
CSM-0301-0B0 Cray Research Proprietary 1

System Programmer Reference
CSM-0301-0B0
CRAY J90 Series Systems
Last Modified: April 1997

Record of Revision . 10

Descriptions of Changes in this Revision . 11

Scalable Input/Output Subsystem (SIO) Overview 11

GigaRing I/O Section . 11

Exchange Package Diagram . 11

Real-time Clock . 12

Programmable Clock . 12

Cache Memory . 12

CPU Instructions . 12

CRAY J90 System Overview . 15

CRAY J90 Classic System . 15

CRAY J90se System . 15

Mainframe Overview . 16

VME-based I/O Subsystem Overview . 18

Scalable Input/Output Subsystem (SIO) Overview . 19

GigaRing Overview . 20

Network Interfaces . 22

Maintenance Platform . 22

CPU Shared Resources 23

Central Memory . 23

Memory Instructions . 24

Logical Organization . 25

Port Utilization . 27

Conflict Resolution . 29

Guaranteeing Memory Access Order . 32

Calculating Absolute Memory Address . 33

System Programmer Reference

2 Cray Research Proprietary CSM-0301-0B0

Address Range Checking . 34

Error Detection and Correction . 35

Central Memory Performance Summary . 38

VME I/O Section . 39

Y1 Channel Pairs . 39

Error Handling . 45

High Performance Parallel Interface (HIPPI) . 46

GigaRing I/O Section . 53

MPN-1 Functional Overview . 54

IPN-1 Functional Overview . 56

FCN-1 Functional Overview . 58

HPN Functional Overview . 60

BMN-1 Functional Overview . 62

ESN-1 Functional Overview . 63

FOX Overview . 64

Error Reporting and Handling . 65

Interprocessor Communication . 66

Clusters . 66

Shared Registers . 66

Semaphore Registers . 67

Test and Set Control . 69

Deadlock . 70

Interprocessor Interrupts . 71

Real-time Clock . 72

CPU Control 75

Exchange Mechanism . 75

Exchange Package . 76

Exchange Sequence . 85

Exchange Package Management . 87

Instruction Fetch Sequence . 89

System Programmer Reference

CSM-0301-0B0 Cray Research Proprietary 3

Instruction Fetch Hardware . 89

Instruction Issue . 93

Instruction Issue Hardware . 93

Reservations and Hold Issue Conditions . 101

Programmable Clock . 103

Interrupt Interval Register . 103

Operation . 103

Status Register . 104

Performance Monitor . 106

Selecting and Reading Performance Events . 108

Testing Performance Counters . 110

Cache Memory . 111

Detailed Operation of Cache Memory . 113

CPU Computation 115

Operating Registers . 117

Address (A) Registers . 117

Intermediate Scalar (T) Registers . 131

Vector (V) Registers . 131

Vector Instruction Issue Timing . 138

Vector Control Registers . 142

Vector Length Register . 142

Vector Mask Register . 143

User Mode Vector Instruction Timing . 143

Functional Units . 147

Address Functional Units . 148

Scalar Functional Units . 149

Vector Functional Units . 150

Floating-point Functional Units . 153

Functional Unit Operations . 155

Logical Operations . 155

System Programmer Reference

4 Cray Research Proprietary CSM-0301-0B0

Integer Arithmetic . 156

32-bit Integer Multiplication . 156

Multiplication of Operands Greater than 24 Bits . 158

Floating-point Arithmetic . 159

Parallel Processing Features 173

Pipelining and Segmentation . 174

Functional Unit Independence . 176

Multiprocessing and Multitasking . 176

Autotasking Feature . 178

Maintenance Mode 179

Enabling and Disabling the Maintenance Mode . 179

Using Maintenance Mode . 179

CPU Instructions . 182

Quick Reference Table of CPU Instructions . 183

Notational Conventions . 191

Instruction Formats . 192

1-parcel Instruction Format with Discretej andk Fields 192

1-parcel Instruction Format with Combinedj andk Fields 193

2-parcel Instruction Format with Combinedi, j, k, andm Fields 193

3-parcel Instruction Format with Combinedm andn Fields 194

Special Register Values . 196

Monitor Mode Instructions . 196

Special CAL Syntax Forms . 197

CPU Instruction Descriptions . 198

Functional Units Instruction Summary . 199

Instruction 000000 . 200

Instructions 0010 through 0013 . 201

Instructions 0014 through 0016j 1 . 204

Instructions 0015 through 001551 . 207

System Programmer Reference

CSM-0301-0B0 Cray Research Proprietary 5

Instruction 0020 . 209

Instruction 0021 through 0027 . 210

Instructions 0030, 0034, 0036, and 0037 . 212

Instruction 0040 . 214

Instruction 0050 . 215

Instruction 0060 . 216

Instruction 0070 . 217

Instructions 010 through 013 . 218

Instructions 014 through 017 . 220

Instructions 020 through 022 . 222

Instruction 023 . 224

Instructions 024 through 025 . 225

Instruction 026 . 226

Instruction 027 . 227

Instructions 030 through 031 . 229

Instruction 032 . 230

Instruction 033 . 231

Instructions 034 through 037 . 233

Instruction 040 through 041 . 236

Instructions 042 through 043 . 237

Instructions 044 through 051 . 238

Instructions 052 through 055 . 242

Instructions 056 through 057 . 243

Instructions 060 through 061 . 245

Instructions 062 through 063 . 247

Instructions 064 through 067 . 248

Instruction 070 . 250

Instruction 071 . 251

Instructions 072 through 073 . 254

Instructions 074 through 075 . 258

Instructions 076 through 077 . 259

System Programmer Reference

6 Cray Research Proprietary CSM-0301-0B0

Instructions 10h through 13h . 261

Instructions 140 through 147 . 264

Instructions 150 through 151 . 268

Instructions 152 through 153 . 271

Instructions 154 through 157 . 277

Instructions 160 through 167 . 280

Instructions 170 through 173 . 283

Instruction 174 . 286

Instruction 174ij 1 through 174ij 2 . 288

Instruction 175 . 290

Instruction 176 through 177 . 294

Figures

Figure 1. CRAY J90 Series Mainframe Block Diagram 17

Figure 2. IOS Block Diagram . 18

Figure 3. CRAY J90se Four-node GigaRing Channel Configuration 20

Figure 4. CRAY J90se I/O Node . 21

Figure 5. CPU Central Memory Architecture . 26

Figure 6. Exchange Package . 28

Figure 7. I/O IOTCB Format . 42

Figure 8. Console IOTCB Format . 42

Figure 9. Relation between SM Registers and S Register Bits 68

Figure 10. Instruction Fetch Block Diagram . 89

Figure 11. IBAR . 90

Figure 12. P Register . 90

Figure 13. P Register and IBAR Address Formats . 91

Figure 14. Instruction Issue Block Diagram – General Flow 93

Figure 15. Instruction Issue Block Diagram – Parcels Held 96

Figure 16. Instruction Flow through Issue Registers (CPn + 1) 96

Figure 17. Instruction Flow through Issue Registers (CPn + 2) 97

Figure 18. 1-parcel Instruction Holding 1 CP for Conflict (CPn + 3) 97

Figure 19. Instruction Flow through Issue Registers (CPn + 4) 98

System Programmer Reference

CSM-0301-0B0 Cray Research Proprietary 7

Figure 20. 2-parcel Instruction Holding 1 CP for Conflict (CPn + 5) 98

Figure 21. Instruction Flow through Issue Registers (CPn + 6) 99

Figure 22. Instruction Flow through Issue Registers (CPn + 7) 99

Figure 23. 3-parcel Instruction Holding 1 CP for Conflict (CPn + 8) 100

Figure 24. Instruction Flow through Issue Registers (CPn + 9) 100

Figure 25. Contents of an S Register During Execution
of 073i 11 Instruction . 109

Figure 26. 1-word Line, 2-way Associative 128-word Cache 114

Figure 27. A Register Block Diagram . 118

Figure 28. Scalar Register Block Diagram . 124

Figure 29. V Register Block Diagram . 133

Figure 30. Vector Chaining Example . 140

Figure 31. Vector Tailgating Example . 141

Figure 32. Integer Data Formats . 156

Figure 33. 24-bit Integer Multiply Performed in a
Floating-point Multiply Functional Unit 157

Figure 34. 32-bit Integer Multiply Performed in a
Floating-point Multiply Functional Unit 158

Figure 35. Floating-point Data Format . 159

Figure 36. Internal Representation of a Floating-point Number 160

Figure 37. Biased and Unbiased Exponent Ranges . 161

Figure 38. Floating-point Add and Floating-point
Multiply Range Errors . 163

Figure 39. Exponent Matrix for a Floating-point
Multiply Functional Unit . 164

Figure 40. Floating-point Reciprocal Approximation Range Errors 165

Figure 41. Floating-point Multiply Partial-product Sums Pyramid 168

Figure 42. Newton’s Method of Approximation . 170

Figure 43. Segmentation and Pipelining Example . 175

Figure 44. Instruction 001541 Operation . 181

Figure 45. General Instruction Format . 192

Figure 46. 1-parcel Instruction Format with Combinedj andk Fields 193

System Programmer Reference

8 Cray Research Proprietary CSM-0301-0B0

Figure 47. 1-parcel Instructions withj andk as a
Combined 6-bit Field . 193

Figure 48. 2-parcel Instruction Format with
Combinedi, j, k, andm Fields . 194

Figure 49. 3-parcel Instruction Format with
Combinedm andn Fields . 195

Figure 50. Vector Left Double Shift, First Element,
VL Greater than 1 . 273

Figure 51. Vector Left Double Shift, Second Element,
VL Greater than 2 . 273

Figure 52. Vector Left Double Shift, Last Element . 274

Figure 53. Vector Right Double Shift, First Element 275

Figure 54. Vector Right Double Shift, Second Element,
VL Greater than 1 . 275

Figure 55. Vector Right Double Shift, Last Operation 276

Figure 56. Compressed Index Example . 293

Figure 57. Gather Instruction Example . 298

Figure 58. Scatter Instruction Example . 299

Tables

Table 1. CPU Memory Instructions . 24

Table 2. Port Specifications . 27

Table 3. Memory Priority Scheme . 30

Table 4. Check-bit Generation . 37

Table 5. Processor Modules and Associated Y1 Channel Numbers 39

Table 6. Y1 Channel Instructions . 40

Table 7. HIPPI or Y1 Channel Configurations . 50

Table 8. Error Reporting MMRs . 65

Table 9. Shared Register Instructions . 67

Table 10. SM Register Instructions . 67

Table 11. Interprocessor Interrupt Instructions . 71

Table 12. RTC Instructions . 72

Table 13. Exchange Package Read Mode and Port Translations 78

System Programmer Reference

CSM-0301-0B0 Cray Research Proprietary 9

Table 14. Instruction Issue Sequence . 101

Table 15. Programmable Clock Instructions . 103

Table 16. Si Bit Positions and Bit Descriptions . 105

Table 17. Performance Counter Group Descriptions 107

Table 18. Performance Monitor User Instructions . 108

Table 19. CRAY J90 Series Cache Operations . 113

Table 20. Special A0 Register Values . 120

Table 21. A Register Instructions . 121

Table 22. B Register Instructions . 123

Table 23. Special S0 Register Values . 126

Table 24. S Register Instructions . 127

Table 25. T Register Instructions . 131

Table 26. V Register Instructions . 136

Table 27. Vector Mask Instructions . 142

Table 28. Vector Instruction Issue and Execution . 144

Table 29. 0051j 1 Instruction Operation . 180

Table 30. Quick Reference Table of CPU Instructions 183

Table 31. Special Register Values . 196

Record of Revision System Programmer Reference

10 Cray Research Proprietary CSM-0301-0B0

Record of Revision

March 1996

Original printing.

Revision A: February 1996

Updated to add user-mode vector instruction timing and issue table (Table 28)
and to correct inaccuracies in instruction hold issue conditions.

Revision B: April 1997

Updated to add information for the CRAY J90se™ series and a quick-reference
table for all CPU instructions (Table 30).

System Programmer Reference Descriptions of Changes in this Revision

CSM-0301-0B0 Cray Research Proprietary 11

Descriptions of Changes in this Revision

NOTE: In this document, the terms “CRAY J90 Classic” and “CRAY J90
System (J90)” refer to the same product. Additionally, references to
the “CRAY J90 series” also apply to the CRAY J90se series,
hereafter referred to as J90se.

Scalable Input/Output Subsystem (SIO) Overview

This revision adds an overview of the J90se SIO and GigaRing™ channel.

GigaRing I/O Section

This section adds information on the GigaRing I/O to supplement the “VME I/O
Section” information.

This section describes the following related topics:

• MPN
• IPN
• FCN
• HPN-1 and HPN-2
• BMN
• ESN
• FOX
• Error Handling and Reporting

Exchange Package Diagram

Figure 6 now reflects the addition of 2 ID bits that indicate the CPU type. The
2 left-most bits in word 7 changed.Figure 6 adds a table that indicates processor
type.

Descriptions of Changes in this Revision System Programmer Reference

12 Cray Research Proprietary CSM-0301-0B0

Real-time Clock

The“Real-time Clock” description adds the following note:

NOTE: On the J90se CPU, the real-time clock increments at the system
clock rate, not the CPU clock rate (twice the system clock rate).
Therefore, on a J90se CPU, two successive 072i00 instructions that
issue during the same system clock period will return the same
value.

Programmable Clock

The“Programmable Clock” description adds the following note:

NOTE: On the J90se CPU, the programmable clock operates at the CPU
clock rate (twice the system clock rate).

Cache Memory

The“Cache Memory” description adds the following note:

NOTE: On a J90se CPU, the cache read latency remains unchanged at 7 CPs
(3.5 system CPs).

CPU Instructions

Quick Reference Table of CPU Instructions (Table 30)

This revision adds a quick reference table of all J90 CPU instructions (Table 30).

Instruction Note

The following note was added to the instructions 0010-0012, 0014j 0, 0014j 1,
0014j 3, 0016j 1, 0020, 0027, 0030, 0034, 0036, 0037, 027ij 7, 034-037, 073i 00,
073i 02, 073ij 3, 076, 077, 10h-13h, 140-147, 150-151, 152-153, 154-155,
160-167, 170-173, 174, 175, and 176-177:

NOTE: On a J90se CPU, instructionx must be synchronized with the system
clock, which runs at half the rate of the CPU clock. Therefore, a
1-CP hold issue may occur for clock alignment.

System Programmer Reference Descriptions of Changes in this Revision

CSM-0301-0B0 Cray Research Proprietary 13

Instructions 0050, 0070, 024 and 025

The following additions and deletions were made to the “Hold Issue Conditions”
for instructions 0050, 0070, 024 and 025:

Instructions 034 and 036

The following note was added under “Execution Time” for instructions 034 and
036:

NOTE: On the J90se CPU, instructions 034 and 036 with a block
length of less than or equal to 1008 release the B or T registers
individually as they are written. This is different from the J90
classic CPU, where all the B or T registers are reserved until
the last register is written.

Instruction 072 i00

The following note was added to instruction 072i00:

NOTE: On the J90se CPU, the real-time clock increments at the system
clock rate, not the CPU clock rate (twice the system clock rate).
Therefore, on a J90se CPU, two successive 072i00 instructions that
issue during the same system clock period will return the same
value.

Additions Deletions

Classic CPU: Instruction 034 in
progress.

Instruction 034 or 035 in progress.

J90se CPU: Instruction 034 in
progress with block length less than
or equal to 1008 and register Bjk not
yet written.

J90se CPU: Instruction 034 in
progress with block length greater
than 1008.

Instruction 035 in progress.

Descriptions of Changes in this Revision System Programmer Reference

14 Cray Research Proprietary CSM-0301-0B0

Instructions 074 and 075

Instructions 074 and 075 were separated from instruction 073. Also, the
following additions and deletions were made to the “Hold Issue Conditions” for
instructions 074 and 075:

Additions Deletions

Classic CPU: Instruction 036 in
progress.

Instruction 036 or 037 in progress.

J90se CPU: Instruction 036 in
progress with block length less than
or equal to 1008 and register Tjk not
yet written.

J90se CPU: Instruction 036 in
progress with block length greater
than 1008.

Instruction 037 in progress.

System Programmer Reference CRAY J90 System Overview

CSM-0301-0B0 Cray Research Proprietary 15

CRAY J90 System Overview

This section provides a general, technical description of the CRAY J90 Classic
and CRAY J90se computer hardware architecture.

CRAY J90 Classic System

Cray Research refers to the original CRAY J90 systems that were delivered
between March 1995 and fall of 1996 as CRAY J90 Classic systems. These
systems were installed with CRAY J90 Classic processor modules and use the
CRAY J90 Classic VME I/O. It is possible to add new CRAY J90se processor
modules to these systems and benefit from their increased performance and yet
continue to use the CRAY J90 Classic VME I/O. It is also possible to upgrade
a CRAY J90 Classic system to a CRAY J90se system if desired. This upgrade
requires that all CRAY J90 Classic processor modules be replaced with
CRAY J90se processor modules and that the CRAY J90 VME I/O be replaced
with the Cray scalable I/O subsystem and GigaRing channels.

CRAY J90se System

The CRAY J90se system is a refinement of the CRAY J90 Classic system. All
CRAY J90se systems use only the new CRAY J90se processor module and the
scalable I/O subsystem (SIO) with the Cray GigaRing channel. The CRAY J90
series GigaRing interface is based on the scalable I/O architecture. This design
uses a dual counter-rotating ring-based interconnect and associated protocol for
communication among Cray Research mainframes and peripherals.

Scalar performance in the J90se series increased approximately 40% over that
of the J90 Classic with the inclusion of a redesigned PC ASIC, which is called
the PC+ ASIC. The PC+ ASIC operates at twice the clock rate of other ASICs.

Mainframe Overview System Programmer Reference

16 Cray Research Proprietary CSM-0301-0B0

Mainframe Overview

The CRAY J90 series mainframe contains CPUs, an interprocessor
communication section, a real-time clock, and central memory. A processor
module contains 4 CPUs. Each CPU has a computation section that consists of
operating registers, functional units, and a control section. The control section
determines instruction issue and coordinates the three types of processing
(vector, scalar, and address). The I/O section, interprocessor communication
section, real-time clock, and central memory are shared by the CPUs and are
called shared resources.

Figure 1 is a block diagram of a CRAY J90 series mainframe. It shows the
internal organization of the CPU, with paths to central memory and I/O, and
registers that are distributed among all CPUs within a cluster.

Central memory, which holds program code and data, is shared among all CPUs
in the mainframe. It is available in various sizes and configurations. The I/O
section provides high-speed data transfers to and from the IOS™. The
interprocessor communication section enables each CPU to synchronize
operation and transfer data to and from other CPUs.

The balanced CPU architecture enables efficient computation and memory
access for both vector and scalar operations. Separate registers and functional
units for vector and scalar operations support both integer and floating-point
operations. Vector processing uses a single instruction to perform a repeated
operation on sets of ordered data. Scalar processing uses one instruction to
perform one operation and produce one result.

Sequential vector instructions cause sequential portions of each operation to
occur simultaneously. Therefore, the computational rate for vector processing
greatly exceeds that of scalar processing. Scalar operations complement vector
capability by providing solutions to problems not readily adaptable to vector
techniques. Because the start-up time for vector operations is short, vector
processing is more efficient than scalar processing for vectors that contain as
few as two elements.

Multiple-processor systems enable multiprocessing and multitasking
techniques. Multiprocessing allows several programs to run concurrently on
multiple CPUs within the mainframe. Multitasking allows two or more parts of
a program to run in parallel in separate CPUs and to share a common memory
space.

System Programmer Reference Mainframe Overview

CSM-0301-0B0 Cray Research Proprietary 17

Figure 1. CRAY J90 Series Mainframe Block Diagram

2

Add

Multiply

Address
Functional

Units

B77

B00

• • •
A0

A1

A2
A3

A4

A5
A6

A7

Central
Memory

((A0) + (Ak)), ((A0) + (Vk))

((A0) + (Ak)), ((A0) + (Vk))

((A0) + (Ak)), ((A0) + (Vk))

Vector Registers

V7

V6

V5

V4

V3

V2

V1

V0
00

77

(A0)

((Ah) + (nm))

I/O
Real-time Clock

Status

Prog Clock Int

Sj

Scalar Registers

Si

Tjk
Sj

Sk

Si

Sj

Sj

Vj

Vk

Vi

Vector Mask

Vector Control

Sj

Vj

Vk

Vi

Si

Sj

Sk

Ak

Exchange
Control

XA
Vector
Control

Vector
Length

Address Registers

(A0)

Ai

Bjk

Aj

Ak

Ai

Instruction
Buffers

+1, +2

20

20 + N

Ak Ai

Y1 Channel
Control

Execution

ST0

ST1
ST2
ST3

ST4
ST5

ST6
ST7

Shared Registers

SB0

SB1
SB2

SB3
SB4

SB5
SB6
SB7NOTES:

Si

Si

T77

T00

• • •

S0

S1
S2

S3
S4

S5
S6

S7

P

IB7

IB6

IB5
IB4

IB3

IB2

IB1

IB0
00

37

NIP

Add

Logical

Shift

Pop/Parity/
Leading Zeroes

Scalar Functional
Units

• • •

CA 20

20 + N

Ak

• • •

CL

• • •

SM37

SM0

SiAiSi Ai Si

Control and/or data from other processors.

The second vector logical functional unit shares
hardware with the floating-point multiply functional unit.

The vector pop/parity functional unit shares
hardware with the floating-point
reciprocal approximation functional unit.

Cache

128
Words

Ak
Vector

Functional
Units

Shift

Logical

Pop/Parity

Logical 2

Vector
Floating-point

Multiply

Reciprocal

Sj

Scalar
Floating-point

Multiply

Reciprocal

Si SiAiAiSiSi

CIP

LIP

LIP 1

((Ah) + (nm))

((Ah) + (nm)

Add

Add

Add

1

2

3

3

1

1 1 1

111111

Port D

Si

VME-based I/O Subsystem Overview System Programmer Reference

18 Cray Research Proprietary CSM-0301-0B0

VME-based I/O Subsystem Overview

The CRAY J90 series IOS uses a VME 64-bit bus architecture for data transfers
from central memory to the peripherals. The VME 64-bit bus is a
high-performance industry standard backplane that can connect
vendor-compatible I/O controllers to the IOS. Refer toFigure 2 for a block
diagram of the IOS and examples of the optional peripheral devices that may be
included in a CRAY J90 series system.

Figure 2. IOS Block Diagram

The IOS provides fast data transmission between central memory and peripheral
devices and networks. Data travels from a peripheral device across a data channel
to the device controller, then from the device controller to the input/output buffer
board (IOBB) across the VMEbus. From the I/O buffer board, data travels to
mainframe memory through the Y1 50-Mbyte/s data channel. There are four Y1
channels for each processor module.

The IOS input/output processor (IOP) is the CPU for the IOS. The IOP performs
I/O functions for the I/O controllers, processes external interrupts and CPU I/O
requests, and executes peripheral driver routines.

CRAY J90 Series
 Mainframe

VME Card Cage

Master IOP
(SPARC based

Processor)

Disk
Controller

Disk
Controller

SCSI
Controller

Network
Controller(s)

Tape
Controller

Tape
Controller

SCSI Tape Drives,
SCSI Disk Drives,
SCSI Tape Storage
Subsystems

Ethernet or FDDI

Y1 Channel

Tape Drive Option

Tape Drive Option

I/O Buffer
Board

Disk Drive Option

Disk Drive Option

System Programmer Reference Scalable Input/Output Subsystem (SIO) Overview

CSM-0301-0B0 Cray Research Proprietary 19

The VME controller boards enable the IOS to support the following operations
and devices:

• System console operation
• Disk subsystems
• Tape subsystem
• Network subsystem

A CRAY J90 series system can contain up to 16 IOSs, and each processor module
can handle up to four IOSs each. Each of the four possible peripheral cabinets
may contain one to four IOSs.

Each IOS can support either two or four I/O controllers, plus two required boards:
the IOP and IOBB. The number of controllers that are supported depends on the
type of VME backplane.

NOTE: Each J90se series processor module contains a new channel adapter
board that provides one GigaRing node chip. A new channel adapter
(client interface) and a GigaRing interface board replace the existing
CRAY J90 series channel adapter. This eliminates Y1 channel and
memory HIPPI I/O capability. The GigaRing channel includes a
single-purpose node that supports the HIPPI channel.

Scalable Input/Output Subsystem (SIO) Overview

The CRAY J90se series supports the scalable I/O subsystem. This is a
high-performance standard-based I/O architecture that Cray Research uses on
all new systems.

SIO is a single-cabinet or multicabinet subsystem that provides
high-performance, high-resilience I/O support; it is a collection of I/O nodes in
which each node is an independent unit that connects to a GigaRing channel.

GigaRing Overview System Programmer Reference

20 Cray Research Proprietary CSM-0301-0B0

GigaRing Overview

The GigaRing channel allows for high-speed communication among Cray
Research mainframes and peripherals, as well as direct interconnect between all
Cray products.

The GigaRing channel incorporates a pair of unidirectional, counter-rotating
rings to support multiple nodes. Each of the two rings has a maximum transfer
rate of 500 Mbytes/s, which provides an effective total bandwidth of 1,000
Mbytes/s. The redundancy (two rings) and counter-rotation enable the GigaRing
channel to operate during a link or node failure at a reduced data rate; the rings
can be folded to map out faulty nodes or channel connections. The
counter-rotating rings also enable shortest-path communication.

A GigaRing channel consists of two or more GigaRing node chips that are
connected and that use GigaRing protocol. Based on the Scalable Coherent
Interface (SCI) standards, GigaRing protocol supports direct memory access,
peer-to-peer messaging, and remote memory data transfers. I/O data and control
information messages pass among mainframes and nodes via the GigaRing
channel.Figure 3 shows two possible GigaRing channel configurations.

Figure 3. CRAY J90se Four-node GigaRing Channel Configuration

The GigaRing node chip implements the logical layer of the GigaRing channel
and supports the I/O protocol. A GigaRing node chip contains a client port
interface, incoming and outgoing positive links, and incoming and outgoing
negative links.Figure 4 shows a CRAY J90se I/O node. The node chips use a
packet-based protocol and balance the communication loads of the devices
automatically.

Client

GigaRing
Interface

Client

Client

GigaRing
Interface

Client
GigaRing
Interface

GigaRing
Interface

Client Port

System Programmer Reference GigaRing Overview

CSM-0301-0B0 Cray Research Proprietary 21

Figure 4. CRAY J90se I/O Node

NOTE: Each J90se series processor module contains a new channel adapter
board that provides one GigaRing node chip. The new channel
adapter (client interface) and the GigaRing interface board replace
the existing CRAY J90 series channel adapter. This eliminates Y1
channel and memory HIPPI I/O capability. The GigaRing channel
includes a single-purpose node that supports the HIPPI channel.

Communication between nodes occurs when the source node sends packets of
information to a target node. When a client transmits a packet, the packet is
placed in the send buffer of its local interface.This client and its local interface
become the source node. The source node then transmits the packet around the
ring until the packet reaches its target node. Each transfer is protected by a CRC
checksum.

CPU Board

GigaRing
Interface
Board

CRAY J90se Processor Module

GigaRing Channel
+

–

Client
Interface
Board

Network Interfaces System Programmer Reference

22 Cray Research Proprietary CSM-0301-0B0

Network Interfaces

A CRAY J90 series system is designed to communicate easily with front-end
computer systems and computer networks and can function as a stand-alone
system or can be networked into an existing computing environment. The system
can be connected to a multiple-system network with an Ethernet connection or
a fiber-distributed data interface (FDDI) local area network using Transmission
Control Protocol/Internet Protocol (TCP/IP). CRAY J90 series systems also
support asynchronous transfer mode (ATM) protocol (UNICOS 8.0.4.2 release
or above).

Maintenance Platform

The CRAY J90 series maintenance platform consists of a modem and an optional
Telebit® NetBlazer® PN dial-up router. The system console is a
SPARCstation® 5 Workstation.

System Programmer Reference Central Memory

CSM-0301-0B0 Cray Research Proprietary 23

CPU Shared Resources

All CPUs in the CRAY J90 series mainframe share the following resources:

• Central Memory
• Interprocessor Communication
• Real-time Clock

Central Memory

Central memory consists of solid-state, dynamic random-access memory
(DRAM) that is shared by all the CPUs and the I/O section. Each memory word
consists of 72-bits: 64 data bits and 8 error-correction bits. These 8 bits are for
single-error correction/double-error detection (SECDED). DRAM chips provide
storage for data and correction bits. The DRAM chips have a 70-ns access time.
In order to improve memory access speed, central memory has multiple banks
that can be active simultaneously. Each central memory bank can be accessed
once every 14 clock periods.

In each CPU, the operating registers, instruction buffers, and exchange package
have access to central memory through memory ports. Each CPU has two ports,
port A and port B, to allow two simultaneous memory references from each CPU
(two memory reads or one read and one write). Another port, port D, is used for
I/O and instruction fetch operations.

Central Memory System Programmer Reference

24 Cray Research Proprietary CSM-0301-0B0

Memory Instructions

Table 1 shows the CPU memory instructions that transfer data between CPU
registers and central memory, or that affect memory operation. The contents of
the database address (DBA) register are added to instruction-generated memory
addresses to form absolute memory addresses.

Instructions 10hi00 through 13hi00 perform scalar references; each instruction
causes only 1 word to be transferred to or from memory. Instructions 034 through
037 perform block transfers. Each instruction transfers a block of 1 or more
words to or from consecutive memory locations. Instructions 176i0k and 1770jk
perform stride references. From 1 to 64 words are transferred to or from memory
locations that are separated by a constant increment (stride). Instructions 176i1k
and 1771jk perform gather and scatter references. These instructions transfer 1
to 64 words to or from randomly programmable locations in memory.

Table 1. CPU Memory Instructions

Machine
Instruction CAL Syntax Description

Types of
Memory

References

10hi00mn Ai exp,Ah Read ((Ah) + exp + (DBA)) to Ai exp = nm Scalar

11hi00mn exp,Ah Ai Write (Ai) to ((Ah) + exp + (DBA)) exp = nm

12hi00mn Si exp,Ah Read from ((Ah) + exp + (DBA)) to Si exp = nm

13hi00mn exp,Ah Si Write (Si) to ((Ah) + exp + (DBA)) exp = nm

034ijk Bjk, Ai, A0 Read (Ai) words from (A0 + (DBA)) to Bjk Block

035ijk A0 Bjk, Ai Write (Ai) words to (A0 + (DBA)) from Bjk

036ijk Tjk, Ai, A0 Read (Ai) words from (A0 + (DBA)) to Tjk

037ijk A0 Tjk, Ai Write (Ai) words to (A0 + (DBA)) from Tjk

176i0k Vi, A0,Ak Read (VL) words from (A0 + (DBA)) incremented
by (Ak) to Vi

Stride

1770jk A0,Ak Vj Write (VL) words to (A0 + (DBA)) incremented by
(Ak) from Vj

176i1k Vi ,A0,Vk Read (VL) words from ((A0) + (Vk) + (DBA)) to Vi Gather

1771jk A0,Vk, Vj Write (VL) words to ((A0) + (Vk) + (DBA)) from Vj Scatter

002300 ERI Enable operand range error interrupts None

002400 DRI Disable operand range error interrupts

002500 DBDM Disable bidirectional memory transfers

002600 EBDM Enable bidirectional memory transfers

002700 CMR Complete memory references

System Programmer Reference Central Memory

CSM-0301-0B0 Cray Research Proprietary 25

Instructions 002300 through 002700 affect memory operation. Instructions
002300 and 002400 set and clear the interrupt-on-operand range (IOR) error bit
in the exchange package mode register. Instructions 002500 and 002600 clear
and set the bidirectional memory (BDM) bit in the mode register. Instruction
002700 performs no operation, but it holds issue until all previously issued
instructions complete all memory references. Refer to “Port Utilization” for an
explanation of the BDM bit and the 002700 instruction.

In addition to direct memory references that are generated by CPU machine
instructions, there are three ways that memory references are generated
indirectly. First, a no-coincidence condition in a CPU causes an instruction fetch
sequence to begin, which causes 32 consecutive words to be read from central
memory into an instruction buffer. Second, an exchange sequence in a CPU
causes 16 words to be read from central memory and 16 words to be written into
central memory. The third indirect memory reference method occurs when an
I/O transfer to or from an external device causes a block of words to be read
from or written into central memory. Refer to “VME I/O Section” for details on
I/O transfers.

Logical Organization

Figure 5 shows a CPU’s memory ports and paths to central memory. Refer to
this figure while you read the following paragraphs. Central memory is divided
into eight sections. Each memory section is divided into subsections. The number
of subsections depends on the memory configuration of the customer’s system.
Each subsection contains 16 banks (pseudobanks). This arrangement permits
simultaneous memory references by all CPUs in the system. Smaller systems
also have eight sections of memory but have a correspondingly reduced number
of subsections per section of memory.

Each memory section processes the requests from all processor boards in the
system. Each memory section buffers the requests as required by bank busy
signals and requests activity from all CPUs in the system. A memory section
guarantees order for the request from a single CPU but not between CPUs.

Central Memory System Programmer Reference

26 Cray Research Proprietary CSM-0301-0B0

Figure 5. CPU Central Memory Architecture

CPU
Registers

and/or
Cache

Instruction
Buffers

Port
A

Port
B

CPU 0

Processor Board 0

CPU 3

To/From

0

1

2

3

4

5

6

7

Section

0

1

2

3

4

5

6

7

I/O and
Fetch

Control

Port
D

CPU 3
CPU 2

CPU 1
CPU 0

From Port A of

I/O
Section

Processor Board 7 PB3 to Central Memory
Sections 0 through 7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

Central MemoryMemory Path
Selection

Port
A

Port
B

System Programmer Reference Central Memory

CSM-0301-0B0 Cray Research Proprietary 27

Port Utilization

Each CPU has two ports: A and B. These ports correspond closely to the port
operations on the CRAY Y-MP® system so that programs written for a
CRAY Y-MP system also run on CRAY J90 series systems.

Ports A and B are both read and write ports that have only one write operation
active at a time (refer toTable 2). This enables a read on port A and a write on
port B or the opposite (a write on port A and a read on port B) if the BDM
(bidirectional memory) mode bit is set in the exchange package. Both ports can
also be active with a read operation.

Each processor module can handle nine read references and five write references.
These fourteen references must share eight section paths to memory. A total of
ten references can be active simultaneously. Simultaneous references to the same
section are not permitted because each processor module has only one memory
path into each memory section. Simultaneous and overlapping memory
references from different processor modules are permitted within a section on a
memory module.

The exchange sequence uses ports A and B. Before an exchange can occur, all
CPU and memory activity for that CPU must go inactive. The exchange package
contains 16 words. A new exchange package is read via port A, while the current
exchange package is written to memory via port B. When the fetch address is
generated from the initial exchange package, the fetch operation uses port D
while the exchange completes.

Ensure that the exchange and fetch do not overlap memory locations.Figure 6
shows a CRAY J90 series exchange package. Note the additional mode bit that
is called CE (cache enabled).

Table 2. Port Specifications

Port
Type of

Reference Port Usage

A Read or Write A registers (10h, 11h instructions)
S registers (12h, 13h instructions)
B registers (034, 035 instructions)
V registers (176, 177 instructions)
Exchange (Read)

B Read or Write T registers (036, 037 instructions)
V registers (176, 177 instructions)
Exchange (Write)

D Read and Write Fetch
I/O Write Memory and/or
I/O Read Memory

Central Memory System Programmer Reference

28 Cray Research Proprietary CSM-0301-0B0

Figure 6. Exchange Package

NOTE: Two exchange package bits designate the processor type, which is
either a CRAY J90 processor module or a CRAY J90se processor
module. Exchange bits in word 7 (bits 30 and 31) are saved in bit
positions 62 and 63 of the full word that is stored to memory. In the
CRAY J90 series systems, both bits are 0’s. In CRAY J90se series
systems, bit 63 is 0 and bit 62 is 1.

UNICOS® compensates for the differences in performance between
CRAY J90 processor modules and CRAY J90se processor modules.
Also, some library routines have been altered to accommodate the
differences in processor performance.

Program Address Register

0

Bits 63 56 55 48 47 41 37 32 31

X X X 4 3 2 1 0 21 20 19 18 17 16 -2

0

Port Read
Mode

31

31

31

31

Instruction Base Address

Instruction Limit Address

Data Base Address

Data Limit Address

I
C
P

D
L

P
C
I

M
C
U

F
P
E

O
R
E

P
R
E

M
E

I
O
I

E
E
X

N
E
X

V
N
U

W
S

P
S

F
P
S

B
D
M

I
O
R

I
F
P

I
U
M

I
C
M

S
E
I

I
M
M

M
M

A0

A1

A2

A3

A4

A5

A6

A7

S0
S1
S2
S3
S4
S5
S6
S7

63

Hardware
Numbering

Software
Numbering

CLN

03

VL

06411

XA

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

X X X X X X 9 8

U C

Error
Type

A B D 1 0 X

X X X X X X

X X X X X X

Status

Write Only

24

E
S
V
L

X X X 5 4 2 1

X CEX

12 8 14 3 2 0 -1

20 16 12 10

10

10

10

X X

X X

X X

X X

PN

Syndrome

Read Mode

Bit
1

Bit
0 Port A Port B

Port D
Channel

0 EX Fetch A n+10

0 B T n+31

1 Vector Vector n+50

1 A/S Fetch B n+71

Memory Error Address

Flags Modes
13 12

n = Processor board number X 10 + 20

X X

0 0 X X X X X X

Proc
Type

Proc Type

Bit
31

Bit
30 Type

0 CRAY J900

0 1 CRAY J90se

System Programmer Reference Central Memory

CSM-0301-0B0 Cray Research Proprietary 29

A fetch operation reads 32 words from memory and loads the data into one of
eight instruction buffers. The fetch operation must complete as soon as possible
to ensure that instructions continue to issue. A fetch uses port A during one cycle
to make a fetch request to the vector array (VA) ASIC, which is an interface to
memory. The VA sends the fetch references to memory through port D. The VA
generates 32 references when it receives a fetch request. The vector array read
data (VB) ASIC is notified of the fetch request. The VB can buffer 4 words of
fetch read data from each of the eight sections of memory per CPU. The first
fetch request that is sent to memory is flagged in the VB. The VB sends the fetch
read data to the CPU in a fixed order beginning with the first requested data
(caused by the stride of 1). The VB uses either port A or port B (depending on
which is available), to send fetch data to the CPU or to the PC ASIC. The PC
retains the address of the first fetch request to properly address data in the
instruction buffer.

The I/O and instruction fetch operations use a shared port D control for access
to memory. I/O is controlled by the channel interface (CI) ASIC. When the I/O
port D requests arrive at the VA ASIC, they have the lowest priority when they
conflict with the other processor ports for the same section. A lockout counter
keeps track of how often port D is denied access (per section). When a limit is
reached, port D receives the highest priority for one cycle. A configuration file
controls the lockout count value. This lockout count is set at the initial start-up
of the system. A separate lockout counter exists for each section of memory.

Conflict Resolution

A memory conflict occurs whenever a memory port tries to access a part of
memory that is in use, or whenever two or more ports try to access the same part
of memory at the same time. Intra-CPU conflicts involve ports in the same CPU.
Inter-CPU conflicts involve ports in different CPUs. In both cases, conflict
resolution logic uses a predefined priority scheme to sequence the conflicting
memory references and to maximize overall machine throughput.

There are four types of memory conflicts: section, bank busy, pseudobank busy,
and subsection busy. The following paragraphs explain each type of conflict and
how the conflict is resolved.

Each processor module contains four CPUs and an I/O channel. A section
conflict can be caused by either an intra-CPU conflict or an inter-CPU conflict.
An inter-CPU section conflict occurs when two or more CPUs or two or more
I/O processors try to access the same section of memory. To resolve the
inter-CPU section conflict, a four-slot priority is used in which access to the next
higher-numbered section of memory receives one of four requesting processors
during each cycle. The four slots have a rotating priority through the eight

Central Memory System Programmer Reference

30 Cray Research Proprietary CSM-0301-0B0

sections of memory with two-section spacing between the slots. Two sections
are grouped together to accommodate the four slots. The two-section separation
is required because requests are sent to memory in a read/write pair grouping
that requires two cycles for transmission of write data to memory. In the absence
of a write request, a second read request can be sent. The maximum request
transmission rate across the backplane for a processor board is eight requests
per cycle. This transmission rate can consist of eight reads or a combination of
reads and writes, with a maximum of four write requests per cycle.

The four slots (each a two-section group) have a rotating priority through the
eight sections of memory with two-section spacings between slots. Each slot has
top priority to one section of memory during each cycle. This is the slot’s natural
priority. A natural slot priority that is not in use can be borrowed by another slot;
the three non-natural slots use a priority scheme for borrowing. I/O is unslotted
and uses any available slot. The user can configure I/O priority from lowest to
highest priority, depending on system requirements. All read and write requests
to memory are handled on a slot basis in which CPU 0 ports A and B share slot
0, CPU 1 ports A and B share slot 1, CPU 2 ports A and B share slot 2, and CPU
3 ports A and B share slot 3, etc.Table 3 shows this priority scheme.

An intra-CPU section conflict occurs when two ports in the same CPU
simultaneously attempt to access the same memory section. Again, a section
conflict occurs because there is only one path to a given section.

A processor board has an independent path into each memory section. Ports A
and B of a CPU have parallel access to these eight paths to the memory sections.
Port priority for a CPU, as determined in the preceding paragraphs, is applied
to ports A and B. If both ports have requests for the same section of memory,
the port with priority has its request sent first (if both are read requests). If one
request is a read and the other is a write, the read request is honored first. (The
default is a result of hardware design.) Thus, a read/write instruction issue
sequence that addresses the same area of memory (same address, same stride)
always has the read request sent to a section of memory before the write request.

Table 3. Memory Priority Scheme

Slot Number Groups

Priority 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Natural slot 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Borrowed first 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0

Borrowed second 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0

Borrowed third 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0

Slot number 0 1 2 3

System Programmer Reference Central Memory

CSM-0301-0B0 Cray Research Proprietary 31

For a single CPU, the order in which requests are sent to a section of memory
is the same order in which those requests are processed in any given bank of
memory.

For requests from different CPUs on the same processor board as well as different
processor boards, the order of access to a shared memory bank can be unrelated
to the order in which these requests were sent to the section of memory.

The memory system ensures that memory requests are ordered between the two
CPU ports on a section-by-section basis. Memory requests that issue to the VA
option from the two CPU ports move through the VA buffers and section registers
simultaneously. A request issued by port B may not bypass a request issued by
port A or vice versa. This feature allows for sequential vector and block transfers
with no wait states required. Scalar-to-vector and vector-to-scalar requests may
also be issued in sequence with no delay. Scalar and fetch requests always initiate
from CPU port A. Port B is used only by vector or block transfers. However,
both CPU port A and port B may make simultaneous requests during vector and
block memory transfers.

The VA interface for each memory section has 14 port registers that may hold
pending requests. The VA priority logic determines which of the 14 has highest
priority for that particular cycle. The priority network rotates among the CPUs
and is updated every other cycle. If the highest-priority CPU has no pending
request to be issued, the priority network checks the CPU that has the next highest
priority for any pending requests. It continues traversing the priority tree until
it finds a request to issue that cycle.

Fetch requests to a section always have highest priority; the I/O ports normally
have lowest priority. To prevent an I/O port from being locked out during intense
CPU memory request activity, an I/O lockout counter gives the I/O request
highest priority (except for fetch) until the request is issued. This count is
configurable so that systems with a high rate of I/O activity can obtain better
memory bandwidth. If a CPU issues simultaneous memory requests to the same
section for both port A and port B, the port A memory request is issued during
cycle 1 of the slot and the port B memory request is issued during cycle 2. An
exception is a write request for port A, because write requests are always issued
during slot cycle 2.

Fetch operations have priority over CPU and I/O activity on a processor board.
A single-cycle fetch request uses port A of a CPU even if it is reserved. The 32
fetch requests that follow have priority over any other CPU memory activity on
the processor board.

A processor module sends a reference to one of eight sections of memory. This
is true for all eight processor modules. Within a section, the reference is routed
to one of eight subsections. In a subsection, the bank that is referenced is checked

Central Memory System Programmer Reference

32 Cray Research Proprietary CSM-0301-0B0

against the 16 banks within a subsection. The reference is held as long as the
requesting bank remains busy. The memory arbiter (MAR) ASIC tracks two
bank busy situations. One situation is called primary bank busy; this is the
situation in which a bank that is referenced remains busy. The other bank busy
situation is pseudobanking, in which a pair of banks shares an address and data
bus. The time during which the pseudobank uses the bus is called the pseudobank
busy time and is considerably shorter than the primary bank busy time.

