) to B registers starting at
register jk

Block transfer

034ijk Bjk,Ai 0,A0 Load (Ai) words from memory starting at
address (A0) to B registers starting at
register jk

035ijk ,A0 Bjk,Ai Store (Ai) words from B registers starting
at register jk to memory starting at address
(A0)

035ijk 0,A0 Bjk,Ai Store (Ai) words from B registers starting
at register jk to memory starting at address
(A0)

0050jk J Bjk Jump to (Bjk) Jump

007ijkm R exp Return jump to exp; set B00 to (P) + 2
116 Cray Proprietary 108-0245-003

System Programmer Reference Operating Registers
Scalar (S) Registers

Figure 28 shows the eight S registers and their associated hardware. The S
registers (S0 octal through S7 octal) are 64 bits wide. They are the principal
scalar registers for a CPU and serve as the source and destination for operands
that perform scalar arithmetic and logical operations.

Figure 28. Scalar Register Block Diagram

Central
Memory

(A0)

((Ah) + (jkm)), ((Ah) + (nm))

Real-time Clock

Status

Prog Clock Int

Sj

Scalar Registers

Si
Tjk

Sj

Sk

Si

Sj

Vector Mask

Vector Control

Sj

Si

Sj
Sk

Si

Si

T77

T00

• • •

Add

Logical

Shift

Pop/Parity/LZ

Scalar
Functional

Units

SB0

SB1
SB2

SB3
SB4

SB5
SB6

SB7

Si

Shared Registers

Address Registers

A0-7

F.P. Add

F.P. Multiply

F.P.
Rec. Appr.

Logical 2

ST0 - ST7

2

S6

S5
S4

S3
S2

S1

S0

1

11

Si Si Si Si Si Si Si
11

256-Kbyte
Cache

S7

Notes:

Control and/or data from other processors.

The second vector logical functional unit shares
hardware with the floating-point multiply functional
unit.

The vector pop/parity/leading zero functional unit
shares hardware with the floating-point reciprocal
approximation functional unit.

The bit matrix multiply functional unit shares
hardware with the floating-point add functional unit.

1

2

3

4
4 Bit Matrix Multiply

Pipe 0

Vector/Scalar
Floating-point

Functional Units

Pipe 1

F.P. Add

F.P. Multiply

F.P.
Rec. Appr.

Pop/Parity/LZ3

Shift

Logical

Vector
Functional

Units

Pipe 0 Pipe 1

Add

Logical 2

Pop/Parity/LZ

Shift

Logical

Add
108-0245-003 Cray Proprietary 117

Operating Registers System Programmer Reference
S Register Functions

The S registers provide the operands for scalar integer arithmetic, logical, shift,
and pop/parity/leading-zero operations. They also provide the operands for
scalar floating-point operations executed in the vector pipe 0 floating-point
units, and the operands for the bit matrix multiply operation executed in the
vector unit. Additionally, the S registers provide the constant that is used with
some vector operations. Single-word transmissions of data, in either direction,
between an S register and an element of a V register, or the vector mask (VM)
register, are also possible. An S register provides the value to load into the
real-time clock (RTC) via the JS ASIC; the RTC can be read to an S register.
The interrupt interval (II) register in the programmable clock is also set from
an S register.

Data moves directly between cache/central memory and S registers or is placed
in the T registers. The T registers buffer scalar operands between S registers
and cache/central memory. Data is also transferred between S and A registers,
between S and shared scalar (ST) registers, and between S and semaphore
(SM) registers.

The S registers can also read the contents of the status register; instruction
073ij1 sets the low-order 32 bits to 1’s and returns certain status register bits to
the high-order bits of the Si register. For more information on the 073ijk
instruction, refer to “CPU Instruction Descriptions.”

The S registers are primarily used for scalar operations. The following list
summarizes other functions of the S registers:

• Provide a constant value for vector operations
• Set/read the RTC and VM registers
• Set the II register
• Transfer data between A and S registers
• Transfer data between S registers and ST or SM registers
• Read the contents of the status register

The scalar functional units support the S registers by performing integer
arithmetic operations; scalar floating-point arithmetic is performed in the
vector pipe 0 floating-point units. Refer to “Scalar Functional Units” for more
information on the scalar functional units.
118 Cray Proprietary 108-0245-003

System Programmer Reference Operating Registers
Special S Register Values

If register S0 is referenced in the j or k fields of an instruction, the contents of
the register are not used; instead a special operand is generated. The special
value is available regardless of the existing S0 register reservations (they are
not checked in this instance). This use does not alter the actual value of the S0
register. Table 26 shows the special S0 register values.

If the i field equals 0, then the contents of the S0 register are used. The i field is
not used as a special case.

S Register Instructions

Only one result per CP can be transferred to the S registers. When an
instruction that delivers new data to an S register issues, a reservation is set for
that register. This reservation prevents the issue of instructions that read the
register until the new data is delivered. Instructions reference S registers by
specifying the register number as the i, j, or k designator. Refer to “Instruction
Formats” for more information on instruction fields. S0 is the only S register
that can be referenced when it is not specified in one of the instruction fields.

Table 27 lists S register instructions and provides the octal and CAL codes.
Refer to “CPU Instruction Descriptions” for complete information on these
instructions. The contents of the DBA register are added to
instruction-generated memory addresses to form physical memory addresses.
Refer to “Address Range Checking.”

Only one input path to the S registers exists; therefore, all instructions that
write data into the S registers must reserve the path for the CP in which data
arrives. The issue hardware determines the proper CP and reserves the path for
that CP. If the path is already reserved, the instruction holds issue until the
reservation is cleared. The instruction continues to hold issue until the S
register path is available during the CP in which the data arrives. The
instruction then issues and reserves the path for that CP.

Table 26. Special S0 Register Values

Field Operand Value

Sj, j = 0 0

Sk, k = 0 263
108-0245-003 Cray Proprietary 119

Operating Registers System Programmer Reference
Table 27. S Register Instructions

Machine
Instructions CAL Syntax Description

Type of
Instruction

040i00mn Si exp Transmit exp to Si exp = nm Register entry

041i00mn Si #exp Transmit one’s complement of exp to Si exp = nm

042ijk Si <exp Form ones mask in Si exp bits from right in exp =
100 octal - jk bits

042ijk Si #>exp Form zeroes mask in Si exp bits; from left exp = jk
bits

042i77 Si 1 Transmit 1 to Si

042i00 Si -1 Transmit -1 to Si

043ijk Si >exp Form ones mask in Si exp bits from left; exp = jk
bits

043ijk Si #<exp Form zeroes mask in Si bits from right exp = 1008
-jk bits

043i00 Si 0 Clear S

047i00 Si #SB Transmit one’s complement of sign bit to Si

071i30 Si 0.6 Transmit 0.75 as normalized floating-point
constant to Si

071i40 Si 0.4 Transmit 0.5 as normalized floating-point constant
to Si

071i50 Si 1. Transmit 1.0 as normalized floating-point constant
to Si

071i60 Si 2. Transmit 2.0 as normalized floating-point constant
to Si

071i70 Si 4. Transmit 4.0 as normalized floating-point constant
to Si

12hi00mn Si exp, Ah Load from ((Ah) + exp) to Si (h ≠ 0) exp = nm Memory transfer
(Load)120i00mn Si exp, 0 Load from (exp) to Si exp = nm

120i00mn Si exp, Load from (exp) to Si exp = nm

12hi000 Si ,Ah Load from (Ah) to Si (h ≠ 0)

13hijkm exp,Ah Si Store (Si) to ((Ah) + exp) exp = nm (h ≠ 0) Memory transfer
(Store)130ijkm exp,0 Si Store (Si) to exp exp = nm

130ijkm exp, Si Store (Si) to exp exp = SSnm

13hi000 ,Ah Si Store (Si) to address(Ah)

0014j0 RT Sj Transmit (Sj) to RTC Interregister
transfer

0014j4 PCI Sj Transmit (Sj) to Interrupt Interval (II) register

0030j0 VM Sj Transmit (Sj) to VM register

003000 VM 0 Clear the VM register
120 Cray Proprietary 108-0245-003

System Programmer Reference Operating Registers
023ij0 Ai Sj Transmit (Sj) to Ai Interregister
transfer (cont.)047i0k Si #Sk Transmit one’s complement of (Sk) to Si

047i00 Si #SB Transmit one’s complement of sign bit to Si

051i0k Si Sk Transmit (Sk) to Si

051i00 Si #SB Transmit sign bit to Si

072i00 Si RT Transmit (RTC) to Si

072i02 Si SM Read semaphores to Si

072ij3 Si STj Transmit (STj) to Si

073i00 Si VM Transmit (VM) to Si

073i11 Read performance counter into Si

073i01 Si SR0 Transmit (SR0) to Si

073i02 SM Si Load semaphores from Si

073ij3 STj Si Transmit (Si) to STj

074ijk Si Tjk Transmit (Tjk) to Si

075ijk Tjk Si Transmit (Si) to Tjk

076ijk Si Vj,Ak Transmit (Vj element (Ak)) to Si

077ijk Vi,Ak Sj Transmit (Sj) to Vi element (Ak)

077i0k Vi,Ak 0 Clear element (Ak) or register Vi

060ijk Si Sj + Sk Transmit integer sum of (Sj) and (Sk) to Si Integer operation

060i0k Si Sk Transmit (Sk) to Si

060ij0 Si Sj + S0 Transmit integer sum of 263 and (Sj) to Si

061ijk Si Sj -Sk Transmit integer difference of (Sj) and (Sk) to Si

061i0k Si -Sk Transmit the negative of (Sk) to Si

061ij0 Si Sj-S0 Transmit integer difference of (Sj) less 263 to Si

154ijk Vi Sj + Vk Transmit integer sum of (Sj) and (Vk) to Vi

156ijk Vi Sj-Vk Transmit integer difference of (Sj) and (Vk) to Vi

166ijk Vi Sj*Vk Transmit 32-bit integer product of (Sj) and (Vk
elements) to Vi elements

Table 27. S Register Instructions (continued)

Machine
Instructions CAL Syntax Description

Type of
Instruction
108-0245-003 Cray Proprietary 121

Operating Registers System Programmer Reference
062ijk Si Sj + FSk Transmit floating-point sum of (Sj) and (Sk) to Si Floating-point
operation062i0k Si + FSk Transmit normalized (Sk) to Si

063ijk Si Sj-FSk Transmit floating-point difference of (Sj) and (Sk)
to Si

063i0k Si -FSk Transmit normalized negative of (Sk) to Si

064ijk Si Sj *FSk Transmit floating-point product of (Sj) and (Sk) to
Si

065ijk Si Sj *HSk Transmit half-precision rounded floating-point
product of (Sj) and (Sk) to Si

066ijk Si Sj *RSk Transmit rounded floating-point product of (Sj) and
(Sk) to Si

067ijk Si Sj *lSk Transmit two minus the floating-point product of
(Sj) and (Sk) to Si

070ij0 Si /HSj Transmit floating-point reciprocal approximation of
(Sj) to Si

071i0k Si Ak Transmit (Ak) to Si with no sign extension

071i1k Si +Ak Transmit (Ak) to Si with sign extension

071i2k Si +FAk Transmit (Ak) to Si as unnormalized floating-point
number

160ijk Vi Sj *FVk Transmit floating-point products of (Sj) and (Vk
elements) to Vi elements

162ijk Vi Sj *HVk Transmit half-precision rounded floating-point
products of (Sj) and (Vk elements) to Vi elements

164ijk Vi Sj *RVk Transmit rounded floating-point products of (Sj)
and (Vk elements) to Vi elements

170ijk Vi Sj +FVk Transmit floating-point sums of (Sj) and (Vk
elements) to Vi elements

172ijk Vi Sj-FVk Transmit floating-point differences of (Sj) and (Vk
elements) to Vi elements

Table 27. S Register Instructions (continued)

Machine
Instructions CAL Syntax Description

Type of
Instruction
122 Cray Proprietary 108-0245-003

System Programmer Reference Operating Registers
044ijk Si Sj&Sk Transmit logical product of (Sj) and (Sk) to Si Logical operation

044ij0 Si Sj&SB Transmit sign bit of (Sj) to Si

044ij0 Si SB&Sj Transmit sign bit of (Sj) to Si
(j ≠ 0)

045ijk Si #Sk&Sj Transmit logical product of (Sj) and complement of
(Sk) to Si

045ij0 Si #SB&Sj Transmit (Sj) with sign bit cleared to Si

046ijk Si Sj \Sk Transmit logical difference of (Sj) and (Sk) to Si

046ij0 Si Sj \SB Toggle sign bit of (Sj), then transmit to Si (j ≠ 0)

046ij0 Si SB\Sj Toggle sign bit of (Sj), then transmit to Si (j ≠ 0)

047ijk Si #Sj \Sk Transmit logical equivalence of (Sk) and (Sj) to Si

047ij0 Si #Sj \SB Transmit logical equivalence of (Sj) and sign bit to
Si

047ij0 Si #SB\Sj Transmit logical equivalence of (Sj) and sign bit to
Si (j ≠ 0)

050ijk Si Sj !Si&Sk Transmit logical product of [(Si) and (Sk)
complement] ORed with logical product of [(Sj) and
(Sk)] to Si (scalar merge)

050ij0 Si Sj !Si&SB Transmit scalar merge of (Si) and sign bit of (Sj) to
Si

051ijk Si Sj !Sk Transmit logical sum of (Sj) and (Sk) to Si

051ij0 Si Sj !SB Transmit logical sum of (Sj) and sign bit to Si

051ij0 Si SB!Sj Transmit logical sum of (Sj) and sign bit to Si (j ≠ 0)

140ijk Vi Sj&Vk Transmit logical product of (Sj) and (Vk elements)
to Vi elements

142ijk Vi Sj !Vk Transmit logical sum of (Sj) and (Vk elements) to
Vi elements

Logical operation
(cont.)

144ijk Vi Sj \Vk Transmit logical difference of (Sj) and (Vk
elements) to Vi elements

146ijk Vi! SjVk&VM Transmit (Sj) if VM bit = 1, or (Vk) if VM bit = 0 to Vi

Table 27. S Register Instructions (continued)

Machine
Instructions CAL Syntax Description

Type of
Instruction
108-0245-003 Cray Proprietary 123

Operating Registers System Programmer Reference
Intermediate Scalar (T) Registers

Sixty-four 64-bit T registers are designated T0 through T77 octal. The T
registers are used as intermediate storage registers for the S registers. Data
transfers between T and S registers and between T registers and central
memory. A data transfer between a T register and an S register takes 1 CP.

Instructions reference T registers by specifying the T register number in the jk
designator. Refer to “Instruction Formats” for more information on instruction
fields.

A block of T registers transfers to or from cache or central memory at a
maximum rate of two 64-bit register locations per CP. The jk fields of the
instruction specify the first T register that is used in the block transfer; the
low-order 7 bits of the contents of register Ai specify the number of words that
are transmitted. Successive transfers involve successive T register pairs until
T76/T77 is reached. Registers T00/T01 are processed after register T76/T77 if
the content of register Ai is not equal to zero. Other instructions can issue
while a block of T registers is transferred to or from cache or central memory.
During these block transfers, a reservation is made on all T registers that are
used in the block transfer. Table 28 summarizes the T register instructions.

052ijk S0 Si < exp Shift (Si) left exp places to S0; exp = jk Register shift

053ijk S0 Si > exp Shift (Si) right exp places to S0; exp =1008 - jk

054ijk Si Si < exp Shift (Si) left exp places to Si; exp = jk

055ijk Si Si > exp Shift (Si) right exp places to Si; exp = 1008 -jk

056ijk Si Si, Sj < Ak Shift (Si) and (Sj) left by (Ak) places to Si

056ij0 Si Si, Sj < 1 Shift (Si) and (Sj) left one place to Si

056i0k Si Si < Ak Shift (Si) left (Ak) places to Si

057ijk Si Sj,Si > Ak Shift (Sj) and (Si) right by (Ak) places to Si

057ij0 Si Sj,Si > 1 Shift (Sj) and (Si) right by one place to Si

057i0k Si Si > Ak Shift (Si) right (Ak) places to Si

014ijkm JSZ exp Jump to exp if (S0) = 0 (i bit 2 = 0) exp = ijkm Conditional jump

015ijkm JSN exp Jump to exp if (S0) ≠ 0 (i bit 2 = 0) exp = ijkm

016ijkm JSP exp Jump to exp if (S0) > (i bit 2 = 0) exp = ijkm

017ijkm JSM exp Jump to exp if (S0) < 0 (i bit 2 = 0) exp = ijkm

070ij6 Si Sj*BT Transmit bit-matrix product of (Sj) and transpose of
(BMM) to Si

Bit-matrix
multiply

Table 27. S Register Instructions (continued)

Machine
Instructions CAL Syntax Description

Type of
Instruction
124 Cray Proprietary 108-0245-003

System Programmer Reference Operating Registers
There are 64 T registers, but the length of the T register load or store operation
as specified by the 7-bit length field in register Ai can be greater than 64 (up to
127). For a load operation with a length greater than 64, the T register load
control operates for length divided by 2 cycles, but it actually sends load
requests to cache/memory for the last 64 operands. For a store operation with a
length greater than 64, the T register store control operates for length divided
by 2 cycles and sends data to cache/memory for every cycle.

Vector (V) Registers

Figure 29 shows the eight V registers and their associated hardware. The V
registers are designated V0 through V7. Each V register has 64 elements that
are 64 bits wide. The V registers are used for vector processing. The following
subsections explain vector processing, the V register functions, the V register
instructions, and vector chaining and tailgating.

Vector Processing

Vector processing increases processing speed and efficiency by allowing an
operation to be performed sequentially on a set (or vector) of operands by
using a single instruction.

A vector is an ordered set of elements; each element is represented as a 64-bit
word. A vector is distinguished from a scalar, which is a single 64-bit word.
Examples of structures in Fortran that can be represented as vectors are
one-dimensional arrays and rows, columns, and diagonals of multidimensional
arrays. Vector processing occurs when arithmetic or logical operations are
applied to vectors; it differs from scalar processing because it operates on
many elements rather than on one.

Table 28. T Register Instructions

Machine
Instructions CAL Syntax Description

Type of
Instruction

074ijk Si Tjk Transmit (Tjk) to Si Interregister
transfer075ijk Tjk Si Transmit (Si) to Tjk

036ijk Tjk,Ai ,A0 Load (Ai) words from memory starting at (A0) to T
registers starting at jk

Block
transfer

036ijk Tjk,Ai 0,A0 Load (Ai) words from memory starting at (A0) to T
registers starting at jk

037ijk ,A0 Tjk,Ai Store (Ai) words from T registers starting at jk to memory
starting at (A0)

037ijk 0,A0 Tjk,Ai Store (Ai) words from T registers starting at jk to memory
starting at (A0)
108-0245-003 Cray Proprietary 125

Operating Registers System Programmer Reference
Figure 29. V Register Block Diagram

V ector C ontrolV ector R egis ters

V ector Mas k

Logical 2 Logical 2

P op/P arity/LZ P op/P arity/LZ

S hift S hift

Logical

2

3

Logical

Add Add

P ipe 0

V ector
F unctional

Units

S hared V ector/S calar
F unctional Units

S calar
F unctional Units

Multiply

Add

Addres s
F unctional

Units

P ipe 1

P ipe 0 P ipe 1

I/O

T 77

T 00

B 77

B 00

S tatus

R eal-time C lock

P rog C lock Int

S calar R egis ters

E xchange
C ontrol

V ector
Length

V ector
C ontrolAddres s R egis ters

C entral
Memory

256-
K byte
C ache

S j

S i

S i

S j

V j

V k

V i

S j

S k

S i

S k

S j

S i

Aj

Ak

Ai

V j
V k
V i
S i
S j

S k

S j

S j

S i

V i

Ai

Ak

Ak

Ai

P

Ak
Ak

Ai

+1,+ 2, +3

20 + N

20
20

20 + N

G igaR ing/Y 1
C hannel
C ontrol

E xecution

Dis patch V ector
Ins truction

V ector Is s ue R egis ters

S hared R es is ters

C A

NIP C IP

LIP

LIP 1

C L
Ins truction

B uffers

B jk

XA

T jk

P ort D

(A0)

((Ah)+(nm))

((Ah)+(nm))

(A0)

Ak

1

4

V 7

V 6

V 5

V 4

V 3

V 2

V 1

V 0

S 7

S 6

S 5
S 4

S 3

S 2

S 1

S 0

A7

A6

A5
A4

A3

A2

A1

A0

S B 7
S B 6

S B 5

S B 4
S B 3

S B 2
S B 1

S B 0

S M37

S i S i S i S i S i S i S i S iAi Ai Ai Ai

S M0

S T 7
S T 6

S T 5

S T 4
S T 3

S T 2
S T 1

S T 0

00

77

((A0)+(Ak)),((A0)+(V k))

((A0)+(Ak)),((A0)+(V k))

((A0)+(Ak)),((A0)+(V k))

B it Matrix Multiply

P op/P arity/LZ

S hift

Logical

Add

F .P . R ec.Appr F .P . R ec.Appr

F .P . Multiply F .P . Multiply

F .P . Add F .P . Add

IB 7

IB 6

IB 5

IB 4

IB 3

IB 2

IB 1

IB 0
00

37

1 1

1

1

1

1

1 1 1 1

4

2

3

C ontrol and/or data from other proces s ors .

T he s econd vector logical functional unit s hares
hardware with the floating-point multiply functional
unit.

T he vector pop/parity/leading zero functional unit
s hares hardware with the floating-point reciprocal
approximation functional unit.

T he bit matrix multiply (B MM) unit s hares hardware
with the floating-point add functional unit. T he B MM
regis ter is contained in the bit matrix multiply unit.

Notes

V IR
126 Cray Proprietary 108-0245-003

System Programmer Reference Operating Registers
In vector processing, successive elements are provided each CP; as each
operation is completed, the result is delivered to a successive element of the
result register. The vector operation continues until the number of operations
performed by the instructions equals the count specified by the vector length
(VL) register.

Parallel vector operations allow the generation of two or more results per CP.
Parallel vector operations can be processed by the following methods:

• Using different functional units and different V registers.

• Using the result stream from one vector register as the operand of another
operation using a different functional unit; this process is known as
chaining and is explained later in this subsection.

• Using one V register, from which operands are currently being read and
sent to one functional unit, as the result register for the result stream from
a second function. This process is known as tailgating and is explained
later in this subsection. To tailgate, the operand processing for the first
instruction must always remain ahead of the second instruction operand
processing.

Vector Dual Pipe Processing

The SV1 series CPU is designed for dual pipe vector processing. There are two
of each type of vector functional units: one set is designated as Vector Pipe 0
and the second as Vector Pipe 1. The parallel use of Pipes 0 and 1 reduces by
half the number of CPs required to process the same set of vector operands
(producing 2 results per CP).

The vector registers, to support the dual functional unit pipes, are each divided
into two parts with all even elements in one part and all odd elements in the
other. As an example, Vector register 0 elements 0, 2, 4, 6, and so on are sent
as operands to and received as results from Pipe 0 functional units, while
elements 1, 3, 5, 7, and so on are sent to and received from Pipe 1 functional
units. There are 8 vector registers, each with a length of 64 elements, but each
is divided into paired halves to support a duplicated set of vector functional
units. The two halves are controlled by a common control unit.

Advantages of Vector Processing

In general, vector processing is faster and more efficient than scalar
processing. Vector processing reduces the overhead that is associated with
maintenance of the loop-control variable (for example, incrementing and
108-0245-003 Cray Proprietary 127

Operating Registers System Programmer Reference
checking the count). In many cases, loops that process vectors are reduced to a
simple sequence of instructions without branching backwards. Vector
processing reduces central memory access conflicts. It also exploits functional
unit segmentation processing because results from the units can be obtained at
the rate of two results per CP with the SV1 series systems.

Vectorization typically speeds up a code segment by approximately a factor of
ten. If a segment of code that previously used 50% of a program’s run time is
vectorized, the overall run time is 55% of the original run time (50% for the
unvectorized portion plus 0.1 X 50% for the vectorized portion). Vectorizing
90% of a program reduces the run time to 19% of the original execution time.

V Register Functions

The V registers are used for vector processing. Unlike the A and S registers
that have secondary functions, the V registers are used only for vector
processing. Vector processing allows a single instruction to sequentially
perform a specified operation on a set (vector) of operands, to produce a series
of results. Examples of these sets or vectors may be rows or columns of a
matrix or elements of a table.

Vector instructions reference V registers by specifying the register number as
the i, j, or k designator. Refer to “Instruction Formats” for information about
instruction fields. Vector registers always start with element 0. Individual
elements of a V register are designated by octal numbers that range from 00
through 77. These numbers appear as subscripts to vector register references.
For example, V627 refers to element 27 (octal) of V register 6.

Single-word data transfers can be made between an S register and an element
of a V register. In block transfers, the contents of a V register are transferred to
or from cache or central memory by specifying a first word address in central
memory, an increment or decrement value for the central memory address, and
a vector length. The transfer begins with the first element of the V register at a
maximum rate of 2 words per CPU CP; this rate can be affected by central
memory conflicts. A central memory conflict interrupts the vector data stream
and can occur in chained operations (although they do not inhibit chaining).
Any interruption in the vector data stream adds proportionally to the total
execution time of vector operations.

Vector Instructions

All vector instructions are dispatched to the vector unit, which finally issues
these instructions after conflict checks. Vector instructions reserve V registers
as either operands or results. If the register is reserved as an operand register, it
cannot be used as an operand register until the operand reservation clears. A
128 Cray Proprietary 108-0245-003

System Programmer Reference Operating Registers
vector register can be used as both an operand and result register for the same
vector instruction. If a register is reserved as a result register, it can be used as
an operand register through a process called chaining. Refer to “Vector
Chaining” for more information on chaining. A register that is reserved as an
operand may be used as a result register by a later instruction, if conditions
permit, through a process called tailgating.

No reservation is placed on the VL register during vector processing. If a
vector instruction uses an S register as an operand, no reservation is placed on
the S register. Conflicts can occur between vector and scalar operations that
access memory. With the exception of these operations, the functional units are
always available for scalar operations. The S and VL registers can be modified
after the vector instruction issues without affecting the earlier vector
operations. The A0 and Ak registers in a vector memory reference can also be
modified after the instruction issues from the current instruction parcel (CIP).

Instructions reference V registers by specifying the register number as the i, j,
or k designator. Refer to “Instruction Formats” for more information about the
instruction fields. Because most transfers to or from registers are done in
blocks of data, instructions that transfer data between V registers and central
memory reserve a port, and functional unit instructions reserve the appropriate
functional unit.

Table 29 summarizes the types of V register instructions and provides the
machine instruction, the CAL code, a description of the instruction, and the
type of instruction. Included in this table are instructions that are not directly
vector but that support vector operations. Refer to “CPU Instruction
Descriptions” for a detailed description of these instructions.

Table 29. V Register Instructions

Machine
Instructions CAL Syntax Description

Type of
Instruction

00200k VL Ak Transmit (Ak) to Vector Length register Register entry

002000 VL 1 Transmit 1 to Vector Length register

0030j0 VM Sj Transmit (Sj) to the Vector Mask register

003000 VM 0 Clear Vector Mask register

076ijk Si Vj,Ak Transmit (Vj element (Ak)) to Si Register entry

077ijk Vi,Ak Sj Transmit (Sj) to Vi element (Ak)

077i0k Vi,Ak 0 Clear element (Ak) of register Vi
108-0245-003 Cray Proprietary 129

Operating Registers System Programmer Reference
176i0k Vi ,A0,Ak Load (VL) words from address (A0) incremented by (Ak)
elements to Vi elements

Memory
transfer
(Load)176i00 Vi ,A0,1 Load (VL) words from address (A0) incremented by 1 to

Vi elements

176i lk Vi ,A0,Vk Load (VL) words from address ((A0) + (Vk elements)) to
Vi elements

1770jk ,A0,Ak Vj Store (VL) words from Vj elements to address (A0)
incremented by (Ak)

Memory
transfer
(Store)1770j0 ,A0,1 Vj Store (VL) words from Vj elements to address A0

incremented by 1

1771jk ,A0,Vk Vj Store (VL) words from Vj elements to address ((A0) + (Vk
elements))

154ijk Vi Sj + Vk Transmit integer sums of (Sj) and (Vk elements) to Vi
elements

Integer
operation

155ijk Vi Vj + Vk Transmit integer sums of (Vj elements) and (Vk elements)
to Vi

156ijk Vi Sj-Vk Transmit integer differences of (Sj) and (Vk elements) to
Vi elements

156i0k Vi -Vk Transmit twos complement of (Vk elements) to Vi
elements

157ijk Vi Vj-Vk Transmit integer differences of (Vj elements) and (Vk
elements) to Vi elements

160ijk Vi Sj*FVk Transmit floating-point products of (Sj) and (Vk
elements) to Vi elements

Floating-point
operation

161ijk Vi Vj*FVk Transmit floating-point products of (Vj elements) and (Vk
elements) to Vi elements

162ijk Vi Sj*HVk Transmit half-precision rounded floating-point products of
(Sj) and (Vk elements) to Vi elements

163ijk Vi Vj*HVk Transmit half-precision rounded floating-point products of
(Vj elements) and (Vk elements) to Vi elements

164ijk Vi Sj*RVk Transmit rounded floating-point products of (Sj) and (Vk
elements) to Vi elements

165ijk Vi Vj*RVk Transmit rounded floating-point products of (Vj elements)
and (Vk elements) to Vi elements

166ijk Vi Sj* Vk Transmit 32-bit integer product of (Sj) and (Vk elements)
to Vi elements

167ijk Vi Vj* lVk Transmit reciprocal iteration of two minus the
floating-point product of (Vj elements) and (Vk elements)
to Vi elements

170ijk Vi Sj + FVk Transmit floating-point sums of (Sj) and (Vk elements) to
Vi elements

Table 29. V Register Instructions

Machine
Instructions CAL Syntax Description

Type of
Instruction
130 Cray Proprietary 108-0245-003

System Programmer Reference Operating Registers
170i0k Vi +FVk Transmit normalized (Vk elements) to Vi elements Floating-point
operation

(cont.)
171ijk Vi Vj +FVk Transmit floating-point sums of (Vj) and (Vk elements) to

Vi elements

172ijk Vi Sj-FVk Transmit floating-point differences of (Sj) and (Vk
elements) to Vi elements

172i0k Vi -FVk Transmit normalized negative of (Vk elements) to Vi
elements

173ijk Vi Vj-FVk Transmit floating-point differences of (Vj elements) and
(Vk elements) to Vi elements

174ij0 Vi /HVj Transmit floating-point reciprocal approximation of (Vj
elements) to Vi elements

Logical
operation

140ijk Vi Sj&Vk Transmit logical product of (Sj) and (Vk elements) to Vi
elements

Logical
operation

141ijk Vi Vj&Vk Transmit logical products of (Vj elements) and (Vk
elements) to Vi elements

142ijk Vi Sj !Vk Transmit logical sums of (Sj) and (Vk elements) to Vi
elements

142i0k Vi Vk Transmit (Vk elements) to Vi elements

143ijk Vi Vj !Vk Transmit logical sums of (Vj elements) and (Vk elements)
to Vi elements

144ijk Vi Sj \ Vk Transmit logical differences of (Sj) and (Vk elements) to
Vi elements

145ijk Vi Vj \ Vk Transmit logical differences of (Vj elements) and (Vk
elements) to Vi elements

146ijk Vi
Sj !Vk&VM

Transmit (Sj) if VM bit = 1, (Vk element) if VM bit = 0, to Vi
elements

146i0k Vi #VM&Vk Vector merge of (Vk elements) and 0 to Vi elements

147ijk Vi
Vj !Vk&VM

Transmit (Vj element) if VM bit =1, (Vk element) if VM bit
= 0, to Vi elements

150ijk Vi Vj < Ak Shift (Vj elements) left by (Ak) places to Vi elements Register shift
150ij0 Vi Vj < 1 Shift (Vj elements) left one place to Vi elements

151ijk Vi Vj > Ak Shift (Vj elements) right by (Ak) places to Vi elements

151ij0 Vi Vj > 1 Shift (Vj elements) right one place to Vi elements

152ijk Vi
Vj,Vj < Ak

Transmit double shift of (Vj elements) left (Ak) places to
Vi elements

152ij0 Vi Vj,V>1 Transmit double shift (Vj elements) left one place to Vi
elements

153ijk Vi Vj,Vj >
Ak

Transmit double shift of (Vj elements) right (Ak) places to
Vi elements

Register shift
(cont.)

153ij0 Vi Vj,Vj > l Transmit double shift of (Vj elements) right one place to
Vi elements

Table 29. V Register Instructions

Machine
Instructions CAL Syntax Description

Type of
Instruction
108-0245-003 Cray Proprietary 131

Operating Registers System Programmer Reference
Vector Instruction Issue Timing

The CIP is the central issue point for all instructions. Instructions that require
use of the vector unit are issued to the vector unit instruction queue. Table 29
lists all of these instructions. The vector issue register (VIR) issues these vector
instructions in the order it receives them. The vector unit instruction queue
(VIQ) can buffer a maximum of five instructions issued to it by the CIP. CIP
issue of any additional vector instructions must wait until the queue count is
less than five.

The CIP issues vector instructions to the VIR instruction queue without
checking for a vector functional unit conflict or vector register busy condition.
These conflicts delay issue of the instruction from the VIR.

Vector instruction issue timing has two categories:

• Issue from the CIP directly to the appropriate vector unit, via the VIR,
when no conflicts exist to delay issue

• Issue from the VIR after a delay caused by vector register conflicts,
functional unit conflicts, or vector instruction queuing

The execution time for vector instructions that issue directly from the CIP to
the functional unit (through the VIR) is 2 CPs longer than the execution time
for instructions that are waiting to issue from the VIR.

174ij1 Vi PVj Transmit population count of (Vj elements) to Vi elements Pop/Parity

174ij2 Vi QVj Transmit population count parity of (Vj elements) to Vi
elements

leading 0
operating

174ij3 Vi ZVj Transmit the leading zero count of (Vj elements) to Vi
elements

operation

1740j4 BMM Vj Transmit (Vj elements) to BMM Bit matrix
multiply

174ij6 Vi Vj*BT Transmit the bit matrix product of (Vj elements) and
transpose of (BMM) to Vi elements

operation

070ij6 Si Sj*BT Transmit bit matrix product of (Sj) and transpose of
(BMM) to Si (This scalar instruction executes as a vector
operation.)

Table 29. V Register Instructions

Machine
Instructions CAL Syntax Description

Type of
Instruction
132 Cray Proprietary 108-0245-003

System Programmer Reference Operating Registers
Vector Instruction Issue Conflict Timing

The general rules that apply to the next vector instruction (NVI) issue from the
VIR are as follows:

For Functional Unit Busy

• Functional unit is ready in (VL/2) + 1 CP. The exceptions are a BMM
load instruction, 1740j4, which is ready in 8, 16, 24, or 32 CPs +2 CPs,
and the logical unit that executes a 175 instruction to be followed by a
140 through 147 instruction and ready in (VL/2) + 2 CPs.

For Vector Register Busy

• Vi is ready for Vi use in (VL/2) + functional unit depth in CPs + 2 CPs.

• Vi is ready for Vj or Vk use immediately (due to chaining).

• Vj or Vk is ready for Vj or Vk use in (VL/2) + 2 CPs.

• Vj or Vk is ready for Vi use in (VL/2) + 2 CPs, or Vj or Vk for Vi use
immediately when Vj or Vk is not involved in chaining (when tailgating is
permitted).

Note: Chaining cannot occur unless the data is already available in Vi, and
tailgating cannot occur unless those Vi locations that are to be
written have already read those data elements from Vj or Vk.

Vector Chaining

A vector register that is reserved for results can become the operand register of
a succeeding instruction. This process, called chaining, allows a continuous
stream of operands to flow through the vector registers and functional units.
Even when a vector load operation pauses because of memory conflicts,
chained operations may proceed as soon as data is available. A vector register
can be read during the same cycle that it is written into.

This chaining mechanism allows chaining to begin at any point in the result
vector data stream. The amount of concurrency in a chained operation depends
on the relationship between the issue time of the chaining instruction and
arrival time of the result data stream. For full chaining to occur, the chaining
instruction must issue and be ready to use elements 0 and 1 of the result at the
same time that elements 0 and 1 arrive at the V register. Partial chaining occurs
if the chaining instruction issues after the arrival of elements 0 and 1 of the
result vector data stream.
108-0245-003 Cray Proprietary 133

Operating Registers System Programmer Reference
Elements are loaded into register V0. As soon as elements 0 and 1 have arrived
from central memory into register V0, they are added to the first element pair
of vector register V1. Subsequent elements are pipelined through the
segmented functional unit, so that a continuous stream of results is sent to the
destination register, which is register V2. As soon as the first pair of elements
arrives at register V2, it becomes the operand pair for the shift operation. The
results are sent to register V3, which immediately becomes the source of one of
the operand pairs necessary for the logical operation between registers V3 and
V4. The results of the logical operation are then sent to register V5.

Figure 30 shows how the results of four instructions are chained together. The
instruction chaining sequence performs the following operations:

Figure 30. Vector Chaining Example

1. Read a vector of integers from central memory to register V0 (176000
instruction).

2. Add the contents of register V0 to the contents of register V1 and send the
results to V2 (155210 instruction).

3. Shift the results obtained in Step 2 and send the results to register V3
(150327 instruction).

4. Form the logical product of the shifted sum obtained in Step 3 with the
contents of register V4 and send the results to register V5 (141543
instruction).

Memory
V0 Register

V1 Register

V2 Register

Memory Path Vector Add
Functional Unit

Vector Shift
Functional Unit

Vector Logical
Functional Unit

V3 Register

V4 Register
V5 Register

176000
134 Cray Proprietary 108-0245-003

System Programmer Reference Operating Registers
Elements are loaded into register V0. As soon as individual elements 0 and 1
arrive from central memory into register V0, they are added to the first element
pair of vector register V1. Subsequent element pairs are pipelined through the
segmented functional units, so that a continuous stream of results is sent to the
destination register V2. As soon as the first result element pair arrives at
register V2, it becomes the operand pair for the shift operation. The results are
sent to register V3, which immediately becomes the source of one of the
operand pairs necessary for the logical operation between registers V3 and V4.
The results of the logical operation are then sent to register V5.

Vector Tailgating

The mainframe design also incorporates vector register tailgating. Tailgating is
the process of writing the result from a later vector instruction into a vector
register after that location has been read by an earlier vector instruction. The
SV1 series system permits tailgating to any vector register that is not already
reserved as a result register. The tailgating control ensures that the read of a
vector register location always occurs before the write to that vector register
location can occur. Refer to Figure 31 for a vector tailgating example.

Figure 31. Vector Tailgating Example

Figure 31 shows the results of three instructions that are tailgating their results
into a previously issued instruction. The instruction sequence performs the
following operation:

1. Vector integer add (155321 instruction) of V1 and V2 to V3 starts the
sequence.

V3

Vector Add
Functional Unit

Vector Logical
Functional Unit

Vector Shift
Functional Unit

Vector Logical 2
Functional Unit

V1
V2

V4
V5

V6 V7
V0
108-0245-003 Cray Proprietary 135

Operating Registers System Programmer Reference
2. Vector logical (141145 instruction) of V4 and V5 puts the results into V1.
The tailgating control assures that the read of V1 will remain ahead of the
write to V1.

3. Vector shift (150465 instruction) of V6 puts the results into V4.

4. Vector logical 2 (141670 instruction) of V7 and V0 puts the results into
V6.

Vector Control Registers

The vector length (VL) register and vector mask (VM) register provide control
information that is needed to perform vector operations. The following
subsections describe the VL and VM registers. Table 30 lists the vector mask
instructions and provides octal and CAL codes. Refer to the “Functional Units
Instruction Summary” for complete information on these instructions.

Table 30. Vector Mask Instructions

Machine
Instructions CAL Syntax Description

Type of
Instruction

0030j0 VM Sj Transmit (Sj) to VM register Register entry

003000 VM 0 Clear VM register

073i00 Si VM Transmit (VM) to Si

146ijk Vi Sj!Vk&VM Transmit to Vi elements (Sj) if VM bit = 1 or
(Vk element) if VM bit = 0

Logical
operation

146i0k Vi #VM&Vk Transmit vector merge of (Vk elements) and 0 to Vi
elements

147ijk Vi Vj !Vk&VM Transmit to Vi elements (Vj element) if VM bit = 1 or
(Vk) if VM bit = 0

1750j0 VM Vj, Z Set VM = 1, if (Vj element) = 0

1750j1 VM Vj, N Set VM = 1, if (Vj element) ≠ 0
1750j2 VM Vj, P Set VM = 1, if (Vj element) ≥ 0 (positive)

1750j3 VM Vj, M Set VM = 1, if (Vj element) < 0 (negative)

175ij4 Vi,VM Vj, Z Set VM bit = 1, if (Vj element) = 0, and store the
compressed indices of the Vj elements = 0 in Vi.

175ij5 Vi,VM Vj, N Set VM bit = 1, if (Vj element) ≠ 0, and store the
compressed indices of the Vj elements ≠ 0 in Vi.

