
Cray SV1™ Application
Optimization Guide
S–2312–36

© 2002 Cray Inc. All Rights Reserved. The contents of this document may not be copied or duplicated in any manner, in whole
or in part, without the prior written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted
Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14
or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the
U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Autotasking, CF77, Cray, Cray Ada, Cray Channels, Cray Chips, CraySoft, Cray Y-MP, Cray-1, CRInform, CRI/TurboKiva,
HSX, LibSci, MPP Apprentice, SSD, SuperCluster, UNICOS, UNICOS/mk, and X-MP EA are federally registered trademarks
and Because no workstation is an island, CCI, CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS,
Cray Animation Theater, Cray APP, Cray C90, Cray C90D, Cray CF90, Cray C++ Compiling System, CrayDoc, Cray EL,
Cray Fortran Compiler, Cray J90, Cray J90se, Cray J916, Cray J932, CrayLink, Cray MTA, Cray MTA-2, Cray MTX,
Cray NQS, Cray/REELlibrarian, Cray S-MP, Cray SSD-T90, Cray SV1, Cray SV1ex, Cray SV2, Cray SX-5, Cray SX-6,
Cray T90, Cray T94, Cray T916, Cray T932, Cray T3D, Cray T3D MC, Cray T3D MCA, Cray T3D SC, Cray T3E, CrayTutor,
Cray X-MP, Cray XMS, Cray-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, and UNICOS MAX are trademarks
of Cray Inc.

IBM is a trademark of International Business Machines Corporation. UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Limited. X/Open is a trademark of X/Open Company Ltd. The X device
is a trademark of the Open Group.

The UNICOS operating system is derived from UNIX System V. The UNICOS operating system is also based in part on the Fourth
Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

Cray SV1™ Application Optimization Guide S–2312–36

This version adds information on optimizing the Cray SV1ex system.

Chapter 4 has been expanded to include more information about and examples of the optimizations
performed by the Fortran and C/C++ compilers on the Cray SV1 series systems.

Record of Revision

Version Description

3.5 January 2001
Original printing.

36 June 2002
This version includes information that supports the Programming Environment
3.6 release.

S–2312–36 i

Contents

Page

Preface ix

Related Publications . ix

Ordering Documentation . ix

Conventions . x

Reader Comments . xi

Introduction [1] 1

About This Manual . 1

Optimization Overview . 2

Hardware Overview . 5

The Processor . 8

Cache . 9

I/O . 9

Evaluating Code [2] 11

CPU-Bound Programs . 11

Using the hpm Command to Issue Reports 13

Procedure 1: Using the hpm Command to Determine Processor Performance Statistics . 13

Analyzing Multistreaming Code 16

The ps(1) Command . 17

The jstat(1) Command . 18

The cpu(8) Command . 18

Memory and Cache . 19

Cache . 19

Code Size . 20

Procedure 2: Determining if the code is memory bound 20

Determining How Much Memory Is Available on Your System 22

S–2312–36 iii

Cray SV1™ Application Optimization Guide

Page

I/O Bound . 24

Procedure 3: Determining if the Code is I/O Bound 24

Multistreaming [3] 25

Compiler Options and Directives . 26

Fortran Compiler Options . 26

C and C++ Compiler Options . 27

Directives . 27

concurrent Directive . 27

preferstream, stream, and nostream Directives 28

Loops That Are Multistreamed by the Compiler 29

Bit Matrix Multiply (BMM) and Multistreaming 30

Tasking and Multistreaming . 31

Multitasking on MSPs with Multistreaming 32

Multitasking on MSPs without Multistreaming 32

Vectorization and Multistreaming 33

Analyzing the Performance of a Multistreaming Program 33

The prof and profview Commands 33

The MSP_STATS Environment Variable 35

Optimizing Using Vectorization [4] 39

What Is Vectorization? . 39

Loopmark Listings . 41

Vectorization . 43

Fully Vectorized Loops . 43

Partially Vectorized Loops . 43

Conditionally Vectorized Loop 44

Reduction Loop . 44

Shortloop . 45

Vector Update Loop . 45

Computed-Safe Vector Length Loop 46

iv S–2312–36

Contents

Page

Vectorization Inhibitors . 47

Vectorization and Dependencies 47

Other Loop Optimizations . 48

Outer-loop Vectorization . 49

Loop Unrolling . 49

Loop Interchange . 51

Loop Collapse . 52

Loop Fusion . 54

Pattern Matching . 55

Autotasking . 56

Streaming . 56

Loop Blocking . 57

Optimizing Memory Use [5] 59

Overview of Memory . 59

Central Memory . 59

Cache . 60

Optimizing Cache Use . 62

Using Vector Cache Effectively 62

Minimizing Stores . 63

Porting Issues . 66

Managing Memory . 67

Understanding Memory Management 68

Dynamic Heap . 69

Dynamic Common Blocks . 70

Identifying Large Amounts of Memory Wait Time or System CPU Time 71

Procedure 4: Creating a Report 71

Evaluating Dynamic Memory Alternatives and Applying a Technique 72

Large Number of System Calls 72

Memory Expanded or Contracted in Small Increments 72

Other Reasons for Excessive Memory Activity 73

S–2312–36 v

Cray SV1™ Application Optimization Guide

Page

Temporary Memory Expansion of Significant Duration 74

Heap Blocks Release Order . 74

Memory Initialization . 74

Loader Directives . 74

Optimal Heap Size . 75

Procedure 5: Determining Optimal Heap Size 75

Optimizing I/O [6] 79

Optimizing Formatted I/O . 79

Changing to Unformatted I/O . 79

Reducing the Amount of Formatted I/O 80

Increasing Formatted I/O Efficiency for Fortran Programs 80

Minimizing the Number of Data Items in the I/O List 80

Using a Single READ, WRITE, or PRINT Statement 81

Using Longer Records . 81

Using Repeated Edit Descriptors 82

Using Data Edit Descriptors That Are the Same Width as the Character Data 82

Increasing Formatted I/O Efficiency for C++ Programs 82

Increasing Library Buffer Sizes for Formatted I/O Requests 83

Optimizing Large, Sequential, Unformatted I/O Requests 83

Changing I/O File Format to Unbuffered and Unblocked 83

Converting to Asynchronous I/O 84

Using the assign Command to Convert Code to Asynchronous I/O 85

Optimizing Asynchronous I/O 85

Example 1: C++ Example of Converting to Asynchronous I/O 86

Using Effective Library Buffer Sizes 86

Optimizing Small, Sequential, Unformatted I/O Requests 87

Using Effective Library Buffer Sizes 87

Increasing I/O Request Size and Issuing Fewer Requests 87

Using the Memory-Resident (MR) FFIO Layer 87

Optimizing Techniques for Direct Access I/O 87

vi S–2312–36

Contents

Page

Fortran Direct Access I/O . 88

Example 2: Fortran Direct Access 88

C++ Direct Access I/O . 88

Example 3: C++ Direct Access 88

Optimizing Techniques for Direct Access Code 89

Optimizing Asynchronous I/O Requests 89

Using Unblocked File Format . 90

Avoiding Cache . 90

Using Effective Library Buffer Sizes 90

Balancing Workload . 91

Minimizing Required Synchronization 91

Tune FFIO User Cache . 91

Using an Optimal Storage Device . 91

Memory-Resident (MR) Files . 92

Memory-Resident Predefined File Systems 92

Disk Striping . 92

Disk Arrays . 93

Disks . 93

Tapes . 94

Minimizing System Calls . 94

Using the SSD-I on Cray SV1ex Model Systems 94

Glossary 97

Index 105

Figures
Figure 1. Optimization Overview 4

Figure 2. Block Diagram . 7

Figure 3. GigaRing I/O . 10

Figure 4. Evaluating Code . 12

Figure 5. Dividing Loop Iterations among CPUs 25

S–2312–36 vii

Cray SV1™ Application Optimization Guide

Page

Figure 6. Profview Pie Chart . 35

Figure 7. Scalar versus vector, illustrated 40

Figure 8. Optimizing memory-bound code 68

Figure 9. Load map statistics . 77

Tables
Table 1. Single-Processor Hardware Expectations 15

Table 2. Determining if the code is dominated by scalar or vector operations 15

Table 3. Loopmark Listing Keys 42

Table 4. Typical Latencies . 59

viii S–2312–36

Preface

This document describes techniques you can use to optimize Fortran, C++, or C
code on the Cray SV1 series of systems. This manual discusses using the Cray
Fortran Compiler, the Cray Standard C Compiler, the Cray C++ Compiler, and
various performance tools to help you analyze and optimize your code.

This is a guide for programmers with working knowledge of the Cray Fortran
Compiler, Cray Standard C Compiler, or Cray C++ Compiler.

Related Publications

The following documents contain additional information that may be helpful:

• Cray Fortran Compiler Commands and Directives Reference Manual

• Cray Standard C/C++ Reference Manual

• Application Programmer’s Library Reference Manual

• Intrinsic Procedures Reference Manual

• Scientific Libraries Reference Manual

• Introducing the Cray TotalView Debugger

Ordering Documentation

To order software documentation, contact the Cray Software Distribution Center
in any of the following ways:

E-mail:
orderdsk@cray.com

Web:
http://www.cray.com/craydoc/

Click on the Cray Publications Order Form link.

Telephone (inside U.S., Canada):
1–800–284–2729 (BUG CRAY), then 605–9100

Telephone (outside U.S., Canada):
Contact your Cray representative, or call +1–651–605–9100

S–2312–36 ix

Cray SV1™ Application Optimization Guide

Fax:
+1–651–605–9001

Mail:
Software Distribution Center
Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120–1128
USA

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items, such
as file names, pathnames, man page names,
command names, and programming language
elements.

variable Italic typeface indicates an element that you will
replace with a specific value. For instance, you
may replace filename with the name datafile in
your program. It also denotes a word or concept
being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions. Output
is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a syntax
representation for a command, library routine,
system call, and so on.

... Ellipses indicate that a preceding element can be
repeated.

x S–2312–36

Preface

Reader Comments

Contact us with any comments that will help us to improve the accuracy and
usability of this document. Be sure to include the title and number of the
document with your comments. We value your comments and will respond to
them promptly. Contact us in any of the following ways:

E-mail:
swpubs@cray.com

Telephone (inside U.S., Canada):
1–800–950–2729(Cray Customer Support Center)

Telephone (outside U.S., Canada):
Contact your Cray representative, or call +1–715–726–4993(Cray Customer
Support Center)

Mail:
Software Publications
Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120–1128
USA

S–2312–36 xi

Introduction [1]

This document provides information about techniques you can use to optimize
Fortran, C, or C++ code on the Cray SV1 series of systems. This is a guide for
programmers with working knowledge of either the UNICOS or UNIX operating
system and experience in working with the Cray Fortran Compiler (formerly
called the CF90 Compiler), Cray C++ Compiler, or Cray Standard C Compiler.

This document makes the following assumptions about code to be optimized:

• The code has been debugged and is running on a Cray SV1 series system.
See the Introducing the Cray TotalView Debugger manual for more information
on debugging.

• When running the code, you have used the fastest compiler options and
data types for your program. For example, you have used aggressive
optimization options (-O scalar3,vector3 for the Fortran ftn command
or -hscalar3,vector3 for the C or C++ cc or CC command) and, if you do
not need 96 bits of floating-point precision, you have used single precision
(ftn -dp or the float or double type specifier instead of long double
type specifier within C++ code).

Note: Unless otherwise noted, all discussions of C++ code optimizations
also apply to the C language.

1.1 About This Manual

The following information is provided in this manual:

• Section 1.2, page 2 gives an overview of the optimization process.

• Section 1.3, page 5 provides an overview of the Cray SV1 series system
hardware.

• Chapter 2, page 11 describes how to evaluate code and determine where to
focus optimization efforts.

• Chapter 3, page 25 describes multistreaming for Cray SV1 series systems.
Because this is a major optimization for processor performance, it is in its
own chapter.

• Chapter 4, page 39 describes vectorization. Because this is a major
optimization for processor performance, it is in its own chapter.

S–2312–36 1

Cray SV1™ Application Optimization Guide

• Chapter 5, page 59 describes how to optimize memory use.

• Chapter 6, page 79 describes how to optimize input and output.

1.2 Optimization Overview

Optimization is the process of changing a program or the environment in which
it runs to improve its performance. Performance gains generally fall into one
of two categories of measured time:

• User CPU time. Time accumulated by a user process when it is attached to a
CPU and executing. When running on a single CPU, CPU time is a fraction
of elapsed time. When the program is running in parallel, CPU time is a
multiple of elapsed time.

• Elapsed (wall-clock) time. The amount of time that passes between the start and
termination of a user process. Elapsed time includes the following:

– User CPU time

– UNICOS system CPU time

– I/O wait time

– Sleep or idle time

Figure 1, page 4, shows a comprehensive view of the single-processor
optimization process. This is an iterative method that requires you to determine
when to stop optimizing the code.

Note: During the optimization process you will need to execute your code
repeatedly to assess performance and measure performance gain. To save
execution time, we encourage you to work with smaller sample data sets that
exercise all of the code within your program.

Each area of optimization involves a three-step method, which includes the
following general steps:

1. Identify a problem.

2. Evaluate the problem.

3. Apply a technique.

Check your answers after each code modification to avoid regression, then
compare the new performance against the initial performance to decide where to

2 S–2312–36

Introduction [1]

proceed. If you want to continue optimizing for single-processor performance,
return to the initial analysis.

Note: If none of these techniques brings you closer to the desired computation
rates for the processor for your system, you may want to seek help from Cray.
See your Cray representative for more information.

S–2312–36 3

Cray SV1™ Application Optimization Guide

Sufficiently
optimized?

Check answers

Yes

No

CPU boundI/O boundMemory
bound

Identify where execution
time is being spent

Determine whether you
can make the code run

faster

Apply optimization
technique

Identify files using large
amounts of processing

time

Evaluate I/O alternatives

Restructure I/O

Evaluate dynamic memory
alternatives

Restructure code or insert
loader directives

Program is optimized for single-CPU performance. Can
the program benefit from Autotasking?

Identify large amounts of
memory wait or system

CPU time

a10881

Evaluate the code

Figure 1. Optimization Overview

4 S–2312–36

Introduction [1]

1.3 Hardware Overview

There are three models of the Cray SV1 series of systems:

• The Cray SV1 model, which is the system as originally released.

• The Cray SV1e model, which adds a faster processor to the original system.

• The Cray SV1ex model, which adds faster memory to the Cray SV1e model
and supports the Solid State Storage Device (SSD-I). See Section 6.8, page 94
for more information regarding the SSD-I.

Because the Cray SV1 series system performs multistreaming, its processors are
referred to as multistreaming processors (MSPs). Each MSP divides parallel
work among four single-streaming processors (SSPs). See Chapter 3, page 25 for
information on optimizing your program using multistreaming.

Each SSP has 2 add and 2 multiply functional units, allowing them to deliver 4
floating-point results per processor clock cycle.

The Cray SV1 series systems are significantly different from previous Cray
vector machines in that they provide a cache for the data resulting from scalar,
vector, and instruction buffer memory references. Like their predecessors, the
Cray SV1 series systems achieve high bandwidth to memory for both unit and
non-unit stride memory references.

The memory architecture is uniform access, shared central memory. Uniform
memory access (UMA) means that the access time for any CPU memory reference
to any location in memory is the same. Memory capacity for the system ranges
from a minimum of 4 GB up to a maximum of 128 GB.

The following table describes differences among the models:

The Cray SV1 series system has two module types: processor and memory.
The system must be configured with eight memory modules and one to eight
processor modules. Each processor module has four CPUs.

Cray SV1 systems have Cray SV1 CPUs.

A Cray J90 processor module can be upgraded with a Cray SV1 processor
module and the Cray J90 system can be configured with both processor module

S–2312–36 5

Cray SV1™ Application Optimization Guide

types, Cray J90 or Cray SV1. The original Cray SV1 model processors cannot be
mixed with Cray SV1e or Cray SV1ex model processors.

Cray SV1 Cray SV1e Cray SV1ex

Number of SSPs 4-32 4-32 4-32

Clock rate of an SSP in
megahertz

300 500 500

Peak GFLOPs per SSP 1.2 2.0 2.0

Peak GFLOPs for the system 38.4 64 64

Memory size in GB 4-32 4-32 32–256*

* Maximum value includes SSD-I.

The following figure shows the block diagram for a single processor.

6 S–2312–36

Introduction [1]

Vector ControlVector Registers

Vector Mask

Logical 2 Logical 2

Pop/Parity/LZ Pop/Parity/LZ

Shift Shift

Logical

2

3

Logical
Add Add

Pipe 0

Vector
Functional

Units

Shared Vector/Scalar
Functional Units

Scalar
Functional Units

Multiply

Add

Address
Functional

Units

Pipe 1

Pipe 0 Pipe 1

I/O

T77

T00

B77

B00

Status

Real-time Clock

Prog Clock Int

Scalar Registers

Exchange
Control

Vector
Length

Vector
ControlAddress Registers

Central
Memory

256-
Kbyte
Cache

Sj

Si

Si

Sj

Vj

Vk

Vi

Sj

Sk

Si

Sk

Sj

Si

Aj

Ak

Ai

Vj
Vk
Vi
Si
Sj

Sk

Sj

Sj

Si

Vi

Ai

Ak

Ak

Ai

P

Ak
Ak

Ai

+1,+ 2, +3
20 + N

20
20

20 + N
GigaRing/Y1

Channel
Control

Execution

Dispatch Vector
Instruction

Vector Issue Registers

Shared Resisters

CA

NIP CIP

LIP

LIP 1

CL
Instruction

Buffers

Bjk

XA

Tjk

Port D

(A0)

((Ah)+(nm))

((Ah)+(nm))

(A0)

Ak

1

4

V7

V6

V5

V4

V3

V2

V1

V0

S7

S6
S5

S4
S3

S2
S1

S0

A7

A6
A5

A4
A3

A2
A1

A0

SB7
SB6

SB5
SB4

SB3
SB2

SB1

SB0

SM37

Si Si Si Si Si Si Si SiAi Ai Ai Ai

SM0

ST7
ST6

St5
ST4

ST3
ST2

ST1

ST0

00

77

((A0)+(Ak)),((A0)+(Vk))

((A0)+(Ak)),((A0)+(Vk))

((A0)+(Ak)),((A0)+(Vk))

Bit Matrix Multiply

Pop/Parity/LZ

Shift

Logical

Add

F.P. Rec.Appr F.P. Rec.Appr

F.P. Multiply F.P. Multiply
F.P. Add F.P. Add

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0
00

37

1 1

1

1

1

1

1 1 1 1

4

2

3

Control and/or data from other processors.

The second vector logical functional unit and the
vector integer multiply functional unit share hardware
with the floating-point multiply functional unit.

The vector pop/parity/leading zero functional unit
shares hardware with the floating-point reciprocal
approximation functional unit.

The bit matrix multiply unit shares hardware with the
floating-point add functional unit.

Notes

VIR

Figure 2. Block Diagram

S–2312–36 7

Cray SV1™ Application Optimization Guide

1.3.1 The Processor

The Cray SV1 system has Cray SV1 processors. Cray SV1ex systems have Cray
SV1e processors. (Some Cray SV1ex systems also have extended memory,
called ex memory.)

The Cray SV1 processor uses a custom CMOS chip. The processor is
implemented using two chip types: processor and cache.

The processor chip contains the vector and scalar units. Scalar registers, scalar
functional units, and the instruction buffers reside in the scalar unit, while the
vector unit contains vector registers and the vector functional units. As in
previous Cray vector systems, the processor contains eight vector (V) registers,
eight scalar (S) registers backed by 64 T registers, and eight address (A) registers
backed up by 64 B registers. A parallel job also has access to eight shared B and
eight shared T registers, which are used for low overhead data passing and
synchronization between processors.

A vector functional unit contains two pipes, each capable of producing a result
every processor clock cycle. This results in a peak rate for a functional unit
of two results per clock cycle. The maximum vector length, or VL, is 64. The
combined floating-point functional units, add and multiply, deliver four results
per processor clock cycle.

In addition to the add and multiply units, the other vector functional units are
reciprocal, integer add, shift, pop/parity/leading zero, bit matrix multiply,
and logical.

The vector units are capable of full chaining and tailgating. Chaining is reading
from a V register that is still being written to, and tailgating is writing to
a V register that is still being read from a prior vector instruction. Scalar
floating-point operations are executed using the vector functional units. This is
different from the Cray J90 system, which has separate floating-point functional
units for scalar operations.

Two data paths or ports are provided to move data between processor registers
and memory via cache. In any given clock cycle, two memory requests can be
active and consist of two dual-port reads or one dual-port read and one dual-port
write. If there are no read requests, there can be only one write request active.
The processor can access all of memory, but an application is limited to a 16-GB
address space.