Memory conflicts are resolved on a subsection basis. Each 4X 4 backplane
configuration memory section contains 4 subsections; each subsection contains
16 pseudobanks if fully populated and 8 banks if half populated. A system with
a 2X 2 backplane contains 2 memory subsections. Eight paths from the MAR
ASIC lead to the 8 memory subsections, one path to each subsection. When more
than one reference attempts to use the same subsection within the same clock
period, a subsection conflict occurs. A rotating priority scheme establishes
priority across the processor modules. When all processor modules are active,
each processor module receives access to a subsection once every four cycles.

Guaranteeing Memory Access Order

As discussed earlier, each CPU contains two ports: port A and port B. Both ports
can be used for a read or write operation of memory. However, only one of the
ports can be active with a write operation at a time.

When the CPUs and memory must be synchronized, the complete memory
reference (CMR) instruction must be issued. The CMR instruction holds issue
until all references from that CPU are granted bank access. This is important in
a multitasking environment in which a write operation must be complete before
a write reservation is dropped. Other methods (for example, tracking port
reservations or register reservations) ensure that the order of memory
reservations for one CPU is correct, but they do not guarantee that the data
reached memory.

Clearing the BDM bit in the exchange package mode register prevents
out-of-sequence memory references. When the BDM bit is cleared, a memory
read and write cannot occur simultaneously for that CPU. The memory read
instruction holds issue until all write instruction requests are sent to the memory
sections, and the memory write instruction holds issue until all read requests are
sent to memory. The BDM bit has no effect on operations among CPUs.

A zero-length B- or T-register memory write instruction can be used to ensure
the correct order of a write instruction and a subsequent read instruction issued
by one CPU. When the zero-length B- or T-register memory write instruction is

System Programmer Reference Central Memory

CSM-0301-0B0 Cray Research Proprietary 33

issued between the write and read instructions, subsequent reads of the same
memory words do not occur ahead of the write. It does not guarantee that the
write data is in memory.

In the CRAY J90 series system, only one gather or scatter instruction can be
active at a time because there is only one address-generation path from the vector
unit (VU) ASIC to the PC ASIC for (Vk + A0).

Any active block transfer (B/T) or vector transfer prevents a scalar reference
from issuing. The scalar reference issues when all ports are quiet. The hardware
must ensure that all reads are complete before it grants write requests to memory
with the same starting address and the same stride. A write operation before a
read operation is not ensured.

Calculating Absolute Memory Address

CPU memory reference instructions (listed inTable 1) calculate absolute
memory addresses by adding combinations of the following values:

• A register contents
• V register contents
• DBA register contents
• 3-parcel instructionnm field contents

Each time an instruction makes a memory reference, the memory address that
the instruction generates is added to the content of the DBA register to form the
absolute memory address.

Only the following elements are used to calculate memory addresses: bits 0
through 31 of the A register, the V register, DBA register, and 3-parcel
instructionnm field contents. When the full address is used to address 4 GW of
memory, memory wraparound occurs.

Central Memory System Programmer Reference

34 Cray Research Proprietary CSM-0301-0B0

Address Range Checking

Four registers in the exchange package place a program’s data and instruction
areas in specific locations in memory and allocate specific amounts of memory
to the areas. These registers allow all programs to be relocated. When a program
is written, the programmer does not need to know the memory location of the
instruction and data areas. These registers also enable the programmer to restrict
certain parts of memory from any program. A program may halt if it tries to
perform an instruction outside its allowed instruction area, or if it tries to read
or write data outside its allowed data area. When more than one program
occupies memory at the same time, programs may not be able to perform
instructions or operate on data that belongs to other programs.

The DBA register determines where in memory a program’s data area begins.
Addresses generated by memory reference instructions are relative to the DBA
register.

Each time an instruction makes a memory reference, the memory address that
the instruction generates is added to the contents of the DBA register to form
the absolute memory address. Refer again toTable 1 for a list of memory
reference instructions.

The data limit address (DLA) register determines the highest absolute memory
address that the program can use for reading or writing data. Each time an
instruction makes a memory reference, the absolute memory address that the
instruction generates is compared to the DLA and DBA registers. If the absolute
memory address is less than the DLA register and equal to or greater than the
DBA register, the reference proceeds. If the absolute memory address is equal
to or greater than the DLA register or less than the DBA register, an out-of-range
condition exists and the memory reference is aborted by disabling all chip selects
and write enables in the referenced memory bank. The result is that for a memory
write reference, no write operation is performed; for a memory read reference,
all bits are set to 0’s.

If the interrupt-on-operand range error (IOR) bit in the mode register of the
exchange package is set, the out-of-range condition sets the operand range error
(ORE) flag in the exchange package flag register and causes an exchange
sequence to begin. If the IOR bit is clear, the program continues to run.

The instruction base address (IBA) register functions similarly to the DBA
register, except that it operates on a program’s instruction area. Each time an
instruction fetch sequence takes place, absolute memory addresses are formed
by adding the relative addresses that are generated by the fetch control logic to
the contents of the IBA register.

System Programmer Reference Central Memory

CSM-0301-0B0 Cray Research Proprietary 35

The instruction limit address (ILA) register functions similarly to the DLA
register, except that it operates on a program’s instruction area and has no
provision for continuing program execution when an out-of-range condition
occurs. If an absolute memory address generated by an instruction fetch sequence
is less than the ILA register and equal to or greater than the IBA register, the
fetch sequence proceeds. If the absolute memory address is equal to or greater
than the ILA register or less than the IBA register, an out-of-range condition
exists. An out-of-range condition sets the program range error flag in the
exchange package and causes an exchange sequence to begin.

The DBA, DLA, IBA, and ILA registers contain only address bits 10 and above.
Bits 0 through 9 are always 0; therefore, the content of these registers is always
a multiple of 2000 (octal) (1024 decimal). The data and instruction areas must
begin on a 2000 (octal) word boundary and must be a multiple of 2000 (octal)
words.

Address range checking does not occur during exchange sequences and I/O
transfers. Memory addresses that are generated by these operations are absolute
memory addresses.

Error Detection and Correction

Single-error correction/double-error detection (SECDED) circuitry monitors
central memory for data errors. Memory errors that involve only 1 bit in each
data word (single-bit errors) can be detected and corrected by the hardware.
Double-bit errors can be detected but cannot be corrected. Errors that involve
more than 2 bits cannot be reliably detected.

When a 64-bit word (bits 0 through 63) is written to memory, an 8-bit checkbyte
is generated and stored in memory with the data word. The check bits are
numbered 0 through 7 and are stored as data bits 64 through 71. When the word
is read from memory, a checkbyte is again generated and compared with the
original checkbyte, using an exclusive OR (XOR) operation. The result of the
comparison is called a syndrome code. If all the bits in the syndrome code are
0, the 2 checkbytes are identical and no memory error occurred.

If the syndrome code contains one or more 1 bits, some type of memory error
occurred. The type of memory error (single-bit or double-bit) can be determined
by interpreting the syndrome code. If a single-bit error occurs, the syndrome
indicates the bit in error and the SECDED logic toggles the incorrect bit to its
correct value. If a double-bit error occurs, the syndrome code indicates that there
is an error, but it cannot determine the incorrect bits. Errors that involve more
than 2 bits produce unpredictable results. In some cases, errors produce unique
syndrome codes that can be detected by the SECDED logic. In other cases, the
syndrome code appears to be a no-error condition or a single- or double-bit error.

Central Memory System Programmer Reference

36 Cray Research Proprietary CSM-0301-0B0

Table 4 shows the data bits that are used to generate each bit in the checkbyte.
All data bits that are marked with an X contribute to the corresponding check
bit. The parity of all data bits that are marked with an X determines the state of
the check bit. If the parity is even, the check bit is set to 0. If it is odd, the check
bit is set to 1. For example, the data bits that make up check bit 0 are bits 1
through 29 (odd) and 31 through 55 (all). If an even number of these bits is 1,
check bit 0 is set to logic 0; otherwise, it is set to logic 1.

If a syndrome code other than all 0’s is generated, memory error information is
recorded to help isolate the hardware failure. A nonzero syndrome code may
also initiate an exchange sequence, depending on the state of 2 bits in the
exchange package mode register. If the interrupt-on-correctable memory error
(ICM) bit is set, a single-bit (correctable) memory error sets the memory error
flag in the exchange package flag register and starts an exchange sequence. If
the interrupt-on-uncorrectable memory error (IUM) bit is set, a double-bit or
detectable multiple-bit (uncorrectable) error sets the memory error flag and starts
an exchange sequence. If either the ICM or the IUM bit is clear, the
corresponding memory error does not start an exchange sequence and does not
set the memory error flag.

In a CRAY J90 series system, all data that is written to memory must pass
through the VU ASIC so that the VU can create the 8 check bits. When memory
is read, both the VU and PC ASIC perform SECDED. During a scalar read
reference, the PC performs SECDED and reports any errors. During a vector
read reference, the VU and PC both perform SECDED, in which case the PC
reports the error and the VU corrects single-bit errors.

System Programmer Reference Central Memory

CSM-0301-0B0 Cray Research Proprietary 37

Table 4. Check-bit Generation

Data Bits Data Bits

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

Check Bit 0 x x x x x x x x

Check Bit 1 x x x x x x x x x

Check Bit 2 x x x x x x x x x x x x x x x x

Check Bit 3 x x x x x x x x x x x x x x x x

Check Bit 4 x x x x x x x x

Check Bit 5 x x x x x x x x

Check Bit 6 x x x x x x x x

Check Bit 7 x x x x x x x x

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Check Bit 0 x x x x x x x x x x x x x x x x

Check Bit 1 x x x x x x x x x x x x x x x x

Check Bit 2 x x x x x x x x

Check Bit 3 x x x x x x x x

Check Bit 4 x x x x x x x x

Check Bit 5 x x x x x x x x

Check Bit 6 x x x x x x x x

Check Bit 7 x x x x x x x x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Check Bit 0 x x x x x x x x

Check Bit 1 x x x x x x x x

Check Bit 2 x x x x x x x x

Check Bit 3 x x x x x x x x

Check Bit 4 x x x x x x x x

Check Bit 5 x x x x x x x x

Check Bit 6 x x x x x x x x x x x x x x x x

Check Bit 7 x x x x x x x x x x x x x x x x

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Check Bit 0 x x x x x x x x x

Check Bit 1 x x x x x x x x

Check Bit 2 x x x x x x x x

Check Bit 3 x x x x x x x x

Check Bit 4 x x x x x x x x x x x x x x x x

Check Bit 5 x x x x x x x x x x x x x x x x

Check Bit 6 x x x x x x x x

Check Bit 7 x x x x x x x x

Central Memory System Programmer Reference

38 Cray Research Proprietary CSM-0301-0B0

Central Memory Performance Summary

Access time is the time an instruction requires to transfer one or more operands
from central memory to an operating register. Access time depends on the type
of register that receives the operand(s) and the number of operands that are
transferred. If no memory conflicts occur, each register type has the following
access times:

NOTE: The times in the following lists are system CPs, not CPU CPs.

• 34 clock periods (CPs) for A registers
• 34 CPs for S registers
• 35 plus block length CPs for B and T registers
• 37 plus vector length CPs for V register stride references
• 42 plus vector length CPs for V register gather references

The maximum central memory data transfer rate equals the number of CPUsX 2
ports per CPUX 1 word per port per CP. The maximum data transfer rates within
a CPU are as follows:

• 1 word (read or write) per 2 CPs for A and S registers
• 2 words (1 read and 1 write) per CP for B, T, and V registers
• 2 words (2 reads) per CP for B, T, and V registers
• 1 word (read) per CP for an instruction fetch
• 2 words (read and write) per CP for an exchange sequence
• 2 words (read and write) per CP for an I/O transfer

If memory conflicts occur, access times increase and data transfer rates decrease,
which degrades program performance.

System Programmer Reference VME I/O Section

CSM-0301-0B0 Cray Research Proprietary 39

VME I/O Section

A wide selection of peripherals can interface with the system through the 64-bit
architecture VME IOS, which communicates with the CPU through a Y1
channel. Each processor board supports four Y1 channel pairs. The I/O section
uses port D in each processor board to transfer data between central memory
and I/O channels.Table 5 shows each CPU and its associated I/O channels.

The CC ASIC controls all channel activity. There are 2 CC ASICs on each
processor board. Each CC ASIC controls 2 paddle cards/slots; CC0 controls
J1:J2 and CC1 controls J2:J3.

Y1 Channel Pairs

Each Y1 channel has two registers that can be loaded from any CPU. The channel
address (CA) register contains the address of the next word in central memory
to be transferred. When an I/O transfer begins, the CA register contains the
address of the first word to be transferred. After the first word is transferred, the
CA register increments. The next word is transferred and the CA register
increments again. This process continues until all words are transferred.

The contents of the channel limit (CL) register determine the address of the last
word in central memory to be transferred. An I/O transfer completes when the
contents of the CA register equal the contents of the CL register. The word at
address (CL) is not transferred; address (CL) - 1 contains the last word
transferred.

Table 5. Processor Modules and Associated Y1 Channel Numbers

Processor
Module
Number

CC0 CC1

Y1 Channels Y1 Channels Y1 Channels Y1 Channels

Input Output Input Output Input Output Input Output

0 20 21 22 23 24 25 26 27

1 30 31 32 33 34 35 36 37

2 40 41 42 43 44 45 46 47

3 50 51 52 53 54 55 56 57

4 60 61 62 63 64 65 66 67

5 70 71 72 73 74 75 76 77

6 100 101 102 103 104 105 106 107

7 110 111 112 113 114 115 116 117

NOTE: All channel numbers listed are octal numbers.

VME I/O Section System Programmer Reference

40 Cray Research Proprietary CSM-0301-0B0

Channel Programming

Any CPU that is in monitor mode can initiate data transfers through a Y1 channel.
Once a transfer is initiated, the transfer operates as a background activity and
the CPU may resume other processing. When the transfer completes, the channel
sets an I/O interrupt request (IOI) flag in a CPU. The CPU that receives the
interrupt request is not necessarily the same CPU that initiated the transfer.

Table 6 lists all the instructions that are applicable to the Y1 channels.
Instructions 0010jk through 0012j1 perform channel control and can be executed
only by a CPU that is in monitor mode. There is no hardware interlock between
CPUs; the programmer must ensure that two CPUs do not try to control the same
channel at the same time. Instructions 033i00 through 033ij1 transmit I/O status
information to register Ai. These instructions are not limited to monitor mode,
and any number of CPUs can execute them simultaneously.

Table 6. Y1 Channel Instructions

Machine
Instructions CAL Syntax Description

0010jka CA,Aj Ak Set channel (Aj) CA register to (Ak) and
begin I/O sequence

0011jka CL,Aj Ak Set channel (Aj) CL register to (Ak)

0012j0a CI,Aj Clear channel (Aj) interrupt and error flags
Clear device master clear (output channel)

0012j1a MC,Aj Clear channel (Aj) interrupt and error flags
Set device master clear (output channel)
Clear device ready held (input channel)

033i00 Ai CI Transmit interrupting channel number to Ai

033ij0 Ai CA,Aj Transmit (CA) of channel (Aj) to Ai

033ij1 Ai CE,Aj Transmit channel (Aj) error flag to Ai
a This instruction is privileged to monitor mode.

System Programmer Reference VME I/O Section

CSM-0301-0B0 Cray Research Proprietary 41

The following sequence of instructions initiates a data transfer through a Y1
channel.

This sequence starts the I/O transfer and increments the CA register after each
data word transfers to or from the mainframe. On an output channel, the transfer
stops when the contents of CA equal the contents of CL. On an input channel,
the transfer stops when the contents of the CA register equal the contents of the
CL register.

It is important to remember two characteristics of the Y1 channels when you
program an I/O transfer. First, the CL register must be loaded before the CA
register; the transfer begins when the CA register is loaded regardless of the
contents of the CL register. Second, the CA register must be loaded with a value
that is less than the contents of the CL register; if the CA register is loaded with
a value that is equal to or greater than the CL register contents, unpredictable
results occur.

Channel Operations

The system has two types of logical channels: command and data. CPU
instructions control command input and command output channels. The CPU
uses command output channels to send commands to the IOS; it uses command
input channels to receive status from the IOS. The IOS uses data channels to
transfer data between mainframe memory and I/O buffer board (IOBB) memory.

The multiplexer I/O processor (MIOP) initiates all of the actual channel
operations as I/O task control blocks (IOTCBs). The MIOP must set up an
IOTCB in IOBB memory for every transfer between mainframe memory and
the IOBB (a maximum of seven outstanding IOTCBs is allowed). There are two
types of IOTCBs: I/O IOTCBs (S = 0) and console IOTCBs (S = 1).Figure 7
andFigure 8 show the formats of the IOTCBs.

Step
Machine

Instruction CAL Comment

 1 0011jk CL,Aj Ak Sets the CL register to (Ak), where Ak
contains the address of the last word to be
transferred.

 2 0010jk CA,Aj Ak Sets the CA register to (Ak), where Ak
contains the address of the first word to
be transferred.

VME I/O Section System Programmer Reference

42 Cray Research Proprietary CSM-0301-0B0

Figure 7. I/O IOTCB Format

Figure 8. Console IOTCB Format

IOBB Memory Address

The IOBB memory address is the starting address in IOBB memory from which
data should be read or to which data should be written. The IOBB address must
be divisible by 32 (that is, bits 0 through 4 = 00000) for a 32-, 64-, and 128-word
burst.

Mainframe Memory Address

CMD R xx S IOBB Memory AddressIOTCBptr
IOTCBptr + 1
IOTCBptr + 2
IOTCBptr + 3

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 0

xx Block Length

Next IOTCBptr

rr = reserved All xx’s can be 1 or 0.
CMD = 00: Input command channel

01: Output command channel
10: Data channel input (from IOS to mainframe CPU)
11: Data channel output (from mainframe CPU to IOS)

R = 0: No retry (always set to zero by software)
1: Automatic hardware retry, one time

Parity Test
Code

Test Parity Bits

Data 1

WR R CC EX xx S IOBB Memory AddressIOTCBptr
IOTCBptr + 1
IOTCBptr + 2
IOTCBptr + 3

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 0

Data 2 Block Length (Valid if Ex = 1)

MC # CMD Next IOTCBptr

MC# = 00: Command is for MC ASIC of processor number 0
01: Command is for MC ASIC of processor number 1
10: Command is for MC ASIC of processor number 2
11: Command is for MC ASIC of processor number 3

CC = 1: Local operation (local to CC), no need to
 initiate any console bus cycles

EX = 1: Extra data; the following fields are valid:
 IOBB memory address - starting address
 length - number of 32-bit words transferred
WR = 0 - write from IOBB
WR = 1 - write to IOBB
R = 0: No retry (same as I/O IOTCB)

1: Automatic hardware retry, one time

xx

System Programmer Reference VME I/O Section

CSM-0301-0B0 Cray Research Proprietary 43

Mainframe Memory Address

The mainframe I/O memory address is a starting address in mainframe memory
from which data should be read or to which data should be written. This field is
ignored by the CC ASIC if CMD = 0x.

Block Length

The number of 32-bit words to be transferred is limited by the total amount of
memory on the IOBB. The length must be even (that is, the CC ASIC ignores
bit 0). This field is ignored by the CC ASIC if CMD = 0x.

Next IOTCBptr

The next IOTCBptr (IOTCB pointer) is the IOBB memory address where the
next IOTCB resides.

NOTE: The Next IOTCBptr signal is a 32-bit word address and must be
divisible by 4 (that is, bits 1 and 0 = 00).

If the block length is 0, a no-operation instruction occurs (data
channel only); however, the IOTCBptr is loaded and a completion
interrupt is generated normally.

Command Input Channel

Five registers in the CC ASIC correspond to each input channel:

• Channel address (CA): the starting memory address in mainframe
memory

• Channel limit (CL): the ending memory address in mainframe memory

• Channel error flag (CE)

• Channel interrupt flag (CI)

• Channel number (C#)

The operating sequence of an input channel is as follows:

1. The CPU loads the CL register.

2. The CPU loads the CA register; the corresponding input channel (C#) is
opened.

VME I/O Section System Programmer Reference

44 Cray Research Proprietary CSM-0301-0B0

3. The CC ASIC sends a Ready to Receive Return Status Block (RSB)
interrupt signal to the MIOP through the IOBB.

4. The MIOP sets up an RSB in IOBB memory.

5. The MIOP sets up an IOTCB (CMD = 00; IOBB memory address =
starting address for RSB to be read).

6. The MIOP sends an IOTCB Pending interrupt signal to the CC ASIC
through the IOBB.

7. The CC ASIC fetches IOTCB (designated by IOTCBptr), picks up the
IOBB memory address, uses the CA and CL registers instead of the
mainframe memory address from the IOTCB, and completes the transfer.

8. The CC ASIC interrupts the CPU when CA = CL.

9. The CC ASIC sends an IOTCB Done interrupt signal to the MIOP
through the IOBB.

Command Output Channel

Five registers in the CC ASIC correspond to each output channel:

• Channel address (CA): the starting memory address in mainframe
memory

• Channel limit (CL): the ending memory address in mainframe memory

• Channel error flag (CE)

• Channel interrupt flag (CI)

• Channel number (C#)

The following steps describe the operating sequence of an output channel:

1. The CPU sets up a control block (CB) in mainframe memory.

2. The CPU loads the CL register.

3. The CPU loads the CA register; the corresponding output channel (C#) is
opened.

4. The CC ASIC sends a CB Pending interrupt signal to the MIOP through
the IOBB.

System Programmer Reference VME I/O Section

CSM-0301-0B0 Cray Research Proprietary 45

5. The MIOP sets up an IOTCB (CMD = 01; IOBB memory address =
starting address for loading CB).

6. The MIOP sends an IOTCB Pending interrupt signal to the CC ASIC
through the IOBB.

7. The CC ASIC fetches IOTCB (designated by IOTCBptr), picks up the
IOBB memory address, uses the CA and CL registers instead of the
mainframe memory address from IOTCB, and completes the transfer.

8. The CC ASIC interrupts the CPU when CA = CL.

9. The CC ASIC sends an IOTCB Done interrupt signal to the MIOP
through the IOBB.

Data Channels (Input and Output)

The following steps describe the operating sequence of a data channel:

1. The MIOP sets up an IOTCB (CMD = 10 or 11, . . .).

2. The MIOP sends an IOTCB Pending interrupt signal to the CC ASIC
through the IOBB.

3. The CC ASIC fetches IOTCB (designated by IOTCBptr), interprets all
parameters from IOTCB, and completes the transfer.

4. The CC ASIC sends an IOTCB Done interrupt signal to the MIOP
through the IOBB.

Error Handling

Error detection is applicable to parity across the data bus portion of the Y1 bus.
Data as well as address and control are multiplexed into the 32-bit data bus.
Therefore, all errors are parity errors that occur at different instances across the
Y1 bus.

Two types of parity errors occur: those associated with IOTCB fetch and those
associated with IOTCB execution. If a parity error occurs while an IOTCB is
fetched, the IOTCB does not execute. The IOTCB controller clears its IOTCB
pending queue, resets IOTCBptr to zero, and sends an IOTCB Fetch Error
Interrupt signal to the MIOP through IOBB, which is the default beginning of
the IOTCB chain.

VME I/O Section System Programmer Reference

46 Cray Research Proprietary CSM-0301-0B0

Two types of parity errors occur during IOTCB execution: command channel
errors (CMD = 0x) and data channel errors (CMD = 1x). In both cases, when a
parity error is detected, the IOTCB execution continues. When the entire transfer
is finished, if the retry bit in the IOTCB is set, hardware automatically retries
once. If successful, IOBB receives a normal IOBB Done interrupt signal, and a
scan-only flip-flop indicates that a successful retry occurred. If the retry is not
successful, an IOTCB Execution Error interrupt signal is sent to the MIOP
through the IOBB. The MIOP must then take appropriate actions. The IOTCB
controller then fetches the next IOTCB if one is pending. In addition, if the
IOTCB in error is command-channel related, the corresponding channel error
(CE) flag does not set. The 033ij1 instruction reads the status of the CE flag.

High Performance Parallel Interface (HIPPI)

The High Performance Parallel Interface (HIPPI) is a 100-Mbyte/s channel that
transfers data between data-processing equipment on multiple twisted-pairs of
copper cable at distances up to 82 ft (25 m).

The HIPPI signal protocol is designed to be independent of distance; it therefore
enables the average data rate to approach the peak data rate, even at distances
longer than specified for the HIPPI channel.

The following list describes other characteristics of the HIPPI interface:

• The HIPPI is a simplex interface; it can transfer data in one direction only.
Two HIPPIs may be used to implement a full-duplex interface.

• Data transfers are performed and flow controlled in increments of bursts;
each burst normally contains 256 words.

• Signals and control sequences are simple, and a look-ahead flow control
enables average transfer rates for large file transfers to approach the peak
transfer rate, even at distances longer than specified for HIPPI cables.

• The HIPPI provides support for low-latency, real-time, and variable-size
packet transfers.

• The HIPPI is also designed to transmit multiple packets after a connection
is established. No round-trip cable delays are required between packets.

System Programmer Reference VME I/O Section

CSM-0301-0B0 Cray Research Proprietary 47

HIPPI Channel Operational Overview

The following paragraphs describe the seven channel instructions. All
instructions except the 033i00, 033ij0, and 033ij1 instructions are privileged to
monitor mode.

Load Control Registers and Start Channel (0010jk)

The content of Aj specifies the channel number, and the contents of Ak are loaded
into the next register in the sequence. This sequence is specified by the bit map
register, and processing occurs from the right to the left, or from the
least-significant bit (LSB) to the most-significant bit (MSB).

This instruction is used to load the control word, D1 address, D1 block length,
D2 address, D2 block length, and connection control information registers. This
instruction is executed multiple times, once for each register that is to be loaded.
The bit map register is used to specify how many and which registers are to be
loaded. The channel operation is started when the last specified register is loaded,
unless bit 15 of the bit map register is set, which inhibits channel activation.
There is no time limit in which to complete the loading. If the bit map register
is reloaded, then this becomes the new load sequence and the previous sequence
is ignored.

Load Register Bit Map (0011jk)

The content of Aj specifies the channel number and the content of Ak is loaded
into the bit map register for that channel. This specifies the load and read
sequence for the remaining registers. This instruction should be executed before
each sequence of 0010jk and 033ij0 instructions because the register is cleared
during processing. Each time this register is loaded, a new sequence is started.

Clear Pending Interrupt (0012j0)

The content of Aj specifies the channel number for a clear pending interrupt and
sets an error flag. This instruction clears the pending interrupt, error flags, and
real-time status register and advances the sequence of operation in the channel
control word to the next field. It also restarts the channel if processing was
discontinued during a normal interrupt.

VME I/O Section System Programmer Reference

48 Cray Research Proprietary CSM-0301-0B0

Reset Channel (0012j1)

The content of Aj specifies the channel number for this instruction. This
instruction resets the corresponding HIPPI channel. The interrupt is cleared if
one is pending; any error flags are reset, and all channel operations are
terminated. The channel returns to its initial state.

This instruction executes before the channel is used for the first time and after
any sequence that places the channel into a test mode configuration. After some
channel error conditions, a reset is required before the channel can be reactivated.

Read Highest Priority Interrupting Channel Number (033i00)

The channel number of the interrupting channel that has the highest priority is
placed into Ai. This instruction operates in the same manner as it does on the
Y1 interface channels.

Read Control Registers (033ij0)

The content of Aj specifies the channel number and Ai is loaded from the register
specified by the bit map register. The bit map register must be loaded for each
new register selection. No sequencing is provided for read operations.

This instruction is used to read the control word, D1 address, D1 block length,
D2 address, D2 block length, connection control information, real-time status,
LLRC, operational status, sequence error idle (SEI) disable status, flow status
word 1, and flow status word 2 registers (if they exist for that channel). This
instruction is executed multiple times, once for each register that is to be read
from. The bit map register specifies which register is to be read from.

If this instruction is executed with no bits set in the bit map register, then the
channel address of the currently processing data area is returned. Execution of
this instruction in non-monitor mode should return the current data area address.
The bit map register should be cleared before user mode is entered.

The RT status register is read if this is the first channel operation after a reset
operation. (0012j1)

Read Channel Error Flag (033ij1)

The content of Aj specifies the channel numbers, and Ai is loaded with the error
flag for the specified channel. Bit 0 is the error flag; if it is equal to 1, that indicates
an error was detected. If no error was detected, then Ai contains 0’s for all bit
locations.

System Programmer Reference VME I/O Section

CSM-0301-0B0 Cray Research Proprietary 49

HIPPI Channel Configurations

Table 7 shows the possible input/output channel configurations for the Y1
channel, the HIPPI input channel (HI-I), and the HIPPI output channel (HI-O).
There is a physical limitation on the configuration because HIPPI channels and
Y1 channels cannot be combined on the same CC ASIC.

VME I/O Section System Programmer Reference

50 Cray Research Proprietary CSM-0301-0B0

I/O Interrupts

I/O interrupts originate at the interrupting channel. The CI ASIC passes the
necessary information to the global JS ASIC logic. When an I/O interrupt occurs,
the CI sends an I/O interrupt command to the JS ASIC along with the number
of the interrupting channel. Then, this information is sent over the JS/JS bus to
the global JS logic on each shared resources JS ASIC.

The global JS logic routes the interrupt information to the I/O interrupt handling
logic. There, the appropriate bit in the I/O interrupt register is set. An interrupt
to one of the PC ASICs is generated according to the following rules:

1. If any processor is in monitor mode, no interrupt is generated.

2. If all processors are in user mode and any processor has its SEI bit set, the
interrupt is directed to the lowest-numbered processor that has its SEI bit
set.

3. If all processors are in user mode, none of them have the SEI bit set, and a
processor is waiting on semaphore, the interrupt is directed to the
lowest-numbered processor that is waiting on semaphore.

4. If all processors are in user mode, none have SEI set, and none are waiting
on semaphore, then the interrupt is directed to the last processor to clear
an I/O channel. The interrupt is directed to the last processor that cleared
any channel.

Table 7. HIPPI or Y1 Channel Configurations

Proc Mod
0

Proc Mod
1

Proc Mod
2

Proc Mod
3

Proc Mod
4

Proc Mod
5

Proc Mod
6

Proc Mod
7

Paddle Card Slot J1

*20/21, Y1 *30/31, Y1
*30, HI-I

40/41, Y1
40, HI-I

50/51, Y1
50, HI-I

60/61, Y1
60, HI-I

70/71, Y1
70, HI-I

100/101, Y1
100, HI-I

110/111, Y1
110, HI-I

Paddle Card Slot J2

*22/23, Y1 *32/33, Y1
*33, HI-O

42/43, Y1
43, HI-O

52/53, Y1
53, HI-O

62/63, Y1
63, HI-O

72/73, Y1
73, HI-O

102/103, Y1
103, HI-O

112/113, Y1
113, HI-O

Paddle Card Slot J3

24/25, Y1
24, HI-I

34/35, Y1
34, HI-I

44/45, Y1
44, HI-I

54/55, Y1
54, HI-I

64/65, Y1
64, HI-I

74/75, Y1
74, HI-I

104/105, Y1
104, HI-I

114/115, Y1
114, HI-I

Paddle Card Slot J4

26/27, Y1
27, HI-O

36/37, Y1
37, HI-O

46/47, Y1
47, HI-O

56/57, Y1
57, HI-O

66/67, Y1
67, HI-O

76/77, Y1
77, HI-O

106/107, Y1
107, HI-O

116/117, Y1
117, HI-O

* Either paddle card 0 or paddle card 1 can be configured as the deadstart channel.
By default, paddle card 0, Y1 channel 20/21, is configured as the deadstart channel.

System Programmer Reference VME I/O Section

CSM-0301-0B0 Cray Research Proprietary 51

Once the software determines which processor to interrupt, the JS associated
with that processor sends the I/O interrupt command over the PC/JS bus. If one
of the processors is in monitor mode and no interrupt is generated, it is assumed
that the processor in monitor mode will handle I/O interrupts before it exchanges
into user mode. It is possible that an I/O interrupt could arrive after the processor
in monitor mode has finished handling I/O interrupts but before it exchanges
back to user mode. In that case, the I/O interrupt logic on the JS senses that none
of the processors are in monitor mode and I/O interrupts are still pending. The
criteria listed above are applied, and an I/O interrupt is posted to one of the
processors.

A processor handles I/O interrupts by issuing 033i00 instructions until Ai = 0.
When a 033i00 instruction is executed, the PC sends the command to the local
JS ASIC. The local JS ASIC determines the channel number of the
highest-priority interrupting channel and returns it to the originating PC on the
PC/JS bus.

When a processor clears a channel, the processor sends the clear channel
command to the local JS. The local JS passes it on to the other JS ASICs on the
JS/JS bus. This command is then forwarded to the CI, which handles the channel
clear operation, and to the I/O interrupt logic, which clears the interrupt flag for
that channel in its I/O interrupt register.

For each channel, there is a single priority bit that indicates whether it is a high-
or low-priority channel. When a processor requests the highest priority channel,
that channel access is determined as follows:

1. If any high-priority channels have an interrupt pending, the
lowest-numbered channel is the one returned.

2. If no high-priority channels have an interrupt pending, the
lowest-numbered, low-priority channel with an interrupt pending is
returned.

The priority is set via the joint test action group (JTAG) control of the system.
Normally, this priority scheme is configured at system power-up, but it is
possible to change it while the system is running.

I/O Memory Errors

Memory errors that occur during I/O operations present a challenge for
CRAY J90 series systems. On the CRAY Y-MP system, each I/O channel shares
a memory port with a specific processor. When a memory error occurs, the

VME I/O Section System Programmer Reference

52 Cray Research Proprietary CSM-0301-0B0

associated processor is notified. On the CRAY J90 series system, the I/O
channels do not share memory ports with specific processors. Each I/O channel
is loosely associated with the four processors that share its processor board.

One of the processors is selected to handle I/O memory errors by using JTAG.
When a memory error occurs on I/O, the CI passes the error information to the
local JS. The JS then posts the memory error to one of the four local processors
that are configured to handle the I/O memory errors.

System Programmer Reference GigaRing I/O Section

CSM-0301-0B0 Cray Research Proprietary 53

GigaRing I/O Section

Peripherals are connected to the CRAY J90se system via the GigaRing I/O
system. GigaRing technology defines a standard that enables a system integrator
to connect various devices on a ring topology. Refer to the“GigaRing Overview”
section for more information about the GigaRing channel and its operation.

The GigaRing node contains client logic, a GigaRing node chip, and a fully
duplexed, bidirectional client-port interface. The GigaRing node chip, a single
application-specific integrated circuit (ASIC), contains an input and an output
link for both the positive and negative rings and a bidirectional client-port
interface. The data path is 32 bits wide on each of the counter-rotating rings and
64 bits wide on the client port. The client port may be configured to operate in
half-width mode (32 bits) for clients that do not require the bandwidth of the
64-bit interface.

A single-purpose node (SPN), a Cray Research mainframe computer system, or
a multipurpose node (MPN-1) is referred to as a client node on the GigaRing
channel. Each client node contains its own client logic and a GigaRing node
chip. Each client node communicates with the other client nodes through the
GigaRing node chip. (The client nodes are referred to hereafter as clients.)

The“GigaRing I/O Section” addresses the following related topics:

• MPN
• IPN
• FCN
• HPN-1 and HPN-2
• BMN
• ESN
• FOX
• Error Handling and Reporting

GigaRing I/O Section System Programmer Reference

54 Cray Research Proprietary CSM-0301-0B0

MPN-1 Functional Overview

The multipurpose node (MPN) connects specific industry standard SBus-based
I/O peripherals or proprietary channels to the GigaRing channel to provide I/O
services for the mainframe node.

The MPN logic components and SBus controllers reside inside the multipurpose
node subrack (MPN-1). The MPN-1 provides forced-air cooling and supplies
power to the MPN logic and SBus controllers.

Up to eight industry standard SBus controllers or Cray Research proprietary
channels can reside within the MPN-1. The MPN-1 supports the following SBus
controllers:

• Small computer system interface (SCSI) disk and tape drive interface
• Ethernet network interface
• Asynchronous transfer mode (ATM) network interface
• Fiber distributed data interface (FDDI) network interface
• Cray Research proprietary supervisory channel

The MPN-1 subrack and all associated MPN-1 peripheral subracks (such as SCSI
disk or tape) reside in the PC-10 cabinet.

All GigaRing based systems require one MPN-1 subrack to be configured with
one SBus Ethernet and one SBus SCSI disk interface. In addition, an MPN-1
that is installed on a CRAY T90 series system requires one SBus supervisory
channel to connect to the CRAY T90 series IO02 module.

All peripheral and GigaRing channel cable connections occur at the rear of the
MPN-1. The front of the MPN-1 displays various MPN-1 messages and node
activity.

MPN-1 Operation Overview

The MPN-1 is based on a memory-mapped bridge architecture that enables the
SBus Peripheral Interface (SPI)hyperSPARC™ processor to address the
memory of other IONs on the GigaRing channel.

The SBus controller takes information from its I/O peripheral device and places
it on the SPI’s SBus when requested. The SBus controller manages the peripheral
data transfer. The SPI controls the SBus. The SPI converts the SBus data into
MBus data and places it on the MBus. The MBus interface follows the level 1
device specification, which identifies how MBus transactions (MBus read or
write operations) are performed. The MBus interface controls the data that is
transferred to and from the translation windows and between the SPI and SSB.

System Programmer Reference GigaRing I/O Section

CSM-0301-0B0 Cray Research Proprietary 55

ThehyperSPARC processor opens enough translation windows to store the data
from the peripheral device and generates the tag that each translation will use.

The tag is made up of the command tag and the address tag. The command tag
contains the transfer type, transfer size, target node address, information used to
manage the MBus translation, and GigaRing channel control information. The
address tag contains the memory address of the target node to be accessed.

The event and receive processors generate or decode the GigaRing packet header
and control the flow of information between the translation windows and the
FIFOs to the GigaRing node chip. The processors also use parts of the tag to
form the GigaRing packet header. This header is used by the GigaRing node
chip to send or receive data from another node.

When the transfer is complete, thehyperSPARC processor closes the translation
windows, which allows them to be reused for another transfer.

GigaRing I/O Section System Programmer Reference

56 Cray Research Proprietary CSM-0301-0B0

IPN-1 Functional Overview

The intelligent peripheral node interface (IPN-1) provides an interface between
the GigaRing channel and the single-disk or disk array devices that support level
2 intelligent peripheral interface (IPI-2) protocol. Functionally, the IPN-1 is
identical to five DCA-2 disk controllers, or to one DCA-3 disk controller that is
installed with Cray Research IOS model E systems.

The IPN-1 allows existing Cray Research intelligent peripheral interface (IPI-2)
products to connect to the GigaRing architecture. The IPN-1 supports the
following single-drive configurations:

• DD-301 (1.377 Gbytes and 8.2 Mbytes/s)
• DD-302 (1.8 Gbytes and 9.3 Mbytes/s)
• DD-60 (1.96 Gbytes and 20 Mbytes/s)
• DD-62 (2.73 Gbytes and 8.1 Mbytes/s)

The IPN-1 node does not support the DD-61 disk drive.

The IPN-1 supports the following RAID 3 (4 data units + 1 parity unit)
configurations:

• DA-301 (5.5 Gbytes and 32.8 Mbytes/s)
• DA-302 (7.2 Gbytes and 37.0 Mbytes/s)
• DA-60 (7.84 Gbytes and 80.0 Mbytes/s)
• DA-62 (10.92 Gbytes and 32.5 Mbytes/s)

The IPN-1 attaches to existing disk enclosures such as the DE-60 and DE-100.

IPN-1 Components

The following paragraphs describe the major components of the IPN-1 GigaRing
interface PCB (motherboard).

• The GigaRing option supports the data connection between the IPN-1 and
the GigaRing channel.

• The motherboard uses two buses to transfer data between the various
options. The SBus operates at 25 MHz. The IBus operates at 100 MHz.
Neither bus has data protection.

System Programmer Reference GigaRing I/O Section

CSM-0301-0B0 Cray Research Proprietary 57

• The client interface option (CLI) manages the data connection from the
GigaRing option to the IPI-2 channel PCB. The CLI option also transfers
data and control between the GigaRing node chip and the channel and
SPARC® support option (CSS) via the IBus.

• The microSPARC™ microprocessor chip is responsible for all control
functions within the node. It communicates with the CSS option via the
SBus.

• The microSPARC DRAM consists of 2 banks of 1, 4, or 16 Mbytes of
memory mounted on single inline memory modules (SIMMs).

• The CSS option transfers data and control between the SBus and the IBus.
The CSS also buffers information between the microSPARC chip and the
rest of the IPN-1. The CSS controls the IPI logic and supports the
microSPARC boot RAM, RS-232 interface, and SBus-to-channel
memory.

GigaRing I/O Section System Programmer Reference

58 Cray Research Proprietary CSM-0301-0B0

FCN-1 Functional Overview

The fibre channel node (FCN-1) is an interface between a GigaRing channel and
up to five fibre channel arbitrated loops (FC-AL). The FCN-1 uses the standard
node/client interface that all GigaRing channel single-purpose nodes (SPNs)
support.

FC-AL is an ANSI-standard serial communications channel that provides a peak
bandwidth of 100 Mbytes/s. The ANSI FC-AL standard specifies a loop topology
that supports up to 126 devices on a copper or a fiber-optic ring.

The Cray Research implementation of the FC-AL uses a copper connection and
supports a maximum of 80 disk devices on each fibre channel (40 primary path,
40 alternate path). An FCN-1 has connections for five FC-ALs; this provides a
total peak bandwidth of 500 Mbytes/s.

The FCN-1 supports the following disk configurations:

• DD-308 single-spindle device (9.4-Gbyte data capacity and
8- to 12-Mbyte/s peak transfer rate)

• DD-308 serial RAID 1 mirror device (9.4 Gbytes and 8 to 12 Mbytes/s)

• DA-308 serial RAID 3 (4+1) array (37.6 Gbytes and 32 to 48 Mbytes/s)

• DA-308 serial RAID 5 (3+1 through 8+1) arrays (28.2 to 75.2 Gbytes and
24 to 96 Mbytes/s)

The FCN-1 attaches to the DSF-1 subrack. The DSF-1 can contain a maximum
of ten DD-308 disk drives. Up to eight DSF-1 subracks can be attached to a
single FC-AL.

FCN-1 Hardware Description

FCN-1 modules plug into any one of the four I/O node slots in the scalable I/O
(SIO) node subrack (NSR-1). GigaRing and FC-AL cables attach to the front
panel of the module.

The FCN-1 contains three printed-circuit boards (PCBs) that are enclosed in a
metal canister. These three PCBs include the following components:

• Power supply board
• GigaRing interface board (motherboard)
• Fibre channel client board (daughter board)

System Programmer Reference GigaRing I/O Section

CSM-0301-0B0 Cray Research Proprietary 59

The FCN-1 hardware supports cyclic redundancy checksum (CRC) generation,
parity data generation, and data reconstruction for RAID 3 and RAID 5
configurations. These features support the error-recovery functions of the disk
devices that are attached to the fibre channel loop.

GigaRing I/O Section System Programmer Reference

60 Cray Research Proprietary CSM-0301-0B0

HPN Functional Overview

The HPN-1 and HPN-2 are single-purpose nodes (SPNs). They provide an
interface between the GigaRing channel and the networks and network disk
arrays that support HIPPI data transmission. The HPN-1 and HPN-2 support
HIPPI networks and switched networks.

The HPN-1 transfers data at 100 Mbytes/s and provides two 32-bit input/output
channels (one input and one output connection per channel with a total of two
input and two output connections). An HPN-1 can simultaneously support a
HIPPI network on one input/output channel and network disks on the other.

The HPN-2 transfers data at 200 Mbytes/sec and provides one 64-bit input/output
channel (2 input and 2 output connections). The HPN-2 can be configured as a
single 32-bit, 100-Mbyte/s input/output channel with one input and one output
connection.

NOTE: The HPN-2 can be configured either as a single 200-Mbyte/s
channel or a single 100-Mbyte/s HIPPI channel but not both
simultaneously.