175ij6 Vi,VM Vj, P Set VM bit = 1, if (Vj element) ≥ 0, and store the
compressed indices of the Vj elements ≥ 0 in Vi.

175ij7 Vi,VM Vj, M Set VM bit = 1, if (Vj elements) < 0, and store the
compressed indices of the Vj elements < 0 in Vi.
136 Cray Proprietary 108-0245-003

System Programmer Reference Operating Registers
Vector Length Register

The 7-bit VL register is set from 1 through 100 octal (VL = 0 gives VL = 100)
to specify the length of all vector operations performed by vector instructions
and the length of the vectors held by the V registers. The VL register controls
the number of operations performed by instructions 140 through 177. The VL
register is loaded and its contents are saved by an exchange sequence. The VL
register is set by instruction 00200k and is read by instruction 023i01.

Vector Mask Register

The VM register has 64 bits; each bit corresponds to a word element in a vector
register. Bit 63 corresponds to element 0, and bit 0 corresponds to element 63.
The mask is used with vector merge and test instructions to allow operations to
be performed on individual vector elements.

The VM register can be set from an S register through instruction 003 or can be
created by testing a vector register for a condition using instruction 175. The
mask controls element selection in the vector merge instructions (146 and
147). Instruction 073 reads the contents of the VM register to an S register.

User Mode Vector Instruction Timing

Table 31 describes the user mode vector instruction issue and execution
information. The following definitions apply to Table 31.

• The current instruction parcel (CIP) is the same instruction issue register
that was used in previous Cray designs.

• The CIP dispatches vector instructions to the vector instruction queue
(VIQ). The VIQ can hold up to five vector instructions.

• The vector issue register (VIR) is the fifth stage of the VIQ. The VIR
issues vector instructions in the order in which they are received from the
CIP. The VIR checks for the “busy” conditions in the vector unit that hold
issue in the VIR. The CIP does not monitor these “vector unit only” busy
conditions.

• The timings shown are relative to a vector instruction issued from the
VIR. An instruction issued from the CIP through a nonbusy VIR is 2 CPs
longer.
108-0245-003 Cray Proprietary 137

Operating Registers System Programmer Reference
Ta
bl

e
31

.V
ec

to
r

In
st

ru
ct

io
n

Is
su

e
an

d
E

xe
cu

tio
n

C
od

e
C

A
L

C
IP

H
ol

d
Is

su
e

C
on

di
tio

ns
V

IR
H

ol
d

Is
su

e
C

on
di

tio
ns

F
C

N
U

ni
t

B
us

y
T

im
e

U
se

d
V

j/V
k

R
ea

dy
R

es
ul

t
in

V
R

**
C

om
m

en
ts

an
d

S
pe

ci
al

C
on

di
tio

ns

A
k

B
us

y
(E

xc
ep

t
A

0)

S
jB

us
y

(E
xc

ep
t

S
0)

03
5/

03
7

In
st

r
in

P
ro

gr
es

s

07
7

Is
su

ed
P

re
vi

ou
s

C
P

V
IQ

F
ul

l

V
R

B
us

y*
F

C
N

U
ni

ts
B

us
y

In
st

r
N

ot in V
IR

V
i

V
j

V
k

00
20

0k
V

L
A

k
x

x
x

x
x

V
IR

is
su

e
3

C
P

00
30

j0
V

M
S

j
x

x
x

Lo
g

x
1

C
P

5C
P

in
V

M
V

M
bu

sy
fo

r
3

C
P

07
3i

00
S

i
V

M
S

iB
us

y
x

x
V

M
x

2
C

P
3

C
P

in
S

i
V

IR
is

su
e

2
C

P

07
0i

j6
S

i
S

j*
B

T
S

i/S
j

B
us

y
x

x
B

M
M

x
1

C
P

S
ca

la
r

B
M

M
-

se
e

no
te

1

07
6i

jk
S

i
V

j,A
k

x
S

iB
us

y
x

x
x

x
x

2
C

P
5

C
P

in
S

i
V

IR
is

su
e

2
C

P.
R

ef
er

to
no

te
2.

07
7i

jk
V

i,A
k

S
j

x
x

x
x

x
x

1
C

P
4

C
P

C
IP

ho
ld

is
su

e
on

ga
th

er
/s

ca
tte

r

14
0i

jk
V

i
S

j&
V

k
x

x
x

x
x

Lo
g&

F
M

x
V

L/
2+

1
C

P
V

L/
2+

2
C

P
V

L/
2+

6
C

P
F

M
/L

og
2

un
it

14
1i

jk
V

i
V

j&
V

k
x

x
x

x
Lo

g&
F

M
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
6

C
P

F
M

/L
og

2
un

it

14
2i

jk
V

i
S

j|
V

k
x

x
x

x
x

Lo
g&

F
M

x
V

L/
2+

1
C

P
V

L/
2+

2
C

P
V

L/
2+

6
C

P
F

M
/L

og
2

un
it

14
3i

jk
V

i
V

j|
V

k
x

x
x

x
Lo

g&
F

M
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
6

C
P

F
M

/L
og

2
un

it

14
4i

jk
V

i
S

j\
V

k
x

x
x

x
x

Lo
g&

F
M

x
V

L/
2+

1
C

P
V

L/
2+

2
C

P
V

L/
2+

6
C

P
F

M
/L

og
2

un
it

14
5i

jk
V

i
V

j\
V

k
x

x
x

x
Lo

g&
F

M
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
6

C
P

F
M

/L
og

2
un

it

14
6i

jk
V

i
S

j|
V

k&
V

M
x

x
x

x
x

Lo
g

x
V

L/
2+

1
C

P
V

L/
2+

2
C

P
V

L/
2+

6
C

P
M

er
ge

in
st

ru
ct

io
ns

14
7i

jk
V

i
V

j|
V

k&
V

M
x

x
x

x
Lo

g
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
6

C
P

M
er

ge
in

st
ru

ct
io

ns

15
0i

jk
V

i
V

j<
A

k
x

x
x

x
x

S
hi

ft
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
7

C
P

15
1i

jk
V

i
V

j>
A

k
x

x
x

x
x

S
hi

ft
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
7

C
P

15
2i

jk
V

i
V

j,V
j<

A
k

x
x

x
x

x
S

hi
ft

x
V

L/
2+

1
C

P
V

L/
2+

2
C

P
V

L/
2+

8
C

P

15
3i

jk
V

i
V

j,V
j>

A
k

x
x

x
x

x
S

hi
ft

x
V

L/
2+

1
C

P
V

L/
2+

2
C

P
V

L/
2+

7
C

P

138 CrayProprietary 108-0245-003

Operating Registers System Programmer Reference
15
4i

jk
V

i
S

j+
V

k
x

x
x

x
x

V
A

dd
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
6

C
P

15
5i

jk
V

i
V

j+
V

k
x

x
x

x
V

A
dd

x
V

L/
2+

1
C

P
V

L/
2+

2
C

P
V

L/
2+

6
C

P

15
6i

jk
V

i
S

j-V
k

x
x

x
x

x
V

A
dd

x
V

L/
2+

1
C

P
V

L/
2+

2
C

P
V

L/
2+

6
C

P

15
7i

jk
V

i
V

j-V
k

x
x

x
x

V
A

dd
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
6

C
P

16
0i

jk
V

i
S

j*
F

V
k

x
x

x
x

x
F

M
pl

y
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
11

C
P

F
lo

at
in

g
m

ul
tip

ly

16
1i

jk
V

i
V

j*
F

V
k

x
x

x
x

F
M

pl
y

x
V

L/
2+

1
C

P
V

L/
2+

2
C

P
V

L/
2+

11
C

P
F

lo
at

in
g

m
ul

tip
ly

16
2i

jk
V

i
S

j*
H

V
k

x
x

x
x

x
F

M
pl

y
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
11

C
P

H
al

fp
re

ci
si

on

16
3i

jk
V

i
V

j*
H

V
k

x
x

x
x

F
M

pl
y

x
V

L/
2+

1
C

P
V

L/
2+

2
C

P
V

L/
2+

11
C

P
H

al
fp

re
ci

si
on

16
4i

jk
V

i
S

j*
R

V
k

x
x

x
x

x
F

M
pl

y
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
11

C
P

R
ou

nd
ed

flo
at

in
g

m
ul

tip
ly

16
5i

jk
V

i
V

j*
R

V
k

x
x

x
x

F
M

pl
y

x
V

L/
2+

1
C

P
V

L/
2+

2
C

P
V

L/
2+

11
C

P
R

ou
nd

ed
flo

at
in

g
m

ul
tip

ly

16
6i

jk
V

i
S

j*
V

k
x

x
x

x
x

F
M

pl
y

x
V

L/
2+

1
C

P
V

L/
2+

2
C

P
V

L/
2+

11
C

P
32

-b
it

in
te

ge
r

16
7i

jk
V

i
V

j*
IV

k
x

x
x

x
F

M
pl

y
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
11

C
P

2
-

pr
od

uc
t

17
0i

jk
V

i
S

j+
F

V
k

x
x

x
x

x
F

A
dd

&
B

M
M

x
V

L/
2+

1
C

P
V

L/
2+

2
C

P
V

L/
2+

10
C

P

17
1i

jk
V

i
V

j+
F

V
k

x
x

x
x

F
A

dd
&

B
M

M
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
10

C
P

17
2i

jk
V

i
S

j-
F

V
k

x
x

x
x

x
F

A
dd

&
B

M
M

x
V

L/
2+

1
C

P
V

L/
2+

2
C

P
V

L/
2+

10
C

P

17
3i

jk
V

i
V

j-
F

V
k

x
x

x
x

F
A

dd
&

B
M

M
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
10

C
P

17
4i

j0
V

i
/H

V
j

x
x

x
F

R
/P

/P
/L

Z
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
18

C
P

F
lo

at
in

g
re

ci
pr

oc
al

17
4i

j1
V

i
P

V
j

x
x

x
F

R
/P

/P
/L

Z
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
7

C
P

P
op

co
un

t

17
4i

j2
V

i
Q

V
j

x
x

x
F

R
/P

/P
/L

Z
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
7

C
P

P
ar

ity

17
4i

j3
V

i
Z

V
j

X
X

X
F

R
/P

/P
/L

Z
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
6

C
P

Le
ad

in
g

ze
ro

17
40

j4
B

M
M

V
j

x
x

F
A

dd
&

B
M

M
x

L+
2

C
P

V
L/

2+
2

C
P

L=
8,

16
,2

4,
or

32
C

P
s

17
4i

j6
V

i
V

j*
B

T
x

x
x

F
A

dd
&

B
M

M
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
6

C
P

V
ec

to
r

B
M

M

Ta
bl

e
31

.V
ec

to
r

In
st

ru
ct

io
n

Is
su

e
an

d
E

xe
cu

tio
n

(c
on

tin
ue

d)

C
od

e
C

A
L

C
IP

H
ol

d
Is

su
e

C
on

di
tio

ns
V

IR
H

ol
d

Is
su

e
C

on
di

tio
ns

F
C

N
U

ni
t

B
us

y
T

im
e

U
se

d
V

j/V
k

R
ea

dy
R

es
ul

t
in

V
R

**
C

om
m

en
ts

an
d

S
pe

ci
al

C
on

di
tio

ns

A
k

B
us

y
(E

xc
ep

t
A

0)

S
jB

us
y

(E
xc

ep
t

S
0)

03
5/

03
7

In
st

r
in

P
ro

gr
es

s

07
7

Is
su

ed
P

re
vi

ou
s

C
P

V
IQ

F
ul

l

V
R

B
us

y*
F

C
N

U
ni

ts
B

us
y

In
st

r
N

ot in V
IR

V
i

V
j

V
k

108-0245-003 Cray Proprietary 139

Operating Registers System Programmer Reference
17
50

j0
V

M
V

j,Z
x

x
Lo

g
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

Te
st

,1
/0

to
V

M

17
50

j1
V

M
V

j,N
x

x
Lo

g
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

Te
st

,1
/0

to
V

M

17
50

j2
V

M
V

j,P
x

x
Lo

g
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

Te
st

,1
/0

to
V

M

17
50

j3
V

M
V

j,M
x

x
Lo

g
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

Te
st

,1
/0

to
V

M

17
5i

j4
V

i,V
M

V
j,Z

x
x

x
Lo

g
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
7

C
P

V
M

/C
om

pr
es

s
I

17
5i

j5
V

i,V
M

V
j,N

x
x

x
Lo

g
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
7

C
P

V
M

/C
om

pr
es

s
I

17
5i

j6
V

i,V
M

V
j,P

x
x

x
Lo

g
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
7

C
P

V
M

/C
om

pr
es

s
I

17
5i

j7
V

i,V
M

V
j,M

x
x

x
Lo

g
x

V
L/

2+
1

C
P

V
L/

2+
2

C
P

V
L/

2+
7

C
P

V
M

/C
om

pr
es

s
I

17
6i

0
k

V
i,

,A
0,

A
k

x
x

x
x

x
x

V
L/

2+
10

9
C

P
V

L/
2+

25
C

P
R

ef
er

to
no

te
3.

M
em

or
y/

C
ac

he
C

P
s

17
6i

1
k

V
i

,A
0,

V
k

x
x

x
x

x
x

V
L/

2+
2

C
P

V
L/

2+
2C

P
V

L/
2

+
11

5
C

P
V

L/
2+

28
C

P
G

at
he

r.
R

ef
er

to
no

te
4.

17
70

jk
,A

0,
A

k
V

j
x

x
x

x
x

x
R

ef
er

to
no

te
5.

17
71

jk
,A

0,
V

k
V

j
x

x
x

x
x

x
V

L/
2+

2
C

P
S

ca
tte

r.
R

ef
er

to
no

te
6.

N
ot

es
:

*
V

ec
to

r
re

gi
st

er
bu

sy
do

es
no

td
el

ay
is

su
e

fr
om

V
IR

if
ch

ai
ni

ng
or

ta
ilg

at
in

g
is

pe
rm

itt
ed

.

**
T

he
cy

cl
es

sh
ow

n
fo

r
th

e
“R

es
ul

ti
n

V
R

”
ar

e
fr

om
V

IR
in

st
ru

ct
io

n
is

su
e

tim
e

un
til

th
e

re
su

lt
da

ta
is

w
rit

te
n

in
to

th
e

V
R

.T
he

re
su

lt
da

ta
is

av
ai

la
bl

e
fo

r
ch

ai
ni

ng
to

th
e

ne
xt

ve
ct

or
in

st
ru

ct
io

n
as

so
ur

ce
da

ta
(o

pe
ra

nd
s)

as
so

on
as

it
re

ac
he

s
th

e
V

R
.

1
T

he
07

0i
j6

in
st

ru
ct

io
n

is
th

e
sc

al
ar

B
M

M
in

st
ru

ct
io

n
th

at
m

us
te

xe
cu

te
as

a
ve

ct
or

in
st

ru
ct

io
n

(b
e

is
su

ed
fr

om
th

e
V

IR
)

an
d

re
tu

rn
th

e
re

su
lt

to
an

S
re

gi
st

er
.

2
T

he
07

6
in

st
ru

ct
io

n
im

pl
em

en
te

d
on

S
V

1
se

rie
s

sy
st

em
s

pr
ov

id
es

ef
fe

ct
iv

e
co

m
m

un
ic

at
io

n
be

tw
ee

n
th

e
ve

ct
or

un
it

an
d

sc
al

ar
un

it.
T

he
in

st
ru

ct
io

n
is

is
su

ed
to

th
e

V
IQ

w
ith

ou
tc

he
ck

in
g

fo
r

V
R

bu
sy

.T
he

07
6

is
no

te
xe

cu
te

d
(d

at
a

to
S

i)
un

til
th

e
V

jv
ec

to
r

re
gi

st
er

is
no

tb
us

y.
F

ol
lo

w
in

g
th

e
07

6
in

st
ru

ct
io

n
w

ith
a

tr
an

sf
er

in
st

ru
ct

io
n

(t
he

S
re

gi
st

er
to

its
el

f)
w

ill
ho

ld
is

su
e

at
th

e
C

IP
un

til
th

e
V

R
is

no
tb

us
y.

C
IP

w
ill

ho
ld

is
su

e
of

th
e

ne
xt

ve
ct

or
in

st
ru

ct
io

n
us

in
g

an
S

or
A

op
er

an
d

re
gi

st
er

by
1

C
P

.

3
C

IP
ho

ld
is

su
e

of
th

is
ve

ct
or

lo
ad

in
st

ru
ct

io
n

oc
cu

rs
w

he
n

no
m

em
or

y
po

rt
is

av
ai

la
bl

e,
a

ve
ct

or
st

or
e

op
er

at
io

n
ha

s
be

en
is

su
ed

w
ith

bi
di

re
ct

io
na

lm
od

e
O

F
F

,o
r

a
07

6
in

st
ru

ct
io

n
is

w
ai

tin
g

ex
ec

ut
io

n
in

th
e

ve
ct

or
qu

eu
e

(e
ss

en
tia

lly
bi

di
re

ct
io

na
lm

od
e

O
F

F
be

ca
us

e
of

a
07

6
in

st
ru

ct
io

n)
w

ith
a

ve
ct

or
(w

ith
an

ad
di

tio
na

l5
C

P
s

w
ith

ch
ai

ni
ng

/ta
ilg

at
in

g
oc

cu
rr

in
g

st
or

e
ac

tiv
e)

.A
ls

o,
sc

al
ar

an
d

ve
ct

or
re

qu
es

ts
to

m
em

or
y

ca
nn

ot
oc

cu
r

at
th

e
sa

m
e

tim
e.

P
or

tb
us

y
fo

r
a

ve
ct

or
lo

ad
is

V
L/

2+
13

C
P

m
in

im
um

.

4
T

he
co

nd
iti

on
s

of
nu

m
be

r
3

ap
pl

y.
In

ad
di

tio
n,

C
IP

ca
nn

ot
is

su
e

th
e

ga
th

er
in

st
ru

ct
io

n
if

a
sc

at
te

r
in

st
ru

ct
io

n
ha

s
no

tc
om

pl
et

ed
ex

ec
ut

io
n.

P
or

tb
us

y
fo

r
a

ga
th

er
is

V
L

+
9

C
P

w
ith

a
m

in
im

um
of

12
C

P
s.

5
T

he
co

nd
iti

on
s

of
nu

m
be

r
3

ap
pl

y.
In

ad
di

tio
n,

C
IP

ca
nn

ot
is

su
e

w
hi

le
an

ot
he

r
st

or
e

is
ac

tiv
e.

P
or

tb
us

y
fo

r
a

ve
ct

or
st

or
e

is
V

L
+

7
C

P
w

ith
a

m
in

im
um

of
9

C
P

s.

6
T

he
co

nd
iti

on
s

of
nu

m
be

r
3

ap
pl

y.
In

ad
di

tio
n,

C
IP

ca
nn

ot
is

su
e

th
e

sc
at

te
r

in
st

ru
ct

io
n

if
a

ga
th

er
in

st
ru

ct
io

n
ha

s
no

tc
om

pl
et

ed
ex

ec
ut

io
n.

P
or

tb
us

y
fo

r
a

sc
at

te
r

is
V

L
+

16
C

P
m

in
im

um
.

Ta
bl

e
31

.V
ec

to
r

In
st

ru
ct

io
n

Is
su

e
an

d
E

xe
cu

tio
n

(c
on

tin
ue

d)

C
od

e
C

A
L

C
IP

H
ol

d
Is

su
e

C
on

di
tio

ns
V

IR
H

ol
d

Is
su

e
C

on
di

tio
ns

F
C

N
U

ni
t

B
us

y
T

im
e

U
se

d
V

j/V
k

R
ea

dy
R

es
ul

t
in

V
R

**
C

om
m

en
ts

an
d

S
pe

ci
al

C
on

di
tio

ns

A
k

B
us

y
(E

xc
ep

t
A

0)

S
jB

us
y

(E
xc

ep
t

S
0)

03
5/

03
7

In
st

r
in

P
ro

gr
es

s

07
7

Is
su

ed
P

re
vi

ou
s

C
P

V
IQ

F
ul

l

V
R

B
us

y*
F

C
N

U
ni

ts
B

us
y

In
st

r
N

ot in V
IR

V
i

V
j

V
k

140 CrayProprietary 108-0245-003

System Programmer Reference Functional Units
Bit Matrix Multiply (BMM) Register

There is one bit matrix multiply register (BMM). The register holds a square
matrix of 64 x 64 bits. The register is internal to the bit matrix multiply
functional unit. Refer to the “Bit-matrix Multiply Functional Unit” section for
more information.

Functional Units

Functional units perform instructions other than simple transfers or control
operations. Functional units have independent logic, except for the reciprocal
approximation, vector population count, floating-point multiply, and second
vector logical units (described later in this section), which share some logic.
All functional units can operate simultaneously. For more information, refer to
the “Functional Unit Independence” section.

A functional unit receives operands from registers, performs an operation, and
delivers the result to a register after the function is performed. Functional units
operate in three-addressing mode, with source and destination addressing
limited to register designators.

All functional units perform operations in a fixed amount of time; delays are
impossible once the operands are delivered to the unit. The time from delivery
of the operands to the functional unit until completion of the calculation is
called the functional unit time and is measured in CPs.

Functional units are fully segmented. This means a new set of operands for
unrelated computation can enter a functional unit in each CP even though the
functional unit time can be more than 1 CP. Refer to “Pipelining and
Segmentation” for more information about segmentation.

There are four groups of functional units: address, scalar, vector, and
floating-point. The address, scalar, and vector functional units operate with one
of the primary register types (A, S, and V) to support address, scalar, and
vector processing. The floating-point functional units support either scalar or
vector operations and accept operands from or deliver results to the S or V
registers. In the SV1, the scalar floating-point instructions execute in the vector
floating-point functional units. The scalar floating-point instructions “steal” a
cycle from any vector instruction that is currently using that functional unit.
This may delay that vector instruction execution by 1 CP. For timing purposes,
cache or memory can also act as functional units for vector operations.
108-0245-003 Cray Proprietary 141

Functional Units System Programmer Reference
The following subsections define the function, the functional unit time, and the
instructions that each functional unit executes. Refer to the following sections
and subsections for additional information on functional units:

1. The “Pipelining and Segmentation” and the “Functional Unit
Independence” subsections contain detailed information on functional
unit segmentation/independence.

2. The “Functional Unit Operations” subsection contains detailed
information on integer arithmetic, floating-point arithmetic, normalized
floating-point numbers, floating-point range errors, addition algorithm,
multiply algorithm, and the division algorithm.

3. The “CPU Instruction Descriptions” subsection contains detailed
information on the instructions and instruction formats.

Address Functional Units

The address functional units operate with 32-bit operands and results.

Address functional units perform integer arithmetic on operands that are
obtained from A registers and deliver the results to an A register. The address
functional units use two’s complement arithmetic.

Address Add Functional Unit

The address add functional unit performs 32-bit integer addition and
subtraction. The unit executes instructions 030 (addition) and 031
(subtraction). The subtraction operation uses two’s complement arithmetic.
The Ak operand is complemented and then added to the Aj operand. A 1 is
added to the low-order bit position of the result. The address add functional
unit does not detect overflow conditions.

The address add functional unit time is 2 CPs. This functional unit time is
measured from instruction issue to when the result is available.

Address Multiply Functional Unit

The address multiply functional unit performs 32-bit multiplication. The unit
executes instruction 032, which forms a 32-bit integer product from two
operands. No rounding is performed. The result consists of the least significant
32 bits of the product. The address multiply functional unit does not detect
overflow conditions.
142 Cray Proprietary 108-0245-003

System Programmer Reference Functional Units
The address multiply functional unit time is 4 CPs. This functional unit time is
measured from instruction issue to when the result is available.

Scalar Functional Units

Scalar functional units perform operations on 64-bit operands that are obtained
from S registers and usually deliver the 64-bit results to an S register. The
exception is the population/parity/leading zero count functional unit that
delivers its 7-bit result to an A register.

The following subsections describe the four functional units that are
exclusively associated with scalar operations. The scalar floating-point
instructions use the vector pipe 0 floating-point units for instruction execution.
When a scalar instruction uses a floating-point functional unit, it “steals” a
cycle from any vector instruction that is using that unit, or its companion unit.
The scalar instruction never checks whether the vector units are busy; it just
issues and executes. Refer to “Floating-point Functional Units” for more
information about these units.

Scalar Add Functional Unit

The scalar add functional unit performs 64-bit integer addition and subtraction.
It executes instructions 060 (addition) and 061 (subtraction). The subtraction
operation uses two’s complement arithmetic. The Sk operand is
complemented, and then added to the Sj operand. A 1 is added to the low-order
bit position of the result. The scalar add functional unit does not detect
overflow conditions.

The scalar add functional unit time is 2 CPs. This functional unit time is
measured from instruction issue to when the result is available.

Scalar Shift Functional Unit

The scalar shift functional unit shifts the entire 64-bit contents of an S register
(single shift) or shifts the 128-bit contents of two concatenated S registers
(double shift). For a single shift (instructions 052 through 055), the shift count
is specified by the jk field. For a double shift (instructions 056 and 057), the Ak
register contains the shift count; only the lower 7 bits of the contents of the Ak
register are used. If any bits are set in the upper positions, they cause the result
register Si to be zeroed out.

All single shifts and some double shifts are end-off with zero fill. A circular
shift occurs if the shift count does not exceed 64 and the i and j designators are
equal and nonzero.
108-0245-003 Cray Proprietary 143

Functional Units System Programmer Reference
Single-shift instructions have a functional unit time of 3 CPs, and double-shift
instructions have a functional unit time of 3 CPs. These functional unit times
are measured from instruction issue to when the result is available.

Scalar Logical Functional Unit

The scalar logical functional unit performs bit-by-bit manipulations of 64-bit
quantities that are obtained from S registers. It executes instructions 042
through 043 (mask) and 044 through 051 (logical operations).

The scalar logical functional unit time is 1 CP. This functional unit time is
measured from instruction issue to when the result is available.

Scalar Population/Parity/Leading Zero Functional Unit

This functional unit performs instructions 026 (population count and
population count parity) and 027 (leading zero count). Instruction 026ij0
counts the number of bits in the Sj register that have a value of 1 in the operand
and returns a 7-bit result to the Ai register; the maximum count is 100 octal (64
decimal), and the minimum count is 0.

Instruction 026ij1 counts the number of bits in the Sj operand that have a value
of 1, but returns only a 1-bit parity count to the Ai register. If the Sj operand
has an even number of bits set, a 0 is returned to the Ai register. If the Sj
operand has an odd number of bits set, a 1 is returned to the Ai register.

The functional unit time for the population count parity is 4 CPs. This
functional unit time is measured from instruction issue to when the result is
available.

Instruction 027ij0 counts the number of 0 bits (left to right) that precede a 1 bit
in the operand. For these instructions, the 64-bit operand is obtained from an S
register, and the 7-bit result is delivered to an A register.

The functional unit time for the leading zero count is 4 CPs. This functional
unit time is measured from instruction issue to when the result is available.

Vector Functional Units

Most vector functional units perform operations on operands that are obtained
from one or two vector registers or from a vector and an S register. The shift,
bit-matrix multiply, and population/parity/leading-zero functional units, which
require only one operand, are exceptions. Results from a vector functional unit
144 Cray Proprietary 108-0245-003

System Programmer Reference Functional Units
are delivered to a vector register, with the 070ij6 instruction the exception. All
vector functional units are duplicated and operate in a dual-pipe configuration
that produces 2 results per CP.

Successive operand pairs are transmitted each CP to the functional units. The
corresponding results emerge from the functional unit n CPs later, where n is
the functional unit time and is constant for a given functional unit. The VL
register determines the number of operand pairs to be processed by a
functional units in VL/2 CPs.

The functional units that this section describes are associated with vector
operations.

Vector Add Functional Unit

The vector add functional unit performs 64-bit integer addition and subtraction
for a vector operation and delivers the results to elements of a V register. The
unit executes instructions 154 and 155 (addition), and 156 and 157
(subtraction). Instructions 154 and 156 use one scalar register operand. The
subtraction operation uses two’s complement arithmetic in which the Vk
operand is complemented and then added to the Aj operand. A 1 is added to the
low-order bit position of the result. The vector add functional unit does not
detect overflow conditions.

The vector add functional unit time is 2 CPs deep. This time is measured by the
number of sequential registers from the input register through the output
register in the functional unit.

Vector Shift Functional Unit

The dual pipe vector shift functional unit shifts the entire 64-bit contents of a
vector register element (single-shift) or the 128-bit value formed from two
consecutive elements of a V register (double shift). Shift counts are obtained
from an A register and are end-off with zero fill. All shift counts are considered
positive unsigned integers. If any bit higher than bit 6 is set, the shifted result is
all 0’s.

The dual pipe vector shift functional unit executes instructions 150 and 151
(single shift) and instructions 152 and 153 (double shift). The functional unit
times are 4 CPs deep for instruction 152(left double shift) and 3 CPs deep for
instructions 150, 151, and 153. These times are measured by the number of
sequential registers from the input register through the output register in the
functional unit.
108-0245-003 Cray Proprietary 145

Functional Units System Programmer Reference
Full Vector Logical Functional Unit

The full vector logical functional unit performs a bit-by-bit manipulation of the
64-bit quantities for instructions 140 through 147. The full vector logical
functional unit also performs the logical operations that are associated with the
vector mask (175) instruction.

The full vector logical functional unit time is 3 CPs deep for the 175
instructions and 2 CPs deep for the 140 through 147 instructions. This time is
measured by the number of sequential registers from the input register through
the output register in the functional unit.

Second Vector Logical Functional Unit

The second vector logical functional unit can be enabled or disabled by setting
the enable second vector logical (ESVL) bit in the exchange package. When
enabled, the second vector logical functional unit performs the same bit-by-bit
manipulations of the 64-bit quantities that the full vector logical functional unit
performs for instructions 140 through 145. When enabled and available, this
logical unit is always selected for use before the full logical unit.

The second vector logical and floating-point multiply functional units cannot
be used simultaneously because they share input data paths. In addition,
because these two units have shared paths, some codes that rely on
floating-point products may run slower if the second vector logical functional
unit is enabled. If the floating-point multiply unit is busy and the full vector
logical unit is not busy, a vector logical instruction uses the full vector logical
functional unit.

The second vector logical functional unit is disabled through software by
clearing bit 20 of word 6 in the flag register of the user’s exchange package or
by clearing bit 43 in the hardware exchange package of word 6. When the
second vector logical unit is disabled, all 140 through 145 instructions use the
full vector logical unit.

The second vector logical functional unit time is 2 CPs deep. This time is
measured by the number of sequential registers from the input register through
the output register in the functional unit.

Vector Population/Parity/Leading-zero Functional Unit

The vector population/parity/leading-zero functional unit performs population
counts, parity counts, and leading-zero counts for vector operations. It executes
instructions 174ij1 (vector population count), 174ij2 (vector population count
146 Cray Proprietary 108-0245-003

System Programmer Reference Functional Units
parity), and 174ij3 (vector leading-zero count). This functional unit shares the
input data path with the reciprocal approximation functional unit. Therefore,
the second unit is busy while the input data is in use with the first unit.

Instruction 174ij1 counts the 1 bits in each element of the Vj register and
returns this number to the Vi register; the total number of 1 bits is the
population count. This population count can be an odd or an even number, as
indicated by its low-order bit.

Instruction 174ij2 counts the number of 1 bits in each element of the Vj
register and returns the low-order bit of the count as the result parity bit to
elements of the Vi register. The result count in the Vi element is 0 for even
parity and 1 for odd parity.

Instruction 174ij3 counts the number of 0 bits (left to right) that precede the
first 1 bit in the Vj operands and returns this count as the result to the low order
7 bits in elements of the Vi register.

The vector population/parity/leading-zero functional unit time is 3CPs deep for
population and parity, and 2 CPs deep for leading-zero. This time is measured
by the number of sequential registers from the input register through the output
register in the functional unit.

Floating-point Functional Units

The dual-pipe vector floating-point functional units perform floating-point
arithmetic for vector operations, and the pipe 0 floating-point units perform
arithmetic for scalar operations. When a scalar instruction executes, operands
are obtained from S registers and results are delivered to an S register. When
most vector instructions execute, operands are obtained from pairs of V
registers, or from an S register and a V register, and results are delivered to a
vector Vi register. When a floating-point functional unit is used for a vector
operation, the general description of vector functional units applies.

Note: A scalar floating-point instruction issues from the CIP register and
“steals” a cycle from any vector instruction is that currently using
that floating-point functional unit. The CIP does check for any
return path conflicts to the S registers.

Floating-point Add Functional Unit

The individual floating-point add functional units perform addition and
subtraction of 64-bit operands in floating-point format. They execute
instructions 062 (scalar add), 063 (scalar subtract), and 170 through 173
108-0245-003 Cray Proprietary 147

Functional Units System Programmer Reference
(vector add and subtract). A result is normalized even when operands are
unnormalized. The floating-point add functional unit detects overflow and
underflow conditions; only overflow conditions are flagged.

The scalar floating-point add functional unit time is 8 CPs. This functional unit
time is measured from instruction issue to when the result is available. For
vector instructions, the floating-point add functional unit is 6 CPs deep. This
time is measured by the number of sequential registers from the input register
through the output register in the functional unit.

Floating-point Multiply Functional Unit

The individual floating-point multiply functional units perform full- and
half-precision multiplication of 64-bit operands in floating-point format. They
execute instructions 064 through 067 (scalar multiplication) and instructions
160 through 167 (vector multiplication). The half-precision product is
rounded; the full-precision product can be rounded or not rounded.

The vector floating-point multiply functional unit also executes instruction
166ijk. This instruction computes the 32-bit product of the contents of the Sj
register and the elements of the Vk register and transmits the results to the Vi
register.

The vector floating-point multiply and second vector logical functional units
share the input data paths to both functional units. The other functional unit is
reserved when one functional unit is busy receiving operands over this data
path. This reservation terminates when use of this input data path concludes.

Input operands must be normalized; the floating-point multiply functional unit
delivers a normalized result only if both input operands are normalized. The
floating-point multiply functional unit detects overflow and underflow
conditions; only overflow conditions are flagged.

The scalar floating-point multiply functional unit time is 9 CPs. This functional
unit time is measured from instruction issue to when the result is available. For
vector instructions, the floating-point multiply functional unit is 7 CPs deep.
This time is measured by the number of sequential registers from the input
register through the output register in the functional unit.

The floating-point multiply functional unit recognizes both operands with zero
exponents as a special case and performs an integer multiply operation. The
result is considered an integer product, is not normalized, and is not considered
out of range. This case provides a fast method of computing a 48-bit integer
product, although the operands in this case must be shifted before the multiply
148 Cray Proprietary 108-0245-003

System Programmer Reference Functional Units
operation. Refer to the “Integer Arithmetic” subsection for more information
on integer multiplication. Also described is the 32-bit integer multiply using
the 166ijk instruction.

Reciprocal Approximation Functional Unit

The individual reciprocal approximation functional unit finds the approximate
reciprocal of a 64-bit operand in floating-point format. These units execute
instructions 070 and 174ij0. Because the vector population/parity/leading-zero
functional unit shares the input data path with this unit, both functional units
are busy while either is receiving operands over this data path.

The input operand must be normalized; the floating-point reciprocal
approximation functional unit delivers a correct result only if the input operand
is normalized. The high-order bit of the coefficient is not tested, but it is
assumed to be a 1. The floating-point reciprocal approximation functional unit
detects overflow and underflow conditions; both conditions are flagged.

The scalar reciprocal approximation functional unit time is 16 CPs. This
functional unit time is measured from instruction issue to when the result is
available. For vector instructions, the reciprocal approximation functional unit
is 14 CPs deep. This time is measured according to the number of sequential
registers that are accessed from the input register through the output register in
the functional unit.

Bit-matrix Multiply Functional Unit

The bit-matrix multiply (BMM) functional unit performs bit-matrix multiply
operations. This functionality is implemented with the instructions described in
Table 32.

Table 32. Bit-matrix multiply instructions

Machine Code CAL Syntax Function Description

070ij6 Si Sj*BT Transmit bit matrix product of (Sj) and
transpose of (BMM) to Si

1740j4 BMM Vj Transmit (Vj elements) to BMM

174ij6 Vi Vj*BT Transmit bit matrix product of (Vj elements)
and transpose of (BMM) to Vi elements
108-0245-003 Cray Proprietary 149

Functional Units System Programmer Reference
Instruction 1740j4 transmits the contents of the Vj register to the BMM
register. This is the only way the contents of the BMM registers can be set. The
vector length (VL) register determines how many elements of Vj are
transmitted to BMM. The rows of BMM beyond VL are zeroed. This
instructions sets the bit matrix loaded (BML) bit in the mode register.

Instruction 070ij6 performs a scalar bit matrix multiply of the contents of the
Sj register with the transpose of the contents of the BMM register and
transmits the result to the Si register.

Instruction 174ij6 performs a vector bit matrix multiply of the contents of the
Vj register with the transpose of the contents of the BMM register and
transmits the result to the Vi register. The vector length (VL) register
determines how many elements of Vj are used.

The “BT” in the CAL syntax for the two matrix multiply instructions is a
short-hand notation that means transpose of (BMM).

The following three sections describe how the results of the bit matrix
multiplies are computed.

Because the operands are vectors and matrices of bits, mathematically the
070ij6 is a vector-matrix multiply and the 174ij6 is a matrix-matrix multiply.
The 1740j4 instruction moves data into the functional unit to load matrix
register BT.

Theory of Operation

The BMM function unit performs operations on matrices of bits as shown by
the equation:

A X BT= R

where:

• A is either a row matrix of N bits or a square matrix of NxN bits
• B is a square matrix of NxN bits

• BT is the transpose of B

• R is the bit matrix product of A and BT

• R is the same size and shape as A
• N can have a value from 1 to 64 inclusive
150 Cray Proprietary 108-0245-003

System Programmer Reference Functional Units
Individual bits in a row matrix are denoted an where n is the column number.
Individual bits in a square matrix are denoted amn where m is the row number
and n is the column number. Normal mathematical convention numbers the
columns in a matrix from left to right beginning with 1 and the rows from top
to bottom beginning with 1.

If A is a row matrix, it can be represented as follows:

[a1 a2 a3 ...an]

If B is a square matrix, it can be represented as follows:

Then the operation:

A X BT= R

can be represented as follows:

Notice that the B matrix has been transposed. The transpose of a matrix is
formed by interchanging its rows and columns.

The individual result bits are calculated using the following equations:

b21 b22 b23 ... b2n
b31 b32 b33 ... b3n
.
.
.

bn1 bn2 bn3 ... bnn

.

.

.

.

.

.

.

.

.

b11 b12 b13 ... b1n

b12 b22 b32 ... bn2
b13 b23 b33 ... bn3 = [r1 r2 r3 ...rn][a1 a2 a3 ... an] x
.
.
.

b1n b2n b3n ... bnn

.

.

.

.

.

.

.

.

.

b11 b21 b31 ... bn1

r1 = a1 • b11 ⊕ a2 • b12 ⊕ a3 • b13 ⊕ ... ⊕an • b1n

r2 = a1 • b21 ⊕ a2 • b22 ⊕ a3 • b23 ⊕ ... ⊕an • b2n

r3 = a1 • b31 ⊕ a2 • b32 ⊕ a3 • b33 ⊕ ... ⊕an • b3n

rn = a1 • bn1 ⊕ a2 • bn2 ⊕ a3 • bn3 ⊕ ... ⊕an • bnn

.

.

.

108-0245-003 Cray Proprietary 151

Functional Units System Programmer Reference
The symbol • is the AND operator.

The symbol ⊕ is the Exclusive-OR operator.

The • operator has higher precedence than the ⊕ operator.

If A is a square matrix then the operation:

A X BT= R

can be represented as follows:

The individual result bits are calculated using the following equations:

These are the mathematical operations performed by the BMM function unit.

a11 a12 a13 ... a1n

x

a21 a22 a23 ... a2n

a31 a32 a33 ... a3n

an1 an2 an3 ... ann

.

.

.

.

.

.

.

.

.

.

.

.

b11 b21 b31 ... bn1

b12 b22 b32 ... bn2

b13 b23 b33 ... bn3

b1n b2n b3n ... bnn

.

.

.

.

.

.

.

.

.

.

.

.

r11 r12 r13 ... r1n

r21 r22 r23 ... r2n

r31 r32 r33 ... r3n

rn1 rn2 rn3 ... rnn

.

.

.

.

.

.

.

.

.

.

.

.

=

r11 = a11 • b11 ⊕ a12 • b12 ⊕ a13 • b13 ⊕ ... ⊕a1n • b1n

.

.