Instructions are decoded by the scalar unit; when vector instructions are
encountered, they are dispatched to the vector unit, which maintains an
independent instruction queue. Barring instruction dependency, the two units
can execute independently.

8 S–2312–36

Introduction [1]

There are 32 performance counters in four groups of eight each. Only one group
can be active at a time, with software providing user access to the data. The
groups are labeled 0 through 3. The collection order, based on how useful the
performance information is to the user, is 0, 3, 2 and 1. For an example of using
the hardware performance monitor, see Section 2.1.1, page 13.

Note: In addition to the processor clock, there is a system clock that runs at the
rate of 100 MHz. When using the cpu instruction to return the count of clock
ticks, the tick count is generated by the system clock rate.

1.3.2 Cache

Cache lies between memory and a processor’s registers. Its purpose is to speed
up loads.

Data read from memory is accessed through a high-speed, 32-Kword cache. Each
of the processors involved in multistreaming has its own cache.

The Cray SV1 system cache is a four-way set associative temporary storage area,
meaning each line can be allocated into any of four places, or ways.

Moving data from cache to a register is up to ten times faster than moving data
directly from memory to a register. Having the data items you are going to use
available in cache can represent a significant optimization in itself.

On non-cached Cray vector systems, performance on vector constructs generally
increases as a predictable function of vector length. This is not always the case on
the Cray SV1 series of systems, since long vectors can lead to a reduction in data
cache efficiency. In general, it is better to use blocked algorithms (similar to those
commonly used on microprocessors), balancing the vector length against any
potential data reuse that can be exploited via data cache.

For information on optimizing cache, see Chapter 3, page 25.

1.3.3 I/O

Disk drives, interfaces to other networks, and other peripherals are connected to
the Cray SV1 series of systems using the high-speed GigaRing I/O system. The
double-ring product is illustrated in Figure 3, page 10.

S–2312–36 9

Cray SV1™ Application Optimization Guide

I/O node

Tape

System
node

Network

I/O node

GigaRing
channel

I/O node

Disk

b11984

500 Mbyte/s

500 Mbyte/s

CRAY SV1

system

Figure 3. GigaRing I/O

Each of the rings has a maximum transfer rate of 500 MBPS, which provides an
effective total bandwidth of 800 MBPS. Since the two rings rotate in different
directions, the shortest path to the target node is selected for each transfer.

10 S–2312–36

Evaluating Code [2]

The first step in optimizing a program is evaluating its overall performance. This
allows you to decide where to focus optimization efforts.

When you compile and execute a program on a Cray SV1 series system, it usually
will be dominated by one of the following general activities:

• Processor computation (Section 2.1, page 11)

• Memory management (Section 2.2, page 19)

• Input/output (I/O) processing (Section 2.3, page 24)

A program is considered to be memory bound, I/O bound, or CPU bound
because its performance is limited by the dominant activity. Use the job
accounting (ja) and hardware performance monitor (hpm) tools as directed
in this chapter to identify where in your code to obtain the greatest potential
performance gain.

Figure 4, page 12 summarizes the recommended initial analysis.

2.1 CPU-Bound Programs

A CPU-bound code spends most of its elapsed time performing calculations in
the processor. (The terms CPU and processor are used in this section in the
same sense as SSP, or single-streaming processor.) The hpm(1) report will tell
you how effectively the code is using vector registers, instruction buffers, and
memory ports.

The following sections provide information and steps for determining
processor-related code bottlenecks. Section 2.1.1, page 13 describes the types of
reports that you can generate with the hpm(1) command. Procedure 1, page
13 describes the use of the hpm(1) command to determine whether code is
performing at peak levels on Cray SV1 series systems.

S–2312–36 11

Cray SV1™ Application Optimization Guide

CPU bound

Use ja report to determine:
- Excessive unlocked wait time?
- Efficient I/O requests?
- Expected I/O transfer rate?

 Begin evaluating code
using ja and hpm

Low
computational

intensity?

Done with single-CPU
optimization.

No No

No

No

No

Yes Yes

Yes

Yes

Yes

Memory
management I/O optimization CPU optimization

Memory
bound? I/O bound?

Low MFLOPS
and MIPS?

High fetch
rate?

a10882

Figure 4. Evaluating Code

12 S–2312–36

Evaluating Code [2]

2.1.1 Using the hpm Command to Issue Reports

The hpm(1) command allows you to access the hardware performance monitor
(HPM) and obtain overall program timing information. The hpm tool can issue
any one of the following four types of reports:

• Program summary (HPM counter group 0)

• Hold-issue conditions (HPM counter group 1)

• Memory use (HPM counter group 2)

• Vectorization (HPM counter group 3)

For complete information on the hpm utility, see the hpm(1) man page or the
Guide to Parallel Vector Applications.

Procedure 1: Using the hpm Command to Determine Processor Performance
Statistics

Use the following procedure to access the code’s processor performance statistics
and to determine whether the code is optimized for single-CPU speed:

1. Produce an hpm report by first compiling the program, then issuing the hpm
command with the program name, as shown in the following example:

ftn yourcode.f or CC yourcode.C
hpm ./a.out

By default, this hpm command generates a program summary (group 0)
report, the most commonly run report. Also, by default, the hpm command
writes report-style output to the stderr file, allowing the program’s default
output to appear on the screen.

S–2312–36 13

Cray SV1™ Application Optimization Guide

The following is a sample hpm group 0 report.

Group 0: CPU seconds : 31.74961 CP executing : 9524883354

Million inst/sec (MIPS) : 42.72 Instructions : 1356230656

Avg. clock periods/inst : 7.02

% CP holding issue : 81.29 CP holding issue : 7743041828

Inst.buffer fetches/sec : 0.24M Inst.buf. fetches: 7680895

Floating adds/sec : 78.46M F.P. adds : 2491024131

Floating multiplies/sec : 82.85M F.P. multiplies : 2630592592

Floating reciprocal/sec : 0.00M F.P. reciprocals : 10201

Cache hits/sec : 92.75M Cache hits : 2944803625

CPU mem. references/sec : 139.73M CPU references : 4436364260

Floating ops/CPU second : 161.31M

2. Determine whether the code is dominated by scalar or vector operations.
To do this, use the values shown in the hpm report to perform the following
steps:

a. Find the millions of instructions per second (MIPS) for the code by
looking at the Million inst/sec (MIPS) row of the hpm report.

b. Find the floating-point operations per second (FLOPS) for the code by
looking at the Floating ops/CPU second row of the hpm report.

c. Use Table 1, page 15 to determine whether the MIPS and FLOPS for the
code are low or high, based on the hardware expectations.

The code is not likely to achieve peak FLOPS or MIPS rates, but some
codes are capable of performing at substantial fractions of peak speed.

Low FLOPS is any single-digit rate up to 20% of peak rates for that
system. High FLOPS are generally anything above 66% of peak rates for
that system.

Note: This assumes that the program uses floating point operations.
In some applications, for example in the bioinformatics field, a fully
vectorized and properly optimized program will have zero FLOPS.

Low MIPS rates are at or near the bottom of the range for that system.
High MIPS rates are generally anything near 50% of peak MIPS for
that system.

d. Use Table 2, page 15 to determine whether the code is dominated by
scalar or vector operations.

14 S–2312–36

Evaluating Code [2]

Table 1. Single-Processor Hardware Expectations

Cray SV1 Cray SV1ex

Peak FLOPS 1200M 2000M

MIPS range 30 to 300 50 to 500

Table 2. Determining if the code is dominated by scalar or vector operations

FLOPS MIPS Determination

High or
Medium

Low Code is most likely dominated by vector
operations. The code is performing well.

Medium Medium Code is most likely a mix of scalar and vector
operations. CPU optimization might help
improve its CPU performance.

Medium or
Low

High Code is most likely dominated by scalar
operations (is not vector code). CPU
optimization will help improve its CPU
performance.

Low Medium Code is dominated by scalar operations.
CPU optimization will help improve its CPU
performance.

Low Low Code is performing poorly, whether it is scalar
or vector. It has a CPU performance problem.
CPU optimization will help improve its CPU
performance.

Note: Low FLOPS values are not always bad. In some applications, a fully
vectorized and optimized program will use no floating-point operations,
so it will have zero FLOPS.

3. Determine if the instruction buffer fetches per second (as shown by the
Inst.buffer fetches/sec row of the hpm report) are close to or greater
than 0.1 million per second. If yes, see the following note on analyzing the
CPU-bound code. If no, go to the next step.

S–2312–36 15

Cray SV1™ Application Optimization Guide

Note: Excessive instruction buffer fetches tend to slow down the code.
If the code has a high rate (approaching 0.1 million per second), the
code may have excessive jumping (as with go to or if-then-else
constructs) or excessive calls to subprograms. CPU optimization probably
will help the overall performance.

4. Determine the computational intensity ratio of the code. Use the values in
the hpm report, as follows:

a. Divide the number in the Floating ops/CPU second row by
the number in the CPU mem.references/sec row. This is the
computational intensity of the code.

The computational intensity ratio is the ratio of the floating-point
operation rate to the memory access rate. This ratio should reflect
the floating-point operations in the code (for example, a=b+c has 1
Floating ops/CPU second and 3 CPU mem.references/sec, or a
computational intensity of 0.33). Any ratio less than 1/3 makes excessive
use of the processor memory ports while the remainder of the processor
idles. This is usually caused by memory-to-memory traffic (a=b), highly
scalar code, or a hidden performance problem.

b. If the computational intensity ratio of the code is less than 1/3,
the program is not making effective use of the processor. If the
computational intensity ratio of the code is 1/3 or more, go to the next
step.

5. If you have already determined that the code is not memory or I/O bound,
the code is probably optimized for single-CPU performance. However, if
your program still does not achieve the performance expected from your
system after you have exhausted all optimization techniques, Cray can
offer assistance for further optimization on a fee basis. See your Cray
representative for more information.

6. If you have completed single-CPU optimization of your program and are
satisfied with its single-CPU performance, you might want to run your
program in parallel on multiple processors. The multistreaming processor
(MSP) feature is the most convenient method to achieve parallel execution.
To determine whether your program can benefit from multistreaming, refer
to Chapter 3, page 25.

2.1.2 Analyzing Multistreaming Code

The following other tools are available to analyze multistreaming code:

16 S–2312–36

Evaluating Code [2]

• The prof(1) and profview(1) commands (see Section 3.6.1, page 33)

• The MSP_STATS environment variable (see Section 3.6.2, page 35)

• The ps(1) command (see Section 2.1.2.1, page 17)

• The jstat(1) command (see Section 2.1.2.2, page 18)

• The cpu(8) command (see Section 2.1.2.3, page 18)

• The ja(1) utility (see Section 2.2.2, page 20)

• The sysconf(1) command (see Section 2.2.2.1, page 22)

2.1.2.1 The ps(1) Command

The -l option of the ps command reports the process connection state in the
WCHAN field of its output.

If you are running a single-processor job, an SSP process connected to CPU
5 would have cpu-05 in the WCHAN field. When running on an MSP, ps
displays both the MSP number and the number of each of the SSPs involved.
The following convention applies:

mspn.i

n MSP number.

i SSP number.

For example, ps -el | grep msptest, while multistreaming the executable
program msptest, produces output similar to the following:

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

101 R 1330 4711 4689 0 996 24 250164 8504 msp0.2 p002 0:07 msptest

101 R 1330 4709 4689 0 996 24 250164 8504 msp0.0 p002 0:07 msptest

101 R 1330 4712 4689 0 996 24 250164 8504 msp0.1 p002 0:07 msptest

101 R 1330 4710 4689 0 995 24 250164 8504 msp0.3 p002 0:07 msptest

Output for a multitasking and multistreaming program running on two MSPs is
as follows:

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

101 R 0 2246 2203 0 995 24 264064 16504 msp0.1 p003 0:17 msptest

101 R 0 2245 2203 0 996 24 264064 16504 msp0.0 p003 0:17 msptest

101 R 0 2247 2203 0 995 24 264064 16504 msp0.2 p003 0:17 msptest

101 R 0 2248 2203 0 995 24 264064 16504 msp0.3 p003 0:17 msptest

101 R 0 2249 2203 0 996 24 264064 16504 msp1.0 p003 0:17 msptest

S–2312–36 17

Cray SV1™ Application Optimization Guide

101 R 0 2250 2203 0 996 24 264064 16504 msp1.1 p003 0:17 msptest

101 R 0 2251 2203 0 996 24 264064 16504 msp1.2 p003 0:17 msptest

101 R 0 2252 2203 0 993 24 264064 16504 msp1.3 p003 0:17 msptest

There is no ordering imposed on the output.

2.1.2.2 The jstat(1) Command

The jstat command displays information pertaining to active jobs. Using the
-j option, you can view the processor connection state of all processes within a
job. The state field of the jstat -j id output identifies the MSP and SSP on
which each executing process within the job is running. For example:

pid status state utime stime size addr system call command

6647 running msp0.1 117 0 16504 90116 nosys msptest

6652 running msp0.0 117 0 16504 90116 nosys msptest

6651 running msp0.2 117 0 16504 90116 nosys msptest

6649 running msp0.3 117 0 16504 90116 nosys msptest

The order of the SSPs is random.

2.1.2.3 The cpu(8) Command

The -i option of the /etc/cpu command displays information for each
configured processor. Among the items displayed is an indicator identifying
participation in an MSP. The following example shows output for a 12 CPU
machine with one MSP configured:

cpu type state

0 sv1 up cache defon

1 sv1 up cache defon

2 sv1 up cache defon

3 sv1 up cache defon msp0.2

4 sv1 up cache defon

5 sv1 up cache defon

6 sv1 up cache defon

7 sv1 up cache defon msp0.0

8 sv1 up cache defon

9 sv1 up cache defon

10 sv1 up cache defon msp0.3

11 sv1 up cache defon msp0.1

18 S–2312–36

Evaluating Code [2]

2.2 Memory and Cache

There are two ways of optimizing memory on the Cray SV1 system:

• By getting the most out of cache. Cache is a high-speed memory located
between main memory and each MSP. The time it takes a register to access
data from cache is four to five times faster on the Cray SV1 system and 10
times faster on the Cray SV1ex system than the time it takes to access data
from memory. See Section 2.2.1, page 19.

• By minimizing the size of your program in memory. When the compiled
program begins execution, it becomes a UNICOS user process in memory.
The process resides in memory during execution and it interacts with the
operating system. Its size might expand or decrease during execution. If the
process spends excessive elapsed time managing memory, it is considered a
memory-bound process. See Section 2.2.2, page 20.

2.2.1 Cache

For information on cache hits and cache hits per second, see the group 0 hpm
example in Section 2.1.1, page 13. Use the group 2 report for the hit rate for
cache reads as follows:

% ftn myprog.f

% hpm -g2 ./a.out >hpm.out

The contents of the hpm.out file is as follows.

Group 2: CPU seconds : 30.82432 CP executing : 9247297374

Inst. buffer fetches/sec : 0.25M total fetches : 7675226

Scalar memory refs/sec : 0.74M actual refs : 22724168

% of all data refs: 0.51%

Scalar memory writes/sec : 0.51M actual writes : 15683763

Scalar memory reads/sec : 0.23M actual reads : 7040405

cache read hit rate: 52.14% actual hits : 1525073379

Block memory refs/sec : 142.94M actual refs : 4406125465

B,T memory refs/sec : 2.04M actual refs : 62784808

V memory refs/sec : 140.91M actual refs : 4343340657

CPU memory refs/sec : 143.68M actual refs : 4428849633

avg conflict/ref: 0.05 actual conflicts : 211824843

CPU memory writes/sec : 46.76M actual refs : 1441268906

CPU memory reads/sec : 96.92M actual refs : 2987580727

S–2312–36 19

Cray SV1™ Application Optimization Guide

For information on how to increase the hit rate and improve the performance of
your program, see Section 5.2, page 62.

2.2.2 Code Size

A general rule for the size of a code’s process in memory is “smaller is better.”
The advantages of a smaller process are reductions in swap frequency, wait-time,
and time-to-load. Although there are exceptions to this rule, for now you need
only to identify whether your process is memory bound.

The ja utility reports job or session-related accounting information provided by
the job accounting daemon. It can provide you with a report that contains an
overall view of memory usage, I/O, and system overhead. This report can help
you determine whether your code is CPU bound, memory bound, or I/O bound.

For more information on the job accounting tool, see the ja(1) man page.

Procedure 2: Determining if the code is memory bound

To determine if the code is memory bound, perform the following steps:

1. To obtain a report that shows an overall view of memory usage, I/O, and
system overhead, run the job accounting utility, ja -clth (single-tasked),
with the code, as shown in the following example. (To save an extra step,
you can also run ja(1) concurrently with hpm(1), the results of which you
will use later).

Enter this command to compile and load the code:

ftn -o bigio bigio.f

Enter this command to turn on job accounting:

ja

Enter this command to execute the code as a UNICOS user process:

./bigio

Enter this command to store a 132-column report in the ja.rpt file:

ja -clth > ja.rpt

20 S–2312–36

Evaluating Code [2]

Here are some samples of requests for and returns from sample ja reports:

] cut -c1-72 ja.rpt

Job Accounting - Command Report

===============================

Command Started Elapsed User CPU Sys CPU I/O Wait I/O Wait

Name At Seconds Seconds Seconds Sec Lck Sec Unlck

======== ======== =========== ========== ========== ======== ==========

ja 11:29:50 0.1906 0.0014 0.0137 0.18 0.0000

csh 11:29:59 0.0038 0.0004 0.0035 0.00 0.0000

bigio 11:30:05 31.1637 31.0011 0.0350 0.13 0.0000

] cut -c1-9,73-132 ja.rpt

Job Accou

=========

Command CPU MEM I/O WMemKwords Log I/O Memory Ex

Name Avg Mwds Avg Mwds Xferred Request HiWater St Ni Fl SBU’

======== ========= ========= ======== ======= ======= === == == =====

ja 0.3556 0.4297 0.00 0 880 0 20 0.

csh 0.0734 0.0000 0.00 2 163 0 20 F 0.

bigio 0.7890 0.7793 0.14 28 1616 0 20 0.

Note: To ensure a representative reading, the user process you are
measuring with the ja utility should have an execution time that is greater
than 1 second.

2. Find the Memory HiWater column of the ja report. Perform the following
steps to determine if the memory high-water mark for the process is a
significant fraction of available user memory.

Note: A significant fraction of available user memory on your system is
a subjective measure based on the chances of the code finding room in
memory as it competes with other users’ jobs. Whether the code finds
room in memory depends on how many jobs are competing for memory,
the job size, the priority of the process, memory latency, and other factors.

a. Multiply the number in the Memory HiWater column of the ja report
by 512. This gives you the maximum size of your process as measured in
Cray words.

S–2312–36 21

Cray SV1™ Application Optimization Guide

b. Determine the amount of available user memory and the number of
available processors on your system by using the sysconf(1) command
(see Section 2.2.2.1, page 22). Use the USRMEM value in the SOFTWARE
report of the sysconf command as the amount of available user
memory for your system. Use the NCPU value in the HARDWARE report of
the sysconf command as the number of available processors.

c. Although you might be able to execute a process as large as the size
stated in USRMEM of the sysconf report, you are probably sharing your
system with other users. Also, your system most likely has multiple
processors. Therefore, use the following guidelines to determine whether
the memory high-water mark for the process is a significant fraction of
available user memory.

• If the system on which the code is running has four processors or less,
divide the maximum size of your process by user memory (USRMEM
on the sysconf output). If the result is equal to or greater than 0.333,
your process will probably benefit from optimization of memory
management. If the result is less than 0.333, go to the next step.

• If the system on which the code is running has more than four
processors, divide the user memory (USRMEM on the sysconf
output) by the number of processors (NCPU on the sysconf output).
Compare this number to the maximum size of your process. If
the maximum size of your process is bigger than this number,
your process will probably benefit from optimization of memory
management. If the maximum size of your process is not bigger than
this number, go to the next step.

3. If the number in the Sys CPU Seconds column in the ja report for the
code is greater than 10% of the number in the User CPU Seconds column,
you have memory-bound code. Inefficient memory management is one
cause for excessive elapsed time.

If the number in the Sys CPU Seconds column is not greater than 10% of
the number in the User CPU Seconds column, your code is not memory
bound.

2.2.2.1 Determining How Much Memory Is Available on Your System

To find out how much user memory is available on your Cray SV1 series
system, use the sysconf, target, or sar -M commands, or ask your system
administrator.

22 S–2312–36

Evaluating Code [2]

The sysconf(1) command reports a number for user memory (USRMEM) in the
SOFTWARE portion of its report, as shown in the following sample portion of a
sysconf command output.