Network Disk Arrays

Network disk array systems provide a large amount of data storage in a small
area. The HPN-1 and HPN-2 support the following network disk arrays:

• ND-12 network disk array
• ND-14 network disk array
• ND-30 network disk array
• ND-40 network disk array

The HPN-1 and HPN-2 support HIPPI networks and switched networks.
Additionally, the HPN-1 and HPN-2 attach to network disk array system
enclosures.

Hardware Description

HPN-1 and HPN-2 modules plug into any of the four SPN slots in the scalable
I/O (SIO) node subrack (NSR-1). GigaRing and HIPPI cables attach to the front
panel of the module.

The HPN-1 and HPN-2 consist of three printed circuit boards (PCBs) that are
enclosed in a metal canister.

System Programmer Reference GigaRing I/O Section

CSM-0301-0B0 Cray Research Proprietary 61

These three PCBs include the following components:

• Power supply board
• GigaRing interface board (motherboard)
• HIPPI channel board (daughter board)

The HPN-1 and HPN-2 hardware supports odd-byte parity and
length/longitudinal redundancy checkword (LLRC) error detection.

GigaRing I/O Section System Programmer Reference

62 Cray Research Proprietary CSM-0301-0B0

BMN-1 Functional Overview

The BMN-1 node is a single-purpose node (SPN) that is located in the node
subrack (NSR-1) in the PC-10 cabinet.

The BMN-1 node connects systems on a GigaRing channel to mass-storage
magnetic tape devices. The BMN-1 supports the Federal Information Processing
Standards (FIPS) 60 interface specification. The BMN-1 has two independent
tape channels. Each of the two channels supports the following transfer modes:

• Interlock mode
• 1.5-Mbyte/s high-speed mode
• 200-ft offset interlock mode
• 3-Mbyte/s data streaming mode
• 4.5-Mbyte/s data streaming mode

The BMN-1 node supports any tape drive system that supports the FIPS 60
specification, which includes the following devices and tape library robots:

• IBM™ 3480 (18-track)
• STK™ 4480 (18-track)
• IBM 3490 (36-track)
• STK 4490 (36-track)
• 9-track reel tapes (3420 compatible)
• STK 4400
• STK 9310
• STK 9360

BMN-1 Hardware Description

BMN-1 modules plug into any of the four I/O node slots in the scalable I/O (SIO)
node subrack (NSR-1). GigaRing and tape channel cables attach to the front
panel of the module.

The BMN-1 module contains three printed circuit boards (PCBs), which are
enclosed in a metal canister:

• Power supply board
• GigaRing interface board (motherboard)
• Tape channel board (daughter board)

System Programmer Reference GigaRing I/O Section

CSM-0301-0B0 Cray Research Proprietary 63

ESN-1 Functional Overview

The ESN-1 connects the mainframe node on a GigaRing channel to mass-storage
magnetic tape devices via an Enterprise System Connection Architecture
(ESCON®) interface.

The ESN-1 provides an optical-fiber communication link between channels and
control units that implement the ESCON Architecture/390 specification. The
ESN-1 has four independent ESCON channels. Each ESCON channel has a
bandwidth of 17 Mbytes/s.

The ESN-1 supports the following tape devices:

• IBM 3490E (36-track enhanced tape device)
• STK 4490 (36-track tape device)
• STK 9490 (TimberLine™)
• STK SD-3 (RedWood™)
• IBM 3590 (Magstar™)

The ESN-1 supports the following libraries and robots:

• IBM 3494
• IBM 3495
• STK 4400
• STK 9310
• STK 9360

ESN-1 Hardware Description

ESN-1 modules plug into any of the four I/O node slots in the scalable I/O (SIO)
node subrack (NSR-1). GigaRing and tape channel cables attach to the front
panel of the module.

The ESN-1 module contains three printed circuit boards (PCBs), which are
enclosed in a metal canister:

• Power supply board
• GigaRing interface board (motherboard)
• Tape channel board (daughter board)

GigaRing I/O Section System Programmer Reference

64 Cray Research Proprietary CSM-0301-0B0

FOX Overview

The FOX-1 is a transparent and nodeless extension to the standard GigaRing
channel. The FOX-1 extends the distance between nodes on the GigaRing
channel to 656 ft (200 m). The standard copper-based distance limit is 36 ft
(11 m).

The FOX-1 can extend the length of the channel for any of the GigaRing
interconnected nodes that reside within or communicate with the SIO
architecture. The FOX-1 physically connects to the GigaRing channel like any
node, but does not interface directly with any of the GigaRing channel protocol.

A subrack houses the FOX-1 hardware. The FOX-1 subrack usually resides
inside a PC-10 cabinet; however, for mainframe nodes, the FOX-1 subrack can
be located outside the PC-10.

GigaRing Implementation

Two FOX-1 subracks complete the optical extension of the GigaRing channel.
Standard GigaRing channel copper cables bring data into and out of the FOX-1
just as they do for other GigaRing interconnected nodes. Eight-fiber ribbon
cables establish the optical link between FOX-1 subracks.

GigaRing Configurations

The FOX-1 subrack functions as a transparent node, even when the GigaRing
channel is reconfigured. The FOX-1 does not affect the information flow in either
a folded or masked ring.

Hardware Overview

The FOX-1 hardware resides in a 2-SU 19-in. rackmount enclosure. This subrack
contains the necessary power supplies and cooling hardware needed to ensure
reliable operation of the FOX-1.

The FOX-1 receives GigaRing information over standard copper GigaRing
cables. The FOX-1 converts the information from an electrical format to an
optical format, and then retransmits the information onto a fiber-optic cable to
a receiving FOX-1, where the process is reversed. The FOX-1 uses an array of
optical transceivers and supporting circuitry to convert the information that is
transmitted on the GigaRing channel.

System Programmer Reference GigaRing I/O Section

CSM-0301-0B0 Cray Research Proprietary 65

Error Reporting and Handling

Each GigaRing interface maintains an error monitor that any node on the ring
can access. This feature enables error monitor software to access all nodes on a
given ring and provide a cumulative status of the system.Table 8 provides a
description for each MMR that is associated with error reporting.

Table 8. Error Reporting MMRs

 Add.
(Octal)

Bits
in

Field Field Name Description Access

30 24 ERROR_COUNTER Counter for ring and
client errors

GR RAZ

31 19 NEG_RING_ERRORS Ring error bit map GR RAZ

32 19 POS_RING_ERRORS Ring error bit map GR RAZ

33 8 CLIENT_ERRORS Client error bit map GR RAZ

36 32 NEG_BUFFER_PE_STATUS Bit map of buffer parity
errors

GR RAZ

37 32 POS_BUFFER_PE_STATUS Bit map of buffer parity
errors

GR RAZ

40 32 CRC_CAPTURE CRC and sendtag of
send packet with CRC
error

GR RAZ

Interprocessor Communication System Programmer Reference

66 Cray Research Proprietary CSM-0301-0B0

Interprocessor Communication

The interprocessor communication section of the mainframe possesses three
features that enable data and control information to transfer between CPUs:

• Shared registers
• Semaphore registers
• Interprocessor interrupts

Shared registers pass data between CPUs. Semaphore (SM) registers enable
synchronization of programs that are operating in different CPUs. Interprocessor
interrupts allow a CPU to initiate an exchange sequence in other CPUs. These
features are especially useful in multitasking environments.

The shared and semaphore registers are arranged in groups called clusters. The
following paragraphs explain clusters, the shared and semaphore registers, test
and set control, and interprocessor interrupts.

Clusters

The shared and semaphore registers are divided into (number of CPUs +1)
identical clusters. A CPU can reference only one cluster at a time. The cluster
number (CLN) register in the exchange package determines to which cluster a
CPU is assigned. Clusters are numbered beginning with 1 (octal). A CLN value
of 0 prevents a CPU from accessing all shared and semaphore registers.

There are two ways to load the CLN register: automatically during an exchange
sequence or by executing instruction 0014j3 when the CPU is in monitor mode.

Shared Registers

Shared registers provide a way to transfer data between operating registers in
different CPUs; one CPU loads a shared register from its own operating registers.
Other CPUs can then transfer the data from the shared register to their own
operating registers. There are two types of shared registers: shared address (SB)
and shared scalar (ST).

Each cluster contains eight 32-bit SB registers, numbered SB0 through SB7.
Data is transmitted between the SB registers, and the A registers in each CPU
are assigned to the cluster.

System Programmer Reference Interprocessor Communication

CSM-0301-0B0 Cray Research Proprietary 67

Each cluster contains eight 64-bit ST registers, numbered ST0 through ST7. Data
is transmitted between the ST registers and the S registers in each CPU that is
assigned to the cluster.

Table 9 lists all instructions that transmit data to or from the shared registers. In
a CPU where the contents of the CLN register equal 0, instructions 026ij7 and
072ij3 return a value of 0, and instructions 027ij7 and 073ij3 perform no
operation.

Semaphore Registers

SM registers allow a CPU to temporarily suspend program operation in order to
synchronize operation with other CPUs. Each cluster contains thirty-two 1-bit
SM registers numbered SM0 through SM37 (octal). Each CPU that is assigned
to the cluster can set or clear each SM register and can perform a test and set
instruction, which is explained in the following paragraph. Each CPU in the
cluster can also transmit the contents of all 32 SM registers to or from an S
register. CPUs use the shared paths to set and clear semaphore registers.

Table 10 lists all machine instructions that use the SM registers. The 0034jk test
and set instruction tests the state of the SMjk register. If the content of the SMjk
register is 0, the instruction executes immediately. If the content of the SMjk
register is 1, the instruction holds issue until another CPU that is assigned to the
same cluster clears the SMjk register. When the instruction issues, it sets the
SMjk register. Instructions 0036jk and 0037jk clear and set the SMjk register.

Table 9. Shared Register Instructions

Machine
Instruction

CAL
Syntax Description

026ij7 Ai SBj Transmit (SBj) to Ai

027ij7 SBj Ai Transmit (Ai) to SBj

072ij3 Si STj Transmit (STj) to Si

073ij3 STj Si Transmit (Si) to STj

Table 10. SM Register Instructions

Machine Instruction
CAL

Syntax Description

0034jk SMjk 1,TS Test and set semaphore jk

0036jk SMjk 0 Clear semaphore jk

0037jk SMjk 1 Set semaphore jk

072i02 Si SM Transmit (SM) to Si

073i02 SM Si Transmit (Si) to SM

Interprocessor Communication System Programmer Reference

68 Cray Research Proprietary CSM-0301-0B0

Instructions 072i02 and 073i02 transmit the SM register contents to or from the
upper half of the S register (the lower half of the S register is not used).Figure 9
shows the relation between the SM registers and the bits of an S register.

Figure 9. Relation between SM Registers and S Register Bits

If a CPU is not assigned to any cluster (that is, CLN = 0), instructions 0034jk,
0036jk, 0037jk, and 073i02 perform no operation. Instruction 072i02 sets register
Si to 0.

The following example shows how an SM register is used to synchronize the
operation of two CPUs in a multitasking program. In this example, CPU 0
computes a partial result needed by CPU 1 while CPU 1 computes a second
partial result. CPU 1 then uses the two partial results as operands for further
processing.

In Step 1, CPU 0 begins processing by setting register SM0, which indicates that
it has not yet computed its partial result. In Steps 2 and 3, CPUs 0 and 1 begin
to compute the partial results. At the end of Step 3, CPU 1 places its partial result
in register S1. CPU 1 needs CPU 0’s partial result before it can proceed. In Step
4, CPU 1 performs a test and set instruction on register SM0. Because register
SM0 is already set, CPU 1 holds issue.

CPU 0 CPU 1

1. SM0 1 (003700)

2. Compute partial result 3. Compute partial result

X X

X X

X Place partial result in S1

X

X 4. SM0 1, TS (003400)

X

Place partial result in S1

5. ST0 S1 (073103)

6. SM0 0 (003600)

63 62 32 31 30

Instruction 072i02 sets these bits to 0.
Instruction 073i02 does not use these bits.

0S Register Bits

SM08 SM18 SM378SM Registers

System Programmer Reference Interprocessor Communication

CSM-0301-0B0 Cray Research Proprietary 69

CPU 0 continues its computations and transfers its partial result to the S1 register.
CPU 0 then transfers the partial result from S1 to register ST0 (Step 5). In Step
6, CPU 0 indicates that the partial result is ready in register ST0 by clearing
register SM0. In Step 7, CPU 0 can now continue with other processing. SM0
is now cleared and the test and set instruction in CPU 1 issues, setting register
SM0. CPU 1 then transfers CPU 0’s partial result from register ST0 to register
S2 (Step 8). CPU 1 now has its own partial result in register S1 and CPU 0’s
partial result in register S2 and can continue processing (Step 9).

Test and Set Control

The test and set control logic handles 0034jk instructions for the processors.
When a processor executes a 0034jk instruction, it sends a test and set command
to the JS, which then passes it to the global logic via the interprocessor JS/JS
bus. This command is passed to the global test and set control. The test and set
command that is passed to the global JS logic is a 1-word command. It uses the
JS/JS bus for 1 CP, after which the JS/JS bus is available for commands from
other PC ASICs.

The global test and set logic contains the following information about each
processor:

• Whether it is doing a 0034jk instruction
• Cluster number
• Semaphore register number

When the test and set command gets to the test and set logic, the logic checks
the semaphore register to determine whether it is set. If the register is not set,
the logic sets it and returns a completion command to the originating processor.
If it is set, it enters a waiting-on-semaphore state and notifies the originating
processor.

7. Continue processing 8. S2 ST0 (072203)

X

X 9. Continue processing

X X

X X

X X

CPU 0 CPU 1

Interprocessor Communication System Programmer Reference

70 Cray Research Proprietary CSM-0301-0B0

Whenever a 0036jk (clear SM) or 073i02 (load SM) instruction is executed, the
status module for each CPU checks to determine whether the semaphore it is
waiting on was cleared. If so, it requests to set it. One of the requesting CPUs
receives access, sets the SM, and notifies its requesting CPU that it has
completed.

Simultaneously, the processor that originated the 0034jk is holding issue. It holds
issue until it receives a response from the JS. If the JS returns a completion
command to the processor, then the 0034jk issues and execution continues. If
the JS returns a deadlock command, the P register decrements and the processor
exchanges with a deadlock flag set.

Deadlock

A deadlock condition occurs when all CPUs that are assigned to a cluster are
holding issue on a test and set (0034jk) instruction; that is, each CPU within the
cluster is waiting for another CPU to clear an SM register. When this condition
occurs, no further execution is possible in any of the CPUs assigned to the cluster;
each CPU waits for another CPU to clear an SM register.

Deadlock occurs in two situations:

• All CPUs in the same cluster hold issue on a test and set instruction.

• A single CPU holds issue on a test and set instruction and there are no
other CPUs in the same cluster. This situation can occur in either of two
ways:

• Only one CPU is assigned to a particular cluster, and that CPU
issues a test and set instruction for an SM register that is currently
set.

• Several CPUs are assigned to the same cluster, one of which is
holding on a test and set instruction. Then, all the other CPUs
exchange to new programs with different cluster numbers.

To resolve the deadlock condition, a deadlock interrupt occurs. This interrupt
sets the deadlock (DL) flag in the current exchange package of each CPU that
is assigned to the cluster in which the deadlock has occurred. This causes each
affected CPU that is not in monitor mode to perform an exchange sequence. A
deadlock chain passes the WS bit and CLN of each CPU to all of the CPU status
modules.

System Programmer Reference Interprocessor Communication

CSM-0301-0B0 Cray Research Proprietary 71

Interprocessor Interrupts

Interprocessor interrupts allow a CPU to interrupt program execution in other
CPUs.Table 11 shows the two instructions that involve interprocessor
interrupts. These instructions can be executed only by a CPU in monitor mode .

When a CPU executes instruction 0014j1, the interrupt-from-internal CPU (ICP)
request flag sets in the CPU that is designated by the contents of register Aj. If
this CPU is not in monitor mode, it begins an exchange sequence. The program
that begins running as the result of the exchange sequence should be in monitor
mode and should execute instruction 001402 to clear the ICP flag. If this
instruction is not executed, the ICP flag initiates another exchange sequence
when the monitor mode program exits to a nonmonitor mode program.

There is one special case involving the 0014j1 instruction. If instruction 0014j1
is executed with the contents of register Aj equal to the number of the CPU that
is executing the instruction (that is, if a CPU tries to interrupt itself), the
instruction performs no operation. The interprocessor interrupt logic is part of
the global logic on the JS. It routes interprocessor interrupts to the correct CPU.
When a processor issues a 0014j1 (SIPI) instruction, it sends a SIPI command
to the local JS, which then passes it to the other JS ASICs via the interprocessor
bus. The JS/JS bus interface logic in the global logic routes the SIPI to the correct
processor.

Table 11. Interprocessor Interrupt Instructions

Machine
Instruction

CAL
Syntax Description

0041j1a SIPI Aj Set interprocessor interrupt
request to CPU (Aj)

001402a CIPI Clear interprocessor interrupt
request

a These instructions are privileged to monitor mode.

Real-time Clock System Programmer Reference

72 Cray Research Proprietary CSM-0301-0B0

Real-time Clock

Each JS contains a copy of the global real-time clock (RTC). When the RTC is
written, all global copies are updated at the same time. Each individual JS is then
responsible for updating the copies of the RTC that are local to each PC ASIC.
This is done by requesting access to the PC/JS bus and sending a copy to the PC.
When a processor reads the RTC, it reads from the local copy on the PC ASIC.
The PC does not check whether a change to the RTC is pending. If one processor
is changing the RTC at about the same time another is reading the RTC, the
processor that is reading the RTC may not get the new value.

When the global RTC unit receives a load RTC command, it causes all other JS
activity to halt. When all has gone quiet, the new RTC value is transferred to all
PC ASICs at the same time.

Table 12 shows the two instructions that write data to and read data from the
RTC.

Instruction 0014j0 can be issued only by a CPU in monitor mode; the CPU that
issues this instruction updates the value of the local clocks on all other CPUs.
Two or more CPUs should not execute this instruction simultaneously because
there is no hardware to detect this condition, and unpredictable results can occur.
The programmer must avoid this situation. Instruction 072i00 may be issued
simultaneously by any number of CPUs.

NOTE: On the J90se CPU, the real-time clock increments at the system
clock rate, not the CPU clock rate (twice the system clock rate).
Therefore, on a J90se CPU, two successive 072i00 instructions that
issue during the same system clock period will return the same
value.

Table 12. RTC Instructions

Machine
Instruction

CAL
Syntax Description

0014j0a RT Sj Transmit (Si) to RTCb

072i00 Si RT Transmit (RTC) to Si
a This instruction is privileged to monitor mode.

b RTC bits 0–63 are forced to 0’s.

System Programmer Reference Real-time Clock

CSM-0301-0B0 Cray Research Proprietary 73

The RTC is normally used to determine the running time of a program or a
segment of program code. The following example shows an instruction sequence
that is used to determine the running time of a program.

At the end of this sequence, if no interrupts occur, register S1 equals 1 plus the
number of CPs required to execute Step 2.

Step
Machine

Instruction CAL Comment

 1 072100 S1 RT Load S1 with starting time.

 2 - - Insert code to be timed here. Code
must not use S1.

 3 072200 S2 RT Load S2 with ending time.

 4 061121 S1 S2-S1 Load S1 with difference between
ending and starting time.

Real-time Clock System Programmer Reference

74 Cray Research Proprietary CSM-0301-0B0

System Programmer Reference Exchange Mechanism

CSM-0301-0B0 Cray Research Proprietary 75

CPU Control

Exchange sequences, fetch sequences, and issue sequences are closely related.
When an initial deadstart program or a new program runs, an exchange sequence
occurs. An exchange sequence brings several important parameters of the
program into some of the central processing unit’s (CPU’s) operating registers.
A fetch sequence begins immediately after the exchange sequence. A fetch
sequence transfers a block of instructions from memory to an instruction buffer.
The issue sequence then selects the instruction that is indicated by the program
address (P) register, decodes it, and passes it on to be executed.

As the instruction executes, the P register increments, which causes new
instructions to move through the issue sequence. When a desired address is not
currently in an instruction buffer, another fetch sequence occurs. This overall
process continues until the program either terminates or is interrupted, at which
time another exchange sequence occurs and the entire process starts over.

This section describes the exchange mechanism, the instruction fetch sequence,
and the instruction issue sequence, which are unique to each CPU. It also briefly
describes the programmable clock, the status register, and the performance
monitor.

Exchange Mechanism

Each CPU uses an exchange mechanism to switch instruction execution from
program to program. This exchange mechanism uses blocks of program
parameters called exchange packages and a CPU operation called an exchange
sequence.

The following subsections explain the exchange package and the exchange
sequence in more detail.

Exchange Mechanism System Programmer Reference

76 Cray Research Proprietary CSM-0301-0B0

Exchange Package

The exchange package is a 16-word block of data in memory that is associated
with a particular computer program. The exchange package contains the basic
parameters that provide continuity when a program stops one section of the
program and starts the next.

The exchange package holds the contents of the address (A) and scalar (S)
registers. The contents of the intermediate address (B), intermediate scalar (T),
vector (V), vector mask (VM), shared B (SB), shared T (ST), and semaphore
(SM) registers are not saved in the exchange package. Data in these registers
must be stored and replaced as required by the program supervising the object
program or by any program that needs this data.

Refer again toFigure 6 for the format of the exchange package.Table 13 lists
the exchange package assignments. The following subsections define and
explain the fields of the exchange package.

NOTE: The exchange package bits are numbered from left to right with bit 0
assigned to bit position 63 for software. For hardware, exchange
package bits are numbered from right to left with bit 63 assigned to
bit position 0.

Processor Number Field

The contents of the processor number (PN) field indicate which CPU performed
the exchange sequence. This value is inserted into the exchange package from
the configuration file bits (14 through 10) that are located on the PC ASIC.

P Register Field

The program address (P) register contents are stored in the program address
register field of the exchange package. The instruction that is stored at this
location is the first instruction to issue when the program that corresponds to the
exchange package begins execution.

Memory Error Data Fields

Memory error data, which consists of six fields of information, is valid only if
one of two conditions is met. The first condition is that the
interrupt-on-correctable memory (ICM) bit is set in the mode (M) register and
a correctable memory error is detected. The second condition is that the

System Programmer Reference Exchange Mechanism

CSM-0301-0B0 Cray Research Proprietary 77

interrupt-on-uncorrectable memory (IUM) bit is set in the M register and an
uncorrectable memory error is detected. The following subsections describe the
memory error data fields.

Syndrome Field

The 8-bit syndrome field defines the syndrome code that is generated by
SECDED logic for a memory read operation or an I/O channel transfer.

Memory Error Address

If an error occurs during a memory read operation, the number of the bank that
is being read when the error occurred is stored in the 10-bit read address bank
field. The bank number is contained in bits 0 through 9 of the read address.

The memory error address contains address bits 0 through 7, and the memory
error address (continued) contains overflow bits 8 and 9.

Read Error Type Field

The 2-bit read error type field determines the type of memory or I/O error that
occurred; bit 0 sets if the error is uncorrectable, and bit 1 sets if the error is
correctable.

Exchange Mechanism System Programmer Reference

78 Cray Research Proprietary CSM-0301-0B0

Read Mode Field

The read mode bits are used with the port bits to determine what kind of read
operation was in progress when the memory error occurred.Table 13 shows the
read mode and port value translations.

Memory Register Fields

Four registers test the area limits for memory references: the data base address
(DBA) register, the data limit address (DLA) register, the instruction base
address (IBA) register, and the instruction limit address (ILA) register.

Table 13. Exchange Package Read Mode and Port Translations

Port Value Mode Value

Type of Transfer
when Error
Occurred Explanation

4 = A 0 EX Error occurred while reading the exchange package

4 = A 1 B Error occurred during a read to the B registers

4 = A 2 V Error occurred during a vector read from memory

4 = A 3 A, S Error occurred during a memory read to the A or S
registers

2 = B 0 Fetch A Error occurred during an instruction fetch operation on
port A

2 = B 1 T Error occurred during a block transfer to the T
registers

2 = B 2 V Error occurred during a vector read from memory

2 = B 3 Fetch B Error occurred during an instruction fetch operation on
port B

1 = D 0 Y1 or
HIPPI

SECDED error occurred during a memory read for
channel (n) output

1 = D 1 Y1 or
HIPPI

SECDED error occurred during a memory read for
channel (n + 3) output

1 = D 2 Y1 or
HIPPI

SECDED error occurred during a memory read for
channel (n + 5) output

1 = D 3 Y1 or
HIPPI

SECDED error occurred during a memory read for
channel (n + 7) output

n = Processor board number

System Programmer Reference Exchange Mechanism

CSM-0301-0B0 Cray Research Proprietary 79

Data Base Address Register Field

The DBA register holds the base address of the user’s data area (the location in
memory where a program’s data area begins). Each time an instruction in the
program makes a memory reference, the memory address that is generated by
the instruction is added to the contents of the DBA register to form the absolute
memory address.

The DBA address is in bits 10 through 31; bits 0 through 9 are always 0.
Therefore, the content of this register is always a multiple of 2000 (octal)
(1024 decimal).

Data Limit Address Register Field

The DLA register holds the limit address of the user’s data area, which is used
to determine the highest absolute memory address that the program can use for
reading or writing data. Each time an instruction makes a memory reference, the
absolute memory address that the instruction generates is compared to the
address in the DLA register. If the absolute memory address is less than the DLA
register, the reference proceeds. If the absolute memory address is equal to or
greater than the DLA register, an out-of-range condition exists. If the
interrupt-on-operand range error (IOR) flag in the mode register is set, the
out-of-range condition sets the operand range error (ORE) flag in the flag
register, which initiates an exchange sequence.

A memory read reference that is beyond the limits of the assigned area issues
and completes, but a zero value is transferred from memory. A memory write
reference that is beyond the assigned area issues, but no write operation occurs.

The DLA address is in bits 10 through 31; bits 0 through 9 are always 0.
Therefore, the content of this register is always a multiple of 2000 (octal) (1024
decimal). The highest absolute memory address that can be referenced for data
by a program is defined by [(DLA) x 2 exp10] - 1 memory range.

Instruction Base Address Register Field

The IBA register holds the base address of the user’s instruction area (the location
in memory where a program’s instruction area begins). During an instruction
fetch sequence, an absolute memory address is formed by adding the relative
address that is generated by the fetch control logic to the contents of the IBA
register.

Exchange Mechanism System Programmer Reference

80 Cray Research Proprietary CSM-0301-0B0

The absolute memory address for an instruction fetch is formed by adding the
IBA register to the higher-order 22 bits of the P register. The ILA address is in
bits 10 through 31; bits 0 through 9 are always 0. Therefore, the content of this
register is always a multiple of 2000 (octal) (1024 decimal).

Instruction Limit Address Register Field

The ILA register holds the limit address of the user’s instruction area, which is
used to determine the highest absolute memory address that can be accessed
during an instruction fetch sequence.

If the absolute memory address used in an instruction fetch sequence is not
between the area of addresses contained within the IBA and ILA registers of the
active exchange package, the CPU generates a program range error interrupt.
The ILA address is in bits 10 through 31; bits 0 through 9 are always 0. Therefore,
the content of this register is always a multiple of 2000 (octal) (1024 decimal).
The highest absolute instruction address of a program is defined by [(ILA)x 2
exp10]-1 memory range.

Exchange Address Register Field

The 10-bit exchange address (XA) register specifies the first word address of a
16-word exchange package that is loaded by an exchange sequence. The XA
register contains the higher-order 10 bits of a 14-bit area that specifies the
absolute memory address. The low-order bits of the area are always 0; an
exchange package must begin on a 16-word boundary. The 14-bit limit requires
that the absolute memory address be in the lower 40000 (octal) words of memory.
(The DBA is not added to the XA register.) The exchange sequence exchanges
the contents of the registers with the contents of the exchange package at the
beginning XA register in memory.

Vector Length Register Field

The 7-bit vector length (VL) register specifies the length of all vector operations
that are performed by vector instructions and the number of elements that are
held in the V registers. The value in the VL register can be changed during
program execution by using the 002000 instruction.

Cluster Number Register Field

The cluster number (CLN) register determines the CPU’s cluster. There are 17
clusters of SB, ST, and SM registers (17 clusters for the largest system). A value
of 1 (octal) through 41 (octal) in the CLN register determines which cluster the
CPU can access. If the content of the CLN register is 0, then the CPU does not

System Programmer Reference Exchange Mechanism

CSM-0301-0B0 Cray Research Proprietary 81

have access to any SB, ST, or SM register. The contents of the CLN register in
all CPUs are also used to determine a deadlock interrupt condition. The formula
for determining the number of the cluster for the various CRAY J90 series
configurations is the number of CPUs + 1.

Vector Not Used Field

The state of the vector not used (VNU) bit in the exchange package indicates
whether instruction 077 or instructions 140 through 176 were issued during the
execution intervals. The VNU bit is set if none of the instructions issued; it is
not set if one or more of the instructions issued.

Waiting for Semaphore Field

The waiting for semaphore (WS) bit in the exchange package is set to indicate
that the CPU exchanged when the test and set instruction was holding in the
current instruction parcel (CIP) register.

Flag Register Field

The flag (F) register contains 11 flags for the active program. The setting of a
flag can initiate an exchange sequence. The monitor program analyzes the flag
to identify the cause of an exchange sequence. Before the monitor program
exchanges back to the program, it must clear the flags in the F register area of
the exchange package. If any flag remains set, another exchange occurs
immediately. The contents of the F register are stored in memory with the rest
of the exchange package.

Some of the F register flags are disabled when a program is running in monitor
mode or interrupt in monitor mode (refer to the following “Mode Register Field”
subsection in this section for more information on the MM and IMM bits). If a
flag is disabled and the conditions for setting the flag are present, the flag remains
clear and no exchange sequence is initiated.

Exchange Mechanism System Programmer Reference

82 Cray Research Proprietary CSM-0301-0B0

The F register contains the following flags:

Bit Position Flag Description

8/55 Register parity error (RPE) - (not used)

9/54 Interrupt-from-internal CPU (ICP) - is set when another
CPU issues instruction 0014j1.

10/53 Deadlock (DL) - is set when all CPUs in a common
cluster are holding issue on a test and set instruction.

11/52 Programmable clock interrupt (PCI) - is set when the
interrupt countdown counter in the programmable clock
equals 0.

12/51 MCU interrupt (MCU) - is set when the MCU Interrupt
signal is active. This signal is part of I/O channel 20.

13/50 Floating-point error (FPE) - is set when a floating-point
range error occurs in any of the floating-point functional
units and when the interrupt-on-floating-point error
(IFP) bit in the M register is set.

14/49 Operand range error (ORE) - is set when a data
reference is made outside the boundaries of the DBA
and DLA registers and when the interrupt-on-operand
range error bit in the M register is set.

15/48 Program range error (PRE) - is set when an instruction
fetch is made outside the boundaries of the IBA or ILA
registers.

16/47 Memory error (ME) - is set when a correctable or
uncorrectable memory error occurs and the
corresponding interrupt-on-correctable memory error
(ICM) bit or interrupt-on-uncorrectable memory error
(IUM) bit in the M register is set.

17/46 I/O interrupt (IOI) - is set when a 6-Mbyte/s or
1000-Mbyte/s channel completes a transfer.

18/45 Error exit (EEX) - is set by an error exit (000)
instruction if the program is not in monitor mode or the
interrupt-in-monitor mode (IMM) is set.

19/44 Normal exit (NEX) - is set by a normal exit (004)
instruction if the program is not in monitor mode.

System Programmer Reference Exchange Mechanism

CSM-0301-0B0 Cray Research Proprietary 83

Mode Register Field

The mode (M) register contains 10 user-selectable bits for the active program;
it also contains 2 status bits: program state and floating-point error status. The
M register contains the following bits:

Bit Position Flag Description

20/43 Enable second vector logical (ESVL) - when set, this bit
enables the second vector logical functional unit.
Instructions 140 through 145 use the second vector logical
functional unit if it is enabled and not reserved by another
instruction.

21/42 Program state (PS) - is set by the operating system to denote
whether a CPU concurrently processing a program with
another CPU is the master or slave in a multitasking
situation.

22/41 Floating-point error status (FPS) - when set, this bit indicates
that a floating-point error occurred, regardless of the state of
the floating-point error flag.

23/40 Bidirectional memory (BDM) - when set, this bit indicates
that block read and write operations can operate
concurrently. The BDM bit can be set or cleared during a
program by using instructions 002600 (enable bidirectional
memory transfers) and 002500 (disable bidirectional
memory transfers).

24/39 Interrupt-on-operand range error (IOR) - when set, this bit
enables interrupt-on-operand address range errors. The IOR
bit can be set or cleared during the execution interval of a
program by using instructions 002300 (enable
interrupt-on-operand range error) and 002400 (disable
interrupt-on-operand range error).

25/38 Interrupt-on-floating-point error (IFP) -when set, this bit
enables interrupts on floating-point errors. The IFP bit can be
set or cleared during the execution interval of a program by
using instructions 002100 (enable interrupt-on-floating-point
error) and 002200 (disable interrupt-on-floating-point error).

26/37 Interrupt-on-uncorrectable memory error (IUM) - when set,
this bit enables interrupts on uncorrectable memory data
errors and/or register parity errors.

27/36 Interrupt-on-correctable memory error (ICM) - when set, this
bit enables interrupts on correctable memory data errors.

28/35 Extended addressing mode (EAM) - (not used) A CRAY J90
series system always operates in Y-mode and cannot execute
X-mode instructions.

Exchange Mechanism System Programmer Reference

84 Cray Research Proprietary CSM-0301-0B0

The FPS and PS bits indicate the state of the CPU at the time of the exchange
sequence. The remaining bits are not altered during the execution interval for
the exchange package and can be altered only when the exchange package is
inactive in memory.

The FPS, PS, BDM, IOR, and IFP bits can be read to an S register with instruction
073i01.

Cache Enable

Each PC ASIC contains a 128-word cache that is enabled for use when this CE
mode bit is set to a 1.

A Register Fields

The current contents of all A registers are stored in bits 0 through 31 of words
0 through 7 during an exchange sequence.

S Register Fields

The current contents of all S registers are stored in bits 0 through 63 of words 8
through 15 during an exchange sequence.

29/34 Selected for external interrupts (SEI) - when set, this CPU is
preferred for I/O interrupts. When an I/O channel completes
a transfer, the channel can interrupt only one CPU. The CPU
with this bit set gets the interrupt. Refer to “I/O Interrupts”
for more information on I/O interrupts.

30/33 Interrupt in monitor mode (IMM) - this bit is used only when
the MM bit is set; this bit then enables the DL, FPE, ORE,
and PRE interrupts along with interrupts allowed when MM
is also set.

31/32 Monitor mode (MM) - when set, this bit allows access to
privileged monitor mode instructions and inhibits all
interrupts except ME, NEX, and EEX.

Bit Position Flag Description

System Programmer Reference Exchange Mechanism

CSM-0301-0B0 Cray Research Proprietary 85

Exchange Sequence

The exchange sequence moves an inactive exchange package from memory into
the operating registers. Simultaneously, the exchange sequence moves the active
exchange package from the operating registers back into memory. This swapping
operation occurs in a fixed sequence when all computational activity associated
with the active exchange package stops.

The exchange sequence involves 16 memory read references and 16 memory
write references. A single 16-word block of memory is the source of the inactive
exchange package and the destination of the active exchange package. Word 0
of the active exchange package is swapped with word 0 of the inactive exchange
package. The location of this block is specified by the contents of the XA register
and is a part of the active exchange package.

Exchange Sequence Timing

The following subsections define the hold conditions, execution time, and
special case conditions for an exchange sequence.

Hold Conditions

The following conditions can delay the start of an exchange sequence:

• Incomplete memory references
• Any active A, S, or V registers within the CPU

Execution Time

An exchange takes a minimum of 83 CPs: 40 CPs for the exchange sequence
and 39 CPs for a fetch operation. (This time is longer when memory conflicts
occur.) Memory conflicts are possible during an exchange sequence and a fetch
operation.

Special Case Conditions

If the test and set instruction is holding in the CIP register, both the CIP and next
instruction parcel (NIP) registers are cleared. The exchange occurs with the WS
flag set and the P register pointing to the address of the test and set instruction.

Exchange Mechanism System Programmer Reference

86 Cray Research Proprietary CSM-0301-0B0

Initiating an Exchange Sequence

The exchange sequence can be initiated by a deadstart sequence, a program exit,
or an interrupt. The following subsections describe conditions that cause an
exchange sequence and the results of the exchange.

Deadstart Sequence

The deadstart sequence starts a program in the mainframe after a
power-off/power-on operation or whenever the operating system is re-initialized
in the mainframe. All control latches, words in memory, and the contents of all
registers are invalid after a power-off/power-on operation. During the power-on
sequence, the reset logic is asserted automatically to all flip-flops (FF options)
in the system. JTAG control logic loads all of the configuration registers using
JTAG scan circuitry and then enables the Reset and Stopclk signals. Next, JTAG
control disables Reset and Stopclk; the system is now synchronized and idle.
Memory can now be loaded through I/O channel 20 (octal).

The external device then loads an initial exchange package and monitor program.
Because a deadstart sequence forces the contents of the XA register to 0, this
initial exchange package must be located at memory address 0.

Through JTAG, the processor is chosen to do the deadstart exchange by forcing
an interrupt on that CPU. These actions cause an exchange sequence that issues
the exchange package at memory address 0. This exchange package then moves
into the operating registers and initiates a program that uses these parameters.

The exchange package that was originally used as the deadstart sequence is
swapped back into memory address 0 and is indeterminate because of the
deadstart operation. New data is entered into this exchange package in
preparation for deadstarting subsequent CPUs by an interprocessor interrupt.
When instruction 001401 is issued in the first CPU, the next CPU exchanges to
memory address 0. This sequence continues until all CPUs are deadstarted.

Each exchange package resides in an area that was defined during system
deadstart. The defined area must be in the lower 4,096 (10000 (octal)) words of
memory. The package at memory address 0 is the deadstart monitor’s exchange
package. Only the monitor has a defined area so that it can access all of memory,
including exchange package areas. This area allows the monitor to define or alter
all exchange packages other than its own when it is the active exchange package.
Other exchange packages provide for object programs and other monitor tasks
and are located outside of the program’s instruction and data areas.

System Programmer Reference Exchange Mechanism

CSM-0301-0B0 Cray Research Proprietary 87

Program Exit Instructions

Two program exit instructions initiate an exchange sequence: error exit (000)
and normal exit (004). The two instructions enable a program to request its own
termination. A program usually uses the normal exit instruction to exchange
back to the monitor program. The error exit instruction allows termination of an
object program if an abnormal condition occurs; the exchange address selected
is the same address that is used for a normal exit instruction.

Depending on which instruction issues, either an error exit or normal flag is set
in the F register, which forces an interrupt. (Refer toFlag Register Field for more
information on the flags.) The appropriate flag is set only if the active exchange
package is not in monitor mode. The inactive exchange package that is sent
during the exchange sequence normally has its monitor mode bit set.

Interrupts

An exchange sequence can also be initiated by setting any of the interrupt flags
in the F register (refer toFlag Register Field for more information on the flags).
Setting one or more flags causes a Request Interrupt signal to initiate an exchange
sequence.

Exchange Package Management

Exchange package management dictates that a user program always exchanges
back to the monitor that caused the non-monitor program to start execution. This
exchange back to the monitor ensures that the program information is always
exchanged into its proper exchange package.

For example, a monitor begins an execution interval following a deadstart
sequence. No interrupts (except memory) can terminate its execution interval
because it is in monitor mode. Before the monitor program exits, the monitor
sets the contents of the XA register to point to a user program’s exchange
package, so that a user program runs next. Then, the monitor sets the contents
of the XA register in the user program’s exchange package to the appropriate
location in the monitor program. The monitor voluntarily exits by issuing a
normal exit instruction (004).

The exchange sequence moves the inactive exchange package (in this case, the
user program’s) from memory into the operating registers and at the same time,
moves the active exchange package (in this case, the monitor’s) from the
operating registers into memory. The contents of the XA register in the user

Exchange Mechanism System Programmer Reference

88 Cray Research Proprietary CSM-0301-0B0

program’s exchange package point to the monitor that originally allowed the
user program to exchange. When the exchange is complete, the user program
begins to run.

If an interrupt occurs while the user program is running, an exchange sequence
is initiated. Because the contents of the XA register in the user’s program
exchange package point to the monitor, the exchange is back to the monitor.
(Note that a user program cannot alter the contents of the XA register.)

When the exchange back to the monitor is complete, the monitor determines
which interrupt caused the exchange and sets the contents of the XA register to
call the proper interrupt-processing program to run. To do this, the monitor sets
the XA register to point to the exchange package for the relevant
interrupt-processing program. The monitor then clears the interrupt and executes
a normal exit (004) instruction, causing the interrupt-processing program to run.
Depending on the operating task, the interrupt-processing program can run in
monitor mode or user mode.

NOTE: There is no interlock between an exchange sequence in a CPU and
memory transfers in another CPU; therefore, avoid modifying
exchange packages used by other CPUs except under
software-controlled situations.

System Programmer Reference Instruction Fetch Sequence

CSM-0301-0B0 Cray Research Proprietary 89

Instruction Fetch Sequence

An instruction fetch sequence retrieves program code from memory and places
it in an instruction buffer. The program code is held in the instruction buffer
before it is delivered to the instruction issue registers. The following subsections
describe the hardware associated with the instruction fetch sequence and define
the fetch operation.

Instruction Fetch Hardware

A CRAY J90 series system uses the P register to initiate an instruction fetch
sequence; it uses eight instruction buffers to store the instructions retrieved from
central memory.Figure 10 shows the P register and instruction buffers.

Figure 10. Instruction Fetch Block Diagram

Instruction Buffers

Each of the eight instruction buffers (IB0 through IB7) holds 40 (octal) (00
through 37 octal) words. Each word contains four 16-bit instruction parcels;
therefore each buffer holds 128 parcels. Instruction parcels are held in the buffers
before they are delivered to the issue registers.

The first instruction parcel in a buffer always has a word address that is a multiple
of 40 (octal). This word address allows the entire area of addresses for
instructions in a buffer to be defined by the high-order 17 bits of the P register.

Each instruction buffer has an associated instruction buffer address register
(IBAR). The IBAR contains the high-order 17 bits of the P register and an IBAR
valid bit. When set, the IBAR valid bit indicates that the buffer contains valid

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

Instruction
Buffers

00
•
•
•

37

P
Register

-1/-2

To Issue Registers
Central
Memory

Instruction Fetch Sequence System Programmer Reference

90 Cray Research Proprietary CSM-0301-0B0

data. During an exchange sequence, the IBAR valid bit is cleared to invalidate
the previous program’s instructions and to force the CPU to fetch new
instructions. Once the fetch operation begins, the appropriate IBAR is loaded
with the upper 16 bits of the P register, and its valid bit is set.Figure 11 shows
the IBAR.

Figure 11. IBAR

Program Address Register

The 24-bit P register indicates the next parcel of program code to enter the NIP
register. As shown inFigure 12, the high-order 22 bits of the P register indicate
the word address of the program code in memory relative to the base address.
The low-order 2 bits indicate the parcel within the word. Because 22 bits specify
the word address, the maximum program length is approximately 4 Mwords with
approximately 16 million parcels.

Figure 12. P Register

Under normal circumstances, the P register increments sequentially as
instructions issue. For 1- and 2-parcel instructions, the P register increments by
1; for 3-parcel instructions, the P register increments by 2. These increments
allow both 2- and 3-parcel instructions to issue in 2 CPs. Branch instructions
can load the P register with any value. When the program exchanges out, the
saved P register contains the address of the instruction immediately after the last
instruction that executed.

Instruction Fetch Operation

An instruction fetch operation refers to the series of steps that move program
code from memory to an instruction buffer. Refer toFigure 13 for an illustration
of the P Register and IBAR Address Formats.

Valid Bit Word Address

Bits 21 5

Parcel
SelectWord Address

Bits 21 -2-10

System Programmer Reference Instruction Fetch Sequence

CSM-0301-0B0 Cray Research Proprietary 91

Figure 13. P Register and IBAR Address Formats

The P register always contains the parcel address of the next instruction to be
decoded. The fetch operation is based on a comparison check of the P register
against the values held in the eight IBARs; this comparison is done each clock
period (CP). If the content of one of the IBARs is equal to the upper 17 bits in
the P register and the IBAR valid bit is set, an in-buffer (or coincidence) condition
exists.

If the high-order 17 bits of the P register do not match any IBARs, or the valid
bit is not set, an out-of-buffer (or no-coincidence) condition exists and the
instruction fetch sequence starts.