.

r12 = a11 • b21 ⊕ a12 • b22 ⊕ a13 • b23 ⊕ ... ⊕a1n • b2n

r13 = a11• b31 ⊕ a12 • b32 ⊕ a13 • b33 ⊕ ... ⊕a1n • b3n

r1n = a11 • bn1 ⊕ a12 • bn2 ⊕ a13 • bn3 ⊕ ... ⊕a1n • bnn

r21 = a21 • b11 ⊕ a22 • b12 ⊕ a23 • b13 ⊕ ... ⊕a2n • b1n

r2n = a21 • bn1 ⊕ a22 • bn2 ⊕ a23 • bn3 ⊕ ... ⊕a2n • bnn

rn1 = an1 • b11 ⊕ an2 • b12 ⊕ an3 • b13 ⊕ ... ⊕ann • b1n

rnn = an1 • bn1 ⊕ an2 • bn2 ⊕ an3 • bn3 ⊕ ... ⊕ann • bnn

.

.

.

.

.

.

.

.

.

.

.

.

152 Cray Proprietary 108-0245-003

System Programmer Reference Functional Units
Bit Matrix Representation in SV1 Registers

The mathematical operations described above must use the S, V, VL, and
BMM registers on SV1 hardware.

The size N of the matrices must first be set by setting VL to N. N can have a
value from 1 to 64 inclusive.

The individual bits of a row matrix must be set in an S register, left justified
(highest order bit is leftmost) within the register. The remainder of the row (if
any) beyond column N must be zero filled in order to get valid results.

Normal mathematical convention numbers the positions in a row of a matrix
from left to right beginning with 1. Cray hardware convention numbers bits of
an S register beginning with the leftmost as the most significant bit and
numbered as bit 63. This means that column 1 of the row matrix is bit 63 of the
S register.

Figure 32 shows an example of a row matrix for N equals 20.

Figure 32. Row Matrix for N = 20

The individual bits of a square matrix must be set in a V register. The V
register contains 64 elements and each element contains 64 bits. Therefore, a V
register can be viewed as a square bit matrix of size 64x64. Normal
mathematical convention numbers the rows of a matrix beginning with 1. Cray
hardware convention numbers elements of a V register beginning with 0. This
means that row 1 of the matrix is element 0 of the V register.

If the size of the square matrix is less than 64x64, that is if (VL) is less than 64,
then the first N rows of the V register are used in the operations and rows of the
V register beyond row N are not used in the operations. The bits in the first N
rows must be left justified and zero filled as described above for a row matrix
in order to get valid results.

Figure 33 shows an example of a square matrix for N equals 20.

Data Bits Zero Filled

63 44 43 0

1 20 21 64

HW Numbering

Column Numbering
108-0245-003 Cray Proprietary 153

Functional Units System Programmer Reference
Figure 33. Square Matrix for N = 20

The individual bits of the bit matrix in the BMM register are set with the BMM
load instruction as described below.

Bit Matrix Multiply Operations on SV1

The mathematical operations described above must use instructions 070ij6,
1740j4, and 174ij6 on SV1 hardware.

The size of N of the matrices is the value of (VL).

The BMM load instruction, 1740j4, transmits the first N rows of the bit matrix
in the Vj register to the first N rows of the BMM register. All remaining rows
of the BMM register are set to all 0’s.

When the BMM load instruction executes, the bit matrix loaded (BML) bit is
set in the mode register. The clear BML bit instruction, 002210, clears the
BML bit.

For the mathematical operations:

A X BT= R

the B matrix must first be loaded into the BMM register with the BMM load
instruction where Vj contains the B matrix.

Data Bits Zero Filled

063 44 43

Doesn’t Care

Element 0

Element 19

Element 63

Hardware Numbering

641 20 21Column Numbering

Row 64
154 Cray Proprietary 108-0245-003

System Programmer Reference Functional Unit Operations
The scalar bit matrix multiply instruction, 070ij6, transmits the bit matrix
product of the row matrix in the Sj register and the transpose of the square
matrix in the BMM register to the Si register.

If the A matrix in the mathematical operation is a row matrix, then the scalar
bit matrix multiply instruction is used where Sj contains the A matrix, BMM
contains the B matrix, and Si contains the R matrix.

The vector bit matrix multiply instruction, 174ij6, transmits the bit matrix
product of the square matrix in the Vj register and the transpose of the square
matrix in the BMM register to the Vi register. Only the first N rows of Vj are
used in the operation.

If the A matrix in the mathematical operation is a square matrix, then the
vector bit matrix multiply instruction is used where Vj contains the A matrix,
BMM contains the B matrix, and Vi contains the R matrix.

To obtain valid results from the bit matrix multiply instructions the following
conditions must exist:

• The two matrices must be left justified in the source registers.
• Bits beyond column N must be zero.
• For vector bit matrix multiply, the two matrices must be equal in size.

Both the scalar and vector bit matrix multiply instructions execute in the BMM
functional unit as vector-type instructions. The S registers are used for operand
and result registers for the scalar instruction. With the vector unit essentially
quiet, the scalar bit matrix multiply function time is 7 CPs. This functional unit
time is measured from instruction issue to when the result is available. For the
vector bit matrix multiply, the functional unit is CPs deep. The time is
measured according to the number of sequential registers that are accessed
from the input register through the output register in the functional unit. The
load of the BMM register takes 8, 16, 24, or 32 CPs, plus 24 CPs to complete
as determined by VL/2.

Functional Unit Operations

Functional units in a CPU perform logical operations, integer arithmetic,
floating-point arithmetic, and bit-matrix multiply operations. Integer and
floating-point arithmetic are performed in two’s complement. The following
subsections explain the logical operations, the integer arithmetic, and the
floating-point arithmetic used by the system. Refer to the “Bit-matrix Multiply
Functional Unit” subsection for that operation.
108-0245-003 Cray Proprietary 155

Functional Unit Operations System Programmer Reference
Logical Operations

Scalar and vector logical functional units perform bit-by-bit manipulation of
64-bit quantities. Instructions are provided for forming logical products, sums,
differences, equivalences, and merges.

A logical product is the AND function. The following example shows an AND
function.

A logical sum is the inclusive OR function. The following example shows an
inclusive OR function.

A logical difference is the exclusive OR function. The following example
shows an exclusive OR function.

A logical equivalence is the exclusive NOR function. The following example
shows an exclusive NOR function.

The merge operation uses two operands and a mask to produce results. The
following example shows a merge operation. The bits of operand 1 pass where
the mask bit is a 1. The bits of operand 2 pass where the mask bit is a 0.

Operand 1: 1 0 1 0

Operand 2: 1 1 0 0

Result: 1 0 0 0

Operand 1: 1 0 1 0

Operand 2: 1 1 0 0

Result: 1 1 1 0

Operand 1: 1 0 1 0

Operand 2: 1 1 0 0

Result: 0 1 1 0

Operand 1: 1 0 1 0

Operand 2: 1 1 0 0

Result: 1 0 0 1

Operand 1: 1 0 1 0 1 0 1 0

Operand 2: 1 1 0 0 1 1 0 0

Mask: 1 1 1 1 0 0 0 0

Result: 1 0 1 0 1 1 0 0
156 Cray Proprietary 108-0245-003

System Programmer Reference Functional Unit Operations
Integer Arithmetic

All integers, whether 32 or 64 bits, are represented in the registers as shown in
Figure 34. The address add and address multiply functional units perform
32-bit arithmetic. The scalar add and vector add functional units perform 64-bit
arithmetic.

Figure 34. Integer Data Formats

Multiplication of two scalar (64-bit) integer operands is done using the
floating-point multiply instruction and one of two multiplication methods. The
method used depends on the magnitude of the operands and the number of bits
that are available to contain the product. The first method uses a standard
floating-point multiply instruction (160ijk or 161ijk) to produce a 48-bit
integer result from two properly shifted 24-bit integer operands. The second
method uses the 166 instruction to perform a 32-bit integer multiply using two
properly shifted 32-bit integer operands to produce a 32-bit integer result. The
following paragraphs explain these two integer multiply operations.

24-bit Integer Multiplication

The floating-point multiply functional unit recognizes a condition in which
both operands have zero exponents as a special case; it is treated as an integer
multiplication operation. A complete multiplication operation is performed
with no truncation as long as the total number of bits in the two operands does
not exceed 48 bit positions. To multiply two integer numbers, set the exponent
of each operand (bits 48 through 62) equal to 0 and place each 32-bit integer
value in bit positions 24 through 47 of the operand’s coefficient field. To
ensure accuracy, the least significant 24 bits must be 0’s.

When the floating-point multiply functional unit performs the operation, it
returns the high-order 48 bits of the product as the result coefficient and leaves
the exponent field as 0. The result is a 48-bit quantity in bit positions 0 through
47; no normalization shift of the result is performed.

Bits 31

Sign

30 0

Two’s Complement Integer (32 bits for address mode)

Bits 63

Sign

62 0Two’s Complement Integer (64 bits)
108-0245-003 Cray Proprietary 157

Functional Unit Operations System Programmer Reference
As shown in Figure 35, if operand 1 is 4 (octal) and operand 2 is 6 octal, a
48-bit result of 30 octal is produced. Bit 63 follows the rules for multiplying
signs and the result is a signed-magnitude integer. Bits 63 of operands 1 and 2
are combined with an XOR function to derive the sign of the result. The format
of integers expected by both the hardware and software is two’s complement,
not signed magnitude; therefore, negative products must be converted to two’s
complement form.

Figure 35. 24-bit Integer Multiply Performed in a Floating-point Multiply
Functional Unit

If the 24 least significant bits of the operand coefficients are not shifted so that
they are nonzero, the low-order 48 bits of the product could be nonzero, and
the high-order 48 bits (the returned part) could be one larger than expected.
This is caused by the truncation compensation constant that is added during a
multiply. The truncation compensation constant is discussed in more detail in
the “Floating-point Multiplication Algorithm” section.

Multiplication of Operands Greater than 24 Bits

The second multiplication method is used when the operands are more than 24
bits long; multiplication is done by software that forms multiple partial
products and then shifts and adds the partial products.

A second integer multiplication operation performs a 32-bit multiplication
operation on the Sj operand and the Vk operand and puts the result in the Vi
register (166ijk instruction). The operands must be shifted left before the
operation begins. The Sj operand must be shifted left 31 decimal places,
leaving the operand in bit positions 62 through 31; bit positions 30 through 0
must be equal to 0 to ensure accuracy (refer to Figure 36). The Vk operand
must be shifted left 16 decimal places, which places the operand in bit
positions 16 through 47; bit positions 0 through 15 must be equal to 0 to ensure

0 0 0 030Result

0 0 0 06Operand 2 Must be 0 to ensure
correct product

Bits 63 47 0

0 0 0 04

48

Operand 1

24 23

Must be 0 to ensure
correct product

62

Bits 63 47 048 24 2362

Bits 63 47 04862
158 Cray Proprietary 108-0245-003

System Programmer Reference Functional Unit Operations
accuracy. Bits 48 through 63 are zero filled. The result of the multiply is right
justified into bit positions 0 through 31, while bit positions 32 through 63 are
zero filled.

Although no integer division operation is provided, integer division can be
carried out by converting the numbers to the floating-point format and then
using the floating-point functional units. For more information on integer
division, refer to the “Floating-point Division Algorithm” subsection.

Figure 36. 32-bit Integer Multiply Performed in a Floating-point Multiply
Functional Unit

Floating-point Arithmetic

The scalar and vector instructions use floating-point arithmetic. The following
subsections explain floating-point arithmetic:

• Floating-point data format
• Exponent ranges
• Normalized floating-point numbers
• Floating-point range errors
• Floating-point addition
• Multiplication and division algorithms
• Double-precision numbers

Floating-point Data Format

Floating-point numbers are represented in a standard format throughout the
CPU; Figure 37 shows this format, which has three fields: coefficient sign,
exponent, and coefficient.

Bits 63 31 0

0 0

32

Result

0

(Vk)

16 15

Must be 0 to ensure
correct product

031 30

Must be 0 to ensure
correct product

Operand

Operand

Result

(Sj)

Bits 63 62

Bits 63 62

0 0

48 47
108-0245-003 Cray Proprietary 159

Functional Unit Operations System Programmer Reference
Figure 37. Floating-point Data Format

This format is a packed representation of a binary coefficient and an exponent
(power of two). The coefficient sign is located in bit position 63 and is
separated from the rest of the coefficient. If this bit is equal to 0, the coefficient
is positive; if this bit is equal to 1, the coefficient is negative. The exponent is
represented as a biased integer number in bit positions 62 through 48; each
exponent is biased by 40000 (octal). Bit 61 is the sign of the exponent; a 0
indicates a positive exponent, and a 1 indicates a negative exponent. Bit 62 is
the bias of the exponent.

The coefficient is a 48-bit signed fraction; the sign of the coefficient is located
in bit position 63. Because the coefficient is in signed-magnitude format, it is
not complemented for negative values. A normalized floating-point number
has a 1 in bit position 47, and an unnormalized floating-point number has a 0 in
this bit position (normalized numbers are discussed in more detail later in this
section).

Figure 38 and the following steps show the relationship between the biased
exponent and the coefficient. The following steps convert a floating-point
number to its decimal equivalent.

Figure 38. Internal Representation of a Floating-point Number

1. Subtract the bias from the exponent to get the integer value of the
exponent:

40011 (octal)

-40000 (octal)

11 (octal) = 9 (decimal)

Bits 63 48 062 47

Coefficient
Sign

Exponent Coefficient

Binary Point

Bits 63 48 062 47

Coefficient
Sign

Exponent Normalized Coefficient

Binary Point

0 400118 56320000000000008
160 Cray Proprietary 108-0245-003

System Programmer Reference Functional Unit Operations
2. Multiply the normalized coefficient by the power of 2 indicated in the
exponent to get the result:

0.5632 (octal) x 2 (exp 9) = 563.20 (octal) = 371.25 (decimal)

A zero value or an underflow result is not biased and is represented as a word
of all 0’s. A negative 0 is not generated by any floating-point functional unit,
except the case in which a negative 0 is one operand going into the
floating-point multiply or floating-point add functional unit.

Exponent Ranges

The exponent portion of the floating-point format is represented as a biased
integer in bits 48 through 62. The bias added to the exponents is 40000 (octal),
which represents an exponent of 2 (exp 0). Figure 39 shows the biased and
unbiased exponent ranges.

Figure 39. Biased and Unbiased Exponent Ranges

In terms of decimal values, the floating-point format of the system allows the
accurate expression of numbers to about 15 decimal digits in the approximate
decimal range of 10 exp. -2466 through 10 exp +2466.

Normalized Floating-point Numbers

A nonzero floating-point number is normalized if the most significant bit of the
coefficient (bit 47) is nonzero. This condition implies that the coefficient was
shifted as far left as possible and that the exponent adjusted accordingly;
therefore, a normalized floating-point number has no leading 0’s in its
coefficient. The exception is a normalized floating-point 0, which is all 0’s.

When a floating-point number is created by inserting 40060 (octal) into the
exponent and a 48-bit integer into the coefficient, normalize the result before
using it in a floating-point operation. Normalization is accomplished by adding
the unnormalized floating-point operand to 0. Because S0 provides a 64-bit
zero when used in the Sj field of an instruction, an operand in Sk is normalized
with the 062i0k instruction. Si, which can be the same register as Sk, contains
the normalized result.

20

400008200008

2-20000
8 217777

8

577778

Biased Exponent Range

Negative Range Positive Range

Unbiased Exponent Range
108-0245-003 Cray Proprietary 161

Functional Unit Operations System Programmer Reference
The reciprocal approximation functional unit must have normalized numbers
to produce correct results; using unnormalized numbers produces inaccurate
results. The floating-point multiply functional unit does not require normalized
numbers to get correct results; however, more accurate results occur when
normalized numbers are used.

The floating-point add functional unit does not require normalized numbers to
get correct results. The floating-point add functional unit does, however,
automatically normalize all its results; unnormalized floating-point numbers
may be routed through this functional unit to take advantage of this process.

Floating-point Range Errors

To ensure that the limits of the functional units are not exceeded, a range check
for overflow and underflow conditions is made on the exponent of each
floating-point number as it enters the functional unit. In the floating-point add
and floating-point multiply functional units, bits 61 and 62 are checked; if both
are equal to 1, the exponent is equal to or greater than 60000 (octal) and an
overflow condition is detected.

In the reciprocal approximation functional unit, the exponent is complemented
and the value of 2 is added before the operation proceeds. When the check is
made in a reciprocal approximation operation, the exponent must be equal to or
greater than 60002 (octal) for an overflow condition to occur.

When an overflow condition is detected, an interrupt occurs only if the
interrupt-on floating-point error (IFP) bit is set in the mode register and the
system is not in monitor mode. The IFP bit can be set or cleared by a user mode
program; the Cray operating system (COS), or UNICOS, keeps a bit in the
exchange package to indicate the condition of this mode bit. System software
manipulates the mode bit and uses the exchange package bit to indicate how
the mode is left to the user.

To check for an underflow condition in the floating-point add and multiply
functional units, bits 61 and 62 are checked; if both are equal to 0, then the
exponent is less than or equal to 17777 (octal), and an underflow condition is
detected. No flag is set, but the exponent and coefficient are both set to 0’s.

Because the reciprocal approximation operation complements and adds 2 to a
floating-point number, the result exponent must be less than or equal to 20001
(octal) for an underflow condition to occur. The underflow condition in the
result exponent signals an overflow condition on the original exponent and
forces the original exponent to 60000 (octal) and bit 47 to 0.
162 Cray Proprietary 108-0245-003

System Programmer Reference Functional Unit Operations
Floating-point Add Functional Unit Range Errors

A floating-point add range-error condition occurs in scalar operands when the
larger incoming exponent is greater than or equal to 60000 (octal). This
condition sets the floating-point error (FPE) flag in the flag register, and an
exponent of 600008 is sent to the result register along with the computed
coefficient (refer to Figure 40). If a floating-point addition or floating-point
subtraction operation generates an exponent of less than 20000 (octal) or a
coefficient of 0, the condition is considered an underflow. No fault is
generated, and the word returned from the functional unit consists of all 0 bits.

Figure 40. Floating-point Add and Floating-point Multiply Range Errors

Floating-point Multiply Functional Unit Range Errors

The floating-point multiply functional unit has the same range error conditions
as the floating-point add functional unit (refer to Figure 41). The only
exception is when both exponents are equal to 0; the multiply is allowed to
proceed as an integer multiply, leaving the exponent and sign bits equal to 0.

Out-of-range conditions are tested before normalization in the floating-point
multiply functional unit. The way in which the out-of-range conditions are
handled can be determined by using the exponent matrix shown in Figure 41.
The exponent of the result, for any set of exponents, falls into one of the
following seven zones. Only zones 6 and 7 generate floating-point errors.

In Figure 41, a zone number is represented by a number inside of a circle.
Octal number exponents of the two operands are represented by a number
inside of a square.

A list of zones and their descriptions immediately follows Figure 41.

Bits 63 48 0

0 0 0 0

62 47

Bits 63 48 0

60000

62 47

Coefficient, No Flag Set

Coefficient, Flag Set

0

ExponentSign

ExponentSign

Calculated0Overflow

Underflow
108-0245-003 Cray Proprietary 163

Functional Unit Operations System Programmer Reference
Figure 41. Exponent Matrix for a Floating-point Multiply Functional Unit

Exponentof
Operand 2

17
77

7

1

20
00

1

37
77

7

20
00

40
00

57
77

7

40
00

0

60
00

0

77
77

7

3

6

63

3

3

3

3

3

3

2

3

3

3

4

5

4

6

7

Exponent of Operand 1

00
00

0

00
00

1
00001

00000

17777

20000

20001

37777

40000

40001

57777

60000

77777

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
• • • • • • • • • • • • • • •

•
•

•
•

•
•

•
•

• • • • • • • • •• • • • • • • • •

In Figure 41, a zone number is represented by a number inside of a circle. Octal
number exponents of the two operands are represented by a number inside of a
square.

Note:
164 Cray Proprietary 108-0245-003

System Programmer Reference Functional Unit Operations
Floating-point Reciprocal Approximation Functional Unit Range Errors

For the floating-point reciprocal approximation functional unit, an incoming
operand with an exponent less than or equal to 20001 (octal) or greater than or
equal to 60002 (octal), causes a floating-point range error. The error flag is set
and an exponent of 60000 (octal) and the computed coefficient with bit 47 set
to 0 are sent to the result register (refer to Figure 42).

Figure 42. Floating-point Reciprocal Approximation Range Errors

Zone Description

1 Zone 1 indicates a simple integer multiply; no fault is possible.

2 Exponents in Zone 2 result in an underflow condition; the result
is set to +0. (Multiply by 0 is in this group.)

3 An underflow condition may occur on this boundary in Zone 3.
When a normalized shift is required, the underflow is not
detected, and the coefficient and the exponent are not zeroed out.
The exponent used before the shift is 2000 (octal); the exponent
used after the shift is 177778. An underflow condition is detected
on the exponent that is used for an unshifted product coefficient.

4 The use of an operand with an underflow exponent in Zone 4 is
allowed if the final result is within the range 20000 (octal) to
57777 (octal).

5 Zone 5 is the normal operand range; normal results are produced.

6 An overflow condition is flagged on this boundary in Zone 6. If a
normalized shift is required, the value should be within bounds if
the exponent is 57777 (octal). Because overflow is detected, a
60000 (octal) is inserted in the product as the final exponent
when the exponent for the unnormalized shift condition is used.

7 Within Zone 7, an overflow fault is flagged and the product
exponent is set to 60000 (octal).

Bits 63 48 0

60000

62 47

Coefficient, Bit 47 = 0, Flag Set

Coefficient, Bit 47 = 0, Flag Set

0

ExponentSign

ExponentSign

Calculated0Overflow

Underflow 60000 Calculated

Bits 63 48 062 47
108-0245-003 Cray Proprietary 165

Functional Unit Operations System Programmer Reference
Floating-point Addition Algorithm

Floating-point addition or subtraction is performed in a 49-bit register to allow
for a sum that carries an additional bit position. The algorithm performs three
operations: it equalizes exponents, adds coefficients, and normalizes results.

To equalize the exponents, the larger of the two exponents is retained. The
coefficient of the smaller exponent is shifted right by the difference of the two
exponents or until both exponents are equal. Bits shifted out of the register are
lost; no roundup occurs. Because the coefficient is only 48 bits, any shift
beyond 48 bits causes the smaller coefficient to become 0’s.

After the two coefficients are equalized, they are added. Two conditions are
analyzed to determine whether an addition or subtraction operation occurs. The
two conditions are the sign bits of the two coefficients and the type of
instruction (an add or subtract) issued. The following list shows how the
operation is determined:

• If the sign bits are equal and an add instruction is issued, an addition
operation is performed.

• If the sign bits are not equal and an add instruction is issued, a subtraction
operation is performed.

• If the sign bits are equal and a subtract instruction is issued, a subtraction
operation is performed.

• If the sign bits are not equal and a subtract instruction is issued, an
addition operation is performed.

The last operation normalizes the results. To normalize the result, the
coefficient is shifted left by the number of leading 0’s (the coefficient is
normalized when bit 47 is a 1). The exponent must also be decremented
accordingly. If a carry operation across the binary point occurs during an
addition operation, the coefficient is shifted right by 1 and the exponent
increases by 1.

The normalization feature of the floating-point add functional unit is used to
normalize any floating-point number. Simply pair the number with a zero
operand and send both through the floating-point add functional unit.

A range check is performed on the result of all additions; refer to
“Floating-point Range Errors” for more information on how the result is
checked.
166 Cray Proprietary 108-0245-003

System Programmer Reference Functional Unit Operations
Floating-point Multiplication Algorithm

The floating-point multiply functional unit receives two 48-bit floating-point
operands from either an S or V register as input into a multiply pyramid (refer
to Figure 43). Multiplication is commutative, that is, A X B = B X A. The signs
of the two operands are exclusively ORed, the exponents are added, the bias is
subtracted, and the two 48-bit coefficients are multiplied. If the coefficients are
both normalized, multiplying them produces a full product of either 95 or 96
bits. A 96-bit product is normalized as it is generated, but a 95-bit product
requires a left shift of 1 to generate the final coefficient. If the shift is done, the
final exponent is reduced by 1 to reflect the shift.

Because the result register (an S or V register) can hold only 48 bits in the
coefficient, only the upper 48 bits of the 96-bit result are used. The lower 48
bits are never generated. The following paragraphs describe the truncation
process that is used to compensate for the loss of bits in the product. It assumes
that no shift was required to generate the final product; power-of-two
designators are used.

The floating-point multiply functional unit truncates part of the low-order bits
of the 96-bit product. To adjust for this truncation, a constant is
unconditionally added above the truncation. The average value of this
truncation is 9.25 X 2-56, which was determined by adding all carries produced
by all possible combinations that could be truncated and dividing the sum by
the number of possible combinations. Nine carries are injected at bit position
-56 to compensate for the truncated bits.

The effect of the truncation without compensation is at most a result
coefficient 1 smaller than expected. With compensation, the results range from
1 too large to 1 too small in bit position -48. Approximately 99% of the values
have zero deviation from the result if a full 96-bit product was present.
Rounding is optional, but truncation compensation is not. The rounding
method adds a constant so that the result is 50% high [0.25 X 2-48 (high)] 38%
of the time, and 25% low [0.125 X 2-48 (low)] 62% of the time, which results in
a near-zero average rounding error. In a full-precision rounded multiplication
operation, 2 rounding bits are entered into the summation at bit positions -50
and -51 and are allowed to propagate.

For a half-precision multiplication operation, rounding bits are entered into the
summation at bit positions -32 and -31. A carry bit that results from this entry
is allowed to propagate upward, and the 29 most significant bits of the
normalized result are transmitted back.
108-0245-003 Cray Proprietary 167

Functional Unit Operations System Programmer Reference
The result variations caused by this truncation and rounding are in one of the
following ranges:

-0.23 X 2-48 to + 0.57 X 2-48

or
-8.17 X 10-16 to + 20.25 X 10-16

With a full 96-bit product and rounding equal to one-half the least significant
bit, the following result variation is expected:

-0.5 X 2-48 to + 0.5 X 2-48

Figure 43. Floating-point Multiply Partial-product Sums Pyramid

Product Bit
Designation:

If shift is needed to
normalize coefficient.

If shift is not needed to
normalize coefficient.

4

f
f

1
0

0
1

Bits -1

Bits -1

j Multiplicand

-11

-11

-21

-21

-31

-31

-41

-41

-48

-48

hh

1 -55

-56

2

3

hh = 112 for half-precision round, 002 for full-precision rounded or full-precision
unrounded multiplication operation.

ff = 112 for full-precision round, 002 for half-precision rounded or full-precision unrounded
multiplication operation.

Truncation compensation constant; 10012 used for all multiplication operations.

Used only for 32-bit integer multiplication operation with instruction 166ijk. Summations
for any other instructions are blocked.

1

2

3

4

i Product

k Multiplier
168 Cray Proprietary 108-0245-003

System Programmer Reference Functional Unit Operations
Floating-point Division Algorithm

An SV1 series computer system does not have a single functional unit
dedicated to the division operation. Rather, the floating-point multiply and
reciprocal approximation functional units together carry out the algorithm. The
following paragraphs explain the algorithm and how it is used in the functional
units.

Finding the quotient of two floating-point numbers involves two steps. For
example, to find the quotient A/B, first the B operand is sent through the
reciprocal approximation functional unit to obtain its reciprocal, 1/B. Second,
this result along with the A operand is sent to the floating-point multiply
functional unit to obtain the product A X 1/B.

The reciprocal approximation functional unit uses an application of Newton’s
method for approximating the real root of an arbitrary equation F(x) = 0 to find
reciprocals.

To find the reciprocal, the equation F(x) = 1/x - B = 0 must be solved. To do
this, a number, A, must be found so that F(A) = 1/A - B = 0. That is, the
number A is the root of the equation 1/x - B = 0. The method requires an initial
approximation (or guess, which is shown as x0 in Figure 44) sufficiently close
to the true root (which is shown as xt in Figure 44). x0 is then used to obtain a
better approximation; this is done by drawing a tangent line (line 1 in
Figure 44) to the graph of y = F(x) at the point [x0, F(x0)]. The x-intercept of
this tangent line becomes the second approximation, x1. This process is
repeated, using tangent line 2 to obtain x2, and so on.

The following iteration equation is derived from this process:

In the equation, x(i+1) is the next iteration, xi is the current iteration, and B is
the divisor. Each x(i+1) is a better approximation than xi to the true value, xt.
The exact answer is generally not obtained at once because the correction term
is not exact. The operation is repeated until the answer becomes sufficiently
close for practical use.

x(i+1) = 2xi - x2
iB = xi (2 - xiB)
108-0245-003 Cray Proprietary 169

Functional Unit Operations System Programmer Reference
Figure 44. Newton’s Method of Approximation

The mainframe uses this approximation technique based on Newton’s method.
A hardware look-up table provides an initial guess, x0, with an accuracy of
8 bits to start the process. The following iterations are then calculated.

The reciprocal approximation functional unit calculates the first two iterations,
while the floating-point multiply functional unit calculates the third iteration.
The third iteration uses a special instruction within the floating-point multiply

Iteration Operation Description

1 x1 = x0(2 - x0B) The first approximation is done in the
reciprocal approximation functional unit and
is accurate to 16 bits.

2 x2 = x1(2 - x1B) The second approximation is done in the
reciprocal approximation functional unit and
is accurate to 30 bits.

3 x3 = x2(2 - x2B) The third approximation is done in the
floating-point multiply functional unit to
calculate the correction term.

y = F(x)

Tangent Line

Tangent Line 2

x2 x1 x0

y

x
xt

[x1, F(x1)]

[x0, F(x0)]
170 Cray Proprietary 108-0245-003

System Programmer Reference Functional Unit Operations
functional unit to calculate the correction term. This iteration is used to
increase accuracy of the reciprocal approximation functional unit’s answer to
full precision (the floating-point multiply functional unit can provide both full-
and half-precision results).

The reciprocal iteration is designed for use once with each half-precision
reciprocal that is generated. If the third iteration (the iteration performed by the
floating-point multiply functional unit) results in an exact reciprocal, or if an
exact reciprocal is generated by some other method, performing another
iteration results in an incorrect final reciprocal. A fourth iteration should not be
done.

The following example shows how the floating-point multiply functional unit
provides a full-precision result, computing the value of S1/S2.

The reciprocal approximation in Step 1 is correct to 30 bits. By Step 3, it is
accurate to 48 bits. This iteration answer is applied as an operand in a
full-precision rounded multiplication operation (Step 4) to obtain a quotient
accurate to 48 bits. Additional iterations may produce erroneous results.

When 29 bits of accuracy are sufficient, the reciprocal approximation
instruction is used with the half-precision multiply to produce a half-precision
quotient in only two operations, as shown in the following example.

The 19 low-order bits of the half-precision multiply results are returned as 0’s
with a rounding applied to the low-order bit of the 29-bit result.

Step Operation Unit

1 S3 = 1/S2 Reciprocal approximation functional unit

2 S4 = [2 - (S3 * S2)] Floating-point multiply functional unit

3 S5 = S4 * S3 Floating-point multiply functional unit
using full-precision; S5 now equals 1/S2
to 48-bit accuracy

4 S6 = S5 * S1 Floating-point multiply functional unit
using full-precision rounding

Step Operation Unit

1 S3 = 1/S2 Reciprocal approximation functional unit

2 S6 = S1 * S3 Floating-point multiply functional unit in
half-precision
108-0245-003 Cray Proprietary 171

Parallel Processing Features System Programmer Reference
Another method of computing division follows:

With this method, the correction to reach a full-precision reciprocal is done
after the numerator is multiplied by the half-precision reciprocal rather than
before the multiplication.

The coefficient of the reciprocal produced by this alternative method can be
different by as much as 2 X 2-48 from the first method described for generating
full-precision reciprocals. This difference can occur because one method can
round up as much as twice, while the other method may not round at all. One
rounding can occur while the correction is generated and the second rounding
can occur when producing the final quotient. Therefore, use the same method
to compare the reciprocals each time they are generated. The Cray Fortran CFT
and CFT90 compilers use a consistent method to ensure that the reciprocals of
numbers are always the same.

Double-precision Numbers

The CPU does not provide special hardware for performing double- or
multiple-precision operations. Double-precision computations with 95-bit
accuracy are available through software routines that Cray provides.

Parallel Processing Features

An SV1 series system has several special features that enhance the parallel
processing capabilities inherent in the system. The following subsections
discuss two types of parallel processing that SV1 series systems use:

• Parallel processing within a single CPU

• Parallel processing among two or more CPUs within a mainframe

• Parallel processing across mainframes within a system of up to 32
mainframes

Step Operation Unit

1 S3 = 1/S2 Reciprocal approximation functional unit

2 S5 = S1 * S3 Floating-point multiply functional unit

3 S4 = [2 - (S3 * S2)] Floating-point multiply functional unit

4 S6 = S4 * S15 Floating-point multiply functional unit
172 Cray Proprietary 108-0245-003

System Programmer Reference Pipelining and Segmentation
Parallel processing features within a single CPU include instruction pipelining
and segmentation, functional unit independence and duplication, and vector
processing (vectorization). The first two features are inherent hardware
features of the system; a programmer has little control over these features.
However, the vector processing feature can be manipulated by the programmer
to provide optimum throughput. Refer to “Vector Processing” for more
information on vector processing.

Parallel processing among two or more CPUs is called multiprocessing, which
is the capability of several programs to run concurrently on multiple CPUs of a
single mainframe. Included in this category are multitasking and the
Autotasking feature of the CF90 Fortran compiling system. Multitasking is the
capability to run two or more parts (or tasks) of a single program in parallel on
different CPUs within a mainframe. The Autotasking feature provides
automatic multiprocessing; it automatically partitions user programs among
multiple CPUs without user interface.

Because the intent of this document is to present programmers with system
hardware information, the following subsections focus on the parallel
processing features that are most closely related to the hardware (the parallel
processing features that execute within a single CPU of a mainframe). A basic
definition and explanation of multiprocessing, multitasking, and the
Autotasking feature are included.

Pipelining and Segmentation

Pipelining is the process in which an operation or instruction begins before a
previous operation or instruction completes. Pipelining requires fully
segmented hardware. Segmentation is the process by which an operation is
divided into a discrete number of sequential steps, or segments. Fully
segmented hardware uses this feature to perform one segment of the operation
during a single clock period (CP).

At the beginning of the next CP, the partial results are sent to the next segment
of the hardware for processing in the next step of the operation. During this
CP, the previous hardware segment processes the next operation. Without
segmented hardware, an entire operation or instruction must complete before
another operation or instruction starts. In the SV1 series system, all hardware is
fully segmented.

Therefore, pipelining occurs during all hardware operations such as exchange
sequences, memory references, instruction fetch sequences, instruction issue
sequences, and functional unit operations. The pipelining and segmentation
features are critical to the execution of vector instructions.
108-0245-003 Cray Proprietary 173

Functional Unit Independence System Programmer Reference
Figure 45 shows how a set of elements is pipelined through a segmented vector
functional unit. In the first CP, element 1 of register V1 and element 1 of
register V2 enter the first segment of the functional unit. During the next CP,
the partial result is moved to the second segment of the functional unit, and
element 2 of both vector registers enters the first segment. This process
continues each CP until all elements are completely processed.

Figure 45. Segmentation and Pipelining Example

In this example, the functional unit is divided into five segments; the functional
unit can process up to five pairs of elements simultaneously. After 5 CPs, the
first result leaves the functional unit and enters vector register V3; subsequent
results are available at the rate of one result per CP.

Functional Unit Independence

The specialized functional units in the system handle the arithmetic, logical,
and shift operations. Most functional units are fully independent; any number
of functional units can process instructions concurrently. Functional unit
independence enables different operations such as multiplications and
additions to proceed in parallel.

CP 1

2

3

1

2

3

2 5
Functional Unit Segment

4

5

6

4

5

1

2

3

4

1

2

3

1

3 4

Elements in Each
Segment During
Successive CPs

1 2 3 4 5

Segments

Functional Unit

Element 1
Element 2

Element N

Vector Register V2

Element 1
Element 2

Element N

Vector Register V1

Element 1
Element 2

Element N

Vector Register V3

1 1

2

3

4

5

6 1

6

2

174 Cray Proprietary 108-0245-003

System Programmer Reference Multiprocessing and Multitasking
For example, the equation A = (B + C) X D X E could be run as follows. If
operands B, C, D, and E are loaded into the S registers, three instructions are
generated for the equation: one that adds B and C, one that multiplies D and E,
and one that multiplies the results of these two operations. The multiplication
of D and E is issued first, followed by the addition of B and C. The addition
and the multiplication proceed concurrently; because the addition takes less
time to run than the multiplication, they complete at the same time. The
addition operation is essentially hidden in that it occurs during the same time
interval as the multiplication operation. The results of these two operations are
then multiplied to obtain the final result.

Multiprocessing and Multitasking

Users can incorporate parallel processing features known as multiprocessing
and multitasking; this category also includes microtasking.

Parallel processing among two or more CPUs is called multiprocessing, which
is the capability of a program to run concurrently on multiple CPUs of a single
mainframe. Applying more than one processor to a single job implies that the
job has software tasks (parts) that can run in parallel. Such a job can be
logically or functionally divided to allow two or more parts of the work to run
simultaneously (that is, in parallel). One example of multiprocessing is a
weather-modeling job in which the northern hemisphere calculation is one part
and the southern hemisphere another part. Distinct code segments are not
needed; the same code runs on multiple processors simultaneously, with each
processor acting on different data.

Multitasking is the capability to run two or more tasks of a single program in
parallel on different CPUs within a mainframe. The multitasking theory is that
a program that runs on a dedicated system in wall clock time t can be
multitasked to run in a time as short as t/n, if modified to use n or more parallel
tasks on a machine with n CPUs.

In practice, however, a speedup factor of n is not quite attainable. In some
instances, multitasking can actually increase a program’s execution time if the
multitasking overhead decreases performance more than parallel execution
time improves it. The following factors can limit the maximum improvement
for a program:

• Not all parts of a program can be divided into parallel tasks.

• Those parts that can be multitasked may depend on one another so that, at
run time, one or more tasks must wait until others complete some
operation.
108-0245-003 Cray Proprietary 175

Autotasking Feature System Programmer Reference
• Use of the multitasking features incurs overhead that cannot be recovered.

The CFT compiler on the system automatically uses the vector hardware to
perform operations on inner DO loops that have no data dependencies. Once
such optimizing is complete, a single processor can work no faster, but more
than one processor could operate on separate parts of the data simultaneously
to achieve results faster. Microtasking permits multiple processors to work on
a Fortran program at the DO-loop level. The name microtasking was chosen
because multiprocessing is efficient even at a DO-loop level where the task
size, or granularity, may be small.

Microtasking also works well when the number of processors available is
unknown or may vary during the program’s execution. This means that
microtasked jobs do not require a dedicated system, although they perform best
in a dedicated environment with no competing jobs.

Advanced programming skills and tools are needed to successfully use
multiprocessing, multitasking, and microtasking concepts in order to promote
more efficient programs. These features are thoroughly discussed and
explained in Cray software publications.

Autotasking Feature

System analysts and programmers can use the Autotasking component of the
compilers, which uses automatic multitasking, to automatically detect whether
portions of their programs can be run in parallel. The Autotasking feature is an
extension of multiprocessing and microtasking and is designed to make
parallel processing easier to use. The Autotasking feature alters a Fortran
program to allow it to run simultaneously on multiple CPUs.

Enabling and Disabling the Maintenance Mode

The maintenance mode feature of an SV1 series system allows a programmer
to write programs that assist in locating hardware failures in central memory.
By using maintenance mode, a programmer can disable memory error
correction and replace check bits with data bits.

A maintenance mode enable bit for each CPU is located in the configuration
register for each CPU. Setting the maintenance bit enables the maintenance
mode in the CPU. Maintenance functions can then be set and cleared by
machine instructions.
176 Cray Proprietary 108-0245-003

System Programmer Reference Using Maintenance Mode
Clearing the maintenance mode enable bit in the configuration register disables
the maintenance mode of a CPU. With maintenance mode disabled, existing
maintenance functions are cleared, and machine instructions cannot set any
new maintenance functions.

Note: Memory error correction in the SV1 CPUs cannot be disabled by
maintenance instructions, but it can be disabled via CA ASIC
configuration bits. This restriction does not apply to I/O data error
correction.

Using Maintenance Mode

Two instructions set and clear all maintenance functions within the
maintenance mode. Instructions operate only in a CPU in monitor mode; they
execute as no-operation (no-op) instructions in a CPU that is not in monitor
mode. Instruction 0015j1 enables one of four maintenance functions. These
instructions must be entered in machine code; Cray Assembly Language
(CAL) does not support them. Allow 10 clock periods (CPs) for maintenance
functions to be set or cleared. Ensure that no memory reference that may be
affected by the maintenance functions can occur within 10 CPs after a 0015j1
or 073i31 instruction issues.

Table 33 lists the maintenance functions that the 0015j1 instruction sets for
four values of j. Multiple maintenance functions can be set by executing the
0015j1 instruction more than once with different values of j. All maintenance
functions remain set until they are cleared by a 073i31 instruction or until the
maintenance mode is disabled.
108-0245-003 Cray Proprietary 177

Using Maintenance Mode System Programmer Reference
Memory read and write error correction for a CPU is disabled via a
configuration bit in the two CA ASICs per CPU. Instructions 001501 and
001511 DO NOT disable ports A and B error correction. After error correction
has been disabled, memory read data passes through the error correction,
regardless of the state of the check bits. Error detection and reporting continue
as usual. The mode register bits can still enable or disable error interrupts.