HARDWARE: SERIAL= SN9617 MFTYPE= Cray SV1 MFSUBTYPE= SV1

NCPU= 20 NSSP= 8 NMSP= 3 CPCYCLE= 10.0000 ns

MEM= 4294964992 NBANKS= 1024 CHIPSZ= 67108864

AVL= YES BDM= YES EMA= YES HPM= YES BMM= YES

SSD= 0 SSDRINGS= 0 IOS= MODEL_F RINGS= 4

SOFTWARE: RELEASE= 10.00 POSIX VERSION= 199009 SECURE SYS= ON

SYSMEM= 60092416 WRDS USRMEM= 4234872576 WRDS

OS_HZ= 60 CLK_TCK= 100000000

JOB_CONTROL= YES SAVED_IDS= YES SCTRACE= ON

UID_MAX= 16777215 PID_MAX= 100000

ARG_MAX= 49999 CHILD_MAX= 98 OPEN_MAX= 64

NMOUNT= 150 NUSERS= 300 NPTY= 200

NDISK= 32 SDS= 0 NBUF= 8000

POSIX_PRIV= ON SECURE_MLSDIR= SECURE SECURE_MAC= OFF

PRIV_SU= ON PRIV_TFM= OFF

The target(1) command reports the absolute memory size of your system in the
memsize value as shown in the following sample portion of a target command
output. Available user memory should be greater than 90% of this value.

Primary machine type is: CRAY SV1

banks = 1024

numcpus = 20

ibufsize = 32

memsize = 4294967296

memspeed = 33

clocktim = 10000

numclstr = 21

bankbusy = 14

The sar(8) command with the -M option specified provides a dynamic report
of available user memory.

For more information on the sysconf(1), target(1), and sar(8) commands,
see the man pages.

S–2312–36 23

Cray SV1™ Application Optimization Guide

2.3 I/O Bound

If a program spends most of its elapsed time performing I/O, it is considered
I/O bound. I/O optimization can offer a significant savings in elapsed time. If
the design of a program requires large amounts of I/O, you should optimize for
I/O performance. However, if the code runs 24 hours and performs only 1 hour
of I/O, there are other areas of optimization that will probably have a greater
impact on overall code performance.

Procedure 3: Determining if the Code is I/O Bound

To determine whether the code is I/O bound, perform the following steps:

1. Run the job accounting utility ja -clth (single-tasked), with the code to get
a report for an overall view of memory usage, I/O, and system overhead.
You can use the same report you created in Procedure 2, page 20 without
running the code again.

Note: To ensure a representative reading, the user process you are
measuring with the ja utility should have an execution time that is greater
than 1 second.

2. If the sum of the number in the I/O Wait Sec Lck column plus the
number in the I/O Wait Sec Unlck column of the ja report is close to
or greater than 50% of the number in the User CPU-Seconds column,
the code is probably I/O bound.

Note: If a program has frequent or large formatted I/O requests, it is
possible for it to be I/O bound even if the test in this step indicates that
it is not. Formatted I/O (specified by using a Fortran FORMAT statement
or a C++ scanf or printf command) consumes user CPU seconds to
translate between ASCII and internal binary representation. This form
of I/O time is not reflected in the two I/O Wait time columns of the ja
report. A program that contains frequent or large formatted I/O requests
might benefit from I/O optimization.

24 S–2312–36

Multistreaming [3]

Multistreaming is a feature that lets you schedule four dedicated Cray SV1 series
CPUs as one multistreaming processor (MSP) for a Fortran, C, or C++ program.
It automatically divides loop iterations among the four CPUs, each of which is
called a single streaming processor (SSP). You may get speedup factors of up to
four on loops to which this technique can be applied.

Figure 5, page 25 illustrates the loop iterations that each CPU will operate on for
the following loop.

DO I = 1,20

A(I) = A(I) * 3.14

ENDDO

CPU0 I = 1, 5

CPU1 I = 6, 10

CPU2 I = 11, 15

CPU3 I = 16, 20

a12187

Figure 5. Dividing Loop Iterations among CPUs

Multistreaming is an optional feature. To determine whether or not
multistreaming is enabled on your Cray SV1 series system, enter the sysconf(1)
command at your system prompt. The HARDWARE output field contains the NMSP
field, which shows the number of multistreaming processors configured. The
relevant field is in boldface type in the following example of sysconf output.
Having the NMSP field set to 2, as in this example, means two MSPs (eight SSPs)
are configured for multistreaming.

HARDWARE: SERIAL= SN3202 MFTYPE= CRAY-SV1 MFSUBTYPE= SV14XX

NCPU= 32 NSSP= 24 NMSP= 2 CPCYCLE= 10.0000 ns

MEM= 1073739520 NBANKS= 1024 CHIPSZ= 16777216

S–2312–36 25

Cray SV1™ Application Optimization Guide

AVL= YES BDM= YES EMA= YES HPM= YES BMM= YES

SSD= 0 RINGS= 0 IOS= MODEL_F

SOFTWARE: RELEASE= 10.00 POSIX VERSION= 199009 SECURE SYS= ON

SYSMEM= 33972224 WRDS USRMEM= 1039767296 WRDS

OS_HZ= 60 CLK_TCK= 100000000

JOB_CONTROL= YES SAVED_IDS= YES SCTRACE= ON

UID_MAX= 16777215 PID_MAX= 100000

ARG_MAX= 49999 CHILD_MAX= 98 OPEN_MAX= 64

NMOUNT= 150 NUSERS= 300 NPTY= 200

NDISK= 32 SDS= 0 NBUF= 8000

POSIX_PRIV= ON SECURE_MLSDIR= SECURE SECURE_MAC= OFF

PRIV_SU= ON PRIV_TFM= OFF

Multistreaming on a Cray SV1 series system is similar to Autotasking in
distributing loop iterations across processors. However, multistreaming causes
gang scheduling of all requested processors, meaning they are attached to
the program whether they are actually executing code or not. Autotasking
schedules processors as they are needed. Processor utilization efficiency
is directly proportional to the extent that you are able to multistream the
program. For information on how to invoke and tune your program to enhance
multistreaming, see the following section.

3.1 Compiler Options and Directives

You can control multistreaming within your program by means of command-line
options and compiler directives.

3.1.1 Fortran Compiler Options

To enable multistreaming in a Fortran program, include either the -O stream1,
-O stream2, or -O stream3 option on the ftn(1) command line. The
-O stream2 and -O stream3 options are more aggressive than -O stream1.
For more information on using these options with Fortran, see the Cray Fortran
Compiler Commands and Directives Reference Manual.

In the following example, the ftn(1) command turns on streaming:

% setenv NCPUS 1

% ftn -O stream2 -O nothreshold streamer.f

% ./a.out

26 S–2312–36

Multistreaming [3]

The setenv command specifies one multistreaming processor, meaning your
program gets four SSPs.

Note: You may get slight numeric differences when you select the most
aggressive streaming option (stream3). Check your program output to see if
the answers generated are acceptable.

3.1.2 C and C++ Compiler Options

In C and C++, use the -h stream1, -h stream2, and -h stream3 compiler
options to enable multistreaming. The -h stream2 and -h stream3 options
are more aggressive than -h stream1. See the Cray Standard C and Cray C++
Reference Manual for more information on these options.

The following example specifies conservative streaming. By default, the
program runs on one MSP. The -h report=m option generates multistreaming
optimization messages.

% setenv NCPUS 1

% cc -h stream1 -h report=m -h nothreshold streams.c

% ./a.out

3.1.3 Directives

The concurrent, preferstream, stream, and nostream directives allow
you to enhance the performance of multistreaming.

3.1.3.1 concurrent Directive

The concurrent directive lets you communicate to the compiler that a loop is
parallel when the compiler cannot make that determination on its own. Placing
the following in front of a loop instructs the compiler to multistream that loop.

Fortran:

!DIR$ concurrent

C and C++:

#pragma _CRI concurrent

This directive is especially important for C programs in which the presence of
pointers can make parallelizing loops difficult for the compiler.

S–2312–36 27

Cray SV1™ Application Optimization Guide

The ivdep directive serves this purpose for vectorization, but it is not a powerful
enough assertion to allow the compiler to multistream a loop. Converting all
ivdeps to concurrent in your program both enables multistreaming and
improves the performance of vector code.

Applying the concurrent directive to all the loops that can be multitasked
gives the compiler the best chance of generating optimal code. For information
on the kinds of loops that can be multistreamed, see Section 3.2, page 29.

3.1.3.2 preferstream, stream, and nostream Directives

You can designate or skip loops using the multistreaming directives. The Fortran
directives are as follows:

!DIR$ preferstream

!DIR$ nostream

!DIR$ stream

The preferstream directive selects which loop, among two or more nested
loops, to be multistreamed. Insert the directive immediately in front of the loop
to be multistreamed. If the compiler has determined that it is safe to multistream
the loop, it will do so.

The nostream and stream directives toggle multistreaming off and on in
Fortran. The nostream directive turns multistreaming off in your program until
a stream directive is encountered.

The following Fortran example turns streaming on for the inner loop:

DO I=1,N1

!DIR$ preferstream

DO J=1,N2

A(I,J) = B(J,I)

ENDDO

ENDDO

The C and C++ directives are as follows:

#pragma _CRI nostream

#pragma _CRI preferstream

Unlike Fortran, there is no #pragma_CRI stream directive. The nostream
directive has different meanings in Fortran and C. The C and C++ version turns
multistreaming off only for the loop that immediately follows the directive.

28 S–2312–36

Multistreaming [3]

In cases in which the compiler could multistream more than one loop in a loop
nest, the preferstream directive instructs it to choose the one immediately
following the directive.

3.2 Loops That Are Multistreamed by the Compiler

The compiler uses certain criteria to judge whether or not a loop can be
automatically multistreamed.

At the point the compiler evaluates a program, the code has already gone
through an initial restructuring, as it would for vectorization or multitasking.
Optimizations such as loop interchange (switching an inner loop with an outer
loop) and loop splitting (changing a single loop into two or more loops) may
have been done.

If a loop passes the following tests, it will be multistreamed:

• Its iterations can be divided among different processors without delivering
incorrect results. The loop can contain private arrays if their values are not
used outside the loop.

• There are no function or subroutine calls within the loop. (The Autotasking
CNCALL directive is ignored.)

• A scatter operation is ordered as opposed to random. That is, there must be a
constant stride through the array to be scattered; taking random elements
from an array cannot be multistreamed.

• The loop is not contained in a vector loop.

• It is not prefaced by the nostream directive.

• It has a trip count of at least two.

• While the -O threshold Fortran option or the -h threshold C
and C++ option does not disable multistreaming, it does slow down a
program’s execution. Because threshold is the default, you must specify
-O nothreshold or -h nothreshold to turn it off.

When two loops that qualify to be multistreamed are nested, the following
criteria are used in the following order to choose which loop to multistream:

1. The outermost loop that is prefaced by the preferstream directive.

2. The loop that the compiler estimates will have the greatest amount of work
after the loop is interchanged to its outermost valid position.

S–2312–36 29

Cray SV1™ Application Optimization Guide

3. The outermost loop after initial restructuring.

Once a loop has been selected, it is moved to its outermost valid position before
multistreaming. If the loop is not prefaced by a preferstream directive and has
a runtime trip count, two versions of the loop are generated, one multistreamed
and the other not. Which version is executed at runtime depends on the trip
count.

3.3 Bit Matrix Multiply (BMM) and Multistreaming

Your view of the BMM programming model on a Cray SV1 series system is
identical to that used on all previous Cray platforms: a single BMM register, 64
elements deep and wide, and the intrinsic functions. The Fortran functions
are m@ld, m@mx, m@ldmx, m@ul, and m@clr, and the C and C++ functions are
_mclr_mld, _mmx, _mldmx, and _mul.

The compiler automatically utilizes the multiple BMM registers available on an
MSP and divides the BMM work between them.

There are two types of BMM loops: those that directly contain BMM operations
and those that indirectly contain BMM operations (that is, those that contain direct
or indirect BMM loops). In the following loops, the i loops directly contain the
m@ld and m@mx, and the j loop indirectly contains the operations:

do j=1, n

do i=1, 64

m@bmm(i) = m@ld(b(i,j))

enddo

do i=1, m

a(i,j) = m@mx((c(i,j))

enddo

enddo

The following list uses these terms in describing how the compiler applies BMM
operations to the SSPs of an MSP:

• Loops that directly contain an m@ld or _mld that is used outside the loop
need to be executed redundantly across all SSPs. Loops that indirectly contain
an m@ld or _mld can and should be multistreamed as usual.

• Loops that directly contain m@ldmx or _mldmx can be multistreamed, but
partitions (except the last) must be multiples of 64. Loops that indirectly

30 S–2312–36

Multistreaming [3]

contain m@ldmx or _mldmx can be multistreamed with no restrictions on
partition size.

• Loops that contain m@mx or _mmx (directly or indirectly) can be multistreamed
with no restrictions on partition size.

• Loops that directly contain m@ul or _mul cannot be multistreamed. They can,
however, be executed redundantly across SSPs when containing a feeding
m@ld or _mld, as in the following loop:

CDIR$ shortloop

do i=0, vl-1

m@bmm(i) = m@ld(m@ul())

enddo

• Loops that contain m@mx or _mmx with a reaching m@ld or _mld (or a
m@ldmxor _mldmx) outside the loop and imported from a loop that is not
redundantly multistreamed, first broadcast the BMM value from SSP 0 to the
others before multistreaming. (All loops will be multistreamed so that SSP 0
will execute the last iteration of the loop. Consequently, SSP 0’s BMM register
will always contain the value that is indicated by the BMM programming
model to be in the user’s BMM register at the end of a loop.)

• Loops that directly or indirectly contain m@clr or _mclr can be
multistreamed. If an m@clr or _mclr is not in a multistreamed loop, it
should be executed redundantly across all SSPs.

3.4 Tasking and Multistreaming

Multistreaming and multitasking can coexist in the same program, as described
in this section. Multistreaming offers the following performance advantages
over multitasking:

• The startup time for multistreaming is faster.

• Communication between multistreaming processors is more efficient than
between multitasking processors.

Still, some programs may run as fast or even faster when they use multitasking.
Running your program both ways will tell you which method is better for you.

S–2312–36 31

Cray SV1™ Application Optimization Guide

3.4.1 Multitasking on MSPs with Multistreaming

Multitasking and multistreaming can be combined within an application to
provide better performance than either model alone. Within a function, the
compiler will do either multistreaming or multitasking, but not both. If the
function contains multitasking directives, the compiler will do multitasking;
otherwise, it will do multistreaming.

Usually, the best approach to combining the models is to apply multitasking
through user directives to parallel loops that contain subroutine calls, and to
apply multistreaming within the called subroutines.

If you include both multitasking and multistreaming options on the compiler
command line (for instance, -O task2, -O stream2 in Fortran and
-h task2, -h stream2 in C and C++), the value of the NCPUS environment
variable (discussed inSection 3.1, page 26) will refer to MSPs. If you set NCPUS to
2 before compiling your program, you will have two MSPs, or a total of eight
SSPs, to work with.

In the following example, the loop will be multitasked by the compiler, and
the iterations of the loop will be split between the two MSPs requested by the
programmer:

!CMIC$ DOALL PRIVATE (I), SHARED (A,B,C,N)

DO I = 1, N

CALL FOO(A,B,C,I)

ENDDO

The best processor utilization is achieved if the work within a call to FOO is
effectively distributed through multistreaming across the SSPs in the MSP.

3.4.2 Multitasking on MSPs without Multistreaming

If you enable multitasking on the compiler command line (for instance, -O
task3 or -h task3) and do not specify multistreaming, the compiler will not
multistream for the compilation. The value of the NCPUS environment variable
(discussed inSection 3.1, page 26) now refers to SSPs instead of MSPs.

You may see improved performance for a multitasking program on Cray SV1
series systems without making changes to the code. A multitasking program
will compete with multistreaming programs for processors if you set the
MP_DEDICATED environment variable and enter the cpu(8) command as in
the following example. MP_DEDICATED relieves some of the overhead of task
scheduling. Notice that you must set the NCPUS environment variable to four
times the value of the cpu -a argument.

32 S–2312–36

Multistreaming [3]

% setenv NCPUS 8

% setenv MP_DEDICATED 1

% cpu -a 2 ftn -O task3 atasker.f

3.5 Vectorization and Multistreaming

Once multistreaming divides the iterations of a loop among the SSPs working
on your program, a number of single-processor optimizations created by the
compiler continue to improve the performance of your program. The most
important is vectorization.

Vectorization usually yields a greater speedup than any of the other
single-processor optimizations. The more you can get out of vectorization, the
closer you can come to realizing the full potential of your Cray SV1 series system.

Vectorization and multistreaming coexist automatically, as follows:

• Vectorization and multistream can both work on the same loop, causing an
MSP to behave like an 8-pipe vector.

• Multistreaming can be done on a loop outside of the vector loop, making
it more similar to tasking.

For more information on vectorization, see Chapter 4, page 39.

The major strategies you can follow in order to enhance vectorization are:

• Keep the stride through the array small; ideally, use a stride of 1.

• Avoid less efficient vector code, such as loops that contain variant IFs and
reductions.

3.6 Analyzing the Performance of a Multistreaming Program

Use the prof(1) command and MSP_STATS environment variable for analyzing
a multistreaming program.

3.6.1 The prof and profview Commands

The prof(1) command returns timing information at the function and
subroutine level for each processor involved in a program. To generate and view
performance data for a Fortran program, use the prof library and command
and the profview(1) visualization tool, as follows:

S–2312–36 33

Cray SV1™ Application Optimization Guide

% ftn -l prof -O stream2 -V -v streamer.f

% setenv PROF_WPB 1

% ./a.out

% prof -x a.out >prof.report

% profview prof.report &

For a C or C++ program, use the following commands:

% cc -l prof -h stream2 -V myprog.c

% setenv PROF_WPB 1

% ./a.out

% prof -x a.out >prof.report

% profview prof.report &

Figure 6, page 35 is an example of a pie chart view generated by profview.
This represents an aggregation of data collected from all four MSPs involved in
executing the program. It shows you the percentage of time consumed by the
longest-running routines.

When a program is multistreamed but not multitasked, the amount of time
spent in barriers will depend on the percentage of the program that can be
multistreamed. When the program is executing in multistreaming mode but is
not currently processing a loop, only one SSP is executing the program; the others
are waiting at a barrier until the next loop. This example shows that wait time in
the _MsBarrier routine.

34 S–2312–36

Multistreaming [3]

Figure 6. Profview Pie Chart

3.6.2 The MSP_STATS Environment Variable

The MSP_STATS environment variable provides statistics on multistreaming
for Fortran, C, and C++ programs. To enable the generation of statistics, set
MSP_STATS as follows:

% setenv MSP_STATS 1

S–2312–36 35

Cray SV1™ Application Optimization Guide

Enter the following commands to run your Fortran program with aggressive
multistreaming, on one multistreaming processor, and with MSP_STATS enabled:

% setenv MSP_STATS 1

% setenv NCPUS 1

% setenv NEW_ENTRY

% ftn -O stream2 -l libmsx.a myprog.f

% ./a.out

Running MSP_STATS for a C or C++ program involves the same set of
commands:

% setenv MSP_STATS 1

% setenv NCPUS 1

% setenv NEW_ENTRY

% cc -h stream2 -l libmsx.a myprog.c

% ./a.out

MSP_STATS provides the following output:

MSP SSP UserSecs MsLibSecs #MsEnts #Parks #Barrs #CInvs

--- --- ----------- ----------- --------- --------- --------- ---------

0 0 35.612 2.029 777737 783438 5401 788839

0 1 0.826 36.815 777737 783438 5401 788839

0 2 0.826 36.815 777737 783438 5401 788839

0 3 0.856 36.785 777737 783438 5401 788839

MSP SSP WaitIters Mispredicts OverFlows Reconnect

--- --- ----------- ----------- --------- ---------

0 0 3316440 0 1 24

0 1 205831159 10207 0 22

0 2 206147477 10207 0 23

0 3 205925417 10207 0 23

The column headers have the following meanings:

MSP Number of the multistreaming processor. Since
only one MSP is used, its number is 0.

SSP Number of each SSP. SSP 0 is the master processor.

UserSecs Wall-clock time spent outside of multistreamed
code for each SSP. The master processor spent
most of its time outside multistreamed code.

36 S–2312–36

Multistreaming [3]

MsLibSecs Wall-clock time spent inside the multistreaming
library. When an SSP is inside the library, it is
either waiting for a multistreamed section of code
to be entered or resumed (SSPs are parked while
waiting at a barrier) or an SSP is triggering the
beginning or resumption of a multistreamed
section of code.

#MsEnts The number of times multistreamed
procedures were entered. Entire procedures are
multistreamed; within these procedures, SSPs 1,
2, and 3 skip past code that must be executed by
one SSP.

#Parks The number of times the MSP was parked so that
SSP 0 could execute a single-streamed piece of
code. Parking and unparking is the way SSPs 1,
2, and 3 skip around single-streamed code. The
value is for the entire program.