Once the instruction buffers are loaded, or if the comparison between the P and
IBAR registers produced a coincidence condition, the proper instruction parcel
is selected from the instruction buffer. The instruction parcel is sent to the NIP
register and then to the CIP register, from which the instruction issues.
Instruction issue is explained later in this section.

The instruction fetch sequence uses memory port D to transfer 32 words
(128 parcels) from memory into the instruction buffer (refer to “Port Utilization”
for more information on memory ports). One word is transferred during each CP.

The buffers are filled circularly: 128 parcels fill the first instruction buffer; then
another fetch sequence occurs to fill the second instruction buffer with 128
parcels, and so on, until all eight buffers are filled. If the program code exceeds
1,024 parcels, the ninth fetch reloads the first instruction buffer.

The first word delivered to the instruction buffer always contains the next
instruction that is required for execution. For example, if the P register contained
the address 124-2 (parcel 2 of word 124) when the fetch operation started, the
first word delivered to the instruction buffer would be from memory address 124.

Although optimizing the length of code segments for instruction buffers is not
a prime consideration when programming a CPU, the number and size of the
buffers and the capability for forward and backward branching can be used to

Parcel
Select

Upper 17 Bits of Instruction Word Address

Bits 21 045

Selects Word
within Buffer

-1 -2

Valid Bit Upper 17 Bits of Instruction Word Address

5

P Register

IBAR
Bits 21

Instruction Fetch Sequence System Programmer Reference

92 Cray Research Proprietary CSM-0301-0B0

minimize fetches. Large loops that contain up to 1,024 consecutive instruction
parcels can be maintained in the eight buffers. An alternative is that a main
program sequence in one or two of the buffers makes repeated calls to short
subroutines in the other buffers. The program and subroutines remain
undisturbed in the buffers as long as no out-of-buffer condition or exchange
causes reloading of a buffer.

Forward and backward branches are possible within buffers. Branching does not
cause reloading of an instruction buffer if the address to which the instruction
branches is within one of the buffers. Multiple copies of instruction parcels
cannot occur in the instruction buffers.

Because instructions are held in instruction buffers before issue and until the
buffer is reloaded, self-modifying code should not be used. Self-modifying code
may be impossible because of independent data and instruction memory
protection. As long as the address of the unmodified instruction is in an
instruction buffer, the modified instruction in memory is not loaded into an
instruction buffer.

Instruction Fetch Timing

During an instruction fetch sequence, instructions are moved from memory to
an instruction buffer at the rate of 1 word per CP. It takes 36 CPs for the first
word to arrive at the instruction buffer and an additional 3 CPs for the first
instruction to arrive in the current instruction parcel (CIP) register. Instruction
issue can run concurrently with the fetch operation as long as the required
instruction parcel is in the instruction buffer. If no memory conflicts occur, the
instruction buffer is filled in 67 CPs (36 CPs for the first word and 31 CPs for
remaining words). Memory conflicts can lengthen the fetch sequence.

System Programmer Reference Instruction Issue

CSM-0301-0B0 Cray Research Proprietary 93

Instruction Issue

An instruction issue sequence is the series of steps that are performed to move
an instruction from an instruction buffer through the issue registers and into
execution.

Instruction Issue Hardware

The CRAY J90 series system uses four registers to issue instructions.Figure 14
shows the registers and buffers, and the general flow of the instruction parcels
through them. CPU instructions are 1-, 2-, or 3-parcel instructions; refer to
“Instruction Formats” for information on instruction parcels.

Vector instructions are locally issued and dispatched to the vector unit for final
issue. The vector unit can queue five such vector instructions, which are then
issued in the order received. The vector issue unit checks for vector register and
functional unit conflicts before issuing these instructions. Vector register and
functional unit reservations are made by the vector issue unit upon final issue of
the instructions.

Figure 14. Instruction Issue Block Diagram – General Flow

Instruction Buffers

The instruction buffers hold the program code after it is retrieved from memory
and before it is passed to the issue registers. The instruction buffers have two
associated read-out registers to streamline the flow of instructions from the
buffers to the next instruction parcel (NIP) register. Even-numbered words are
loaded into the even read-out register, while odd-numbered words are loaded

Instruction
Buffers P

+1/+2

Issue

Read-out
Registers

CIP

LIP

LIP 1

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

00
•
•
•

37

NIP

Instruction Issue System Programmer Reference

94 Cray Research Proprietary CSM-0301-0B0

into the odd read-out register. Bit 0 of the P register determines which read-out
register is used, and bits -1 and -2 of the P register select the parcel to be sent to
the NIP register.

Program Address Register

The 24-bit P register indicates the next parcel of program code to enter the NIP
register. The high-order 22 bits of the P register indicate the word address for
the program code in memory relative to the base address. The low-order 2 bits
indicate the parcel within the word. Under normal circumstances, the P register
increments sequentially as instructions issue. For 1- and 2-parcel instructions,
the P register increments by 1; for 3-parcel instructions, it increments by 2. This
allows both 2- and 3-parcel instructions to issue in 2 CPs. Branch instructions
and exchange sequences can load the P register with any value.

Next Instruction Parcel Register

The 16-bit NIP register receives an instruction parcel from one of the instruction
buffer read-out registers. While the parcel of program code is held in the NIP
register, it is decoded to determine whether the instruction is a 1-, 2-, or 3-parcel
instruction. The parcel is then passed to the CIP register.

The NIP register cannot be master cleared. An undetermined instruction can
issue during the master clear sequence, before an interrupt condition blocks data
entry into the NIP register.

Current Instruction Parcel Register

The 16-bit CIP register receives the parcel of program code from the NIP register
and holds the instruction until it issues. Issue of an instruction that is held in the
CIP register can be delayed until conflicting operations are completed (refer to
“Reservations and Hold Issue Conditions”).

The issue control hardware associated with the CIP register is master cleared;
the register itself is not. An undetermined instruction can issue during the master
clear sequence.

Lower Instruction Parcel and Lower Instruction Parcel 1 Registers

The 16-bit lower instruction parcel (LIP) register holds the second parcel of a
2-parcel instruction (the first parcel of this instruction is always held in the CIP
register). The 16-bit LIP1 register holds the third parcel of a 3-parcel instruction
(again, the first parcel is held in the CIP register, and the second parcel of this
instruction is held in the LIP register).

System Programmer Reference Instruction Issue

CSM-0301-0B0 Cray Research Proprietary 95

Instruction Issue Operation

Control logic associated with the NIP register determines whether the instruction
is a 1-, 2-, or 3-parcel instruction and steers subsequent parcels to the correct
register. The general sequences for the three types of instructions are described
in the following paragraphs; specific examples of 1-, 2-, and 3-parcel instructions
are provided on the following pages.

For 1-parcel instructions, the P register sends the instruction parcel to the NIP
register. From the NIP register, the instruction moves to the CIP register. If there
are no conflicts, the instruction executes.

For a 2-parcel instruction, the P register sends the first parcel to the NIP register.
Then the first parcel is sent to the CIP register, while the second parcel goes
directly to the LIP register. When the two registers are properly loaded with the
correct parcels and there are no conflicts, the first parcel issues from the CIP
register and the second parcel issues from the LIP register at the same time.
When the parcels of the 2-parcel instruction move from the CIP and LIP registers
to execution, the NIP register sends a blank parcel to the CIP register. The control
logic decodes this blank parcel as a no-operation instruction when it issues from
the CIP register. While this blank parcel is loaded into the CIP register, a new
parcel is loaded into the NIP register, and the control logic determines whether
the instruction is a multiparcel instruction. During this sequence, a delay can
occur if the new instruction is in a different buffer than the previous instruction
or if a fetch operation is required.

For a 3-parcel instruction, the P register sends the first parcel to the NIP register.
Then the first parcel is sent to the CIP register, while the second parcel goes
directly to the LIP register and the third parcel goes directly to the LIP1 register.
When the three registers are properly loaded with the correct parcels and there
are no conflicts, the first parcel issues from the CIP register, the second parcel
issues from the LIP register, and the third parcel issues from the LIP1 register
at the same time. When the parcels of the 3-parcel instruction move from the
CIP and LIP registers to execution, the NIP register sends a blank parcel to the
CIP register. The control logic decodes this blank parcel as a no-operation
instruction when it issues from the CIP register. While this blank parcel is loaded
into the CIP register, a new parcel is loaded into the NIP register and the control
logic determines whether it is a multiparcel instruction. Delays can occur if the
new instruction is in a different buffer than the previous instruction or if a fetch
operation is required.

Figure 15 throughFigure 24 and the following paragraphs show the steps that
occur as 1-, 2-, and 3-parcel instructions are steered in sequence through the
issue registers. The sequence assumes a 1-CP delay and is numbered CPn through
CPn+9. An instruction buffer with its two read-out registers, the P register, and
the relevant issue registers are shown for each CP.

Instruction Issue System Programmer Reference

96 Cray Research Proprietary CSM-0301-0B0

Figure 15 shows parcels 20-0 through 21-3 being held in an instruction buffer
and read-out registers. The P register is pointing to parcel 20-0 as the next parcel
to be read into the NIP register.

Figure 15. Instruction Issue Block Diagram – Parcels Held

Figure 16 shows parcel 20-0 in the NIP register. The P register incremented by
1 and is pointing to parcel 20-1 to read out as the next parcel. While parcel 20-0
is in the NIP register, the issue hardware determines whether it is a 1-, 2- or
3-parcel instruction.

Figure 16. Instruction Flow through Issue Registers (CPn + 1)

Because parcel 20-0 is a 1-parcel instruction, the logic steers parcel 20-0 into
the CIP register and parcel 20-1 into the NIP register. The P register increments
by 1 (refer toFigure 17).

20-0

0

17
20
21
22

37

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

20-0

20-1

20-2

20-3

21-0

21-1

21-2

21-3

P Register

20-0

NIP CIP

+1

20-0

0

17
20

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

20-0

20-1

20-2

20-3

21-0

21-1

21-2

21-3

P Register

20-1

NIP CIP
20-0

+1

21
22

37

System Programmer Reference Instruction Issue

CSM-0301-0B0 Cray Research Proprietary 97

Figure 17. Instruction Flow through Issue Registers (CPn + 2)

While the parcel in the NIP register is decoded to determine whether it is a 1-,
2-, or 3-parcel instruction, the issue hardware checks for any conflicts that might
prevent the instruction in the CIP register from issuing. If there are conflicts,
both the CIP and NIP registers hold their parcels, and the P register does not
increment (refer toFigure 18).

Figure 18. 1-parcel Instruction Holding 1 CP for Conflict (CPn + 3)

This holding state is maintained until the conflict is resolved. If there are no
conflicts, or when the conflict is resolved, parcel 20-0 issues from the CIP register
(refer toFigure 19).

20-0

0

17
20

21
22

37

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

20-0

20-1

20-2

20-3

21-0

21-1

21-2

21-3

P Register

20-2

NIP CIP

20-1 20-0

20-0

0

17
20

21
22

37

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

20-0

20-1

20-2

20-3

21-0

21-1

21-2

21-3

P Register

20-2

NIP CIP

20-1 20-0

+1

Instruction Issue System Programmer Reference

98 Cray Research Proprietary CSM-0301-0B0

Figure 19. Instruction Flow through Issue Registers (CPn + 4)

Because parcel 20-1 is the first parcel of a 2-parcel instruction, the logic steers
parcel 20-2 into the LIP register and parcel 20-1 into the CIP register. Also, a
blank parcel is generated in the NIP register. The P register increments by 1 to
point to the next parcel (in this case, parcel 20-3). Issue hardware checks for
conflicts. If any conflicts are found, the CIP, LIP, and NIP registers hold their
parcels and the P register does not increment (refer toFigure 20).

Figure 20. 2-parcel Instruction Holding 1 CP for Conflict (CPn + 5)

This holding state is maintained until the conflict is resolved. If there are no
conflicts, or when the conflict is resolved, parcels 20-1 and 20-2 issue together
in the next CP (refer toFigure 21).

20-0

0

17
20

21
22

37

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

20-0

20-1

20-2

20-3

21-0

21-1

21-2

21-3

P Register

20-3

NIP CIP

20-1Blank

+1

Issue
(20-0)

LIP

20-2

20-0

0

17
20

21
22

37

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

20-0

20-1

20-2

20-3

21-0

21-1

21-2

21-3

P Register

20-3

NIP CIP

20-1Blank

LIP

20-2

System Programmer Reference Instruction Issue

CSM-0301-0B0 Cray Research Proprietary 99

Figure 21. Instruction Flow through Issue Registers (CPn + 6)

As the 2 parcels move from the CIP and LIP registers to issue, parcel 20-3 is
loaded into the NIP register and a blank parcel is loaded into the CIP register.
The P register increments by 1 and points to the next parcel (in this case, parcel
21-0). Because the P register no longer points to a parcel in word 20, a new word
is loaded into the even read-out register during the next CP. The blank parcel in
the CIP register is decoded as a no-operation instruction when it issues during
CPn+7 (refer toFigure 22).

Figure 22. Instruction Flow through Issue Registers (CPn + 7)

Because parcel 20-3 is the first parcel of a 3-parcel instruction, the logic steers
parcel 21-1 into the LIP1 register, parcel 21-0 into the LIP register, and parcel
20-3 into the CIP register. A blank parcel is generated in the NIP register. The
P register increments by 2 and points to the next parcel (in this case, parcel 21-2).
Issue hardware checks for conflicts. If any conflicts are found, or when the
conflict is resolved, the issue registers hold their parcels, and the P register does
not increment (refer toFigure 23).

20-0

0

17
20

21
22

37

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

20-0

20-1

20-2

20-3

21-0

21-1

21-2

21-3

P Register

21-0

NIP CIP

20-3 Blank

+1

Issue
(20-1,
20-2)

LIP

20-0

0

17
20

21
22

37

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

22-0

22-1

22-2

22-3

21-0

21-1

21-2

21-3

P Register

21-2

NIP CIP

20-3Blank

+2

LIP

22-0 22-322-222-1

21-0

LIP 1

21-1

No
Operation

Instruction Issue System Programmer Reference

100 Cray Research Proprietary CSM-0301-0B0

Figure 23. 3-parcel Instruction Holding 1 CP for Conflict (CPn + 8)

This holding state is maintained until the conflict is resolved. If there are no
conflicts, parcels 20-3, 21-0, and 21-1 issue together in the next CP (refer to
Figure 24).

Figure 24. Instruction Flow through Issue Registers (CPn + 9)

As the 3 parcels move from the CIP, LIP, and LIP1 registers to execution, parcel
21-2 enters the NIP register, and a blank parcel enters the CIP register. The P
register increments by 1 to point to the next parcel (in this case, parcel 21-3).

20-0

0

17
20

21
22

37

21-0

20-1 20-2 20-3

21-321-221-1
Words

Instruction Buffer Even Odd

Read-out Registers

22-0

22-1

22-2

22-3

21-0

21-1

21-2

21-3

P Register

21-2

NIP CIP

20-3Blank

LIP

22-0 22-322-222-1

21-0

LIP 1

21-1

21-0

0

17
20

21
22

37

22-0

21-1 21-2 21-3

22-322-222-1
Words

Instruction Buffer Even Odd

Read-out Registers

22-0

22-1

22-2

22-3

21-0

21-1

21-2

21-3

P Register

21-3

NIP CIP

21-2 Blank

LIP

LIP 1

Issue
(20-3,
21-0,
21-1)

+1

System Programmer Reference Instruction Issue

CSM-0301-0B0 Cray Research Proprietary 101

Instructions continue to flow through the issue registers until the program code
exits normally or is interrupted. In either case, an exchange sequence and a fetch
operation bring new code into the instruction buffers and a new value into the P
register, and the issue sequence starts over again.

Table 14 shows the issue sequence that is explained and illustrated in the
previous paragraphs. This chart shows the movement of the instruction parcels
at each CP as they pass through the issue registers.

Reservations and Hold Issue Conditions

When the first parcel of an instruction is in the CIP register, hardware determines
whether any conflicts are preventing the instruction from executing. These
conflicts are referred to as hold issue conditions and cause the instruction to be
held in the issue registers until the conflict is resolved. Once the instruction
issues, reservations are immediately placed on the local appropriate registers,
paths, ports, or functional units as needed. These reservations are usually held
a few CPs before the instruction finishes execution; the exact timing depends on
the type of instruction.

Register reservations are placed in the following cases:

• A and S registers are reserved as result registers, but not as operand
registers.

• Access to the B or T registers is reserved during block transfers.

• Input paths are reserved for the CP during which the data is expected to
enter the A or S registers.

Table 14. Instruction Issue Sequence

CPN n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9

P reg 20-0 20-1 20-2 20-2 20-3 20-3 21-0 21-2 21-2 21-3

NIP 20-0 20-1 20-1 Blank Blank 20-3 Blank Blank 21-2

CIP 20-0 20-0 20-1 20-1 Blank 20-3 20-3 Blank

LIP 20-2 20-2 21-0 21-0

LIP 1 21-1 21-1

Instruction Issue System Programmer Reference

102 Cray Research Proprietary CSM-0301-0B0

Port reservations are placed when the following conditions occur:

• Port A is reserved for memory reads to the B registers.

• Port B is reserved for memory reads to the T registers.

• Port A or port B is reserved for memory reads to the V registers.

• For a write to memory, if port A or port B is busy with a write reference,
or if ports A and B are busy.

Conflicts also occur when more than one CPU tries to access the shared path at
the same time. The shared path is used by all shared and semaphore registers,
and by I/O instructions, interprocessor interrupt signals, and the real-time and
programmable clocks.

For a detailed description of the hold issue conditions for each instruction, refer
to the “CPU Instruction Descriptions” section of this document for more
information. In several cases, these conditions are limited to a specific instruction
or instruction sequence. The following list describes a few generalized hold issue
conditions.

Scalar instructions hold issue if one of the following conditions occurs:

• The A or S register needed for a result is reserved.

• The input path is reserved for the CP during which incoming data enters
the register.

• The instruction references memory, and port A or port B is reserved.

Vector instructions hold issue if the following condition occurs:

• The instruction references memory and the needed port is reserved. Five
vector instructions have been dispatched to the vector unit and await issue
there.

For B and T register block transfers, a hold issue condition exists if the needed
port is reserved. For multiparcel instructions, a hold issue condition exists if the
second or third parcel of the instruction is in a different buffer (2-CP delay) or
not in any buffer.

System Programmer Reference Programmable Clock

CSM-0301-0B0 Cray Research Proprietary 103

Programmable Clock

Each CPU has a programmable clock that generates periodic interrupts at specific
preset intervals. Available intervals range between 9 and 232-1 CPs. Intervals
shorter than 100 msec are not practical because of the monitor overhead involved
in processing the interrupt.Table 15 lists the monitor mode instructions used to
enable and disable the programmable clock.

NOTE: On the J90se CPU, the programmable clock operates at the CPU
clock rate (twice the system clock rate).

Interrupt Interval Register

The 32-bit interrupt interval (II) register is loaded with the number of CPs that
elapse between programmable clock interrupt requests. Instruction 0014j4
transfers the low-order 32 bits of the Sj register into the II register. Bit 3 is always
forced to a logical 1 for instruction 0014j4. The binary value entered into the II
register is the number of CPs. The interval is actually one more than the value
in the II register. For example, if Sj equals 0, the II register equals 8 (because
bit 3 is always forced set), and the interval equals 9.

This value is held in the II register and is transferred to the programmable clock
each time the counter reaches 0 and generates an interrupt request. The contents
of the II register are changed only by another 0014j4 instruction.

Operation

The 32-bit programmable clock is preset to the value that the II register contains
when instruction 0014j4 executes. This clock runs continuously and decrements
by 1 at each CP until the content of the clock is 0. The programmable clock then
sets the programmable clock interrupt (PCI) request and reads the interval value
that is held in the II register. The programmable clock repeats the countdown
cycle and sets the PCI request at the intervals that the contents of the II register
determine.

Table 15. Programmable Clock Instructions

CAL Code Octal Code Description

PCI Sj 0014j4 Enter interrupt interval register with (Sj)

CCI 001405 Clear PCI request

ECI 001406 Enable PCI request

DCI 001407 Disable PCI request

Status Register System Programmer Reference

104 Cray Research Proprietary CSM-0301-0B0

A PCI request can set only if it is enabled (by instruction 001406) and remains
set until instruction 001405 executes and clears the request. The PCI request
causes an interrupt only if the system is not in monitor mode. A request set in
monitor mode is held until the system exchanges out of monitor mode.

Following a deadstart sequence, the monitor program ensures the state of the
PCI request by issuing instructions 001405 and 001407 to clear and disable the
PCI request.

Status Register

The status register holds the status of several flags and bits. The contents of the
status register can be sent to the high-order bits of an S register with instruction
073i01.Table 16 shows the bit position and describes the bits and flags in the S
register.

Instruction 073i01 sets the low-order 32 bits to 1’s and returns the status bits to
the high-order bits of the Si register. The 073i01 instruction is not privileged to
monitor mode; the processor number and cluster number bit position return a
value of 0 if the instruction is not executed in monitor mode. The processor
number is derived from the configuration register bits (bits 14 through 10) on
the PC ASIC.

System Programmer Reference Status Register

CSM-0301-0B0 Cray Research Proprietary 105

The PN and CLN flags return a value of 0 if the system is not in monitor mode
when instruction 073i01 executes. The UME and CME flags are cleared during
an exchange or when any 073 instruction is issued.

Table 16. Si Bit Positions and Bit Descriptions

Si Bit Position Description

63 Clustered, CLN not equal to zero (CL)

57 Program state (PS)

53 Uncorrectable memory error occurred (UME)

52 Correctable memory error occurred (CME)

51 Floating-point error occurred (FPS)

50 Floating-point interrupt enabled (IFP)

49 Operand range interrupt enabled (IOR)

48 Bidirectional memory enabled (BDM)

44 Processor number bit 4 (PN4)

43 Processor number bit 3 (PN3)

42 Processor number bit 2 (PN2)

41 Processor number bit 1 (PN1)

40 Processor number bit 0 (PN0)

37 Cluster number bit 5 (CLN5)

36 Cluster number bit 4 (CLN4)

35 Cluster number bit 3 (CLN3)

34 Cluster number bit 2 (CLN2)

33 Cluster number bit 1 (CLN1)

32 Cluster number bit 0 (CLN0)

Performance Monitor System Programmer Reference

106 Cray Research Proprietary CSM-0301-0B0

Performance Monitor

The performance monitor tracks groups of hardware-related events. These
results can be used to indicate the relative performance of a program. The
performance monitor contains eight performance counters that track four groups
of hardware-related events. Because of architectural differences, performance
monitoring in the CRAY J90 series system differs from that in the CRAY Y-MP
system.

Performance events are monitored only when the CPU is operating in
nonmonitor mode. Entering monitor mode disables the performance counters.
The groups are selected by thej field in instruction 0015j0; refer toTable 17 for
events that are tracked in each group.

Refer to the “CPU Instruction Descriptions” section for more information on the
instructions. Two types of instructions are used with the performance monitor:
user instructions and maintenance instructions. The user instructions allow the
user to select and read the performance monitor. The maintenance instructions
test the logic of the performance monitor. The following subsections explain
how these instructions are used with the performance monitor.

System Programmer Reference Performance Monitor

CSM-0301-0B0 Cray Research Proprietary 107

Table 17. Performance Counter Group Descriptions

Group
Performance

Counter Monitored Event Incremented
Functions on

CRAY Y-MP system

Number of:

0 0 Instruction issued +1 Same

0 1 Clock period holding issue +1 Same

0 2 Instruction fetches +1 Same

0 3 Floating-point add operation +1, +v1 Same

0 4 Floating-point multiply operation +1, +v1 Same

0 5 Floating-point reciprocal
operation

+1, +v1 Same

0 6 CPU Memory references +1, +v1, +ai Same

0 7 Cache hits +1 I/O memory reference

Holding issue on:

1 0 A registers +1 Semaphores

1 1 S registers +1 Shared registers

1 2 V registers +1 A registers

1 3 B, T registers +1 S registers

1 4 V functional units +1 V registers

1 5 Shared registers +1 V functional units

1 6 Memory ports +1 Scalar memory reference

1 7 Miscellaneous +1 Block memory reference

Number of:

2 0 Instruction fetches +1 Same

2 1 Cache hits +1 Fetch memory conflicts

2 2 Scalar memory writes +1 I/O memory references

2 3 B, T memory references +ai I/O memory conflicts

2 4 Scalar memory references +1 Same

2 5 CPU memory writes +1, +v1, +ai Same

2 6 CPU memory references +1, +v1, +ai Same

2 7 CPU memory conflicts +1 Same

Number of:

3 0 000 – 017 instructions +1 Same

3 1 020 – 077 instructions +1 Same

3 2 100 – 137 instructions +1 Same

3 3 140 – 157, 174 (k ≠ 0)
instructions

+1 Same

3 4 160 – 173, 174 (k = 0)
instructions

+1 Same

Performance Monitor System Programmer Reference

108 Cray Research Proprietary CSM-0301-0B0

Selecting and Reading Performance Events

Table 18 lists the two user instructions that select and read the performance
monitor. The primary function of instruction 0015j0 is to select one of the four
groups of performance events to be tracked. It also clears the performance
counters and the performance counters’ pointer (explained later in this
subsection). After instruction 0015j0 selects a group, the performance counters
advance their totals according to the number of monitored events that occur. The
performance counters can continuously monitor events for approximately 156
hours before they must be reset. Fifty CPs must elapse before another
performance monitor instruction issues.

Instruction 073i11 is used for performance monitoring and is privileged to
monitor mode. Each execution of the 073i11 advances a pointer. Instruction
073i11 performs two functions. Its primary function is to read 16-bit segments
of the performance counters into bits 32 through 47 of an S register (Si) (refer
to Figure 25). Its secondary function is to read bits 42 through 63 of the status
register into bits 48 through 63 of the same S register.

3 5 176, 177 instructions +1 Same

3 6 Vector integer operation
(from #3)

+v1 Same

3 7 Vector floating-point operation
(from #4)

+v1 Same

Table 18. Performance Monitor User Instructions

Octal
Instruction Primary Function Secondary Functions

0015j0a Selects the performance monitor. The j field
selects the group to be monitored.

Clears all performance counters and
clears the performance counter
pointer.

073i11a Reads 16 bits of the performance counter
into Si.

Reads 16 bits of status register into
Si and increments the performance
counter pointer.

a This instruction is privileged to monitor mode.

Table 17. Performance Counter Group Descriptions (continued)

Group
Performance

Counter Monitored Event Incremented
Functions on

CRAY Y-MP system

System Programmer Reference Performance Monitor

CSM-0301-0B0 Cray Research Proprietary 109

Figure 25. Contents of an S Register During Execution of 073i11 Instruction

Each performance counter is 48 bits wide and is divided into three 16-bit
segments. A performance counter pointer selects which 16-bit segment to read
into the S register. The performance counter pointer is cleared either on entry
from or exit to monitor mode, or by instruction 0015j0 or 073i31.

The following example shows a sequence for reading a set of performance
counters:

In Step 1, instruction 073i11 reads bits 0 through 15 of counter 0 into the Si
register and increments the performance counter pointer. In Step 3, instruction
073i11 reads bits 16 through 31 of counter 0 into the Si register and increments
the performance counter pointer. In Step 5, instruction 073i11 reads bits 32
through 47 of counter 0 into Si and increments the performance counter pointer.
In Step 7, the process begins again, transferring the three 16-bit segments of
counter 1 into the Si register. After each 073i11 instruction, the performance
counter pointer advances by 1; a 4-CP delay must occur between sequential
issues of instruction 073i11.

Step Octal Code Description

1 073i11 Bits 0 through 15 of counter 0 to Si bits 32 through 47.

2 4-CP delay

3 073i11 Bits 16 through 31 of counter 0 to Si bits 32 through 47.

4 4-CP delay

5 073i11 Bits 32 through 47 of counter 0 to Si bits 32 through 47.

6 4-CP delay

7 073i11 Bit 0 through 15 of counter 0 to Si bits 32 through 47.

8 4-CP delay

- - -

- - -

- - -

n 073i11 Read bits 32 through 47 of counter n to the Si register.

48 47 32 31 0

63 through 48 of the
Status Register Selected PC 16-bit Segment Unpredictable Results

Bits 63

Performance Monitor System Programmer Reference

110 Cray Research Proprietary CSM-0301-0B0

Testing Performance Counters

Instructions 073i21, 073i31, and 073i61 test the operation of the performance
counter. Instruction 073i21 adds 4000020000000 (octal) to the contents of the
performance counter by injecting 1’s at bit positions 22 and 38. Each of these
bit positions contains bit 7 of the middle parcel and bit 7 of the most significant
parcel. The performance counter pointer is advanced to the next counter. This
instruction also reads the status register into the Si register.

Instruction 073i31 clears the performance counter pointer and clears all
maintenance modes. It also reads the status register into Si.

Instruction 073i61 increments the selected performance counter by adding 1 to
bit position 0. Instruction 073i61 also reads status register bits 32 through 63 to
a selected S register.

System Programmer Reference Cache Memory

CSM-0301-0B0 Cray Research Proprietary 111

Cache Memory

The concept of a cache memory allows operations of the main memory address
space to be mapped into a small high-speed memory, usually in the CPU. The
cache is split into a number of lines, or groups, of data words, which represent
contiguous chunks of main memory locations.

Each cache line has a tag that identifies the main memory address that the line
represents. The cache may be directly mapped, where a given memory address
is mapped to only one position in the cache (a portion of the memory address
directly addresses the cache); or associatively mapped, where the memory
address may be found anywhere in the cache. A completely associative cache is
not practical; a completely direct-mapped cache allows no flexibility for
collisions in the part of the memory address used to address the cache. A
combination of these mapping techniques is the most practical and is called
set-associative. In such a cache, a portion of the memory address maps directly
to a set of lines. Any one of these lines may be chosen to represent that portion
of memory.

If there aren lines in a set, then the cache is termedn-way set-associative. The
desired line in a set is the one whose address tag matched the corresponding
portion of the memory address. If no valid matching tag is found, then one of
the lines must be allocated. A common technique is to allocate the line that was
least recently used (LRU) and therefore is least likely to be used again in the
future.

The mainframe cache uses the 0016j1 instruction, which enables a processor in
monitor mode to invalidate another processor’s cache.

The mainframe cache is a 128-word, 2-way set-associative cache. The line size
is 1 word; therefore, the cache contains 128 lines in 64 sets of 2 lines each. The
line replacement algorithm is LRU, on a per-set basis.

Only scalar references (A and S references) are cached. Vector references (B,
T, and V references) are not cached. Vector writes cause invalidation of matching
lines in the cache. The entire cache is invalidated on an exchange or cache flush
operation. The cache is not affected in any way by a fetch. The cache is a
write-through cache; if a line can be allocated or already exists in the cache, the
write data is stored in the cache as well as the main memory. Scalar references
always make exactly one memory request, because the line size is 1 word. A
scalar read reference that hits a valid word in the cache makes a memory request,

Instruction CAL Description

0016j1 IVC Aj Invalidate cache in processor (Aj)

Cache Memory System Programmer Reference

112 Cray Research Proprietary CSM-0301-0B0

which is later aborted; this is necessary to minimize the latency of the memory
request logic. The cache read latency is 7 CPs, from CP0 of the issuing
instruction, to CP0 of the following instruction, if it depends upon the data read.

NOTE: On a J90se CPU, the cache read latency remains unchanged at 7 CPs
(3.5 system CPs).

Table 19 summarizes the general cache operation. The following steps describe
this operation:

1. Scalar reads that encounter a valid cache word do make memory requests,
but these are redundant and are later aborted.

2. Only scalar misses (read and write) allocate cache lines.

3. Memory returns for scalar reads update the cache and pass the return data
to the CPU.

4. Scalar writes store through the cache.

5. Vector writes invalidate matching cache lines.

6. An exchange or flush invalidates the entire cache.

System Programmer Reference Cache Memory

CSM-0301-0B0 Cray Research Proprietary 113

Detailed Operation of Cache Memory

Figure 26 shows the physical organization of the cache. Each cache line consists
of an address tag and a tag valid bit, and 1 word of data that has a requested bit.
The key concepts concerning the operation of the cache are as follows:

• To mark a cache word as valid, its request bit is cleared.

• A cache line is considered requested only when its word is marked
requested.

• A cache line can be allocated only when it is not requested.

• A cache line can be hit only when its tag valid bit is set and a tag match
exists.

When a cache line is invalidated, the tag valid bit is cleared, and only the tag
valid bit is affected. When a cache line is allocated, the tag is updated, the tag
valid bit is set, and the word is marked valid for a write, or marked requested
for a read.

For a scalar write to the cache that results in a hit or allocate, the referenced word
is updated. For a scalar read to the cache that results in a hit, the referenced word
is read and sent immediately to the CPU. A scalar read or write that misses the
cache and cannot allocate a new cache line makes a normal memory request and
does not affect the cache.

Table 19. CRAY J90 Series Cache Operations

Operand/
Operation

Read/
Write Hit/Miss

Make MM
Request Allocate

Invalidate
Referenced

Lines
Update

on Return
Update
on Write

Fetch - - X

Scalar Read Hit X (a)

Miss X X X

Write Hit X X

Miss X X X

Vector Read - X

Write - X X

Exchange - - X X (b)

Flush - - X (b)

(a) Redundant — data is supplied by the cache

(b) Invalidate entire cache

Cache Memory System Programmer Reference

114 Cray Research Proprietary CSM-0301-0B0

When a scalar read request is made, its cache address is stored in the port queue,
along with a return-to-cache bit that indicates whether the return data should be
written to the cache, and a return-to-register bit that indicates whether the return
data should be written to the CPU destination register. For a scalar memory
return, the cache address and return bits are read from the port queue, and if the
return-to-cache bit is set and the cache word is marked as requested, the cache
word is updated; the cache word is unaffected if it is already valid.

Figure 26. 1-word Line, 2-way Associative 128-word Cache

Address

31 6 5 4 3 2 1 0

V

0

Tags

63

V

0

Tags

63

Tag Set

(Set) 0

63

Group 0 Group 1

0

63

Set 0

Set 63

R

Word 0

Data

Word 0

R

Word 0

Data

Word 0

(Set) 0

63

0

63

Set 0

Set 63

Tags (2) 64 x 26 21-port GRAs
Data (4) 64 x 32 4-port GRAs

System Programmer Reference Cache Memory

CSM-0301-0B0 Cray Research Proprietary 115

CPU Computation

Each central processing unit (CPU) is an identical, independent computation
section that consists of operating registers, functional units, and an instruction
control network. The operating registers and functional units are associated with
three types of processing: address, scalar, and vector.

Address processing operates on internal control information, such as addresses
and indexes. The address (A) registers, intermediate address (B) registers, and
two functional units are dedicated solely to address processing.

Scalar processing is sequential and uses one operand or operand pair to produce
a single result. Scalar processing uses the scalar (S) registers and the intermediate
scalar (T) registers. Scalar processing also uses four functional units that are
dedicated to scalar processing; three floating-point functional units are similarly
dedicated.

Vector processing allows a single operation to be performed concurrently on a
set (or vector) of operands, repeating the same function to produce a series of
results. Vector processing uses the vector (V) registers. Vector processing also
uses functional units that are dedicated to vector processing, including three
floating-point functional units.

Data flow in a computation section is from central memory to registers and from
registers to functional units. Results flow from functional units to registers and
from registers to central memory or back to functional units. Depending on the
instruction sequence, data flows along either the scalar or vector path.

The computation section performs integer or floating-point arithmetic
operations. Integer arithmetic is performed in two’s complement mode;
floating-point quantities have signed magnitude representation.

Integer (or fixed point) operations are integer addition, integer subtraction, and
integer multiplication. No integer division instruction is provided; the operation
is accomplished through a software algorithm using floating-point hardware.

Floating-point instructions allow addition, subtraction, multiplication, and
reciprocal approximation operations. The reciprocal approximation instructions
provide a floating-point division operation that uses a multiple instruction
sequence.

Cache Memory System Programmer Reference

116 Cray Research Proprietary CSM-0301-0B0

The instruction set includes logical operations for AND, inclusive OR, exclusive
OR, exclusive NOR, and mask-controlled merge operations. Shift operations
allow the manipulation of either 64-bit or 128-bit operands to produce 64-bit
results. With the exception of 32-bit integer arithmetic, most operations are used
in vector or scalar instructions.

The 32-bit integer product is a scalar instruction that is designed for index
calculation. A full-indexing capability is possible throughout central memory in
either scalar or vector modes. The index can be positive or negative in either
mode. Indexing allows matrix operations in vector mode to be performed on
rows or on the diagonal as well as allowing conventional column-oriented
operations.

The following subsections describe the operating registers and their associated
functional units.

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 117

Operating Registers

Each CPU has three primary and two intermediate sets of operating registers.
The primary sets of operating registers are the address (A), scalar (S), and vector
(V) registers. These registers are considered primary because functional units
and central memory can access them directly.

For the A and S registers, an intermediate level of registers exists; they are not
accessible to the functional units, but they act as a buffer for the primary registers.
To reduce the number of memory reference instructions for scalar and vector
operations, block transfers are possible between these intermediate registers and
central memory. The intermediate address (B) registers support the A registers,
while the intermediate scalar (T) registers support the S registers. The V registers
do not have intermediate registers.

Address (A) Registers

Figure 27 shows the eight A registers and their associated CPU hardware. The
A registers are designated A0 through A7.

The A registers operate in Y-mode; the A registers and address functional units
run at a full 32-bit width and the instruction set includes 3-parcel instructions.
The following subsections explain A register functions, special uses, and
instructions.

Operating Registers System Programmer Reference

118 Cray Research Proprietary CSM-0301-0B0

Figure 27. A Register Block Diagram

A Register Functions

The A registers serve as address registers for memory references and as index
registers. A registers transfer and receive 32 bits. Refer to “Calculating Absolute
Memory Address” for additional information. The A registers index the base
address for scalar memory references and provide both a base address and an
address increment for vector memory references. The A registers also provide
values for shift counts, loop control, and channel I/O operations [setting the
channel limit (CL) and current address (CA) registers] and serve as result
registers for the scalar population/parity/leading zero functional unit.

The A registers are connected to the vector length (VL) and exchange address
(XA) registers. The VL register is loaded by the 002 instruction. The XA register
is loaded by the 0013j0 instruction only while the system is operating in monitor

((Ah) + (jkm)), ((Ah) + (nm))

Address Registers

B77

B00

(A0)

Central
Memory

Multiply

Add
Address

Functional
Units

Vector
Length

XA

Vector
Control

Exchange
Control

Ai

CA

P

+1/+2

20

37

Ak Ai
* *

CL20

37

Ak
*

Ak

Leading Zeroes

Shift

Population/Parity

Scalar
Functional

Units

Ak

NOTE: * Control and/or data from
other CPUs.

SB0

SB1
SB2

SB3
SB4

SB5
SB6

SB7

Ai

Shared Registers

Ai AiAi* *

Shift

Vector
Functional

Units

A0-7

CA
1

5
11

15

Ak Ai
* *

BL
1

5
11

15

Ak
*

VHISP
Control

Ak

Ai

Aj

Ai

Bjk

Cache

128 Words

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 119

mode. Refer to the “Vector Length Register” section for more information on
the VL register. Refer to the “Exchange Address Register Field” section for more
information on the XA register.

Data either moves between central memory, a 128-word cache, and the A
registers, or it is placed in the B registers. The B registers buffer the data between
A registers and central memory. Data can also be transferred between A and S
registers and between A registers and shared address (SB) registers.

The following list summarizes the functions of the A registers:

• Generate addresses for memory references and function as index
registers.

• Set the CA and CL registers (I/O control).

• Provide values for shift counts and loop controls.

• Serve as result registers for the scalar population/parity/leading zero
functional unit.

• Set the XA register (exchange control).

• Set and read the VL register (vector control).

• Transfer data between the A and S registers.

• Transfer data between the A and SB registers.

The address functional units support address and index generation by performing
32-bit (Y-mode) integer arithmetic on operands obtained from A registers and
by delivering the results to A registers. Refer to the “Address Functional Units”
section for more information on the address functional units.

Operating Registers System Programmer Reference

120 Cray Research Proprietary CSM-0301-0B0

Special A Register Values

If register A0 is referenced in theh, j, ork fields of an instruction, the contents
of the register are not used; instead, a special operand is generated. The special
value is available regardless of existing A0 register reservations (they are not
checked in this instance, and this special value does not alter the actual value of
the A0 register.Table 20 shows the special A0 register values.

If the i field equals 0, then the contents of register A0 are used. Thei field is not
used as a special case.

A Register Instructions

Only one result per CP can be transferred to the A registers. When an instruction
that delivers new data to an A register issues, a reservation is set for that register.
The reservation prevents the issue of instructions that use the register until the
new data is delivered. Instructions reference A registers by specifying the register
number as theh, i, j, ork designator (refer to the “Instruction Formats” section
for more information on instruction fields). A0 is the only A register that can be
referenced when it is not specified in one of the instruction fields.

Table 21 lists A register instructions and provides octal and CAL codes. The
content of the DBA register is added to instruction-generated memory addresses
to form absolute memory addresses. Refer to the “Calculating Absolute Memory
Address” section. Refer to the “CPU Instruction Descriptions” section for
complete information on these instructions.

There is only one input path to the A registers; therefore, all instructions that
write data into the A registers must reserve the path for the CP when data arrives.
The issue hardware determines which CP to reserve the path for the instruction,
and it reserves the path for that CP. If the path is already reserved, the instruction

Table 20. Special A0 Register Values

Field Operand Value

Ah, h = 0 0

Aj, j = 0 0

Ak, k = 0 1

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 121

holds issue. The instruction continues to hold issue until the A register path is
available in the CP when the data arrives. The instruction then issues and reserves
the path for that CP.

Table 21. A Register Instructions

Machine
Instruction CAL Syntax Description Type of Instruction

020i00mn Ai exp Transmit nm to Ai Register entry

021i00mn Ai exp Transmit one’s complement of exp to Ai exp
= nm

022ijk Ai exp Transmit jk to Ai

031i00 Ai -1 Transmit -1 to Ai

10hi00mn Ai exp,Ah Read from ((Ah) + exp) to Ai exp = nm Memory transfer

(Load)100i00mn Ai exp,0 Read from nm to Ai

100hi00mn Ai exp Read from nm to Ai

10hi0000 Ai ,Ah Read from (Ah) to Ai

11hi00mn exp,Ah Ai Write (Ai) to ((Ah) + exp) exp = nm Memory transfer

(Store)110i00mn exp,0 Ai Write Ai to nm

110i00mn exp, Ai Write Ai to nm

11hi0000 Ah Ai Write (Ai) to (Ah)

0013j0 XA Aj Transmit (Aj) to XA register Interregister transfer

0014j3 CLN Aj Transmit (Aj) to CLN register

00200k VL Ak Transmit (Ak) to VL register

023ij0 Ai Sj Transmit (Sj) to Ai

023i01 Ai VL Transmit (VL) to Ai

024ijk Ai Bjk Transmit (Bjk) to Ai

025ijk Bjk Ai Transmit (Ai) to Bjk

030i0k Ai Ak Transmit (Ak) to Ai

031i0k Ai-Ak Transmit the negative of (Ak) to Ai

071i0k Ai Ak Transmit (Ak) to Si with no sign extension

071i1k Si + Ak Transmit (Ak) to Si with sign extension

071i2k Ai + FAk Transmit (Ak) to Si as unnormalized
floating-point number

030ijk Ai Aj + Ak Transmit integer sum of (Aj) and (Ak) to Ai Interger operation

030ij0 Ai Aj+ 1 Transmit integer sum of (Aj) and 1 to Ai

031ijk Ai Aj-Ak Transmit integer difference of (Aj) and (Ak)
to Ai

031ij0 Ai Aj -1 Transmit integer product of (Aj) and 1 to Ai

032ijk Ai Aj* Ak Transmit integer product of (Aj) and (Ak) to
Ai

Operating Registers System Programmer Reference

122 Cray Research Proprietary CSM-0301-0B0

Intermediate Address (B) Registers

Sixty-four 32-bit B registers are designated B0 (octal) through B77 (octal). The
B registers serve as intermediate storage registers for the A registers. B registers
typically contain data to be referenced repeatedly over a long time, which makes
it inefficient to retain the data in either A registers or in central memory.
Examples of data that B registers store are loop counts, variable array base
addresses, and dimensions.

Instructions reference B registers by specifying the B register number in thejk
field. Refer to “Instruction Formats” for more information on instruction fields.