Instruction 001541 allows the programmer to define the check bits that are
stored with a data word, instead of allowing the check-bit generation logic to
determine the check bits. It also allows the programmer to read the check bits
(refer to Figure 46). After the 001541 instruction is executed, all memory write

Table 33. 0051j1 Instruction Operation

Maintenance Code Description

001501 Do not use this instruction

001511 No-op instruction

001521 Disable port D error correction

001541 Replace check bits with data bits on memory writes

Replace data bits with check bits on memory reads

Replacement bits:

Data Bit Check Bit

0
8
16
24
32
40
48
56

64
65
66
67
68
69
70
71

001551 Replace check bits with Vk data bits on the path to the VA
ASIC during execution of 1771jk instructions

Replacement bits:

Data Bit Check Bit

0
1
2
3
4
5
6
7

64
65
66
67
68
69
70
71

Note: These instructions are privileged to monitor mode.
178 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instructions
references cause data bits 0, 8, 16, 24, 32, 40, 48, and 56 to be stored as check
bits 0 through 7. Memory read references cause check bits 0 through 7 to
replace the appropriate data bits.

Figure 46. Instruction 001541 Operation

Instruction 001551 modifies the operation of instruction 1771jk. After
instruction 001551 executes, the 1771jk instruction no longer performs a
scatter operation, but instead performs a stride operation that is similar to the
1770jk instruction. Register A0 contains the base address, Ak contains the
address increment, and Vj contains the data to be written to memory. Register
Vk is no longer used for addressing. Instead, Vk data bits 0 through 7 are
written to memory as check bits 0 through 7. Vk data bits 8 through 63 are not
used.

Instructions 001531 and 001561 are not used. Instruction 001571 is reserved
for future use.

Instruction 073i31 clears all maintenance functions set by the 0015j1
instructions, transfers the contents of the status register to register Si, and
clears the performance monitor pointer.

CPU Instructions

The following subsections explain the instruction formats and special register
values that the computer system uses. A central processing unit (CPU)
instruction summary is included as well as a quick-reference table of all CPU
instructions.

Central Memory
Write Data Bits 0, 8, 16,
24, 32, 40, 48, 56

All Other Write Data Bits

Data Bits
0, 8, 16, 24,

32, 40, 48, 56

Other Data Bits

Check Bits
0 through 7

Read Data Bits 0, 8, 16,
24, 32, 40, 48, 56

All Other Read Data Bits
108-0245-003 Cray Proprietary 179

Quick-reference Table of CPU Instructions System Programmer Reference
Quick-reference Table of CPU Instructions

Table 34. Quick-reference Table of CPU Instructions

Machine Instruction CAL Syntax Description

000000 ERR Error exit

0010jka CA,Aj Ak Set the CA register for the channel indicated by (Aj) to (Ak)
and activate the channel.

001000 PASS This is a no-operation instruction.

0011jka CL,Aj Ak Set the CL register for the channel indicated by (Aj) to (Ak)
address.

0012j0a CI,Aj Clear the interrupt flag and error flag for the channel indicated
by (Aj) ; clear device master clear (output channels only).

0012j1a MC,Aj Clear the interrupt flag and error flag for the channel indicated
by (Aj) ; set device master clear (output channels only); clear
device ready-held (input channels only).

0013j0a XA Aj Transmit (Aj) to the XA register.

0014j0a RT Sj Load the RTC register with (Sj) .

0014j1a SIPI Aj Send an interprocessor interrupt request to CPU (Aj) .

001401a SIPI Send an interprocessor interrupt request to CPU 0.

001402a CIPI Clear the interprocessor interrupt.

0014j3a CLN Aj Load the CLN register with (Aj) .

0014j4a PCI Sj Load the II register with (Sj) .

001405a CCI Clear the programmable clock interrupt request.

001406a ECI Enable the programmable clock interrupt request.

001407a DCI Disable the programmable clock interrupt request.

0015j0 a, c Select performance monitor.

001511a, c No-op instruction.

001521a, c Disable port D I/O error correction.

001541a, c Enable replacement of checkbyte with data on ports for writes
and the replacement of data with checkbytes on ports for reads
(Ports A, B, and D).

001551a, c Replace check bits with Vk data bits on ports A and B writes to
memory during execution of instruction 1771jk.

0016j1b IVC Send invalidate cache request to CPU (Aj) .

00200k VL Ak Transmit (Ak) to VL register.

002000 VL 1 Transmit 1 to VL register.

002100 EFI Enable interrupt on floating-point error.

002200 DFI Disable interrupt on floating-point error.

002210 CBL Clear bit-matrix loaded bit in status and exchange package.

002300 ERI Enable interrupt on operand range error.

002400 DRI Disable interrupt on operand range error.
180 Cray Proprietary 108-0245-003

System Programmer Reference Quick-reference Table of CPU Instructions
002500 DBM Disable bidirectional memory transfers.

002600 EBM Enable bidirectional memory transfers.

002700 CMR Complete memory references.

002703f ETSI Enable test and set invalidate

002704f CPA Hold if port A or port B busy

002705f CPR Hold if port A or port B busy

002706f CPW Hold instruction issue if block store or scalar load/store busy

002707f DTSI Disable test and set invalidate

0030j0 VM Sj Transmit (Sj) to VM register.

003000b VM 0 Clear VM register.

0034jk SMjk 1,TS Invalidate cache and test and set semaphore jk, 0 ≤ jk ≤ 3110.

0036jk SMjk 0 Clear semaphore jk, 0 ≤ jk ≤ 3110.

0037jk SMjk 1 Set semaphore jk, 0 ≤ jk ≤ 3110.

004000 EX Normal exit from the operating system.

0050jk J Bjk Jump to (Bjk).

006ijkm J exp Jump to exp.

007ijkm R exp Return jump to exp and set register B00 to (P) + 2.

010ijkmd JAZ exp Jump to exp if (A0) = 0 (i2 = 0).

011ijkmd JAN exp Jump to exp if (A0) ≠ 0 (i2 = 0).

012ijkmd JAP exp Jump to exp if (A0) positive; (A0) ≥ 0 (i2 = 0).

013ijkmd JAM exp Jump to exp if (A0) negative (i2 = 0).

014ijkmd JSZ exp Jump to exp if (S0) = 0 (i2 = 0)

015ijkmd JSN exp Jump to exp if (S0) ≠ 0 (i2 = 0)

016ijkmd JSP exp Jump to exp if (S0) positive; (i2 = 0)

017ijkmd JSM exp Jump to exp if (S0) negative (i2 = 0)

020i00mne

or
022ijke

Ai exp Transmit exp into Ai

021i00mn Ai #exp Transmit ones complement of exp into Ai

023ij0 Ai Sj Transmit (Sj) to Ai.

023i01 Ai VL Transmit (VL) to Ai.

024ijk Ai Bjk Transmit (Bjk) to Ai.

025ijk Bjk Ai Transmit (Ai) to Bjk.

026ij0 Ai PSj Transmit the population count of (Sj) to Ai.

026ij1 Ai QSj Transmit the population count parity of (Sj) to Ai.

026ij7 Ai SBj Transmit (SBj) to Ai.

027ij0 Ai ZSj Transmit leading zero count of (Sj) to Ai.

Table 34. Quick-reference Table of CPU Instructions (continued)

Machine Instruction CAL Syntax Description
108-0245-003 Cray Proprietary 181

Quick-reference Table of CPU Instructions System Programmer Reference
027ij7 SBj Ai Transmit (Ai) to SBj.

030ijk Ai Aj + Ak Transmit the integer sum of (Aj) and (Ak) to Ai.

030i0kb Ai Ak Transmit (Ak) to Ai.

030ij0b Ai Aj+1 Transmit the integer sum of (Aj) and 1 to Ai.

031ijk Ai Aj-Ak Transmit the integer difference (Aj) and (Ak) to Ai.

031i00b Ai -1 Transmit -1 to Ai.

031i0kb Ai -Ak Transmit the negative of (Ak) to Ai.

031ij0b Ai Aj-1 Transmit the integer difference (Aj) and 1 to Ai.

032ijk Ai Aj*Ak Transmit the integer product of (Aj) and (Ak) to Ai.

033i00 Ai CI Transmit the channel number of the highest priority
interrupt request to Ai (j = 0).

033ij0 Ai CA,Aj Transmit the current address of the channel (Aj) to Ai (j ≠ 0, k =
0).

033ij1 Ai CE,Aj Transmit the error flag of channel (Aj) to Ai (j ≠ 0, k = 1).

034ijk Bjk, Ai ,A0 Load (Ai) words from memory starting at address (A0) to B
registers starting at register jk.

034ijkb Bjk,Ai 0,A0 Load (Ai) words from memory starting at address (A0) to B
registers starting at register jk.

035ijk ,A0 Bjk,Ai Store (Ai) words from B registers starting at register jk to
memory starting at address (A0).

035ijkb 0,A0 Bjk,Ai Store (Ai) words from B registers starting at register jk to
memory starting at address (A0).

036ijk Tjk,Ai ,A0 Load (Ai) words from memory starting at address (A0) to T
registers starting at register jk.

036ijkb Tjk,Ai 0,A0 Load (Ai) words from memory starting at address (A0) to T
registers starting at register jk.

037ijk ,A0 Tjk,Ai Store (Ai) words from T registers starting at register jk to
memory starting at address (A0).

037ijkb 0,A0 Tjk,Ai Store (Ai) words from T registers starting at register jk to
memory starting at address (A0).

040i00mn Si exp Transmit exp into Si

041i00mn Si #exp Transmit ones complement of exp into Si

042ijk Si <exp Form ones mask in Si exp bits from right;
exp = 1008 - jk.

042ijkb Si #>exp Form zeroes mask in Si exp bits from left; exp = jk

042i77b Si 1 Enter 1 into Si register.

042i00b Si -1 Enter -1 into Si register.

043ijk Si >exp Form ones mask in Si exp bits from left; exp = jk

043ijkb Si #<exp Form zeroes mask in Si exp bits from right; exp = 1008 -jk

043i00b Si 0 Clear the Si register.

Table 34. Quick-reference Table of CPU Instructions (continued)

Machine Instruction CAL Syntax Description
182 Cray Proprietary 108-0245-003

System Programmer Reference Quick-reference Table of CPU Instructions
044ijk Si Sj&Sk Transmit the logical product of (Sj) and (Sk) to Si.

044ij0b Si Sj&SB Transmit the sign bit of (Sj) to Si.

044ij0b Si SB&Sj Transmit the sign bit of (Sj) to Si (j ≠ 0).

045ijk Si #Sk&Sj Transmit the logical product of (Sj) and complement of (Sk) to
Si.

045ij0b Si #SB&Sj Transmit the (Sj) with sign bit cleared to Si.

046ijk Si Sj \Sk Transmit the logical difference of (Sj) and (Sk) to Si.

046ij0b Si Sj \SB Toggle the sign bit of (Sj) , then transmit to Si.

046ij0b Si SB\Sj Toggle the sign bit of (Sj) , then transmit to Si (j ≠ 0)

047ijk Si #Sj \Sk Transmit the logical equivalence of (Sk) and (Sj) to Si.

047i0kb Si #Sk Transmit the one’s complement of (Sk) to Si.

047ij0b Si #Sj \SB Transmit the logical equivalence of (Sj) and sign bit to Si.

047ij0b Si #SB\Sj Transmit the logical equivalence of (Sj) and sign bit to Si (j ≠ 0).

047i00b Si #SB Transmit the one’s complement of sign bit into Si.

050ijk Si
Sj !Si&Sk

Transmit the logical product of (Si) and (Sk) complement
ORed with the logical product of (Sj) and (Sk) to Si.

050ij0b Si
Sj !Si&SB

Transmit the scalar merge of (Si) and sign bit of (Sj) to Si.

051ijk Si Sj !Sk Transmit the logical sum of (Sj) and (Sk) to Si.

051i0kb Si Sk Transmit the (Sk) to Si.

051ij0b Si Sj !SB Transmit the logical sum of (Sj) and sign bit to Si.

051ij0b Si SB!Sj Transmit the logical sum of (Sj) and sign bit to Si
(j ≠ 0).

051i00b Si SB Transmit the sign bit into Si.

052ijk S0 Si <exp Shift (Si) left exp places to S0; exp = jk.

053ijk S0 Si >exp Shift (Si) right exp places to S0; exp = 1008-jk.

054ijk Si Si <exp Shift (Si) left exp places to Si; exp = jk.

055ijk Si Si >exp Shift (Si) right exp places to Si; exp = 1008-jk.

056ijk Si Si,Sj <Ak Shift (Si) and (Sj) left by (Ak) places to Si.

056ij0b Si Si,Sj <1 Shift (Si) and (Sj) left one place to Si.

056i0kb Si Si<Ak Shift (Si) left (Ak) places to Si.

057ijk Si Sj,Si >Ak Shift (Sj) and (Si) right by (Ak) places to Si.

057ij0b Si Sj,Si >1 Shift (Sj) and (Si) right one place to Si.

057i0kb Si Si >Ak Shift (Si) right (Ak) places to Si.

060ijk Si Sj+Sk Transmit the integer sum of (Sj) and (Sk) to Si.

061ijk Si Sj-Sk Transmit the integer difference of (Sj) and (Sk) to Si.

061i0kb Si -Sk Transmit the negative of (Sk) to Si.

Table 34. Quick-reference Table of CPU Instructions (continued)

Machine Instruction CAL Syntax Description
108-0245-003 Cray Proprietary 183

Quick-reference Table of CPU Instructions System Programmer Reference
062ijk Si Sj+FSk Transmit the floating-point sum of (Sj) and (Sk) to Si.

062i0kb Si +FSk Transmit the normalized (Sk) to Si.

063ijk Si Sj-FSk Transmit the floating-point difference of (Sj) and (Sk) to Si.

063i0kb Si -FSk Transmit the normalized negative of (Sk) to Si.

064ijk Si Sj*FSk Transmit the floating-point product of (Sj) and (Sk) to Si.

065ijk Si Sj*HSk Transmit the half-precision rounded floating-point product of
(Sj) and (Sk) to Si.

066ijk Si Sj*RSk Transmit the rounded floating-point product of (Sj) and (Sk) to
Si.

067ijk Si Sj* ISk Transmit the reciprocal iteration: 2-(Sj)*(Sk) to Si.

070ij0 Si /HSj Transmit the floating-point reciprocal approximation of (Sj) to
Si.

070ij6 Si Sj*BT Transmit bit-matrix product of (Sj) and transpose of (BMM) to Si

071i0k Si Ak Transmit (Ak) to Si with no sign extension.

071i1k Si +Ak Transmit (Ak) to Si with sign extension.

071i2k Si +FAk Transmit (Ak) to Si as unnormalized floating-point number.

071i30 Si 0.6 Transmit 0.75 x 248 as normalized floating-point constant into
Si.

071i40 Si 0.4 Transmit 0.5 as normalized floating-point constant into Si.

071i50 Si 1.0 Transmit 1.0 as normalized floating-point constant into Si.

071i60 Si 2.0 Transmit 2.0 as normalized floating-point constant into Si.

071i70 Si 4.0 Transmit 4.0 as normalized floating-point constant into Si.

072i00 Si RT Transmit (RTC) to Si.

072i02 Si SM Transmit (SM) to Si.

072ij3 Si STj Transmit (STj) to Si.

073i00 Si VM Transmit (VM) to Si.

073i11a, c Read the performance counter into Si.

073i21a, c Increment upper performance counter.

073i31a, c Clear all maintenance modes.

073i61a, c Increment current performance counter (lower).

073i01 Si SR0 Transmit (SR0) to Si.

073i02 SM Si Transmit (Si) to SM.

073ij3 STj Si Transmit (Si) to STj.

074ijk Si Tjk Transmit (Tjk) to Si.

075ijk Tjk Si Transmit (Si) to Tjk.

076ijk Si Vj,Ak Transmit (Vj element (Ak)) to Si.

077ijk Vi,Ak Sj Transmit (Sj) to Vi element (Ak) .

Table 34. Quick-reference Table of CPU Instructions (continued)

Machine Instruction CAL Syntax Description
184 Cray Proprietary 108-0245-003

System Programmer Reference Quick-reference Table of CPU Instructions
077i0kb Vi,Ak 0 Clear element (Ak) of register Vi.

10hi00mn Ai exp,Ah Load from address ((Ah) + exp) to Ai (h ≠ 0).
100i00mn Ai exp,0 Load from address (exp) to Ai.

100i00mn Ai exp, Load from address (exp) to Ai.

10hi0000 Ai ,Ah Load from address (Ah) to Ai (h ≠ 0).
11hi00mn exp,Ah Ai Store (Ai) to address (Ah) + exp (h ≠ 0).
110i00mn exp,0 Ai Store (Ai) to address exp.

110i00mn exp, Ai Store (Ai) to address exp.

11hi0000 ,Ah Ai Store (Ai) to address (Ah) (h ≠ 0).
12hi00nm Si exp,Ah Load from address ((Ai) + exp) to Si (h ≠ 0).
120i00mn Si exp,0 Load from address (exp) to Si.

120i00mn Si exp, Load from address (exp) to Si.

12hi0000 Si ,Ah Load from address (Ah) to Si (h ≠ 0).
13hi00mn exp,Ah Si Store (Si) to address (Ah) + exp (h ≠ 0).
130i00mn exp,0 Si Store (Si) to address exp.

130i00mn exp, Si Store (Si) to address exp.

13hi0000 ,Ah Si Store (Si) to address (Ah) (h ≠ 0).
140ijk Vi Sj&Vk Transmit logical products of (Sj) and (Vk elements) to Vi

elements.

141ijk Vi Vj&Vk Transmit logical products of (Vj elements) and (Vk elements) to
Vi elements.

142ijk Vi Sj !Vk Transmit logical sums of (Sj) and (Vk elements) to Vi elements.

142i0kb Vi Vk Transmit (Vk elements) to Vi elements.

143ijk Vi Vj !Vk Transmit logical sums of (Vj elements) and (Vk elements) to Vi
elements.

144ijk Vi Sj\Vk Transmit logical differences of (Sj) and (Vk elements) to Vi
elements.

145ijk Vi Vj\Vk Transmit logical differences of (Vj elements) and (Vk elements)
to Vi elements.

145iiib Vi 0 Clear Vi elements.

146ijk Vi Sj !Vk&VM Transmit (Sj) if VM bit = 1; (Vk element) if VM bit = 0 to Vi.

146i0kb Vi #VM&Vk Transmit vector merge of (Vk elements) and 0 to Vi.

147ijk Vi Vj !Vk&VM Transmit (Vj elements) if VM bit = 1; (Vk element) if VM bit = 0
to Vi elements.

150ijk Vi Vj<Ak Shift (Vj elements) left by (Ak) places to Vi elements.

150ij0b Vi Vj<1 Shift (Vj elements) left one place to Vi elements.

151ijk Vi Vj>Ak Shift (Vj elements) right by (Ak) places to Vi elements.

151ij0b Vi Vj>1 Shift (Vj elements) right one place to Vi elements.

Table 34. Quick-reference Table of CPU Instructions (continued)

Machine Instruction CAL Syntax Description
108-0245-003 Cray Proprietary 185

Quick-reference Table of CPU Instructions System Programmer Reference
152ijk Vi Vj,Vj<Ak Double shift (Vj elements) left (Ak) places to Vi elements.

152ij0b Vi Vj,Vj<1 Double shift (Vj elements) left one place to Vi elements.

153ijk Vi Vj,Vj>Ak Double shift (Vj elements) right (Ak) places to Vi elements.

153ij0b Vi Vj,Vj>1 Double shift (Vj elements) right one place to Vi elements.

154ijk Vi Sj+Vk Transmit integer sums of (Sj) and (Vk elements) to Vi
elements.

155ijk Vi Vj + Vk Transmit integer sums of (Vj elements) and (Vk elements) to Vi
elements.

156ijk Vi Sj-Vk Transmit integer differences of (Sj) and (Vk elements) to Vi
elements.

156i0kb Vi -Vk Transmit two’s complement of (Vk elements) to Vi elements.

157ijk Vi Vj-Vk Transmit integer differences of (Vj elements) and (Vk elements)
to Vi elements.

160ijk Vi Sj*FVk Transmit floating-point products of (Sj) and (Vk elements) to Vi
elements.

161ijk Vi Vj*FVk Transmit floating-point products of (Vj elements) and (Vk
elements) to Vi elements.

162ijk Vi Sj*HVk Transmit half-precision rounded floating-point products of (Sj)
and (Vk elements) to Vi elements.

163ijk Vi Vj*HVk Transmit half-precision rounded floating-point products of (Vj
elements) and (Vk elements) to Vi elements.

164ijk Vi Sj*RVk Transmit rounded floating-point products of (Sj) and (Vk
elements) to Vi elements.

165ijk Vi Vj*RVk Transmit rounded floating-point products of (Vj elements) and
(Vk elements) to Vi elements.

166ijk Vi Sj*Vk Transmit 32-bit integer product of (Sj) and (Vk elements) to Vi
elements.

167ijk Vi Vj*IVk Transmit reciprocal iterations: 2-(Vj elements)*(Vk elements) to
Vi elements.

170ijk Vi Sj+FVk Transmit floating-point sums of (Sj) and (Vk elements) to Vi
elements.

170i0kb Vi +FVk Transmit normalized (Vk elements) to Vi elements.

171ijk Vi Vj+FVk Transmit floating-point sums of (Vj elements) and (Vk
elements) to Vi elements.

172ijk Vi Sj-FVk Transmit floating-point differences of (Sj) and (Vk elements) to
Vi elements.

172i0kb Vi -FVk Transmit normalized negative of (Vk elements) to Vi elements.

173ijk Vi Vj-FVk Transmit floating-point differences of (Vj elements) and (Vk
elements) to Vi elements.

174ij0 Vi /HVj Transmit floating-point reciprocal approximation of (Vj
elements) to Vi elements.

174ij1 Vi PVj Transmit population count of (Vj elements) to Vi elements.

Table 34. Quick-reference Table of CPU Instructions (continued)

Machine Instruction CAL Syntax Description
186 Cray Proprietary 108-0245-003

System Programmer Reference Quick-reference Table of CPU Instructions
174ij2 Vi QVj Transmit population count parity of (Vj elements) to Vi
elements.

174ij3 Vi ZVj Transmit the leading-zero count of (Vj elements) to Vi elements

1740j4 BMM Vj Transmit (Vj elements) to BMM. Locations that are not loaded
are cleared.

174ij6 Vi Vj*BT Transmit the bit-matrix product of (Vj elements) and transpose
of (BMM) to Vi elements.

1750j0 VM Vj,Z Set VM bit if (Vj element) = 0.

1750j1 VM Vj,N Set VM bit if (Vj element) ≠ 0.

1750j2 VM Vj,P Set VM bit if (Vj element) ≥ 0.

1750j3 VM Vj,M Set VM bit if (Vj element) < 0 (Vj is negative).

175ij4 Vi,VM Vj,Z Set VM bit if (Vj elements) = 0; also, the compressed indices of
the Vj element = 0 are stored in Vi.

175ij5 Vi,VM Vj,N Set VM bit if (Vj elements) ≠ 0; also, the compressed indices of
the Vj element ≠ 0 are stored in Vi.

175ij6 Vi,VM Vj,P Set VM bit if (Vj elements) ≥ 0; also, the compressed indices of
the Vj element ≥ 0 are stored in Vi.

175ij7 Vi,VM Vj,M Set VM bit if (Vj elements) < 0; also, the compressed indices of
the Vj element < 0 are stored in Vi.

176i0k Vi ,A0,Ak Load (VL) words from address (A0) incremented by (Ak) to Vi
elements.

176i00 Vi ,A0,1 Load (VL) words from address (A0) incremented by 1 to Vi
elements.

176i1k Vi ,A0,Vk Load (VL) words from address ((A0) + (Vk elements)) to Vi
elements.

1770jk ,A0,Ak Vj Store (VL) words from (Vj elements) to address (A0)
incremented by (Ak) .

1770j0 ,A0,1 Vj Store (VL) words from (Vj elements) to address (A0)
incremented by 1.

1771jk ,A0,Vk Vj Store (VL) words from (Vj elements) to address (A0) + (Vk
elements).

a These instructions are privileged to monitor mode.

b Special CAL syntax.

c These instructions are not supported by CAL Version 2.

d Bit 2 of the i field is equal to 0.

e The value of the expression determines which instructions are generated.

f These instructions are for SV1s with enhanced processors and SV1ex machines only.

Table 34. Quick-reference Table of CPU Instructions (continued)

Machine Instruction CAL Syntax Description
108-0245-003 Cray Proprietary 187

Notational Conventions System Programmer Reference
Notational Conventions

This section uses the following conventions:

• All numbers are decimal numbers unless otherwise indicated.

• Letters X or x or x represent an unused value.

• Register bits are numbered from low-order (least significant) to
high-order (most significant).

• The letter n represents a specified value.

• The value in parentheses () specifies the contents of a register or memory
location as designated by value.

• Variable parameters are in italic type.

• Vector mask bit 63 corresponds to vector element 0, and bit 0 corresponds
to vector element 63.

Instruction Formats

Instructions can be 1 parcel (16 bits), 2 parcels (32 bits), or 3 parcels (48 bits)
long. Instructions are packed 4 parcels per word and parcels are numbered 0
through 3 from left to right. Any parcel position can be addressed in branch
instructions. A 2- or 3-parcel instruction begins in any parcel of a word and can
span a word boundary. For example, a 2-parcel instruction that begins in parcel
3 of a word ends in parcel 0 of the next word. No padding of word boundaries
is required. Figure 47 shows the general instruction format.

Figure 47. General Instruction Format

The first parcel contains five fields, and the second and third parcels each
contain a single field. Four variations of this format use the fields differently.
The following subsections describe the formats of the following variations:

• 1-parcel instruction format with discrete j and k fields

First Parcel

4 3 3 3 3 16 16

Second Parcel Third Parcel

g h i j k m n Fields

Number of
Bits
188 Cray Proprietary 108-0245-003

System Programmer Reference Instruction Formats
• 1-parcel instruction format with combined j and k fields
• 2-parcel instruction format with combined i, j, k, and m fields
• 3-parcel instruction format with combined m and n fields

1-parcel Instruction Format with Discrete j and k Fields

The most common of the 1-parcel instruction formats uses the i, j, and k fields
as individual designators for operand and result registers (refer to Figure 48).
The g and h fields define the operation code, the i field designates a result
register, and the j and k fields designate operand registers. Some instructions
ignore one or more of the i, j, and k fields.

The following types of instructions use this format:

• Arithmetic
• Logical
• Vector shift
• Scalar double-shift
• Floating-point constant

Figure 48. 1-parcel Instruction Format with Combined j and k Fields

1-parcel Instruction Format with Combined j and k Fields

Some 1-parcel instructions use the j and k fields as a combined 6-bit field (refer
to Figure 49). The g and h fields contain the operation code, and the i field is
usually a destination register. The combined j and k fields usually contain a
constant or an intermediate address (B) or intermediate scalar (T) register
designator. The 005 branch instruction and the following types of instructions
use the 1-parcel instruction format with combined j and k fields:

• 6-bit constant
• B or T register block memory transfer
• B or T register data transfer with address (A) or scalar (S) register
• Scalar single-shift
• Scalar mask

4 3 3 3 3

Fields

Number of
Bits

Register
Designators

Operation
Code

g h i j k
108-0245-003 Cray Proprietary 189

Instruction Formats System Programmer Reference
Figure 49. 1-parcel Instructions with j and k as a Combined 6-bit Field

2-parcel Instruction Format with Combined i, j, k, and m Fields

This 2-parcel format uses the combined i, j, k, and m fields to contain a 24-bit
address that allows branching to an instruction parcel (refer to Figure 50). A
7-bit operation code (gh) is followed by an ijkm field. The high-order bit of the
i field is equal to 0.

Figure 50. 2-parcel Instruction Format with Combined i, j, k, and m Fields

3-parcel Instruction Format with Combined m and n Fields

The format for a 32-bit immediate constant uses the combined m and n fields to
hold the constant. The 7-bit g and h fields contain an operation code, and the
3-bit i field designates a result register; the j and k fields are a constant 0. The
instructions that use this format transfer the 32-bit mn constant to an A or S
register.

Note: The m field of the 3-parcel instruction contains bits 0 through 15 of
the expression, while the n field contains bits 16 through 31 of the
expression. When the instruction is assembled, the mn field is
reversed and actually appears as the nm field when used as an
expression.

4 3 3 6

jk Fields

Number
of Bits

Constant or
Register

Designators

Operation
Code

Result Register

g h i

4 3 3 3 3 14 Number of Bits

First Parcel Second Parcel

m Fields

2

Operation Code

High-order Bit = 0
Address

Parcel Select

g h i j k
190 Cray Proprietary 108-0245-003

System Programmer Reference Special Register Values
When 3-parcel instructions are used to generate memory addresses, bits 31
through 0 of the nm field are used to calculate memory addresses. Refer to
“Calculating Absolute Memory Address” for additional information. This
format uses the 4-bit g field for an operation code, the 3-bit h field to designate
an address index register, and the 3-bit i field to designate a source or result
register.

Figure 51 shows the two applications for the 3-parcel instruction format with
combined m and n fields. Remember that the m and n fields are reversed when
a 3-parcel instruction is assembled.

Figure 51. 3-parcel Instruction Format with Combined m and n Fields

Special Register Values

If the S0 and A0 registers are referenced in the h, j, or k fields of certain
instructions, the contents of the respective register are not used; instead, a
special operand is generated. The special operand is available regardless of
existing A0 or S0 reservations (and in this case is not checked). This special
operand does not alter the actual value of the S0 or A0 register. If registers S0
or A0 are used in the i field as the operand, the actual value of the register is

4 3 3 3 3 16 16
Number of
Bits

g h i j k

First Parcel Second Parcel

m

Third Parcel

n Fields

Operation Code

Result Register
Constant

Value
Always = 0

Operation Code

Source or Result Register

Not UsedValue
Always = 0Address Register

Used as Index

4

AddressorDisplacement
(28 Bits)

First Parcel Second Parcel Third Parcel

Number of
Bits

Fieldsg h i j k m n

4 3 3 3 3 16 12
108-0245-003 Cray Proprietary 191

Monitor Mode Instructions System Programmer Reference
provided. Cray Assembly Language (CAL) issues a caution-level error
message for A0 or S0 when 0 does not apply to the i field. Table 35 lists the
special register values.

Monitor Mode Instructions

The monitor mode instructions (channel control, set real-time clock,
programmable clock interrupts, and so on) perform specialized functions that
are useful to the operating system. These instructions run only when the CPU
is operating in monitor mode. If a monitor mode instruction issues while the
CPU is not in monitor mode, it is treated as a no-operation instruction.

Special CAL Syntax Forms

Certain machine instructions can be generated from two or more different CAL
instructions. Any of the operations performed by special instructions can be
performed by instructions in the basic CAL instruction set.

For example, the following CAL instructions generate instruction 002000,
which enters a 1 into the vector length (VL) register:

VL A0
VL 1

The first instruction is the basic form of the enter VL instruction, which takes
advantage of the special case where (Ak) = 1 if k = 0. The second instruction is
a special syntax form that provides the programmer with a more convenient
notation for the special case.

Table 35. Special Register Values

Field Operand Value

Ah, h = 0 0

Aj, j = 0 0

Ak, k = 0 1

Sj, j = 0 0

Sk, k = 0 Bit 63 = 1
192 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
In several cases, a single CAL syntax can generate several different machine
instructions. These cases are used for entering the value of an expression into
an A register or an S register, or for shifting S register contents. The assembler
determines which instruction to generate from characteristics of the
expression.

The following subsection identifies CAL instructions that have a special
syntax form.

CPU Instruction Descriptions

This subsection describes all the instructions that the mainframe uses. The
instruction descriptions use acronyms and abbreviations that are defined in
previous sections. The following information is included with each instruction
description:

• Special cases
• Hold issue conditions
• Execution time
• Description

In some instructions, register designators are prefixed by the following letters
that have special meaning to the assembler. The letters and their meanings are
as follows:

Letter Description

F Floating-point operation

H Half-precision floating-point operation

I Reciprocal iteration

P Population count

Q Parity count

R Rounded floating-point operation

Z Leading-zero count
108-0245-003 Cray Proprietary 193

CPU Instruction Descriptions System Programmer Reference
The following list defines some of the notations that the instruction set uses:

An expression (exp) occupies the jk, jkm, ijkm, or mn field. The h, i, j, and k
designators indicate the field of the machine instruction into which the register
designator constant or symbol value is placed.

Functional Units Instruction Summary

Instructions other than simple transmit or control operations are performed by
specialized hardware known as functional units. The following instructions are
performed by each of the functional units.

Character Description

+ Arithmetic sum of specified registers

- Arithmetic difference of specified registers

* Arithmetic product of specified registers

/ Reciprocal approximation

Use one’s complement

> Shift value or form mask from left to right

< Shift value or form mask from right to left

& Logical product of specified registers

! Logical sum of specified registers

\ Logical difference of specified registers
194 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
.

Instruction 000000

Special Cases

There are no special cases.

Hold Issue Conditions

The instruction holds issue if any A, S, or V register is reserved or if an
instruction fetch operation is in progress.

Functional Unit Instructions

Address add (integer) 030, 031

Address multiply (integer) 032

Scalar add (integer) 060, 061

Scalar logical 042 through 051

Scalar shift 052 through 057

Scalar pop/parity/leading zero 026, 027

Vector add (integer) 154 through 157

Vector logical 140 through 147, 175

Second vector logical 140 through 145

Vector shift 150 through 153

Vector pop/parity/leading-zero 174ij1, 174ij2, 174ij3

Floating-point add 062, 063, 170 through 173

Floating-point multiply 064 through 067, 160 through 167

Floating-point reciprocal 070ij0, 174ij0

Memory (scalar) 100 through 130

Bit-matrix multiply 070ij6, 1740j4, 174ij6

Memory (vector) 176, 177

Machine Instruction CAL Syntax Description

000000 ERR Error exit
108-0245-003 Cray Proprietary 195

CPU Instruction Descriptions System Programmer Reference
Execution Time

The 000 instruction issues in 1 CP. Following the instruction issue, an
additional 220 CPs are required for an exchange sequence (108 CPs) and a
fetch operation (112 CPs). Memory conflicts during the exchange sequence
cause additional delays.

Description

The 000 instruction is treated as an error condition, and an exchange sequence
occurs when the instruction is issued. The contents of the instruction buffers
are voided by the exchange sequence. If the monitor mode is not in effect, the
error exit flag in the F register is set. All instructions issued before this
instruction are completed.

When the results of previously issued instructions arrive at the operating
registers, an exchange occurs to the exchange package that is designated by the
contents of the XA register. The program address that is stored during the final
exchange sequence is the contents of the P register advanced by one count (the
address of the instruction following the error exit instruction).

Instruction 000 is not generally used in program code. This instruction stops
execution of an incorrectly coded program that branches to an unused area of
memory (if memory was backgrounded with 0’s) or into a data area (if data is
positive integers, right justified ASCII, or floating-point 0’s).

Instructions 0010 through 0013

Machine Instruction CAL Syntax Description

0010jka CA,Aj Ak Set the CA register for the channel indicated by (Aj) to (Ak) and
activate the channel.

001000 PASS This is a no-operation instruction.

0011jka CL,Aj Ak Set the CL register for the channel indicated by (Aj) to (Ak)
address.

0012j0a CI,Aj Clear the interrupt flag and error flag for the channel indicated
by (Aj); clear device master clear (output channels only).

0012j1a MC,Aj Clear the interrupt flag and error flag for the channel indicated
by (Aj); set device master clear (output channels only); clear
device ready-held (input channels only).

0013j0a XA Aj Transmit (Aj) to the XA register.
a These instructions are privileged to monitor mode.
196 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Special Cases

The following special cases exist for instructions 0010 through 0013:

• If the program is not in monitor mode, these instructions become
no-operation instructions with all Aj or Ak register hold issue conditions
remaining effective.

• For instructions 0010, 0011, and 0012, if j = 0, the instruction performs no
operation.

• For instructions 0010, 0011, and 0012, if k = 0, the CA or CL register is
set to 1.

• Valid channel numbers are Y1 channel numbers 20 through 1178 on the
largest system (excluding channels 1008 and 1018).

• For instruction 0013, if j = 0, the XA register is cleared.

Hold Issue Conditions

The instructions hold issue when the Aj register is reserved (except A0).

Instructions 0010 through 0011 hold issue when the Ak register is reserved
(except A0); instructions 0010 through 0012 hold issue when there is a shared
register access conflict or if the JS ASIC buffer is full.

Execution Time

The instruction issue time for instructions 0010 through 0013 is 1 CP.

Note: In monitor mode, the software must ensure that only one CPU at a
time is servicing an I/O channel.

Description

Instructions 0010 through 0013 are privileged to monitor mode and provide
operations that are useful to the operating system. Functions are selected
through the i designator. Instructions are treated as pass instructions if the
monitor mode bit is not set. A monitor program activates a user job by
initializing the XA register to point to the user’s job exchange package and
then executing a normal exit instruction.
108-0245-003 Cray Proprietary 197

CPU Instruction Descriptions System Programmer Reference
When the j designator is 0, the functions are executed as pass instructions.
When the k designator is 0, the CA register or CL register is set to 1. Valid
channel numbers are 20 through 117 for Y1 channels on the largest systems
with channels 1008 and 1018 excluded. GigaRing I/O uses channels X4
through X7 of the same channel range (24 through 27, 34 through 37, and so
on through channels 114 through 117.

Instructions 0010, 0011, and 0012 control operation of the I/O channels. Each
Y1 channel has a CA and a CL register to direct channel activity. The CA
register contains the address of the current channel word; the CL register
specifies the limit address. When the channel is programmed, the CL register is
initialized first and then the CA register is set, which activates the channel. As
the transfer continues, the CA register increments toward the CL register.
When the contents of the CA register are equal to the contents of the CL
register, the transfer is complete for all words from the initial contents of the
CA register through the contents of the CL register minus 1.

The 0010jk instruction sets the CA register for the channel that is indicated by
the contents of the Aj register to the value in the Ak register. The 0011jk
instruction sets the CL register for the channel that is indicated by the contents
of the Aj register to the address that is specified in the Ak register. The 0011jk
instruction is usually issued before the 0010jk instruction is issued.

Instruction 0012j0 clears the interrupt and error flags for the channel that is
indicated by the contents of the Aj register. If the contents of the Aj register
represent an output channel, the device master clear is cleared.

Instruction 0012j1 also clears the interrupt and error flags for the channel that
is indicated by the contents of the Aj register. If the contents of the Aj register
represent an output channel, the device master clear is set. If the contents of the
Aj register represent an input channel, the device ready flag is cleared.

Instruction 0013jk transmits bits 13 through 4 of the Aj register to the XA
register. The XA register is cleared when the j designator is 0.
198 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Instructions 0014 and 0016j1

Special Cases

The following special cases exist for instructions 0014 and 0016:

• If the program is not in monitor mode, these instructions perform no
operation, and all Sj or Aj register hold issue conditions remain in effect.

• The RTC register will not be ready for some indeterminate number of
cycles (over 100 CPs minimum with no delays).

• The following code ensures that RTC is ready:

Instruction 0014j0 is a global instruction and instruction 027ij7 is a local
instruction. All local instructions are held in the JS ASIC until all global
instructions are completed.

Machine Instruction CAL Syntax Description

0014j0a RT Sj Load the RTC register with (Sj) .

0014j1a SIPI Aj Send an interprocessor interrupt request to CPU (Aj) .

001401a SIPI Send an interprocessor interrupt request to CPU 0.

001402a CIPI Clear the interprocessor interrupt.

0014j3a CLN Aj Load the CLN register with (Aj) .

0014j4a PCI Sj Load the II register with (Sj) .

001405a CCI Clear the programmable clock interrupt request.

001406a ECI Enable the programmable clock interrupt request.

001407a DCI Disable the programmable clock interrupt request.

0016j1b IVC Send invalidate cache request to CPU (Aj) .
a This instruction is privileged to monitor mode.

b Special CAL syntax.

RT Sj

SBj A0

JAZ label

label Si RT
108-0245-003 Cray Proprietary 199

CPU Instruction Descriptions System Programmer Reference
Hold Issue Conditions

The instruction holds issue for any of the following conditions:

• Instructions 0014j0, 0014j1, 0014j4, and 0016j1 hold issue when the Aj
register is reserved (except A0).

• Instructions 0014j0, 0014j1, and 0014j4 hold issue when the Sj register is
reserved (except S0).

• Instructions 0014j0, 0014j1, 0014j3, and 0016j1 hold issue when a shared
register access conflict occurs or if the JS ASIC buffer is full.

• Instruction 0016j1 holds issue until an acknowledgment is received,
which indicates that the cache in CPU (Aj) is invalid.

Execution Time

The 0014 or 0016 instructions issue in 1 CP.