#Barrs The number of times the MSP encountered
a streaming barrier in the program. Barriers
are often needed for data synchronization or
cache invalidation.

#CInvs The number of cache invalidations. This must be
less than or equal to the number of parks plus the
number of barriers. Cache is invalidated for
safety reasons.

WaitIters SSPs execute idle wait loops while they are inside
of the multistreaming library and waiting for other
SSPs to synchronize with them. WaitIters is
the total number of iterations each SSP spent in
these loops. The numbers should correlate roughly
with MsLibSecs.

Mispredicts The streaming library attempts to predict where
SSPs 1, 2, and 3 will be needed next after being
parked, and it advances execution speculatively
toward that point. The library safely prefetches
data and instructions into cache and may execute
instructions leading up to the unpark location.
Mispredicts is the number of times this
prediction was incorrect. It should be much less
than the number of parks for best performance.

S–2312–36 37

Cray SV1™ Application Optimization Guide

Overflows The number of times the streaming library
detected a common stack overflow. This should be
nonzero only for SSP 0.

Reconnect The approximate number of times each SSP was
reconnected by the operating system. The values
for the SSPs making up an MSP should be small
and roughly equal, indicating long connect times
and gang scheduling.

The statistics are gathered whether or not you have set the MSP_STATS
environment variable. There is little overhead associated with gathering the
statistics.

38 S–2312–36

Optimizing Using Vectorization [4]

Vectorized constructs perform up to a factor of 20 times faster compared with
nonvectorized constructs. Vectorization on Cray SV1 series systems does not
always perform in the same way as on earlier Cray systems, however.

To make the best use of vectorization, you must first understand it. Section 4.1,
page 39 describes how vectorization provides you with performance gains. If you
already understand vectorization, proceed to Section 4.2, page 41.

Note: The timings in this chapter were from an early Cray SV1 system, not
from a current Cray SV1ex system. They are presented to indicate the kind of
improvement you can expect when you vectorize your code.

4.1 What Is Vectorization?

Vectorization is similar to an assembly line in manufacturing. To illustrate,
Figure 7 compares two ways to carry out a five-step process for making chairs,
in which each step takes 1 minute:

• In a scalar process, assembly must go through all five steps before the next
assembly can begin the first step. One chair is produced every 5 minutes.

• In a vector process, each step in the sequence is performed as soon as the
previous step is complete, like it is an assembly line. In this way, the first chair
is completed after 5 minutes, and one new chair is completed each minute
after that.

S–2312–36 39

Cray SV1™ Application Optimization Guide

Scalar processing: one at a time

Each incoming seat must wait for processing until previous
assembly completes all five steps. One new chair is completed
every five minutes.

Five-step process

Input of seats Output of chairs

Vector processing: assembly line

One chair is completed each minute.

Step: 1 2 3 4 5

Step 1 begins when
previous assembly
begins step 2.

Step 2 begins when
previous assembly
begins step 3.

a11304

Figure 7. Scalar versus vector, illustrated

Like manufacturing a chair, processing an array in a loop is a multistep process
that can be performed one step at a time, or by a process resembling an assembly
line.

To process an array in either vector or scalar mode, a loop must:

• Load elements from memory to a register

40 S–2312–36

Optimizing Using Vectorization [4]

• Process the elements, placing the results in another register

• Store the results back to memory

Conventional (scalar) code is a one-at-a-time process: each element must finish
the final step of processing before the next element can begin the first step; that
is, each loop iteration begins when the previous iteration ends. But with vector
code, as in an assembly line, each element begins the first step when the previous
element finishes the first step, rather than the final step.

4.2 Loopmark Listings

When you invoke the -rm option on the ftn command line, the Cray Fortran
compiler will generate a loopmark listing. This loopmark listing displays at a
high level what optimizations were performed by the compiler and tells you
which loops were vectorized, parallelized, unrolled, interchanged, and so on.

The following example of a loopmark listing shows a loop that has been
vectorized (V) and unrolled (r):

1. subroutine sub(nx,ny,nz,a,b,c)

2. real a(nx,ny,nz) ,b(nx,ny,nz) ,c(nx,ny,nz)

3.

4. 1------< do k = 2,nz

5. 1 r----< do j = 2,ny

6. 1 r V--< do i = 2,nx

7. 1 r V c(i,j,k) = 2.5*(a(i,j,k)-a(i,j-1,k))*(b(i,j,k)-b(i,j-1,k))

8. 1 r V--< end do

9. 1 r----< end do

10. 1------< end do

11.

12. end

f90-6005 f90: SCALAR File = t.f, Line = 5

A loop starting at line 5 was unrolled 2 times.

f90-6204 f90: VECTOR File = t.f, Line = 6

A loop starting at line 6 was vectorized

In this example the loopmark indicates that the DO loop starting on line 6
has been vectorized and the DO loop starting on line 5 has been unrolled.
The messages following the subroutine provide details concerning these
optimizations. For example, the first message indicates that the loop starting at
line 5 was unrolled twice.

S–2312–36 41

Cray SV1™ Application Optimization Guide

To find out why a loop did not vectorize, use the -Onegmsgs option. In the
above example, this option would generate the following additional messages:

f90-6294 f90: VECTOR File = t.f, Line = 4

A loop starting at line 4 was not vectorized because

a better candidate was found at line 6.

f90-6294 f90: VECTOR File = t.f, Line = 5

A loop starting at line 5 was not vectorized

because a better candidate was found at line 6.

Each loop is marked with one or more of the following codes, indicating the type
of optimization performed:

Table 3. Loopmark Listing Keys

Primary Loop Type Modifier

A pattern matched b blocked

C collapsed f fused

D deleted i interchanged

E cloned p conditional, partial and/or
computed

I inlined r unrolled

M multistreamed s shortloop

P parallel/tasked t array syntax temp used

V vectorized w unwound

W unwound

If no optimization is done to a loop, it is marked with a number indicating the
nesting level, with the number 1 being the outermost loop.

If a loop is optimized, it is marked with the primary loop type and, optionally,
one or more secondary modifiers, which indicate the type of optimization
performed. For example, a loop may be marked with V to indicate that it was
vectorized, with Vr to indicate that it was both vectorized (primary) and unrolled
(modifier), or r to indicate that it was unrolled only. Modifiers are generally
subordinate to primary loop types, but in some cases may be used alone. In
other cases a loop may be subject to more than one primary optimization; for

42 S–2312–36

Optimizing Using Vectorization [4]

example, a loop may be marked with VM to indicate that it was both vectorized
and multistreamed.

The following sections discuss the different kinds of optimizations and the
associated loopmark listing indicators.

4.3 Vectorization

The most common type of optimization performed by the compiler is
vectorization. The following subsections discuss the different kinds of
vectorization and their associated loopmark listing indicators.

4.3.1 Fully Vectorized Loops

The compiler may generate fully vectorized loops. A loop that is fully vectorized
is indicated in loopmark listings with V, unless the modifier p is appended. The
p indicates that less-than-full vectorization has been done, so less performance
improvement has been achieved. In this case, examine the loop code. Partially
vectorized loops often can be rewritten to permit full vectorization.

4.3.2 Partially Vectorized Loops

The compiler may generate partially vectorized loops. A loop is partially
vectorized if it is split into multiple loops, at least one of which is scalar.
This optimization is most effective on loops that contain a higher than usual
percentage of vector work.

The following list contains portions of compiler messages that indicate partial
vectorization. To obtain more detail on each message produced by the compilers,
use the explain(1) command.

• Partially vectorized

• Partially vectorized with a single vector iteration

• Partially vectorized with a vector length of N

• Partially vectorized with a computed safe vector length

• Partially and conditionally vectorized

Partially vectorized loops are indicated with Vp in loopmark listings.

S–2312–36 43

Cray SV1™ Application Optimization Guide

4.3.3 Conditionally Vectorized Loop

The compiler may generate a conditionally vectorized loop, which results in two
loops; a scalar and a vector version. A runtime conditional expression chooses
the scalar loop when needed to avoid a recurrence; otherwise, the vector loop is
chosen. Here are two examples of loops that would be conditionally vectorized:

Fortran example:

do i=1,n

if (s1.EQ.0) then

a(i) = 0.0

else

a(i) = a(i-1)

end if

end do

C++ example:

for (i=0; i<n; i++

if (a[i]!=0) {

a[i]=0.0

}else{

a[i]=a[i-1]

}

Conditionally vectorized loops are indicated with Vp in loopmark listings.

If you know that there will never be a recurrence in that loop, you can insert a
!dir$ ivdep directive (Fortran) or a #pragma _CRI ivdep (C/C++) to
avoid the extra logic and get a fully vectorized loop. Likewise, if you know that
there will always be a recurrence, you can use the !dir$ nextscalar Fortran
directive to prevent the conditional expression to get a faster scalar loop.

4.3.4 Reduction Loop

The compiler may generate a particular form of vectorization called a reduction
loop. A reduction loop (also known as a summation loop or vector collapse)
sums the elements of one array dimension. If the size of that dimension
is considerably larger than the hardware vector register size, most of the
summation can occur with partial sums in vector registers. Some scalar code is
required to sum up the elements of the vector. The following samples illustrate
loops that would be optimized as reduction loops:

44 S–2312–36

Optimizing Using Vectorization [4]

Fortran example:

do i=1,n

sum=sum+a(i)

end do

C++ example:

for (i=0; i<n; i++){

sum = sum+a[i];

}

Reduction loops are indicated with V in loopmark listings.

4.3.5 Shortloop

The compiler may generate a shortloop. A shortloop is a loop that is vectorized
but also determined by the compiler to have fewer than 65 trips. In this case the
compiler deletes the top test for number of trips, and deletes the loop to the top of
the loop. A shortloop is more efficient than a conventional loop.

The compiler determines that a loop is a shortloop when:

• The !dir$ shortloop directive is used when compiling

• The constant trip count is less than 65

• Analysis of the array bounds shows that the array extent is declared to be
less than 64

Shortloops are indicated with Vs in loopmark listings.

4.3.6 Vector Update Loop

The compiler may generate vector update loops. A vector update loop performs
arithmetic on existing elements of an array and stores the results back into the
same array. This type of loop requires both a gather operation from and a scatter
operation to the same memory location and is not as fast as a fully vectorized
loop. The following samples illustrate code that would be optimized as vector
update loops:

S–2312–36 45

Cray SV1™ Application Optimization Guide

Fortran example:

do i=1,n

a(ib(i)) = a(ib(i))+b(i)

end do

C++ example:

for (i=0; i<n; i++) {

a[ib[i]]-a[ib[i]]+b[i];

}

Update loops are indicated with Vp in loopmark listings.

To improve its performance, insert an IVDEP directive, but only if you know
there are no subscript collisions.

4.3.7 Computed-Safe Vector Length Loop

The compiler might generate a vector loop with a computed-safe vector
length (VL) to avoid a recurrence. The safe VL is generated at runtime. If the
computed-safe VL creates a fully vectorized loop (that is, it is greater than
or equal to the machine-maximum VL), it is still moderately slower than its
unconditional fully vectorized counterpart because of the overhead involved
in the safe VL computation.

Examples of defining computed-safe VL loops follow:

Fortran example:

do i=1,n

a(i) = a(i-m)

end do

C++ example:

for (i=0; i<n; i++) {

a[i]=a[i-m];

}

Loops vectorized with computed-safe VL are indicated with Vp in loopmark
listings.

If you know that there will be no dependencies caused by array index overlap
between loop iterations, you can avoid this overhead by using the ivdep
directive to force this into a fully vectorized loop.

46 S–2312–36

Optimizing Using Vectorization [4]

4.3.8 Vectorization Inhibitors

For loops with a very large (hundreds) number of lines, use the -O aggress
optimization option on the ftn(1) compiler line. This option will allow for larger
internal tables for compiler analysis.

Some loops will not vectorize with the default value of vector2. In these
cases, using the -O vector3 option on the ftn(1) compiler line may improve
optimization.

Vectorization inhibitors within DO loops include:

• CALL statements not inlined

• I/O statements

• Backward branches

• Statement numbers with references from outside the loop

• References to character variables

• External functions that do not vectorize

• RETURN, STOP, or PAUSE statements

• Dependencies (see the following section)

You can address many of these inhibitors by slightly modifying the source code.

4.3.9 Vectorization and Dependencies

The compiler analyzes loops for dependencies. If a forward dependency is found
(data is read, then written), the loop can be vectorized. For example:

do i = 1,n

a(i) = a(i+1) * b(i)

end do

If you know that a loop is free of dependencies but the compiler cannot
determine this, use the !dir$ ivdep directive (Fortran) or a #pragma
_CRI ivdep (C/C++) to tell the compiler that the loop contains no vector
dependencies. A common example is illustrated in the update loop shown below.

S–2312–36 47

Cray SV1™ Application Optimization Guide

The compiler must assume that there will be collisions of indices and thus the
loop is vectorized with considerable overhead, as shown by the loopmark listing:

6. Vp----< DO i = 1,n

7. VP r-<> e(ix1(i)) = e(ix1(i)) - a(i)

8. VP----> END DO

9.

10. end

f90-6371 f90: VECTOR File = gs-2.f, Line = 6

A vectorized loop contains potential conflicts due to indirect

addressing at line 7, causing less efficient code to be generated.

f90-6204 f90: VECTOR File = gs-2.f, Line = 6

A loop starting at line 6 was vectorized.

When you know that there will be no collisions, you can insert an ivdep
directive to yield considerable performance improvement; for example:

6. !dir$ ivdep

7. V--< DO i = 1, n

8. V e(ix1(i)) = e(ix1(i)) - a(i)

9. V--> END DO

10.

11. end

f90-6203 f90: VECTOR File = gs-2.f, Line = 7

A loop starting at line 7 was vectorized because an IVDEP

or CONCURRENT compiler directive was specified.

4.4 Other Loop Optimizations

In addition to vectorization there are a number of other loop optimizations that
may be performed by the compiler. These other optimizations include:

• Outer-loop vectorization

• Unrolling

• Unwinding

• Interchange

• Collapse

48 S–2312–36

Optimizing Using Vectorization [4]

• Cloning

• Fusion

• Pattern matching

• Autotasking

• Streaming

• Blocking

4.4.1 Outer-loop Vectorization

Historically, vectorization has been done on inner loops only. Cray compilers
have the ability to vectorize either inner or non-inner (outer) loops.

As an example, the outer loop below (do i) is vectorized. Note that array
a(i) is invariant with respect to the inner loop (do j). The load of a(i) is
done before the inner loop and the store is done following it. This reduces the
memory traffic within the do j loop by two memory operations and increase
performance significantly.

4. V----< do i = 1,m

5. V r--< do j = 1,n

6. V r a(i) = a(i) + b(i,j)*c(j)

7. V r--> end do

8. V----> end do

9.

10. end

ftn-6204 f90: VECTOR File = outer.f, Line = 4

A loop starting at line 4 was vectorized.

ftn-6005 f90: SCALAR File = outer.f, Line = 5

A loop starting at line 5 was unrolled 2 times.

4.4.2 Loop Unrolling

Loop unrolling is done for the following reasons:

• More efficient use of vector operations

• Vector register reuse

S–2312–36 49

Cray SV1™ Application Optimization Guide

• Cache reuse if all reused data doesn’t fit in vector registers

• Reduced number of executed branch instructions and other loop overhead

A non-vector loop is chosen to be unrolled when a pattern of nearest neighbor (for
example, a(i,j) = a(i,j+1)) is seen for that loop. Unrolling a non-vector
loop is referred to as unroll-and-jam. The nearest neighbor pattern can be either
write-read or read-read. Unroll-and-jam is done primarily to improve register
and cache re-use. Reusing vector registers or cache reduces bandwidth usage,
thereby improving performance.

For example, consider the following unroll-and-jam optimization:

5. r-----< do j = 1,n-1

6. r V---< do i = 1,n ! vectorize

7. r V a(i,j) = b(i,j) + b(i,j+1)

8. r V---> enddo

9. r-----> enddo

f90-6005 f90: SCALAR File = nn-3.f, Line = 5

A loop starting at line 5 was unrolled 2 times.

f90-6204 f90: VECTOR File = nn-3.f, Line = 6

A loop starting at line 6 was vectorized.

The loopmark character r indicates unrolling. The loop is converted to:

do j = 1,n-1,2 ! unrolled for reuse of b(i,j+1)

do i = 1,n ! vectorized

a(i,j) = b(i,j) + b(i,j+1)

a(i,j+1) = b(i,j+1) + b(i,j+2)

end do

end do

Data b(i,j+1) is loaded once but used twice in the unrolled version.

Unrolling of the vector loop is done for very small loops, to promote the use of
more vector registers and operations in parallel.

50 S–2312–36

Optimizing Using Vectorization [4]

Loop unwinding is a special case of unrolling, where the loop is entirely unrolled.
For example:

4. V----< do j = 1,n

5. V W--< do i = 1,3

6. V W a(i,j) = b(i,j) + c(i,j) * s1

7. V W--> end do

8. V----> end do

9.

10. end

f90-6204 f90: VECTOR File = unwind-1.f, Line = 4

A loop starting at line 4 was vectorized.

f90-6008 f90: SCALAR File = unwind-1.f, Line = 5

A loop starting at line 5 was unwound.

The loopmark character w indicates unwinding.

4.4.3 Loop Interchange

Loop interchange is done to promote vector register re-use and quicker cache
re-use. As a result of interchange, there is additional outer-loop vectorization,
resulting in invariant vector registers and operations. These vectors can be
hoisted and reused within the inner loop, which is very effective in reducing
bandwidth usage.

The following example illustrates interchange in matrix-vector multiplication:

25. ir----< do j = 1,m

26. ir V--< do i = 1,n

27. ir V a(i) = a(i) + b(i,j) * c(j)

28. ir V--> end do

29. ir----> end do

f90-6007 f90: SCALAR File = dgemv-1.f, Line = 25

A loop starting at line 25 was interchanged with

the loop starting at line 26.

f90-6005 f90: SCALAR File = dgemv-1.f, Line = 25

A loop starting at line 25 was unrolled 2 times.

f90-6204 f90: VECTOR File = dgemv-1.f, Line = 26

A loop starting at line 26 was vectorized.

S–2312–36 51

Cray SV1™ Application Optimization Guide

The loopmark character i indicates that the loop was interchanged. The inner
loop is converted to a dot product:

do i = i,n ! vectorized

do j = i,n

a(i) = a(i) + b(i,j) * c(j)

end do

end do

The vector load of a(i) can be loaded ahead of the j-loop and the vector store of
a(i) can be pushed below. Within the inner loop, instead of two vector-loads
and one vector-store, there will be one vector-load and no vector-stores. Hoisting
of vector registers is limited on the Cray SV1 series of systems because the
systems have only 8 vector registers.

4.4.4 Loop Collapse

Loop collapse combines two or more loops into a single loop. This produces:

• Longer vectors

• Less loop overhead

• Better tasking load balance

52 S–2312–36

Optimizing Using Vectorization [4]

For example, consider this loop:

1. subroutine sub(n)

2. common/blk/s1,a(100,100),b(100,100),c(100,100)

3.

4. C-----< do j = 1,100

5. C Vr--< do i = 1,100

6. C Vr a(i,j) = b(i,j) + c(i,j) * s1

7. C Vr--> end do

8. C-----> end do

9.

10. end

f90-6003 f90: SCALAR File = unwind-1.f, Line = 4

A loop starting at line 4 was collapsed into

the loop starting at line 5.

f90-8135 f90: SCALAR File = unwind-1.f, Line = 5

Loop starting at line 5 was unrolled 2 times.

f90-6204 f90: VECTOR File = unwind-1.f, Line = 5

A loop starting at line 5 was vectorized.

The loopmark C indicates loop collapse. Essentially, the loop is converted to:

do i = 1,100 * 100

a(i,1) = b(i,1) + c(i,1) * s1

end do

S–2312–36 53

Cray SV1™ Application Optimization Guide

4.4.5 Loop Fusion

Loop fusion combines two or more loops into a single loop. The goals are
reduced loop overhead and register reuse. Loop fusion is very useful for
optimizing Fortran array syntax, where each statement is an implied loop:

1. subroutine sub

2. common/blk/a(100),b(100)

3.

4. V---<> a=0.

5. f---<> b=0.

6.

7. end

f90-6204 f90: VECTOR File = fusion.f, Line = 4

A loop starting at line 4 was vectorized.

f90-6004 f90: SCALAR File = fusion.f, Line = 5

A loop starting at line 5 was fused with the

loop starting at line 4.

Loop fusion is also useful as illustrated in the case below, where array temp can
be optimized away by using a register as the temporary instead of memory:

5. Vr--< do i = 1,n

6. Vr temp(i) = b(i) * c(i)

7. Vr--> end do

8.