Data transfers between an A and B register take 1 CP. A block of data transfers
between B registers and central memory at a maximum rate of one register per
CP. During these block transfers, a reservation is made on all B registers that
are used in the block transfer.

Thejk fields of the instruction specify the first register that is involved in a block
transfer; the low-order 7 bits of the contents of register Ai specify the number
of words that are transmitted. Successive transfers involve successive B registers
until B77 is reached. Register B00 is processed after register B77 if the count in
register Ai is not exhausted. Other instructions can issue while a block of B

010ijkm JAZ exp Jump to exp if (A0) = 0 (i 2 = 0) Conditional jump

011ijkm JAN exp Jump to exp if (A0) 0 (i 2 = 0)

012ijkm JAP exp Jump to exp if (A0) - 0 (i 2 = 0)

013ijkm JAM exp Jump to exp if (A0) 0 (i 2 = 0)

026ij0 Ai PSj Transmit population count of (Sj) to Ai Bit count

026ij1 Ai QSj Transmit population count parity of (Sj) to
Ai

027ij0 Ai ZSj Transmit leading zero count of (Sj) to Ai

033i00 Ai Cl Transmit channel number of highest priority
interrupt request to Ai (j=0)

Register channel

033ij0 Ai CA,Aj Transmit current address of channel (Aj) to
Ai (j = 0, k = 1)

033ij1 Ai CE,Aj Transmit error flag of channel (Aj) to Ai (j =
0, k = 1)

0014j1 SIPI Aj Send interprocessor interrupt request to
CPU (Aj)

Interrupt

Table 21. A Register Instructions (continued)

Machine
Instruction CAL Syntax Description Type of Instruction

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 123

registers is transferred to or from central memory. B00 is the only B register that
can be referenced when it is not specified in one of the instruction fields.Table 22
lists the B register instructions.

Table 22. B Register Instructions

Machine
Instructions CAL Syntax Description Type of Instruction

024ijk Ai Bjk Transmit (Bjk) to Ai Interregister transfer

025ijk Bjk Ai Transmit (Ai) to Bjk

034ijk Bjk,Ai ,A0 Read (Ai) words from memory starting at
address (A0) to B registers starting at
register jk

Block transfer

034ijk Bjk,Ai 0,A0 Read (Ai) words from memory starting at
address (A0) to B registers starting at
register jk

035ijk ,A0 Bjk,Ai Write (Ai) words from B registers starting
at register jk to memory starting at address
(A0)

035ijk 0,A0 Bjk,Ai Write (Ai) words from B registers starting
at register jk to memory starting at address
(A0)

0050jk J Bjk Jump to (Bjk) Jump

007ijkm R exp Return jump to exp; set B00 to (P) + 2

Operating Registers System Programmer Reference

124 Cray Research Proprietary CSM-0301-0B0

Scalar (S) Registers

Figure 28 shows the eight S registers and their associated hardware. The S
registers (S0 octal through S7 octal) are 64 bits wide. They are the principal
scalar registers for a CPU and serve as the source and destination for operands
that perform scalar arithmetic and logical operations. The following subsections
explain S register functions, special uses, and instructions.

Figure 28. Scalar Register Block Diagram

Central
Memory

(A0)

((Ah) + (jkm)), ((Ah) + (nm))

Real-time Clock

Status

Prog Clock Int

Sj

Scalar Registers

Si
Tjk

Sj

Sk

Si

Sj

Vector Mask

Vector Control

Sj

Si

Sj
Sk

Si

Si

T77

T00

• • •

Leading Zeroes

Add

Logical

Shift

Population/Parity

Scalar
Functional

Units

SB0

SB1
SB2

SB3
SB4

SB5
SB6

SB7

Si

Shared Registers

Address Registers

A0-7

Add

Multiply 2

Reciprocal
Approximation

Floating-point
Functional Units

Add

Logical

Shift

Scalar
Functional

Units

Logical 2

Pop/Parity

ST0 - ST7

3

2

S6

S5
S4

S3
S2

S1

S0

1

11

Si Si Si Si Si Si Si
11

Cache

128

S7

NOTES:

Control and/or data from other processors.

The second vector logical functional unit shares
hardware with the floating-point multiply
functional unit.

The vector pop/parity functional unit shares
hardware with the floating-point
reciprocal approximation functional unit.

1

2

3

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 125

S Register Functions

Constant values can be furnished by S registers. Single-word transmissions of
data between an S register and an element of a V register are also possible. S
registers can set or read the vector mask (VM) register or real-time clock (RTC)
register; S registers can also set the interrupt interval (II) register in the
programmable clock.

Data moves directly between central memory and S registers or is placed in the
T registers. The T registers buffer scalar operands between S registers and central
memory. Data is also transferred between S and A registers, between S and
shared scalar (ST) registers, and between S and semaphore (SM) registers.

The S registers can also read the contents of the status register; instruction 073ij1
sets the low-order 32 bits to 1’s and returns certain status register bits to the
high-order bits of the Si register. For more information on the 073ijk instruction,
refer to “CPU Instruction Descriptions.”

The S registers are primarily used for scalar operations. The following list
summarizes other functions of the S registers:

• Provide a constant value for vector operations.
• Set/read the RTC and VM registers.
• Set the II register.
• Transfer data between A and S registers.
• Transfer data between S registers and ST or SM registers.
• Read the contents of the status register.

The scalar functional units support the S registers by performing both integer
and floating-point arithmetic operations. Refer to “Scalar Functional Units” for
more information on the scalar functional units.

Operating Registers System Programmer Reference

126 Cray Research Proprietary CSM-0301-0B0

Special S Register Values

If register S0 is referenced in thej or k fields of an instruction, the contents of
the register are not used; instead a special operand is generated. The special value
is available regardless of the existing S0 register reservations (they are not
checked in this instance). This use does not alter the actual value of the S0
register.Table 23 shows the special S0 register values.

If the i field equals 0, then the contents of the S0 register are used. Thei field is
not used as a special case.

S Register Instructions

Only one result per CP can be transferred to the S registers. When an instruction
that delivers new data to an S register issues, a reservation is set for that register.
This reservation prevents the issue of instructions that read the register until the
new data is delivered. Instructions reference S registers by specifying the register
number as thei, j, ork designator. Refer to “Instruction Formats” for more
information on instruction fields. S0 is the only S register that can be referenced
when it is not specified in one of the instruction fields.

Table 24 lists S register instructions and provides the octal and CAL codes. Refer
to “CPU Instruction Descriptions” for complete information on these
instructions. The contents of the DBA register are added to instruction-generated
memory addresses to form physical memory addresses. Refer to “Address Range
Checking.”

There is only one input path to the S registers; therefore, all instructions that
write data into the S registers must reserve the path for the CP in which data
arrives. The issue hardware determines the proper CP and reserves the path for
that CP. If the path is already reserved, the instruction holds issue until the

Table 23. Special S0 Register Values

Field Operand Value

Sj, j = 0 0

Sk, k = 0 263

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 127

reservation is cleared. The instruction continues to hold issue until the A register
path is available during the CP in which the data arrives. The instruction then
issues and reserves the path for that CP.

Table 24. S Register Instructions

Machine
Instructions CAL Syntax Description

Type of
Instruction

040i00mn Si exp Transmit exp to Si exp = nm Register entry

041i00mn Si exp Transmit one’s complement of exp to Si exp = nm

042ijk Si <exp Form ones mask 100 - exp bits from right in Si ; jk
field gets exp

042ijk Si # < exp Form zeroes mask exp bits from left in Si ; jk field
gets 1008 exp

042i77 Si 1 Transmit 1 into Si

042i00 Si -1 Transmit -1 into Si

043ijk Si > exp Form ones mask in Si exp bits from left; jk field
gets exp

043ijk Si #<exp Form zeroes mask 100 - exp bits from right in Si ;
jk gets 1008 exp

043i0k Si 0 Clear Si

047i00 Si #SB Transmit one’s complement of sign bit into Si

071i30 Si 0.6 Transmit 0.75 as normalized floating-point
constant into Si

071i40 Si 0.4 Transmit 0.5 as normalized floating-point constant
into Si

071i50 Si 1. Transmit 1.0 as normalized floating-point constant
into Si

071i60 Si 2. Transmit 2.0 as normalized floating-point constant
into Si

071i70 Si 4. Transmit 4.0 as normalized floating-point constant
into Si

12hi00mn Si exp, Ah Read from ((Ah) + exp) to Si (h ≠ 0) exp = nm Memory transfer
(Load)120i00mn Si exp, 0 Read from (exp) to Si exp = nm

120i00mn Si exp, Read from (exp) to Si exp = nm

12hi000
12hi0000

Si ,Ah Read from (Ah) to Si

13hijkm
13hi00mn

exp,Ah Si Write (Si) to (Ah) + exp
exp = mn

Memory transfer
(Store)

130ijkm
130i00mn

exp,0 Si Write (Si) to nm

130ijkm
130i00mn

exp, Si Write (Si) to nm

13hi000
13hi0000

Ah Si Write (Si) to (Ah)

Operating Registers System Programmer Reference

128 Cray Research Proprietary CSM-0301-0B0

023ij0 Ai Sj Transmit (Sj) to Ai Interregister
transfer047i0k Si #Sk Transmit one’s complement of (Sk) to Si

051i0k Si Sk Transmit (Sj) to Si

072i00 Si RT Transmit (RTC) to Si

072i02 Si SM Read semaphores to Si

072ij3 Si STj Transmit (STj) to Si

073i00 Si VM Transmit (VM) to Si

073i11 Read performance counter into Si

073i01 Si SR0 Transmit (SR0) to Si

073i02 SM Si Load semaphores from Si

073ij3 STj Si Transmit (Si) to STj

074ijk Si Tjk Transmit (Tjk) to Si

075ijk Tjk Si Transmit (Si) to Tjk

076ijk Si Vj,Ak Transmit (Vj element (Ak)) to Si

077ijk Vi Ak Sj Transmit (Sj) to Vi element (Ak)

146ijk Vi Sj !Vk&VM Transmit (Sj) if VM bit = 1, or (Vk) if VM bit = 0, to
Vi

060ijk Si Sj + Sk Transmit integer sum of (Sj) to Si Integer operation

061ijk Si Sj -Sk Transmit integer difference of (Sj) and (Sk) to Si

061i0k Si -Sk Transmit the negative of (Sk) to Si

154ijk Vi Sj + Vk Transmit integer sum of (Sj) and (Vk) to Vi

156ijk Vi Sj-Vk Transmit integer difference of (Sj) and (Vk) to Vi

166ijk Vi Sj*Vk Transmit 32-bit integer product of (Sj) and (Vk
elements) to Vi elements

062ijk Si Sj + FSk Transmit floating-point sum of (Sj) and (Sk) to Si Floating-point
operation062i0k Si + FSk Transmit normalized (Sk) to Si

063ijk Si Sj-FSk Transmit floating-point difference of (Sj) and (Sk)
to Si

063i0k Si -FSk Transmit normalized negative of (Sk) to Si

064ijk Si Sj *FSk Transmit floating-point product of (Sj) and (Sk) to
Si

065ijk Si Sj *HSk Transmit half-precision rounded floating-point
product of (Sj) and (Sk) to Si

066ijk Si Sj *RSk Transmit rounded floating-point product of (Sj) and
(Sk) to Si

067ijk Si Sj *lSk Transmit two minus the floating-point product of
(Sj) and (Sk) to Si

Table 24. S Register Instructions (continued)

Machine
Instructions CAL Syntax Description

Type of
Instruction

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 129

070ij0 Si /HSj Transmit floating-point reciprocal approximation of
(Sj) to Si

Floating-point
operation (cont.)

071i0k Si Ak Transmit (Ak) to Si with no sign extension

071i1k Si +Ak Transmit (Ak) to Si with sign extension

071i2k Si +FAk Transmit (Ak) to Si as unnormalized floating-point
number

160ijk Vi Sj *FVk Transmit floating-point products of (Sj) and (Vk
elements) to Vi elements

162ijk Vi Sj *HVk Transmit half-precision rounded floating-point
products of (Sj) and (Vk elements) to Vi elements

170ijk Vi Sj +FVk Transmit floating-point sums of (Sj) and (Vk
elements) to Vi elements

172ijk Vi Sj-FVk Transmit floating-point differences of (Sj) and (Vk
elements) to Vi elements

044ijk Si Sj&Sk Transmit logical product of (Sj) and (Sk) to Si Logical operation

044ij0 Si Sj&SB Transmit sign bit of (Sj) to Si

044ij0 Si SB&Sj Transmit sign bit of (Sj) to Si
(j ≠ 0)

045ijk Si #Sk&Sj Transmit logical product of (Sj) and complement of
(Sk) to Si

045ij0 Si #SB&Sj Transmit (Sj) with sign bit cleared to Si

046ijk Si Sj \Sk Transmit logical difference of (Sj) and (Sk) to Si

046ij0 Si Sj \SB Toggle sign bit of (Sj), then transmit to Si (j ≠ 0)

046ij0 Si SB\Sj Toggle sign bit of (Sj), then transmit to Si (j ≠ 0)

047ijk Si #Sj \Sk Transmit logical equivalence of (Sk) and (Sj) to Si

047ij0 Si #Sj \SB Transmit logical equivalence of (Sj) and sign bit to
Si

047ij0 Si #SB\Sj Transmit logical equivalence of (Sj) and sign bit to
Si (j ≠ 0)

050ijk Si Sj !Si&Sk Transmit logical product of [(Si) and (Sk)
complement] ORed with logical product of [(Sj) and
(Sk)] to Si (scalar merge)

050ij0 Si Sj !Si&SB Transmit scalar merge of (Si) and sign bit of (Sj) to
Si

051ijk Si Sj !Sk Transmit logical sum of (Sj) and (Sk) to Si

051ij0 Si Sj !SB Transmit logical sum of (Sj) and sign bit to Si

051ij0 Si SB!Sj Transmit logical sum of (Sj) and sign bit to Si (j ≠ 0)

140ijk Vi Sj&Vk Transmit logical product of (Sj) and (Vk elements)
to Vi elements

Table 24. S Register Instructions (continued)

Machine
Instructions CAL Syntax Description

Type of
Instruction

Operating Registers System Programmer Reference

130 Cray Research Proprietary CSM-0301-0B0

142ijk Vi Sj !Vk Transmit logical sum of (Sj) and (Vk elements) to
Vi elements

Logical operation
(cont.)

144ijk Vi Sj \Vk Transmit logical difference of (Sj) and (Vk
elements) to Vi elements

052ijk S0 Si < exp Shift (Si) left exp places to S0; exp = jk Register shift

053ijk S0 Si > exp Shift (Si) right exp places to S0; exp = 1008 -jk

054ijk Si Si < exp Shift (Si) right exp places to Si; exp = jk

055ijk Si Si > exp Shift (Si) right exp places to Si; exp = 1008 -jk

056ijk Si Si, Sj < Ak Shift (Si) and (Sj) left by (Ak) places to Si

056ij0 Si Si, Sj < 1 Shift (Si) and (Sj) left one place to Si

056i0k Si Si < Ak Shift (Si) left (Ak) places to Si

057ijk Si Sj, Si >
Ak

Shift (Sj) and (Si) right by (Ak) places to Si

057ij0 Si Sj, Si > 1 Shift (Sj) and (Sk) right one place to Si

057i0k Si Si > Ak Shift (Si) right (Ak) places to Si

014ijkm JSZ exp Jump to exp if (S0) = 0 (i bit 2 = 0) Conditional jump

015ijkm JSN exp Jump to exp if (S0) ≠ 0 (i bit 2 = 0)

016ijkm JSP exp Jump to exp if (S0) > (i bit 2 = 0)

017ijkm JSM exp Jump to exp if (S0) < 0 (i bit 2 = 0)

Table 24. S Register Instructions (continued)

Machine
Instructions CAL Syntax Description

Type of
Instruction

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 131

Intermediate Scalar (T) Registers

Sixty-four 64-bit T registers are designated T0 through T77 octal. The T registers
are used as intermediate storage registers for the S registers. Data transfers
between T and S registers and between T registers and central memory. A data
transfer between a T register and an S register takes 1 CP.

Instructions reference T registers by specifying the T register number in thejk
designator. Refer to “Instruction Formats” for more information on instruction
fields.

A block of T registers transfers to or from central memory at a maximum rate
of one 64-bit register location per CP. Thejk fields specify the first T register
that is used in the block transfer; the low-order 7 bits of the contents of register
Ai specify the number of words that are transmitted. Successive transfers involve
successive T registers until T77 is reached. Register T00 is processed after
register T77 if the content of register Ai is not exhausted. During these block
transfers, a reservation is made on all T registers that are used in the block
transfer. Other instructions can issue while a block of T registers is transferred
to or from central memory.Table 25 summarizes the T register instructions.

Vector (V) Registers

Figure 29 shows the eight V registers and their associated hardware. The V
registers are designated V0 through V7. Each V register has 64 elements that
are 64 bits wide. The V registers are used for vector processing. The following
subsections explain vector processing, the V register functions, the V register
instructions, and vector chaining.

Table 25. T Register Instructions

Machine
Instructions CAL Syntax Description Type of Instruction

074ijk Si Tjk Transmit (Tjk) to Si Interregister
transfer075ijk Tjk Si Transmit (Si) to Tjk

036ijk Tjk, Ai, A0 Read (Ai) words from memory starting at (A0) to T
registers starting at jk

Block transfer

036ijk Tjk,Ai 0,A0 Read (Ai) words from memory starting at (A0) to T
registers starting at jk

037ijk A0 Tjk,Ai Write (Ai) words from T registers starting at jk to
memory starting at (A0)

037ijk 0,A0 Tjk,Ai Write (Ai) words from T registers starting at jk to
memory starting at (A0)

Operating Registers System Programmer Reference

132 Cray Research Proprietary CSM-0301-0B0

Vector Processing

Vector processing increases processing speed and efficiency by allowing an
operation to be performed sequentially on a set (or vector) of operands by using
a single instruction.

A vector is an ordered set of elements; each element is represented as a 64-bit
word. A vector is distinguished from a scalar, which is a single 64-bit word.
Examples of structures in Fortran that can be represented as vectors are
one-dimensional arrays and rows, columns, and diagonals of multidimensional
arrays. Vector processing occurs when arithmetic or logical operations are
applied to vectors; it is distinguished from scalar processing in that it operates
on many elements rather than on one.

In vector processing, successive elements are provided each CP; as each
operation is completed, the result is delivered to a successive element of the
result register. The vector operation continues until the number of operations
performed by the instructions equals the count specified by the vector length
(VL) register.

Parallel vector operations allow the generation of two or more results per CP.
Parallel vector operations can be processed by the following methods:

• Using different functional units and different V registers.

• Using the result stream from one vector register as the operand of another
operation using a different functional unit; this process is known as
chaining and is explained later in this subsection.

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 133

Figure 29. V Register Block Diagram

2

Si

Add

Multiply

Address
Functional

Units

B77

B00

• • •
A0

A1

A2
A3

A4

A5
A6

A7

Central
Memory

((A0) + (Ak)), ((A0) + (Vk))

((A0) + (Ak)), ((A0) + (Vk))

((A0) + (Ak)), ((A0) + (Vk))

Vector Registers

V7

V6

V5

V4

V3

V2

V1

V0
00

77

(A0)

((Ah) + (nm))

I/O
Real-time Clock

Status

Prog Clock Int

Sj

Scalar Registers

Si

Tjk
Sj

Sk

Si

Sj

Sj

Vj

Vk

Vi

Vector Mask

Vector Control

Sj

Vj

Vk

Vi

Si

Sj

Sk

Ak

Exchange
Control

XA
Vector
Control

Vector
Length

Address Registers

(A0)

Ai

Bjk

Aj

Ak

Ai

Instruction
Buffers

+1, +2

20

20 + N

Ak Ai

Y1 Channel
Control

Execution

ST0

ST1
ST2
ST3

ST4
ST5

ST6
ST7

Shared Registers

SB0

SB1
SB2

SB3
SB4

SB5
SB6
SB7NOTES:

Si

Si

T77

T00

• • •

S0

S1
S2

S3
S4

S5
S6

S7

P

IB7

IB6

IB5
IB4

IB3

IB2

IB1

IB0
00

37

NIP

Add

Logical

Shift

Pop/Parity/
Leading Zeroes

Scalar Functional
Units

• • •

CA 20

20 + N

Ak

• • •

CL

• • •

SM37

SM0

SiAiSi Ai Si

Control and/or data from other processors.

The second vector logical functional unit shares
hardware with the floating-point multiply
functional unit.

The vector pop/parity functional unit shares
hardware with the floating-point
reciprocal approximation functional unit.

Cache

128
Words

Ak
Vector

Functional
Units

Shift

Logical

Pop/Parity

Logical 2

Vector
Floating-point

Multiply

Reciprocal

Sj

Scalar
Floating-point

Multiply

Reciprocal

Si SiAiAiSiSi

CIP

LIP

LIP 1

((Ah) + (nm))

((Ah) + (nm)

Add

Add

Add

1

2

3

3

1

1 1 1

111111

Port D

Operating Registers System Programmer Reference

134 Cray Research Proprietary CSM-0301-0B0

Advantages of Vector Processing

In general, vector processing is faster and more efficient than scalar processing.
Vector processing reduces the overhead associated with maintenance of the
loop-control variable (for example, incrementing and checking the count). In
many cases, loops that process vectors are reduced to a simple sequence of
instructions without branching backwards. Vector processing reduces central
memory access conflicts. It also exploits functional unit segmentation processing
because results from the units can be obtained at the rate of one result per CP.

Vectorization typically speeds up a code segment by approximately a factor of
ten. If a segment of code that previously used 50% of a program’s run time is
vectorized, the overall run time is 55% of the original run time (50% for the
unvectorized portion plus 0.1X 50% for the vectorized portion). Vectorizing
90% of a program reduces the run time to 19% of the original execution time.

V Register Functions

The V registers are used for vector processing. Unlike the A and S registers that
have secondary functions, the V registers are used only for vector processing.
Vector processing allows a single instruction to sequentially perform a specified
operation on a set (vector) of operands, to produce a series of results. Examples
of these sets or vectors may be rows or columns of a matrix or elements of a table.

Vector instructions reference V registers by specifying the register number as
the i, j, ork designator. Refer to “Instruction Formats” for information about
instruction fields. Vector registers always start with element 0. Individual
elements of a V register are designated by octal numbers that range from 00
through 77. These numbers appear as subscripts to vector register references.
For example, V6 (octal) refers to element 27 of V register 6.

Single-word data transfers can be made between an S register and an element of
a V register. In block transfers, the contents of a V register are transferred to or
from central memory by specifying a first word address in central memory, an
increment or decrement value for the central memory address, and a vector
length. The transfer begins with the first element of the V register at a maximum
rate of 1 word per clock period (CP); this rate can be affected by central memory
conflicts. A central memory conflict interrupts the vector data stream and can
occur in chained operations (although they do not inhibit chaining). Any
interruption in the vector data stream adds proportionally to the total execution
time of vector operations.

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 135

Vector Instructions

All vector instructions are dispatched to the vector unit, which finally issues
these instructions after conflict checks. Vector instructions reserve V registers
as either operands or results. If the register is reserved as an operand, it cannot
be used as an operand until the operand reservation clears. A vector register can
be used as both an operand and result register for the same vector instruction. If
a register is reserved as a result, it can be used as an operand through a process
calledchaining. Refer to “Vector Chaining” for more information on chaining.
A register that is reserved as an operand may be used as a result register by a
later instruction, if conditions permit, through a process calledtailgating.

No reservation is placed on the VL register during vector processing. If a vector
instruction uses an S register as an operand, no reservation is placed on the S
register. Conflicts can occur between vector and scalar operations that access
memory. With the exception of these operations, the functional units are always
available for scalar operations. The S and VL registers can be modified after the
vector instruction issues without affecting the vector operation. The A0 and Ak
registers in a vector memory reference can also be modified after the instruction
issues.

Instructions reference V registers by specifying the register number as thei, j,
or k designator. Refer to “Instruction Formats” for more information about the
instruction fields. Because most transfers to or from registers are done in blocks
of data, instructions that transfer data between V registers and central memory
reserve a port, and functional unit instructions reserve the appropriate functional
unit.

Table 26 summarizes the types of V register instructions and provides the
machine instruction, the CAL code, a description of the instruction, and the type
of instruction. Refer to “CPU Instruction Descriptions” for a detailed description
of these instructions.

Operating Registers System Programmer Reference

136 Cray Research Proprietary CSM-0301-0B0

Table 26. V Register Instructions

Machine
Instructions CAL Syntax Description

Type of
Instruction

076ijk Si Vj,Ak Transmit (Vj element (Ak)) to Si Register entry
077ijk Vi,Ak Sj Transmit (Sj) to Vi element (Ak)

077i0k Vi,Ak 0 Clear element (Ak) of register Vi

176i0k Vi ,A0,Ak Read from memory starting at (A0) increased by
(Ak) and load into Vi

Memory transfer
(Load)

176i00 Vi ,A0, 1 Read from consecutive memory addresses
starting with (A0) and load into Vi

176i lk Vi ,A0,Vk Read from memory using memory address (A0) +
(Vk) and load into Vi

1770jk A0,Ak Vj Write (Vj) to memory starting at (A0) increased by
Ak

Memory transfer
(Store)

1770j0 A0,1 Vj Write (Vj) to memory in consecutive addresses
starting with (A0)

1771jk A0,Vk Vj Write (Vj) to memory using memory address (A0)
+ (Vk)

154ijk Vi Sj + Vk Transmit integer sums of (Sj) and (Vk elements) to
Vi elements

Integer
operation

155ijk Vi Vj + Vk Transmit integer sums of (Vj elements) and (Vk
elements) to Vi

156ijk Vi Sj-Vk Transmit integer differences of (Sj) and (Vk
elements) to Vi elements

157ijk Vi Vj-Vk Transmit integer differences of (Vj elements) and
(Vk elements) to Vi elements

160ijk Vi Sj*FVk Transmit floating-point products of (Sj) and (Vk
elements) to Vi elements

Floating-point
operation

161ijk Vi Vj*FVk Transmit floating-point products of (Vj elements)
and (Vk elements) to Vi elements

162ijk Vi Sj*HVk Transmit half-precision rounded floating-point
products of (Sj) and (Vk elements) to Vi elements

163ijk Vi Vj*HVk Transmit half-precision rounded floating-point
products of (Vj elements) and (Vk elements) to Vi
elements

164ijk Vi Sj*RVk Transmit rounded floating-point products of (Sj)
and (Vk elements) to Vi elements

165ijk Vi Vj*RVk Transmit rounded floating-point products of (Vj
elements) and (Vk elements) to Vi elements

166ijk Vi Sj* lVk Transmit 32-bit integer product of (Sj) and (Vk
elements) to Vi elements

167ijk Vi Vj* lVk Transmit two minus the products of (Vj elements)
and (Vk elements) to Vi elements

170ijk Vi Sj + FVk Transmit floating-point sums of (Sj) and (Vk
elements) to Vi elements

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 137

170i0k Vi +FVk Transmit normalized (Vk elements) to Vi elements Floating-point
operation (cont.)171ijk Vi Vj +FVk Transmit floating-point sums of (Sj) and (Vk

elements) to Vi elements

172ijk Vi Sj-FVk Transmit floating-point differences of (Sj) and (Vk
elements) to Vi elements

172i0k Vi -FVk Transmit normalized negative of (Vk elements) to
Vi elements

173ijk Vi Vj-FVk Transmit floating-point differences of (Sj) and (Vk
elements) to Vi elements

174ij0 Vi /HVj Transmit floating-point reciprocal approximation of
(Vj elements) to Vi elements

Logical
operation

140ijk Vi Sj&Vk Transmit logical product of (Sj) and (Vk elements)
to Vi elements

141ijk Vi Vj&Vk Transmit logical products of (Vj elements) and (Vk
elements) to Vi elements

142ijk Vi Sj !Vk Transmit logical sums of (Sj) and (Vk elements) to
Vi elements

142i0k Vi Vk Transmit (Vk) to Vi

143ijk Vi Vj !Vk Transmit logical sums of (Vj elements) and (Vk
elements) to Vi elements

144ijk Vi Sj \ Vk Transmit logical differences of (Sj) and (Vk
elements) to Vi elements

145ijk Vi Vj \ Vk Transmit logical differences of (Vj elements) and
(Vk elements) to Vi elements

146ijk Vi Sj !Vk&VM Transmit to Vi
(Sj) if VM bit = 1 or
(Vk) if VM bit = 0

146i0k Vi #VM&Vk Transmit vector merge of (Vk) and 0 to Vi

147ijk Vi Vj !Vk&VM Transmit to Vi
(Vj) if VM bit = 1 or
(Vk) if VM bit = 0

150ijk Vi Vj < Ak Shift (Vj elements) left by (Ak) places to Vi
elements

Register shift

150ij0 Vi Vj < 1 Shift (Vj elements) left one place to Vi elements

151ijk Vi Vj > Ak Shift (Vj elements) right by (Ak) places to Vi
elements

151ij0 Vi Vj > 1 Shift (Vj elements) right one place to Vi elements

152ijk Vi Vj,Vj < Ak Transmit double shift of (Vj elements) left (Ak)
places to Vi elements

Table 26. V Register Instructions (continued)

Machine
Instructions CAL Syntax Description

Type of
Instruction

Operating Registers System Programmer Reference

138 Cray Research Proprietary CSM-0301-0B0

Vector Instruction Issue Timing

The CIP is the central issue point for all instructions. Instructions that require
use of the vector unit are issued to the vector unit instruction queue. The vector
issue register (VIR) issues these vector instructions in the order it receives them.
The vector unit instruction queue (VIQ) can buffer a maximum of five
instructions issued to it by the CIP. CIP issue of any additional vector instructions
must wait until the queue count is less than five.

The CIP issues vector instructions to the VIR instruction queue without checking
for a vector functional unit conflict or vector register busy condition. These
conflicts delay issue of the instruction from the VIR.

Vector instruction issue timing has two categories:

• Issue from the CIP directly to the appropriate vector unit, via the VIR,
when no conflicts exist to delay issue

• Issue from the VIR after a delay caused by vector register conflicts,
functional unit conflicts, or vector instruction queuing

The execution time for vector instructions that issue directly from the CIP to the
functional unit (through the VIR) is 3 CPs longer than instructions waiting to
issue from the VIR.

Vector Instruction Issue Conflict Timing

The general rules that apply to the next vector instruction (NVI) issue from the
VIR are as follows:

For Functional Unit Busy

• Functional unit is ready in (VL) + 1 CP (except for a Pop/Parity following
a Reciprocal, or a 140 – 145 instruction following a 146 – 147 or a 175
instruction).

153ijk Vi Vj,Vj > Ak Transmit double shift of (Vj elements) right (Ak)
places to Vi elements

Register shift
(cont.)

153ij0 Vi Vj,Vj > l Transmit double shift of (Vj elements) right one
place to Vi elements

Table 26. V Register Instructions (continued)

Machine
Instructions CAL Syntax Description

Type of
Instruction

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 139

For Vector Register Busy

• Vi is ready for Vi use in (VL) + 2 CPs.

• Vi is ready for Vj or Vk use immediately (due to chaining).

• Vj or Vk is ready for Vj or Vk use in (VL) + 2 CPs.

• Vj or Vk is ready for Vi use in (VL) + 2 CPs.

• Vj or Vk is ready for Vi use immediately when Vj and Vk are not involved
in chaining or in use by a 176 or 177 instruction.

NOTE: Chaining cannot occur unless the data is already available in Vi.

Vector Chaining

A vector register that is reserved for results can become the operand register of
a succeeding instruction. This process, called chaining, allows a continuous
stream of operands to flow through the vector registers and functional units.
Even when a vector load operation pauses because of memory conflicts, chained
operations may proceed as soon as data is available. A vector register has a 1-CP
bypass and also includes a 2-CP bypass option.

This chaining mechanism allows chaining to begin at any point in the result
vector data stream. The amount of concurrency in a chained operation depends
on the relationship between the issue time of the chaining instruction and arrival
time of the result data stream. For full chaining to occur, the chaining instruction
must issue and be ready to use element 0 of the result at the same time that
element 0 arrives at the V register. Partial chaining occurs if the chaining
instruction issues after the arrival of element 0 of the result vector data stream.

Elements are loaded into register V0. As soon as the first element arrives from
central memory into register V0, it is added to the first element of vector register
V1. Subsequent elements are pipelined through the segmented functional unit,
so that a continuous stream of results is sent to the destination register, which is
register V2. As soon as the first element arrives at register V2, it becomes the
operand for the shift operation. The results are sent to register V3, which
immediately becomes the source of one of the operands necessary for the logical
operation between registers V3 and V4. The results of the logical operation are
then sent to register V5.

Operating Registers System Programmer Reference

140 Cray Research Proprietary CSM-0301-0B0

Figure 30 shows how the results of four instructions are chained together. The
instruction chaining sequence performs the following operations:

Figure 30. Vector Chaining Example

1. Read a vector of integers from central memory to register V0 (176000
instruction).

2. Add the contents of register V0 to the contents of register V1 and send the
results to V2 (155210 instruction).

3. Shift the results obtained in Step 2 and send the results to register V3
(150327 instruction).

4. Form the logical product of the shifted sum obtained in Step 3 with the
contents of register V4 and send the results to register V5 (141543
instruction).

Elements are loaded into register V0. As soon as the first element arrives from
central memory into register V0, it is added to the first element of vector register
V1. Subsequent elements are pipelined through the segmented functional unit,
so that a continuous stream of results is sent to the destination register, which is
register V2. As soon as the first element arrives at register V2, it becomes the
operand for the shift operation. The results are sent to register V3, which
immediately becomes the source of one of the operands necessary for the logical
operation between registers V3 and V4. The results of the logical operation are
then sent to register V5.

Memory
V0 Register

V1 Register

V2 Register

Memory Path Vector Add
Functional Unit

Vector Shift
Functional Unit

Vector Logical
Functional Unit

V3 Register

V4 Register
V5 Register

176000

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 141

Vector Tailgating

The mainframe design also incorporates vector register tailgating. Tailgating is
the process of writing the next instruction into a vector register after that location
has been read by the previous instruction. In any tailgating, caution must be used
to ensure validity of the data. The CRAY J90 series system does not permit
tailgating to a vector register if the operand mate for that register is involved in
chaining. This always ensures that the vector register read occurs without delay.
Vector registers that are read for a vector write to memory, or the index register
for a scatter or gather, are automatically designated for chaining to prevent
tailgating to these registers. Refer toFigure 31 for a vector tailgating example.

Figure 31. Vector Tailgating Example

Figure 31 shows the results of three instructions that are tailgating their results
into a previously issued instruction. The instruction sequence performs the
following operation:

1. Vector integer add (155321 instruction) of V1 and V2 to V3, starts the
sequence.

2. Vector logical (141145 instruction) of V4 and V5, puts the results into
V1. The read of V1 will remain ahead of the write to V1 because V1 is
not connected to memory.

3. Vector shift (150465 instruction) of V6, puts the results into V4.

4. Vector logical 2 (141670 instruction) of V7 and V0, puts the results into
V6.

V3

Vector Add
Functional Unit

Vector Logical
Functional Unit

Vector Shift
Functional Unit

Vector Logical 2
Functional Unit

V1
V2

V4
V5

V6 V7
V8

Operating Registers System Programmer Reference

142 Cray Research Proprietary CSM-0301-0B0

Vector Control Registers

The vector length (VL) register and vector mask (VM) register provide control
information that is needed to perform vector operations. The following
subsections describe the VL and VM registers.Table 27 lists the vector mask
instructions and provides octal and CAL codes. Refer to the “Functional Units
Instruction Summary” for complete information on these instructions.

Vector Length Register

The 7-bit VL register is set from 1 through 100 octal (VL = 0 gives VL = 100)
to specify the length of all vector operations performed by vector instructions
and the length of the vectors held by the V registers. The VL register controls
the number of operations performed by instructions 140 through 177. The VL
register is loaded and its contents are saved by an exchange sequence. The VL
register is set by instruction 0020 and is read by instruction 023i01.

Table 27. Vector Mask Instructions

Machine
Instructions CAL Syntax Description Type of Instruction

0030j0 VM Sj Transmit (Sj) to VM register Register entry

003000 VM 0 Clear M register

073i00 Si VM Transmit (VM) to Si

146ijk Vi Sj!Vk&VM Transmit to Vi
(Sj) if VM bit = 1 or
(Vk) if VM bit = 0

Logical operation

146i0k Vi #VM&Vk Transmit vector merger of (Vk) and 0 to Vi

147ijk Vi Vj !Vk&VM Transmit to Vi
(Vj) if VM bit = 1 or
(Vk) if VM bit = 0

1750j0 VM Vj, Z Set VM = 1, if (Vj) = 0

1750j1 VM Vj, N Set VM = 1, if (Vj) ≠ 0

1750j2 VM Vj, P Set VM = 1, if (Vj) ≥ 0 (positive)

1750j3 VM Vj, M Set VM = 1, if (Vj) < 0 (negative)

175ij4 Vi, VM Vj, Z Set VM bit = 1, if (Vj element) = 0, and store the
compressed indices of the Vj elements = 0 in Vi.

175ij5 Vi, VM Vj, N Set VM bit = 1, if (Vj element) ≠ 0, and store the
compressed indices of the Vj elements ≠ 0 in Vi.

175ij6 Vi, VM Vj, M Set VM bit = 1, if (Vj element) ≥ 0, and store the
compressed indices of the Vj elements ≥ 0 in Vi.

175ij7 Vi, VM Vj, M Set VM bit = 1, if (Vj elements) < 0, and store the
compressed indices of the Vj elements < 0 in Vi.

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 143

Vector Mask Register

The VM register has 64 bits; each bit corresponds to a word element in a vector
register. Bit 63 corresponds to element 0, and bit 0 corresponds to element 63.
The mask is used with vector merge and test instructions to allow operations to
be performed on individual vector elements.

The VM register can be set from an S register through instruction 003 or can be
created by testing a vector register for a condition using instruction 175. The
mask controls element selection in the vector merge instructions (146 and 147).
Instruction 073 reads the contents of the VM register to an S register.

User Mode Vector Instruction Timing

Table 28 describes the user mode vector instruction issue and execution
information. The following definitions apply toTable 28.

• The current instruction parcel (CIP) is the same instruction issue register
that was used in previous Cray Research designs.

• The CIP dispatches vector instructions to the vector instruction queue
(VIQ). The VIQ can hold up to five vector instructions.

• The vector issue register (VIR) is the fifth stage of the VIQ. The VIR
issues vector instructions in the order in which they are received from the
CIP. The VIR checks for the “busy” conditions in the vector unit that hold
issue in the VIR. The CIP does not monitor these “vector unit only” busy
conditions.

• The timings shown are relative to a vector instruction issued from the
VIR. An instruction issued from the CIP through a nonbusy VIR is 3 CPs
longer.

Operating Registers System Programmer Reference

144 Cray Research Proprietary

Ta
b

le
 2

8
.
V

e
ct

o
r

In
st

ru
ct

io
n

 I
ss

u
e

 a
n

d
 E

xe
cu

tio
n

C
od

e
C

A
L

C
IP

 H
ol

d
Is

su
e

C
on

di
tio

ns
V

IR
 H

ol
d

Is
su

e
C

on
di

tio
ns

F
C

N
U

ni
t

B
us

y
T

im
e

U
se

d
V

i/V
j/V

k
R

ea
dy

R
es

ul
t

in
 V

R
**

C
om

m
en

ts
 a

nd
S

pe
ci

al
 C

on
di

tio
ns

A
k

B
us

y
(E

xc
ep

t
A

0)

S
jB

us
y

(E
xc

ep
t

S
0)

03
5/

03
7

In
st

r
in

P
ro

gr
es

s

07
7

Is
su

ed
P

re
vi

ou
s

C
P

V
IQ

F
ul

l

V
R

 B
us

y*
F

C
N

U
ni

ts
B

us
y

In
st

r
N

ot in V
IR

V
i

V
j

V
k

00
20

0k
V

L
A

k
x

x
x

x
x

x
V

IR
 is

su
e

3
C

P

00
30

j0
V

M
S

j
x

x
x

x
Lo

g
x

1
C

P

07
3 i

00
S

i
V

M
S

i B
us

y
x

x
x

V
M

x
1

C
P

B
us

y
de

fin
ed

 in
 n

ot
e

1

07
6 i

jk
S

i
V

j,A
k

x
S

i B
us

y
x

x
x

x
x

x
1

C
P

5
C

P
C

IP
+

1
C

P
 fo

r
ne

xt
 v

ec
to

r
is

su
e.

 R
ef

er
 to

 n
ot

e
2.

07
7i

jk
V

i,A
k

S
j

x
x

x
x

x
x

x
1

C
P

C
IP

 h
ol

d
is

su
e

on
ga

th
er

/s
ca

tte
r

14
0 i

jk
V

i
S

j&
V

k
x

x
x

x
x

x
Lo

g&
F

M
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

5
C

P
F

M
/L

og
 2

 u
ni

t

14
1 i

jk
V

i
V

j&
V

k
x

x
x

x
x

Lo
g&

F
M

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
5

C
P

F
M

/L
og

 2
 u

ni
t

14
2 i

jk
V

i
S

j|
V

k
x

x
x

x
x

x
Lo

g&
F

M
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

5
C

P
F

M
/L

og
 2

 u
ni

t

14
3 i

jk
V

i
V

j|
V

k
x

x
x

x
x

Lo
g&

F
M

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
5

C
P

F
M

/L
og

 2
 u

ni
t

14
4i

jk
V

i
S

j\
V

k
x

x
x

x
x

x
Lo

g&
F

M
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

5
C

P
F

M
/L

og
 2

 u
ni

t

14
5 i

jk
V

i
V

j\
V

k
x

x
x

x
x

Lo
g&

F
M

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
5

C
P

F
M

/L
og

 2
 u

ni
t

14
6 i

jk
V

i
S

j
|V

k&
V

M
x

x
x

x
x

x
Lo

g
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

5
C

P
M

er
ge

 in
st

ru
ct

io
ns

14
7i

jk
V

i
V

j
|V

k&
V

M
x

x
x

x
x

Lo
g

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
5

C
P

M
er

ge
 in

st
ru

ct
io

ns

15
0i

jk
V

i
V

j<
A

k
x

x
x

x
x

x
S

hi
ft

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
6

C
P

15
1 i

jk
V

i
V

j>
A

k
x

x
x

x
x

x
S

hi
ft

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
6

C
P

15
2 i

jk
V

i
V

j,V
j<

A
k

x
x

x
x

x
x

S
hi

ft
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

7
C

P

15
3 i

jk
V

i
V

j,V
j>

A
k

x
x

x
x

x
x

S
hi

ft
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

6
C

P

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 145

15
4i

jk
V

i
S

j+
V

k
x

x
x

x
x

x
V

 A
dd

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
6

C
P

15
5i

jk
V

i
V

j+
V

k
x

x
x

x
x

V
 A

dd
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

6
C

P

15
6i

jk
V

i
S

j-V
k

x
x

x
x

x
x

V
 A

dd
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

6
C

P

15
7i

jk
V

i
V

j-V
k

x
x

x
x

x
V

 A
dd

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
6

C
P

16
0i

jk
V

i
S

j*
F

V
k

x
x

x
x

x
x

F
 M

pl
y

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
11

C
P

F
lo

at
in

g
m

ul
tip

ly

16
1i

jk
V

i
V

j*
F

V
k

x
x

x
x

x
F

 M
pl

y
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

11
C

P
F

lo
at

in
g

m
ul

tip
ly

16
2i

jk
V

i
S

j*
H

V
k

x
x

x
x

x
x

F
 M

pl
y

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
11

C
P

H
al

f p
re

ci
si

on

16
3i

jk
V

i
V

j*
H

V
k

x
x

x
x

x
F

 M
pl

y
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

11
C

P
H

al
f p

re
ci

si
on

16
4i

jk
V

i
S

j*
R

V
k

x
x

x
x

x
x

F
 M

pl
y

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
11

C
P

R
ou

nd
ed

 fl
oa

tin
g

m
ul

tip
ly

16
5i

jk
V

i
V

j*
R

V
k

x
x

x
x

x
F

 M
pl

y
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

11
C

P
R

ou
nd

ed
 fl

oa
tin

g
m

ul
tip

ly

16
6i

jk
V

i
S

j*
R

V
k

x
x

x
x

x
x

F
 M

pl
y

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
11

C
P

32
-b

it
In

t

16
7i

jk
V

i
V

j*
V

k
x

x
x

x
x

F
 M

pl
y

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
11

C
P

2
-

pr
od

uc
t

17
0i

jk
V

i
S

j+
F

V
k

x
x

x
x

x
x

F
 A

dd
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

10
C

P

17
1i

jk
V

i
V

j+
F

V
k

x
x

x
x

x
F

 A
dd

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
10

C
P

17
2i

jk
V

i
S

j -
F

V
k

x
x

x
x

x
x

F
 A

dd
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

10
C

P

17
3i

jk
V

i
V

j -
F

V
k

x
x

x
x

F
 A

dd
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

10
C

P

17
4i

j0
V

i
/H

V
j

x
x

x
x

F
R

/P
/P

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
18

C
P

F
lo

at
in

g
re

ci
pr

oc
al

17
4i

j1
V

i
P

V
j

x
x

x
x

F
R

/P
/P

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
 7

C
P

P
op

 c
ou

nt

17
4i

j2
V

i
Q

V
j

x
x

x
x

F
R

/P
/P

x
V

L+
1

C
P

V
L+

2
C

P
V

L+
7

C
P

P
ar

ity

Ta
b

le
 2

8
.
V

e
ct

o
r

In
st

ru
ct

io
n

 I
ss

u
e

 a
n

d
 E

xe
cu

tio
n

 (
co

n
tin

u
e

d
)

C
od

e
C

A
L

C
IP

 H
ol

d
Is

su
e

C
on

di
tio

ns
V

IR
 H

ol
d

Is
su

e
C

on
di

tio
ns

F
C

N
U

ni
t

B
us

y
T

im
e

U
se

d
V

i/V
j/V

k
R

ea
dy

R
es

ul
t

in
 V

R
**

C
om

m
en

ts
 a

nd
S

pe
ci

al
 C

on
di

tio
ns

A
k

B
us

y
(E

xc
ep

t
A

0)

S
jB

us
y

(E
xc

ep
t

S
0)

03
5/

03
7

In
st

r
in

P
ro

gr
es

s

07
7

Is
su

ed
P

re
vi

ou
s

C
P

V
IQ

F
ul

l

V
R

 B
us

y*
F

C
N

U
ni

ts
B

us
y

In
st

r
N

ot in V
IR

V
i

V
j

V
k

Operating Registers System Programmer Reference

146 Cray Research Proprietary

17
50

j0
V

M
V

j,Z
x

x
x

Lo
g

x
V

L+
1

C
P

V
L+

2
C

P
Te

st
,1

/0
 to

 V
M

17
50

j1
V

M
V

j,N
x

x
x

Lo
g

x
V

L+
1

C
P

V
L+

2
C

P
Te

st
,1

/0
 to

 V
M

17
50

j2
V

M
V

j,P
x

x
x

Lo
g

x
V

L+
1

C
P

V
L+

2
C

P
Te

st
,1

/0
 to

 V
M

17
50

j3
V

M
V

j,M
x

x
x

Lo
g

x
V

L+
1

C
P

V
L+

2
C

P
Te

st
,1

/0
 to

 V
M

17
5 i

j4
V

i,
V

M
 V

j,Z
x

x
x

x
Lo

g
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

6
C

P
V

M
/C

om
pr

es
s

I

17
5 i

j5
V

i,
V

M
 V

j,B
x

x
x

x
Lo

g
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

6
C

P
V

M
/C

om
pr

es
s

I

17
5 i

j6
V

i,
V

M
 V

j,P
x

x
x

x
Lo

g
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

6
C

P
V

M
/C

om
pr

es
s

I

17
5 i

j7
V

i,
V

M
 V

j,M
x

x
x

x
Lo

g
x

V
L+

1
C

P
V

L+
2

C
P

V
L+

6
C

P
V

M
/C

om
pr

es
s

I

17
6i

0
K

V
i,

A
0,

A
k

x
x

x
x

x
x

V
L+

35
C

P
R

ef
er

 to
 n

ot
e

3.