Description

The 0014 instruction performs specialized functions for managing the
real-time and programmable clocks. These functions process interprocessor
interrupt requests and cluster number operations. Instruction 0014 is privileged
to monitor mode and is treated as a pass instruction if the monitor mode bit is
not set.

The 0014j0 instruction loads the contents of the Sj register into the RTC
register. The RTC register is set to 0 when the j designator is 0.

The 0014j1 instruction sets the CPU interrupt request in the CPU that is
specified by the contents of the Aj register. If the CPU named in the contents of
the Aj register attempts to interrupt itself, the instruction performs no
operation. If the other CPU is not in monitor mode, the interrupt-from-internal
CPU flag sets in the F register, which causes an interrupt. The request remains
until it is cleared when the receiving CPU issues instruction 001402.
Instruction 001401 performs the same function as 0014j1, except that it sets the
internal CPU interrupt request in CPU 0.

Instruction 001402 clears the internal CPU interrupt request that is set by
another CPU.
200 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
The 0014j3 instruction sets the cluster number to the contents of the Aj register
to make 1 of 418 cluster selections. A cluster number of 0 causes all shared and
semaphore register operations to be no-operation instructions (except SB, ST,
or SM register reads, which return a zero value to the Ai or Si register). A
nonzero cluster has a separate set of SM, SB, and ST registers. A cluster
number larger than 91 (octal) produces undefined results.

The 0014j4 instruction loads the low-order 32 bits from the Sj register into the
Interrupt Interval (II) register and programmable clock. The programmable
clock is a 32-bit counter that decrements by 1 each system CP until the
contents of the counter equal 0. The programmable clock interrupt request is
then set. The counter is then set to the interval value held in the II register and
the counter repeats the countdown to 0. When a programmable clock interrupt
request is set, it remains set until a 001405 instruction is executed. Refer to the
“Interrupt Interval Register” subsection for more information about the II
register.

The 001405 instruction clears the programmable clock interrupt request if the
request is set previously when the interrupt countdown (ICD) counts down to
0.

The 001406 instruction enables repeated programmable clock interrupt
requests at a rate determined by the value stored in the II register.

The 001407 instruction disables repeated programmable clock interrupt
requests until a 001406 instruction is executed to enable the requests.

The 0016j1 instruction invalidates the cache in the CPU that is specified by the
contents of the Aj register. If the CPU named in the contents of the Aj register
attempts to invalidate its own cache, the instruction performs no operation.

Instructions 0015 through 001551

Machine Instruction CAL Syntax Description

0015j0a, c Select performance monitor.

001511a, c This is a no-op instruction.

001521a, c Disable port D I/O error correction.

001541a, c Enable replacement of checkbyte with data on ports A, B, and
D for writes and the replacement of data with checkbytes on
ports for reads from memory.

001551a, c Replace check bits with Vk data bits on the path to the VAB
ASIC during execution of instruction 1771jk.

a These instructions are privileged to monitor mode.

c These instructions are not supported by CAL Version 2.
108-0245-003 Cray Proprietary 201

CPU Instruction Descriptions System Programmer Reference
Special Cases

The special case for instruction 0015 is that if the program is not in monitor
mode, these instructions perform no operation, and all hold issue conditions
remain in effect.

Hold Issue Conditions

The instruction holds issue when any Aj register is reserved (except A0).

Execution Time

The 0015 instruction issues in 1 CP.

Description

All 0015 instructions are privileged to monitor mode. Instruction 0015j0
selects one of four groups of hardware-related events to be monitored by the
performance counters and clears all performance counter pointers. Allow a
50-CP delay before issuing another performance monitor instruction.

Instruction 001501 is not used by the SV1 series system. Instead, a
configuration bit in the CA ASICs disables checkbyte generation and error
correction for all CPU requests to memory. The 001511 instruction is a no-op
instruction in the SV1 series system. Instruction 001541 applies to all CPU and
I/O requests to memory. This instruction allows certain bits to be replaced in
either the checkbyte or data field. During write operations, bits in the
checkbyte are replaced with corresponding data bits. During read operations,
the data bits are replaced with corresponding checkbyte bits. The following list
shows how the bits are replaced:

Data Bit Checkbyte Bit

0 64

8 65

16 66

24 67

32 68

40 69

48 70

56 71
202 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Instruction 001551 allows certain bits to be replaced in the checkbyte with Vk
data during the execution of instruction 1771jk. Instruction 1771jk executes in
the same manner as instruction 1770jk; the content of the Ak register is the
increment value, and the Vk data is not used as the address. The following list
shows which Vk data bit replaces each checkbyte bit:

Instruction 0020

Special Cases

The following special cases exist for instruction 0020:

• The maximum vector length is 64(1008).

• If k = 0, (Ak) = 1.

• If k ≠ 0 and (Ak) = 0 or a multiple of 100 (octal), then register
VL = 100 (octal).

Hold Issue Conditions

The instruction holds issue under any of the following conditions:

• The Ak register is reserved (except A0).
• A 077 instruction issued in the previous CP.

Data Bit Checkbyte Bit

0 64

1 65

2 66

3 67

4 68

5 69

6 70

7 71

Machine Instruction CAL Syntax Description

00200k VL Ak Transmit (Ak) to VL register.

002000b VL 1 Transmit 1 to VL register.
b Special CAL syntax.
108-0245-003 Cray Proprietary 203

CPU Instruction Descriptions System Programmer Reference
• The vector instruction queue is full.

VIR Hold Issue Conditions

This instruction issues without register or functional unit delays. Instruction
070ij6, 073ij6, 073, 076, or 077 issued from the VIR the previous CP.

Execution Time

The instruction issue time for the 0020 instruction is 1 CP.

The VIR instruction issue time for the 0020 is 3 CPs.

Description

The low-order 6 bits of the contents of the Ak register are entered into the VL
register; the seventh bit of the VL register is set if the 6 low-order bits of the
contents of the Ak register equal 0. For example, if the contents of the Ak
register equal 0 or a multiple of 100 (octal), then VL = 100 (octal). The
contents of the VL register will always be between 1 and 100 (octal).

Instruction 002000 transmits the value of 1 to the VL register.

The 0020 instruction is issued from the VIR in sequence with any other vector
instructions.
204 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Instructions 0021 through 0027

Hold Issue Conditions

Instructions 002100 and 002200 hold issue if the floating-point functional
units are busy or if the vector unit is not quiet.

Instructions 002300 through 002400 have no hold issue conditions.

Instruction 002700 holds issue if ports A or B are busy and if memory is busy;
the hold issue lasts for a minimum of 45 CPs with no cache or memory
activity; 77 CPs minimum with an A register load from cache, or, 87 CPs
minimum with an A register store to memory.

Execution Time

Instructions 0021 through 0027 issue in 1 CP.

Description

Instructions 002100 and 002200 set and clear the interrupt-on-floating-point
(IFP) error bit in the M register. When the IFP bit is set, it enables interrupts on
floating-point range errors. These two instructions do not check the previous
state of the flag. Either of these instructions also clears the floating-point error
status bit.

The 002210 instruction clears the BML bit in the M register. The BML bit is
automatically set by loading the BMM register with the 1740j4 instruction.

Instructions 002300 and 002400 set and clear the interrupt-on-operand range
(IOR) error bit in the M register. These two instructions do not check the
previous state of the IOR bit. When set, the IOR error bit enables interrupts on
operand range errors.

Machine Instruction CAL Syntax Description

002100 EFI Enable interrupt on floating-point error.

002200 DFI Disable interrupt on floating-point error.

002210 CBL Clear the Bit-matrix Loaded (BML) bit.

002300 ERI Enable interrupt on operand range error.

002400 DRI Disable interrupt on operand range error.

002500 DBM Disable bidirectional memory transfers.

002600 EBM Enable bidirectional memory transfers.

002700 CMR Complete memory references.
108-0245-003 Cray Proprietary 205

CPU Instruction Descriptions System Programmer Reference
Instructions 002500 and 002600 disable and enable the bidirectional memory
mode. When this mode is enabled, block read and write operations can operate
concurrently. When it is disabled, only block read operations can operate
concurrently.

Instruction 002700 ensures completion of all memory references within the
CPU that issues the instruction. Instruction 002700 does not issue until all
previous memory references are confirmed to be complete. For example, a
CPU is guaranteed to receive updated data when it issues a data load
instruction after a 002700 instruction. The 002700 instruction synchronizes
memory references between processors in conjunction with semaphore
instructions.

Instructions 002703 through 002707

Execution Time

Instructions 002703 and 002707 issue in 1 CP.

Execution time for instructions 002704 through 002706 varies depending on
the time that is required to clear the memory ports in the PVC.

Description

Instruction 002703 sets bit 2 in the cache-enable field (bit 34 of word 7) of the
exchange package; this allows any subsequent test-and-set instructions to
invalidate cache.

Instructions 002704 and 002705 are identical. They perform a complete ports
all (CPA) operation. The instructions hold issue until all previous memory
operations exit the PV portion of the PVC (which guarantees memory ordering
for this CPU). Compared to a complete memory references (CMR) operation,
which guarantees that all previous memory operations are in memory, these
instructions guarantee that no memory references from this CPU that are
generated after the CPA can precede any memory references before the CPA.

Machine Instruction CAL Syntax Description

002703 ETSI Enable Test and Set Validate

002704 CPA Hold if Port A or Port B busy

002705 CPR Hold if Port A or Port B busy

002706 CPW Hold instruction issue if block store or scalar load/store
busy

002707 DTSI Disable Test and Set Invalidate
206 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Instruction 002706 performs a complete port write (CPW). The instruction
holds issue until all previous block writes, vector writes, or scalar loads or
stores exit the PV portion of the PVC (which guarantees ordering for this
CPU). This instruction differs from CPA in that a block read or vector read can
still be in the PV when this instruction issues.

Instruction 002707 clears bit 2 in the cache-enable field (bit 34 of word 7),
which disallows any subsequent test-and-set instructions from invalidating
cache.

Instructions 0030, 0034, 0036, and 0037

Special Cases

The following special cases exist for instructions 0030, 0034, 0036, or 0037:

• For instruction 0030j0, if j = 0 then (Sj) = 0.
• Instructions 0034jk, 0036jk, and 0037jk perform no operation if CLN = 0.

Hold Issue Conditions

Instruction 0030j0 holds issue under any of the following conditions:

• The Sj register is reserved (except S0).
• 077 instruction was issued in the previous CP.
• The vector instruction queue is full.

VIR Hold Issue Conditions

Instruction 0030j0 holds issue at the VIR under any of the following
conditions:

• The primary vector logical unit is busy with 140-147 instructions.

Machine Instruction CAL Syntax Description

0030j0 VM Sj Transmit (Sj) to VM register.

003000b VM 0 Clear VM register.

0034jk SMjk 1, TS Test and set semaphore jk, 0 ≤jk ≤Š 3110.

0036jk SMjk 0 Clear semaphore jk, 0 ≤jk ≥ 3110.

0037jk SMjk 1 Set semaphore jk, 0 ≥ jk ≥ 3110.
b Special CAL syntax.
108-0245-003 Cray Proprietary 207

CPU Instruction Descriptions System Programmer Reference
• The primary vector logical unit is busy with 175 instruction.
• The VIR issued a 0030j0 instruction less than 4 CPs earlier.
• Instruction 070ij6, 073, 076, or 077 issued the previous CP.

Instruction 0034jk has the following hold issue conditions:

• This instruction holds issue when a shared register access conflict occurs
or when the shared operation buffer is full.

• This instruction holds issue when the PV to JS interface is still busy due
to a previous instruction.

• When the current cluster number does not equal 0 and SMjk is set, this
instruction holds issue until a CPU in the same cluster clears the
semaphore register.

Instructions 0036jk and 0037ijk have the following hold issue conditions:

• These instructions hold issue when a shared path access conflict occurs or
if the shared operation buffer is full.

• These instructions hold issue when the PV to JS interface is still busy
because of a previous instruction.

Execution Time

Instruction 0030 issues in 1 CP. The vector mask register is busy for 3 CPs for
a 0030j0 instruction.

Instruction 0034 issues in a minimum of 77 CPs. The PV to JS shared interface
remains busy for 1 additional CP. Instructions 0036 and 0037 issue in a
minimum of 1 CP. The PV to JS interface remains busy for an additional 3
CPs.

Description

Instruction 0030j0 transmits the contents of the Sj register into the VM
register. The VM register is cleared if the j designator is 0 in instruction
003000. These instructions are used with the vector merge instructions (146
and 147), which perform operations that are determined by the contents of the
VM register.
208 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Instruction 0034jk tests and sets the semaphore (SM) register that is designated
by the jk fields. There are thirty two 1-bit SM registers numbered SM0 through
SM37 (octal); SM0 is the most significant semaphore register. If the SM
register designated by the jk fields is set, this instruction holds issue until
another CPU clears that SM register. If the SM register that is designated by
the jk fields is clear, the instruction issues and sets the SM register. If all CPUs
in a cluster are holding issue on a test and set instruction, the deadlock flag is
set in the exchange package (if the system is not in monitor mode) and an
exchange occurs.

Instruction 0034jk also invalidates cache for that CPU. The invalidation
operation occurs at the beginning of the 0034jk instruction issue if enabled by
the ECI bit in word 7 of the exchange package.

If an interrupt occurs while a test and set instruction is holding in the CIP
register, the waiting-on-semaphore bit in the exchange package sets, the CIP
and NIP registers clear, and an exchange occurs with the P register pointing to
the test and set instruction.

Instruction 0036jk clears the SM register that is designated by the jk fields.

Instruction 0037jk sets the SM register that is designated by the jk fields.

Instruction 0040

Special Cases

There are no special cases.

Hold Issue Conditions

The 0040 instruction holds issue when any A, S, or V register is reserved, if the
vector unit is not quiet, or if an instruction fetch is in progress.

Execution Time

The 0040 instruction issues in 1 CP. Following the instruction issue, 220 CPs
are required for an exchange sequence (108 CPs) and a fetch operation (112
CPs). Memory conflicts during the exchange sequence or fetch operation cause
additional delays.

Machine Instruction CAL Syntax Description

004000 EX Normal exit from the operating system.
108-0245-003 Cray Proprietary 209

CPU Instruction Descriptions System Programmer Reference
Description

Instruction 004 initiates an exchange sequence, which voids the contents of the
instruction buffers. If the system is not in monitor mode, the normal exit flag in
the F register sets. All instructions that issued before the 004 instruction are
completed. Instruction 004 issues a monitor request from a user program or
transfers control from a monitor program to another program.

When all results arrive at the operating registers of previously issued
instructions, an exchange sequence occurs to the exchange package that is
designated by the contents of the XA register. The program address that is
stored in the exchange package advances one count from the address of the
normal exit instruction.

Instruction 0050

Special Cases

A special case may occur when instruction 0050jk executes as a 2-parcel
instruction. The parcel that follows the single parcel of the 0050jk instruction is
not used; however, a delay occurs if the second parcel is not in the instruction
buffer.

Hold Issue Conditions

The 0050 instruction holds issue if any one of the following conditions occurs:

• A 025 instruction was issued in the previous CP.

• The second parcel is in a different buffer (a 3-CP delay occurs).

• The second parcel is not in an instruction buffer.

• Instruction 034 in progress with block length less than or equal to 1008
and register Bjk had not been written

• Instruction 034 is in progress with block length greater than 1008.

• Instruction 035 is in progress.

Machine Instruction CAL Syntax Description

0050jk J Bjk Jump to (Bjk).
210 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Execution Time

The instruction issue times for the 0050 instruction are as follows:

• If the instruction parcel and following parcel are in the same buffer and
the branch address is in a buffer, the issue time is 8 CPs.

• If the instruction parcel and the following parcel are both in a buffer and
the branch address is not in a buffer, the issue time is a minimum of 112
CPs. Additional time is required if a memory conflict exists. The location
of the branch address within the instruction buffer may add more CPs to
this time.

Description

Instruction 005 sets the P register to the 24-bit parcel address specified by the
contents of the Bjk register, which causes the program to continue at that
address. The instruction is used to return from a subroutine.

Instruction 0060

Hold Issue Conditions

The 006 instruction holds issue if either one of the following conditions
occurs:

• The second parcel is in a different buffer (the instruction holds issue for
3 CPs).

• The second parcel is not in a buffer.

Execution Time

Instruction issue times for the 006 instruction are as follows:

• If both parcels of the instruction are in the same buffer and the branch
address is in a buffer, the issue time is 6 CPs.

Machine Instruction CAL Syntax Description

006ijkm J exp Jump to exp.
108-0245-003 Cray Proprietary 211

CPU Instruction Descriptions System Programmer Reference
• If both parcels of the instruction are in the same buffer and the branch
address is not in a buffer, the issue time is a minimum of 111 CPs. The
location of the branch address within the instruction buffer may add more
CPs to this time. Additional time is required if a memory conflict exists.

Description

The 006ijkm instruction is a 2-parcel unconditional jump instruction. It sets the
P register to the parcel address that is specified by the low-order 24 bits of the
exp (ijkm field). The program continues at that address.

Instruction 0070

Hold Issue Conditions

The instruction holds issue under any of the following conditions:

• A 025 instruction was issued in the previous 2 CPs.

• The second parcel is in a different buffer (a 3-CP delay occurs).

• The second parcel is not in a buffer.

• Instruction 034 is in progress with block length less than or equal to 1008
and register Bjk has not been written.

• Instruction 034 in progress with block length greater than 1008.

• Instruction 035 is in progress.

Execution Time

The issue times for the 007 instruction are as follows:

• If both parcels of the instruction are in the same buffer and the branch
address is in a buffer, the instruction issue time is 6 CPs.

Machine Instruction CAL Syntax Description

007ijkm R exp Return jump to exp and set register B00 to (P) + 2.
212 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
• If both parcels of the instruction are in the same buffer and the branch
address is not in a buffer, the instruction issue time is a minimum of
111 CPs. The location of the branch address within the instruction buffer
may add more CPs to this time. Additional time is needed if a memory
conflict exists.

Description

The 2-parcel 007ijkm instruction sets register B00 to the address of the parcel
that follows the second parcel of the instruction. The P register is then set to the
parcel address that is specified by the low-order 24 bits of the exp (ijkm field).
Execution continues at that address.

This instruction provides return links for subroutine calls. The subroutine is
entered through a return jump. The subroutine can return to the caller at the
instruction following the call by executing a jump to the contents of register
B00 (0050jk).

Instructions 010 through 013

Special Cases

The following special cases exist for instructions 010 through 013:

• (A0) = 0 is a positive condition.
• The high-order bit of the i designator (i2) must be 0.

• Register A0 is 32 bits wide and bit 31 is the sign bit.

Hold Issue Conditions

Instructions 010 through 013 hold issue under any of the following conditions:

• Register A0 is busy in any one of the previous 3 CPs.

Machine Instruction CAL Syntax Description

010ijkma JAZ exp Jump to exp if (A0) = 0 (i2 = 0).

011ijkma JAN exp Jump to exp if (A0) ≠ 0 (i2 = 0).

012ijkma JAP exp Jump to exp if (A0) positive; (A0) ≥ 0 (i2 = 0).

013ijkma JAM exp Jump to exp if (A0) negative (i2 = 0).
a Bit 2 of the i field is equal to 0.
108-0245-003 Cray Proprietary 213

CPU Instruction Descriptions System Programmer Reference
• The second parcel of the instruction is not in a buffer.

• The second parcel of the instruction is in a different buffer (holds issue for
3 CPs).

Execution Time

The following instruction issue times are for instructions 010 through 013, if
the branch is taken (jump conditions are satisfied):

• If both parcels of the instruction are in the same buffer, the branch is
taken, and the branch address is in a buffer, the issue time is 6 CPs.

• If both parcels of the instruction are in the same buffer, the branch is
taken, and the branch address is not in a buffer, the issue time is a
minimum of 111 CPs.

• If each parcel of the instruction is in a different buffer, the branch is taken,
and the branch address is in a buffer, the issue time is 9 CPs.

• If each parcel of the instruction is in a different buffer, the branch is taken,
and the branch address is not in a buffer, the issue time is a minimum of
114 CPs.

• If the second parcel of the instruction is not in a buffer, the branch is
taken, and the branch address is in a buffer, the issue time is a minimum
of 114 CPs.

• If the second parcel of the instruction is not in a buffer, the branch is
taken, and the branch address is not in a buffer, the issue time is
approximately 240 CPs.

The following instruction issue times are for instructions 010 through 013, if
the branch is not taken (jump conditions are satisfied):

• If both parcels of the instruction are in the same buffer, the branch is not
taken, and the next instruction is in the same instruction buffer, the issue
time is 2 CPs.

• If both parcels of the instruction are in the same buffer, the branch is not
taken, and the next instruction is in a different instruction buffer, the issue
time is 5 CPs.
214 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
• If both parcels of the instruction are in the same buffer, the branch is not
taken, and the next instruction is in memory, the issue time is a minimum
of 111 CPs.

• If each parcel of the instruction is in a different buffer and the branch is
not taken, the issue time is 5 CPs.

• If the second parcel of the instruction is not in a buffer and the branch is
not taken, the issue time is approximately 111 CPs.

Note: Memory conflicts may produce a delay whenever a fetch operation
occurs.

Description

The 2-parcel 010 through 013 instructions test the contents of the A0 register
for the condition specified by the h field. If the condition is satisfied, the P
register is set to the parcel address that is specified by the low-order 24 bits of
the exp (ijkm field) and execution continues at that address. The high-order bit
(i2) of the ijkm field must be 0. If the condition is not satisfied, execution
continues with the instruction that follows the branch instruction.

Instructions 014 through 017

Special Cases

The following special cases exist for instructions 014 through 017:

• (S0) = 0 is a positive condition.
• The high-order bit of the i designator (i2) must be 0.

Hold Issue Conditions

Instructions 014 through 017 hold issue under any of the following conditions:

Machine Instruction CAL Syntax Description

014ijkma JSZ exp Jump to exp if (S0) = 0 (i2 = 0)

015ijkma JSN exp Jump to exp if (S0) ≠ 0 (i2 = 0)

016ijkma JSP exp Jump to exp if (S0) positive; (A0 ≥ 0) (i2 = 0)

017ijkma JSM exp Jump to exp if (S0) negative (i2 = 0)
a Bit 2 of the i field is equal to 0.
108-0245-003 Cray Proprietary 215

CPU Instruction Descriptions System Programmer Reference
• Register S0 is busy in any one of the previous 3 CPs.

• The second parcel of the instruction is in a different buffer (holds issue for
3 CPs).

• The second parcel of the instruction is not in a buffer.

Execution Time

The following issue times are for instructions 014 through 017, if the branch is
taken (jump conditions are satisfied):

• If both parcels of the instruction are in the same buffer, the branch is
taken, and the branch address is in a buffer, the issue time is 6 CPs.

• If both parcels of the instruction are in the same buffer, the branch is
taken, and the branch address is not in a buffer, the issue time is a
minimum of 111 CPs.

• If each parcel of the instruction is in a different buffer, the branch is taken,
and the branch address is in a buffer, the issue time is 9 CPs.

• If each parcel of the instruction is in a different buffer, the branch is taken,
and the branch address is not in a buffer, the issue time is a minimum of
114 CPs.

• If the second parcel of the instruction is not in a buffer, the branch is
taken, and the branch address is in a buffer, the issue time is a minimum
of 114 CPs.

• If the second parcel of the instruction is not in a buffer, the branch is
taken, and the branch address is not in a buffer, the issue time is
approximately 240 CPs.

The following issue times are for instructions 014 through 017 if the branch is
not taken (jump conditions are not satisfied):

• If both parcels of the instruction are in the same buffer, the branch is not
taken, and the next instruction is in the same instruction buffer, the issue
time is 2 CPs.

• If both parcels of the instruction are in the same buffer, the branch is not
taken, and the next instruction is in a different instruction buffer, the issue
time is 5 CPs.
216 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
• If both parcels of the instruction are in the same buffer, the branch is not
taken, and the next instruction is in memory, the issue time is a minimum
of 111 CPs.

• If each parcel of the instruction is in a different buffer and the branch is
not taken, the issue time is 5 CPs.

• If the second parcel of the instruction is not in a buffer and the branch is
not taken, the issue time is approximately 111 CPs.

Note: Memory conflicts produce delays when a fetch operation occurs.

Description

The 2-parcel 014 through 017 instructions test the contents of the S0 register
for the condition specified by the h field. If the condition is satisfied, the P
register is set to the parcel address that is specified by the low-order 24 bits of
the exp (ijkm field) and execution continues at that address. The high-order bit
(i2) of the ijkm field must be 0. If the condition is not satisfied, execution
continues with the instruction that follows the branch instruction.

Instructions 020 through 022

Hold Issue Conditions

Instructions 020 through 022 hold issue under any of the following conditions:

• The Ai register is reserved.
• The second or third instruction parcel is not in a buffer.

Execution Time

The following instruction issue times apply to instructions 020 through 022:

• Register Ai is ready in 1 CP.

Machine Instruction CAL Syntax Description

020i00mnd

or
021i00mn

or
022ijkd

Ai exp Transmit exp into Ai (020 or 022) or transmit one’s
complement of exp into Ai (021).

d These instructions are generated depending on the value of the expression.
108-0245-003 Cray Proprietary 217

CPU Instruction Descriptions System Programmer Reference
• For instructions 020 and 021, the instruction issue time is 2 CPs.

• For instruction 022, the instruction issue time is 1 CP.

• If parcel 0 is in a different buffer than parcels 1 and 2, the instruction issue
time is 5 CPs.

• If parcel 2 is in a different buffer than parcels 0 and 1, the instruction issue
time is 6 CPs.

Description

Instructions 020 through 022 transmit a value that is determined by exp into the
Ai register. The syntax differs from most CAL symbolic instructions in that the
assembler generates any of the previous Cray machine instructions depending
on the form, value, and attributes of the exp.

The assembler generates the instruction 022ijk if all of the following
conditions are true (the jk fields contain the 6-bit value of exp):

• The value of the expression is positive and less than 77 (octal).
• All symbols (if any) within the expression are previously defined.
• The expression has an absolute relative attribute.

If any one of the previous three conditions is not true, the assembler
generates one of the following instructions:

• 3-parcel 020i00mn or 021i00mn instruction

If the exp has a positive value greater than 77 (octal) or either a
relocatable or external relative attribute, the following condition occurs:

• Instruction 020i00mn is generated. The exp value is entered in the 32-bit
mn field.

If the exp value is negative and has an absolute relative attribute, the
following condition occurs:

• Instruction 021i00mn is generated. The one’s complement of the exp
value is entered into the 32-bit mn field unless the exp value is -1. If the
exp is -1, instruction 031i00 is generated.
218 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Instruction 023

Special Cases

The following special cases exist for instruction 023:
• If j = 0 then (Sj) = 0.
• If the low-order 6 bits of the VL register are 0, bit 6 in the VL register = 1.
• If any of the low-order 6 bits of the VL register are not 0, bit 6 = 0.

If (A1) = 0, the following CAL sequence produces (A2) = 100 (octal):

• VL A1
• A2 VL

If (A1) = 23 (octal), the following CAL sequence produces (A2) = 23 (octal):

• VL A1
• A2 VL

If (A1) = 123 (octal), the following CAL sequence produces (A2) = 23 (octal):

• VL A1
• A2 VL

Hold Issue Conditions

The 023 instruction holds issue under any of the following conditions:

• The Ai register is reserved.
• Instruction 0020xx is issued in the previous CP.

The 023ij0 instruction holds issue if the Sj register is reserved (except S0).

Machine Instruction CAL Syntax Description

023ij0 Ai Sj Transmit (Sj) to Ai.

023i01 Ai VL Transmit (VL) to Ai.
108-0245-003 Cray Proprietary 219

CPU Instruction Descriptions System Programmer Reference
Execution Time

The instruction issue times are as follows:

• The instruction issue time is 1 CP.
• The Ai register is ready in 1 CP.

Description

Instruction 023ij0 transmits the low-order 32 bits of the contents of the Sj
register into the Ai register. The high-order bits of the Sj register are ignored.
Register Ai = 0 if the j designator is 0. Instruction 023i01 transmits the
contents of the VL register into the Ai register.

Instructions 024 through 025

Hold Issue Conditions

Instructions 024 and 025 hold issue under any of the following conditions:

• Register Ai is reserved.

• Instruction 025ijk was issued in the previous CP (for instruction 024ijk).

• Instruction 034 is in progress with block length less than or equal to 1008
and register Bjk has not been written.

• Instruction 034 is in progress with block length greater than 1008.

• Instruction 035 is in progress.

Execution Time

The issue times for instructions 024 and 025 are as follows:

• Register Ai is ready in 1 CP after issuing a 024 instruction.
• Instruction issue time is 1 CP.

Machine Instruction CAL Syntax Description

024ijk Ai Bjk Transmit (Bjk) to Ai.

025ijk Bjk Ai Transmit (Ai) to Bjk.
220 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Description

Instruction 024 transmits the contents of the Bjk register into the Ai register,
and instruction 025 transmits the contents of the Ai register into the Bjk
register.

Instruction 026

Special Cases

The following special cases exist for instruction 026:

• For instructions 026ij0 and 026ij1, if j = 0 then (Ai) = 0.
• For instruction 026ij7, if CLN = 0 then (Ai) = 0.

Hold Issue Conditions

Instruction 026 holds issue under any of the following conditions:

• The Ai register is reserved.

• For instructions 026ij0 and 026ij1 when the Sj register is reserved (except
S0).

• For instruction 026ij7 when a shared path conflict occurs or the shared
operation buffer is full.

Execution Time

The instruction issue times for the 026 instruction are as follows:

• The instruction issue time is 1 CP.
• For instructions 026ij0 and 026ij1, register Ai is ready in 4 CPs.
• For instruction 026ij7, register Ai is ready in 41 CPs.

Machine Instruction CAL Syntax Description

026ij0 Ai PSj Transmit the population count of (Sj) to Ai.

026ij1 Ai QSj Transmit the population count parity of (Sj) to Ai.

026ij7 Ai SBj Transmit (SBj) to Ai.
108-0245-003 Cray Proprietary 221

CPU Instruction Descriptions System Programmer Reference
Description

Instruction 026ij0 counts the number of 1 bits in the Sj register and enters the
result into the low-order 7 bits of the Ai register. The high-order bits of the Ai
register are cleared. If the Sj register equals 0, then the value in the Ai register
equals 0.

Instruction 026ij1 enters a 0 in the Ai register if the Sj register has an even
number of 1 bits. If the Sj register has an odd number of 1 bits, a 1 is entered in
the Ai register. The high-order bits of the Ai register are cleared. The actual
population count is not transferred.

Instructions 026ij0 and 026ij1 are executed in the
population/parity/leading-zero count functional unit.

Instruction 026ij7 transmits the contents of the SBj register to the Ai register.
The SBj register is shared between the CPUs in the same cluster.

Instruction 027

Special Cases

The following special cases exist for instruction 027:

• If j = 0 for instruction 027ij0, register Ai = 64.
• If Sj is negative for instruction 027ij0, Ai = 0.
• If CLN = 0 for instruction 027ij7, the instruction performs no operation.

Hold Issue Conditions

The 027 instruction holds issue under any of the following conditions:

• The Ai register is reserved.

• For 027ij0 instruction when the Sj register is reserved (except S0).

• For instruction 027ij7 when a shared path access conflict occurs or if the
shared operations buffer is full.

Machine Instruction CAL Syntax Description

027ij0 Ai ZSj Transmit leading zero count of (Sj) to Ai.

027ij7 SBj Ai Transmit (Ai) to SBj.
222 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Execution Time

The instruction issue times for instruction 027 are as follows:

• The instruction issue time is 1 CP.
• For instruction 027ij0, the Ai register is ready in 4 CPs.
• For instruction 027ij7, the SBj register is ready in approximately 25 CPs.

Description

Instruction 027ij0 counts the number of leading 0’s in the Sj register and enters
the result into the low-order 7 bits of the Ai register. All bits above bit 6 in the
Ai register are cleared. The Ai register is set to 64 if the j designator is 0, or if
the content of the Sj register is 0. Instruction 027ij0 executes in the
population/parity/leading-zero count functional unit. Instruction 027ij7
transmits the contents of the Ai register to the SBj register. The SBj register is
shared between the CPUs in the same cluster.

Instructions 030 through 031

Special Cases

The following special cases exist for instruction 030:

• If j = 0 and k ≠ 0, then Ai = Ak.
• If j = 0 and k = 0, then Ai = 1.
• If j ≠ 0 and k = 0, then Ai = Aj + 1.

The following special cases exist for instruction 031:

• If j = 0 and k ≠ 0, then Ai = -Ak.

Machine Instruction CAL Syntax Description

030ijk Ai Aj + Ak Transmit the integer sum of (Aj) and (Ak) to Ai.

030i0kb Ai Ak Transmit (Ak) to Ai.

030ij0b Ai Aj + 1 Transmit the integer sum of (Aj) and 1 to Ai.

031ijk Ai Aj-Ak Transmit the integer difference (Aj) and (Ak) to Ai.

031i00b Ai -1 Transmit -1 to Ai.

031i0kb Ai -Ak Transmit the negative of (Ak) to Ai.

031ij0b Ai Aj -1 Transmit the integer difference (Aj) and 1 to Ai.
b Special CAL syntax.
108-0245-003 Cray Proprietary 223

CPU Instruction Descriptions System Programmer Reference
• If j = 0 and k = 0, then Ai = -1.
• If j ≠ 0 and k = 0, then Ai = Aj - 1.

Hold Issue Conditions

Instructions 030 and 031 hold issue under any of the following conditions:

• The Ai register is reserved.
• The Aj or Ak register is reserved (except A0).

Execution Time

The issue times for instructions 030 and 031 are as follows:

• The instruction issue time is 1 CP.
• Register Ai is ready in 2 CPs.

Description

Instructions 030 and 031 execute in the address add functional unit, overflow is
not detected by either instruction.

Instruction 030 forms the integer sum of the contents of the Aj and Ak registers
and enters the result into the Ai register.

Instruction 031 forms the integer difference of the contents of the Aj and Ak
registers and enters the result into the Ai register. Instruction 031i00 is
generated in place of instruction 020ijkm if the operand is -1.

Instruction 032

Special Cases

The following special cases exist for instruction 032:

• If j = 0, (Ai) = 0.
• If k = 0, (Ak) = 1.
• If j ≠ 0 and k = 0, (Ai) = (Aj).

Machine Instruction CAL Syntax Description

032ijk Ai Aj*Ak Transmit the integer product of (Aj) and (Ak) to Ai.
224 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Hold Issue Conditions

The 032 instruction holds issue under any of the following conditions:

• The Ai register is reserved.
• The Aj or Ak register is reserved (except A0).

Execution Time

The instruction issue times are as follows:

• The instruction issue time is 1 CP.
• Register Ai is ready in 4 CPs.

Description

Instruction 032 forms the integer product of the contents of the Aj and Ak
registers and enters the low-order 32-bit result into the Ai register. Instruction
032 executes in the address multiply functional unit, and overflow conditions
are not detected.

Instruction 033

Special Cases

The following special cases exist for instruction 033:

• If (Aj) = 0, then (Ai) = highest priority channel causing an interrupt.

• If (Aj) ≠ 0 and k = 0, then (Ai) = current address of channel (Aj).

• If (Aj) ≠ 0 and k = 1, then (Ai) = I/O error flag of channel (Aj).

• After instruction 0012j0 issues, 033i00 issues immediately because the
JS ASIC ensures that all local instructions are held until all global
instructions are completed.

Machine Instruction CAL Syntax Description

033i00 Ai CI Transmit the channel number of the highest priority
interrupt request to Ai (j = 0).

033ij0 Ai CA,Aj Transmit the current address of channel (Aj) to Ai (j ≠ 0, k = 0).

033ij1 Ai CE,Aj Transmit the error flag of channel (Aj) to Ai (j ≠ 0, k = 1).
108-0245-003 Cray Proprietary 225

CPU Instruction Descriptions System Programmer Reference
All 033ij1 instructions return a 1-bit channel error flag, regardless of the type
of channel.

Hold Issue Conditions

The 033 instruction holds issue under any of the following conditions:

• The Ai or Aj (except A0) register is reserved.
• A shared register conflict occurs or the shared operation buffer is full.

Execution Time

The instruction issue times for instruction 033 are as follows:

• The instruction issue time is 1 CP.

• For 033i00, register Ai is ready in 46 CPs.

• For 033ij0, register Ai is ready in 122 CPs if no conflicts occur with other
CPUs.

• For 033ij1, register Ai is ready in 124 CPs if no conflicts occur with other
CPUs.

Description

Instruction 033 enters channel status information into the Ai register. The j and
k designators and the contents of register Aj define the information. Instruction
033 does not interfere with channel operation and is not protected from user
execution.

Instruction 033i00 enters the channel number of the highest priority interrupt
request into the Ai register. For each channel, there is a single priority bit that
indicates whether it is a high- or low-priority channel. When a processor
requests the highest-priority channel, that channel is determined as follows:

1. If any channel marked as high priority has an interrupt pending, the
lowest-numbered, high-priority channel is the one returned.

2. If no channels marked as high priority have an interrupt pending, the
lowest-numbered, low-priority channel with an interrupt pending is
returned.
226 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Instruction 033ij0 enters the contents of the CA register for the channel that is
specified by the contents of the Aj register into the Ai register.

Instruction 033ij1 enters the error flag for the channel that is specified by the
contents of the Aj register into the low-order bit of the Ai register. The
high-order bits of the Ai register are cleared. The error flag can be cleared only
in monitor mode by using the 0012 instruction.

Instructions 034 through 037

Special Cases

The following special cases exist for instructions 034 through 037:

• If (Ai) register = 0, initiate a zero-block transfer.

• If (Ai) register is in a range greater than 100 (octal) and less than 200
(octal), a wrap-around condition occurs.

• If (Ai) register is greater than 177 (octal), bits 7 through 23 are truncated
and the block length is equal to the value of 0 through 6.

Machine Instruction CAL Syntax Description

034ijk Bjk, Ai ,A0 Load (Ai) words from memory starting at address (A0) to B
registers starting at register jk.

034ijkb Bjk,Ai 0,A0 Load (Ai) words from memory starting at address (A0) to B
registers starting at register jk.

035ijk ,A0 Bjk,Ai Store (Ai) words from B registers starting at register jk to
memory starting at address (A0).

035ijkb 0,A0 Bjk,Ai Store (Ai) words from B registers starting at register jk to
memory starting at address (A0).

036ijk Tjk,Ai ,A0 Load (Ai) words from memory starting at address (A0) to T
registers starting at register jk.

036ijkb Tjk,Ai 0,A0 Load (Ai) words from memory starting at address (A0) to T
registers starting at register jk.

037ijk ,A0 Tjk,Ai Store (Ai) words from T registers starting at register jk to
memory starting at address (A0).

037ijkb 0,A0 Tjk,Ai Store (Ai) words from T registers starting at register jk to
memory starting at address (A0).

b Special CAL syntax.
108-0245-003 Cray Proprietary 227

CPU Instruction Descriptions System Programmer Reference
Hold Issue Conditions

The 034 through 037 instructions hold issue under any of the following
conditions:

• The A0 register is reserved.

• The Ai register is reserved.

• Instruction 034 holds issue if port A is busy, when instruction 035 is in
progress, or a block write (035, 037, 177) is busy with memory access in
unidirectional mode or with an uncompleted 076 instruction active.

• Instruction 035 holds issue when a block write (035, 037, 177) is busy, or
when instruction 034 is in progress, or in unidirectional memory mode
and port A or port B is busy. An uncompleted 076 instruction is
equivalent to unidirectional memory mode.

• Instruction 036 holds issue if port B is busy, when instruction 037 is in
progress, or when a block write (035, 037, 177) is busy with memory
access in unidirectional mode or with an uncompleted 076 instruction
active.

• Instruction 037 holds issue when a block write (035, 037, 177) is busy,
when instruction 036 is in progress, or in unidirectional memory mode
and port A or port B is busy. An uncompleted 076 instruction is
equivalent to unidirectional memory mode.

Execution Time

The instruction issue times are as follows:

• The instruction issue time is 1 CP.

• For instruction 034 or 036,

• If (Ai) ≠ 0, B or T registers are reserved for a minimum of (Ai/2) +
163 CPs if the data loads from memory or a minimum of (Ai/2) + 17
CPs if the data loads from cache.

• If (Ai) = 0, B or T registers are reserved for 6 CPs.

• If (Ai) ≠ 0, port A or B is busy for (Ai/2) + 5 CPs.
228 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
• If (Ai) = 0, port A or B is busy for 6 CPs.

Note: Instructions 034 and 036 with a block length of less than or
equal to 1008 release the B or T registers individually as they
are written.

• For instruction 035 or 037,

• If (Ai) ≠ 0, B or T registers are reserved for (Ai/2) + 5 CPs.

• If (Ai) = 0, B or T registers are reserved for 6 CPs.

• If (Ai) ≠ 0, port A or port B is busy for (Ai/2) + 5 CPs.

• If (Ai) = 0, port A or port B is busy for 6 CPs.