9. f---< do i = 1,n

10. f a(i) = temp(i) + d(i)

11. f---> end do

f90-8135 f90: SCALAR File = fusion.f, Line = 5

Loop starting at line 5 was unrolled 2 times.

f90-6204 f90: VECTOR File = fusion.f, Line = 5

A loop starting at line 5 was vectorized.

f90-6004 f90: SCALAR File = fusion.f, Line = 9

A loop starting at line 9 was fused with the

loop starting at line 5.

The loopmark character f indicates loop fusion.

54 S–2312–36

Optimizing Using Vectorization [4]

4.4.6 Pattern Matching

Common patterns of blas-2, blas-3, and others are recognized and replaced with
calls to libsci library routines. Among the recognized patterns are matrix-matrix
multiply, matrix-vector multiply, sgerx, and some forms of isamin/isamax.
The following example shows a matrix-matrix multiply that has been pattern
matched:

23. D--------< do k = 1,n3 !

24. D D------< do j = 1,n2 ! M

25. D D D----< do i = 1,n1 ! V

26. D D D A-<> x(i,j) = x(i,j) + y(i,k) * z(k,j)

27. D D D----> end do

28. D D------> end do

29. D--------> end do

30.

31. ir2=irtc()

32. ir=ir2-ir1

33. end

f90-6002 f90: SCALAR File = dgemm-1.f, Line = 23

A loop starting at line 23 was eliminated by optimization.

f90-6002 f90: SCALAR File = dgemm-1.f, Line = 24

A loop starting at line 24 was eliminated by optimization.

f90-6002 f90: SCALAR File = dgemm-1.f, Line = 25

A loop starting at line 25 was eliminated by optimization.

f90-6202 f90: VECTOR File = dgemm-1.f, Line = 26

A loop starting at line 26 was replaced by a library call.

The loopmark character A indicates that pattern-matching has occurred. The
loopmark character D indicates that the loops have been eliminated.

S–2312–36 55

Cray SV1™ Application Optimization Guide

4.4.7 Autotasking

When the options -O task2 or -O task3 are in effect, the loopmark character
of P is used to indicate loops that are tasked:

68. P-----< do j = 1,m

69. P V---< do i = 1,n

70. P V c(i,j) = a(i,j) + d(i,j)

71. P V a(i,j) = b(i,j) * 10.0

72. P V---> end do

73. P-----> end do

f90-6403 f90: TASKING File = 2-level.f, Line = 68

A loop starting at line 68 was tasked.

f90-6204 f90: VECTOR File = 2-level.f, Line = 69

A loop starting at line 69 was vectorized.

4.4.8 Streaming

When the options -O stream2 or -O stream3 are in effect, the loopmark
character of M is used to indicate loops that are streamed:

68. M-----< do j = 1,m

69. M V---< do i = 1,n

70. M V c(i,j) = a(i,j) + d(i,j)

71. M V a(i,j) = b(i,j) * 10.0

72. M V---> end do

73. M-----> end do

74. ir2=irtc()

75. ir=ir2-ir1

76. end

f90-6601 f90: STREAM File = 2-level.f, Line = 68

A loop starting at line 68 was multistreamed.

f90-6204 f90: VECTOR File = 2-level.f, Line = 69

A loop starting at line 69 was vectorized.

56 S–2312–36

Optimizing Using Vectorization [4]

4.4.9 Loop Blocking

Cray compilers do not perform automatic loop blocking at present. However, the
blockable directive is available to do manual blocking:

4. 1--------< do k = 1,n

5. 1 !dir$ blockable (j,i)

6. 1 !dir$ blocking size (20)

7. 1 b------< do j = 1,m

8. 1 b !dir$ blocking size (20)

9. 1 b Vb---< do i = 1,mm

10. 1 b Vb z(i,k) = z(i,k) + x(i,j) * y(j,k)

11. 1 b Vb---> end do

12. 1 b------> end do

13. 1--------> end do

14.

15. end

f90-6051 f90: SCALAR File = blockable.f, Line = 7

A loop starting at line 7 was blocked according

to user directive with block size 20.

f90-6051 f90: SCALAR File = blockable.f, Line = 9

A loop starting at line 9 was blocked according

to user directive with block size 20.

f90-6205 f90: VECTOR File = blockable.f, Line = 9

A loop starting at line 9 was vectorized with a

single vector iteration.

The loopmark character b indicates loop blocking. See the Cray Fortran Compiler
Commands and Directives manual for more information.

S–2312–36 57

Optimizing Memory Use [5]

This chapter gives an overview of memory and describes optimizing cache use
(Section 5.2, page 62)and managing memory (Section 5.3, page 67).

5.1 Overview of Memory

This section describes central memory and cache.

5.1.1 Central Memory

Table 4, page 59 gives typical latencies for the Cray SV1 series systems. The
times are given in 300-MHz clock periods for Cray SV1 systems and 500-MHz
clock periods for Cray SV1ex systems.

Table 4. Typical Latencies

Operation Cray SV1 Systems Cray SV1ex Systems

V register to memory 109 170

V register to cache 25 20

S register to cache 22 17

Floating-point add 8 8

Floating-point multiply 9 9

Floating-point reciprocal 16 16

Jump 6 6

S–2312–36 59

Cray SV1™ Application Optimization Guide

5.1.2 Cache

The Cray SV1 series system cache size is 32 KW per single-streaming processor
(SSP) and 4-way set associative. A referenced word, based on its address, is
mapped to one of 8K sets and allocated to one of four ways.

way 0 1 2 3

^ | | | | |

| | | | | |

8k sets | | | | | |

| | | | | |

v | | | | |

The data resulting from vector, scalar, and instruction buffer memory references
is cached. The cache line size is 8 bytes, or 1 word long. Cache is located between
the processor registers and the interface to memory.

Cray SV1 cache differs from those on mainstream microprocessors in several
important ways.

cache line width The cache line width for scalar and vector
references is a single word (8 bytes). Unlike most
microprocessors, contiguous memory references
are not required in order to achieve full cache
(memory) bandwidth.

bandwidth Data cache has very high memory bandwidth (up
to 4 words per clock period).

size The Cray SV1 cache is 256 KB, which is small by
modern standards. You may need smaller blocking
factors than on many microprocessor-based
systems.

write-through This means that any memory stores go all the way
to memory. Because system memory bandwidth
is often a limiting resource, it pays to minimize
unnecessary data stores.

coherence Due to the need for binary compatibility, Cray
SV1 system cache does not maintain coherency
with the other processors. This means that if
another processor performs a store to memory,
the new data value is not in cache. When the

60 S–2312–36

Optimizing Memory Use [5]

system synchronizes multiple processors, cache is
invalidated (essentially, cleared). The implication
is that better parallel performance is achieved
with larger granularity.

A memory address is mapped in a manner that results in the data represented
by that address being placed in one particular cache set. That is, in an N-way
set-associative cache, an expression such as the following indicates to which set
in cache the address maps:

modulo (memory_address, cache_size/N)

Since memory is much larger than cache, each set has many memory addresses
that map into it. The four ways allow up to four memory addresses to map into
the same cache set. If it becomes necessary to map a new address into a fully
allocated cache set, the way for the least recently used address will be used and
its data will be overwritten.

Note: Direct-mapped cache and fully associative cache can be viewed
as special end cases of the general N-way set-associative cache. For
direct-mapped cache, N equals 1, and for fully-associative cache, N equals
the number of cache lines.

The write allocate attribute of cache requires that the address and data for a
processor write request to memory be mapped and placed into cache, if the
request generates a cache miss. Because the Cray SV1 system has a write-through
cache, any value that is updated in cache will always be written through to
memory at the same time. This is in contrast to a write back cache, in which a
value is updated in memory when there is no longer room for it in cache (that
is, the value will be written back during a read to another value, which makes
reads more expensive).

Write through can mean that more writes to memory are made than are strictly
necessary when data is updated several times while remaining cache-resident.
The cache contains buffers capable of holding 384 outstanding references. This is
sufficient for the cache to handle 6 vector references of stride 1 (384 references = 6
vectors * 64 references per vector).

The 1-word cache line size is advantageous for non-unit vector strides, since
it does not cause the overhead of unnecessary data traffic when referencing
memory using larger cache line sizes.

The disadvantage is that a single scalar reference will not bring in surrounding
data, thus potentially inhibiting a scalar code from taking advantage of spatial
locality. For this reason, scalar references have a prefetch feature, whereby a
scalar reference causes 8 words to be brought into cache. These 8 words are

S–2312–36 61

Cray SV1™ Application Optimization Guide

determined by addresses that match the reference, except for the lower 3 bits. The
effect for scalar loads is similar to having a cache line size of 8 words.

The Cray SV1 system relies on software that maintains cache coherency
between processes that share memory. Cache is invalidated as part of the
test-and-set instruction. The test-and-set instruction has been used for processor
synchronization in previous generation Cray vector systems. Adding the cache
invalidation feature to this instruction allows old Cray binaries to run in parallel
on the Cray SV1 system with the data cache enabled.

On Cray SV1ex systems, cache is not always cleared at a test-and-set instruction.
When it is determined to be safe, the compiler uses a new instruction that
disables cache invalidation. Doing so allows access to the data that is already in
cache and thereby improves performance.

Data and instructions are cached by default. To turn caching off, use a command
such as the following:

% /etc/cpu -m ecfoff a.out

For more information, see the cpu(8) man page.

5.2 Optimizing Cache Use

The following cache optimization techniques are described in this section:

• Using vector cache effectively (Section 5.2.1, page 62)

• Minimizing stores (Section 5.2.2, page 63)

• Porting issues (Section 5.2.3, page 66)

5.2.1 Using Vector Cache Effectively

How can you tell whether a program is using data cache effectively? The
hardware performance monitor (hpm(1)) gives you the number of reads that are
hitting in cache. (The following output is reformatted for readability):

% hpm ./a.out Group 0:

CPU seconds : 0.05702

CP executing : 17107068

....

Cache hits/sec : 70.77M

Cache hits : 4035458

CPU mem. references/sec : 233.45M

62 S–2312–36

Optimizing Memory Use [5]

CPU references : 13312268

Floating ops/CPU second : 157.83M

You can see how cache usage is affecting the performance of your code
by running with the cache turned off, using the -m ecdoff option of the
/etc/cpu(1) command. This is the same program as the previous example:

% /etc/cpu -m ecdoff hpm ./a.out Group 0:

CPU seconds : 0.10927

CP executing : 32780370

...

Cache hits/sec : 0.01M

Cache hits : 608

CPU mem. references/sec : 121.83M

CPU references : 13312268

Turning off cache approximately doubled the performance of this program.

Cray SV1 series systems have the same memory hardware as the Cray J90
system with the same memory speed, despite having a processor with six
times the peak performance. This means that it is possible for memory to be
oversubscribed by the processors; that is, the performance of a processor running
a memory-intensive application will be adversely affected if other processors
are also using memory intensively because of contention for the limited number
of physical ports to memory. Because of this fact, and because of cache, users
should expect much more variability in programming timings than on earlier
UNICOS systems.

The following are techniques for optimizing cache:

• Avoid memory accesses with strides that are a multiple of 8192, since four
of these will fill up the cache slot.

• In general, avoid memory accesses whose strides are large powers of two.
Only eight loads of stride 4096 and sixteen of stride 2048 will fit in cache.

• Strides of one are optimal.

5.2.2 Minimizing Stores

The following matrix-vector multiply kernel illustrates how to minimize stores.
A matrix vector multiply of size N has 2*N² floating-point operations and N²

S–2312–36 63

Cray SV1™ Application Optimization Guide

data. From an algorithm perspective, a minimum of one memory operation
will be required for every two floating-point operations, giving a maximum
computational intensity of two (two flops per memory operation).

To inhibit full compiler optimization, compile the loop as follows:

% ftn -O nopattern,nointerchange -rm mxv.f

subroutine mxv(a,lda,n,b,x)

real a(lda,n), b(lda), x(lda)

1-----< do j = 1, n

1 Vr--< do i = 1, n

1 Vr x(i) = x(i) + a(i,j) *b(j)

1 Vr--> enddo

1-----> enddo

return

end

From the listing file, the inner loop is vectorized (V) and unrolled (r).
The unrolling here is on a vector chime basis (64 elements), not on a
iteration-by-iteration basis. For example, if the compiler unrolls a vector loop
by two, it means two vector chimes (or 128 elements) are processed before loop
iterations are incremented.

HPM shows that this loop runs at 250 MFLOPS and is requesting operands at the
rate of 374 MWps (3 words for every 2 FLOPS). Of this, 250 MWps is satisfied by
main memory and the remaining 124 MWps is satisfied from data cache.

Since x(i) is updated for each pass of j, we can unroll the j loop into the inner
loop and reduce the number of times x(i) is updated. For example, if we unroll
by four times, we should reduce loads and stores to x by a factor of four:

subroutine mxv1(a,lda,n,b,x)

real a(lda,n), b(lda), x(lda)

1----< do j = 1, n, 4

1 V--< do i = 1, n

1 V x(i) = x(i) + a(i,j) *b(j)

1 V 1 + a(i,j+1)*b(j)

1 V 1 + a(i,j+2)*b(j)

1 V 1 + a(i,j+3)*b(j)

1 V--> enddo

1----> enddo

return

end

64 S–2312–36

Optimizing Memory Use [5]

Performance has improved from 250 to 301 MFLOPS. In addition, the overall
bandwidth consumed has dropped from 374 MWps to 226 MWps (38 MWps
from cache and 188 MWps from main memory).

Another alternative is to switch the loop ordering and go to a dot-product
formulation. This eliminates vector store traffic in the inner loop:

subroutine mxv(a,lda,n,b,x)

real a(lda,n), b(lda), x(lda)

1-----< do i = 1, n

1 cdir$ prefer vector

1 Vr---< do j = 1, n

1 Vr x(i) = x(i) + a(i,j) *b(j)

1 Vr---> enddo

1-----> enddo

return

end

This formulation runs at 298 MFLOPS, consuming 306 MWps of total bandwidth
(153 MWps from cache and 153 MWps from memory). In this case, loads to b(j)
are cached and loads to a(i,j) are not. We have reached our algorithmic ideal
ratio of two flops for every memory operation. Dot products, however, are not
ideal on vector systems due to the final vector reduction operation, in which a
vector register of operands is collapsed down to a single scalar value.

The ideal algorithm would hold 64 elements of x in a vector register until all
updates are complete. The 64 elements of the completed vector x would be
written to memory. This technique is called outer-loop vectorization. It can be
achieved by writing the loop in a dot-product formulation and then inserting a
cdir$ prefer vector directive before the outer loop:

subroutine mxv(a,lda,n,b,x)

real a(lda,n), b(lda), x(lda)

cdir$ prefer vector

V-----< do i = 1, n

V r---< do j = 1, n

V r x(i) = x(i) + a(i,j) *b(j)

V r---> enddo

V-----> enddo

return

end

This loop now runs at 395 MFLOPS, consuming only 201 MWps of total
bandwidth (199 MWps from memory and 2 MWps from cache). Reuse has

S–2312–36 65

Cray SV1™ Application Optimization Guide

moved from cache into a vector register. In many cases the compiler will choose
this formulation automatically.

The Cray SV1 system memory is capable of delivering operands at the rate of
2.5 GBps (312 MWps). Since two flops are computed for every word of memory
bandwidth, this algorithm has a peak potential rate of 624 MFLOPS (312 MWps *
2) on the Cray SV1 system. When coded in assembly language, vector loads to a
can be carefully scheduled to achieve maximum bandwidth:

subroutine mxv(a,lda,n,b,x)

real a(lda,n), b(lda), x(lda)

CALL SGEMV(’n’, N, N, 1., A(1,1), LDA,

$ B(1), 1, 1., X(1), 1)

return

end

The scientific libraries code runs this problem at 600 MFLOPS, consuming
305 MWps of memory bandwidth (3 MWps from cache and 302 MWps from
memory).

5.2.3 Porting Issues

The Cray SV1 series system libraries for parallel processing have all been
modified to invoke the test-and-set instruction when cache must be invalidated.
Therefore, you should be able to port codes written for Autotasking, OpenMP,
and MPI without modification.

SHMEM codes should also port without modification, with one exception.
Autotasking and OpenMP use a test-and-set instruction that is issued at the
beginning and end of parallel regions, at parallel loop iterations, and at critical
regions (locks and guards).

For MPI programs, there is no shared data from the user’s view, and the libraries
take care of managing consistency within themselves. Although it is better to
maximize the granularity of parallel tasks and minimize synchronization on any
architecture, there is additional incentive for the Cray SV1 series system because
it is best to avoid cache invalidations.

The SHMEM library routines shmem_barrier (3), shmem_wait (3), and
shmem_udcflush (3) perform cache invalidations for the Cray SV1 series system.
In order to avoid race conditions, a shmem_barrier or shmem_wait is usually
issued before remotely updated data is used.

That will take care of cache coherency considerations at the same time.
Codes that were originally written for the Cray T3D computer may need

66 S–2312–36

Optimizing Memory Use [5]

to be modified if they make use of the shmem_set_cache_inv(3) and
shmem_clear_cache_inv(3) routines. These routines invalidated cache on
the Cray T3D system and are ignored on the Cray T3E computer, but they are
not supported on the Cray SV1 system; you will get an unsatisfied external
message when you try to load.

These codes will need to be reworked, probably by replacing each shmem_set or
clear_cache_inv call with a shmem_barrier or shmem_udcflush.

5.3 Managing Memory

The Cray SV1 system contains fixed-size, real memory; it has no virtual memory
capabilities. Large memory codes must fit within available user memory. User
processes that dynamically expand and shrink during execution are managing
memory, and they must compete with other processes for real memory space.
Processes that spend excessive time managing memory are said to be memory
bound.

Inefficient memory management within a process can increase its elapsed time,
and this can affect other user processes in the system. If the process is large
compared to the amount of available user memory, small performance problems
can become worse. When a process attempts to dynamically change its size, it
becomes a candidate for a swap out of memory onto an external device (such
as a disk) before the operating system can find enough contiguous memory to
swap it back in. Also, the code might make system memory calls without your
knowledge. These situations can greatly increase elapsed time.

Optimizing memory-bound code reduces elapsed time and system CPU time,
and it may have a side effect of reducing user CPU time.

Note: Most of the memory management techniques described in this chapter
reduce elapsed time at the cost of increased memory usage.

S–2312–36 67

Cray SV1™ Application Optimization Guide

Use the procstat utility to identify whether code spends large amounts
of system CPU time processing memory requests

No

Yes

Satisfied?

Return to initial analysis phase

Evaluate alternatives

Yes

No

Apply memory technique

Code has
large amount
of memory
wait time?

Check your answers

a10887

Figure 8. Optimizing memory-bound code

5.4 Understanding Memory Management

Two basic types of dynamic memory management are available on Cray SV1
series systems:

• Dynamic memory managed by the system heap routines

68 S–2312–36

Optimizing Memory Use [5]

• Expandable dynamic common blocks

You cannot use both methods within the same code.

5.4.1 Dynamic Heap

When code is compiled and loaded, it is translated into Cray machine
instructions (object code), logically linked together with library routines, and
packaged in an executable file, named a.out by default. When you execute
a.out, it is swapped into memory and becomes a user process. Most UNIX
systems have at least the following three distinct areas defined in memory for
each user process:

• User area

• Stack area

• Heap

The user area is where the object code (text area) and external and static variables
(data area) reside. The stack area is commonly used to temporarily store context
information for each routine that calls another subprogram. The heap is a
dynamic area used for all other memory needs (except Fortran COMMON): dynamic
variables, I/O buffers, flexible file input/output (FFIO) user cache, and so on.

The heap and the stack areas are allowed to grow dynamically, but the user area
remains fixed. On a virtual memory system, both the heap and the stack area of a
single process can grow independently with a virtual hole between them.

The UNICOS operating system implements dynamic allocation of heap and
stack space differently from virtual systems. A UNICOS user process has a
dynamically expandable heap, with stack space wholly contained within the
heap. The stack space is managed without benefit of direct hardware support,
and both heap and stack space must appear to grow and shrink independently.

Initial memory allocation for the heap and the stack space is established at the
load step by the ld(1) utility (called by the ftn(1), CC(1), and cc(1) commands).

The heap is dynamic and can be increased or decreased from an executing code
by using calls to the library. Routines request space from the heap directly
through calls to the UNICOS system.

Dynamic memory management is inherently expensive to a user process because
it requires service from the operating system through system calls. An expansion
of the heap might require the process to be relocated in memory. If there is no
remaining space large enough in memory, the UNICOS operating system will

S–2312–36 69

Cray SV1™ Application Optimization Guide

swap the requesting process to a secondary device (such as a disk) until enough
memory becomes available. This adds elapsed time and system CPU time.