17
6i

1
K

V
i,

A
0,

V
k

x
x

x
x

x
x

x
V

L+
40

C
P

G
at

he
r.

R
ef

er
 to

 n
ot

e
4.

17
70

jK
,A

0,
A

k
V

j
x

x
x

x
x

x
x

R
ef

er
 to

 n
ot

e
5.

17
71

jK
,A

0,
V

k
V

j
x

x
x

x
x

x
x

S
ca

tte
r.

R
ef

er
 to

 n
ot

e
6.

N
O

T
E

S
:

*
V

ec
to

r
re

gi
st

er
 b

us
y

do
es

 n
ot

 d
el

ay
 is

su
e

fr
om

 V
IR

 if
 c

ha
in

in
g

or
 ta

ilg
at

in
g

is
 p

er
m

itt
ed

.

**
T

he
 c

yc
le

s
sh

ow
n

fo
r

th
e

“R
es

ul
t i

n
V

R
”

ar
e

fr
om

 V
IR

 in
st

ru
ct

io
n

is
su

e
tim

e
un

til
 th

e
re

su
lt

da
ta

 is
 w

rit
te

n
in

to
 th

e
V

R
. T

he
 r

es
ul

t d
at

a
is

 a
va

ila
bl

e
fo

r
ch

ai
ni

ng
 to

 th
e

ne
xt

 v
ec

to
r

in
st

ru
ct

io
n

as
 s

ou
rc

e
da

ta
 (

op
er

an
ds

)
as

 s
oo

n
as

 it
 r

ea
ch

es
 th

e
V

R
 (

ev
en

 1
 C

P
 e

ar
lie

r
du

e
to

 V
R

 b
yp

as
s

ca
pa

bi
lit

y
fo

r
al

l b
ut

 th
e

17
5

in
st

ru
ct

io
n

co
m

pr
es

s
in

de
x)

.

1
H

ol
d

is
su

e
at

 th
e

C
IP

 fo
r

a
07

3 i
00

 if
 a

 p
re

vi
ou

sl
y

is
su

ed
 s

ca
tte

r
or

 g
at

he
r

in
st

ru
ct

io
n

is
 in

co
m

pl
et

e.
 V

ec
to

r
M

as
k

(V
M

)
is

 b
us

y
fo

r
a

14
6,

 1
47

, o
r

17
5

in
st

ru
ct

io
n.

 H
ol

d
is

su
e

at
 th

e
V

IR
 fo

r
6

C
P

s
fo

llo
w

in
g

th
e

V
IR

 is
su

e
of

 a
 0

76
ijk

 in
st

ru
ct

io
n

be
ca

us
e

a
bu

s
is

 in
 u

se
.

2
T

he
 0

76
 in

st
ru

ct
io

n
im

pl
em

en
te

d
on

 C
R

A
Y

 J
90

 s
er

ie
s

sy
st

em
s

pr
ov

id
es

 e
ffe

ct
iv

e
co

m
m

un
ic

at
io

n
be

tw
ee

n
th

e
ve

ct
or

 u
ni

t a
nd

 s
ca

la
r

un
it.

 T
he

 in
st

ru
ct

io
n

is
 is

su
ed

 to
 th

e
V

IQ
 w

ith
ou

t c
he

ck
in

g
fo

r
V

R
bu

sy
. T

he
 0

76
 is

 n
ot

 e
xe

cu
te

d
(d

at
a

to
 S

i)
un

til
 th

e
V

jv
ec

to
r

re
gi

st
er

 is
 n

ot
 b

us
y.

 F
ol

lo
w

in
g

th
e

07
6

in
st

ru
ct

io
n

w
ith

 a
 tr

an
sf

er
 in

st
ru

ct
io

n
(t

he
 S

 r
eg

is
te

r
to

 it
se

lf)
 w

ill
 h

ol
d

is
su

e
at

 th
e

C
IP

 u
nt

il
th

e
V

R
 is

no
t b

us
y.

3
C

IP
 h

ol
d

is
su

e
of

 th
is

 v
ec

to
r

lo
ad

 in
st

ru
ct

io
n

oc
cu

rs
 w

he
n

no
 m

em
or

y
po

rt
 is

 a
va

ila
bl

e,
 a

 v
ec

to
r

st
or

e
op

er
at

io
n

ha
s

be
en

 is
su

ed
 w

ith
 b

id
ire

ct
io

na
l m

od
e

O
F

F
, o

r
a

07
6

in
st

ru
ct

io
n

is
 w

ai
tin

g
ex

ec
ut

io
n

in
 th

e
ve

ct
or

 q
ue

ue
 (

es
se

nt
ia

lly
 b

id
ire

ct
io

na
l m

od
e

O
F

F
 b

ec
au

se
 o

f a
 0

76
 in

st
ru

ct
io

n)
. A

ls
o,

 s
ca

la
r

an
d

ve
ct

or
 r

eq
ue

st
s

to
 m

em
or

y
ca

nn
ot

 o
cc

ur
 a

t t
he

 s
am

e
tim

e.
 P

or
t b

us
y

fo
r

a
ve

ct
or

 lo
ad

 is
 V

L
+

 4
C

P
 w

ith
 a

 m
in

im
um

 o
f 7

 C
P

s.

4
T

he
 c

on
di

tio
ns

 o
f n

um
be

r
3

ap
pl

y.
 In

 a
dd

iti
on

, C
IP

 c
an

no
t i

ss
ue

 th
e

ga
th

er
 in

st
ru

ct
io

n
if

a
07

3i
00

 o
r

07
6

in
st

ru
ct

io
n

ha
s

no
t c

om
pl

et
ed

 e
xe

cu
tio

n.
 P

or
t b

us
y

fo
r

a
ga

th
er

 is
 V

L
+

9
C

P
 w

ith
 a

 m
in

im
um

 o
f

12
C

P
s.

5
T

he
 c

on
di

tio
ns

 o
f n

um
be

r
3

ap
pl

y.
 In

 a
dd

iti
on

, C
IP

 c
an

no
t i

ss
ue

 w
hi

le
 a

no
th

er
 s

to
re

 is
 a

ct
iv

e.
 P

or
t b

us
y

fo
r

a
ve

ct
or

 s
to

re
 is

 V
L

+
7

C
P

 w
ith

 a
 m

in
im

um
 o

f 9
 C

P
s.

6
T

he
 c

on
di

tio
ns

 o
f n

um
be

r
3

ap
pl

y.
 In

 a
dd

iti
on

, C
IP

 c
an

no
t i

ss
ue

 th
e

sc
at

te
r

in
st

ru
ct

io
n

if
a

07
3 i

00
 o

r
07

6
in

st
ru

ct
io

n
ha

s
no

t c
om

pl
et

ed
 e

xe
cu

tio
n.

 P
or

t b
us

y
fo

r
a

sc
at

te
r

is
 V

L
+

10
C

P
 w

ith
 a

 m
in

im
um

of
 1

2
C

P
s.

Ta
b

le
 2

8
.
V

e
ct

o
r

In
st

ru
ct

io
n

 I
ss

u
e

 a
n

d
 E

xe
cu

tio
n

 (
co

n
tin

u
e

d
)

C
od

e
C

A
L

C
IP

 H
ol

d
Is

su
e

C
on

di
tio

ns
V

IR
 H

ol
d

Is
su

e
C

on
di

tio
ns

F
C

N
U

ni
t

B
us

y
T

im
e

U
se

d
V

i/V
j/V

k
R

ea
dy

R
es

ul
t

in
 V

R
**

C
om

m
en

ts
 a

nd
S

pe
ci

al
 C

on
di

tio
ns

A
k

B
us

y
(E

xc
ep

t
A

0)

S
jB

us
y

(E
xc

ep
t

S
0)

03
5/

03
7

In
st

r
in

P
ro

gr
es

s

07
7

Is
su

ed
P

re
vi

ou
s

C
P

V
IQ

F
ul

l

V
R

 B
us

y*
F

C
N

U
ni

ts
B

us
y

In
st

r
N

ot in V
IR

V
i

V
j

V
k

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 147

Functional Units

Functional units perform instructions other than simple transfers or control
operations. Functional units have independent logic, except for the reciprocal
approximation, vector population count, floating-point multiply, and second
vector logical units (described later in this section), which share some logic. All
functional units can operate simultaneously. For more information, refer to the
“Functional Unit Independence” section.

A functional unit receives operands from registers, performs an operation, and
delivers the result to a register after the function is performed. Functional units
operate in three-addressing mode, with source and destination addressing limited
to register designators.

All functional units perform operations in a fixed amount of time; delays are
impossible once the operands are delivered to the unit. The time from delivery
of the operands to the functional unit until completion of the calculation is called
thefunctional unit time and is measured in CPs.

Functional units are fully segmented. This means a new set of operands for
unrelated computation can enter a functional unit in each CP even though the
functional unit time can be more than 1 CP. Refer to “Pipelining and
Segmentation” for more information about segmentation.

There are four groups of functional units: address, scalar, vector, and
floating-point. The address, scalar, and vector functional units operate with one
of the primary register types (A, S, and V) to support address, scalar, and vector
processing. The floating-point functional units support either scalar or vector
operations and accept operands from or deliver results to the S or V registers.
The scalar and vector units do not share any functional units. For timing purposes,
central memory can also act as a functional unit for vector operations.

Operating Registers System Programmer Reference

148 Cray Research Proprietary CSM-0301-0B0

The following subsections define the function, the functional unit time, and the
instructions that each functional unit executes. Refer to the following sections
and subsections for additional information on functional units:

1. The“Pipelining and Segmentation” and the“Functional Unit
Independence” subsections contain detailed information on functional
unit segmentation/independence.

2. The“Functional Unit Operations” subsection contains detailed
information on integer arithmetic, floating-point arithmetic, normalized
floating-point numbers, floating-point range errors, addition, algorithm,
multiply algorithm, and the division algorithm.

3. The“CPU Instruction Descriptions” subsection contains detailed
information on the instructions and instruction formats.

Address Functional Units

The address functional units operate in Y-mode. In Y-mode, address functional
units run at a full 32-bit width.

Address functional units perform integer arithmetic on operands that are
obtained from A registers and deliver the results to an A register. The address
functional units use two’s complement arithmetic.

Address Add Functional Unit

The address add functional unit performs 32-bit (Y-mode) or integer addition
and subtraction. The unit executes instructions 030 (addition) and 031
(subtraction). The subtraction operation uses two’s complement arithmetic. The
Ak operand is complemented and then added to the Aj operand. A 1 is added to
the low-order bit position of the result. The address add functional unit does not
detect overflow conditions.

The address add functional unit time is 2 CPs. This functional unit time is
measured from instruction issue to when the result is available.

Address Multiply Functional Unit

The address multiply functional unit performs 32-bit (Y-mode) multiplication.
The unit executes instruction 032, which forms a 32-bit integer product from
two operands. No rounding is performed. The result consists of the least
significant 32 bits (in Y-mode) of the product. The address multiply functional
unit does not detect overflow conditions.

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 149

The address multiply functional unit time is 4 CPs. This functional unit time is
measured from instruction issue to when the result is available.

Scalar Functional Units

Scalar functional units perform operations on 64-bit operands that are obtained
from S registers and usually deliver the 64-bit results to an S register. The
exception is the population/parity/leading zero count functional unit that delivers
its 7-bit result to an A register.

The following subsections describe the four functional units that are exclusively
associated with scalar operations. Three floating-point functional units are used
for both scalar and vector operations. When a scalar instruction uses a
floating-point functional unit, it must first determine whether any vector registers
have that functional unit reserved. If the functional unit is reserved, the scalar
instruction holds issue until the reservation is cleared. Refer to “Floating-point
Functional Units” for more information about these units.

Scalar Add Functional Unit

The scalar add functional unit performs 64-bit integer addition and subtraction.
It executes instructions 060 (addition) and 061 (subtraction). The subtraction
operation uses two’s complement arithmetic. The Skoperand is complemented,
then added to the Sj operand. A 1 is added to the low-order bit position of the
result. The scalar add functional unit does not detect overflow conditions.

The scalar add functional unit time is 2 CPs. This functional unit time is measured
from instruction issue to when the result is available.

Scalar Shift Functional Unit

The scalar shift functional unit shifts the entire 64-bit contents of an S register
(single shift) or shifts the 128-bit contents of two concatenated S registers
(double shift). For a single shift (instructions 052 through 055), the shift count
is specified by thejk field. For a double shift (instructions 056 and 057), the Ak
register contains the shift count; only the lower 7 bits of the contents of the Ak
register are used. Any bits that are set in the upper positions cause the result
register Si to be zeroed out.

All single shifts and some double shifts are end-off with zero fill. A circular shift
occurs if the shift count does not exceed 64 and the i and j designators are equal
and nonzero.

Operating Registers System Programmer Reference

150 Cray Research Proprietary CSM-0301-0B0

Single-shift instructions have a functional unit time of 3 CPs, and double-shift
instructions have a functional unit time of 3 CPs. These functional unit times are
measured from instruction issue to when the result is available.

Scalar Logical Functional Unit

The scalar logical functional unit performs bit-by-bit manipulations of 64-bit
quantities that are obtained from S registers. It executes instructions 042 through
043 (mask) and 044 through 051 (logical operations).

The scalar logical functional unit time is 1 CP. This functional unit time is
measured from instruction issue to when the result is available.

Scalar Population/Parity/Leading Zero Functional Unit

This functional unit performs instructions 026 (population count and population
count parity) and 027 (leading zero count). Instruction 026ij0 counts the number
of bits in the Sj register that have a value of 1 in the operand and returns a 7-bit
result to the Ai register; the maximum count is 100 octal (64 decimal), and the
minimum count is 0.

Instruction 026ij1 counts the number of bits in the Sj operand that have a value
of 1, but returns only a 1-bit parity count to the Ai register. If the Sj operand has
an even number of bits set, a 0 is returned to the Ai register. If the Sj operand
has an odd number of bits set, a 1 is returned to the Ai register.

The functional unit time for the population count parity is 4 CPs. This functional
unit time is measured from instruction issue to when the result is available.

Instruction 027ij0 counts the number of 0 bits that precede a 1 bit in the operand.
For these instructions, the 64-bit operand is obtained from an S register, and the
7-bit result is delivered to an A register.

The functional unit time for the leading zero count is 4 CPs. This functional unit
time is measured from instruction issue to when the result is available.

Vector Functional Units

Most vector functional units perform operations on operands that are obtained
from one or two vector registers or from a vector and an S register. The shift and
population/parity functional units, which require only one operand, are
exceptions. Results from a vector functional unit are delivered to a vector
register.

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 151

Successive operand pairs are transmitted each CP to a functional unit. The
corresponding result emerges from the functional unitn CPs later, wheren is
the functional unit time and is constant for a given functional unit. The VL
register determines the number of operand pairs to be processed by a functional
unit.

The functional units described in this section are exclusively associated with
vector operations.

Vector Add Functional Unit

The vector add functional unit performs 64-bit integer addition and subtraction
for a vector operation and delivers the results to elements of a V register. The
unit executes instructions 154 and 155 (addition), and 156 and 157 (subtraction).
Instructions 154 and 156 use scalar register operands. The subtraction operation
uses two’s complement arithmetic. The Vk operand is complemented and then
added to the Aj operand. A 1 is added to the low-order bit position of the result.
The vector add functional unit does not detect overflow conditions.

The vector add functional unit time is 2 CPs. This time is measured from 1 CP
before the instruction enters the functional unit to 1 CP after the instruction leaves
the functional unit.

Vector Shift Functional Unit

The vector shift functional unit shifts the entire 64-bit contents of a vector register
element (single-shift) or the 128-bit value formed from two consecutive elements
of a V register (double shift). Shift counts are obtained from an A register and
are end-off with zero fill. All shift counts are considered positive unsigned
integers. If any bit higher than bit 6 is set, the shifted result is all 0’s.

The vector shift functional unit executes instructions 150 and 151 (single shift)
and instructions 152 and 153 (double shift). The functional unit times are 3 CPs
for instruction 152 and 2 CPs for instructions 150, 151, and 153. These times
are measured from 1 CP before the instruction enters the functional unit to 1 CP
after the instruction leaves the functional unit.

Full Vector Logical Functional Unit

The full vector logical functional unit performs a bit-by-bit manipulation of the
64-bit quantities for instructions 140 through 147. The full vector logical
functional unit also performs the logical operations that are associated with the
vector mask (175) instruction.

Operating Registers System Programmer Reference

152 Cray Research Proprietary CSM-0301-0B0

The full vector logical functional unit time is 2 CPs. This time is measured from
1 CP before the functional unit to 1 CP after the functional unit.

Second Vector Logical Functional Unit

The second vector logical functional unit can be enabled or disabled by setting
the enable second vector logical (ESVL) bit in the exchange package. When
enabled, the second vector logical functional unit performs the same bit-by-bit
manipulations of the 64-bit quantities that the full vector logical functional unit
performs for instructions 140 through 145.

The second vector logical and floating-point multiply functional units cannot be
used simultaneously because they share input and output data paths. In addition,
because these two units have shared paths, some codes that rely on floating-point
products may run slower if the second vector logical functional unit is enabled.
If the floating-point multiply unit is busy and the full vector logical unit is not
busy, a vector logical instruction uses the full vector logical functional unit.

The second vector logical functional unit is disabled through software by clearing
bit 20 of word 6 in the flag register of the user’s exchange package or by clearing
bit 43 in the hardware exchange package of word 6. When the second vector
logical unit is disabled, all 140 through 145 instructions use the full vector logical
unit.

The second vector logical functional unit time is 1 CP. This time is measured
from 1 CP before the instruction enters the functional unit to 1 CP after the
instruction leaves the functional unit.

Vector Population/Parity Functional Unit

The vector population/parity functional unit performs population counts and
parity for vector operations. It executes instructions 174ij1 (vector population
count) and 174ij2 (vector population count parity). This functional unit shares
some logic with the reciprocal approximation functional unit. Therefore, the k
field must be nonzero for the instructions to be recognized as population/parity
instructions.

Instruction 174ij1 counts the 1 bits in each element of the Vj register and returns
this number to the Vi register; the total number of 1 bits is the population count.
This population count can be an odd or an even number, as indicated by its
low-order bit.

Instruction 174ij2 counts the number of 1 bits in each element of the Vj register
and returns a 1-bit parity result to the Vi register. Parity can be odd (signified by
a 1) or even (signified by a 0).

System Programmer Reference Operating Registers

CSM-0301-0B0 Cray Research Proprietary 153

The vector population/parity functional unit time is 4 CPs. This time is measured
from 1 CP before an element enters the functional unit to 1 CP after the element
leaves the functional unit.

Floating-point Functional Units

Three scalar and three vector floating-point functional units perform
floating-point arithmetic for scalar and vector operations. When a scalar
instruction executes, operands are obtained from S registers and results are
delivered to an S register. When most vector instructions execute, operands are
obtained from pairs of V registers, or from an S register and a V register. Results
are delivered to a vector register. When a floating-point functional unit is used
for a vector operation, the general description of vector functional units applies.
The two sets of floating-point functional units are completely independent.

Floating-point Add Functional Unit

The individual floating-point add functional units perform addition and
subtraction of 64-bit operands in floating-point format. They execute
instructions 062 (scalar add), 063 (scalar subtract), and 170 through 173 (vector
add and subtract). A result is normalized even when operands are unnormalized.
The floating-point add functional unit detects overflow and underflow
conditions; only overflow conditions are flagged.

The scalar floating-point add functional unit time is 6 CPs. This functional unit
time is measured from instruction issue to when the result is available.

Floating-point Multiply Functional Unit

The individual floating-point multiply functional units perform full- and
half-precision multiplication of 64-bit operands in floating-point format. They
execute instructions 064 through 067 (scalar multiplication) and instructions 160
through 167 (vector multiplication). The half-precision product is rounded; the
full-precision product can be rounded or not rounded.

The vector floating-point multiply functional unit also executes instruction
166ijk. This instruction computes the 32-bit product of the contents of the Sj
register and the elements of the Vk register and transmits the results to the Vi
register.

The vector floating-point multiply and second vector logical functional units
cannot be used simultaneously because they share control hardware. If one of
these functional units is reserved, the other functional unit is also reserved.

Operating Registers System Programmer Reference

154 Cray Research Proprietary CSM-0301-0B0

Input operands must be normalized; the floating-point multiply functional unit
delivers a normalized result only if both input operands are normalized. The
floating-point multiply functional unit detects overflow and underflow
conditions; only overflow conditions are flagged.

The scalar floating-point multiply functional unit time is 8 CPs. This functional
unit time is measured from instruction issue to when the result is available.

The floating-point multiply functional unit recognizes both operands with zero
exponents as a special case and performs an integer multiply operation. The
result is considered an integer product, is not normalized, and is not considered
out of range. This case provides a fast method of computing a 48-bit integer
product, although the operands in this case must be shifted before the multiply
operation. Refer to the “Integer Arithmetic” subsection for more information on
integer multiplication.

Reciprocal Approximation Functional Unit

The individual reciprocal approximation functional unit finds the approximate
reciprocal of a 64-bit operand in floating-point format. These units execute
instructions 070 and 174ij0. Because the vector population/parity functional unit
shares some logic with this unit, the k field must be 0 for the instruction to be
recognized as a reciprocal approximation instruction.

The input operand must be normalized; the floating-point reciprocal
approximation functional unit delivers a correct result only if the input operand
is normalized. The high-order bit of the coefficient is not tested, but it is assumed
to be a 1. The floating-point reciprocal approximation functional unit detects
overflow and underflow conditions; both conditions are flagged.

The scalar reciprocal approximation functional unit time is 14 CPs. This
functional unit time is measured from instruction issue to when the result is
available.

System Programmer Reference Functional Unit Operations

CSM-0301-0B0 Cray Research Proprietary 155

Functional Unit Operations

Functional units in a CPU perform logical operations, integer arithmetic, and
floating-point arithmetic. Integer and floating-point arithmetic are performed in
two’s complement. The following subsections explain the logical operations,
the integer arithmetic, and the floating-point arithmetic used by the system.

Logical Operations

Scalar and vector logical functional units perform bit-by-bit manipulation of
64-bit quantities. Instructions are provided for forming logical products, sums,
differences, equivalences, and merges.

A logical product is the AND function. The following example shows an AND
function.

A logical sum is the inclusive OR function. The following example shows an
inclusive OR function.

A logical difference is the exclusive OR function. The following example shows
an exclusive OR function.

A logical equivalence is the exclusive NOR function. The following example
shows an exclusive NOR function.

Operand 1: 1 0 1 0

Operand 2: 1 1 0 0

Result: 1 0 0 0

Operand 1: 1 0 1 0

Operand 2: 1 1 0 0

Result: 1 0 0 0

Operand 1: 1 0 1 0

Operand 2: 1 1 0 0

Result: 1 1 1 0

Operand 1: 1 0 1 0

Operand 2: 1 1 0 0

Result: 1 0 0 1

Functional Unit Operations System Programmer Reference

156 Cray Research Proprietary CSM-0301-0B0

The merge operation uses two operands and a mask to produce results. The
following example shows a merge operation. The bits of operand 1 pass where
the mask bit is a 1. The bits of operand 2 pass where the mask bit is a 0.

Integer Arithmetic

All integers, whether 32 or 64 bits, are represented in the registers as shown in
Figure 32. The address add and address multiply functional units perform 32-bit
arithmetic in Y-mode. The scalar add and vector add functional units perform
64-bit arithmetic.

Figure 32. Integer Data Formats

Multiplication of two scalar (64-bit) integer operands is done using the
floating-point multiply instruction and one of two multiplication methods. The
method used depends on the magnitude of the operands and the number of bits
available to contain the product. The following paragraphs explain the 32-bit
integer multiply operation and the method that is used for operands greater than
24 bits.

32-bit Integer Multiplication

The floating-point multiply functional unit recognizes a condition in which both
operands have zero exponents as a special case; it is treated as an integer
multiplication operation. A complete multiplication operation is performed with
no truncation as long as the total number of bits in the two operands does not
exceed 48 bit positions. To multiply two integer numbers, set the exponent of

Operand 1: 1 0 1 0 1 0 1 0

Operand 2: 1 1 0 0 1 1 0 0

Mask: 1 1 1 1 0 0 0 0

Result: 1 0 1 0 1 1 0 0

Bits 31

Sign

30 0

Two’s Complement Integer (32 bits in Y-mode)

Bits 63

Sign

62 0Two’s Complement Integer (64 bits)

System Programmer Reference Functional Unit Operations

CSM-0301-0B0 Cray Research Proprietary 157

each operand (bits 48 through 62) equal to 0 and place each 32-bit integer value
in bit positions 24 through 47 of the operand’s coefficient field. To ensure
accuracy, the least significant 24 bits must be 0’s.

When the floating-point multiply functional unit performs the operation, it
returns the high-order 48 bits of the product as the result coefficient and leaves
the exponent field as 0. The result is a 48-bit quantity in bit positions 0 through
47; no normalization shift of the result is performed.

As shown inFigure 33, if operand 1 is 4 (octal) and operand 2 is 6 octal, a 48-bit
result of 30 octal is produced. Bit 63 follows the rules for multiplying signs and
the result is a signed-magnitude integer. Bits 63 of operands 1 and 2 are combined
with an XOR function to derive the sign of the result. The format of integers
expected by both the hardware and software is two’s complement, not signed
magnitude; therefore, negative products must be converted to two’s complement
form.

Figure 33. 24-bit Integer Multiply Performed in a Floating-point Multiply
Functional Unit

If the 24 least significant bits of the operand coefficients are not shifted so that
they are nonzero, the low-order 48 bits of the product could be nonzero, and the
high-order 48 bits (the returned part) could be one larger than expected. This is
caused by the truncation compensation constant that is added during a multiply.
The truncation compensation constant is discussed in more detail in the
“Floating-point Multiplication Algorithm” section onpage 167.

0 0 0 030Result

0 0 0 06Operand 2 Must be 0 to ensure
correct product

Bits 63 47 0

0 0 0 04

48

Operand 1

24 23

Must be 0 to ensure
correct product

62

Bits 63 47 048 24 2362

Bits 63 47 04862

Functional Unit Operations System Programmer Reference

158 Cray Research Proprietary CSM-0301-0B0

Multiplication of Operands Greater than 24 Bits

The second multiplication method is used when the operands are more than 24
bits long; multiplication is done by software that forms multiple partial products
and then shifts and adds the partial products.

A second integer multiplication operation performs a 32-bit multiplication
operation on the Sj operand and the Vk operand and puts the result in the Vi
register. The operands must be shifted left before the operation begins. The Sj
operand must be shifted left 31 decimal places, leaving the operand in bit
positions 62 through 31; bit positions 30 through 0 must be equal to 0 to ensure
accuracy (refer toFigure 34). The Vk operand must be shifted left 16 decimal
places, leaving the operand in bit positions 16 through 47; bit positions 0 through
15 must be equal to 0 to ensure accuracy. Bits 48 through 63 are zero filled. The
result of the multiply is right justified into bit positions 0 through 31, while bit
positions 32 through 63 are zero filled.

Although no integer division operation is provided, integer division can be
carried out by converting the numbers to the floating-point format and then using
the floating-point functional units. For more information on integer division,
refer to the “Floating-point Division Algorithm” subsection.

Figure 34. 32-bit Integer Multiply Performed in a Floating-point Multiply
Functional Unit

Bits 63 31 0

0 0

32

Result

0

(Vk)

16 15

Must be 0 to ensure
correct product

031 30

Must be 0 to ensure
correct product

Operand

Operand

Result

(Sj)

Bits 63 62

Bits 63 62

0 0

48 47

System Programmer Reference Functional Unit Operations

CSM-0301-0B0 Cray Research Proprietary 159

Floating-point Arithmetic

The scalar and vector instructions use floating-point arithmetic. The following
subsections explain floating-point arithmetic:

• Floating-point data format
• Exponent ranges
• Normalized floating-point numbers
• Floating-point range errors
• Floating-point addition
• Multiplication and division algorithms
• Double-precision numbers

Floating-point Data Format

Floating-point numbers are represented in a standard format throughout the
CPU;Figure 35 shows this format, which has three fields: coefficient sign,
exponent, and coefficient.

Figure 35. Floating-point Data Format

This format is a packed representation of a binary coefficient and an exponent
(power of two). The coefficient sign is located in bit position 63 and is separated
from the rest of the coefficient. If this bit is equal to 0, the coefficient is positive;
if this bit is equal to 1, the coefficient is negative. The exponent is represented
as a biased integer number in bit positions 62 through 48; each exponent is biased
by 40000 (octal). Bit 61 is the sign of the exponent; a 0 indicates a positive
exponent, and a 1 indicates a negative exponent. Bit 62 is the bias of the exponent.

The coefficient is a 48-bit signed fraction; the sign of the coefficient is located
in bit position 63. Because the coefficient is in signed-magnitude format, it is
not complemented for negative values. A normalized floating-point number has
a 1 in bit position 47, and an unnormalized floating-point number has a 0 in this
bit position (normalized numbers are discussed in more detail later in this
section).

Bits 63 48 062 47

Coefficient
Sign

Exponent Coefficient

Binary Point

Functional Unit Operations System Programmer Reference

160 Cray Research Proprietary CSM-0301-0B0

Figure 36 and the following steps show the relationship between the biased
exponent and the coefficient. The following steps convert a floating-point
number to its decimal equivalent.

Figure 36. Internal Representation of a Floating-point Number

1. Subtract the bias from the exponent to get the integer value of the
exponent:

2. Multiply the normalized coefficient by the power of 2 indicated in the
exponent to get the result:

0.5634 (octal) x 2 (exp 9) = 563.40 (octal) = 371.5 (decimal)

A zero value or an underflow result is not biased and is represented as a word
of all 0’s. A negative 0 is not generated by any floating-point functional unit,
except the case in which a negative 0 is one operand going into the floating-point
multiply or floating-point add functional unit.

40011 (octal)

-40000 (octal)

11 (octal) = 9 (decimal)

Bits 63 48 062 47

Coefficient
Sign

Exponent Normalized Coefficient

Binary Point

0 400118 56320000000000008

System Programmer Reference Functional Unit Operations

CSM-0301-0B0 Cray Research Proprietary 161

Exponent Ranges

The exponent portion of the floating-point format is represented as a biased
integer in bits 48 through 62. The bias added to the exponents is 40000 (octal),
which represents an exponent of 2 (exp 0).Figure 37 shows the biased and
unbiased exponent ranges.

Figure 37. Biased and Unbiased Exponent Ranges

In terms of decimal values, the floating-point format of the system allows the
accurate expression of numbers to about 15 decimal digits in the approximate
decimal range of 10 exp. -2466 through 10 exp +2466.

Normalized Floating-point Numbers

A nonzero floating-point number is normalized if the most significant bit of the
coefficient (bit 47) is nonzero. This condition implies that the coefficient was
shifted as far left as possible and that the exponent adjusted accordingly;
therefore, a normalized floating-point number has no leading 0’s in its
coefficient. The exception is a normalized floating-point 0, which is all 0’s.

When a floating-point number is created by inserting 40060 (octal) into the
exponent and a 48-bit integer into the coefficient, normalize the result before
using it in a floating-point operation. Normalization is accomplished by adding
the unnormalized floating-point operand to 0. Because S0 provides a 64-bit zero
when used in the Sj field of an instruction, an operand in Sk is normalized with
the 062i0k instruction. Si, which can be the same register as Sk, contains the
normalized result.

The reciprocal approximation functional unit must have normalized numbers to
produce correct results; using unnormalized numbers produces inaccurate
results. The floating-point multiply functional unit does not require normalized
numbers to get correct results; however, more accurate results occur when
normalized numbers are used.

The floating-point add functional unit does not require normalized numbers to
get correct results. The floating-point add functional unit does, however,
automatically normalize all its results; unnormalized floating-point numbers
may be routed through this functional unit to take advantage of this process.

20

400008200008

2-20000
8 217777

8

577778

Biased Exponent Range

Negative Range Positive Range

Unbiased Exponent Range

Functional Unit Operations System Programmer Reference

162 Cray Research Proprietary CSM-0301-0B0

Floating-point Range Errors

To ensure that the limits of the functional units are not exceeded, a range check
for overflow and underflow conditions is made on the exponent of each
floating-point number as it enters the functional unit. In the floating-point add
and floating-point multiply functional units, bits 61 and 62 are checked; if both
are equal to 1, the exponent is equal to or greater than 60000 (octal) and an
overflow condition is detected.

In the reciprocal approximation functional unit, the exponent is complemented
and the value of 2 is added before the operation proceeds. When the check is
made in a reciprocal approximation operation, the exponent must be equal to or
greater than 60002 (octal) for an overflow condition to occur.

When an overflow condition is detected, an interrupt occurs only if the
interrupt-on floating-point error (IFP) bit is set in the mode register and the
system is not in monitor mode. The IFP bit can be set or cleared by a user mode
program; the Cray Research COS operating system, or UNICOS, keeps a bit in
the exchange package to indicate the condition of this mode bit. System software
manipulates the mode bit and uses the exchange package bit to indicate how the
mode is left to the user.

To check for an underflow condition in the floating-point add and multiply
functional units, bits 61 and 62 are checked; if both are equal to 0, then the
exponent is less than or equal to 17777 (octal), and an underflow condition is
detected. No flag is set, but the exponent and coefficient are both set to 0’s.

Because the reciprocal approximation operation complements and adds 2 to a
floating-point number, the result exponent must be less than or equal to 20001
(octal) for an underflow condition to occur. The underflow condition in the result
exponent signals an overflow condition on the original exponent and forces the
original exponent to 60000 (octal) and bit 47 to 0.

Floating-point Add Functional Unit Range Errors

A floating-point add range-error condition occurs in scalar operands when the
larger incoming exponent is greater than or equal to 60000 (octal). This condition
sets the floating-point error (FPE) flag in the flag register, and an exponent of
600008 is sent to the result register along with the computed coefficient (refer
toFigure 38). If a floating-point addition or floating-point subtraction operation
generates an exponent of less than 20000 (octal) or a coefficient of 0, the
condition is considered an underflow. No fault is generated, and the word
returned from the functional unit consists of all 0 bits.

System Programmer Reference Functional Unit Operations

CSM-0301-0B0 Cray Research Proprietary 163

Figure 38. Floating-point Add and Floating-point Multiply Range Errors

Floating-point Multiply Functional Unit Range Errors

The floating-point multiply functional unit has the same range error conditions
as the floating-point add functional unit (refer toFigure 39). The only exception
is when both exponents are equal to 0; the multiply is allowed to proceed as an
integer multiply, leaving the exponent and sign bits equal to 0.

Out-of-range conditions are tested before normalization in the floating-point
multiply functional unit. The way in which the out-of-range conditions are
handled can be determined by using the exponent matrix shown inFigure 39.
The exponent of the result, for any set of exponents, falls into one of the following
seven zones. Only zones 6 and 7 generate floating-point errors.

In Figure 39, a zone number is represented by a number inside of a circle. Octal
number exponents of the two operands are represented by a number inside of a
square.

A list of zones and their descriptions immediately followsFigure 39.

Bits 63 48 0

0 0 0 0

62 47

Bits 63 48 0

60000

62 47

Coefficient, No Flag Set

Coefficient, Flag Set

0

ExponentSign

ExponentSign

Calculated0Overflow

Underflow

Functional Unit Operations System Programmer Reference

164 Cray Research Proprietary CSM-0301-0B0

Figure 39. Exponent Matrix for a Floating-point Multiply Functional Unit

Exponent of
Operand 2

17
77

7

1

20
00

1

37
77

7

20
00

40
00

57
77

7

40
00

0

60
00

0

77
77

7

3

6

63

3

3

3

3

3

3

2

3

3

3

4

5

4

6

7

Exponent of Operand 1

00
00

0

00
00

1
00001

00000

17777

20000

20001

37777

40000

40001

57777

60000

77777

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
• • • • • • • • • • • • • • •

•
•

•
•

•
•

•
•

• • • • • • • • •• • • • • • • • •

In Figure 39, a zone number is represented by a number inside of a circle. Octal
number exponents of the two operands are represented by a number inside of a
square.

NOTE:

System Programmer Reference Functional Unit Operations

CSM-0301-0B0 Cray Research Proprietary 165

Floating-point Reciprocal Approximation Functional Unit Range Errors

For the floating-point reciprocal approximation functional unit, an incoming
operand with an exponent less than or equal to 20001 (octal) or greater than or
equal to 60002 (octal), causes a floating-point range error. The error flag is set
and an exponent of 60000 (octal) and the computed coefficient with bit 47 set
to 0 are sent to the result register (refer toFigure 40).

Figure 40. Floating-point Reciprocal Approximation Range Errors

Zone Description

1 Zone 1 indicates a simple integer multiply; no fault is possible.

2 Exponents in Zone 2 result in an underflow condition; the result
is set to +0. (Multiply by 0 is in this group.)

3 An underflow condition may occur on this boundary in Zone 3.
When a normalized shift is required, the underflow is not
detected, and the coefficient and the exponent are not zeroed out.
The exponent used before the shift is 2000 (octal); the exponent
used after the shift is 177778. An underflow condition is detected
on the exponent used for an unshifted product coefficient.

4 The use of an operand with an underflow exponent in Zone 4 is
allowed if the final result is within the range 20000 (octal) to
57777 (octal).

5 Zone 5 is the normal operand range; normal results are produced.

6 An overflow condition is flagged on this boundary in Zone 6. If a
normalized shift is required, the value should be within bounds if
the exponent is 57777 (octal). Because overflow is detected, a
60000 (octal) is inserted in the product as the final exponent
when the exponent for the unnormalized shift condition is used.

7 Within Zone 7, an overflow fault is flagged and the product
exponent is set to 60000 (octal).

Bits 63 48 0

60000

62 47

Coefficient, Bit 47 = 0, Flag Set

Coefficient, Bit 47 = 0, Flag Set

0

ExponentSign

ExponentSign

Calculated0Overflow

Underflow 60000 Calculated

Bits 63 48 062 47

Functional Unit Operations System Programmer Reference

166 Cray Research Proprietary CSM-0301-0B0

Floating-point Addition Algorithm

Floating-point addition or subtraction is performed in a 49-bit register to allow
for a sum that carries an additional bit position. The algorithm performs three
operations: it equalizes exponents, adds coefficients, and normalizes results.

To equalize the exponents, the larger of the two exponents is retained. The
coefficient of the smaller exponent is shifted right by the difference of the two
exponents or until both exponents are equal. Bits shifted out of the register are
lost; no roundup occurs. Because the coefficient is only 48 bits, any shift beyond
48 bits causes the smaller coefficient to become 0’s.

After the two coefficients are equalized, they are added. Two conditions are
analyzed to determine whether an addition or subtraction operation occurs. The
two conditions are the sign bits of the two coefficients and the type of instruction
(an add or subtract) issued. The following list shows how the operation is
determined:

• If the sign bits are equal and an add instruction is issued, an addition
operation is performed.

• If the sign bits are not equal and an add instruction is issued, a subtraction
operation is performed.

• If the sign bits are equal and a subtract instruction is issued, a subtraction
operation is performed.

• If the sign bits are not equal and a subtract instruction is issued, an
addition operation is performed.

The last operation normalizes the results. To normalize the result, the coefficient
is shifted left by the number of leading 0’s (the coefficient is normalized when
bit 47 is a 1). The exponent must also be decremented accordingly. If a carry
operation across the binary point occurs during an addition operation, the
coefficient is shifted right by 1 and the exponent increases by 1.

The normalization feature of the floating-point add functional unit is used to
normalize any floating-point number. Simply pair the number with a zero
operand and send both through the floating-point add functional unit.

A range check is performed on the result of all additions; refer to “Floating-point
Range Errors” for more information on how the result is checked.

System Programmer Reference Functional Unit Operations

CSM-0301-0B0 Cray Research Proprietary 167

Floating-point Multiplication Algorithm

The floating-point multiply functional unit receives two 48-bit floating-point
operands from either an S or V register as input into a multiply pyramid (refer
to Figure 41). Multiplication is commutative, that is, AX B = B X A. The signs
of the two operands are exclusively ORed, the exponents are added, the bias is
subtracted, and the two 48-bit coefficients are multiplied. If the coefficients are
both normalized, multiplying them produces a full product of either 95 or 96
bits. A 96-bit product is normalized as it is generated, but a 95-bit product
requires a left shift of 1 to generate the final coefficient. If the shift is done, the
final exponent is reduced by 1 to reflect the shift.

Because the result register (an S or V register) can hold only 48 bits in the
coefficient, only the upper 48 bits of the 96-bit result are used. The lower 48 bits
are never generated. The following paragraphs describe the truncation process
that is used to compensate for the loss of bits in the product. It assumes that no
shift was required to generate the final product; power-of-two designators are
used.