Description

Instructions 034 through 037 perform block transfers between cache or central
memory and B or T registers. Instruction 034ijk transfers words from cache or
central memory directly into the B registers. Instruction 035ijk stores words
from B registers directly into cache and central memory.

Instruction 036ijk transfers words from cache or central memory directly into
T registers. Instruction 037ijk stores words from T registers directly into cache
or central memory.

For the 034 through 037 instructions, processing of B and T registers is
circular. The first register involved in the transfer is specified by the jk fields;
the low-order 7 bits of the contents of the Ai register specify the number of
words transmitted. Successive transfers involve successive B or T register
pairs until B76/B77 or T76/T77 is reached. Register pair B00/B01 is processed
after B76/B77 and register T00/T01 is processed after T76/T77 if the count in
the content of the Ai register is not exhausted.

The first memory location that is referenced by the transfer instruction is
specified by the contents of register A0. The contents of register A0 are not
altered by execution of the instruction. Memory references are incremented by
2 for successive transfers.

For transfers of B registers to cache and central memory, each 32-bit value is
right adjusted in the word; the high-order 32 bits are cleared. When
transferring from memory into B registers, only the 32 low-order bits are
transmitted; the 32 high-order bits are ignored.
108-0245-003 Cray Proprietary 229

CPU Instruction Descriptions System Programmer Reference
If the contents of the Ai register equal 0, no words are transferred. If i = 0, the
contents of register A0 are used for the block length and the starting memory
address. The CAL assembler issues a warning message when i = 0.

Note: Instruction 034 uses port A, instructions 035 and 037 use either ports
A or B, and instruction 036 uses port B for block transfers.

Instruction 040 through 041

Hold Issue Conditions

Instructions 040 through 041 hold issue under any of the following conditions:

• Si register is reserved.
• The second or third parcel is not in a buffer.

Execution Time

The instruction issue times for instructions 040 and 041 are as follows:

• If both parcels are in the same buffer, the issue time is 2 CPs.

• If parcel 0 is in a different buffer than parcels 1 and 2, the issue time
is 5 CPs.

• If parcels 0 and 1 are in a different buffer than parcel 2, the issue time
is 6 CPs.

• The Si register is ready in 1 CP.

Description

These instructions transmit a quantity into the Si register. Depending on the
instruction exp value, either the 040i00mn or the 041i00mn instruction is
generated. If the expression has a positive value, or either a relocatable or
external relative attribute, the following instruction is generated.

Machine Instruction CAL Syntax Description

040i00mn
or
041i00mn

Si exp Transmit exp into Si (040) or transmit one’s complement of
exp into Si (041).
230 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
• Instruction 040i00mn is generated with the 32-bit mn field containing the
expression value.

If the expression has a negative value and an absolute relative attribute, the
following instruction is generated:

• Instruction 041i00mn is generated with the 32-bit mn field containing the
one’s complement of the expression value.

Instructions 042 through 043

Hold Issue Conditions

Instructions 042 through 043 hold issue when the Si register is reserved.

Execution Time

The issue times for instructions 042 and 043 are as follows:

• The instruction issue time is 1 CP.
• Register Si is ready in 1 CP.

Description

Instruction 042 generates a mask of 100 (octal) - jk 1’s from right to left in the
Si register. For example, if jk = 0, the Si register contains all 1 bits (integer
value = -1) and if jk = 77 (octal), the Si register contains 0’s in all but the
low-order bit (integer value = 1).

Machine Instruction CAL Syntax Description

042ijk Si <exp Form ones mask in Si exp bits from right; exp = 1008 - jk
bits.

042ijkb Si # >exp Form zeroes mask in Si exp bits from left; exp = jk bits.

042i77b Si 1 Enter 1 into Si register.

042i00b Si -1 Enter -1 into Si register.

043ijk Si >exp Form ones mask in Si exp bits from left; exp = jk bits.

043ijkb Si #<exp Form zeroes mask in Si exp bits from right; exp = 1008 - jk
bits.

043i00b Si 0 Clear the Si register.
b Special CAL syntax.
108-0245-003 Cray Proprietary 231

CPU Instruction Descriptions System Programmer Reference
Instruction 043 generates a mask of jk 1’s from left to right in the Si register.
For example, if jk = 0, the Si register contains all 0 bits (integer value = 0) and
if jk = 77 (octal), the Si register contains 1’s in all bits except the low-order bit
(integer value = -2).

The scalar logical functional unit executes instructions 042 and 043.

Instructions 044 through 051

Note: For instructions 044 through 051, the abbreviation SB in the CAL
syntax refers to the sign bit, not a shared address register.

Machine Instruction CAL Syntax Description

044ijk Si Sj&Sk Transmit the logical product of (Sj) and (Sk) to Si.

044ij0b Si Sj&SB Transmit the sign bit of (Sj) to Si.

044ij0b Si SB&Sj Transmit the sign bit of (Sj) to Si (j ≠ 0)

045ijk Si #Sk&Sj Transmit the logical product of (Sj) and complement of (Sk)
to Si.

045ij0b Si #SB&Sj Transmit the (Sj) with sign bit cleared to Si.

046ijk Si Sj\Sk Transmit the logical difference of (Sj) and (Sk) to Si.

046ij0b Si Sj\SB Toggle the sign bit of (Sj) , then enter into Si.

046ij0b Si SB\Sj Toggle the sign bit of (Sj) , then enter into Si (j ≠ 0)

047ijk Si #Sj\Sk Transmit the logical equivalence of (Sk) and (Sj) to Si.

047i0kb Si #Sk Transmit the one’s complement of (Sk) to Si.

047ij0b Si #Sj\SB Transmit the logical equivalence of (Sj) and sign bit to Si.

047ij02 Si #SB\Sj Transmit the logical equivalence of (Sj) and sign bit to Si
(j ≠ 0).

047i00b Si #SB Transmit the one’s complement of sign bit into Si.

050ijk Si
Sj !Si&Sk

Transmit the logical product of (Si) and (Sk) complement
ORed with the logical product of (Sj) and (Sk) to Si.

050ij0b Si
Sj !Si&SB

Transmit the scalar merge of (Si) and sign bit of (Sj) to Si.

051ijk Si Sj!Sk Transmit the logical sum of (Sj) and (Sk) to Si.

051i0kb Si Sk Transmit the (Sk) to Si.

051ij0b Si Sj!SB Transmit the logical sum of (Sj) and sign bit to Si.

051ij0b Si SB!Sj Transmit the logical sum of (Sj) and sign bit to Si (j ≠ 0).

051i00b Si SB Transmit the sign bit into Si.
b Special CAL syntax.
232 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Special Cases

The following special cases exist for instructions 044 through 051:

• If j = 0, (Sj) = 0.
• If k = 0, (Sk) = Bit 63 set to 1.

Hold Issue Conditions

Instructions 044 through 051 hold issue under the following conditions:

• The Si register is reserved.
• The Sj or Sk register is reserved (except S0).

Execution Time

The issue times for instructions 044 through 051 are as follows:

• The instruction issue time is 1 CP.
• Register Si is ready in 1 CP.

Description

The scalar logical functional unit executes instructions 044 through 051.
Instruction 044 forms the logical product (AND) of the contents of the Sj
register and the contents of the Sk register and enters the result into the Si
register. Bits of the Si register are set to 1 when corresponding bits of the Sj
register and the Sk register are 1, as in the following example:

The contents of the Sj register are transmitted to the Si register if the j and k
designators have the same nonzero value. The Si register is cleared if the j
designator is 0. The sign bit of the contents of the Sj register is transmitted to
the Si register if the j designator is nonzero and the k designator is 0. The two
special forms of instruction 044ij0 perform the same function; however, in the
second form, j must not equal 0. If j equals 0, an assembly error results.

(Sj) = 1 1 0 0

(Sk) = 1 0 1 0

(Si) = 1 0 0 0
108-0245-003 Cray Proprietary 233

CPU Instruction Descriptions System Programmer Reference
Instruction 045 forms the logical product (AND) of the contents of the Sj
register and the complement of the Sk register and enters the result into the Si
register. Bits of the Si register are set to 1 when corresponding bits of the Sj
register and the complement of the Sk register are 1, as in the following
example in which the contents of Sk’= the complement of the contents of Sk:

Si is cleared if the j and k designators have the same value or if the j designator
is 0. The content of the Sj register with the sign bit cleared is transmitted to the
Si register if the j designator is nonzero and the k designator is 0. Instruction
045ij0 performs the identical function.

Instruction 046 forms the logical difference (exclusive OR) of the contents of
the Sj register and the contents of the Sk register and enters the result into the
Si register.

Bits of the Si register are set to 1 when corresponding bits of the Sj register and
the Sk register are different, as in the following example:

Si is cleared if the j and k designators have the same nonzero value. The
contents of the Sk register are transmitted to the Si register if the j designator is
0 and the k designator is nonzero. The sign bit of the contents of the Sj register
is complemented and the result is transmitted to the Si register if the j
designator is nonzero and the k designator is 0. The two special forms of
instruction 046ij0 perform the same function; however, in the second form, j
must not equal 0. If j equals 0, an assembly error results.

Instruction 047 forms the logical equivalent (exclusive NOR) of the contents
of the Sj register and the contents of the Sk register, and enters the result into
the Si register.

Bits of the Si register are set to 1 when corresponding bits of the Sj register and
the Sk register are the same as in the following example:

if (Sk) = 1 0 1 0

(Sj) = 1 1 0 0

(Sk’) = 0 1 0 1

(Si) = 0 1 0 0

(Sj) = 1 1 0 0

(Sk) = 1 0 1 0

(Si) = 0 1 1 0
234 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Si is set to all 1’s if the j and k designators have the same nonzero value. The
complement of the contents of the Sk register is transmitted to the Si register if
the j designator is 0 and the k designator is nonzero. All bits except the sign bit
of the contents of the Sj register are complemented, and the result is
transmitted to the Si register if the j designator is nonzero and the k designator
is 0. The result is the complement produced by instruction 046. The two
special forms of instruction 047ij0 perform the same function; however, in the
second form, j must not equal 0. If j equals 0, an assembly error results.

Instruction 047i0k forms the one’s complement of the contents of Sk and enters
the value into Si.

Instruction 050 merges the contents of the Sj register with the contents of the
Si register, depending on the ones mask in Sk. The result is defined by the
following Boolean equation in which Sk’ is the complement of Sk, as shown in
the following example:

Instruction 050 is used for merging portions of 64-bit words into a composite
word. Bits of the Si register are cleared when the corresponding bits of the Sk
register are 1 if the j designator is 0 and the k designator is nonzero. The sign
bit of the contents of the Sj register replaces the sign bit of the Si register if the
j designator is nonzero and the k designator is 0. The sign bit of the Si register
is cleared if the j and k designators are both 0.

Instruction 051 forms the logical sum (inclusive OR) of the contents of the Sj
register and the contents of the Sk register. Bits of the Si register are set when
one of the corresponding bits of the Sj register and the Sk register are set, as in
the following example:

(Sj) = 1 1 0 0

(Sk) = 1 0 1 0

(Si) = 1 0 0 1

(Si) = (Sj)(Sk) + (Si) (Sk’)

if (Sk) = 1 1 1 1 0 0 0 0

(Sk’) = 0 0 0 0 1 1 1 1

(Si) = 1 1 0 0 1 1 0 0

(Sj) = 1 0 1 0 1 0 1 0

(Si) = 1 0 1 0 1 1 0 0
108-0245-003 Cray Proprietary 235

CPU Instruction Descriptions System Programmer Reference
The contents of the Sj register are transmitted to the Si register if the j and k
designators have the same nonzero value. The contents of the Sk register are
transmitted to the Si register if the j designator is 0 and the k designator is
nonzero. The contents of the Sj register with the sign bit set to 1 are transmitted
to the Si register if the j designator is nonzero and the k designator is 0. A ones
mask that consists of only the sign bit is entered into the Si register if the j and
k designators are both 0.

Instructions 052 through 055

Hold Issue Conditions

Instructions 052 through 055 hold issue under any of the following conditions:

• The Si register is reserved.
• For instructions 052 and 053, when the S0 register is reserved.

Execution Time

The issue times for instructions 052 through 055 are as follows:

• The instructions issue time is 1 CP.
• For instructions 052 and 053, register S0 is ready in 3 CPs.
• For instructions 054 and 055, register Si is ready in 3 CPs.

Description

The scalar shift functional unit executes instructions 052 through 055. The
instructions shift values in an S register by an amount specified by exp (jk
field); all shifts are end-off with zero fill.

(Sj) = 1 1 0 0

(Sk) = 1 0 1 0

(Si) = 1 1 1 0

Machine Instruction CAL Syntax Description

052ijk S0 Si <exp Shift (Si) left exp places to S0; exp = jk.

053ijk S0 Si >exp Shift (Si) right exp places to S0; exp = 1008-jk.

054ijk Si Si <exp Shift (Si) left exp places to Si; exp = jk.

055ijk Si Si >exp Shift (Si) right exp places to Si; exp = 1008-jk.
236 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Instruction 052 shifts the contents of the Si register jk places to the left and
enters the result into the S0 register; the shift range is 0 through 63 left. If the
shift count is 64, instruction 053000 is generated and register S0 is cleared.

Instruction 053 shifts the contents of the Si register to the right by 100 (octal)
- jk places and enters the result into the S0 register; the shift range is 1 through
100 (octal) right. If the shift count is 0, then instruction 052000 is generated
and the contents of register S0 are not altered.

Instruction 054 shifts the contents of the Si register to the left jk places and
enters the result into the Si register; the shift range is 0 through 77 (octal) left.
If the shift count is 100 (octal), instruction 055i00 is generated and the Si
register is cleared.

Instruction 055 shifts (Si) to the right by 100 (octal) - jk places and enters the
result into the Si register; the shift range is 1 through 100 (octal) right. If the
shift count is 0, then instruction 054i00 is generated and the contents of the Si
register are not altered.

Instructions 056 through 057

Special Cases

The following special cases exist for instructions 056 through 057:

• If j = 0, (Sj) = 0.

• If k = 0, (Ak) = 1.

• Perform a circular shift if i = j ≠ 0 and Ak is greater than or equal to 0, and
less than or equal to 64.

Machine Instruction CAL Syntax Description

056ijk Si Si,Sj <Ak Shift (Si) and (Sj) left by (Ak) places to Si.

056ij0b Si Si,Sj <1 Shift (Si) and (Sj) left one place to Si.

056i0kb Si Si <Ak Shift (Si) left (Ak) places to Si.

057ijk Si Sj,Si >Ak Shift (Sj) and (Si) right by (Ak) places to Si.

057ij0b Si Sj,Si >1 Shift (Sj) and (Si) right one place to Si.

057i0kb Si Si >Ak Shift (Si) right (Ak) places to Si.
b Special CAL syntax.
108-0245-003 Cray Proprietary 237

CPU Instruction Descriptions System Programmer Reference
Hold Issue Conditions

Instructions 056 through 057 hold issue under any of the following conditions:

• The Si register is reserved.
• The Sj or Ak register is reserved (except S0 and/or A0).

Execution Time

The instruction issue times are as follows:

• The instruction issue time is 1 CP.
• Register Si is ready in 3 CPs.

Description

The scalar shift functional unit executes instructions 056 and 057. The
instruction shifts 128-bit values that are formed by logically joining two S
registers. Shift counts are obtained from the Ak register. All shift counts are
considered positive and all 32 bits of the contents of the Ak register are used
for the shift count.

Replacing the Ak register reference with 1 is the same as setting the k
designator to 0; a reference to register A0 provides a shift count of 1. Omitting
the Sj register reference is the same as setting the j designator to 0; the contents
of the Si register are concatenated with a word of 0’s.

The shifts are circular if the shift count does not exceed 64, and the i and j
designators are equal and nonzero. For instructions 056 and 057, the contents
of the Sj register are unchanged, provided i ≠ j. For shifts greater than 64, the
shift is end-off with zero fill. Instruction 056 produces a 128-bit quantity by
concatenating the contents of the Si register and the contents of the Sj register.
This instruction shifts the resulting value to the left by an amount specified by
the low-order bits of the Ak register and enters the high-order bits of the result
into the Si register. The Si register is cleared if the shift count exceeds 127.
Instruction 056 produces the same result as instruction 054 if the shift count
does not exceed 63 and the j designator is 0. The special forms of 056 perform
the same function.

Instruction 057 produces a 128-bit quantity by concatenating the contents of
the Sj register and the contents of the Si register. This instruction shifts the
resulting value to the right by an amount specified by the low-order 7 bits of
the contents of the Ak register and enters the low-order bits of the result into
the Si register. The Si register is cleared if the shift count exceeds 127.
238 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Instruction 057 produces the same result as instruction 055 if the shift count
does not exceed 63 and the j designator is 0. The special forms of 057 perform
the same function.

Instructions 060 through 061

Special Cases

The following special cases exist for instruction 060 or 061:

• If j = 0 and k = 0, then (Si) = bit 63.

• For instruction 060, if j = 0 and k ≠ 0, then (Si) = (Sk).

• For instruction 060, if j ≠ 0 and k = 0, then (Si) = (Sj) with bit 63
complemented.

• For instruction 061, if j = 0 and k ≠ 0, then (Si) = -(Sk).

• For instruction 061, if j ≠ 0 and k = 0, then (Si) = (Sj) with bit 63
complemented.

Hold Issue Conditions

Instructions 060 through 061 hold issue under any of the following conditions:

• The Si register is reserved.
• The Sj or Sk register is reserved (except S0).

Execution Time

The instruction issue times are as follows:

• Register Si is ready in 2 CPs.
• The instruction issue time is 1 CP.

Machine Instruction CAL Syntax Description

060ijk Si Sj+Sk Transmit the integer sum of (Sj) and (Sk) to Si.

061ijk Si Sj-Sk Transmit the integer difference of (Sj) and (Sk) to Si.

061i0kb Si -Sk Transmit the negative of (Sk) to Si.
b Special CAL syntax.
108-0245-003 Cray Proprietary 239

CPU Instruction Descriptions System Programmer Reference
Description

The scalar add functional unit executes instructions 060 and 061. Instruction
060ijk forms the integer sum of the contents of the Sj register and the contents
of the Sk register, and enters the result into the Si register; no overflow
conditions are detected. The contents of the Sk register are transmitted to the Si
register if the j designator is 0 and the k designator is nonzero. The sign bit is
entered in the Si register and all other bits of the Si register are cleared if the j
and k designators are both 0.

Instruction 061ijk forms the integer difference of the contents of the Sj register
and the contents of the Sk register, and enters the result into the Si register; no
overflow is detected. The high-order bit of the Si register is set and all other
bits of the Si register are cleared when the j and k designators are both 0.

Instruction 061i0k transmits the negative (two’s complement) of the contents
of the Sk register into the Si register if the j designator is 0 and the k designator
is nonzero. The sign bit is entered in the Si register and all other bits of the Si
register are cleared if the j and k designators are both 0.

Instructions 062 through 063

Special Cases

The following special cases exist for instruction 062:

• If (Sk) exponent is valid, j = 0 and k ≠ 0, then (Si) = (Sk) normalized.
• If (Sj) exponent is valid, j ≠ 0 and k = 0, then (Si) = (Sj) normalized.

The following special cases exist for instruction 063:

• If (Sk) exponent is valid, j = 0 and k ≠ 0, then (Si) = -(Sk) normalized. The
sign of (Si) is opposite of (Sk) if (Sk) ≠ 0.

• If (Sj) exponent is valid, j ≠ 0 and k = 0, then (Si) = (Sj) normalized.

Machine Instruction CAL Syntax Description

062ijk Si Sj+FSk Transmit the floating-point sum of (Sj) and (Sk) to Si.

062i0kb Si +FSk Transmit the normalized (Sk) to Si.

063ijk Si Sj-FSk Transmit the floating-point difference of (Sj) and (Sk) to Si.

063i0kb Si -FSk Transmit the normalized negative of (Sk) to Si.
b Special CAL syntax.
240 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Hold Issue Conditions

The 062 through 063 instructions hold issue under any of the following
conditions:

• The Si register is reserved.
• The Sj or Sk register is reserved (except S0).

Execution Time

The instruction issue times are as follows:

• The instruction issue time is 1 CP.
• Register Si is ready in 8 CPs.

Description

The floating-point add functional unit executes instructions 062 and 063. The
functional unit considers all operands to be in floating-point format; the result
is normalized even if the operands are unnormalized. The k designator is
normally nonzero. In the special forms, the j designator is assumed to be 0 so
that the normalized contents of Sk are entered into Si. For floating-point
operands with the sign bit set (bit = 1), a 0 exponent and 0 coefficient are
treated as 0 (all 64 bits = 0, which is considered -0). However, no
floating-point unit generates a 0 except the floating-point multiply functional
unit if one of the operands was a 0. Normally, -0 occurs in logical
manipulations when a sign is attached to a number; that number can be 0.

Instruction 062ijk produces the floating-point sum of the contents of the Sj
register and contents of the Sk register and enters the normalized result into the
Si register. Instruction 062i0k transmits the normalized contents of the Sk
register to the Si register.

Instruction 063ijk produces the floating-point difference of the contents of the
Sj register and contents of the Sk register and enters the normalized result into
the Si register. Instruction 063i0k transmits the negative of the floating-point
quantity in the Sk register to the Si register as a normalized floating-point
number.
108-0245-003 Cray Proprietary 241

CPU Instruction Descriptions System Programmer Reference
Instructions 064 through 067

Special Cases

The following special cases exist for instructions 064 through 067:

• If j = 0, (Sj) = 0.
• If k = 0, (Sk) = bit 63.

If both exponent fields are 0, an integer multiplication operation is performed.
Correct integer multiplication results are produced if any of the following
conditions occurs:

• Both operand sign bits are 0.

• The number of the 0 bits to the right of the least significant 1 bit in the
two operands is greater than or equal to 48.

The integer result obtained is the high-order 48 bits of the 96-bit product of the
two operands.

Hold Issue Conditions

Instructions 064 through 067 hold issue under any of the following conditions:

• The Si register is reserved.
• The Sj or Sk register is reserved (except S0).

Execution Time

The issue times for instructions 064 through 067 are as follows:

• The instruction issue time is 1 CP.
• Register Si is ready in 9 CPs.

Machine Instruction CAL Syntax Description

064ijk Si Sj*FSk Transmit the floating-point product of (Sj) and (Sk) to Si.

065ijk Si Sj*HSk Transmit the half-precision rounded floating-point product of
(Sj) and (Sk) to Si.

066ijk Si Sj*RSk Transmit the rounded floating-point product of (Sj) and (Sk)
to Si.

067ijk Si Sj*ISk Transmit the reciprocal iteration: 2-(Sj) to Si.
242 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Description

The floating-point multiply functional unit executes instructions 064 through
067 and considers all operands to be in floating-point format. The result may
not be normalized if the operands are not normalized.

Instruction 064ijk forms the floating-point product of the contents of the Sj
register and contents of the Sk register and enters the result into the Si register.

Instruction 065ijk forms the half-precision rounded floating-point product of
the contents of the Sj and Sk registers and sends the result to the Si register.
The low-order 19 bits of the result are cleared. This instruction can be used in
the division algorithm when only 30 bits of accuracy are required.

Instruction 066ijk forms the rounded floating-point product of the contents of
the Sj and Sk registers and sends the result to the Si register. This instruction is
used in the reciprocal approximation sequence.

Instruction 067ijk forms two minus the floating-point product of the contents
of the Sk register and contents of the Sj register and enters the result into the Si
register.

Instruction 070ij0

Special Cases

The following special cases exist for instruction 070:

• (Si) is invalid if (Sj) is not normalized. A normalized value is indicated by
bit 47 of (Sj) = 1. No test is made of this bit to determine its value.

• If (Sj) = 0, a range error occurs and the result is invalid.

• If j = 0, (Sj) = 0.

Hold Issue Conditions

The 070 instruction holds issue under any of the following conditions:

• The Si register is reserved.
• The Sj register is reserved (except S0).

Machine Instruction CAL Syntax Description

070ij0 Sj /HSj Transmit the floating-point reciprocal approximation of (Sj) to
Si.
108-0245-003 Cray Proprietary 243

CPU Instruction Descriptions System Programmer Reference
Execution Time

The issue times for the 070 instruction are as follows:

• Register Si is ready in 16 CPs.
• The instruction issue time is 1 CP.

Description

The reciprocal approximation functional unit executes instruction 070.
Instruction 070 forms an approximation to the reciprocal of the normalized
floating-point quantity in the Sj register and enters the result into the Si
register. The result is invalid if the contents of the Sj register are not
normalized or are equal to 0.

The reciprocal approximation instruction produces a result of 30 significant
bits. The low-order 18 bits are 0’s. The number of significant bits is increased
to 48 using the reciprocal iteration instruction and a multiplication operation.

Instruction 070ij6

Special Cases

A special case exists when the operand j = 0, then (Sj) = 0.

Hold Issue Conditions

• Register Si is reserved.
• Register Sj is reserved (except S0).
• Instruction 077 was issued in the previous CP.
• The vector instruction queue (VIQ) is full.

VIR Hold Issue Conditions

• The bit-matrix multiply functional unit is busy with a 1740j4 or 174ij6
instruction.

Machine Instruction CAL Syntax Description

070ij6 Si Sj*BT Transmit the bit-matrix product of (Sj) and transpose of (BMM)
to Si.
244 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
• The floating-point add functional unit is busy with 170 through 173
instructions.

• Instruction 070ij6, 073, 076, or 077 was issued the previous CP.

• A 062 or 063 instruction issued from CIP 3 CPs earlier.

• Any 064 through 067 instruction issued from CIP 4 CPs earlier.

• A 070ij0 instruction issued from CIP 14 CPs earlier.

Execution Time

Execution Timing from CIP

• Instruction issue time is 1 CP from CIP.
• Register Si is ready in 7 CPs (from CIP when no delays).

Execution Timing from VIR

• Instruction issue time is 2 CP from CIP
• Register Si is ready in 5 CPs from VIR

Description

Instruction 070ij6 uses the BMM functional unit that it shares with the vector
instructions. This functional unit contains the 64×64-bit BMM register, and it
generates the bit-matrix product that is returned to the Si register. Refer to the
“Bit-matrix Multiply Functional Unit” section for more information.

Instruction 070ij6 transmits the instruction and the Si register contents to the
VIQ and VIR to be issued essentially as a vector instruction. The instruction
issues from the VIR when the BMM unit is not busy and no conflicts exist on
the result operand bus from the vector unit to the S registers. This instruction
reserves no V registers.
108-0245-003 Cray Proprietary 245

CPU Instruction Descriptions System Programmer Reference
Instruction 071

Special Cases

The following special cases exist for instruction 071:

• If k = 0, (Ak) = 1.
• If j = 0, (Si) = (Ak).
• If j = 1, (Si) = (Ak) sign extended.
• If j = 2, (Si) = (Ak) unnormalized.
• If j = 3, (Si) = 0.6 x 260 (octal).
• If j = 4, (Si) = 0.4 x 20 (octal).
• If j = 5, (Si) = 0.4 x 21 (octal).
• If j = 6, (Si) = 0.4 x 22 (octal).
• If j = 7, (Si) = 0.4 x 23 (octal).

Hold Issue Conditions

The 071 instructions hold issue under any of the following conditions:

• The Si register is reserved.

• The Ak register is reserved (except A0). This hold issue condition applies
when the j designators equal 0 through 7.

Execution Time

The issue times for the 071 instruction are as follows:

• Instruction issue time is 1 CP.
• Register Si is ready in 2 CPs.

Machine Instruction CAL Syntax Description

071i0k Si Ak Transmit (Ak) to Si with no sign extension.

071i1k Si +Ak Transmit (Ak) to Si with sign extension.

071i2k Si +FAk Transmit (Ak) to Si as unnormalized floating-point number.

071i30 Si 0.6 Transmit 0.75 x 248 as normalized floating-point constant into Si.

071i40 Si 0.4 Transmit 0.5 as normalized floating-point constant into Si.

071i50 Si 1.0 Transmit 1.0 as normalized floating-point constant into Si.

071i60 Si 2.0 Transmit 2.0 as normalized floating-point constant into Si.

071i70 Si 4.0 Transmit 4.0 as normalized floating-point constant into Si.
246 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Description

Instruction 071 performs functions that depend on the value of the j designator.
These functions transmit information from an A register to an S register and
generate frequently used floating-point constants.

Instruction 071i0k transmits the 32-bit value in the Ak register to the low-order
bits of the Si register; the high-order bits of the Si register are zeroed. The
value is treated as an unsigned integer. A value of 1 is entered into the Si
register when the k designator is 0.

Instruction 071i1k transmits the 32-bit value in the Ak register to the low-order
bits of the Si register. The value is treated as a signed integer. The sign bit of
the Ak register is extended through the high-order bits of the Si register. A
value of 1 is entered into the Si register when the k designator is 0.

Instruction 071i2k transmits the 32-bit value in Ak to Si as an unnormalized
floating-point quantity. For this instruction, the exponent in bits 62 through 48
is set to 40060 (octal). The sign of the coefficient is set according to the sign of
the contents in the Ak register. If the sign bit is set, the two’s complement of
the contents of the Ak register is entered into the Si register as the magnitude of
the coefficient, and bit 63 of the Si register is set for the sign of the coefficient.

A sequence of instructions converts an integer whose absolute value is less
than 32 bits to floating-point format. The following CAL code is an example of
this instruction sequence:

Instructions 071i30 through 071i70 are initially recognized by the assembler as
the symbolic instruction Si exp. The assembler then checks the expression for
any of the constant values (explained in following paragraphs). If it finds one
of the instructions in the exact syntax shown, it generates the corresponding
Cray machine instruction. If none of the indicated constant values are found,
instruction 040ijkm or 041ijkm is generated. These constant values enable
more efficient instructions when entering commonly used values into Si.

Instruction 071i30 transmits the floating-point constant of 0.75 x 248 into Si
(0400606000000000000000 (octal)). This constant is used to create
floating-point numbers from integer numbers (positive and negative) whose

CAL code: A1 S1

S1 +FA1

S1 +FS1 14 CPs required
108-0245-003 Cray Proprietary 247

CPU Instruction Descriptions System Programmer Reference
absolute value is less than 47 bits. A sequence of instructions is used for
conversion of an integer in S1. The following CAL code is an example of this
instruction sequence.

Instruction 071i40 transmits a floating-point constant 0.4
(0400004000000000000000 (octal)) into the Si register.

Instruction 071i50 transfers the floating-point constant 1.0
(0400014000000000000000 (octal)) into the Si register.

Instruction 071i60 transfers the floating-point constant 2.0
(0400024000000000000000 (octal)) into the Si register.

Instruction 071i70 transfers the floating-point constant 4.0
(0400034000000000000000 (octal)) into the Si register.

Instructions 072 through 073

Special Cases

The following special cases exist for instructions 072 through 073:

CAL code: S2 0.6

S1 S2-S1

S1 S2-FS1 13 CPs required

Machine Instruction CAL Syntax Description

072i00 Si RT Transmit (RTC) to Si.

072i02 Si SM Transmit (SM) to Si.

072ij3 Si STj Transmit (STj) to Si.

073i00 Si VM Transmit (VM) to Si.

073i11a, c Read the performance counter into Si.

073i21a, c Increment upper performance counter.

073i31a, c Clear all maintenance modes.

073i61a, c Increment current performance counter (lower).

073i01 Si SR0 Transmit (SR0) to Si.

073i02 SM Si Transmit (Si) to SM.

073ij3 STj Si Transmit (Si) to STj.
a These instructions are privileged to monitor mode.

c These instructions are not supported by CAL Version 2.
248 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
• Instructions 072i02 and 072ij3, (Si) = 0 if CLN = 0.

• Instructions 073i02 and 073ij3 perform no operation if CLN = 0.

• Instruction 072i00 transmits the real-time clock (RTC) to Si. The RTC
will not be ready for some indeterminate number of cycles; the following
code ensures that the RTC is ready:

• The 0014j0 is a global instruction, and the 027ij7 is a local instruction.
All local instructions are held in the JS ASIC until all global instructions
are completed.

Hold Issue Conditions

The 072 through 073 instructions hold issue under any of the following
conditions:

• The Si register is reserved.

• Instructions 072i02, 072ij3, 073ij3, and 073i02 hold issue when a shared
register access conflict occurs or when the shared operation buffer is full
or when the PV to JS interface is still busy due to a previous instruction.

• For instruction 073i00, hold issue if vector instruction queue is full.

VIR Hold Issue Conditions

The 073i00 instruction holds issue at the VIR under any of the following
conditions:

• For instruction 073i00, when instruction 070ij6, 073, 076, or 077 issued
from the VIR the previous CP.

• For instruction 073i00, when instruction 175 is in progress, the VM is
busy for (VL/2) + 2 CPs.

• When instruction 003 is in progress, VM is busy for 3 CPs.

RT Sj (0014j0)

SBj A0 (027ij7)

JAZ label (010ijkm)

label Si RT (072i00)
108-0245-003 Cray Proprietary 249

CPU Instruction Descriptions System Programmer Reference
• The 073i00 instruction issue is delayed 1 CP because of the following
conditions:

• 076 VIR issue 2 CPs earlier
• 076ij6 VIR issue 2 CPs earlier
• 062 through 063 CIP issue 5 CPs earlier
• 064 through 067 CIP issue 6 CPs earlier
• 070ij0 CIP issue 16 CPs earlier

Execution Time

The issue times for instructions 072 through 073 are as follows:

• CIP instruction issue time is 1 CP.

• VIR 073i00 instruction issue time is 2 CPs.

• Instruction 073i02 and 073ij3 cause the PV to JS interface to be busy for
10 CPs and 16 CPs respectively.

• For instructions 072i00 and 073i11, the Si register is ready in 1 CP.

• For instruction 072i02, the Si register is ready in 64 CPs minimum.

• For instruction 072ij3, the Si register is ready in 48 CPs minimum.

• For instruction 073i00, the Si register is ready in 5CPs.

• For instruction 073i00, the Si register is ready in 3 CPs from the VIR
issue.

Description

Instruction 072i00 transmits the 64-bit value of the RTC into the Si register.
The RTC increments by 1 each CP and can be set only by the monitor through
use of instruction 0014j0.

Note: The SV1 real-time clock increments at the system clock rate, not the
CPU clock rate. Therefore, multiple 072i00 instructions that issue
during the same system clock period will return the same value. The
local copy of the RTC in the CPU can be made to increment at the
CPU clock rate via a configuration bit.
250 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Instruction 072i02 transmits the values of all the semaphores into the Si
register. The 32-bit SM register is left-justified in the Si register with SM00
occupying the sign bit. The PV to JS interface is busy for 4 CPs when this
instruction issues.

Instruction 072ij3 transmits the contents of the STj register into the Si register.
The PV to JS interface is busy for 4 PCs on issue of this instruction.

Instruction 073i00 transmits the 64-bit contents of the VM register into the Si
register. The VM register is usually read after it is set by instruction 175. This
instruction issues from the VIR (VL/2) + 3CPs after the 175 instruction.

Instruction 073i00 issues from the VIR without delay during the execution of a
140 through 147 instruction.

Instruction 073i11 is used for performance monitoring and is privileged to
monitor mode. Each execution of the 073i11 instruction advances a pointer and
enters 16 bits of a performance counter into bit positions 32 through 47. It also
enters 16 bits of the status register into bit positions 48 through 63 of the Si
register.

Instruction 073i21 is used to test the operation of the performance counters by
incrementing the value stored in the counter while the CPU is in monitor mode.
When instruction 073i21 executes, the value of the performance counter
increments at bits 22 and 38. There must be an 8-CP delay between a 073i21
instruction and other performance monitor instructions. Instruction 073i21 also
loads Si register bits 32 through 63 with status and advances the performance
monitor pointer to the next counter.

Instruction 073i31 is used for performance monitoring and is privileged to
monitor mode. Instruction 073i31 clears all maintenance modes that are set by
the 0015j1 instruction; allow 10 CPs for the maintenance mode to become
ineffective. It also clears the performance monitor pointer. Instruction 073i31
also reads status to bits 32 through 63 of the Si register.

Instruction 073i61 advances the current counter at bit position 0. This
instruction also reads status to bits 32 through 63 of the Si register. For a
073i61 instruction, a carry does not propagate beyond bit 15.

Instruction 073i01 sets the low-order 32 bits to 1’s and returns the following
status bits to the high-order bits of Si register. The 073i01 instruction is
privileged to monitor mode; the processor number and cluster number bit
108-0245-003 Cray Proprietary 251

CPU Instruction Descriptions System Programmer Reference
positions return a value of 0 if the instruction is not executed in monitor mode.
The encoded processor number for bit positions 44 through 42 is defined in
word 0 of the exchange package.

Instruction 073i02 sets the semaphore registers from 32 high-order bits of the
Si register. SM00 receives the sign bit of the contents of the Si register.

Instruction 073ij3 transmits the contents of the Si register into the STj register.

Instructions 074 through 075

Si Bit Position Description

63 Clustered, CLN not equal to zero (CL)

57 Bit-matrix loaded (BML)

53 Uncorrectable memory error occurred (UME)

52 Correctable memory error occurred (CME)

51 Floating-point error occurred (FPS)

50 Floating-point interrupt enabled (IFP)

49 Operand range interrupt enabled (IOR)

48 Bidirectional memory enabled (BDM)

44 Processor number bit 4 (PN4)

43 Processor number bit 3 (PN3)

42 Processor number bit 2 (PN2)

41 Processor number bit 1 (PN1)

40 Processor number bit 0 (PN0)

37 Cluster number bit 5 (CLN5)

36 Cluster number bit 4 (CLN4)

35 Cluster number bit 3 (CLN3)

34 Cluster number bit 2 (CLN2)

33 Cluster number bit 1 (CLN1)

32 Cluster number bit 0 (CLN0)

Machine Instruction CAL Syntax Description

074ijk Si Tjk Transmit (Tjk) to Si.

075ijk Tjk Si Transmit (Si) to Tjk.
252 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Hold Issue Conditions

The 074 through 075 instructions hold issue under any of the following
conditions:

• The Si register is reserved.

• Instruction 075ijk issued in previous CP (for instruction 074ijk).

• Instruction 036 in progress with block length less than or equal to 1008
and register Tjk has not been written.

• Instruction 036 in progress with block length greater than 1008.

• Instruction 037 in progress.

Execution Time

The issue times for instructions 074 through 075 are as follows:

• Instruction issue time is 1 CP.

• For instruction 074ijk, the Si register is ready in 1 CP.

Description

Instruction 074 transmits the contents of the Tjk register into the Si register.

Instruction 075 transmits the contents of the Si register into the Tjk register.

Instructions 076 through 077

Special Cases

The following special cases exist for instructions 076 through 077:

Machine Instruction CAL Syntax Description

076ijk Si Vj,Ak Transmit (Vj element (Ak)) to Si.

077ijk Vi,Ak Sj Transmit (Sj) to Vi element (Ak).

077i0kb Vi,Ak 0 Clear element (Ak) of register Vi.
b Special CAL syntax.
108-0245-003 Cray Proprietary 253

CPU Instruction Descriptions System Programmer Reference
• If i = 0 then (Si) = 0.

• If k = 0 then (Ak) = 1.

Hold Issue Conditions

The instructions hold issue under any of the following conditions:

• The Ak register is reserved (except A0) or the vector instruction queue is
full.

• For instruction 076, register Si is reserved.

• For instruction 077, Sj is reserved (except S0).

• A 077 instruction was issued in the previous CP.

• The vector instruction queue is full.

VIR Hold Issue Conditions

• Vi and Vj registers are reserved.
• Instructions 070ij6, 073, 076, or 077 issued from the VIR the previous

CP.
• 062 or 063 instruction issued from CIP 3 CP earlier (076).
• 063 through 064 instruction issued from CIP 4 CP earlier (076).
• 070ij0 instruction issued from CIP 14 CP earlier (076).

Execution Time

The instruction issue times are as follows:

• For instruction 076, CIP issue time is 1 CP.

• For instruction 077, CIP issue time is 2 CPs.

• VIR issue time is 2 CPs.

• For the instruction 076, register Si is ready in 5 CPs from VIR issue, 7
CPs from CIP issue if no delay occurred in execution.

• For the instruction 077, register Vi is ready in 4 CPs.
254 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Description

For instruction 077, when followed by any other instruction, there is a 1-CP
delay between the two instructions, caused by the PC sending Sj and Ak values
to the vector unit.

Instructions 076 and 077 transmit a 64-bit quantity between a V register
element and an S register.

Instruction 076ijk transmits the contents of an element of register Vj that is
indicated by the contents of the low-order 6 bits of Ak to register Si.

Instruction 077ijk transmits the contents of register Sj to an element of register
Vi as determined by the low-order 6 bits of the contents of the Ak register.
Element 1 (the second element of register Vi) is selected if the k designator is
0.

Instruction 077i0k zeroes element (Ak) of register Vi. The low-order 6 bits of
Ak determine which element is cleared. The second element of register Vi is
cleared if the k designator is 0.

Instructions 10h through 13h

Machine Instruction CAL Syntax Description

10hi00mn Ai exp,Ah Load from address ((Ah) + exp) to Ai. (h ≠ 0)

100i00mn Ai exp,0 Load from address (exp) to Ai.