Stack space must be allocated specifically in finite segments, or stack frames,
within the heap. A stack frame is used as a place holder for procedure calls to
save context, local variables, local arrays, and so on. Each procedure call pushes
(allocates) a new frame on the stack, and pops (deallocates) that frame upon
exit. The stack is a last-in, first-out (LIFO) model allocated inside the heap in
finite-sized segments. Therefore, the stack frames compete with the rest of the
dynamic memory requirements for space.

The following conditions can cause excessive system time associated with
managing memory for your user process:

• Releasing heap blocks in a different order from that of their allocations can
cause memory fragmentation for the process.

• Upon entry to a function, routine, or procedure in a user process, it might not
be possible to allocate a stack frame within the boundaries of the current stack
segment. This is a stack overflow condition (transparent to programmers) that
causes attempts to allocate an additional stack segment within the heap.

• If a new stack segment cannot fit contiguously within the heap, total stack
space becomes fragmented. This costs extra time for subroutine calls until
that stack segment is no longer needed and returns to the heap (a stack
underflow condition).

• stack thrashing is a rare condition in which a frequently called function
allocates (stack overflow) and deallocates (stack underflow) both a stack
segment and a heap block for every invocation.

• Fortran automatic arrays and C variable-length arrays are allocated with
compiler-generated heap requests upon entry to a routine and deallocated
upon exit from the routine. These arrays cause hidden memory management
from system calls.

• Multitasked processes share a heap between multiple slave processes, each
using its own stack space in the heap.

5.4.2 Dynamic Common Blocks

The UNICOS operating system provides a second method to manage memory
for Fortran codes, the dynamic common block. To use this method, you must
specify only one dynamic common block (which might be blank common) for the
loader to place at the high end of the process memory space. For an example of

70 S–2312–36

Optimizing Memory Use [5]

an ftn command line that establishes a dynamic common block, see Example
3 in Section 5.7.1, page 74.

This technique requires your heap to be a fixed size. Heap expansion is not
allowed because the dynamic common area is stored directly after the heap.
Therefore, the initial size of the heap must be large enough to handle all requests
for heap space. Generally, an initial heap size between 5,000 and 10,000 words is
adequate.

Fortran codes that use this method typically overindex an array within a dynamic
common block, but the programmer must be careful to avoid an operand range
error. You can expand and contract the dynamic common block by using the
SBREAK Fortran library routine (see the brk(2) man page for more information).
SBREAK expands the field length of the user process to provide more memory,
and it also releases memory when it receives a negative argument.

All subroutines within the same code have access to its dynamic common block
at any time during program execution. Its contents cannot be initialized at
load or compile time.

5.5 Identifying Large Amounts of Memory Wait Time or System CPU Time

The procstat(1) utility can provide accurate memory information about your
code. It gathers process-level memory statistics, such as elapsed time, number
of calls to memory processor, number of memory declines, and total time to
complete memory requests.

To create a report, execute the procstat utility with the name of the program to
be analyzed listed as an argument.

For complete information on procstat, see the procstat(1) man page.

Procedure 4: Creating a Report

Use the following procedure to view a report of complete I/O information for
your code:

1. Compile and run the code.

2. Run the procstat utility on the code.

The following examples show how to perform this procedure:

Fortran example:

S–2312–36 71

Cray SV1™ Application Optimization Guide

ftn prog.f
procstat -r -m a.out

C++ example:

CC prog.C
procstat -r -m a.out

The procstat utility creates a viewable file with performance information.

5.6 Evaluating Dynamic Memory Alternatives and Applying a Technique

If your code is memory bound, it will probably exhibit one of the symptoms
listed in the following sections. Each section lists a symptom followed by a
recommended technique to reduce the elapsed time caused by memory requests.
Evaluate the behavior of your code to see if it matches one or more of these
symptoms, and select one of the corresponding techniques. After applying
any optimization technique, check your answers and examine the new elapsed
time for the code.

5.6.1 Large Number of System Calls

Check the number in the Number of Calls to Memory Processor row in
the Procstat Process Report that you created. Does the code have a large number
of system calls? If possible, reduce the number of system calls for memory
within the source code.

5.6.2 Memory Expanded or Contracted in Small Increments

Check the number in the Number of Calls to Memory Processor row in
the Procstat Process Report. Does the code still make many system requests to
expand or contract memory? The requests may be too small.

If so, apply one of the following techniques:

• Reduce the number of memory requests and increase the size of the requests
within the code.

• Ensure that the first system call requests sufficient memory for prolonged
usage, and minimize system calls to shrink the size of the process.

• Initialize a larger heap, as described in Section 5.7, page 74.

72 S–2312–36

Optimizing Memory Use [5]

5.6.3 Other Reasons for Excessive Memory Activity

If the Procstat Process Report still shows a large number of calls to the memory
processor, the situation can be caused by any of the following situations:

• Alternate requests and releases of memory from the heap. Apply one of
the following techniques:

– Within your source code, attempt to reuse existing heap space instead of
releasing it. Use the Fortran ALLOCATE and DEALLOCATE keywords or the
C++ new and delete operators or the malloc or free library functions.
These do not require the compiler to generate a system call.

– In both Fortran and C++, avoid calling sbreak with a negative argument.

– Initialize a larger heap, as described in Section 5.7, page 74.

• Frequent stack overflows and underflows (or stack thrashing). You can check
this condition by using the Fortran STOP statement or the C++ stkstat(3)
system call to produce a report of stack overflows. To avoid stack overflows,
use the SEGLDR directive to increase the value in the Initial stack size
to the maximum stack size as displayed by the STOP statement output. The
Initial stack size is illustrated in Figure 9, page 77. To create the Load
Map Program Statistics report, see Section 5.7.2, page 75.

The following STOP statement output shows that the program experiences a
large number of stack overflows:

ftn where.f

./a.out < INPUT_FILE

STOP executed at line 261 in Fortran routine ’CLACIER’

CP: 34.435s, Wallclock; 198.094s, 2.2% of 8-CPU Machine

HWM mem: 236775, HWM stack: 10048, Stack overflows: 750000

By indicating a stack size that matches the stack high water mark (shown
by the HWM stack value), stack overflows are now lower, and CPU time
improves from 34.4 seconds to 13.5 seconds:

ftn -Wl"-S10048" where.f

./a.out < INPUT_FILE

STOP executed at line 261 in Fortran routine ’CLACIER’

CP: 13.543s, Wallclock; 58.227s, 2.9% of 8-CPU Machine

HWM mem: 209338, HWM stack: 10048, Stack overflows: 0

S–2312–36 73

Cray SV1™ Application Optimization Guide

5.6.4 Temporary Memory Expansion of Significant Duration

When the process expands temporarily during execution, it runs the risk of being
swapped to disk, costing excessive elapsed time. Use a SEGLDR directive (see
Section 5.7, page 74) to initialize the process at its largest size to avoid a swap.

5.6.5 Heap Blocks Release Order

Examine the source code. Does the process release heap blocks in a different
order than they were allocated? This can cause memory fragmentation for the
process. Reorder the code to allocate and deallocate heap space in the opposite
order (last allocated should be first deallocated).

5.7 Memory Initialization

When forced to obtain more memory within the code, it is more efficient to
use a few large requests than to use many small requests. One way to do this
is to directly modify source code to issue fewer, larger requests. Another way
is to initialize the heap with a SEGLDR directive. The most effective way to
minimize the elapsed time due to memory management is to start with enough
memory in the first place.

5.7.1 Loader Directives

At the load step, SEGLDR, which is usually called by both the ftn(1) and CC(1)
commands, establishes initial memory allocation for both the heap and the stack
space. You can specify any of these parameters with a command-line option for
segldr, CC, or ftn, as in the following examples.

Example 1:

The following SEGLDR command specifies an initial heap size of 150,000 words
and a heap increment of 75,000 words for the object file, file.o:

segldr -H150000+75000 file.o

Example 2:

The following Cray C++ compiler command specifies an initial stack size of
100,000 words and stack increment of 50,000 words for the source file, file.C:

CC -dSTACK=100000+50000 file.C

Example 3:

74 S–2312–36

Optimizing Memory Use [5]

The following Fortran compiler command names a dynamic common block
(DYNAM), specifies an initial heap size of 10,000 words, and establishes a zero
heap increment size for the source file, code.f. The heap increment is set to zero
to force a fixed heap size required by using a dynamic common block:

ftn -Wl"-H10000+0;DYNAMIC=DYNAM" code.f

For more information on SEGLDR, see the Segment Loader (SEGLDR) and ld
Reference Manual.

5.7.2 Optimal Heap Size

An optimal heap size for your process is a size that is large enough to prevent
system calls for memory, but not so large that it contains unused memory.

Procedure 5: Determining Optimal Heap Size

To determine an optimal initial heap size for your SEGLDR directive, perform
the following steps:

1. Generate a ja report or retrieve the ja report you used in your initial
analysis in Procedure 2, page 20.

2. Create a Load Map Program Statistics report for the code by using SEGLDR
directives.

Example:

The sample load map in Figure 9, page 77, was generated by using the
following ftn command:

ftn -Wl"-H10000+9000 -S6000+5000 -Mmap.fil,stat" code.f

This command line specifies the following:

• Load map statistics in a file called map.fil

• Initial heap size of 10 KW

• Heap increment of 9 KW

• Initial stack size of 6 KW

• Stack increment size of 5 KW

3. Look at the number in the Memory HiWater column of the ja report you
created for the code (Procedure 2, page 20). This number is reported in
blocks, and a block is equal to 512 (decimal) Cray memory words. Multiply

S–2312–36 75

Cray SV1™ Application Optimization Guide

this figure by 512 to determine the maximum process memory size for the
code in Cray words.

Example:

Assume the Memory HiWater figure from the ja report and the load map
in Figure 9, page 77, are from the same code, bigio. This user process grew
to 8,128 blocks. Perform the following arithmetic to obtain decimal words for
Memory HiWater: 8,128 x 512 = 4,161,536 words.

4. Look at the number listed in the Base address of managed
memory/stack row of the Load Map Program Statistics report (Figure
9, page 77). This number is an octal representation of the user area size
measured in words. Convert this number to decimal to determine the user
area size for the code in decimal format.

Example:

The Base address of managed memory/stack figure is 376,372 octal.
This is equivalent to 130,298 decimal.

5. Subtract the user area size (total from the preceding step) from the maximum
process memory size (total from Procedure 5, step 3, page 75). The result
should be a good estimate for the minimum heap size required to avoid
system calls for more memory.

Example:

4,161,536 - 130,298 = 4,034,238

This represents the largest heap size for the process. Note that this might
change for a different dataset, and it will expand with larger library I/O
buffer and user cache sizes.

6. Use the result from the preceding step in a SEGLDR directive to set the
initial heap size.

Example:

To avoid system requests for memory, relink the object file with the following
segldr command:

segldr -H4035000+10000 bigio.o

76 S–2312–36

Optimizing Memory Use [5]

1f90 Version 8.0g
Program Statistics

Non±segmented object module written to- a.out
Allocation order- text,data,bss
Program origin- 0 octal 0 decimal
Program length- 422012 octal 140298 decimal
Start entry point is ’$START’ at address 10a
Transfer is to entry point ’POINTERVECTOR’ at address 324d

Managed memory statistics
Initial stack size- 13560 octal 6000 decimal
Stack increment size- 11610 octal 5000 decimal
Initial managed memory size- 23420 octal 10000 decimal
Managed memory increment size- 21450 octal 9000 decimal
Available managed memory- 706 octal 454 decimal
Base address of managed memory/stack- 376372 octal
Base address of pad area- 376132 octal

Default libraries included-
 /lib/libc.a
 /lib/libf.a
 /lib/libfi.a
 /lib/libm.a
 /lib/libp.a
 /lib/libsci.a
 /lib/libu.a

High memory

Low memory

User area Heap

= 130298 decimal

User area
(text, data)

-422012

23420

-376372

Heap
(Managed memory, bss)

-0

}

octal

376372

+ 23420

422012

a10893

Figure 9. Load map statistics

S–2312–36 77

Optimizing I/O [6]

This chapter describes the following techniques for optimizing I/O-bound code:

• Optimizing formatted I/O (Section 6.1, page 79)

• Optimizing large, sequential, unformatted I/O requests (Section 6.2, page 83)

• Optimizing small, sequential, unformatted I/O requests (Section 6.3, page 87)

• Optimizing for direct access I/O (Section 6.4, page 87)

• Optimizing asynchronous I/O (Section 6.5, page 89)

• Using an optimal storage device (Section 6.6, page 91)

• Minimizing system calls (Section 6.7, page 94)

• Using the SSD-I on Cray SV1ex systems (Section 6.8, page 94)

For more information on I/O, see the Application Programmer’s I/O Guide.

6.1 Optimizing Formatted I/O

Formatted I/O is the slowest I/O and is useful only when the files must be
viewed by people or transferred to systems other than Cray systems. However, if
you are transferring the data to a system other than a Cray system, you can easily
send the unformatted (binary) version instead of the formatted ASCII version
by using the Cray foreign file conversion facility provided by the Flexible File
I/O (FFIO) library. Use the techniques described in the following sections to
optimize code that contains formatted I/O.

6.1.1 Changing to Unformatted I/O

If possible, change formatted I/O to unformatted I/O by using one of the
following methods:

• In Fortran code, remove references to the FORMAT statement label and modify
the Fortran OPEN statement to include FORM=’UNFORMATTED’.

Example:

OPEN (10,FORM=’UNFORMATTED’)

S–2312–36 79

Cray SV1™ Application Optimization Guide

• For C++ codes, cout << and cin >> are formatted read and write member
functions of the iostream class. Also, the scanf(3) and printf(3)
function calls (including fscanf, sscanf, fprintf, and sprintf)
require formatting to human-readable ASCII. Convert these functions to call
unformatted I/O functions such as fread and fwrite instead. You can
access FFIO by using the ffread(3) and ffwrite(3) functions in your code
in conjunction with the assign(1) command.

• To access the I/O layers provided by the FFIO libraries, use the -F
command-line option with the assign command. This will provide access to
the automated foreign file conversion.

6.1.2 Reducing the Amount of Formatted I/O

If you cannot change formatted to unformatted I/O, reduce the quantity of
formatted I/O. Show only small samples of the data by using the following
techniques:

• Change the code to show final results instead of many intermediate results.

• Change the code to show a checksum instead of the data itself.

• If the program sends data to another computer system (or printer), revise the
program so that only the final version of the data is formatted.

• If you need to view the data, consider shipping it unformatted to a graphics
postprocessor.

6.1.3 Increasing Formatted I/O Efficiency for Fortran Programs

Use the methods in the following sections to increase formatted I/O efficiency
for Fortran programs.

6.1.3.1 Minimizing the Number of Data Items in the I/O List

With the Cray Fortran Compiler you can increase formatted I/O efficiency by
minimizing the number of data items in the I/O list. Consider the following
example:

DIMENSION X(20), Y(10), Z(5,30)

WRITE (6,101) M, (X(I), I=1,20), Z(M,J)

With vectorization turned off, this WRITE statement represents 22 data items.
In this case, the WRITE operation would require 22 calls to the library routines

80 S–2312–36

Optimizing I/O [6]

that drive the WRITE statement. When vectorization is turned on, the compiler
treats each innermost implicit DO loop as a single data item, so that the preceding
WRITE statement requires only three calls.

If you rewrite the statement as follows, the parameter list always represents three
calls, even if all optimization is turned off:

WRITE (6,101) M, X, Z(M,J)

6.1.3.2 Using a Single READ, WRITE, or PRINT Statement

To increase formatted I/O efficiency for Fortran programs, read or write as much
data as possible with a single READ, WRITE, or PRINT statement. Consider the
following example:

DO J = 1, M

DO I = 1, N

WRITE (42, 100) X(I,J)

100 FORMAT (E25.15)

ENDDO

ENDDO

It is more efficient to write the entire array with a single WRITE statement, as
follows:

WRITE (42, 100) ((X(I,J),I=1,N),J=1,M)

100 FORMAT (E25.15)

The following statement is even more efficient:

WRITE (42, 100) X

100 FORMAT (E25.15)

Each of these three code fragments produces exactly the same output; however,
the latter two examples are about twice as fast as the first. Also, the latter two
examples are equivalent only if the implied DO loops write out the entire array,
in order, and without omitting any items. You can use the format to control
how much data is written per record.

6.1.3.3 Using Longer Records

To increase formatted I/O efficiency for Fortran programs, use longer records if
possible. Because a certain amount of processing work is necessary to read or
write each record, it is better to write fewer long records, rather than more short
records. Consider the following example:

S–2312–36 81

Cray SV1™ Application Optimization Guide

WRITE (42, 100) X

100 FORMAT (E25.15)

If you change it as follows, the resulting file will have 80% fewer records and,
more importantly, the program will execute faster:

WRITE (42, 101) X

101 FORMAT (5E25.15)

Be careful to ensure that the resulting file does not contain records that are too
long for the intended application. For example, certain text editors and utilities
cannot process lines that are longer than a predetermined limit. Generally, lines
that are not longer than 128 characters are safe to use in most applications.

6.1.3.4 Using Repeated Edit Descriptors

To increase formatted I/O efficiency for Fortran programs, use repeated edit
descriptors whenever possible. For integers that fit in 4 digits (that is, less than
10,000 and more than –1000), avoid the following format:

200 FORMAT (16(X,I4))

Instead, use a format of the following form:

201 FORMAT (16I5)

6.1.3.5 Using Data Edit Descriptors That Are the Same Width as the Character Data

To increase formatted I/O efficiency for Fortran programs, when reading and
writing character data, use data edit descriptors that are the same width as the
character data. For CHARACTER*n variables, the optimal data edit descriptor is A
(or An). For Hollerith data in integer variables, the optimal data edit descriptor is
A8 (or R8).

6.1.4 Increasing Formatted I/O Efficiency for C++ Programs

Calling a function increases overhead. To decrease overhead and increase
formatted I/O efficiency for C++ programs, combine multiple calls to I/O
functions into fewer calls. Consider the following example:

for (i=0; i<N;) {

fprintf(o1,"%d ",a[i]);

++i;

if (i%5 == 0) fprintf(o1,"\n");

82 S–2312–36

Optimizing I/O [6]

}

If you change it as follows, the resulting code will make 80% fewer calls to
fprintf and the program will execute faster:

for (i=0; i<N; i+=5) {

fprintf(o2, "%d %d %d %d %d\n"

a[i], a[i+1], a[i+2], a[i+3], a[i+4]);

}

6.1.5 Increasing Library Buffer Sizes for Formatted I/O Requests

For sequential-access formatted I/O files, the buffer size should be set equal to
the length of a record or a multiple of that number. Generally, larger is better
when buffering sequential access files.

To specify the library buffer size for Fortran, use the assign(1) command with
the following options:

assign -b size

For C++, use the setvbuf(3C) library function.

6.2 Optimizing Large, Sequential, Unformatted I/O Requests

Sequential access indicates that data items in a file have an implicit order. Unless
the code issues positioning requests such as fseek(3) or rewind(3), the system
always accesses the next record automatically. If the code is issuing sequential,
unformatted I/O requests larger than 1 MW, use the techniques described in the
following sections to optimize its I/O.

6.2.1 Changing I/O File Format to Unbuffered and Unblocked

The default I/O file format for sequential unformatted Fortran I/O is COS
blocked (assign -s cos f: filename), which means that the I/O request uses
the library buffer and bypasses cache. Although the COS blocked file format
helps fulfill the Fortran standard for sequential, unformatted I/O by marking
(or blocking) record positions within a file, it is not the fastest I/O available for
large, sequential transfers. COS blocked I/O requires user CPU time to create
and insert (or interpret and remove) the control words.

S–2312–36 83

Cray SV1™ Application Optimization Guide

If the code is issuing sequential, unformatted I/O requests larger than 1 MW (8
MB), change the I/O file format to unbuffered and unblocked by one of the
following methods.

• Use the -s u option, as in the following example.

assign -s u f:filename

• Specify the FFIO system, or syscall layer, as shown in the following
assign(1) command examples.

assign -F system f:filename
assign -F syscall f:filename

C++ codes can access the FFIO libraries by using the ffread(3C) and
ffwrite(3C) I/O function calls in conjunction with the assign command.

Using the unbuffered, unblocked I/O file format requires you to construct
well-formed I/O requests in the code. These are simply I/O requests that begin and
end on disk sector boundaries, usually 512 words (4096 bytes) or a multiple of
512 words. This unit of measurement is also known as a block or click. See your
system administrator to determine the sector size of the disks you are using.

6.2.2 Converting to Asynchronous I/O

Converting to asynchronous I/O is a way to continue I/O activity in parallel
with the code’s processor computation. If there are operations in the code that
can be executed while the code is waiting for I/O to complete, convert the code
to asynchronous I/O. For example, if the code contains any of the following
sequences, converting to asynchronous I/O might reduce elapsed time:

• Repetitive patterns of input, computation on that data, output, then input
again

• I/O that appears in a loop

Most prominent sequential, unformatted I/O requests that consume a majority
of the code’s elapsed time will benefit from code conversion to asynchronous
I/O. You can convert to asynchronous I/O by using the assign(1) command
or by modifying your source code.