The floating-point multiply functional unit truncates part of the low-order bits
of the 96-bit product. To adjust for this truncation, a constant is unconditionally
added above the truncation. The average value of this truncation is 9.25X 2-56,
which was determined by adding all carries produced by all possible
combinations that could be truncated and dividing the sum by the number of
possible combinations. Nine carries are injected at bit position -56 to compensate
for the truncated bits.

The effect of the truncation without compensation is at most a result coefficient
1 smaller than expected. With compensation, the results range from 1 too large
to 1 too small in bit position -48. Approximately 99% of the values have zero
deviation from the result if a full 96-bit product was present. Rounding is
optional, but truncation compensation is not. The rounding method adds a
constant so that the result is 50% high [0.25X 2-48 (high)] 38% of the time, and
25% low [0.125X 2-48 (low)] 62% of the time, which results in a near-zero
average rounding error. In a full-precision rounded multiplication operation, 2
rounding bits are entered into the summation at bit positions -50 and -51 and are
allowed to propagate.

For a half-precision multiplication operation, rounding bits are entered into the
summation at bit positions -32 and -31. A carry bit that results from this entry
is allowed to propagate upward, and the 29 most significant bits of the normalized
result are transmitted back.

Functional Unit Operations System Programmer Reference

168 Cray Research Proprietary CSM-0301-0B0

The result variations caused by this truncation and rounding are in one of the
following ranges:

-0.23X 2-48 to + 0.57X 2-48

or
-8.17X 10-16 to + 20.25X 10-16

With a full 96-bit product and rounding equal to one-half the least significant
bit, the following result variation is expected:

-0.5X 2-48 to + 0.5X 2-48

Figure 41. Floating-point Multiply Partial-product Sums Pyramid

Product Bit
Designation:

If shift is needed to
normalize coefficient.

If shift is not needed to
normalize coefficient.

4

f
f

1
0

0
1

Bits -1

Bits -1

j Multiplicand

-11

-11

-21

-21

-31

-31

-41

-41

-48

-48

hh

1 -55

-56

2

3

hh = 112 for half-precision round, 002 for full-precision rounded or full-precision
unrounded multiplication operation.

ff = 112 for full-precision round, 002 for half-precision rounded or full-precision
unrounded multiplication operation.

Truncation compensation constant; 10012 used for all multiplication operations.

Used only for 32-bit integer multiplication operation with instruction 166ijk. Summations
for any other instructions are blocked.

1

2

3

4

i Product

k Multiplier

System Programmer Reference Functional Unit Operations

CSM-0301-0B0 Cray Research Proprietary 169

Floating-point Division Algorithm

A CRAY J90 series computer system does not have a single functional unit
dedicated to the division operation. Rather, the floating-point multiply and
reciprocal approximation functional units together carry out the algorithm. The
following paragraphs explain the algorithm and how it is used in the functional
units.

Finding the quotient of two floating-point numbers involves two steps. For
example, to find the quotient A/B, first the B operand is sent through the
reciprocal approximation functional unit to obtain its reciprocal, 1/B. Second,
this result along with the A operand is sent to the floating-point multiply
functional unit to obtain the product AX 1/B.

The reciprocal approximation functional unit uses an application of Newton’s
method for approximating the real root of an arbitrary equation F(x) = 0 to find
reciprocals.

To find the reciprocal, the equation F(x) = 1/x - B = 0 must be solved. To do
this, a number, A, must be found so that F(A) = 1/A - B = 0. That is, the number
A is the root of the equation 1/x - B = 0. The method requires an initial
approximation (or guess, which is shown as x0 in Figure 42) sufficiently close
to the true root (which is shown as xt in Figure 42). x0 is then used to obtain a
better approximation; this is done by drawing a tangent line (line 1 inFigure 42)
to the graph of y = F(x) at the point [x0, F(x0)]. The x-intercept of this tangent
line becomes the second approximation, x1. This process is repeated, using
tangent line 2 to obtain x2, and so on.

The following iteration equation is derived from this process:

In the equation, x(i+1) is the next iteration, xi is the current iteration, and B is the
divisor. Each x(i+1) is a better approximation than xi to the true value, xt. The
exact answer is generally not obtained at once because the correction term is not
exact. The operation is repeated until the answer becomes sufficiently close for
practical use.

x(i+1) = 2xi - x
2
iB = xi (2 - xiB)

Functional Unit Operations System Programmer Reference

170 Cray Research Proprietary CSM-0301-0B0

Figure 42. Newton’s Method of Approximation

The mainframe uses this approximation technique based on Newton’s method.
A hardware look-up table provides an initial guess, x0, with an accuracy of 8 bits
to start the process. The following iterations are then calculated.

The reciprocal approximation functional unit calculates the first two iterations,
while the floating-point multiply functional unit calculates the third iteration.
The third iteration uses a special instruction within the floating-point multiply

Iteration Operation Description

1 x1 = x0(2 - x0B) The first approximation is done in the
reciprocal approximation functional unit and
is accurate to 16 bits.

2 x2 = x1(2 - x1B) The second approximation is done in the
reciprocal approximation functional unit and
is accurate to 30 bits.

3 x3 = x2(2 - x2B) The third approximation is done in the
floating-point multiply functional unit to
calculate the correction term.

y = F(x)

Tangent Line

Tangent Line 2

x2 x1 x0

y

x
xt

[x1, F(x1)]

[x0, F(x0)]

System Programmer Reference Functional Unit Operations

CSM-0301-0B0 Cray Research Proprietary 171

functional unit to calculate the correction term. This iteration is used to increase
accuracy of the reciprocal approximation functional unit’s answer to full
precision (the floating-point multiply functional unit can provide both full- and
half-precision results).

The reciprocal iteration is designed for use once with each half-precision
reciprocal that is generated. If the third iteration (the iteration performed by the
floating-point multiply functional unit) results in an exact reciprocal, or if an
exact reciprocal is generated by some other method, performing another iteration
results in an incorrect final reciprocal. A fourth iteration should not be done.

The following example shows how the floating-point multiply functional unit
provides a full-precision result, computing the value of S1/S2.

The reciprocal approximation in Step 1 is correct to 30 bits. By Step 3, it is
accurate to 48 bits. This iteration answer is applied as an operand in a
full-precision rounded multiplication operation (Step 4) to obtain a quotient
accurate to 48 bits. Additional iterations may produce erroneous results.

When 29 bits of accuracy are sufficient, the reciprocal approximation instruction
is used with the half-precision multiply to produce a half-precision quotient in
only two operations, as shown in the following example.

The 19 low-order bits of the half-precision multiply results are returned as 0’s
with a rounding applied to the low-order bit of the 29-bit result.

Step Operation Unit

1 S3 = 1/S2 Reciprocal approximation functional unit

2 S4 = [2 - (S3 * S2)] Floating-point multiply functional unit

3 S5 = S4 * S3 Floating-point multiply functional unit
using full-precision; S5 now equals 1/S2
to 48-bit accuracy

4 S6 = S5 * S1 Floating-point multiply functional unit
using full-precision rounding

Step Operation Unit

1 S3 = 1/S2 Reciprocal approximation functional unit

2 S6 = S1 * S3 Floating-point multiply functional unit in
half-precision

Functional Unit Operations System Programmer Reference

172 Cray Research Proprietary CSM-0301-0B0

Another method of computing division follows:

With this method, the correction to reach a full-precision reciprocal is done after
the numerator is multiplied by the half-precision reciprocal rather than before
the multiplication.

The coefficient of the reciprocal produced by this alternative method can be
different by as much as 2X 2-48 from the first method described for generating
full-precision reciprocals. This difference can occur because one method can
round up as much as twice, while the other method may not round at all. One
rounding can occur while the correction is generated and the second rounding
can occur when producing the final quotient. Therefore, use the same method to
compare the reciprocals each time they are generated. The Cray Research Fortran
CFT and CFT77 compilers use a consistent method to ensure that the reciprocals
of numbers are always the same.

Double-precision Numbers

The CPU does not provide special hardware for performing double- or
multiple-precision operations. Double-precision computations with 95-bit
accuracy are available through software routines that Cray Research provides.

Step Operation Unit

1 S3 = 1/S2 Reciprocal approximation functional unit

2 S5 = S1 * S3 Floating-point multiply functional unit

3 S4 = [2 - (S3 * S2)] Floating-point multiply functional unit

4 S6 = S4 * S15 Floating-point multiply functional unit

System Programmer Reference Functional Unit Operations

CSM-0301-0B0 Cray Research Proprietary 173

Parallel Processing Features

A CRAY J90 series computer system has several special features that enhance
the parallel processing capabilities inherent in the system. The following
subsections discuss two types of parallel processing that
CRAY J90 series systems use:

• Parallel processing within a single CPU
• Parallel processing among two or more CPUs

Parallel processing features within a single CPU include instruction pipelining
and segmentation, functional unit independence, and vector processing
(vectorization). The first two features are inherent hardware features of the
system; a programmer has little control over these features. However, the vector
processing feature can be manipulated by the programmer to provide optimum
throughput. Refer to “Vector Processing” for more information on vector
processing.

Parallel processing among two or more CPUs is called multiprocessing, which
is the capability of several programs to run concurrently on multiple CPUs of a
single mainframe. Included in this category are multitasking and the Autotasking
feature of the CF77 Fortran compiling system. Multitasking is the capability to
run two or more parts (or tasks) of a single program in parallel on different CPUs
within a mainframe. The Autotasking feature provides automatic
multiprocessing; it automatically partitions user programs among multiple CPUs
without user interface.

Because the intent of this document is to present programmers with system
hardware information, the following subsections focus on the parallel processing
features that are most closely related to the hardware (the parallel processing
features that execute within a single CPU of a mainframe). A basic definition
and explanation of multiprocessing, multitasking, and the Autotasking feature
is included.

Pipelining and Segmentation System Programmer Reference

174 Cray Research Proprietary CSM-0301-0B0

Pipelining and Segmentation

Pipelining is the process in which an operation or instruction begins before a
previous operation or instruction completes. Pipelining requires fully segmented
hardware. Segmentation is the process by which an operation is divided into a
discrete number of sequential steps, or segments. Fully segmented hardware uses
this feature to perform one segment of the operation during a single clock period
(CP).

At the beginning of the next CP, the partial results are sent to the next segment
of the hardware for processing in the next step of the operation. During this CP,
the previous hardware segment processes the next operation. Without segmented
hardware, an entire operation or instruction must complete before another
operation or instruction starts. In the CRAY J90 series system, all hardware is
fully segmented.

Therefore, pipelining occurs during all hardware operations such as exchange
sequences, memory references, instruction fetch sequences, instruction issue
sequences, and functional unit operations. The pipelining and segmentation
features are critical to the execution of vector instructions.

Figure 43 shows how a set of elements is pipelined through a segmented vector
functional unit. In the first CP, element 1 of register V1 and element 1 of register
V2 enter the first segment of the functional unit. During the next CP, the partial
result is moved to the second segment of the functional unit, and element 2 of
both vector registers enters the first segment. This process continues each CP
until all elements are completely processed.

System Programmer Reference Pipelining and Segmentation

CSM-0301-0B0 Cray Research Proprietary 175

Figure 43. Segmentation and Pipelining Example

In this example, the functional unit is divided into five segments; the functional
unit can process up to five pairs of elements simultaneously. After 5 CPs, the
first result leaves the functional unit and enters vector register V3; subsequent
results are available at the rate of one result per CP.

CP
1

2

3

4

5

1
1

2

3

1

2

3

2 5
Functional Unit Segment

4

5

6

4

5

1

2

3

4

1

2

3

1

2

3 4

Elements in Each
Segment During
Successive CPs

1 2 3 4 5

Segments

Functional Unit

Element 1
Element 2

Element N

Vector Register V2

Element 1
Element 2

Element N

Vector Register V1

Element 1
Element 2

Element N

Vector Register V3

Functional Unit Independence System Programmer Reference

176 Cray Research Proprietary CSM-0301-0B0

Functional Unit Independence

The specialized functional units in the system handle the arithmetic, logical, and
shift operations. Most functional units are fully independent; any number of
functional units can process instructions concurrently. Functional unit
independence enables different operations such as multiplications and additions
to proceed in parallel.

For example, the equation A = (B + C)X D X E could be run as follows. If
operands B, C, D, and E are loaded into the S registers, three instructions are
generated for the equation: one that adds B and C, one that multiplies D and E,
and one that multiplies the results of these two operations. The multiplication of
D and E is issued first, followed by the addition of B and C. The addition and
the multiplication proceed concurrently; because the addition takes less time to
run than the multiplication, they complete at the same time. The addition
operation is essentially hidden in that it occurs during the same time interval as
the multiplication operation. The results of these two operations are then
multiplied to obtain the final result.

Multiprocessing and Multitasking

Users can incorporate parallel processing features known as multiprocessing and
multitasking; this category also includes microtasking.

Parallel processing among two or more CPUs is called multiprocessing, which
is the capability of a program to run concurrently on multiple CPUs of a single
mainframe. Applying more than one processor to a single job implies that the
job has software tasks (parts) that can run in parallel. Such a job can be logically
or functionally divided to allow two or more parts of the work to run
simultaneously (that is, in parallel). One example of multiprocessing is a
weather-modeling job in which the northern hemisphere calculation is one part
and the southern hemisphere another part. Distinct code segments are not needed;
the same code runs on multiple processors simultaneously, with each processor
acting on different data.

Multitasking is the capability to run two or more tasks of a single program in
parallel on different CPUs within a mainframe. The multitasking theory is that
a program that runs on a dedicated system in wall clock timet can be multitasked
to run in a time as short ast/n, if modified to usen or more parallel tasks on a
machine withn CPUs.

System Programmer Reference Multiprocessing and Multitasking

CSM-0301-0B0 Cray Research Proprietary 177

In practice, however, a speedup factor ofn is not quite attainable. In some
instances, multitasking can actually increase a program’s execution time if the
multitasking overhead decreases performance more than parallel execution time
improves it. The following factors can limit the maximum improvement for a
program:

• Not all parts of a program can be divided into parallel tasks.

• Those parts that can be multitasked may depend on one another so that, at
run time, one or more tasks must wait until others complete some
operation.

• Use of the multitasking features incurs overhead that cannot be recovered.

The CFT compiler on the system automatically uses the vector hardware to
perform operations on inner DO loops that have no data dependencies. Once
such optimizing is complete, a single processor can work no faster, but more
than one processor could operate on separate parts of the data simultaneously to
achieve results faster. Microtasking permits multiple processors to work on a
Fortran program at the DO-loop level. The namemicrotasking was chosen
because multiprocessing is efficient even at a DO-loop level where the task size,
or granularity, may be small.

Microtasking also works well when the number of processors available is
unknown or may vary during the program’s execution. This means that
microtasked jobs do not require a dedicated system, although they perform best
in a dedicated environment with no competing jobs.

Advanced programming skills and tools are needed to successfully use
multiprocessing, multitasking, and microtasking concepts in order to promote
more efficient programs. These features are thoroughly discussed and explained
in Cray Research software publications.

Autotasking Feature System Programmer Reference

178 Cray Research Proprietary CSM-0301-0B0

Autotasking Feature

System analysts and programmers can use the Autotasking® component of the
CF77® Fortran compiling system, which uses automatic multitasking, to
automatically detect whether portions of their programs can be run in parallel.
The Autotasking feature is an extension of multiprocessing and microtasking
and is designed to make parallel processing easier to use. The Autotasking feature
alters a Fortran program to allow it to run simultaneously on multiple CPUs.
Refer to theAutotasking User’s Guide, publication number SN-2088, for more
detailed information on the Autotasking feature.

System Programmer Reference Enabling and Disabling the Maintenance Mode

CSM-0301-0B0 Cray Research Proprietary 179

Maintenance Mode

The maintenance mode feature of a CRAY J90 series system allows a
programmer to write programs that assist in locating hardware failures in central
memory. By using maintenance mode, a programmer can disable memory error
correction and replace check bits with data bits.

Enabling and Disabling the Maintenance Mode

A maintenance mode enable bit for each central processing unit (CPU) is located
in the configuration register for each CPU. Setting the maintenance bit enables
the maintenance mode in the CPU. Maintenance functions can then be set and
cleared by machine instructions.

Clearing the maintenance mode enable bit in the configuration register disables
the maintenance mode of a CPU. With maintenance mode disabled, existing
maintenance functions are cleared, and machine instructions cannot set any new
maintenance functions.

Using Maintenance Mode

Two instructions set and clear all maintenance functions within the maintenance
mode. Instructions operate only in a CPU in monitor mode; they execute as
no-operation (no-op) instructions in a CPU that is not in monitor mode.
Instruction 0015j1 enables one of six maintenance functions. These instructions
must be entered in machine code; Cray Assembly Language (CAL) does not
support them. Allow 10 clock periods (CPs) for maintenance functions to be set
or cleared. Ensure that no memory reference that may be affected by the
maintenance functions can occur within 10 CPs after a 0015j1 or 073i31
instruction issues.

Using Maintenance Mode System Programmer Reference

180 Cray Research Proprietary CSM-0301-0B0

Table 29 lists the maintenance functions that the 0015j1 instruction sets for all
values ofj. Multiple maintenance functions can be set by executing the 0015j1
instruction more than once with different values ofj. All maintenance functions
remain set until they are cleared by a 073i31 instruction or until the maintenance
mode is disabled.

Instructions 001501 and 001511 disable error correction during memory read
operations that use ports A and B. After one of these instructions is executed,
memory read data passes through the error-correction logic without being
corrected, regardless of the state of the check bits. Error detection and reporting
continue as usual. The mode register bits can still enable or disable error
interrupts.

Table 29. 0051j1 Instruction Operation

Maintenance Code Description

001501 Disable port A error correction.

001511 Disable port B error correction.

001521 Disable port D error correction.

001541 Replace check bits with data bits on memory writes.

Replace data bits with check bits on memory reads.

Replacement bits:

Data Bit Check Bit

0
8

16
24
32
40
48
56

64
65
66
67
68
69
70
71

001551 Replace check bits with Vk data bits on the path to the VA
ASIC during execution of 1771jk instructions.

Replacement bits:

Data Bit Check Bit

0
1
2
3
4
5
6
7

64
65
66
67
68
69
70
71

NOTE: These instructions are privileged to monitor mode.

System Programmer Reference Using Maintenance Mode

CSM-0301-0B0 Cray Research Proprietary 181

Instruction 001541 allows the programmer to define the check bits that are stored
with a data word, instead of allowing the check-bit generation logic to determine
the check bits. It also allows the programmer to read the check bits (refer to
Figure 44). After the 001541 instruction is executed, all memory write references
cause data bits 0, 8, 16, 24, 32, 40, 48, and 56 to be stored as check bits 0 through
7. Memory read references cause check bits 0 through 7 to replace the appropriate
data bits.

Figure 44. Instruction 001541 Operation

Instruction 001551 modifies the operation of instruction 1771jk. After
instruction 001551 executes, the 1771jk instruction no longer performs a scatter
operation, but instead performs a stride operation similar to the 1770jk
instruction. Register A0 contains the base address, Ak the address increment,
and Vj the data to be written to memory. Register Vk is no longer used for
addressing. Instead, Vk data bits 0 through 7 are written to memory as check bits
0 through 7. Vk data bits 8 through 63 are not used.

Instructions 001531 and 001561 are not used. Instruction 001571 is reserved for
future use.

Instruction 073i31 clears all maintenance functions set by the 0015j1
instructions, transfers the contents of the status register to register Si, and clears
the performance monitor pointer.

Central Memory
Write Data Bits 0, 8, 16,
24, 32, 40, 48, 56

All Other Write Data Bits

Data Bits
0, 8, 16, 24,

32, 40, 48, 56

Other Data Bits

Check Bits
0 through 7

Read Data Bits 0, 8, 16,
24, 32, 40, 48, 56

All Other Read Data Bits

CPU Instructions System Programmer Reference

182 Cray Research Proprietary CSM-0301-0B0

CPU Instructions

The following subsections explain the instruction formats and special register
values that the computer system uses. A central processing unit (CPU)
instruction summary is included as well as a quick reference table of all CPU
instructions.

System Programmer Reference Quick Reference Table of CPU Instructions

CSM-0301-0B0 Cray Research Proprietary 183

Quick Reference Table of CPU Instructions

Table 30. Quick Reference Table of CPU Instructions

Machine Instruction CAL Syntax Description

000000 ERR Error exit

0010jka CA,Aj Ak Set the CA register for the channel indicated by (Aj)
to (Ak) and activate the channel.

001000 PASS This is a no-operation instruction.

0011jka CL,Aj Ak Set the CL register for the channel indicated by (Aj)
to (Ak) address.

0012j0a CI,Aj Clear the interrupt flag and error flag for the channel
indicated by (Aj) ; clear device master clear (output
channels only).

0012j1a MC,Aj Clear the interrupt flag and error flag for the channel
indicated by (Aj) ; set device master clear (output
channels only); clear device ready-held (input
channels only).

0013j0a XA Aj Transmit (Aj) to the XA register.

0014j0a RT Sj Load the RTC register with (Sj) .

0014j1a SIP Aj Send an interprocessor interrupt request to CPU (Aj) .

001401a SIPI Send an interprocessor interrupt request to CPU 0.

001402a CIPI Clear the interprocessor interrupt.

0014j3a CLN Aj Load the CLN register with (Aj) .

0014j4a PCI Sj Load the II register with (Sj) .

001405a CCI Clear the programmable clock interrupt request.

001406a ECI Enable the programmable clock interrupt request.

001407a DCI Disable the programmable clock interrupt request.

0016j1b IVC Send invalidate cache request to CPU (Aj) .

0015j0 a, c Select performance monitor.

001501a, c Disable port A error correction.

001511a, c Disable port B error correction.

001521a, c Disable port D I/O error correction.

001541a, c Enable replacement of checkbyte with data on ports
for writes and the replacement of data with
checkbytes on ports for reads.

001551a, c Replace check bits with Vk data bits on the path to
the VA ASIC during execution of instruction 1771jk.

002100 EFI Enable interrupt on floating-point error.

002200 DFI Disable interrupt on floating-point error.

002300 ERI Enable interrupt on operand range error.

002400 DRI Disable interrupt on operand range error.

Quick Reference Table of CPU Instructions System Programmer Reference

184 Cray Research Proprietary CSM-0301-0B0

002500 DBM Disable bidirectional memory transfers.

002600 EBM Enable bidirectional memory transfers.

002700 CMR Complete memory references.

0030j0 VM Sj Transmit (Sj) to VM register.

003000b VM 0 Clear VM register.

0034jk SMjk 1, TS Test and set semaphore jk, 0 <jk <3110.

0036jk SMjk 0 Clear semaphore jk, 0 <jk <3110.

0037jk SMjk 1 Set semaphore jk, 0 <jk <3110.

004000 EX Normal exit from the operating system.

005000 J Bjk Jump to (Bjk).

006ijkm J exp Jump to exp.

007ijkm R exp Return jump to exp and set register B00 to (P) + 2.

010ijkmd JAZ exp Jump to exp if (A0) = 0 (i2 = 0).

011ijkmd JAN exp Jump to exp if (A0) ≠ 0 (i2 = 0).

012ijkmd JAP exp Jump to exp if (A0) positive; (A0) ≥ 0 (i2 = 0).

013ijkmd JAM exp Jump to exp if (A0) negative (i2 = 0).

 014ijkmd JSZ exp Jump to exp if (S0) = 0 (i2 = 0)

 015ijkmd JSN exp Jump to exp if (S0) ≠ 0 (i2 = 0)

 016ijkmd JSP exp Jump to exp if (S0) positive; (i2 = 0)

 017ijkmd JSM exp Jump to exp if (S0) negative (i2 = 0)

020I00mne

or
021i00mn

or
022ijke

Ai exp Transmit exp into Ai (020 or 022) or transmit one’s
complement of exp into Ai (021).

023ij0 Ai Sj Transmit (Sj) to Ai.

023i01 Ai VL Transmit (VL) to Ai.

024ijk Ai Bjk Transmit (Bjk) to Ai.

025ijk Bjk Ai Transmit (Ai) to Bjk.

026ij0 Ai PSj Transmit the population count of (Sj) to Ai.

026ij1 Ai QSj Transmit the population count parity of (Sj) to Ai.

026ij7 Ai SBj Transmit (SBj) to Ai.

027ij0 Ai ZSj Transmit leading zero count of (Sj) to Ai.

027ij7 SBj Ai Transmit (Ai) to SBj.

030ijk Ai Aj + Ak Transmit the integer sum of (Aj) and (Ak) to Ai.

030i0kb Ai Ak Transmit (Ak) to Ai.

030ij0b Ai Aj + 1 Transmit the integer sum of (Aj) and 1 to Ai.

Table 30. Quick Reference Table of CPU Instructions (continued)

Machine Instruction CAL Syntax Description

System Programmer Reference Quick Reference Table of CPU Instructions

CSM-0301-0B0 Cray Research Proprietary 185

031ijk Ai Aj-Ak Transmit the integer difference (Aj) and (Ak) to Ai.

031i00b Ai -1 Transmit -1 to Ai.

031i0kb Ai -Ak Transmit the negative of (Ak) to Ai.

031ij0b Ai -Aj-1 Transmit the integer difference (Aj) and 1 to Ai.

032ijk Ai Aj*Ak Transmit the integer product of (Aj) and (Ak) to Ai.

033i00 Ai CI Transmit the channel number of the highest priority
interrupt request to Ai (j = 0).

033ij0 Ai CA,Aj Transmit the current address of the channel (Aj) to Ai
(j ≠ 0, k = 0).

033ij1 Ai CE,Aj Transmit the error flag of channel (Aj) to Ai (j ≠ 0,
k = 1).

034ijk Bjk, Ai, ,A0 Load (Ai) words from memory starting at address
(A0) to B registers starting at register jk.

034ijkb Bjk,Ai 0,A0 Load (Ai) words from memory starting at address
(A0) to B registers starting at register jk.

035ijk ,A0 Bjk,Ai Store (Ai) words from B registers starting at register
jk to memory starting at address (A0).

035ijkb 0,A0 Bjk,Ai Store (Ai) words from B registers starting at register
jk to memory starting at address (A0).

036ijk Tjk,Ai 0,A0 Load (Ai) words from memory starting at address
(A0) to T registers starting at register jk.

036ijkb Tjk,Ai 0,A0 Load (Ai) words from memory starting at address
(A0) to T registers starting at register jk.

037ijk ,A0 Tjk,Ai Store (Ai) words from T registers starting at register
jk to memory starting at address (A0).

037ijkb 0,A0 Tjk,Ai Store (Ai) words from T registers starting at register
jk to memory starting at address (A0).

040i00mn
or
041i00mn

Si exp Transmit exp into Si (040) or transmit one’s
complement of exp into Si (041).

042ijk Si <exp Form ones mask in Si exp bits from right; the jk field
gets 1008 - exp.

042ijkb Si # >exp Form zeroes mask in Si exp bits from left; the jk field
gets exp.

042i77b Si 1 Enter 1 into Si register.

042i00b Si -1 Enter -1 into Si register.

043ijk Si >exp Form ones mask in Si exp bits from left; the jk field
gets exp.

043ijkb Si #<exp Form zeroes mask in Si exp bits from right; the jk field
gets 1008 exp.

043i00b Si 0 Clear the Si register.

044ijk Si Sj&Sk Transmit the logical product of (Sj) and (Sk) to Si.

Table 30. Quick Reference Table of CPU Instructions (continued)

Machine Instruction CAL Syntax Description

Quick Reference Table of CPU Instructions System Programmer Reference

186 Cray Research Proprietary CSM-0301-0B0

044ij0b Si Sj&SB Transmit the sign bit of (Sj) to Si.

044ij0b Si SB&Sj Transmit the sign bit of (Sj) to Si (j ≠ 0).

045ijk Si #Sk&Sj Transmit the logical product of (Sj) and complement
of (Sk) to Si.

045ij0b Si #SB&Sj Transmit the (Sj) with sign bit cleared to Si.

046ijk Si Sj \Sk Transmit the logical difference of (Sj) and (Sk) to Si.

046ij0b Si Sj \SB Toggle the sign bit of (Sj) , then enter into Si.

046ij0b Si SB\Sj Toggle the sign bit of (Sj) , then enter into Si (j ≠ 0)

047ijk Si #Sj\Sk Transmit the logical equivalence of (Sk) and (Sj) to
Si.

047i0kb Si #Sk Transmit the one’s complement if (Sk) to Si.

047ij0b Si #Sj\SB Transmit the logical equivalence of (Sj) and sign bit to
Si.

047ij0b Si #SB\Sj Transmit the logical equivalence of (Sj) and sign bit to
Si (j ≠ 0).

047i00b Si #SB Transmit the one’s complement of sign bit into Si.

050ijk Si
Sj !Si&Sk

Transmit the logical product of (Si) and (Sk)
complement ORed with the logical product of (Sj)
and (Sk) to Si.

050ij0b Si
Sj!Si&SB

Transmit the scalar merge of (Si) and sign bit of (Sj)
to Si.

051ijk Si Sj!Sk Transmit the logical sum of (Sj) and (Sk) to Si.

051i0kb Si Sk Transmit the (Sk) to Si.

051ij0b Si Sj!SB Transmit the logical sum of (Sj) and sign bit to Si.

051ij0b Si SB!Sj Transmit the logical sum of (Sj) and sign bit to Si
(j ≠ 0).

051i00b Si SB Transmit the sign bit into Si.

052ijk S0 Si <exp Shift (Si) left exp places to S0; exp = jk.

053ijk S0 Si >exp Shift (Si) right exp places to S0; exp = 1008-jk.

054ijk Si Si <exp Shift (Si) left exp places to Si; exp = jk.

055ijk Si Si >exp Shift (Si) right exp places to Si; exp = 1008-jk.

056ijk Si Si,Sj <Ak Shift (Si) and (Sj) left by (Ak) places to Si.

056ij0b Si Si,Sj <1 Shift (Si) and (Sj) left one place to Si.

056i0kb Si Si<Ak Shift (Si) left (Ak) places to Si.

057ijk Si Sj,Si >Ak Shift (Sj) and (Si) right by (Ak) places to Si.

057ij0b Si Sj,Si >1 Shift (Sj) and (Si) right one place to Si.

057i0kb Si Si >Ak Shift (Si) right (Ak) places to Si.

060ijk Si Sj+Sk Transmit the integer sum of (Sj) and (Sk) to Si.

061ijk Si Sj-Sk Transmit the integer difference of (Sj) and (Sk) to Si.

Table 30. Quick Reference Table of CPU Instructions (continued)

Machine Instruction CAL Syntax Description

System Programmer Reference Quick Reference Table of CPU Instructions

CSM-0301-0B0 Cray Research Proprietary 187

061i0kb Si -Sk Transmit the negative of (Sk) to Si.

062ijk Si Sj+FSk Transmit the floating-point sum of (Sj) and (Sk) to Si.

062i0kb Si +FSk Transmit the normalized (Sk) to Si.

063ijk Si Sj-FSk Transmit the floating-point difference of (Sj) and (Sk)
to Si.

063i0kb Si -FSk Transmit the normalized negative of (Sk) to Si.

064ijk Si Sj*FSk Transmit the floating-point product of (Sj) and (Sk) to
Si.

065ijk Si Sj*HSk Transmit the half-precision rounded floating-point
product of (Sj) and (Sk) to Si.

066ijk Si Sj*RSk Transmit the rounded floating-point product of (Sj)
and (Sk) to Si.

067ijk Si Sj* !Sk Transmit the reciprocal iteration: 2-(Sj) to Si.

070ij0 Sj /HSj Transmit the floating-point reciprocal approximation of
(Sj) to Si.

071i0k Si Ak Transmit (Ak) to Si with no sign extension.

071i1k Si +Ak Transmit (Ak) to Si with sign extension.

071i2k Si +FAk Transmit (Ak) to Si as unnormalized floating-point
number.

071i30 Si 0.6 Transmit 0.75 x 248 as normalized floating-point
constant into Si.

071i40 Si 0.4 Transmit 0.5 as normalized floating-point constant
into Si.

071i50 Si 1.0 Transmit 1.0 as normalized floating-point constant
into Si.

071i60 Si 2.0 Transmit 2.0 as normalized floating-point constant
into Si.

071i70 Si 4.0 Transmit 4.0 as normalized floating-point constant
into Si.

072i00 Si RT Transmit (RTC) to Si.

072i02 Si SM Transmit (SM) to Si.

072ij3 Si STj Transmit (STj) to Si.

073i00 Si VM Transmit (VM) to Si.

073i11a, c Read the performance counter into Si.

073i21a, c Increment upper performance counter.

073i31a, c Clear all maintenance modes.

073i61a, c Increment current performance counter (lower).

073i01 Si SR0 Transmit (SR0) to Si.

073i02 SM Si Transmit (Si) to SM.

073ij3 STj Si Transmit (Si) to STj.

Table 30. Quick Reference Table of CPU Instructions (continued)

Machine Instruction CAL Syntax Description

Quick Reference Table of CPU Instructions System Programmer Reference

188 Cray Research Proprietary CSM-0301-0B0

074ijk Si Tjk Transmit (Tjk) to Si.

075ijk Tjk Si Transmit (Si) to Tjk.

076ijk Si Vj,Ak Transmit (Vj element (Ak)) to Si.

077ijk Vi,Ak Sj Transmit (Sj) to Vi element (Ak).

077i0kb Vi,Ak 0 Clear element (Ak) of register Vi.

10hi00mn Ai exp,Ah Load from ((Ah) + exp) to Ai.

100i00mn Ai exp,0 Load from (exp) to Ai.

100i00mn Ai exp, Load from (exp) to Ai.

10hi0000 Ai ,Ah Load from (Ah) to Ai.

11hi00mn exp,Ah Ai Store (Ai) to (Ah) + exp.

110i00mn exp,0 Ai Store (Ai) to exp.

110i00mn exp, Ai Store (Ai) to exp.

11hi0000 ,Ah Ai Store (Ai) to (Ah).

12hi00mn Si exp,Ah Load from ((Ai) + exp) to Si.

120i00mn Si exp,0 Load from (exp) to Si.

120i00mn Si exp Load from (exp) to Si.

12hi0000 Si ,Ah Load from (Ah) to Si.

13hi00mn exp,Ah Si Store (Si) to (Ah) + exp.

130i00mn exp,0 Si Store (Si) to exp.

130i00mn exp, Si Store (Si) to exp.

13hi0000 ,Ah Si Store (Si) to (Ah).

140ijk Vi Sj&Vk Transmit logical products of (Sj) and (Vk elements) to
Vi elements.

141ijk Vi Vj&Vk Transmit logical products of (Vj elements) and (Vk
elements) to Vi elements.

142ijk Vi Sj !Vk Transmit logical sums of (Sj) and (Vk elements) to Vi
elements.

142i0kb Vi Vk Transmit (Vk elements) to Vi elements.

143ijk Vi Vj !Vk Transmit logical sums of (Vj elements) and (Vk
elements) to Vi elements.

144ijk Vi Sj Vk Transmit logical differences of (Sj) and (Vk elements)
to Vi elements.

145ijk Vi Vj Vk Transmit logical differences of (Vj elements) and (Vk
elements) to Vi elements.

145iii b Vi 0 Clear Vi elements.

146ijk Vi Sj !Vk&VM Transmit (Sj) if VM bit = 1; (Vk) if VM bit = 0 to Vi.

146i0kb Vi #VM&Vk Transmit vector merge of (Vk) and 0 to Vi.

147ijk Vi Vj !Vk&VM Transmit (Vj) if VM bit = 1; (Vk) if VM bit = 0 to Vi.

Table 30. Quick Reference Table of CPU Instructions (continued)

Machine Instruction CAL Syntax Description

System Programmer Reference Quick Reference Table of CPU Instructions

CSM-0301-0B0 Cray Research Proprietary 189

150ijk Vi Vj<Ak Shift (Vj elements) left by (Ak) places to Vi elements.

150ij0b Vi Vj<1 Shift (Vj elements) left one place to Vi elements.

151ijk SVi Vj>Ak Shift (Vj elements) right by (Ak) places to Vi
elements.

151ij0b Vi Vj>1 Shift (Vj elements) right one place to Vi elements.

152ijk Vi Vj,Vj<Ak Double shift (Vj elements) left (Ak) places to Vi
elements.

152ij0b Vi Vj,Vj<1 Double shift (Vj elements) left one place to Vi
elements.

153ijk Vi Vj,Vj>Ak Double shift (Vj elements) right (Ak) places to Vi
elements.

153ij0b Vi Vj,Vj>1 Double shift (Vj elements) right one place to Vi
elements.

154ijk Vi Sj+Vk Transmit integer sums of (Sj) and (Vk elements) to Vi
elements.

155ijk Vi Vj + Vk Transmit integer sums of (Vj elements) and (Vk
elements) to Vi elements.

156ijk Vi Sj-Vk Transmit integer differences of (Sj) and (Vk elements)
to Vi elements.

156i0kb Vi -Vk Transmit two’s complement of (Vk elements) to Vi
elements.

157ijk Vi Vj-Vk Transmit integer differences of (Vj elements) and (Vk
elements) to Vi elements.

160ijk Vi Sj*FVk Transmit floating-point products of (Sj) and (Vk
elements) to Vi elements.

161ijk Vi Vj*FVk Transmit floating-point products of (Vj elements) and
(Vk elements) to Vi elements.

162ijk Vi Sj*HVk Transmit half-precision rounded floating-point
products of (Sj) and (Vk elements) to Vi elements.

163ijk Vi Vj*HVk Transmit half-precision rounded floating-point
products of (Vj elements) and (Vk elements) to Vi
elements.

164ijk Vi Sj*RVk Transmit rounded floating-point products of (Sj) and
(Vk elements) to Vi elements.

165ijk Vi Vj*RVk Transmit rounded floating-point products of (Vj
elements) and (Vk elements) to Vi elements.

166ijk Vi Sj*Vk Transmit 32-bit integer product of (Sj) and (Vk
elements) to Vi elements.

167ijk Vi Vj*Vk Transmit reciprocal iterations: 2-(Vj elements)*(Vk
elements) to Vi elements.

170ijk Vi Sj+FVk Transmit floating-point sums of (Sj) and (Vk
elements) to Vi elements.

Table 30. Quick Reference Table of CPU Instructions (continued)

Machine Instruction CAL Syntax Description

Quick Reference Table of CPU Instructions System Programmer Reference

190 Cray Research Proprietary CSM-0301-0B0

170i0kb Vi +FVk Transmit normalized (Vk elements) to Vi elements.

171ijk Vi Vj+FVk Transmit floating-point sums of (Vj elements) and (Vk
elements) to Vi elements.

172ijk Vi Sj-FVk Transmit floating-point differences of (Sj) and (Vk
elements) to Vi elements.

172i0kb Vi -FVk Transmit normalized negative of (Vk elements) to Vi
elements.

173ijk Vi Vj-FVk Transmit floating-point differences of (Vj elements)
and (Vk elements) to Vi elements.

174ij0 Vi /HVj Transmit floating-point reciprocal approximation of (Vj
elements) to Vi elements.

174ij1 Vi PVj Transmit population count of (Vj elements) to Vi
elements.

174ij2 Vi QVj Transmit population count parity of (Vj elements) to Vi
elements.

1750j0 VM Vj,Z Set VM bit if (Vj element) = 0.

1750j1 VM Vj,N Set VM bit if (Vj element) ≠ 0.

1750j2 VM Vj,P Set VM bit if (Vj element) ≥ 0.

1750j3 VM Vj,M Set VM bit if (Vj element) < 0 (Vj is negative).

175ij4 Vi, VM Vj,Z Set VM bit if (Vj elements) = 0; also, the compressed
indices of the Vj element = 0 are stored in Vi.

175ij5 Vi, VM Vj,N Set VM bit if (Vj elements) ≠ 0; also, the compressed
indices of the Vj element ≠ 0 are stored in Vi.

175ij6 Vi, VM Vj,P Set VM bit if (Vj elements) ≥ 0; also, the compressed
indices of the Vj element ≥ 0 are stored in Vi.

175ij7 Vi, VM Vj,M Set VM bit if (Vj elements) ≤ 0; also, the compressed
indices of the Vj element ≤ 0 are stored in Vi.

176i0k Vi ,A0,Ak Load from memory starting at (A0) increased by (Ak)
and load into Vi.

176i00 Vi ,A0,1 Load from consecutive memory addresses starting
with (A0) and load into Vi.

176i1k Vi ,A0,Vk Load from memory using memory address ((A0) +
(Vk)) and load into Vi.

1770jk ,A0,Ak Vj Store (Vj) to memory starting at (A0) increased by
(Ak).

1770j0 ,A0,1 Vj Store (Vj) to memory in consecutive addresses
starting with (A0).

Table 30. Quick Reference Table of CPU Instructions (continued)

Machine Instruction CAL Syntax Description

System Programmer Reference Notational Conventions

CSM-0301-0B0 Cray Research Proprietary 191

Notational Conventions

This section uses the following conventions:

• All numbers are decimal numbers unless otherwise indicated.

• Letters X or x orx represent an unused value.

• Register bits are numbered from right to left.

• The letter n represents a specified value.

• The value in parentheses () specifies the contents of a register or memory
location as designated by value.

• Variable parameters are initalic type.

• Vector mask bit 63 corresponds to vector element 0, and bit 0 corresponds
to vector element 63.

1771jk ,A0,Vk Vj Store (Vj) to memory using memory address ((A0) +
(Vk)).

a These instructions are privileged to monitor mode.

b Special CAL syntax.

c These instructions are not supported by CAL Version 2.

d Bit 2 of the i field is equal to 0.

e These instructions are generated depending on the value of the exponent.

Table 30. Quick Reference Table of CPU Instructions (continued)

Machine Instruction CAL Syntax Description

Instruction Formats System Programmer Reference

192 Cray Research Proprietary CSM-0301-0B0

Instruction Formats

Instructions can be 1 parcel (16 bits), 2 parcels (32 bits), or 3 parcels (48 bits)
long. Instructions are packed 4 parcels per word and parcels are numbered 0
through 3 from left to right. Any parcel position can be addressed in branch
instructions. A 2- or 3-parcel instruction begins in any parcel of a word and can
span a word boundary. For example, a 2-parcel instruction that begins in parcel
3 of a word ends in parcel 0 of the next word. No padding of word boundaries
is required.Figure 45 shows the general instruction format.

Figure 45. General Instruction Format

The first parcel contains five fields, and the second and third parcels each contain
a single field. Four variations of this format use the fields differently. The
following subsections describe the formats of the following variations:

• 1-parcel instruction format with discretej andk fields
• 1-parcel instruction format with combinedj andk fields
• 2-parcel instruction format with combinedi, j, k, andm fields
• 3-parcel instruction format with combinedm andn fields

1-parcel Instruction Format with Discrete j and k Fields

The most common of the 1-parcel instruction formats uses thei, j, andk fields
as individual designators for operand and result registers (refer toFigure 46).
Theg andh fields define the operation code, thei field designates a result register,
and thej andk fields designate operand registers. Some instructions ignore one
or more of thei, j, andk fields.

The following types of instructions use this format:

• Arithmetic
• Logical
• Vector shift
• Scalar double-shift
• Floating-point constant

First Parcel

4 3 3 3 3 16 16

Second Parcel Third Parcel

g h i j k m n Fields

Number of
Bits

System Programmer Reference Instruction Formats

CSM-0301-0B0 Cray Research Proprietary 193

Figure 46. 1-parcel Instruction Format with Combined j and k Fields

1-parcel Instruction Format with Combined j and k Fields

Some 1-parcel instructions use thej andk fields as a combined 6-bit field (refer
to Figure 47). Theg andh fields contain the operation code, and thei field is
usually a destination register. The combinedj andk fields usually contain a
constant or an intermediate address (B) or intermediate scalar (T) register
designator. The 005 branch instruction and the following types of instructions
use the 1-parcel instruction format with combinedj andk fields:

• 6-bit constant
• B or T register block memory transfer
• B or T register data transfer with address (A) or scalar (S) register
• Scalar single-shift
• Scalar mask

Figure 47. 1-parcel Instructions with j and k as a Combined 6-bit Field

2-parcel Instruction Format with Combined i, j, k, and m Fields

This 2-parcel format uses the combinedi, j, k, andm fields to contain a 24-bit
address that allows branching to an instruction parcel (refer toFigure 48). A
7-bit operation code (gh) is followed by anijkm field. The high-order bit of the
i field is equal to 0.