100i00mn Ai exp, Load from address (exp) to Ai.

10hi0000 Ai ,Ah Load from address (Ah) to Ai. (h ≠ 0)

11hi00mn exp,Ah Ai Store (Ai) to address (Ah) + exp. (h ≠ 0)

110i00mn exp,0 Ai Store (Ai) to address exp.

110i00mn exp, Ai Store (Ai) to address exp.

11hi0000 ,Ah Ai Store (Ai) to address (Ah). (h ≠ 0)

12hi00mn Si exp,Ah Load from address ((Ah) + exp) to Si. (h ≠ 0)

120i00mn Si exp,0 Load from address (exp) to Si.

120i00mn Si exp, Load from address (exp) to Si.

12hi0000 Si ,Ah Load from address (Ah) to Si. (h ≠ 0)

13hi00mn exp,Ah Si Store (Si) to address (Ah) + exp. (h ≠ 0)

130i00mn exp,0 Si Store (Si) to address exp.

130i00mn exp, Si Store (Si) to address exp.

13hi0000 ,Ah Si Store (Si) to address (Ah). (h ≠ 0)
108-0245-003 Cray Proprietary 255

CPU Instruction Descriptions System Programmer Reference
Special Cases

The following special case exists for instructions 10hi00mn, 11hi00mn,
12hi00mn, and 13hi00mn:

• Only bits 0 through 31 of the Ah register and the mn field are used to
calculate the memory address. Refer to the “Calculating Absolute
Memory Address” subsection for additional information.

Hold Issue Conditions

The instructions hold issue under any of the following conditions:

• Ports A or B busy.
• Ah is reserved if h ≠ 0.
• For instructions 10h and 11h, Ai is reserved.
• For instructions 12h and 13h, Si is reserved.
• If the second or third parcel is not in a buffer, a 3-CP delay occurs.

Execution Time

The instruction issue times for the 10h through 13h instructions are as follows:

• If parcel 0 is in one buffer and parcels 1 and 2 are in a different buffer, the
issue time is 5 CPs.

• If parcels 0 and 1 are in one buffer and parcel 2 is in a different buffer, the
issue time is 6 CPs.

• If all parcels are in the same buffer, the issue time is 2 CPs.

• For instruction 10h, register Ai is ready in 17 CPs from cache and 164
CPs from memory.

• For instruction 12h, register Si is ready in 17 CPs from cache and 164 CPs
from memory.

• A bank is ready for the next scalar load or store operation in 15 CPs.

Description

Instructions 10h through 13h transmit data between memory and an A register
or an S register.
256 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
For these instructions, only the value of the expression is used if the h
designator is 0 or if a 0 or blank field is used in place of Ah. Only the contents
of Ah are used if the expression is omitted. An assembly error occurs if an
expression has a parcel-address attribute.

Instructions10hi00mn through 10hi0000 load the low-order 32 bits of a
memory word directly into an A register. The memory address is determined
by adding the address in the Ah register to the expression value (mn field).
Only the value of the expression is used if the h designator is 0, or a 0 or blank
field is used in place of Ah. Only the contents of Ah are used if the expression
is omitted. An assembly error occurs if an expression has a parcel-address
attribute.

Instructions 11hi00mn through 11hi0000 store 32 bits from register Ai directly
into memory. The high-order bits of the memory word are cleared. The
memory address is determined by adding the address in the Ah register to the
expression value (mn field).

Instructions 12hi00mn through 12hi0000 load the contents of a memory word
directly into an S register. The memory address is determined by adding the
address in register Ah to the expression value (mn field). Only the value of the
expression is used if the h designator is 0, otherwise a zero or blank field is
used in place of the contents of register Ah. Only the contents of register Ah
are used if the expression is omitted. An assembly error occurs if an expression
has a parcel-address attribute.

Instructions 13hi00mn through 13hi0000 store the contents of register Si
directly into memory. The memory address is determined by adding the
address in the Ah register to the expression value (mn field).

The exp used for addressing orders the parcels as follows: nm.
108-0245-003 Cray Proprietary 257

CPU Instruction Descriptions System Programmer Reference
Instructions 140 through 147

Special Cases

The following special case exists for instructions 140 through 147:

• If j = 0, then (Sj) = 0.

Hold Issue Conditions

Instructions 140 through 147 hold issue under any of the following conditions:

• For instructions 140, 142, 144, and 146, if Sj register is reserved
(except S0).

• For instructions 140, 142, 144, and 146 if a 077 instruction was issued in
the previous CP, or if the vector instruction queue (VIQ) is full.

Machine Instruction CAL Syntax Description

140ijk Vi Sj&Vk Transmit logical products of (Sj) and (Vk elements) to Vi
elements.

141ijk Vi Vj&Vk Transmit logical products of (Vj elements) and (Vk elements) to
Vi elements.

142ijk Vi Sj !Vk Transmit logical sums of (Sj) and (Vk elements) to Vi elements.

142i0kb Vi Vk Transmit (Vk elements) to Vi elements.

143ijk Vi Vj!Vk Transmit logical sums of (Vj elements) and (Vk elements) to Vi
elements.

144ijk Vi Sj \Vk Transmit logical differences of (Sj) and (Vk elements) to Vi
elements.

145ijk Vi Vj \Vk Transmit logical differences of (Vj elements) and (Vk elements)
to Vi elements.

145iiib Vi 0 Clear Vi elements.

146ijk Vi Sj !Vk&VM Transmit (Sj) if VM bit = 1; (Vk elements) if VM bit = 0 to Vi
elements.

146i0kb Vi #VM&Vk Transmit vector merge of (Vk elements) and 0 to Vi elements.

147ijk Vi Vj !Vk&VM Transmit (Vj elements) if VM bit = 1; (Vk elements) if VM bit = 0
to Vi elements.

b Special CAL syntax.
258 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
VIR Hold Issue Conditions

Instructions 140 and 147 hold issue at the VIR under any of the following
conditions:

• Vi and Vk (Vj for 141, 143, 145, and 147) registers are reserved unless
chaining or tailgating is permitted.

• Available functional units are busy.

• Instruction 070ij6, 073, 076, or 077 issued from VIR the previous CP.

Execution Time

The execution time for vector instructions that are issued directly from CIP to
the functional unit through the vector issue register (VIR) is 2 CPs longer than
the execution time of the instruction that is waiting to issue in the VIR. The
issue times for instructions 140 through 147 from the VIR are as follows:

• For Functional Unit Busy

• The functional unit is ready in (VL/2) + 1 CP (except for a 140
through 147 instruction following a 175 instruction which is ready in
(VL/2) + 4 CPs.

• For Vector Register Busy

• Vi is ready for Vi use in (VL/2) + 5 CPs.

• Vi is ready for Vj or Vk use immediately (because of chaining).

• Vj or Vk is ready for Vj or Vk use in (VL/2) + 2 CPs.

• Vj or Vk is ready for Vi immediately (because of tailgating).

• Vector logical (140 through 147) execution time is (VL/2) + 5 CPs until
all of the data is available for use by the next instruction.

• Unit busy time between the floating-point multiply and second vector
logical functional units is (VL/2) + 1 CP.

• Unit busy time between the second vector logical and floating-point
multiply functional units is (VL/2) + 1 CP.
108-0245-003 Cray Proprietary 259

CPU Instruction Descriptions System Programmer Reference
• Instruction 073i00 borrows 1 CP from an active main logical unit during
execution.

Vector instructions may or may not start execution immediately; they execute
as data becomes available. In particular, a memory conflict that slows
execution of some elements of a vector load can cause delays in all instructions
in the operation chain, starting with that load.

Description

The contents of the VL register determine the number of operations (VL/2)
that are performed. All operations start with element 0 and 1 of the Vi, Vj, or
Vk registers and increment the element number by 2 for each operation that is
performed. All results are delivered to register Vi.

Instructions 140 through 145 can be executed in either the full vector logical or
the second vector logical functional units, with the second unit being the first
choice when the second vector logical unit is enabled. If the second vector
logical unit is disabled, instructions 140 through 145 can be executed only in
the full vector logical unit. Instructions 146 and 147 execute in the full vector
logical unit only.

For instructions 140, 142, 144, and 146, a copy of Sj is delivered first with the
instruction to the vector unit and then to the functional unit. The copy is held as
one of the operands until completion of the operation. Therefore, Sj can be
changed immediately after CIP issue of the instruction. For instructions 141,
143, 145, and 147, all operands are obtained from V registers.

The vector logical units are two registers deep for the 140 through 147
instruction execution data.

Instructions 140 and 141 form the logical products (AND) of operand pairs and
enter the results into Vi. Bits of an element of Vi are set to 1 when the
corresponding bits of Sj or (Vj element) and (Vk element) are 1, as shown in
the following example:

(Sj) or (Vj element) = 1 1 0 0

(Vk element) = 1 0 1 0

(Vi element) = 1 0 0 0
260 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Instructions 142 and 143 form the logical sums (inclusive OR) of operand pairs
and deliver the results to Vi. Bits of an element of Vi are set to 1 when one of
the corresponding bits of (Sj) or (Vj element) and (Vk element) is 1, as shown
in the following example:

Instructions 144 and 145 form the logical differences (exclusive OR) of
operand pairs and deliver the results to Vi. Bits of an element are set to 1 when
the corresponding bit of the contents of Sj or (Vi element) is different from (Vk
element), as shown in the following example:

Instructions 146 and 147 transmit operands to Vi, depending on the contents of
the VM register. Bit 63 of the mask corresponds to element 0 of a V register.
Bit 0 corresponds to element 63. The operand pairs that are used for the
selection depend on the instruction, (Sj) and (Vk) with the 146 instruction and
(Vj) and (Vk) with the 147 instruction. If bit n of the vector mask is 1, the Sj or
Vj operand is transmitted; if bit n of the mask is 0, the Vk element is selected.
The following two examples illustrate these points.

Example 1:

Instruction 146 is executed and the following register conditions exist:

(Sj) or (Vj element) = 1 1 0 0

(Vk element) = 1 0 1 0

(Vi element) = 1 1 1 0

(Sj) or (Vj element) = 1 1 0 0

(Vk element) = 1 0 1 0

(Vi element) = 0 1 1 0

(VL) = 4

(VM) = 0600000000000000000000 (a 0110 bit pattern)

(S2) = -1

(V6, 00) = 1

(V6, 01) = 2

(V6, 02) = 3

(V6, 03) = 4
108-0245-003 Cray Proprietary 261

CPU Instruction Descriptions System Programmer Reference
Instruction 146726 is executed. Following execution, the first four elements of
V7 contain the following values:

The remaining elements of V7 are not altered.

Example 2:

Instruction 147 is executed and the following register conditions exist:

Instruction 147123 is executed. Following execution, the first four elements of
V1 contain the following values:

The remaining elements of V1 are not altered.

Instructions 150 through 151

(V7, 00) = 1

(V7, 01) = -1

(V7, 02) = -1

(V7, 03) = 4

(VL) = 4

(VM) = 0600000000000000000000 (a 0110 bit pattern)

(V2, 00) = 1 (V3, 00) = -1

(V2, 01) = 2 (V3, 01) = -2

(V2, 02) = 3 (V3, 02) = -3

(V2, 03) = 4 (V3, 03) = -4

(V1, 00) = -1

(V1, 01) = 2

(V1, 02) = 3

(V1, 03) = -4

Machine Instruction CAL Syntax Description

150ijk Vi Vj<Ak Shift (Vj elements) left by (Ak) places to Vi elements.

150ij0b Vi Vj<1 Shift (Vj elements) left one place to Vi elements.

151ijk Vi Vj>Ak Shift (Vj elements) right by (Ak) places to Vi elements.

151ij0b Vi Vj>1 Shift (Vj elements) right one place to Vi elements.
b Special CAL syntax.
262 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Special Cases

A special case exists for instructions 150 through 151; if k = 0, then (Ak) = 1.

Hold Issue Conditions

The instructions hold issue under any of the following conditions:

• The Ak register is reserved (except A0).
• Instruction 077 was issued in the previous CP.
• The vector instruction queue is full.

VIR Hold Issue Conditions

The 150 and 151 instructions hold issue at the VIR under any of the following
conditions:

• Vi and Vj registers are reserved unless chaining or tailgating is permitted.
• The vector shift functional unit is busy.
• Instruction 070ij6, 073, 076, or 077 issued from the VIR the previous CP.

Execution Time

The execution time for vector instructions that are issued directly from the CIP
to the functional unit (through the VIR) is 2 CPs longer than the execution time
for the instruction that is waiting to issue in the VIR. The issue times for
instructions 150 through 151 from the VIR are as follows:

For Functional Unit Busy:

• The functional unit is ready in (VL/2) + 1 CP.

For Vector Register Busy:

• Vi is ready for Vi use in (VL/2) + 6 CPs.

• Vi is ready for Vj or Vk use immediately (because of chaining).

• Vj is ready for Vj or Vk use (VL/2) + 2 CPs.

• Vj is ready for Vi use immediately (because of tailgating).

• Vector Shift (150, 151) execution time is (VL/2) + 6 CPs until all of the
data is available for use by the next instruction.
108-0245-003 Cray Proprietary 263

CPU Instruction Descriptions System Programmer Reference
Note: Vector instructions may or may not start execution
immediately; they execute as data becomes available. In
particular, a memory conflict that slows execution of some
elements of a vector load can cause delays in all instructions in
the operation chain, starting with that load.

Description

Instructions 150 and 151 are executed in the vector shift functional unit. The
contents of the VL register determine the number of operations performed.
Operations start with element 0 and 1 of the Vi and Vj registers and end with
elements specified by (VL)-1.

All shifts are end-off with zero fill. Unlike shift instructions 052 through 055,
these instructions receive the shift count from Ak rather than the jk fields and
all 32 bits of Ak are used for the shift count. Elements of Vi are cleared if the
shift count exceeds 63. All shift counts (Ak) are considered positive.

Instruction 150ijk shifts the contents of the elements of register Vj to the left by
the amount specified by the contents of Ak and enters the results into the
elements of Vi. The special form of this instruction shifts the contents of Vj
one place to the left and enters the results into Vi.

Instruction 151ijk shifts the contents of the elements of register Vj to the right
by the amount specified by the contents of Ak and enters the results into the
elements of Vi. The special form of this instruction shifts the contents of Vj
one place to the right and enters the results into Vi.

The vector shift unit is three registers deep for execution data.

Instructions 152 through 153

Special Cases

A special cases exist for instructions 152 through 153; if k = 0, then (Ak) = 1.

Machine Instruction CAL Syntax Description

152ijk Vi Vj,Vj<Ak Double shift of (Vj elements) left (Ak) places to Vi elements.

152ij0b Vi Vj,Vj<1 Double shift of (Vj elements) left one place to Vi elements.

153ijk Vi Vj,Vj>Ak Double shift of (Vj elements) right (Ak) places to Vi elements.

153ij0b Vi Vj,Vj>1 Double shift of (Vj elements) right one place to Vi elements.
b Special CAL syntax.
264 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Hold Issue Conditions

The instructions hold issue under any of the following conditions:

• The Ak register is reserved (except A0).
• Instruction 077 was issued in the previous CP.
• The vector instruction queue is full.

VIR Hold Issue Conditions

The instructions hold issue at the VIR under any of the following conditions:

• Vi and Vj registers are reserved unless chaining or tailgating is permitted.
• The vector shift functional unit is busy.
• Instructions 070ij6, 073, 076, or 077 issued from the VIR the previous

CP.

Execution Time

The execution time for a vector instruction that is issued directly from the CIP
to the functional unit (through the VIR) is 2 CPs longer than the execution time
for instructions that are waiting to issue in the VIR. The issue times for
instructions 152 through 153 from VIR are as follows:

For Functional Unit Busy:

• The functional unit is ready in (VL/2) + 1 CP (except for the 152 or 153
instruction combination, which requires an additional CP).

For Vector Register Busy:

• Vi is ready for Vi use in (VL/2) + 7CPs for the 152 instruction and (VL/2)
+ 6 CPs for the 153 instruction.

• Vi is ready for Vj or Vk use immediately (because of chaining).

• Vj is ready for Vj or Vk use in (VL/2) + 2 CPs.

• Vj is ready for Vi use immediately (because of tailgating).

• Vector Shift 153 execution time is (VL/2) + 6 CPs until all the data is
available for use by the next instruction.

• Vector Shift 152 execution time is (VL/2) + 7 CPs until all the data is
available for use by the next instruction.
108-0245-003 Cray Proprietary 265

CPU Instruction Descriptions System Programmer Reference
Note: Vector instructions may or may not start execution immediately;
they execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector load can
cause delays in all instructions in the operation chain, starting with
that load.

Description

The vector shift functional unit executes instructions 152 and 153. The
instructions shift 128-bit values that are formed by logically joining the
contents of two elements of the Vj register. The direction of the shift
determines whether the high-order bits or the low-order bits of the result are
sent to Vi. Shift counts are obtained from register Ak. All shifts are end-off
with zero fill. The contents of the VL register determine the number of
operations performed.

The vector shift functional unit is four or three registers deep for the 152/153
instruction execution data respectively.

Instruction 152 performs left shifts. The operation starts with element 0 and 1
of Vj. If the content of VL is 1, element 0 is joined with 64 bits of 0’s, and the
resulting 128-bit quantity is then shifted left by the amount specified by the
contents of Ak. Only this one operation is performed. The 64 high-order bits
that remain are transmitted to element 0 of Vi.

If the content of VL is 2, the operation starts by joining element 0 of Vj with
element 1; the resulting 128-bit quantity is then left shifted by the amount
specified by the contents of Ak. The high-order 64 bits that remain are
transmitted to element 0 of Vi. Figure 52 shows this operation.

Figure 52. Vector Left Double Shift, First Element, VL Greater than 1

(Element 0) of Vj (Element 1) of Vj

Bits 63 0 63 0

Bits 63 0 63 063-(Ak)

(Element 0) of Vj (Element 1) of Vj

63 0

64-bit Result to Element 0 of Vi

(Ak)

64-(Ak)
266 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
If the content of VL is greater than 2, the operation continues by joining
element 1 with element 2 and transmitting the 64-bit result to element 1 of Vi.
Figure 53 shows this operation. Because the shift unit is a 2-pipe design, both
shifts occur at the same time producing two 64-bit results to elements of 0 and
1 of Vi.

Figure 53. Vector Left Double Shift, Second Element, VL Greater than 2

If the content of VL is 2, element 1 is joined with 64 bits of 0’s and only two
operations are performed. In general, the last element of Vj, as determined by
the contents of VL, is joined with 64 bits of 0’s. Figure 54 shows this
operation.

Figure 54. Vector Left Double Shift, Last Element

If the content of Ak is greater than or equal to 128, the result is all 0’s. If the
content of Ak is greater than 64, the result register contains at least the contents
of Ak -64 zeroes.

(Element 1) of Vj (Element 2) of Vj

(Element 1) of Vj (Element 2) of Vj

64-bit Result to Element 1 of Vi

(Ak)

Bits 63 0 63 0

Bits 63 0 63 063-(Ak) 64-(Ak)

63 0

[Element (VL)-1] of Vj 000 0

64-bit Result to Element (VL)-1 of Vj

(Ak)[Element (VL)-1] of Vj 000 0

Bits 63 0 63 0

Bits 63 0 63 063-(Ak) 64-(Ak)

63 0

Note: The elements are numbered 0 through 63 in the V registers; therefore, element (VL)-1 refers
to the VLth elements.
108-0245-003 Cray Proprietary 267

CPU Instruction Descriptions System Programmer Reference
Example 1:

If instruction 152 is to be executed and the following register conditions exist,
instruction 152541 is executed:

Following execution, the first four elements of V5 contain the following
values:

Instruction 153 performs right shifts. The original element 0 of Vj is joined
with 64 high-order bits of 0’s and the 128-bit quantity is shifted right by the
amount specified by (Ak). The 64 low-order bits of the result are transmitted to
element 0 of Vi. Figure 55 shows this operation.

Figure 55. Vector Right Double Shift, First Element

(VL) = 4

(A1) = 3

(V4, 00) = 0 00000 0000 0000 0000 0007

(V4, 01) = 0 60000 0000 0000 0000 0005

(V4, 02) = 1 00000 0000 0000 0000 0006

(V4, 03) = 1 60000 0000 0000 0000 0007

(V5, 00) = 0 00000 0000 0000 0000 0073

(V5, 01) = 0 60000 0000 0000 0000 0054

(V5, 02) = 0 00000 0000 0000 0000 0067

(V5, 03) = 0 60000 0000 0000 0000 0070

(Element 0) of Vj

(Element 0) of Vj

64-bit Result to Element 0 of Vi

(Ak)

000 0

000 0

(Ak)-1 (Ak)-1

Bits 63 0 63 0

Bits 63 0 63 0

63 0
268 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
If the content of VL equals 1, only one operation is performed. However,
instruction execution continues by joining element 0 with element 1, shifting
the 128-bit quantity by the amount specified by (Ak), and transmitting the
result to element 1 of Vi. Figure 56 shows this operation. (Both operations
occur during the same CP because of the 2-pipe design of the shift unit.)

Figure 56. Vector Right Double Shift, Second Element, VL Greater than 1

The last operation performed by the instruction joins the last element of Vj, as
determined by the contents of VL, with the preceding element (refer to
Figure 57).

Figure 57. Vector Right Double Shift, Last Operation

(Element 1) of Vj

(Ak)-1 (Ak)

(Element1) of Vj

63 0

64-bit Result to Element 1 of Vi

(Ak)

(Element 0) of Vj

(Element 0) of Vj

64-(Ak) Bits

Bits 63 0 63 0

Bits 63 0 63 0

[Element (VL) -1] of Vj

Bits 63 0 63 0

(Ak)-1 (Ak)

263 20

64-bit Result to Element (VL) - 1 of Vj

(Ak)

[Element (VL)-2] of Vj

[Element (VL) -2] of Vj [Element (VL) -1] of Vj

Note: Elements are numbered 0 through 63 in the V registers; therefore, element (VL)-1
refers to the VLth element.

Bits 63 0 63 0
108-0245-003 Cray Proprietary 269

CPU Instruction Descriptions System Programmer Reference
Example 2:

If instruction 153 is executed and the following register conditions exist, then
instruction 153026 is executed:

Following execution, register V0 contains the following values:

The remaining elements of register V0 are not altered.

Instructions 154 through 157

Special Cases

The following special cases exist for instructions 154 through 157:

• For instruction 154, if j = 0, then (Sj) = 0 and
(Vi element) = (Vk element).

(VL) = 4

(A6) = 3

(V2, 00) = 0 00000 0000 0000 0000 0017

(V2, 01) = 0 60000 0000 0000 0000 0006

(V2, 02) = 1 00000 0000 0000 0000 0006

(V2, 03) = 1 60000 0000 0000 0000 0007

(V0, 00) = 0 00000 0000 0000 0000 0001

(V0, 01) = 1 66000 0000 0000 0000 0000

(V0, 02) = 1 50000 0000 0000 0000 0000

(V0, 03) = 1 56000 0000 0000 0000 0000

Machine Instruction CAL Syntax Description

154ijk Vi Sj+Vk Transmit integer sums of (Sj) and (Vk elements) to Vi elements.

155ijk Vi Vj + Vk Transmit integer sums of (Vj elements) and (Vk elements) to Vi
elements.

156ijk Vi Sj-Vk Transmit integer differences of (Sj) and (Vk elements) to Vi
elements.

156i0kb Vi -Vk Transmit two’s complement of (Vk elements) to Vi elements.

157ijk Vi Vj-Vk Transmit integer differences of (Vj elements) and (Vk elements) to
Vi elements.

b Special CAL syntax.
270 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
• For instruction 156, if j = 0, then (Sj) = 0 and
(Vi element) = -(Vk element).

Hold Issue Conditions

The instructions hold issue under any of the following conditions:

• For instructions 154 and 156, if the Sj register is reserved (except S0).

• For instructions 154 and 156, if a 077 instruction was issued in the
previous CP.

• The VIQ is full.

VIR Hold Issue Conditions

The instructions hold issue in the VIR under any of the following conditions:

• Vi and Vk (Vj for 155 and 157) registers are reserved unless chaining or
tailgating is permitted.

• Vector add functional unit is busy.

• Instruction 076ij6, 073, 076, or 077 issued from the VIR the previous CP.

Execution Time

The execution time when the vector instruction issues directly from the CIP to
the functional unit (through the VIR) is 2 CPs longer than the execution time
for instructions that are waiting to issue in the VIR. The issue times for
instructions 154 through 157 from VIR are as follows:

For Functional Unit Busy:

• Functional unit is ready in (VL/2) + 1 CP.

For Vector Register Busy:

• Vi is ready for Vi use in (VL/2) + 5CPs.

• Vi is ready for Vj or Vk use immediately (because of chaining).

• Vj or Vk is ready for Vj or Vk use in (VL/2) + 2 CPs.
108-0245-003 Cray Proprietary 271

CPU Instruction Descriptions System Programmer Reference
• Vj or Vk is ready for Vi use immediately (because of tailgating).

• Execution time for the vector add/differences instructions (154 through
157) is (VL/2) + 5 CP until all the data is available.

Vector instructions may or may not start execution immediately; they execute
as data becomes available. In particular, a memory conflict that slows
execution of some elements of a vector load can cause delays in all instructions
in the operation chain, starting with that load.

Description

The vector add functional unit executes instructions 154 through 157.
Instructions 154 and 155 perform integer addition. Instructions 156 and 157
perform integer subtraction. The contents of the VL register determine the
number of additions or subtractions that are performed. All operations start
with element 0 of the V registers and increment the element number by 2 for
each operation performed. All results are delivered to elements of Vi. No
overflow is detected.

Instructions 154 and 156 deliver a copy of the contents of Sj to the functional
unit, where the copy is retained as one of the operands until the vector
operation completes. The other operand is an element of Vk. For instructions
155 and 157, both operands are obtained from V registers.

Instruction 154ijk adds the contents of Sj to each element of Vk and enters the
results into elements of Vi. Elements of Vk are transmitted to Vi if the j
designator is 0.

Instruction 155ijk adds the contents of the elements of register Vj to the
contents of the corresponding elements of register Vk and enters the results
into the elements of register Vi.

Instruction 156ijk subtracts the contents of each element of Vk from the
contents of register Sj and enters the results into the elements of register Vi.
Instruction 156i0k transmits the negative (two’s complement) of each element
of Vk to Vi.

Instruction 157ijk subtracts the contents of the elements of register Vk from the
contents of the corresponding elements of register Vj and enters the results into
the elements of register Vi.

The integer add/subtract functional unit is two registers deep for execution
data.
272 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Instructions 160 through 167

Special Cases

The following special case exists for instructions 160, 162, 164, and 166:

• If j = 0, then (Sj) = 0.

Hold Issue Conditions

The instructions hold issue under the following conditions:

• For instructions 160, 162, 164, and 166, when the Sj register is reserved
(except S0), or when a 077 instruction was issued the previous CP.

• The VIQ is full.

VIR Hold Issue Conditions

The instructions hold issue at the VIR under any of the following conditions:

• Vi and Vk (Vj for 161, 163, 165, and 167) registers are reserved unless
chaining or tailgating is permitted.

• Floating-point multiply functional unit is busy.

Machine Instruction CAL Syntax Description

160ijk Vi Sj*FVk Transmit floating-point products of (Sj) and (Vk elements) to Vi
elements.

161ijk Vi Vj*FVk Transmit floating-point products of (Vj elements) and (Vk
elements) to Vi elements.

162ijk Vi Sj*HVk Transmit half-precision rounded floating-point products of (Sj) and
(Vk elements) to Vi elements.

163ijk Vi Vj*HVk Transmit half-precision rounded floating-point products of (Vj
elements) and (Vk elements) to Vi elements.

164ijk Vi Sj*RVk Transmit rounded floating-point products of (Sj) and (Vk
elements) to Vi elements.

165ijk Vi Vj*RVk Transmit rounded floating-point products of (Vj elements) and (Vk
elements) to Vi elements.

166ijk Vi Sj*Vk Transmit 32-bit integer product of (Sj) and (Vk elements) to Vi
elements.

167ijk Vi Vj* IVk Transmit reciprocal iterations: 2-(Vj elements)*(Vk elements) to Vi
elements.
108-0245-003 Cray Proprietary 273

CPU Instruction Descriptions System Programmer Reference
• Instruction 070ij6, 073, 076, or 077 issued from VIR the previous CP.

Execution Time

The execution time for a vector instruction that is issued directly from the CIP
to the functional unit (through the VIR) is 2 CPs longer than the execution time
for instructions that are waiting to issue in VIR. The issue times for
instructions 160 through 167 from VIR are as follows:

For Functional Unit Busy:

• Functional unit is ready in (VL/2) + 1 CP.

For Vector Register Busy:

• Vi is ready for Vi use in (VL/2) + 10 CPs.

• Vi is ready for Vj or Vk use immediately (because of chaining).

• Vj or Vk is ready for Vj or Vk use in (VL/2) + 2 CPs.

• Vj or Vk is ready for Vi use immediately (because of tailgating).

• For floating-point multiply instructions (160 through 167), execution time
is (VL/2 + 10 CPs until all of the data is available for use by the next
instruction.

• Unit busy time between the floating-point multiply and second vector
logical functional units is (VL/2) + 1 CP.

• Unit busy time between the second vector logical and floating-point
multiply functional units is (VL/2) + 1 CP.

Note: Vector instructions may or may not start execution immediately;
they execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector load can
cause delays in all instructions in the operation chain, starting with
that load.
274 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Description

The floating-point multiply functional unit executes instructions 160 through
167. The contents of the VL register determine the number of operations
performed by an instruction. All operations start with element 0 and 1 of the V
registers and increment the element number by 2 for each successive operation.

The functional unit operates under the assumption that operands are in
floating-point format. Instructions 160, 162, 164, and 166 send a copy of the
contents of Sj, with the instruction, to the functional unit, where the copy is
retained as one of the operands until the completion of the operation.
Therefore, the contents of Sj can be changed immediately without affecting the
vector operation. The other operand is an element of Vk. For instructions 161,
163, 165, and 167, both operands are obtained from V registers. All results are
delivered to elements of Vi. If either operand is not normalized, there is no
guarantee that the product is normalized. If neither operand is normalized, the
product is not normalized.

Instruction 160ijk forms the floating-point products of the contents of Sj and
elements of Vk and enters the results into elements of Vi.

Instruction 161ijk forms the floating-point products of the contents of elements
of Vj and elements of Vk and enters the results into elements of Vi.

Instruction 162ijk forms the half-precision rounded floating-point products of
the contents of the Sj register and the contents of elements of the Vk register
and enters the results into elements of Vi. This instruction can be used in a
divide algorithm when only 30 bits of accuracy are required.

Instruction 163ijk forms the half-precision rounded floating-point products of
the contents of elements of the Vj register and elements of the Vk register and
enters the results into elements of Vi. This instruction can be used in a divide
algorithm when only 30 bits of accuracy are required.

Instruction 164ijk forms the rounded floating-point products of the contents of
the Sj register and the contents of elements of Vk and enters the results into
elements of Vi.

Instruction 165ijk forms the rounded floating-point products of the contents of
elements of the Vj register and elements of the Vk register and enters the
results into elements of Vi.

Instruction 166ijk forms the 32-bit product of the contents of Sj and the
elements of Vk and enters the result into elements of Vi. The Sj operand must
be left-shifted by 31 (decimal) places and the Vk operand must be left-shifted
by 16 (decimal) places before the 166ijk instruction executes.
108-0245-003 Cray Proprietary 275

CPU Instruction Descriptions System Programmer Reference
Instruction 167ijk forms 2 minus the floating-point products of the contents of
the elements of Vj and elements of Vk and enters the results into the elements
of Vi. This instruction is used in the division operation sequence of
instructions.

The floating-point multiply functional unit is 7 registers deep for execution
data.

Instructions 170 through 173

Special Cases

The following special case exists for instructions 170 and 172:

• If j = 0, then (Sj) = 0.

Hold Issue Conditions

The instructions hold issue under any of the following conditions:

• For instructions 170 and 172, if the Sj register is reserved (except S0).

• For instructions 170 through 173, 077 issued last CP, or VIQ is full.

VIR Hold Issue Conditions

The instructions hold issue at the VIR under any of the following conditions:

• Vi and Vk (Vj for 171, 173) registers are reserved unless chaining or
tailgating is permitted.

Machine Instruction CAL Syntax Description

170ijk Vi Sj+FVk Transmit floating-point sums of (Sj) and (Vk elements) to Vi
elements.

170i0kb Vi +FVk Transmit normalized (Vk elements) to Vi elements.

171ijk Vi Vj+FVk Transmit floating-point sums of (Vj elements) and (Vk elements)
to Vi elements.

172ijk Vi Sj-FVk Transmit floating-point differences of (Sj) and (Vk elements) to Vi
elements.

172i0kb Vi -FVk Transmit normalized negative of (Vk elements) to Vi elements.

173ijk Vi Vj-FVk Transmit floating-point differences of (Vj elements) and (Vk
elements) to Vi elements.

b Special CAL syntax.
276 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
• Floating-point add functional unit is busy.

• Instruction 070ij6, 073, 076, or 077 issued from VIR the previous CP.

Execution Time

The execution time for a vector instruction that is issued directly from the CIP
to the functional unit (through the VIR) is 2 CPs longer than the execution time
for instructions that are waiting to issue in the VIR. The issue times for
instructions 170 through 173 from the VIR are as follows:

For Functional Unit Busy:

• Functional unit is ready in (VL/2) + 1 CP.

For Vector Register Busy:

• Vi is ready for Vi use in (VL/2) + 9 CPs.

• Vi is ready for Vj or Vk use immediately (because of chaining).

• Vj or Vk is ready for Vj or Vk use in (VL/2) + 2 CPs.

• Vj or Vk is ready for Vi use immediately (because of tailgating).

• The execution time for the floating add/difference (170 through 173)
instructions is (VL/2) + 9 CPs until all the data is available for use by the
next instruction.

Note: Vector instructions may or may not start execution
immediately; they execute as data becomes available. In
particular, a memory conflict that slows execution of some
elements of a vector load can cause delays in all
instructions in the operation chain, starting with that load.

Description

The floating-point add functional unit executes instructions 170 through 173.
Instructions 170 and 171 perform floating-point addition; instructions 172 and
173 perform floating-point subtraction. The contents of the VL register
determine the number of additions or subtractions that are performed by an
instruction. All operations start with element 0 and 1 of the V registers and
108-0245-003 Cray Proprietary 277

CPU Instruction Descriptions System Programmer Reference
increment the element number by 2 for each operation performed. All results
are delivered to Vi in normalized state, and the results are normalized even if
the operands are not normalized.

Instructions 170 and 172 deliver a copy of (Sj) to the functional unit, where it
remains as one of the operands until the completion of the operation. The other
operand is an element of Vk. For instructions 171 and 173, both operands are
obtained from V registers.

Instruction 170ijk forms the floating-point add by summing the contents of the
Sj and the elements of Vk and enters the results into elements of Vi.

The special form of the instruction (170i0k) normalizes the contents of the
elements of Vk and enters the results into elements of register Vi.

Instruction 171ijk forms the floating-point sums of the contents of the elements
of Vj and elements of Vk and enters the results into the elements of register Vi.

Instruction 172ijk forms the floating-point differences of the contents of Sj and
elements of register Vk and enters the results into elements of register Vi.
Instruction 172i0k transmits the negatives of floating-point quantities in the
elements of Vk to elements of Vi.

Instruction 173ijk forms the floating-point differences of the contents of the
elements of register Vj less the contents of the elements of registers Vk and
enters the results into the elements of register Vi.

The floating point add functional unit is 6 CPs deep for execution data.

Instruction 174

Special Cases

When a 174 instruction issues, if the Vj register element is not normalized, the
Vi register element is invalid. Bit 47 of the Vj register element must be 1. This
bit is not tested.

Hold Issue Conditions

The 174 instruction holds issue when a the VIQ is full.

Machine Instruction CAL Syntax Description

174ij0 Vi /HVj Transmit floating-point reciprocal approximation of (Vj elements)
to Vi elements.
278 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
VIR Hold Issue Conditions

The instruction holds issue at the VIR under any of the following conditions:

• The Vi and Vj registers are reserved unless chaining or tailgating is
permitted.

• The reciprocal or pop/parity/leading-zero functional units are busy.

• Instruction 070ij6, 073, 076, or 077 issued from VIR the previous CP.

Execution Time

The execution time for a vector instruction that issues directly from the CIP to
the functional unit (through the VIR) is 2 CPs longer than the execution time
for an instruction that is waiting to issue in the VIR.

The issue times for the 174 instruction from the VIR are as follows:

For Functional Unit Busy:

• Functional unit is ready in (VL/2) + 1 CP (for either a
Pop/Parity/Leading-zero or a reciprocal).

For Vector Register Busy:

• Vi is ready for Vi use in (VL/2) + 17 CPs.

• Vi is ready for Vj or Vk use immediately (because of chaining).

• Vj is ready for Vj or Vk use in (VL/2) + 2 CPs.

• Vj is ready for Vi use immediately (because of tailgating).

• Execution time for the floating-point reciprocal (174) instruction is
(VL/2) + 17 CPs until all the data is available for use by the next
instruction.

Description

The reciprocal approximation functional unit executes instruction 174. The
instruction forms an approximate value of the reciprocal of the normalized
floating-point quantity in each element of Vj and enters the result into elements
of Vi. The contents of the VL register determine the number of elements for
which approximations are found.
108-0245-003 Cray Proprietary 279

CPU Instruction Descriptions System Programmer Reference
Instruction 174 occurs in the divide sequence to compute the quotients of
floating-point quantities. The reciprocal approximation instruction produces
results of 30 significant bits. The low-order 18 bits are 0’s. The number of
significant bits can be extended to 48 by using the reciprocal iteration
instruction and a multiply instruction.

The reciprocal approximation functional unit is 14 CPs deep for execution
data.

Note: Vector instructions may or may not start execution immediately;
they execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector load can
cause delays in all instructions in the operation chain, starting with
that load.

Instruction 174ij1 through 174ij2

Hold Issue Conditions

These instructions hold issue when the VIQ is full.

VIR Hold Issue Conditions

These instructions hold issue at the VIR under any of the following conditions:

• The Vi and Vj registers are reserved unless chaining or tailgating is
permitted.

• The reciprocal unit or pop/parity/leading-zero functional units are busy.

• Instruction 070ij6, 073, 076, or 077 issued from VIR the previous CP.

Execution Time

The execution time for a vector instruction that issues directly from the CIP to
the functional unit (through the VIR) is 2 CPs longer than the execution time
for instructions that are waiting to issue in the VIR.

Machine Instruction CAL Syntax Description

174ij1 Vi PVj Transmit population count of (Vj elements) to Vi elements.

174ij2 Vi QVj Transmit population count parity of (Vj elements) to Vi elements.
280 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
The issue times for instructions 174ij1 through 174ij2 issued from the VIR are
as follows:

For Functional Unit Busy:

• Functional unit is ready in (VL/2) + 1 CP.

For Vector Register Busy:

• Vi is ready for Vi use in (VL/2) + 6 CPs.

• Vi is ready for Vj or Vk use immediately (because of chaining).

• Vj is ready for Vj or Vk use in (VL/2) + 2 CPs.

• Vj is ready for Vi use immediately (because of tailgating).

• Execution time for the pop/parity (174) instruction is (VL/2) + 6 CPs until
all the data is available for use by the next instruction.

Description

The vector population/parity/leading-zero functional unit executes instructions
174ij1, 174ij2 and 174ij3 and shares some logic with the reciprocal
approximation functional unit.

Instruction 174ij1 counts the number of bits that are set to 1 in each element of
Vj and enters the results into corresponding elements of Vi. The results are
entered into the low-order 7 bits of each Vi element; the remaining high-order
bits of each Vi element are cleared.

Instruction 174ij2 counts the number of bits that are set to 1 in each element of
Vj. The least significant bit of each element result shows whether the result is
an odd or even number. Only the least significant bit of each element is
transferred to the least significant bit position of the corresponding element of
register Vi. The remainder of the element is set to 0’s. The actual population
count results are not transferred.

The pop/parity/leading-zero functional unit is 3 CPs deep for pop/parity and 2
CPs deep for leading-zero execution data.
108-0245-003 Cray Proprietary 281

CPU Instruction Descriptions System Programmer Reference
Note: Vector instructions may or may not start execution immediately;
they execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector load can
cause delays in all instructions in the operation chain, starting with
that load.

Instruction 174ij3

CIP Hold Issue Conditions

• The VIQ is full.

VIR Hold Issue Conditions

This instruction holds issue at the VIR under any of the following conditions:

• The Vi and Vj registers are reserved unless chaining or tailgating is
permitted.

• Instruction 076ij6, 073, 076, or 077 is issued from VIR the previous CP.

• The reciprocal unit or pop/parity/leading-zero functional unit is busy.

Execution Time

The execution time for a vector instruction that is issued directly from the CIP
to the functional unit (through the VIR) is 2 CPs longer that the execution time
for instructions that are waiting to issued in VIR.