84 S–2312–36

Optimizing I/O [6]

6.2.2.1 Using the assign Command to Convert Code to Asynchronous I/O

The easiest way to convert code to asynchronous I/O is by using an FFIO layer,
either cachea or bufa, with the assign(1) command, as follows:

assign -F cachea:bs:nbufs f:filename
assign -F bufa:bs:nbufs f:filename

The bs argument specifies the size in 512-word blocks of each cache page or
buffer. The nbufs argument specifies the number of cache pages (or buffers) to
use. You can tune these arguments to better suit the I/O activities of the code.

If the code requires the use of COS blocked format, you can establish a
specialized FFIO layer to provide asynchronous access by using the following
assign command:

assign -F cos.async f:filename

6.2.2.2 Optimizing Asynchronous I/O

You can modify the source code to take better advantage of the asynchronous
FFIO layer by breaking up a large I/O request into smaller iterative requests.
Within the iterations, perform the necessary computation on that data. This
technique is called double-buffering.

With double-buffering, two sets of data (buffers) are active at any given moment
for each stream of input or output data. One buffer is active in CPU work, while
the other is active in I/O (reading or writing). In a typical double buffer scheme,
the I/O and CPU work sets are staggered, as in the following algorithm:

1. The first set of input data is read.

2. The second set of input data is read while the processor works on the first set
of input data.

3. The third set of input data is read while the processor works on the second
set of input data and the first set of data is output.

4. This sequence continues until all data is read. As the last data set is read,
the next-to-last processor work is in progress, and the third-from-last data
set is output.

5. The processor works on the last data set and the next-to-last data set is
output.

6. The final data set is output.

S–2312–36 85

Cray SV1™ Application Optimization Guide

Example 1: C++ Example of Converting to Asynchronous I/O

In the following C++ example, the first input is the reada(2) system call in front
of the for loop. Inside the loop, the first recall(2) system call synchronizes the
previous reada, and the second recall synchronizes the previous writea.
Notice that the recall system call is needed for synchronization. Generally,
a second asynchronous system call to the same file descriptor will not block
execution for the first. This is called queuing asynchronous I/O, because each
asynchronous request enters an I/O queue without blocking execution.

#include <sys/types.h>

#include <sys/iosw.h>

#include <fcntl.h>

#define N 1001472

#define M 10

float a[N][2], b[N][2];

struct iosw sw[2], *prdsw[]={&sw[0]}, *pwrsw[]={&sw[1]};

int rfd, wfd, i, ird=0, iwk;

void work(float a[],float b[]);

main () {

rfd = open ("infile", O_RAW | O_RDONLY);

wfd = open ("outfile", O_RAW | O_CREAT | O_TRUNC | O_WRONLY, 0644);

reada(rfd,(char *) &a[0][ird], N*sizeof(float), *prdsw, 0);

for (i=0; i<M; i++) {

iwk=ird; ird=(ird+1)%2;

recall (rfd, 1, prdsw);

if (i != M-1)

reada (rfd, (char *) &a[0][ird], N*sizeof(float), *prdsw, 0);

work(&a[0][iwk], &b[0][iwk]);

if (i != 0) recall (wfd, 1, pwrsw);

writea (wfd,(char *) &b[0][iwk], N*sizeof(float), *pwrsw, 0);

}

}

6.2.3 Using Effective Library Buffer Sizes

For large, sequential, unformatted I/O requests, enlarge the program’s library
buffer to at least the size of its largest record, if possible. To specify the library
buffer size for Fortran, use the assign(1) command with the following options:

assign -b size f:filename

For C++, use the setvbuf(3) library function.

86 S–2312–36

Optimizing I/O [6]

6.3 Optimizing Small, Sequential, Unformatted I/O Requests

If the code is issuing sequential, unformatted I/O requests that are 1 Mword or
smaller, use the techniques described in the following sections to optimize I/O.

6.3.1 Using Effective Library Buffer Sizes

For small, sequential, unformatted I/O requests, use an effective library buffer
size by ensuring that the library buffer is at least the size of the largest I/O
request or a multiple of that size. For Fortran, use the assign -b sz command
to specify the library buffer size. For C++, use the setvbuf library function.

6.3.2 Increasing I/O Request Size and Issuing Fewer Requests

To optimize small, sequential, unformatted I/O requests, increase the size of the
I/O requests and issue fewer requests. This helps to reduce the overhead of both
system and user CPU time and also may allow you to use the optimization
techniques that apply to large I/O requests (see Section 6.2, page 83). You can use
the following techniques to increase the size of the I/O requests:

• Read or write larger array sections instead of one element at a time.

• Combine read requests or write requests into a single read request or single
write request.

• Extract I/O from inner loops.

6.3.3 Using the Memory-Resident (MR) FFIO Layer

For small, sequential, unformatted I/O requests, if the file called by the
code is heavily reused, the memory-resident (MR) layer in FFIO can improve
performance over disk I/O by allowing the first portion of the file to reside in
memory. For information on the MR layer, see Section 6.6.1, page 92.

6.4 Optimizing Techniques for Direct Access I/O

Direct access indicates that a program can access records or data at any point in
the file. This also can be called nonsequential or random access I/O.

S–2312–36 87

Cray SV1™ Application Optimization Guide

6.4.1 Fortran Direct Access I/O

The Fortran standard provides two types of access: sequential and direct.
Sequential access restricts the program to reading from or writing to the I/O unit
with records of any length in sequential order. Direct access divides the file
associated with the I/O unit into fixed-length records, and allows the program to
read or write records randomly. You can achieve Fortran direct access by opening
a file with the ACCESS=DIRECT keyword on the OPEN statement and specifying
the fixed record size with the RECL keyword. All references to that file must
specify the record number, REC, on subsequent READ and WRITE statements.

Example 2: Fortran Direct Access

OPEN (22,ACCESS=’DIRECT’,RECL=8000)

READ (22,REC=10) (DATA(I),I=1,1000)

WRITE (22,REC=2) (OUTNUM(J),J=1,150)

6.4.2 C++ Direct Access I/O

C++ programs do not use the I/O functions that transfer data to accomplish
random access. C++ programs use the fseek(3) function or the lseek(2)
system call to set the position in the file of the next input or output operation.
The position is set in bytes, beginning at zero. Thus, C++ programmers are
completely responsible for record keeping and indexing.

Example 3: C++ Direct Access

stream = fopen ("file","r+");

bytes_per_word = 8;

nwords = 1000;

lrec = bytes_per_word*nwords;

fseek (stream,9*lrec,SEEK_SET);

fread (&data,bytes_per_word,nwords,stream);

fseek (stream,1*lrec,SEEK_SET);

fwrite (&outnum,bytes_per_word,150,stream);

fseek (stream, lrec - bytes_per_word*150,SEEK_CUR);

fread (&data,bytes_per_word,nwords,stream);

88 S–2312–36

Optimizing I/O [6]

6.4.3 Optimizing Techniques for Direct Access Code

If the program is reading or writing files in direct access (as opposed to
sequential access), you may be able to improve performance using the following
techniques:

• Ensure that the files are in binary file format and that they bypass the system
cache by using the assign -s bin command.

• Ensure that the code is not using formatted or COS blocked file formats.

• Set the library buffer size as close to the length of a record (request) as
possible without going under the length. This minimizes unnecessary data
transfers, which detract from the performance of random I/O.

• For small, random I/O requests, use a smaller library buffer than the
default. Limit its size to the record length of the code. This might improve
performance by avoiding excessive unused data movement when filling
the unused portion of the buffer.

• For large I/O requests, the library buffer size should be set equal to the
length of the fixed-size record (request). To specify the library buffer size for
Fortran, use the assign -b sz command. For C++, use the setvbuf(3C)
library function.

• If the code makes repeated references to the same place in the data file, a
memory-resident (MR) buffer might help if it can include the most frequently
used area of data. For information on the MR layer, see Section 6.6.1, page 92.

• If the code uses word-addressable data, you can transfer the data faster with
a binary file format (using the assign -s bin command), which also
bypasses the system cache and forces use of the GETWA and PUTWA I/O
routines without changing the source code. The GETWA and PUTWA I/O
routines are among the fastest types of random-access I/O on Cray SV1 series
systems, but they place the burden of record keeping and indexing on you.

• Rearrange the data file so that the code can process it sequentially. Sequential
I/O is usually faster than direct-access I/O. You might be able to use separate
files to accomplish the same effect.

6.5 Optimizing Asynchronous I/O Requests

In most code, synchronous I/O is used more often than asynchronous I/O (also
known as raw I/O). Synchronous I/O indicates that control is returned to the calling

S–2312–36 89

Cray SV1™ Application Optimization Guide

program after all requested data is transferred. The I/O transfer runs serially
with respect to the processor work.

Asynchronous I/O indicates that control is returned to the calling program after
the I/O process has started, but before the I/O is completed. The I/O transfer
runs in parallel with respect to the processor work. The user program continues
executing at the same time the I/O operation is executing.

If the code is using asynchronous I/O, use the techniques described in the
following sections. Some of these methods increase processor overhead but
decrease total elapsed time if there is significant work to do during the I/O
transfer.

6.5.1 Using Unblocked File Format

To optimize asynchronous I/O requests, use unblocked file format if the code
does not need to backspace, position the file pointer, read partial records, and so
on. You can improve asynchronous I/O performance moderately by eliminating
the overhead associated with record marking or blocking. This can be done in
several ways, depending on the type of I/O and certain other characteristics.

For example, the following assign statements specify the unblocked file
structure:

assign -s unblocked f:filename
assign -s u f:filename
assign -s bin f:filename

6.5.2 Avoiding Cache

For asynchronous I/O, avoid using cache by specifying the assign -s u
command. This allows the data to transfer directly between the user process and
the actual device without a stopover (with synchronization) in cache.

6.5.3 Using Effective Library Buffer Sizes

If the program is using the default I/O file format for sequential unformatted
Fortran I/O, which is COS blocked (with the assign -F cos command), to
optimize asynchronous I/O requests, ensure that the largest record size is less
than or equal to half the library buffer size. COS blocked I/O file format indicates
that the I/O request uses the library buffer and bypasses cache.

90 S–2312–36

Optimizing I/O [6]

Setting the library buffer size to an even number greater than 63 blocks causes
COS blocked files to perform double-buffered asynchronous I/O by dividing
the library buffer in half. When the library buffer size is an even number of disk
sectors, each half of the buffer is well formed. Thus, I/O requests for either
half-buffer do not need to be rerouted through cache.

You can change the buffer size by using the assign(1) command to specify a
special FFIO layer, as follows:

assign -F cos.async:size f:filename

6.5.4 Balancing Workload

Device I/O speeds are typically slower than processor computation speeds by
several orders of magnitude. If the code does not perform sufficient computation
between I/O requests, it will spend most of its time waiting for I/O and lose
the benefit of asynchronous I/O. Try to balance both the I/O activity and the
computation involving its data by moving as much of the processor work as
possible into the code that lies between asynchronous I/O requests.

6.5.5 Minimizing Required Synchronization

During asynchronous I/O processing, code reaches a synchronization point at
which it has to wait for I/O completion before continuing. With an imbalance
between processor and I/O activity, this causes extended I/O wait time and an
idle processor. If this happens frequently, attempt to restructure the code to
reduce required synchronization points.

6.5.6 Tune FFIO User Cache

If you are using asynchronous I/O through the cachea, bufa, or cos.async
FFIO layers, you can adjust their sizes by using the assign(1) command. For
complete information on controlling buffers and cache pages, see the Application
Programmer’s I/O Guide.

6.6 Using an Optimal Storage Device

If you have some flexibility with the storage devices your code uses, ensure that
it uses the fastest devices available for the appropriate situations. The following
sections describe storage devices and the situations in which they are best used.

S–2312–36 91

Cray SV1™ Application Optimization Guide

6.6.1 Memory-Resident (MR) Files

Use MR files for small requests, heavily reused files, or for large files in which
most of the I/O activity occurs at the beginning of the file. The assign(1)
command provides an option to declare certain files to be memory resident. This
option causes these files to reside within the field length of the user’s process; its
use can result in very fast access times.

To be most effective, this option should be used only with files that fit within
the process’s field length limit. A program with a fixed-length heap and
memory-resident files might deplete memory during execution. Sufficient space
for memory-resident files might exist, but might not exist for other runtime
library allocations.

The MR layer lets you declare that a file should reside in memory. The MR layer
tries to allocate a buffer large enough to hold the entire file.

To use the MR layer for Fortran code I/O, use the following assign command
and then rerun the program. To use the MR layer for C++ code I/O, use the FFIO
system I/O calls in the code first (ffread, ffwrite, and so on), and then use
the assign command and rerun the program.

assign -F mr:size f: filename

The -F option invokes FFIO. The mr specification selects the memory-resident
layer of FFIO. The size specification is the maximum size of the buffer in
512-word blocks. The filename specification is the name of the file.

6.6.2 Memory-Resident Predefined File Systems

Large memory systems might have predefined file systems resident in memory.
Memory-resident file systems provide memory-to-memory speed, which is
the fastest I/O available. Your system administrator can tell you which file
systems are mounted in memory, and you might have access to create data files
in those directories.

6.6.3 Disk Striping

If your file system is composed of partitions on more than one disk, using the
disks at the same time can result in performance improvements. This technique is
called disk striping. Disk striping can be accomplished through either hardware or
software.

92 S–2312–36

Optimizing I/O [6]

For example, if the file system spans three disks — partitions 0, 1, and 2 — it
might be possible to increase performance by spreading the file over all three
disks equally. Although 300 sequential writes might be required, assign only 100
to each disk and the disks can write simultaneously.

For hardware striping, your system administrator configures the disk and you can
request that a file be opened on the striped disk during the OPEN system call.

Use software striping only for very large records, because all of the disk heads
must do seeks on every transfer. Software striping can be useful for production
jobs that monopolize the system resources, but it can impede total system
throughput if used on a heavily loaded multiuser system.

To specify software striping, consult with your system administrator to identify
disk partitions for your file system. You can also use the df(1) command with the
-p option, but always consult your system administrator before attempting this
technique. You can achieve software striping by placing the desired file system
partitions in the assign(1) command, as shown in the following two examples:

assign -p 0-2 -n 300:48 -b 144 f:filename
assign -p 0:1:2 -n 300:48 -F cos:144 f:filename

Factors such as channel capacity might limit the benefit of striping. Disk space on
each partition should be contiguous and preallocated for maximum benefit.

6.6.4 Disk Arrays

Using disk arrays such as DA-60 and DA-301 can be faster than single disk drives
such as DD-60, DD-42, and DD-301.

6.6.5 Disks

If possible, use disks only for files that are accessed one or two times or for saved
files that are read at a later time. Try to use memory for most other activity.

Large disk files on a multiuser system can easily become fragmented across
different disk cylinders and cause increases in I/O wait time from the device.
Fragmentation causes a higher number of requests for disk space allocation and
more physical seek requests. You can examine disk file fragmentation with the
/etc/fck command. For more information, see the fck(1) man page.

Avoid disk file fragmentation by preallocating disk space for the data files that
will be stored there. In Fortran, you can use the assign -n sz command. In
C++, use the ialloc(2) system call after the file is opened. If it is necessary to

S–2312–36 93

Cray SV1™ Application Optimization Guide

allocate space prior to C++ program execution, use the setf(1) command. For
more information, see the setf(1) man page.

The assign(1) and setf(1) commands will, by default, obtain contiguous
allocation if it is available. If they do not succeed, you can force contiguous
allocation by using the -c flag on either command, or by using the IA_CONT
flag on the ialloc(2) system call.

6.6.6 Tapes

Consider tape to be a long-term storage device. Tape is both cost-effective and
disaster-resistant. Before selecting tape, consider that it has slower access speed
and that there is contention for the drive and delays for mounting. However, tape
is appropriate for long-term archive storage of very large data files.

6.7 Minimizing System Calls

With few exceptions, system calls are required for all physical I/O requests and
data movement to or from the library buffer. The following options minimize
system calls:

• Ensure that I/O requests are as large as possible. For example, write whole
arrays rather than one row at a time. Group multiple arrays into one write
statement.

• Use larger buffers (or use cache) to capture many I/O requests in the user
process space before the I/O library transfers the data out.

• Use scratch files for intermediate data that you no longer need after the
code completes execution. This can eliminate unnecessary data movement
and might avoid the device entirely.

Scratch files are temporary and are deleted when they are closed. To create
a Fortran scratch file, open a file with STATUS=’SCRATCH’ and use
STATUS=’DELETE’.

• Use the MR layer when appropriate (see Section 6.6.1, page 92).

6.8 Using the SSD-I on Cray SV1ex Model Systems

Cray SV1ex systems are equipped with an internal solid-state storage device
(SSD-I). Using the SSD-I as a storage device for your data can improve the
performance of I/O. Either 32 or 96 GB of fast storage are available on the

94 S–2312–36

Optimizing I/O [6]

Cray SV1ex system. You can find out how much SSD-I space your system has
by entering the sysconf(1) command. (The output in this example does not
have a standard size SSD-I.)

HARDWARE: SERIAL= SN3398 MFTYPE= CRAY-SV1 MFSUBTYPE= SV1ex

NCPU= 32 NSSP= 8 NMSP= 6 NIOM= 0 CPCYCLE= 10.0000 ns

MEM= 4294704896 NBANKS= 2048 CHIPSZ= 268435456 XMEM= 25165824

AVL= YES BDM= YES EMA= YES HPM= YES BMM= YES

SSD= 12884901888 SSDRINGS= 7 IOS= MODEL_F RINGS= 18 NCHAN= 8

SOFTWARE: RELEASE= 10.00 POSIX VERSION= 199009 SECURE SYS= ON

SYSMEM= 33216512 WRDS USRMEM= 4261488384 WRDS

OS_HZ= 60 CLK_TCK= 100000000

JOB_CONTROL= YES SAVED_IDS= YES SCTRACE= ON

UID_MAX= 16777215 PID_MAX= 100000

ARG_MAX= 49999 CHILD_MAX= 98 OPEN_MAX= 64

NMOUNT= 150 NUSERS= 300 NPTY= 200

NDISK= 16 SDS= 15703040 NBUF= 10000

POSIX_PRIV= ON SECURE_MLSDIR= SECURE SECURE_MAC= OFF

PRIV_SU= ON PRIV_TFM= OFF

The SSD-I is essentially an extension of main memory that is physically located
inside the mainframe. It is logically located between disk and main memory.
Once your system administrator has configured part of the SSD-I to be available
for user access as a secondary data segment (SDS), it is available to you for any
of the following purposes:

• As a volatile pseudo disk/swap partition.

• For ldcache(8) use. It allocates part of the SSD-I as buffer space for I/O
going to a file system.

• For SDS buffering; see the following description.

There are two ways to use the SSD-I for buffering that will improve the
access time for your program:

– Make the file SSD-resident by entering:

% assign -F sds:16385 mydata

This statement sets up 16,385 blocks of SDS space for the file mydata.

S–2312–36 95

Cray SV1™ Application Optimization Guide

– If the file is larger than the SDS space, you can essentially switch your
FFIO buffers from memory to SDS space as follows:

% assign -F sds:32:32:4 myfile

Note: The assign command by default applies to Fortran I/O only. C
programmers must rewrite their I/O to use FFIO library routines.

Data speeds for these examples can be up to 1.5 GBps. To approach the peak
speed of 80 GBps, you would have to hand-code the computational arrays
of the program to be properly aligned in physical memory and directly use
SSREAD(2) and SSWRITE system calls to read and write those arrays.

An advantage of using the SSD-I is that your data will remain there during
your program’s run. It will not be removed, even if your program is swapped
out, until your program completes.

96 S–2312–36

Glossary

alias
The alias shell command lets you define a synonym (a convenient name) for a
command or command string. It lets you define a more mnemonic name for an
existing command or a shorthand for a longer command string.

Autotasking
A trademarked process of Cray that automatically divides a program into
individual tasks and organizes them to make the most efficient use of the
computer hardware.

cache
A kind of temporary memory that speeds up load and store operations between
memory and the registers of a processor.

chaining
A process of linking instructions together to save register storage time. Each
instruction passes its results to the next linked instruction so that several
operations may be done in approximately the same amount of time as one
operation.

This function allows a vector register that is being used as a result register in one
instruction also to be used as an operand register in a following instruction. By
chaining vector instructions, overall speed is greatly increased; as soon as the
first vector instruction has completed the function on element 0, that result
is available to the second vector instruction as an operand. The first vector
instruction does not have to complete processing on all vector elements before
the second vector instruction can start processing.

chime
A sequence of vector operations that can be chained into a single pipeline. The
limitation on such a sequence is that the same vector functional unit cannot be
used twice in the same chain. Therefore, a loop that contains two vector adds,
for example, contains at least two chimes because there is only one vector add
functional unit.