The issue time for the 174ij3 instruction is as follows:

For Functional Unit Busy:

• Functional unit is ready in (VL/2) + 1 CP (for either a
pop/parity/leading-zero or reciprocal).

For Vector Register Busy

• Vi is ready for Vi use in (VL/2) + 5 CPS

Machine Instruction CAL Syntax Description

174ij3 Vi ZVj Transmit leading-zero count of (Vj elements) to Vi elements.
282 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
• Vi is ready for Vj or Vk use immediately (because of chaining).

• Vj is ready for Vj or Vk use in (VL/2) + 2 CPs.

• Vj is ready for Vi use immediately (because of tailgating).

• Unit busy time for leading-zero instruction is (VL/2) + 5 CPs until all data
is available for use by the next instruction.

• Instruction issue time is 1 CP from CIP.

Execution Timing from VIR

• Instruction issue time is 1 CP from VIR.

• Execution time for leading-zero is (VL/2) + 5 CPs until all data is
available for use by the next instruction (with no delays).

Note: Vector instructions may or may not start to execute immediately;
they execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector load can
cause delays in all instructions in the operation chain starting with
that load.

Description

Instruction 174ij3 counts the number of leading zeros (left to right) in the (Vj
elements) and enters the result into the low-order 7 bits of the Vi elements. All
bits above bit 6 in the Vi elements are cleared. The Vi element is set to 64 if the
contents of the Vj element is zero. Instruction 174ij3 executes in the
pop/parity/leading-zero functional unit.

The pop/parity/leading-zero functional unit is three registers deep for
pop/parity execution data and two registers deep for leading-zero execution
data.

Instruction 1740j4

Machine Instruction CAL Syntax Description

1740j4 BMM Vj Transmit (Vj elements) to BMM.
108-0245-003 Cray Proprietary 283

CPU Instruction Descriptions System Programmer Reference
CIP Hold Issue Conditions

• The VIQ is full.

VIR Hold Issue Conditions

This instruction holds issue at the VIR under any of the following conditions:

• The Vj registers are reserved unless chaining is permitted.

• Instruction 070ij6, 073, 076, or 077 is issued from VIR the previous CP.

• The floating-point add or bit-matrix multiply functional unit is busy with
a 170 through 173, 1740j4, or 174ij6 instruction.

Execution Time

The execution time for a vector instruction that is issued directly from the CIP
to the functional unit (through the VIR) is 2 CPs longer that the execution time
for instructions that are waiting to issue in VIR.

The issue time for the 1740j4 instruction is as follows:

For Functional Unit Busy:

• Functional unit ready in VL/2 rounded up to 8, 16, 24, or 32 CPs + 2 CPs.

For Vector Register Busy

• Vj is ready for Vj or Vk use in (VL/2) + 2 CPs.

• Vj is ready for Vi use immediately (because of tailgating).

• Unit busy time for both the floating-point add and the BMM functional
units is (VL/2) +1 CP and 10, 18, 26, or 34 CPs (per VL/2) respectively.

• Instruction issue time is 1 CP from CIP.

Execution Timing from VIR

• Instruction issue time is 1 CP from VIR.

• BMM register is ready for use in 10, 18, 26, or 34 CPs from VIR (when
no delays).
284 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Note: Vector instructions may or may not start execution immediately;
they execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector load can
cause delays in all instructions in the operation chain starting with
that load.

Description

Instruction 1740j4 loads 64 BMM registers of the BMM functional unit with
the contents of Vj elements. The (VL) specifies the number of Vj elements to
be loaded into the BMM register; all remaining BMM registers are cleared to
all 0’s. The BMM register is loaded two at a time in this dual-port design.
BMM loads occur in multiples of 8 CPs per (VL/2). A VL count of 1 through
16 used 8 CPs, 17 through 32 uses 16 CPs, 33 through 48 uses 24 CPs, and 49
through 64 uses 32 CPs to load (if no data delays occur). The functional unit is
busy for an additional 2 CPs. This BMM load sets the BML bit in the status
register and the exchange package. BMM operations are described in an earlier
section of this manual.

The 070ij6 and 174ij6 instructions use the loaded BT registers to generate the
bit-matrix product with (Sj) and (Vi elements) that is sent to the Si and Vi
registers respectively.

The BMM functional unit shares the operand input bus with the floating-add
functional unit. The functional unit is busy if either unit is receiving data from
the V registers. This busy time exists for (VL/2) +1 CP for the floating-add unit
(when no delays are encountered). The busy time for the BT register load is
(VL/2 rounded up to 8, 16, 24, or 32 CPs) + 2 CPs (when no delays are
encountered).

The BMM functional unit is two registers deep for execution data.

Instruction 174ij6

CIP Hold Issue Conditions

• The VIQ is full.

Machine Instruction CAL Syntax Description

174ij6 Vi Vj*BT Transmit the bit-matrix product of (Vj elements) and transpose of
(BMM) to Vi.
108-0245-003 Cray Proprietary 285

CPU Instruction Descriptions System Programmer Reference
VIR Hold Issue Conditions

This instruction holds issue at the VIR under any of the following conditions:

• The Vi and Vj registers are reserved unless chaining or tailgating is
permitted.

• Instruction 070ij6, 073, 076, or 077 was issued from VIR the previous CP.

• The floating-point add or bit-matrix multiply functional unit is busy with
a 170 through 173, 1740j4, or 174ij6 instruction.

Execution Time

The execution time for a vector instruction that is issued directly from the CIP
to the functional unit (through the VIR) is 2 CPs longer that the execution time
for instructions that are waiting to issue in VIR. The issue time for the 174ij6
instruction is as follows:

For Functional Unit Busy:

• Functional unit ready in (VL/2) + 1CP.

For Vector Register Busy

• Vi is ready for Vi use in (VL/2) + 5 CPs.

• Vi is ready for Vj or Vk use immediately (because of chaining).

• Vj is ready for Vj or Vk use in (VL/2) + 2 CPs.

• Vj is ready for Vi use immediately (because of tailgating).

• The BMM 174ij6 execution time is (VL/2) + 5 CPs until all the data is
available for use by the next instruction.

• Unit busy time for both the floating-point add and the BMM functional
units is (VL/2) +1 CP.

• Instruction issue time is 1 CP from CIP.

• Register Vi is ready in (VL/2) + 7 CPs (from CIP when no delays occur).
286 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Execution Timing from VIR

• Instruction issue time is 1 CP from VIR.

• Register Vi is ready with the first data in 5 CPs from VIR (when no delays
occur).

Note: Vector instructions may or may not start execution immediately;
they execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector load can
cause delays in all instructions in the operation chain starting with
that load.

Description

Instruction 174ij6 uses the BMM functional unit. This functional unit contains
the 64×64-bit BMM register and it generates the bit-matrix product that is
returned to the Vi register. The BMM register must be loaded with the 1740j4
instruction before use. This load sets the BML bit in the status register and the
exchange package. BMM operations are described in an earlier section of this
manual.

The 174ij6 instruction uses the contents of the VL register to determine the
number of operations performed by an instruction. All operations start with
element 0 and 1 of the V registers and increment the element number by 2 for
each successive operation. The instruction executes in (VL/2) CPs if no delays
occur.

The BMM functional unit shares the operand input bus with the floating-add
functional unit. The functional unit is busy if either unit is receiving data from
the V registers. This busy time exists for (VL/2) +1 CP when no delays are
encountered.

The BMM functional unit is designed as a dual-pipe unit with the same set of
64 BT registers used for both pipes. The BMM functional unit is two registers
deep for execution data.
108-0245-003 Cray Proprietary 287

CPU Instruction Descriptions System Programmer Reference
Instruction 175

Special Cases

The following special cases exist for instruction 175:

• If the Vj element n = 0, and k = 0 or 4, then VM bit n = 1.

• If the Vj element n ≠ 0, and k = 1 or 5, then VM bit n = 1.

• If the Vj element n is positive (0 is a positive condition), and k = 2 or 6,
then VM bit n = 1.

• If the Vj element n is negative, and k = 3 or 7, then VM bit n = 1.

• If the Vj element n = 0 and k = 4, then the Vi compressed element = n.

• If the Vj element n ≠ 0 and k = 5, then the Vi compressed element = n.

• If the Vj element n is positive (0 is a positive condition), and k = 6, then
Vi compressed element = n.

• If the Vj element n is negative and k = 7, then Vi compressed element = n.

• Only the indices of successful Vj element tests (for which VM = 1) are
written into contiguous elements of Vi.

Machine Instruction
CAL

Syntax Description

1750j0 VM Vj,Z Set VM bit if (Vj element) = 0.

1750j1 VM Vj,N Set VM bit if (Vj element) ≠ 0.

1750j2 VM Vj,P Set VM bit if (Vj element) ≥ 0.

1750j3 VM Vj,M Set VM bit if (Vj element) < 0 (Vj is negative).

175ij4 Vi,VM Vj,Z Set VM bit if (Vj elements) = 0; also, the compressed indices of
the Vj element = 0 are stored in Vi.

175ij5 Vi,VM Vj,N Set VM bit if (Vj elements) ≠ 0; also, the compressed indices of
the Vj element ≠ 0 are stored in Vi.

175ij6 Vi,VM Vj,P Set VM bit if (Vj elements) ≥ 0; also, the compressed indices of
the Vj element ≥ 0 are stored in Vi.

175ij7 Vi,VM Vj,M Set VM bit if (Vj elements) <0; also, the compressed indices of the
Vj element <0 are stored in Vi.
288 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Hold Issue Conditions

The 175 instruction holds issue when the VIQ is full.

VIR Hold Issue Conditions

This instruction holds issue at the VIR under any of the following conditions:

• Vi (Vi for 175ij4 through 175ij7) register is reserved unless vector
chaining or tailgating is permitted.

• The main vector logical functional unit is busy.

• Instruction 070ij6, 073, 076, or 077 issued from the VIR the previous CP.

Execution Time

The execution time for a vector instruction that issues directly from the CIP to
the functional unit (through the VIR) is 2 CPs longer than the execution time
for instructions that are waiting to issue in the VIR. The instruction issue times
for the 175 instruction that is issued from the VIR are as follows:

For Functional Unit Busy:

• Functional unit is ready in (VL/2) + 1 CP (except (VL/2) + 4 CP for a 140
through 147 instruction following a 175).

• For Vector Register Busy

• Vi is ready for Vi use in (VL/2) + 6 CPs.

• Vi is ready for Vj or Vk use immediately (because of chaining).

• Vj is ready for Vj or Vk use in (VL/2) + 2 CPs.

• Vj is ready for Vi use immediately (because of tailgating).

• Execution time for the vector logical (175 with k = 0 through 3)
instruction is (VL/2) + 3 CPs until the vector mask is available for use by
the same vector logical unit.

• Execution time for the vector logical (175 with k = 4 through 7)
instruction is (VL/2) + 5 CPs until all the data is available for use by the
next instruction.
108-0245-003 Cray Proprietary 289

CPU Instruction Descriptions System Programmer Reference
Note: Vector instructions may or may not start execution immediately;
they execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector load can
cause delays in all instructions in the operation chain, starting with
that load.

Description

The full vector logical functional unit executes the vector mask and
compressed index instruction 175. Instructions 1750j0 through 1750j3 create a
mask in the VM register. The 64 bits of the VM register correspond to the 64
elements of Vj. Elements of Vj are tested for the specified condition. If the
condition is true for an element, the corresponding bit is set to 1 in the VM
register. If the condition is not true, the bit is set to 0.

Instructions 175ij4 through 175ij7 create an identical vector mask (as in
instructions 1750j0 through 1750j3) and a compressed index list in register Vi,
based on the results of testing the contents of the elements of register Vj.

The contents of the VL register determine the number of elements that are
tested; however, the entire VM register is cleared before elements of Vj are
tested. If the content of an element is 0, it is considered positive. Element 0
corresponds to bit 63, element 1 to bit 62, and so on, from left to right in the
VM register.

The type of test made by the instruction depends on the low-order 2 bits of the
k designator. The high-order bit of the k designator is used to select the
compressed index option.

For instruction 1750j0, if the Vj register element is 0, the VM bit is set to 1. If
the Vj register element is not 0, the VM bit is set to 0.

For instruction 1750j1, if the Vj register element is not 0, the VM bit is set to 1.
If the Vj register element is 0, the VM bit is set to 0.

For instruction 1750j2, if the Vj register element is positive, the VM bit is set
to 1. If the Vj register element is negative, the VM bit is set to 0. A value of 0 is
positive.

For instruction 1750j3, if the Vj register element is negative, the VM bit is set
to 1. If the Vj register element is positive, the VM bit is set to 0. A value of 0 is
positive.
290 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Instructions 175ij4, 175ij5, 175ij6, and 175ij7 are compressed index
instructions. These instructions test for zero, nonzero, positive, and negative
elements, respectively. A vector mask and a compressed index are generated,
based on the tested condition.

For instruction 175ij4, if the Vj register element is 0, the VM bit is set to 1 and
the Vi register compressed element is set to the Vj register element index. If the
Vj register element is 0, data is written to the Vi register elements, and the Vi
register element pointer is advanced. Refer to Figure 58 for an example of the
175ij4 instruction.

Figure 58. Compressed Index Example

For instruction 175ij5, if the Vj register element is not 0, the VM bit is set to 1
and the Vi register compressed element is set to the Vj register element index.
If the Vj register element is not 0, data is written to the Vi register elements,
and the Vi register element pointer is advanced.

For instruction 175ij6, if the Vj register element is positive, the VM bit is set to
1 and the Vi register compressed element is set to the Vj register element
index. If the Vj register element is positive, data is written to the Vi register
elements, and the Vi register element pointer is advanced (a value of 0 is
positive).

For instruction 175ij7, if the Vj register element is negative, the VM bit is set
to 1 and the Vi register compressed element is set to the Vj register element
index. If the Vj register element is negative, the Vi register elements are written
to the Vi register elements, and the Vi register element pointer is advanced.

VL Register

010110011101 . . .

VM Registers

148

-1

0

5

0

0

-15

24

0

0

-17

0

0

Vj Register
(Result)

018

038

048

078

118

138

108

Vj Register
(Tested)
108-0245-003 Cray Proprietary 291

CPU Instruction Descriptions System Programmer Reference
The contents of the VL register determine the number of elements that are
tested. The VM register bits that correspond to the untested elements of the Vj
register are cleared.

Vector mask instruction 175ijk, k = 0 through 3, and the compressed index
instructions 175ijk, k = 4 through 7, are a vector counterpart to the scalar
conditional branch instructions.

The main vector logical unit is 3 CPs deep for the VM and 2 CPs deep for the
compressed index data path to Vi for the 175 instruction.

Instruction 176 through 177

Special Cases

The following special cases exist for instructions 176 through 177:

• For instructions 176i0k and 1770jk, increment (A0) by 1 if k = 0.

• Instructions 176 and 177 use port B. If port B is busy, instructions 176 and
177 use port A.

• Only bits 0 through 31 of the A0, Ak, and Vk registers are used to
calculate memory addresses. Refer to the “Calculating Absolute Memory
Address” subsection for additional information.

• Memory conflicts slow the loading or storing of individual vector
elements.

Machine Instruction CAL Syntax Description

176i0k V A0,Ak Load from memory starting at (A0) increased by (Ak) and
load into Vi elements.

176i00 Vi ,A0,1 Load from consecutive memory addresses starting with (A0)
and load into Vi elements.

176i1k Vi ,A0,Vk Load from memory using memory address ((A0) + (Vk)) and
load into Vi elements.

1770 jk ,A0,Ak Vj Store (Vj elements) to memory starting at (A0) increased by
(Ak).

1770 j0 ,A0,1 Vj Store (Vj elements) to memory in consecutive addresses
starting with (A0).

1771jk ,A0,Vk Vj Store (Vj elements) to memory using memory address ((A0)
+ (Vk)).
292 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
• For instruction 176, if there is an instruction that uses the 176 result
register as a source (chaining), the execution of that instruction is delayed
whenever there is a delay in instruction 176 results.

Hold Issue Conditions

The 176 through 177 instructions hold issue under any of the following
conditions:

• The A0 register is reserved.

• For instruction 176, when ports A and B are busy.

• For instruction 177, when port A or B is busy with a write reference or if
ports A and B are busy.

• For instructions 176i1k and 1771jk, when either 176i1k or 1771jk is in
progress.

• For instructions 176i0k and 1770jk, when Ak is reserved when k = 1
through 7.

• If the system is not in bidirectional memory mode, or if an uncompleted
076 instruction exists, then instruction 176 holds issue when port A or B
is busy with a write reference, and instruction 177 holds issue when port
A or B is busy.

• The VIQ full.

VIR Hold Issue Conditions

These instructions hold issue at the VIR under any of the following conditions:

• Vi (and Vk for 176i1k) register is reserved for a 176 instruction and
chaining or tailgating is not permitted.

• Vj (and Vk for 1771ijk) register is reserved for a 177 instruction and
chaining is not permitted.

• Instruction 070ij6, 073, 076, or 077 issued from the VIR the previous CP.
108-0245-003 Cray Proprietary 293

CPU Instruction Descriptions System Programmer Reference
Execution Time

The execution time for vector instructions issued directly from CIP to the
vector load and store control section through the VIR is 2 CPs longer than the
execution time for the instruction that is waiting issue in the VIR. The issue
times for instructions 176 and 177 from the VIR are as follows:

• For instruction 176i0k:

• The instruction issues in 1 CP.

• The Vi register is ready in a minimum of (VL/2) + 176 CPs if
memory is available and a minimum of (VL/2) +22 CPs minimum if
the load data is in the cache.

• Port A or B is busy (VL/2) + 10 CPs minimum.

• For instruction 1770jk:

• The instruction issues in 1 CP.
• The Vj register is ready in (VL/2) + 2 CPs minimum.
• Port A or B is busy (VL/2) + 13 CPs minimum.

• For instruction 176i1k:

• The instruction issues in 1 CP.

• The Vi register is ready in (VL/2) + 172 CPs minimum, if memory is
available and (VL/2) + 25 CPs minimum if load data is available in
cache.

• The Vk register is ready in (VL/2) + 2 CPs minimum.

• Port A or B is busy (VL/2) +13 CPs minimum.

• For instruction 1771jk:

• The instruction issues in 1 CP.

• The Vj and Vk registers are ready in (VL/2) + 2 CPs, if data is
available.

• Port A or B is busy (VL/2) + 16 CPs minimum.
294 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Description

Instructions 176 and 177 transfer blocks of data between V registers and
memory. Instruction 176 reads data from memory to elements of register Vi.
Instruction 177 stores data from elements of register Vj to memory. The
contents of the VL register determine the number of elements that are
transferred. Tailgating is possible with the 176 instruction, and chaining is
possible with the 177 instruction.

Instructions 176i0k and 176i00 load words into elements of register Vi directly
from memory. A0 contains the starting memory address; it is 32 bits wide. This
address is incremented by the contents of register Ak (which is 32 bits wide)
for each word that is transmitted. The contents of Ak can be positive or
negative, which allows both forward and backward streams of references. If
the k designator is 0, or if 1 replaces Ak in the operand field of the instruction,
the address is increased by 1 for each word of data.

Instruction 176i1k gathers words from nonsequential memory locations and
loads them into sequential elements of register Vi. Elements of vector register
Vk and register A0 generate the nonsequential memory address. The low-order
bits of each element of Vk contain a signed integer, which is added to the
contents of A0 to obtain the memory address. Figure 59 shows an example of
the 176i1k instruction.

Figure 59. Gather Instruction Example

In Figure 59, the VL register is set to 4, which results in a transfer of 4
elements. The 176i1k instruction adds the contents of A0 to the contents of
each element of register Vk to form a memory address. The contents of that
address are then loaded into the Vi register. Because A0 = 100 and Vk element

VL Register

A0

100

4

Vk Register
(Index)

4

2

7

0

Memory
Contents/Address

250

200

600

400

Vi Register
(Result)

102

103

100

101

106

107

104

105

108

400

500

200

300

100

250

600

700

350
108-0245-003 Cray Proprietary 295

CPU Instruction Descriptions System Programmer Reference
0 = 4, the content of address 104 is loaded into Vi element 0. Similarly, A0 +
Vk element 1 = 102, and the content of memory location 102 is loaded into Vi
element 1. This process continues until the number of elements that are
transferred equals the VL count.

Instructions 1770jk and 1770j0 store words from elements of register Vj
directly into memory. A0 contains the starting memory address. This address is
incremented by the contents of register Ak for each word that is transmitted.
The contents of Ak can be positive or negative, allowing both forward and
backward streams of references. If the k designator is 0, or if 1 replaces Ak in
the result field of the instruction, the address is increased by 1 (consecutive
locations of memory).

Instruction 1771jk scatters words from elements of register Vj to nonsequential
memory locations. Vk elements and register Vk and A0 generate the
nonsequential memory address. The low-order bits of each element of Vk
contain a signed integer, which is added to the contents of A0 to obtain the
memory address. Figure 60 shows an example of the 1771jk instruction.

Figure 60. Scatter Instruction Example

In Figure 60, the VL register is set to 4, which results in a transfer of 4
elements. The 1771jk instruction adds the contents of A0 to the contents of
each element of register Vk to generate a memory address. An element of Vj is
stored at the resulting memory address. Because A0 = 100 and Vk element 0 =
4, the content of Vj element 0 is stored in address 104. Similarly, A0 + Vk
element 1 = 102, and the content of Vj element 1 is stored in memory location
102. This process continues until the number of elements that are transferred
equals the VL count.

VL Register

A0

100

4

Vk Register
(Index)

4

2

7

0

Memory
Contents/Address

400

500

200

300

Vj Register
(Store Data)

102

103

100

101

106

107

104

105

110

300

x

500

x

x

400

200

x

x

296 Cray Proprietary 108-0245-003

System Programmer Reference CPU Instruction Descriptions
Figure 59 and Figure 60 describe data being loaded from, and stored into
memory. Cache will also be used if enabled in the exchange package. Data is
read from cache if it is available there. Data is stored into both cache and
memory (write through cache).

The 176 instruction may execute with, or without chaining or tailgating
(chaining for the 177 instruction). The times in CPs listed for these instructions
is without chaining or tailgating. Data times with cache and memory increase
by 5 CPs when chaining or tailgating occurs. However, these instructions may
begin execution many CPs earlier.

Note: Vector instructions may or may not start execution immediately;
they execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector load can
cause delays in all instructions in the operation chain, starting with
that load.
108-0245-003 Cray Proprietary 297

Appendix A - Block Transfer Engine and Translate Look-Aside Buffer System Programmer Reference
Appendix A - Block Transfer Engine and Translate Look-Aside Buffer

This appendix includes a description of the software protocol for using the
block transfer engine (BTE) and translate look-aside buffer (TLB) for the
SV1ex memory module. It also contains detailed information on memory
mapped register (MMR) addresses and data fields and procedures for writing
and using the BTE and TLB.

BTE

The BTE transfers data between memory locations within a section in 64-word
blocks, 4 words per subsection. This means that when you start up the BTEs in
all eight memory sections in a system with a block length of 1, the BTEs will
transfer 512 words. Therefore, data must be aligned on 512-word boundaries.

The BTE uses four MMRs per section. MMR0 is the source address, MMR1 is
the destination address, MMR2 is the block length, and MMR3 is the
enable/disable register. MMR3 is also the TLB enable/disable register. The BTE
MMRs for each section of memory must be loaded separately.

As soon as the block length register is loaded, the BTE starts up and uses the
last starting address and last destination address it received. Therefore, if
multiple transfers are desired using the same source address and multiple
destination addresses, the source address need not be reloaded. However, if
multiple source or destination addresses are loaded without a block length
between them, the BTE retains only the last source and destination addresses.

An individual BTE transfers data at a rate of 2.13 gigawords per second. If the
BTEs in each section of memory are started at the same time, the system BTE
transfer rate is 17 gigawords per second in an 8 x 8 system and 8.5 gigawords
per second in a 4 x 4 system.

The following sections describe the registers of the MMRs.

MMR0 - Source Address

Address Field

• 31:18 - Must be all 1’s
• 17:15 - Must be set to the processor module number
• 14:12 - Binary 100
• 11:5 - Must be all 0’s
• 4:3 - Binary 00
298 Cray Proprietary 108-0245-003

System Programmer Reference Appendix A - Block Transfer Engine and Translate Look-Aside Buffer
Data Field

• 26:0 - Source address bits 35:9

MMR1 - Destination Address

Address Field

• 31:18 - Must be all 1’s
• 17:15 - Must be set to the processor module number
• 14:12 - Binary 100
• 11:5 - Must be all 0’s
• 4:3 - Binary 01

Data Field

• 26:0 - Destination address bits 35:9

MMR2 - Block Length

Address Field

• 31:18 - Must be all 1’s
• 17:15 - Must be set to the processor module number
• 14:12 - Binary 100
• 11:5 - Must be all 0’s
• 4:3 - Binary 10

Data Field

• 26:0 - Block length

MMR3 - BTE/TLB Enable/Disable

Address Field

• 31:18 - Must be all 1’s
• 17:15 - Must be set to the processor module number
• 14:12 - Binary 100
• 11:5 - Must be all 0’s
108-0245-003 Cray Proprietary 299

Appendix A - Block Transfer Engine and Translate Look-Aside Buffer System Programmer Reference
• 4:3 - Binary 11

Data Field

• 7:4 - All 1’s to enable BTE, all 0’s to disable BTE
• 3:0 - All 1’s to enable TLB, all 0’s to disable TLB

TLB

The TLB is used to extend the addressing capability of the SV1ex system
beyond the 32 bits that come across the backplane. The TLB allows users to
address 512 pages of 8 megawords of memory (total of 4 gigawords). These
pages can reside anywhere in a 64-gigaword system image.

Address bits 31:23 are used to address data into the TLB (when enabled) and
the TLB then returns 13 bits that are used as address bits 35:23.

The TLB is enabled/disabled for a processor module; each source (4 processors
and an I/O) has its own unique TLB. If you want to enable the TLB for I/O
operations and want the CPUs to continue to access the lower 4 gigawords of
memory, you must write the CPUs’ TLB entries with the “unity” pattern. This
is simply a one-for-one match for bits 31:23 and bits 35:32 cleared.

You enable/disable the TLB by writing MMR3 (described in the BTE section).

When you write the TLB, the system must be in noninterruptible monitor mode;
otherwise interrupts may occur during the write and all sections may not be
mapped to the same memory range.

TLB entry 0 for each CPU and I/O is unwritable and always points to the lower
8 megawords of memory. This ensures that on interrupts the exchange package
information comes from the correct source.

The upper 262,144 words of TLB entry 511 for each CPU and I/O are unusable
and will be interpreted as an MMR address (because bits 31:18 are all 1’s).

Writing the TLB

On power-up or after a system reset, the TLB entries in each section of memory
must be written for every processor and I/O in the system. Any processor, or the
I/O on a processor module, can write the TLBs for all four processors and the
I/O for that particular module. However, a processor cannot write the TLBs for
any processors or I/Os for a different processor module.
300 Cray Proprietary 108-0245-003

System Programmer Reference Appendix A - Block Transfer Engine and Translate Look-Aside Buffer
The writes are also passed into the SDRAM DIMMs to allow reading of the
TLB.

Address Field

• 31:18 - Must be all 1’s
• 17:15 - Must be set to the processor module number
• 14:3 - Address into the TLB for this processor module

The lower 512 words are CPU 0’s TLB, the next 512 words are CPU 1’s TLB,
the next 512 words are CPU 2’s TLB, the next 512 words are CPU 3’s TLB,
the next 512 words are reserved for MMR space, the next 512 words are the
I/O’s TLB, and the top 1024 words are unused. Refer to Figure 61.

Figure 61. TLB Address Fields

Data Field

• 12:0 - These bits are written into the TLB and are used as address bits
35:23 for this particular page.

UNUSED

IO

CPU0

CPU1

CPU2

CPU3

MMR

UNUSED

0

512

1024

1536

2048

2560

3072

3584

4096
108-0245-003 Cray Proprietary 301

Appendix A - Block Transfer Engine and Translate Look-Aside Buffer System Programmer Reference
Reading the TLB

When a TLB entry is written, the write is also passed on to SDRAM memory to
create a “shadow copy” of the TLBs. This enables TLB reads to return the
correct data. The read address is the same as the write address described earlier.
The reads are treated as normal memory reads and are passed to main memory,
which contains the “shadow copy” of the TLBs.

JTAG Interface

The JTAG USER1 register contains 2 bits that are used to permanently disable
the BTE and TLB. If these bits are disabled and MMR3 is written to enable the
BTE or TLB, they remain disabled. When Bit 0 of the USER1 register is set, it
enables MMR3 to enable/disable the TLB. Bit 1 of the USER1 register does the
same for the BTE. When bit 0 of the USER1 register is cleared, the TLB remains
disabled no matter what the state of MMR3. When bit 1 of the USER1 register
is cleared the BTE remains disabled no matter what the state of MMR3.

Power up/Reset Procedures

On power-up or after a system master clear the TLB and BTE are disabled. All
entries must be written as described in the TLB section before enabling and
using the TLB. However, after a system master clear the “shadow copy” of the
TLBs that is held in main memory remains intact so this information can be read
for system dump information; this must be done before writing the TLB.

Memory Clear Process

Because the SV1ex system can have very large memory sizes, it is not feasible
to clear all of memory as you do on the SV1 by using the Jclr command. Use
BTE as follows to speed up the memory clear procedure:

1. Clear an aligned 64-Kword block of memory.
2. Set the BTE source address to the beginning of this 64-Kword block.
3. Set the BTE destination address to the first word after this 64-Kword

block.
4. Set the BTE block length to the total number of 512-word blocks in the

system minus the 64-Kword block.

This procedure enables the BTE to clear the rest of memory.
302 Cray Proprietary 108-0245-003

Reader Comment Form

Your feedback on this publication will help us provide better documentation in the future. Please
take a moment to answer the few questions below.

For what purpose did you primarily use this document?

_____Troubleshooting _____Tutorial or introduction
_____Reference information _____Classroom use
_____Other - please explain

__

Using a scale from 1 (poor) to 10 (excellent), please rate this document on the following criteria
and explain your ratings:

_____Accuracy __

_____Organization __

_____Readability ___

_____Physical qualities (binding, printing, page layout) __________________________

_____Amount of diagrams and photos _______________________________________

_____Quality of diagrams and photos _______________________________________

Completeness (Check one and explain your answer)

_____Too much information _____ Too little information _____Correct amount

__

__

__

You may write additional comments in the space below. Mail your comments to the address
below, fax them to us at +1 715 726 4991, or e-mail them to us at fiona@cray.com. When
possible, please give specific page and paragraph references. We will respond to your comments
in writing within 48 hours.

__

__

__

Title: System Programmer Reference
(Cray SV1™ Series)

Number: 108-0245-003

NAME __

JOB TITLE ______________________________________

E-MAIL ADDRESS ________________________________

SITE/LOCATION __________________________________

TELEPHONE ____________________________________

DATE___

Technical Training and Documentation
900 Lowater Rd.P.O. Box 6000
Chippewa Falls, WI 54729
USA

®

	108-0245-003
	System Programmer Reference
	108-0245-003
	Figures
	Tables
	Record of Revision
	Cray SV1 Series System Overview
	Cray�SV1e Processor
	Cray�SV1ex-1 and Cray�SV1ex-1A Systems

	Mainframe Overview
	Figure 1. Cray SV1 Mainframe Block Diagram

	SIO Overview
	GigaRing Overview
	Figure 2. Cray SV1 Four-node GigaRing Channel Configuration
	Figure 3. Cray SV1 I/O Node

	VME-based I/O Subsystem Overview
	Figure 4. IOS Block Diagram

	Network Interfaces
	Maintenance Platform
	Central Memory
	Memory Instructions
	Table 1. CPU Memory Instructions

	Logical Organization
	Figure 5. SV1 CPU Central Memory Architecture

	Port Utilization
	Table 2. Port Specifications
	Table 3. CA ASIC Register Parity Error
	Figure 6. Exchange Package

	Conflict Resolution
	Table 4. Memory Priority Scheme

	Guaranteeing Memory Access Order
	Table 5. SV1 Coding Requirements for Memory Operations (continued)

	Calculating Absolute Memory Address
	Address Range Checking
	Error Detection and Correction
	Table 6. Check-bit Generation

	Central Memory Performance Summary
	Table 7. Timings for Memory Operations

	VME I/O Section
	Table 8. Processor Modules and Associated Y1 Channel Numbers�
	Y1 Channel Pairs
	Table 9. Y1 Channel Instructions
	Figure 7. I/O IOTCB Format
	Figure 8. Console IOTCB Format

	Error Handling
	High Performance Parallel Interface (HIPPI)
	Table 10. HIPPI or Y1 Channel Configurations

	GigaRing I/O Section
	MPN-1 Functional Overview
	IPN-1 Functional Overview
	FCN-1 and FCN-2 Functional Overview
	HPN Functional Overview
	BMN-1 Functional Overview
	ESN-1 Functional Overview
	FOX Overview
	Error Reporting and Handling
	Table 11. Error Reporting MMRs

	Interprocessor Communication
	Clusters
	Shared Registers
	Table 12. Shared Register Instructions

	Semaphore Registers
	Table 13. SM Register Instructions
	Figure 9. Relation between SM Registers and S Register Bits

	Test and Set Control
	Deadlock
	Interprocessor Interrupts
	Table 14. Interprocessor Interrupt Instructions

	Real-time Clock
	Table 15. RTC Instructions

	Exchange Mechanism
	Exchange Package
	Table 16. Exchange Package Read Mode and Port Translations

	Exchange Sequence
	Exchange Package Management

	Instruction Fetch Sequence
	Instruction Fetch Hardware
	Figure 10. Instruction Fetch Block Diagram
	Figure 11. IBAR
	Figure 12. P Register
	Figure 13. P Register and IBAR Address Formats

	Instruction Issue
	Instruction Issue Hardware
	Figure 14. Instruction Issue Block Diagram – General Flow
	Figure 15. Instruction Issue Block Diagram – Parcels Held
	Figure 16. Instruction Flow through Issue Registers (CPn + 1)
	Figure 17. Instruction Flow through Issue Registers (CPn + 2)
	Figure 18. 1-parcel Instruction Holding 1 CP for Conflict (CPn + 3)
	Figure 19. Instruction Flow through Issue Registers (CPn + 4)
	Figure 20. 2-parcel Instruction Holding 1 CP for Conflict (CPn + 5)
	Figure 21. Instruction Flow through Issue Registers (CPn + 6)
	Figure 22. Instruction Flow through Issue Registers (CPn + 7)
	Figure 23. 3-parcel Instruction Holding 1 CP for Conflict (CPn + 8)
	Figure 24. Instruction Flow through Issue Registers (CPn + 9)
	Table 17. Instruction Issue Sequence

	Reservations and Hold Issue Conditions

	Programmable Clock
	Table 18. Programmable Clock Instructions
	Interrupt Interval Register
	Operation

	Status Register
	Table 19. Si Bit Positions and Bit Descriptions

	Performance Monitor
	Table 20. Performance Counter Group Descriptions (continued)
	Selecting and Reading Performance Events
	Table 21. Performance Monitor User Instructions
	Figure 25. Contents of an S Register During Execution of 073i11 Instruction

	Testing Performance Counters

	Cache Memory
	Table 22. Cray SV1 Series Cache Operations
	Detailed Operation of Cache Memory
	Figure 26. 1-word Line, 4-way Associative 4096-word Cache per Memory Section

	CPU Computation
	Operating Registers
	Address (A) Registers
	Figure 27. A Register Block Diagram
	Table 23. Special A0 Register Values
	Table 24. A Register Instructions (continued)
	Table 25. B Register Instructions
	Figure 28. Scalar Register Block Diagram
	Table 26. Special S0 Register Values
	Table 27. S Register Instructions (continued)

	Intermediate Scalar (T) Registers
	Table 28. T Register Instructions

	Vector (V) Registers
	Figure 29. V Register Block Diagram
	Table 29. V Register Instructions

	Vector Instruction Issue Timing
	Vector Instruction Issue Conflict Timing
	Figure 30. Vector Chaining Example
	Figure 31. Vector Tailgating Example

	Vector Control Registers
	Table 30. Vector Mask Instructions

	Vector Length Register
	Vector Mask Register
	User Mode Vector Instruction Timing
	Table 31. Vector Instruction Issue and Execution (continued)

	Bit Matrix Multiply (BMM) Register

	Functional Units
	Address Functional Units
	Scalar Functional Units
	Vector Functional Units
	Floating-point Functional Units
	Bit-matrix Multiply Functional Unit
	Table 32. Bit-matrix multiply instructions
	Figure 32. Row Matrix for N = 20
	Figure 33. Square Matrix for N = 20

	Functional Unit Operations
	Logical Operations
	Integer Arithmetic
	Figure 34. Integer Data Formats

	24-bit Integer Multiplication
	Figure 35. 24-bit Integer Multiply Performed in a Floating-point Multiply Functional Unit

	Multiplication of Operands Greater than 24 Bits
	Figure 36. 32-bit Integer Multiply Performed in a Floating-point Multiply Functional Unit

	Floating-point Arithmetic
	Figure 37. Floating-point Data Format
	Figure 38. Internal Representation of a Floating-point Number
	Figure 39. Biased and Unbiased Exponent Ranges
	Figure 40. Floating-point Add and Floating-point Multiply Range Errors
	Figure 41. Exponent Matrix for a Floating-point Multiply Functional Unit
	Figure 42. Floating-point Reciprocal Approximation Range Errors
	Figure 43. Floating-point Multiply Partial-product Sums Pyramid
	Figure 44. Newton’s Method of Approximation

	Parallel Processing Features
	Pipelining and Segmentation
	Figure 45. Segmentation and Pipelining Example

	Functional Unit Independence
	Multiprocessing and Multitasking
	Autotasking Feature
	Enabling and Disabling the Maintenance Mode
	Using Maintenance Mode
	Table 33. 0051j1 Instruction Operation
	Figure 46. Instruction 001541 Operation

	CPU Instructions
	Quick-reference Table of CPU Instructions
	Table 34. Quick-reference Table of CPU Instructions (continued)

	Notational Conventions
	Instruction Formats
	Figure 47. General Instruction Format
	1-parcel Instruction Format with Discrete j and k Fields
	Figure 48. 1-parcel Instruction Format with Combined j and k Fields

	1-parcel Instruction Format with Combined j and k Fields
	Figure 49. 1-parcel Instructions with j and k as a Combined 6-bit Field

	2-parcel Instruction Format with Combined i, j, k, and m Fields
	Figure 50. 2-parcel Instruction Format with Combined i, j, k, and m Fields

	3-parcel Instruction Format with Combined m and n Fields
	Figure 51. 3-parcel Instruction Format with Combined m and n Fields

	Special Register Values
	Table 35. Special Register Values

	Monitor Mode Instructions
	Special CAL Syntax Forms
	CPU Instruction Descriptions
	Functional Units Instruction Summary
	Instruction 000000
	Instructions 0010 through 0013
	Instructions 0014 and 0016j1
	Instructions 0015 through 001551
	Instruction 0020
	Instructions 0021 through 0027
	Instructions 002703 through 002707
	Instructions 0030, 0034, 0036, and 0037
	Instruction 0040
	Instruction 0050
	Instruction 0060
	Instruction 0070
	Instructions 010 through 013
	Instructions 014 through 017
	Instructions 020 through 022
	Instruction 023
	Instructions 024 through 025
	Instruction 026
	Instruction 027
	Instructions 030 through 031
	Instruction 032
	Instruction 033
	Instructions 034 through 037
	Instruction 040 through 041
	Instructions 042 through 043
	Instructions 044 through 051
	Instructions 052 through 055
	Instructions 056 through 057
	Instructions 060 through 061
	Instructions 062 through 063
	Instructions 064 through 067
	Instruction 070ij0
	Instruction 070ij6
	Instruction 071
	Instructions 072 through 073
	Instructions 074 through 075
	Instructions 076 through 077
	Instructions 10h through 13h
	Instructions 140 through 147
	Instructions 150 through 151
	Instructions 152 through 153
	Figure 52. Vector Left Double Shift, First Element, VL Greater than 1
	Figure 53. Vector Left Double Shift, Second Element, VL Greater than 2
	Figure 54. Vector Left Double Shift, Last Element
	Figure 55. Vector Right Double Shift, First Element
	Figure 56. Vector Right Double Shift, Second Element, VL Greater than 1
	Figure 57. Vector Right Double Shift, Last Operation

	Instructions 154 through 157
	Instructions 160 through 167
	Instructions 170 through 173
	Instruction 174
	Instruction 174ij1 through 174ij2
	Instruction 174ij3
	Instruction 1740j4
	Instruction 174ij6
	Instruction 175
	Figure 58. Compressed Index Example

	Instruction 176 through 177
	Figure 59. Gather Instruction Example
	Figure 60. Scatter Instruction Example

	Appendix A - Block Transfer Engine and Translate Look-Aside Buffer
	BTE
	TLB
	Figure 61. TLB Address Fields

	JTAG Interface
	Power up/Reset Procedures
	Memory Clear Process