S–2312–36 97

Cray SV1™ Application Optimization Guide

data dependence
Occurs when the data that results from one segment of code depends on the data
that results from previous segments of code.

disk striping
Multiplexing or interleaving a disk file across two or more disk drives to enhance
I/O performance. The performance gain is function of the number of drives
and channels used.

double-buffering
Modifying source code with a technique by which you break up a large I/O
request into smaller iterative requests. Within the iterations, you perform the
necessary computations on that data.

FLOPS
Floating-point operations per second.

gather/scatter
Either collecting data from multiple processors to a single processor (gather)
or dispersing data from a single processor to multiple processors (scatter).
The Fortran compiler multistreams an ordered scatter (a scatter that involves
constant, as opposed to random, strides through the array being scattered).

heap
A section of memory within the user job area that provides a capability for
dynamic allocation. See the heap memory management routines in the library
documentation.

induction variable
A variable in a loop that controls the execution of that loop (for example, in
Fortran, I is the induction variable in DO I = 1, 100; in C++, i is the
induction variable in for (i=0;i<100;i++)).

inlining
The process of replacing a user subroutine or function call with the subroutine
or function itself. This saves subprogram call overhead and may allow better

98 S–2312–36

Glossary

optimization of the inlined code. If all calls within a loop are inlined, the loop
becomes a candidate for vectorization, tasking, and multistreaming.

load balancing
A process that ensures that each processor involved in a program performs
roughly equal work.

loop counter
An integer variable that is incremented or decremented by an integer constant
expression on each pass through the loop.

loop fusing
A code optimization technique by which two independent loops with the same
iteration count are combined into one vector loop.

loop pushing
A code optimization technique by which a loop containing a subprogram call is
moved into the called subprogram.

loop splitting
A code optimization technique by which a loop that contains both vectorizable
work and scalar work is split into two loops: one that vectorizes, and one that
does not.

loop unrolling
A code optimization technique in which the statements within a loop are
replicated while reducing the trips through the loop.

loop unwinding
A code optimization technique in which a loop is unrolled completely, so that it
is no longer a loop.

memory bound
A program that is no longer able to execute because it has run out of room in
memory.

S–2312–36 99

Cray SV1™ Application Optimization Guide

memory management
Management that allows memory to be allocated dynamically to programs while
they are executing.

MSP
A multistreaming processor capable of performing multistreaming operations. It
consists of four SSPs (single-streaming processors).

multitasking
An optimization method that incorporates multiple interconnected processors;
these processors each run a part of a program simultaneously (in parallel) and
share resources such as memory, storage devices, and printers. This term is used
interchangeably with parallel processing.

multistreaming
An optimization technique that automatically schedules one or more Cray SV1
multistreaming processors (MSPs) for a program and divides the work for each
MSP among four single-streaming processors (SSPs).

parallel processing
Processing in which multiple processors work on a single application
simultaneously.

parallel region
An area within a program which multiple processors can productively execute in
parallel. Its opposite is a serial region.

pipelining
A method of executing a sequence of instructions in a single processor so that
subsequent instructions in the sequence can begin execution before previous
instructions complete execution. This assembly-line approach to processing
instructions is also called instruction pipelining or hardware pipelining.

private data
Data that is replicated on as many processors as define that data, rather than
spreading one copy of the data over all processors.

100 S–2312–36

Glossary

raw I/O
A method of performing input/output in which the programmer must handle all
of the I/O control. This is basically unformatted I/O.

redundant code
Code contained within a parallel region that is executed by all associated tasks,
using the same data and generating the same results.

scalar
(1) In Fortran, a single object of any intrinsic or derived type. A structure is scalar
even if it has a component that is an array. The rank of a scalar is 0. (2) In C and
C++, integral, floating, and pointer types are collectively called scalar types. (3) A
nonvectorized, single numerical value that represents one aspect of a physical
quantity and may be represented on a scale as a point. This term often refers to a
floating-point or integer computation that is not vectorized; more generally, it
also refers to logical and conditional (jump) computation.

scalar processing
A sequential operation in which one instruction produces one result; it starts an
instruction, handles one operand or operand pair, and produces one result. Scalar
processing complements vector processing by providing solutions to problems
not readily adaptable to vector techniques.

scalar temporary
A simple variable defined and later referenced during each pass through a loop;
it is not referenced outside the loop. The compiler can either replace a scalar
temporary with a register, or it can eliminate it.

stack
(1) A data structure that provides a dynamic, sequential data list that can
be accessed from either end; a last-in, first-out (push down, pop up) stack
is accessed from just one end. (2) A dynamic area of memory used to hold
information temporarily; a push/pop method of adding and retrieving
information is used. (3) A portion of computer memory and/or registers used
to hold information temporarily. The stack consists of stack frames that hold
return locations for called routines, routine arguments, local variables, and
saved registers.

S–2312–36 101

Cray SV1™ Application Optimization Guide

stack thrashing
Frequent stack expansion (overflow) and contraction (underflow).

stride, constant
An interval that is the same for all consecutive elements of a vector. On the
Cray SV1 system, vectorization requires a constant, odd-numbered stride to
perform at peak efficiency. An array processed with a stride of 1, such as A(1),
A(2), A(3), ... is efficient. Avoid powers of 2, such as B(2), B(4), B(6), ...
. A stride that is not constant is illustrated by a sequence such as A(1), A(2),
A(3), A(5), A(8), A(13).

tailgating
Writing to a V register that is still being read from a prior vector instruction.

user area
A location at which the object code (text area) and external and static variables
(data area) reside in memory.

user CPU time
Time accumulated by a user process when the process is attached to a CPU and
executing. It is a fraction of wall–clock time, which measure the time from when
you begin the execution of a program until execution completes. Wall-clock time
includes the time a program is waiting for a CPU.

user process
An executable file becomes a user process after it is compiled and loaded. Your
code is a UNICOS user process when it is executing.

vector
A computer vector is an array of numbers on which instructions operate; this
can be an array or any subset of an array (such as a row, column, or diagonal).
When arithmetic, logical, or memory operations are applied to vectors, it is
referred to as vector processing.

vector array reference
An array element reference whose subscript expression is not a loop invariant.
It is an array that is processed in vector registers.

102 S–2312–36

Glossary

vector length
The number of elements in a vector.

vector processing
A technique whereby iterative operations are performed on sets of ordered
data. It provides results at rates exceeding the result rates of conventional scalar
processing.

vector register
A vector (V) register is used for vector operations; successive elements from a V
register enter a functional unit in successive clock periods.

vectorizable expression
An arithmetic or logical expression that consists of a combination of loop
invariants, loop counters, vector array references, scalar temporaries, or a
function with a vector version that has a vectorizable expression as an argument.
This includes most Fortran intrinsic functions.

vectorizable loop
A loop that contains only vectorizable expressions (that is, expressions for which
the compiler can produce vector code).

vectorization
Uses one instruction for the simultaneous performance of iterative operations on
elements in sets of ordered data. It provides results at rates greatly exceeding
those for conventional scalar processing, which works on only one element
at a time.

vectorized loop
A source code loop that is processed with hardware vector registers.

well-formed I/O requests
I/O requests that begin and end on disk sector boundaries, usually 512 words
(4096 bytes) or a multiple thereof.

S–2312–36 103

Index

A
ALLOCATE keyword, 73
analyzing

memory-bound code, 71
arrays

disk, 93
arrays, private

in multistreaming, 29
assign command

accessing layers provided by FFIO libraries, 80
bypassing system cache, 89
COS-blocked format, 83, 90
for library buffer size, 87, 89
setting buffer size, 83
specifying file format, 89–90
specifying library buffer size, 86
specifying MR layer, 92
to avoid cache, 90
to convert to asynchronous I/O, 85
to invoke FFIO, 92

asynchronous I/O
converting to, 84
optimizing, 89

B
bit matrix multiply and multistreaming, 30
BMM and multistreaming, 30

C
C and C++

multistreaming options, 27
cache

avoiding, 90
chaining

vector units, 8
code evaluation

determining available user memory, 22
initial, 11

using hpm, 13
using procstat, 71
using the ja utility, 20, 24

computational intensity
determining, 16

CPU time
large amounts, 71

cpu(8) command
with a multitasking job, 32

CPU-bound code
definition, 11
determining whether code is, 11

D
data edit descriptors, 82
data items in I/O list

minimizing, 80
DEALLOCATE keyword, 73
delete keyword, 73
direct access I/O

definition, 87
directives

multistreaming, 27
disk arrays, 93
disk striping, 92
disk use, 93
double buffering, 85
dynamic common blocks memory

management, 70
dynamic heap memory management, 69
dynamic memory

alternatives, 72
management types, 68

E
edit descriptors

repeated, 82
elapsed time

S–2312–36 105

Cray SV1™ Application Optimization Guide

definition, 2
evaluating code, 11
examples

direct access I/O, 88
heap initialization, 75
procstat, 71
setting initial heap size, 74

F
FFIO cache tuning, 91
FFIO libraries

accessing, 83
file format

unblocked for asynchronous I/O, 90
unbuffered and unblocked, 83

file systems
predefined memory resident, 92

files
memory resident, 92

flowcharts
initial evaluation, 11
optimization overview, 4

formatted I/O
increasing efficiency, 80, 82
increasing library buffer sizes, 83
optimizing, 79
reducing amount of, 80

Fortran
IVDEP directive, 46
multistreaming option, 26

G
GigaRing I/O

description, 9

H
-h stream option

for C and C++, 27
hardware

overview, 5
hardware expectations

single CPU, 14

hardware performance monitor (HPM), 13
heap definition, 69
heap initialization

example, 75
heap size

optimal, 75
help

from Cray, 3
HPM, 13
hpm report

sample, 14
hpm utility

using, 13

I
I/O

asynchronous, 89
asynchronous conversion, 84
changing to unformatted, 79
increasing request size, 87
large requests, 83
minimizing number of data list items, 80
optimizing for small requests, 87
optimizing formatted, 79
optimizing unformatted, 83, 87
unbuffered, unblocked format, 83

I/O-bound code
definition, 24
determining whether code is, 24
optimizing, 79

instruction buffer fetches, 15

J
ja report

checking for I/O-bound code, 24
checking for memory-bound code, 21

ja utility
using, 20

L
layer

memory resident, 87

106 S–2312–36

Index

library buffer sizes, 86
for asynchronous I/O, 90
for formatted I/O, 83
for unformatted I/O, 87

Load Map Program Statistics report
creating, 75
sample, 77

loader directives, 74
loop iterations

dividing among processors, 25
loopmark listing

creating, 41
loop type codes, 42

M
memory

using efficient storage for, 92
memory high water mark, 21
memory initialization, 74
memory management

conditions causing excessive system time, 70
dynamic common blocks, 70
dynamic heap, 69
hidden, 70
problems, 67
types, 68

memory size, 5
memory wait time

large amounts, 71
memory-bound code, 67

definition, 11, 19
memory-resident

files, 92
layer, 87
predefined file systems, 92

MFLOPS, 14
MIPS, 14
MR layer, 87
_MsBarrier routine

in multistreaming, 34
MSP

multistreaming processor, 25

MSP_STATS environment variable, 35
multistreaming

analysis, 16
and bit matrix multiply, 30
directives, 27
enabling, 26
in a multitasking program, 31
nested loops with, 29
on Cray SV1 systems, 25
options and directives, 26
performance analysis tools, 33
private arrays, 29
processor, 25
statistics in C and C++, 27
types of codes optimized, 29
versus multitasking, 31
with multitasking, 31

multitasking
with multistreaming, 31

N
NCPUS environment variable

setting number of MSPs, 26
nested loops

which is multistreamed, 29
new keyword, 73
nostream directive, 28

O
-O stream option

for Fortran, 26
optimizing code

autotasking, 56
computed safe vector length, 46
conditionally vectorized, 44
I/O bound, 79
initial evaluation, 11
loop blocking, 57
loop collapse, 52
loop fusion, 54
loop interchange, 51
loop unrolling, 49

S–2312–36 107

Cray SV1™ Application Optimization Guide

outer-loop vectorization, 49
partially vectorized loops, 43
pattern matching, 55
processor performance, 13
reduction loop, 44
short loop, 45
streaming, 56
vector update, 45
vectorization inhibitors, 47

optimizing memory, 67
overview

optimization process, 2

P
performance analysis tools

with multistreaming, 33
performance measurement with

multistreaming, 35
preallocation

disk space, 93
predefined file systems

memory resident, 92
preferstream directive, 28
PRINT statements, 81
process monitoring with procstat, 71
processor, 8
processor performance

multiple, 1
single, 1

procstat utility
description, 71

prof command
with multistreaming, 33

profview command
with multistreaming, 34

R
READ statements, 81
records

using longer, 81
reduction loop, 44
reusing heap space, 73

S
sar command, 22
SBREAK library routine, 71
scratch files, 94
SEGLDR

to specify initial heap size, 74
to specify optimal heap size, 75

sequential access
definition, 83

sequential I/O
optimizing, 83, 87

setvbuf routine
setting buffer size, 83

single processor
determining whether code is optimized for, 13
hardware expectations, 14
optimization method, 1

software striping, 93
SSP

single-streaming processor, 25
stack area, definition, 69
stack frames

definition, 70
stack thrashing, 70, 73
STOP statement, 73
storage devices

using optimal, 91
stream directive, 28
striping

disk, 92
software, 93

summation loop, 44
synchronization reduction, 91
sysconf command, 22, 25
system calls, minimizing, 94
system CPU seconds, 22
system CPU time

large amounts, 71

T
tailgaiting

vector units, 8

108 S–2312–36

Index

tape use, 94
target command, 22
threshold argument, 29
tools

hpm, 13
ja, 20, 24
procstat, 71
procview, 71

U
unblocked file format

for asynchronous I/O, 90
unblocked I/O format, 83
unbuffered I/O format, 83
unformatted I/O

changing to, 79
optimizing, 83, 87

user area, definition, 69
user CPU seconds, 22
user CPU time

definition, 2
user memory available, 22
user process, 69

V
vector collapse, 44
vector unit

peak rate, 8
vectorization

and multistreaming, 33
dependencies, 47
factors inhibiting, 47

vectorization overview, 39

W
waiting at barriers

when multistreaming, 34
workload balancing, 91
WRITE statements, 81

S–2312–36 109

	toc
	Cray SV1€ Application Optimization Guide
	New Features
	Preface
	Related Publications
	Ordering Documentation
	Conventions
	Reader Comments

	Introduction [1]
	1.1 About This Manual
	1.2 Optimization Overview
	1.3 Hardware Overview
	1.3.1 The Processor
	1.3.2 Cache
	1.3.3 I/O

	Evaluating Code [2]
	2.1 CPU-Bound Programs
	2.1.1 Using the hpm Command to Issue Reports
	Procedure 1: Using the hpm Command to Determine Processor Perfor

	2.1.2 Analyzing Multistreaming Code
	2.1.2.1 The ps (1) Command
	2.1.2.2 The jstat (1) Command
	2.1.2.3 The cpu (8) Command

	2.2 Memory and Cache
	2.2.1 Cache
	2.2.2 Code Size
	Procedure 2: Determining if the code is memory bound
	2.2.2.1 Determining How Much Memory Is Available on Your System

	2.3 I/O Bound
	Procedure 3: Determining if the Code is I/O Bound

	Multistreaming [3]
	3.1 Compiler Options and Directives
	3.1.1 Fortran Compiler Options
	3.1.2 C and C++ Compiler Options
	3.1.3 Directives
	3.1.3.1 concurrent Directive
	3.1.3.2 preferstream, stream, and nostream Directives

	3.2 Loops That Are Multistreamed by the Compiler
	3.3 Bit Matrix Multiply (BMM) and Multistreaming
	3.4 Tasking and Multistreaming
	3.4.1 Multitasking on MSPs with Multistreaming
	3.4.2 Multitasking on MSPs without Multistreaming

	3.5 Vectorization and Multistreaming
	3.6 Analyzing the Performance of a Multistreaming Program
	3.6.1 The prof and profview Commands
	3.6.2 The MSP_STATS Environment Variable

	Optimizing Using Vectorization [4]
	4.1 What Is Vectorization?
	4.2 Loopmark Listings
	4.3 Vectorization
	4.3.1 Fully Vectorized Loops
	4.3.2 Partially Vectorized Loops
	4.3.3 Conditionally Vectorized Loop
	4.3.4 Reduction Loop
	4.3.5 Shortloop
	4.3.6 Vector Update Loop
	4.3.7 Computed-Safe Vector Length Loop
	4.3.8 Vectorization Inhibitors
	4.3.9 Vectorization and Dependencies

	4.4 Other Loop Optimizations
	4.4.1 Outer-loop Vectorization
	4.4.2 Loop Unrolling
	4.4.3 Loop Interchange
	4.4.4 Loop Collapse
	4.4.5 Loop Fusion
	4.4.6 Pattern Matching
	4.4.7 Autotasking
	4.4.8 Streaming
	4.4.9 Loop Blocking

	Optimizing Memory Use [5]
	5.1 Overview of Memory
	5.1.1 Central Memory
	5.1.2 Cache

	5.2 Optimizing Cache Use
	5.2.1 Using Vector Cache Effectively
	5.2.2 Minimizing Stores
	5.2.3 Porting Issues

	5.3 Managing Memory
	5.4 Understanding Memory Management
	5.4.1 Dynamic Heap
	5.4.2 Dynamic Common Blocks

	5.5 Identifying Large Amounts of Memory Wait Time or System CPU
	Procedure 4: Creating a Report

	5.6 Evaluating Dynamic Memory Alternatives and Applying a Techni
	5.6.1 Large Number of System Calls
	5.6.2 Memory Expanded or Contracted in Small Increments
	5.6.3 Other Reasons for Excessive Memory Activity
	5.6.4 Temporary Memory Expansion of Significant Duration
	5.6.5 Heap Blocks Release Order

	5.7 Memory Initialization
	5.7.1 Loader Directives
	5.7.2 Optimal Heap Size
	Procedure 5: Determining Optimal Heap Size

	Optimizing I/O [6]
	6.1 Optimizing Formatted I/O
	6.1.1 Changing to Unformatted I/O
	6.1.2 Reducing the Amount of Formatted I/O
	6.1.3 Increasing Formatted I/O Efficiency for Fortran Programs
	6.1.3.1 Minimizing the Number of Data Items in the I/O List
	6.1.3.2 Using a Single READ, WRITE, or PRINT Statement
	6.1.3.3 Using Longer Records
	6.1.3.4 Using Repeated Edit Descriptors
	6.1.3.5 Using Data Edit Descriptors That Are the Same Width as t

	6.1.4 Increasing Formatted I/O Efficiency for C++ Programs
	6.1.5 Increasing Library Buffer Sizes for Formatted I/O Requests

	6.2 Optimizing Large, Sequential, Unformatted I/O Requests
	6.2.1 Changing I/O File Format to Unbuffered and Unblocked
	6.2.2 Converting to Asynchronous I/O
	6.2.2.1 Using the assign Command to Convert Code to Asynchronous
	6.2.2.2 Optimizing Asynchronous I/O
	Example 1: C++ Example of Converting to Asynchronous I/O

	6.2.3 Using Effective Library Buffer Sizes

	6.3 Optimizing Small, Sequential, Unformatted I/O Requests
	6.3.1 Using Effective Library Buffer Sizes
	6.3.2 Increasing I/O Request Size and Issuing Fewer Requests
	6.3.3 Using the Memory-Resident (MR) FFIO Layer

	6.4 Optimizing Techniques for Direct Access I/O
	6.4.1 Fortran Direct Access I/O
	Example 2: Fortran Direct Access

	6.4.2 C++ Direct Access I/O
	Example 3: C++ Direct Access

	6.4.3 Optimizing Techniques for Direct Access Code

	6.5 Optimizing Asynchronous I/O Requests
	6.5.1 Using Unblocked File Format
	6.5.2 Avoiding Cache
	6.5.3 Using Effective Library Buffer Sizes
	6.5.4 Balancing Workload
	6.5.5 Minimizing Required Synchronization
	6.5.6 Tune FFIO User Cache

	6.6 Using an Optimal Storage Device
	6.6.1 Memory-Resident (MR) Files
	6.6.2 Memory-Resident Predefined File Systems
	6.6.3 Disk Striping
	6.6.4 Disk Arrays
	6.6.5 Disks
	6.6.6 Tapes

	6.7 Minimizing System Calls
	6.8 Using the SSD-I on Cray SV1ex Model Systems

	Glossary

	tables
	Table 1. Single-Processor Hardware Expectations
	Table 2. Determining if the code is dominated by scalar or vecto
	Table 3. Loopmark Listing Keys
	Table 4. Typical Latencies