4 3 3 3 3

Fields

Number of
Bits

Register
Designators

Operation
Code

g h i j k

4 3 3 6

jk Fields

Number
of Bits

Constant or
Register

Designators

Operation
Code

Result Register

g h i

Instruction Formats System Programmer Reference

194 Cray Research Proprietary CSM-0301-0B0

Figure 48. 2-parcel Instruction Format with Combined i, j, k, and m Fields

3-parcel Instruction Format with Combined m and n Fields

The format for a 32-bit immediate constant uses the combinedm andn fields to
hold the constant. The 7-bitg andh fields contain an operation code, and the
3-bit i field designates a result register; thej andk fields are a constant 0. The
instructions that use this format transfer the 32-bitmn constant to an A or S
register.

NOTE: Them field of the 3-parcel instruction contains bits 0 through 15 of
the expression, while then field contains bits 16 through 31 of the
expression. When the instruction is assembled, themn field is
reversed and actually appears as thenm field when used as an
expression.

When 3-parcel instructions are used to generate memory addresses, bits 31
through 0 of thenm field are used to calculate memory addresses. Refer to
“Calculating Absolute Memory Address” for additional information. This
format uses the 4-bitg field for an operation code, the 3-bith field to designate
an address index register, and the 3-biti field to designate a source or result
register.

Figure 49 shows the two applications for the 3-parcel instruction format with
combinedm andn fields. Remember that them andn fields are reversed when
a 3-parcel instruction is assembled.

4 3 3 3 3 1 Number of Bits

First Parcel Second Parcel

m Fields

2

Operation Code

High-order Bit = 0
Address

Parcel Select

g h i j k

System Programmer Reference Instruction Formats

CSM-0301-0B0 Cray Research Proprietary 195

Figure 49. 3-parcel Instruction Format with Combined m and n Fields

4 3 3 3 3 16 16
Number of
Bits

g h i j k

First Parcel Second Parcel

m

Third Parcel

n Fields

Operation Code

Result Register
Constant

Value
 Always = 0

Operation Code

Source or Result Register

Not UsedValue
Always = 0Address Register

Used as Index

4

Address or Displacement
(28 Bits)

First Parcel Second Parcel Third Parcel

Number of
Bits

Fieldsg h i j k m n

4 3 3 3 3 16 12

Special Register Values System Programmer Reference

196 Cray Research Proprietary CSM-0301-0B0

Special Register Values

If the S0 and A0 registers are referenced in theh, j, ork fields of certain
instructions, the contents of the respective register are not used; instead, a special
operand is generated. The special operand is available regardless of existing A0
or S0 reservations (and in this case is not checked). This special operand does
not alter the actual value of the S0 or A0 register. If registers S0 or A0 are used
in thei field as the operand, the actual value of the register is provided.
Cray Assembly Language (CAL) issues a caution-level error message for A0 or
S0 when 0 does not apply to thei field. Table 31 lists the special register values.

Monitor Mode Instructions

The monitor mode instructions (channel control, set real-time clock,
programmable clock interrupts, and so on) perform specialized functions that
are useful to the operating system. These instructions run only when the CPU is
operating in monitor mode. If a monitor mode instruction issues while the CPU
is not in monitor mode, it is treated as a no-operation instruction.

Table 31. Special Register Values

Field Operand Value

Ah, h = 0 0

Aj, j = 0 0

Ak, k = 0 1

Sj, j = 0 0

Sk, k = 0 Bit 63 = 1

System Programmer Reference Special CAL Syntax Forms

CSM-0301-0B0 Cray Research Proprietary 197

Special CAL Syntax Forms

Certain machine instructions can be generated from two or more different CAL
instructions. Any of the operations performed by special instructions can be
performed by instructions in the basic CAL instruction set.

For example, the following CAL instructions generate instruction 002000, which
enters a 1 into the vector length (VL) register:

VL A0
VL 1

The first instruction is the basic form of the enter VL instruction, which takes
advantage of the special case where (Ak) = 1 if k = 0. The second instruction is
a special syntax form that provides the programmer with a more convenient
notation for the special case.

In several cases, a single CAL syntax can generate several different machine
instructions. These cases are used for entering the value of an expression into
an A register or an S register, or for shifting S register contents. The assembler
determines which instruction to generate from characteristics of the expression.

The following subsection identifies CAL instructions that have a special syntax
form.

CPU Instruction Descriptions System Programmer Reference

198 Cray Research Proprietary CSM-0301-0B0

CPU Instruction Descriptions

This subsection describes all the instructions that the mainframe uses. The
instruction descriptions use acronyms and abbreviations that are defined in
previous sections. The following information is included with each instruction
description:

• Special cases
• Hold issue conditions
• Execution time
• Description

In some instructions, register designators are prefixed by the following letters
that have special meaning to the assembler. The letters and their meanings are
as follows:

The following list defines some of the notations that the instruction set uses:

Letter Description

F Floating-point operation

H Half-precision floating-point operation

I Reciprocal iteration

P Population count

Q Parity count

R Rounded floating-point operation

Z Leading-zero count

Character Description

+ Arithmetic sum of specified registers

- Arithmetic difference of specified registers

* Arithmetic product of specified registers

/ Reciprocal approximation

Use one’s complement

> Shift value or form mask from left to right

< Shift value or form mask from right to left

& Logical product of specified registers

! Logical sum of specified registers

\ Logical difference of specified registers

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 199

An expression (exp) occupies thejk, jkm, ijkm, ormn field. Theh, i, j, andk
designators indicate the field of the machine instruction into which the register
designator constant or symbol value is placed.

Functional Units Instruction Summary

Instructions other than simple transmit or control operations are performed by
specialized hardware known as functional units. The following instructions are
performed by each of the functional units.

Functional Unit Instructions

Address add (integer) 030, 031

Address multiply (integer) 032

Scalar add (integer) 060, 061

Scalar logical 042 through 051

Scalar shift 052 through 057

Scalar pop/parity/leading zero 026, 027

Vector add (integer) 154 through 157

Vector logical 140 through 147, 175

Second vector logical 140 through 153

Vector shift 150 through 153

Vector pop/parity 174ij1, 174ij2

Floating-point add 062, 063, 170 through 173

Floating-point multiply 064 through 067, 160 through 167

Floating-point reciprocal 070, 174ij0

Memory (scalar) 100 through 130

Memory (vector) 176, 177

CPU Instruction Descriptions System Programmer Reference

200 Cray Research Proprietary CSM-0301-0B0

Instruction 000000

Special Cases

There are no special cases.

Hold Issue Conditions

The instruction holds issue if any A, S, or V register is reserved or if an instruction
fetch operation is in progress.

Execution Time

The 000 instruction issues in 1 CP. Following the instruction issue, an additional
83 CPs are required for an exchange sequence (44 CPs) and a fetch operation
(39 CPs). Memory conflicts during the exchange sequence cause additional
delays.

Description

The 000 instruction is treated as an error condition, and an exchange sequence
occurs when the instruction is issued. The contents of the instruction buffers are
voided by the exchange sequence. If the monitor mode is not in effect, the error
exit flag in the F register is set. All instructions issued before this instruction are
completed.

When the results of previously issued instructions arrive at the operating
registers, an exchange occurs to the exchange package that is designated by the
contents of the XA register. The program address that is stored during the final
exchange sequence is the contents of the P register advanced by one count (the
address of the instruction following the error exit instruction).

Instruction 000 is not generally used in program code. This instruction stops
execution of an incorrectly coded program that branches to an unused area of
memory (if memory was backgrounded with 0’s) or into a data area (if data is
positive integers, right justified ASCII, or floating-point 0’s).

Machine Instruction CAL Syntax Description

000000 ERR Error exit

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 201

Instructions 0010 through 0013

Special Cases

The following special case exists for instructions 0010 through 0012:

• On a J90se CPU, instructions 0010 through 0012 must be synchronized
with the system clock, which runs at half the rate of the CPU clock.
Therefore, a 1-CP hold issue may occur for clock alignment.

The following special cases exist for instructions 0010 through 0013:

• If the program is not in monitor mode, these instructions become
no-operation instructions with all Aj or Ak register hold issue conditions
remaining effective.

• For instructions 0010, 0011, and 0012, ifj = 0, the instruction performs
no operation.

• For instructions 0010, 0011, and 0012, ifk = 0, the CA or CL register is
set to 1.

• Valid channel numbers are Y1 channel numbers 20 through 117 on the
largest system.

• For instruction 0013, ifj = 0, the XA register is cleared.

Machine Instruction CAL Syntax Description

0010jka CA,Aj Ak Set the CA register for the channel indicated by (Aj) to (Ak)
and activate the channel.

001000 PASS This is a no-operation instruction.

0011jka CL,Aj Ak Set the CL register for the channel indicated by (Aj) to (Ak)
address.

0012j0a CI,Aj Clear the interrupt flag and error flag for the channel
indicated by (Aj); clear device master clear (output channels
only).

0012j1a MC,Aj Clear the interrupt flag and error flag for the channel
indicated by (Aj); set device master clear (output channels
only); clear device ready-held (input channels only).

0013j0a XA Aj Transmit (Aj) to the XA register.
a These instructions are privileged to monitor mode.

CPU Instruction Descriptions System Programmer Reference

202 Cray Research Proprietary CSM-0301-0B0

Hold Issue Conditions

The instructions hold issue when the Aj register is reserved (except A0).

Instructions 0010 through 0011 hold issue when the Ak register is reserved
(except A0); instructions 0010 through 0012 hold issue when there is a shared
register access conflict or if the JS ASIC buffer is full.

Execution Time

The instruction issue time for instructions 0010 through 0013 is 1 CP.

NOTE: In monitor mode, the software must ensure that only one CPU at a
time is servicing an I/O channel.

Description

Instructions 0010 through 0013 are privileged to monitor mode and provide
operations that are useful to the operating system. Functions are selected through
thei designator. Instructions are treated as pass instructions if the monitor mode
bit is not set. A monitor program activates a user job by initializing the XA
register to point to the user’s job exchange package and then executing a normal
exit instruction.

When thej designator is 0, the functions are executed as pass instructions. When
thek designator is 0, the CA register or CL register is set to 1. Valid channel
numbers are 20 through 117 for Y1 channels on the largest systems.

Instructions 0010, 0011, and 0012 control operation of the I/O channels. Each
Y1 channel has a CA and a CL register to direct channel activity. The CA register
contains the address of the current channel word; the CL register specifies the
limit address. When the channel is programmed, the CL register is initialized
first and then the CA register is set, which activates the channel. As the transfer
continues, the CA register increments toward the CL register. When the contents
of the CA register are equal to the contents of the CL register, the transfer is
complete for all words from the initial contents of the CA register through the
contents of the CL register minus 1.

The 0010jk instruction sets the CA register for the channel that is indicated by
the contents of the Aj register to the value in the Ak register. The 0011jk
instruction sets the CL register for the channel that is indicated by the contents
of the Aj register to the address that is specified in the Ak register. The 0011jk
instruction is usually issued before the 0010jk instruction is issued.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 203

Instruction 0012j0 clears the interrupt and error flags for the channel that is
indicated by the contents of the Aj register. If the contents of the Aj register
represent an output channel, the device master clear is cleared.

Instruction 0012j1 also clears the interrupt and error flags for the channel that
is indicated by the contents of the Aj register. If the contents of the Aj register
represent an output channel, the device master clear is set. If the contents of the
Aj register represent an input channel, the device ready flag is cleared.

Instruction 0013jk transmits bits 13 through 4 of the Aj register to the XA register.
The XA register is cleared when thej designator is 0.

CPU Instruction Descriptions System Programmer Reference

204 Cray Research Proprietary CSM-0301-0B0

Instructions 0014 through 0016 j 1

Special Cases

The following special cases exist for instructions 0014 and 0016:

• If the program is not in monitor mode, these instructions perform no
operation, and all Sj or Aj register hold issue conditions remain in effect.

• The RTC register will not be ready for some indeterminate number of
cycles.

• The following code ensures that RTC is ready:

Instruction 0014j0 is a global instruction, and instruction 027ij7 is a local
instruction. All local instructions are held in the JS ASIC until all global
instructions are completed.

Machine Instruction CAL Syntax Description

0014j0a RT Sj Load the RTC register with (Sj) .

0014j1a SIP Aj Send an interprocessor interrupt request to CPU (Aj) .

001401a SIPI Send an interprocessor interrupt request to CPU 0.

001402a CIPI Clear the interprocessor interrupt.

0014j3a CLN Aj Load the CLN register with (Aj) .

0014j4a PCI Sj Load the II register with (Sj) .

001405a CCI Clear the programmable clock interrupt request.

001406a ECI Enable the programmable clock interrupt request.

001407a DCI Disable the programmable clock interrupt request.

0016j1b IVC Send invalidate cache request to CPU (Aj) .
a This instruction is privileged to monitor mode.

b Special CAL syntax.

RT Sj

SBj A0

JAZ label

label Si RT

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 205

The following special case exists for instructions 0014j0, 0014j1, 0014j3, and
0016j1:

• On a J90se CPU, instructions 0014j0, 0014j1, 0014j3, and 0016j1 must be
synchronized with the system clock, which runs at half the rate of the
CPU clock. Therefore, a 1-CP hold issue may occur for clock alignment.

Hold Issue Conditions

The instruction holds issue for any of the following conditions:

• Instructions 0014j0, 0014j1, 0014j4, and 0016j1 hold issue when the Aj
register is reserved (except A0).

• Instructions 0014j0, 0014j1, and 0014j4 hold issue when the Sj register is
reserved (except S0).

• Instructions 0014j0, 0014j1, 0014j3, and 0016j1 hold issue when a shared
register access conflict occurs or if the JS ASIC buffer is full.

• Instruction 0016j1 holds issue until an acknowledgment is received,
which indicates that the cache in CPU (Aj) is invalid.

Execution Time

The 0014 or 0016 instructions issue in 1 CP.

Description

The 0014 instruction performs specialized functions for managing the real-time
and programmable clocks. These functions process interprocessor interrupt
requests and cluster number operations. Instruction 0014 is privileged to monitor
mode and is treated as a pass instruction if the monitor mode bit is not set.

The 0014j0 instruction loads the contents of the Sj register into the RTC register.
The RTC register is set to 0 when thej designator is 0.

The 0014j1 instruction sets the CPU interrupt request in the CPU that is specified
by the contents of the Aj register. If the CPU named in the contents of the Aj
register attempts to interrupt itself, the instruction performs no operation. If the
other CPU is not in monitor mode, the interrupt-from-internal CPU flag sets in
the F register, which causes an interrupt. The request remains until it is cleared
when the receiving CPU issues instruction 001402. Instruction 001401 performs
the same function, except that it sets the internal CPU interrupt request in CPU 0.

CPU Instruction Descriptions System Programmer Reference

206 Cray Research Proprietary CSM-0301-0B0

Instruction 001402 clears the internal CPU interrupt request that is set by another
CPU.

The 0014j3 instruction sets the cluster number to the contents of the Aj register
to make 1 of 41 cluster selections (17 clusters for CRAY J90 series systems). A
cluster number of 0 causes all shared and semaphore register operations to be
no-operation instructions (except SB, ST, or SM register reads, which return a
zero value to the Ai or Si register). A nonzero cluster has a separate set of SM,
SB, and ST registers. A cluster number larger than 91 (octal) produces undefined
results.

The 0014j4 instruction loads the low-order 32 bits from the Sj register into the
interrupt interval (II) register and programmable clock. The programmable clock
is a 32-bit counter that decrements by 1 each CP until the contents of the counter
equal 0. The programmable clock interrupt request is then set. The counter is
then set to the interval value held in the II register and the counter repeats the
countdown to 0. When a programmable clock interrupt request is set, it remains
set until a 001405 instruction is executed. Refer to the “Interrupt Interval
Register” subsection for more information about the II register.

The 001405 instruction clears the programmable clock interrupt request if the
request is set previously when the interrupt countdown (ICD) counts down to 0.

The 001406 instruction enables repeated programmable clock interrupt requests
at a rate determined by the value stored in the II register.

The 001407 instruction disables repeated programmable clock interrupt requests
until a 001406 instruction is executed to enable the requests.

The 0016j1 instruction invalidates the cache in the CPU that is specified by the
contents of the Aj register. If the CPU named in the contents of the Aj register
attempts to invalidate its own cache, the instruction performs no operation.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 207

Instructions 0015 through 001551

Special Cases

The following special case exists for instruction 0015.

• If the program is not in monitor mode (or if the maintenance mode
configuration bit [7] is not set for instruction 0015j1), these instructions
perform no operation, and all hold issue conditions remain in effect.

Hold Issue Conditions

The instruction holds issue when any Aj register is reserved (except A0).

Execution Time

The 0015 instruction issues in 1 CP.

Description

All 0015 instructions are privileged to monitor mode. Instruction 0015j0 selects
one of four groups of hardware-related events to be monitored by the
performance counters and clears all performance counter pointers. Allow a
50-CP delay before issuing another performance monitor instruction.

Instruction 001541 allows certain bits to be replaced in either the checkbyte or
data field. During write operations, bits in the checkbyte are replaced with
corresponding data bits. During read operations, the data bits are replaced with
corresponding checkbyte bits.

Machine Instruction CAL Syntax Description

0015j0a, c Select performance monitor.

001501a, c Disable port A error correction.

001511a, c Disable port B error correction.

001521a, c Disable port D I/O error correction.

001541a, c Enable replacement of checkbyte with data on ports for
writes and the replacement of data with checkbytes on ports
for reads.

001551a, c Replace check bits with Vk data bits on the path to the VA
ASIC during execution of instruction 1771jk.

a These instructions are privileged to monitor mode.

c These instructions are not supported by CAL Version 2.

CPU Instruction Descriptions System Programmer Reference

208 Cray Research Proprietary CSM-0301-0B0

Instruction 001541 allows certain bits to be replaced in either the checkbyte or
data field. During write operations, bits in the checkbyte are replaced with
corresponding data bits. During read operations, the data bits are replaced with
corresponding checkbyte bits. The following list shows how the bits are replaced:

Instruction 001551 allows certain bits to be replaced in the checkbyte with Vk
data during the execution of instruction 1771jk. Instruction 1771jk executes in
the same manner as instruction 1770jk; the content of the Ak register is the
increment value, and the Vk data is not used as the address. The following list
shows which Vk data bit replaces each checkbyte bit:

Data Bit Checkbyte Bit

0 64

8 65

16 66

24 67

32 68

40 69

48 70

56 71

Data Bit Checkbyte Bit

0 64

1 65

2 66

3 67

4 68

5 69

6 70

7 71

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 209

Instruction 0020

Special Cases

The following special cases exist for instruction 0020:

• The maximum vector length is 64 bits.

• If k = 0, (Ak) = 1.

• If k != 0 and (Ak) = 0 or a multiple of 100 (octal), then register
VL = 100 (octal).

• On a J90se CPU, instruction 0020 must be synchronized with the system
clock, which runs at half the rate of the CPU clock. Therefore, a 1-CP
hold issue may occur for clock alignment.

Hold Issue Conditions

The instruction holds issue under any of the following conditions:

• The Ak register is reserved (except A0).
• A 035 or 037 instruction is in progress.
• A 077 instruction issued in the previous CP.
• The vector instruction queue is full.

VIR Hold Issue Conditions

This instruction issues without delay.

Execution Time

The instruction issue time for the 0020 instruction is 1 CP.

The VIR instruction issue time for the 0020 is 3 CPs.

Machine Instruction CAL Syntax Description

00200k VL Ak Transmit (Ak) to VL register.

002000b VL 1 Transmit 1 to VL register.
b Special CAL syntax.

CPU Instruction Descriptions System Programmer Reference

210 Cray Research Proprietary CSM-0301-0B0

Description

The low-order 6 bits of the contents of the Ak register are entered into the VL
register; the seventh bit of the VL register is set if the 6 low-order bits of the
contents of the Ak register equal 0. For example, if the contents of the Ak register
equal 0 or a multiple of 100 (octal), then VL = 100 (octal). The contents of the
VL register will always be between 1 and 100 (octal).

Instruction 002000 transmits the value of 1 to the VL register.

Instruction 0021 through 0027

Special Cases

The following special case exists for instruction 0027:

• On a J90se CPU, instruction 0027 must be synchronized with the system
clock, which runs at half the rate of the CPU clock. Therefore, a 1-CP
hold issue may occur for clock alignment.

Hold Issue Conditions

Instructions 002100 and 002200 hold issue if the floating-point functional units
are busy or if the VU ASIC is not quiet.

Instructions 002300 through 002400 hold issue under any of the following
conditions:

• Ports A or B are busy.

• Scalar memory reference in CPs is 1 to 5.

Machine Instruction CAL Syntax Description

002100 EFI Enable interrupt on floating-point error.

002200 DFI Disable interrupt on floating-point error.

002300 ERI Enable interrupt on operand range error.

002400 DRI Disable interrupt on operand range error.

002500 DBM Disable bidirectional memory transfers.

002600 EBM Enable bidirectional memory transfers.

002700 CMR Complete memory references.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 211

• Instruction 002700 holds issue if ports A or B are busy and if memory is
busy; the hold issue lasts for 18 CPs after the reference is dropped. This
instruction also holds issue if a scalar reference occurs in CPs 0 through
22 and memory is busy.

Execution Time

Instructions 0021 through 0027 issue in 1 CP.

Description

Instructions 002100 and 002200 set and clear the interrupt-on-floating-point
(IFP) error bit in the M register. When the IFP bit is set, it enables interrupts on
floating-point range errors. These two instructions do not check the previous
state of the flag. Either of these instructions also clears the floating-point error
status bit.

Instructions 002300 and 002400 set and clear the interrupt-on-operand range
(IOR) error bit in the M register. These two instructions do not check the previous
state of the IOR bit. When set, the IOR error bit enables interrupts on operand
range errors.

Instructions 002500 and 002600 disable and enable the bidirectional memory
mode. When this mode is enabled, block read and write operations can operate
concurrently. When it is disabled, only block read operations can operate
concurrently.

Instruction 002700 ensures completion of all memory references within the CPU
that issues the instruction. Instruction 002700 does not issue until all previous
memory references are confirmed to be complete. For example, a CPU is certain
to receive updated data when it issues a data load instruction after a 002700
instruction. The 002700 instruction synchronizes memory references between
processors in conjunction with semaphore instructions.

CPU Instruction Descriptions System Programmer Reference

212 Cray Research Proprietary CSM-0301-0B0

Instructions 0030, 0034, 0036, and 0037

Special Cases

The following special cases exist for instructions 0030, 0034, 0036, or 0037:

• For instruction 0030j0, if j = 0 then (Sj) = 0.

• Instructions 0034jk, 0036jk, and 0037jk perform no operation if CLN = 0.

• On a J90se CPU, instructions 0030, 0034, 0036, and 0037 must be
synchronized with the system clock, which runs at half the rate of the
CPU clock. Therefore, a 1-CP hold issue may occur for clock alignment.

Hold Issue Conditions

Instruction 0030j0 holds issue under any of the following conditions:

• The Sj register is reserved (except S0).
• 077 instruction was issued in the previous CP.
• 035 or 037 instruction is in progress.
• The vector instruction queue is full.

VIR Hold Issue Conditions

Instruction 0030j0 holds issue at the VIR under any of the following conditions:

• The primary vector logical unit is busy with 140-147 instructions.
• The primary vector logical unit is busy with 175 instruction.
• The VIR issued a 0030j0 instruction less than 5 CPs earlier.

Machine Instruction CAL Syntax Description

0030j0 VM Sj Transmit (Sj) to VM register.

003000b VM 0 Clear VM register.

0034jk SMjk 1, TS Test and set semaphore jk, 0 <jk <3110.

0036jk SMjk 0 Clear semaphore jk, 0 <jk <3110.

0037jk SMjk 1 Set semaphore jk, 0 <jk <3110.
b Special CAL syntax.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 213

Instruction 0034jk has the following hold issue conditions:

• This instruction holds issue when a shared register access conflict occurs
or when the shared operation buffer is full.

• When the current cluster number != 0 and SMjk is set, this instruction
holds issue until a CPU in the same cluster clears the semaphore register.

Instructions 0036jk and 0037ijk have the following hold issue conditions:

• These instructions hold issue when a shared path access conflict occurs or
if the shared operation buffer is full.

Execution Time

Instructions 0030, 0034, 0035, and 0036 issue in 1 CP. The vector mask register
is busy for 4 CPs for a 0030j0 instruction.

Description

Instruction 0030j0 transmits the contents of the Sj register into the VM register.
The VM register is cleared if thej designator is 0 in instruction 003000. These
instructions are used with the vector merge instructions (146 and 147), which
perform operations that are determined by the contents of the VM register.

Instruction 0034jk tests and sets the semaphore (SM) register that is designated
by thejk fields. There are thirty two 1-bit SM registers numbered SM0 through
SM37 (octal); SM0 is the most significant semaphore register. If the SM register
designated by thejk fields is set, this instruction holds issue until another CPU
clears that SM register. If the SM register that is designated by thejk fields is
clear, the instruction issues and sets the SM register. If all CPUs in a cluster are
holding issue on a test and set instruction, the deadlock flag is set in the exchange
package (if the system is not in monitor mode) and an exchange occurs.

If an interrupt occurs while a test and set instruction is holding in the CIP register,
the waiting-on-semaphore bit in the exchange package sets, the CIP and NIP
registers clear, and an exchange occurs with the P register pointing to the test
and set instruction.

Instruction 0036jk clears the SM register that is designated by thejk fields.

Instruction 0037jk sets the SM register that is designated by thejk fields.

CPU Instruction Descriptions System Programmer Reference

214 Cray Research Proprietary CSM-0301-0B0

Instruction 0040

Special Cases

There are no special cases.

Hold Issue Conditions

The 0040 instruction holds issue when any A, S, or V register is reserved or if
an instruction fetch is in progress.

Execution Time

The 0040 instruction issues in 1 CP. Following the instruction issue, 83 CPs are
required for an exchange sequence (44 CPs) and a fetch operation (39 CPs).
Memory conflicts during the exchange sequence or fetch operation cause
additional delays.

Description

Instruction 004 initiates an exchange sequence, which voids the contents of the
instruction buffers. If the system is not in monitor mode, the normal exit flag in
the F register sets. All instructions that issued before the 004 instruction are
completed. Instruction 004 issues a monitor request from a user program or
transfers control from a monitor program to another program.

When all results arrive at the operating registers of previously issued instructions,
an exchange sequence occurs to the exchange package that is designated by the
contents of the XA register. The program address that is stored in the exchange
package advances one count from the address of the normal exit instruction.

Machine Instruction CAL Syntax Description

004000 EX Normal exit from the operating system.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 215

Instruction 0050

Special Cases

A special case occurs when instruction 0050jk executes as a 2-parcel instruction.
The parcel that follows the single parcel of the 0050jk instruction is not used;
however, a delay occurs if the second parcel is not in the instruction buffer.

Hold Issue Conditions

The 0050 instruction holds issue if any one of the following conditions occur:

• A 025 instruction was issued in the previous CP.

• The second parcel is in a different buffer (a 3-CP delay occurs).

• The second parcel is not in an instruction buffer.

• For a Classic CPU: Instruction 034 is in progress

• For a J90se CPU: Instruction 034 in progress with block length less than
or equal to 1008 and register Bjk had not been written

• For a J90se CPU: Instruction 034 is in progress with block length greater
than 1008.

• Instruction 035 is in progress.

Execution Time

The instruction issue times for the 0050 instruction are as follows:

• If the instruction parcel and following parcel are in the same buffer and
the branch address is in a buffer, the issue time is 8 CPs.

• If the instruction parcel and the following parcel are both in a buffer and
the branch address is not in a buffer, the issue time is 43 CPs. Additional
time is required if a memory conflict exists.

Machine Instruction CAL Syntax Description

005000 J Bjk Jump to (Bjk).

CPU Instruction Descriptions System Programmer Reference

216 Cray Research Proprietary CSM-0301-0B0

Description

Instruction 005 sets the P register to the 24-bit parcel address specified by the
contents of the Bjk register, which causes the program to continue at that address.
The instruction is used to return from a subroutine.

Instruction 0060

Special Cases

There are no special cases.

Hold Issue Conditions

The 006 instruction holds issue if either one of the following conditions occurs:

• The second parcel is in a different buffer (the instruction holds issue for
3 CPs).

• The second parcel is not in a buffer.

Execution Time

Instruction issue times for the 006 instruction are as follows:

• If both parcels of the instruction are in the same buffer and the branch
address is in a buffer, the issue time is 6 CPs.

• If both parcels of the instruction are in the same buffer and the branch
address is not in a buffer, the issue time is 41 CPs. Additional time is
required if a memory conflict exists.

Description

The 006ijkm instruction is a 2-parcel unconditional jump instruction. It sets the
P register to the parcel address that is specified by the low-order 24 bits of the
exp (ijkm field). The program continues at that address.

Machine Instruction CAL Syntax Description

006ijkm J exp Jump to exp.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 217

Instruction 0070

Special Cases

There are no special cases.

Hold Issue Conditions

The instruction holds issue under any of the following conditions:

• A 025 instruction was issued in the previous 2 CPs.

• The second parcel is in a different buffer (a 3-CP delay occurs).

• The second parcel is not in a buffer.

• Classic CPU: Instruction 034 is in progress.

• J90se CPU: Instruction 034 is in progress with block length less than or
equal to 1008 and register Bjk has not been written.

• J90se CPU: Instruction 034 in progress with block length greater than
1008.

• Instruction 035 is in progress.

Execution Time

The issue times for the 007 instruction are as follows:

• If both parcels of the instruction are in the same buffer and the branch
address is in a buffer, the instruction issue time is 6 CPs.

• If both parcels of the instruction are in the same buffer and the branch
address is not in a buffer, the instruction issue time is 41 CPs. Additional
time is needed if a memory conflict exists.

Machine Instruction CAL Syntax Description

007ijkm R exp Return jump to exp and set register B00 to (P) + 2.

CPU Instruction Descriptions System Programmer Reference

218 Cray Research Proprietary CSM-0301-0B0

Description

The 2-parcel 007ijkm instruction sets register B00 to the address of the parcel
that follows the second parcel of the instruction. The P register is then set to the
parcel address that is specified by the low-order 24 bits of theexp (ijkm field).
Execution continues at that address.

This instruction provides return links for subroutine calls. The subroutine is
entered through a return jump. The subroutine can return to the caller at the
instruction following the call by executing a jump to the contents of register B00
(005000).

Instructions 010 through 013

Special Cases

The following special cases exist for instructions 010 through 013:

• (A0) = 0 is a positive condition.
• The high-order bit of thei designator (i2) must be 0.

• Register A0 is 32 bits wide and bit 31 is the sign bit.

Hold Issue Conditions

Instructions 010 through 013 hold issue under any of the following conditions:

• Register A0 is busy in any one of the previous 3 CPs.

• The second parcel of the instruction is not in a buffer.

• The second parcel of the instruction is in a different buffer (holds issue for
3 CPs).

Machine Instruction CAL Syntax Description

010ijkma JAZ exp Jump to exp if (A0) = 0 (i2 = 0).

011ijkma JAN exp Jump to exp if (A0) ≠ 0 (i2 = 0).

012ijkma JAP exp Jump to exp if (A0) positive; (A0) ≥ 0 (i2 = 0).

013ijkma JAM exp Jump to exp if (A0) negative (i2 = 0).
a Bit 2 of the i field is equal to 0.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 219

Execution Time

The following instruction issue times are for instructions 010 through 013, if the
branch is taken (jump conditions are satisfied):

• If both parcels of the instruction are in the same buffer, the branch is
taken, and the branch address is in a buffer, the issue time is 6 CPs.

• If both parcels of the instruction are in the same buffer, the branch is
taken, and the branch address is not in a buffer, the issue time is 41 CPs.

• If each parcel of the instruction is in a different buffer, the branch is taken,
and the branch address is in a buffer, the issue time is 9 CPs.

• If each parcel of the instruction is in a different buffer, the branch is taken,
and the branch address is not in a buffer, the issue time is 44 CPs.

• If the second parcel of the instruction is not in a buffer, the branch is
taken, and the branch address is in a buffer, the issue time is 44 CPs.

• If the second parcel of the instruction is not in a buffer, the branch is
taken, and the branch address is not in a buffer, the issue time is 79 CPs.

The following instruction issue times are for instructions 010 through 013, if the
branch is not taken (jump conditions are satisfied):

• If both parcels of the instruction are in the same buffer, the branch is not
taken, and the next instruction is in the same instruction buffer, the issue
time is 2 CPs.

• If both parcels of the instruction are in the same buffer, the branch is not
taken, and the next instruction is in a different instruction buffer, the issue
time is 5 CPs.

• If both parcels of the instruction are in the same buffer, the branch is not
taken, and the next instruction is in memory, the issue time is 41 CPs.

• If each parcel of the instruction is in a different buffer and the branch is
not taken, the issue time is 5 CPs.

• If the second parcel of the instruction is not in a buffer and the branch is
not taken, the issue time is 40 CPs.

NOTE: Memory conflicts may produce a delay whenever a fetch operation
occurs.

CPU Instruction Descriptions System Programmer Reference

220 Cray Research Proprietary CSM-0301-0B0

Description

The 2-parcel 010 through 013 instructions test the contents of the A0 register
for the condition specified by theh field. If the condition is satisfied, the P register
is set to the parcel address that is specified by the low-order 24 bits of theexp
(ijkm field) and execution continues at that address. The high-order bit (i2) of
the ijkm field must be 0. If the condition is not satisfied, execution continues
with the instruction that follows the branch instruction.

Instructions 014 through 017

Special Cases

The following special cases exist for instructions 014 through 017:

• (S0) = 0 is a positive condition.
• The high-order bit of thei designator (i2) must be 0.

Hold Issue Conditions

Instructions 014 through 017 hold issue under any of the following conditions:

• Register S0 is busy in any one of the previous 3 CPs.

• The second parcel of the instruction is in a different buffer (holds issue for
3 CPs).

• The second parcel is not in a buffer.

Machine Instruction CAL Syntax Description

 014ijkma JSZ exp Jump to exp if (S0) = 0 (i2 = 0)

 015ijkma JSN exp Jump to exp if (S0) ≠ 0 (i2 = 0)

 016ijkma JSP exp Jump to exp if (S0) positive; (i2 = 0)

 017ijkma JSM exp Jump to exp if (S0) negative (i2 = 0)
a Bit 2 of the i field is equal to 0.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 221

Execution Time

The following issue times are for instructions 014 through 017, if the branch is
taken (jump conditions are satisfied):

• If both parcels of the instruction are in the same buffer, the branch is
taken, and the branch address is in a buffer, the issue time is 6 CPs.

• If both parcels of the instruction are in the same buffer, the branch is
taken, and the branch address is not in a buffer, the issue time is 41 CPs.

• If each parcel of the instruction is in a different buffer, the branch is taken,
and the branch address is in a buffer, the issue time is 9 CPs.

• If each parcel of the instruction is in a different buffer, the branch is taken,
and the branch address is not in a buffer, the issue time is 44 CPs.

• If the second parcel of the instruction is not in a buffer, the branch is
taken, and the branch address is in a buffer, the issue time is 44 CPs.

• If the second parcel of the instruction is not in a buffer, the branch is
taken, and the branch address is not in a buffer, the issue time is 79 CPs.

The following issue times are for instructions 014 through 017 if the branch is
not taken (jump conditions are not satisfied):

• If both parcels of the instruction are in the same buffer, the branch is not
taken, and the next instruction is in the same instruction buffer, the issue
time is 2 CPs.

• If both parcels of the instruction are in the same buffer, the branch is not
taken, and the next instruction is in a different instruction buffer, the issue
time is 5 CPs.

• If both parcels of the instruction are in the same buffer, the branch is not
taken, and the next instruction is in memory, the issue time is 41 CPs.

• If each parcel of the instruction is in a different buffer and the branch is
not taken, the issue time is 5 CPs.

• If the second parcel of the instruction is not in a buffer and the branch is
not taken, the issue time is 40 CPs.

NOTE: Memory conflicts produce delays when a fetch operation occurs.

CPU Instruction Descriptions System Programmer Reference

222 Cray Research Proprietary CSM-0301-0B0

Description

The 2-parcel 014 through 017 instructions test the contents of the S0 register for
the condition specified by theh field. If the condition is satisfied, the P register
is set to the parcel address that is specified by the low-order 24 bits of theexp
(ijkm field) and execution continues at that address. The high-order bit (i2) of
the ijkm field must be 0. If the condition is not satisfied, execution continues
with the instruction that follows the branch instruction.

Instructions 020 through 022

Special Cases

There are no special cases.

Hold Issue Conditions

Instructions 020 through 022 hold issue under any of the following conditions:

• The Ai register is reserved.
• The second or third instruction parcel is not in a buffer.

Execution Time

The following instruction issue times apply to instructions 020 through 022:

• Register Ai is ready in 1 CP.

• For instructions 020 and 021, the instruction issue time is 2 CPs.

• For instruction 022, the instruction issue time is 1 CP.

• If parcel 0 is in a different buffer than parcels 1 and 2, the instruction issue
time is 5 CPs.

Machine Instruction CAL Syntax Description

020I00mnd

or
021i00mn

or
022ijkd

Ai exp Transmit exp into Ai (020 or 022) or transmit one’s
complement of exp into Ai (021).

d These instructions are generated depending on the value of the exponent.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 223

• If parcel 2 is in a different buffer than parcels 0 and 1, the instruction issue
time is 6 CPs.

Description

Instructions 020 through 022 transmit a value that is determined byexp into the
Ai register. The syntax differs from most CAL symbolic instructions in that the
assembler generates any of the previous Cray Research machine instructions
depending on the form, value, and attributes of theexp.

The assembler generates the instruction 022ijk if all of the following conditions
are true (thejk fields contain the 6-bit value ofexp):

• The value of the expression is positive and less than 77 (octal).
• All symbols (if any) within the expression are previously defined.
• The expression has an absolute relative attribute.

If any one of the previous three conditions is not true, the assembler generates
one of the following instructions:

• 3-parcel 020i00mn or 021i00mn instruction

If the exp has a positive value greater than 77 (octal) or either a relocatable or
external relative attribute, the following condition occurs:

• Instruction 020i00mn is generated. Theexp value is entered in the 32-bit
mn field.

If the exp value is negative and has an absolute relative attribute, the following
condition occurs:

Instruction 021i00mn is generated. The one’s complement of theexp value is
entered into the 32-bitmn field unless theexp value is -1. If theexp is -1,
instruction 031i00 is generated.

CPU Instruction Descriptions System Programmer Reference

224 Cray Research Proprietary CSM-0301-0B0

Instruction 023

Special Cases

The following special cases exist for instruction 023:
• If j = 0 then Sj = 0.
• If the low-order 6 bits of the VL register are 0, bit 6 in the VL register = 1.
• If any of the low-order 6 bits of the VL register are not 0, bit 6 = 0.

If (A1) = 0, the following CAL sequence produces (A2) = 100 (octal):

• VL A1
• A2 VL

If (A1) = 23 (octal), the following CAL sequence produces (A2) = 23 (octal):

• VL A1
• A2 VL

If (A1) = 123 (octal), the following CAL sequence produces (A2) = 23 (octal):

• VL A1
• A2 VL

Hold Issue Conditions

The 023 instruction holds issue under any of the following conditions:

• The Ai register is reserved.
• Instruction 0020xx is issued in the previous CP.

The 023ij0 instruction holds issue if the Sj register is reserved (except S0).

Machine Instruction CAL Syntax Description

023ij0 Ai Sj Transmit (Sj) to Ai.

023i01 Ai VL Transmit (VL) to Ai.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 225

Execution Time

The instruction issue times are as follows:

• The instruction issue time is 1 CP.
• The Ai register is ready in 1 CP.

Description

Instruction 023ij0 transmits the low-order 32 bits of the contents of the Sj register
into the Ai register. The high-order bits of the Sj register are ignored. Register
Ai = 0 if thej designator is 0. Instruction 023i01 transmits the contents of the
VL register into the Ai register.

Instructions 024 through 025

Special Cases

There are no special cases.

Hold Issue Conditions

Instructions 024 and 025 hold issue under any of the following conditions:

• Register Ai is reserved.

• Instruction 025ijk was issued in the previous CP (for instruction 024ijk).

• Classic CPU: Instruction 034 is in progress.

• J90se CPU: Instruction 034 is in progress with block length less than or
equal to 1008 and register Bjk has not been written.

• J90se CPU: Instruction 034 is in progress with block length greater than
1008.

• Instruction 035 is in progress.

Machine Instruction CAL Syntax Description

024ijk Ai Bjk Transmit (Bjk) to Ai.

025ijk Bjk Ai Transmit (Ai) to Bjk.

CPU Instruction Descriptions System Programmer Reference

226 Cray Research Proprietary CSM-0301-0B0

Execution Time

The issue times for instructions 024 and 025 are as follows:

• Register Ai is ready in 1 CP after issuing a 024 instruction.
• Instruction issue time is 1 CP.

Description

Instruction 024 transmits the contents of the Bjk register into the Ai register, and
instruction 025 transmits the contents of the Ai register into the Bjk register.

Instruction 026

Special Cases

The following special cases exist for instruction 026:

• For instructions 026ij0 and 026ij1, if j = 0 then (Ai) = 0.
• For instruction 026ij7, if CLN = 0 then (Ai) = 0.

Hold Issue Conditions

Instruction 026 holds issue under any of the following conditions:

• The Ai register is reserved.

• For instructions 026ij0 and 026ij1 when the Sj register is reserved (except
S0).

• For instruction 026ij7 when a shared path conflict occurs or the shared
operation buffer is full.

Machine Instruction CAL Syntax Description

026ij0 Ai PSj Transmit the population count of (Sj) to Ai.

026ij1 Ai QSj Transmit the population count parity of (Sj) to Ai.

026ij7 Ai SBj Transmit (SBj) to Ai.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 227

Execution Time

Instruction issue times for the 026 instruction are as follows:

• The instruction issue time is 1 CP.
• For instructions 026ij0 and 026ij1, register Ai is ready in 4 CPs.
• For instruction 026ij7, register Ai is ready in 13 CPs.

Description

Instruction 026ij0 counts the number of 1 bits in the Sj register and enters the
result into the low-order 7 bits of the Ai register. The high-order bits of the Ai
register are cleared. If the Sj register equals 0, then the value in the Ai register
equals 0.

Instruction 026ij1 enters a 0 in the Ai register if the Sj register has an even number
of 1 bits. If the Sj register has an odd number of 1 bits, a 1 is entered in the Ai
register. The high-order bits of the Ai register are cleared. The actual population
count is not transferred.

Instructions 026ij0 and 026ij1 are executed in the population/leading zero count
functional unit.

Instruction 026ij7 transmits the contents of the SBj register to the Ai register.
The SBj register is shared between the CPUs in the same cluster.

Instruction 027

Special Cases

The following special cases exist for instruction 027:

• If j = 0 for instruction 027ij0, register Ai = 64.
• If Sj is negative for instruction 027ij0, Ai = 0.
• If CLN = 0 for instruction 027ij7, the instruction performs no operation.

Machine Instruction CAL Syntax Description

027ij0 Ai ZSj Transmit leading zero count of (Sj) to Ai.

027ij7 SBj Ai Transmit (Ai) to SBj.

CPU Instruction Descriptions System Programmer Reference

228 Cray Research Proprietary CSM-0301-0B0

The following special case exists for instruction 027ij7:

• On a J90se CPU, instruction 027ij7 must be synchronized with the system
clock, which runs at half the rate of the CPU clock. Therefore, a 1-CP
hold issue may occur for clock alignment.

Hold Issue Conditions

The 027 instruction holds issue under any of the following conditions:

• The Ai register is reserved.

• For 027ij0 instruction when the Sj register is reserved (except S0).

• For instruction 027ij7 when a shared path access conflict occurs or if the
shared operations buffer is full.

Execution Time

The instruction issue times for instruction 027 are as follows:

• The instruction issue time is 1 CP.
• For instruction 027ij0, the Ai register is ready in 4 CPs.
• For instruction 027ij7, the SBj register is ready in 1 CP.

Description

Instruction 027ij0 counts the number of leading 0’s in the Sj register and enters
the result into the low-order 7 bits of the Ai register. All bits above bit 8 in the
Ai register are cleared. The Ai register is set to 64 if thej designator is 0, or if
the content of the Sj register is 0. Instruction 027ij0 executes in the
population/leading zero count functional unit. Instruction 027ij7 transmits the
contents of the Ai register to the SBj register. The SBj register is shared between
the CPUs in the same cluster.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 229

Instructions 030 through 031

Special Cases

The following special cases exist for instruction 030:

• If j = 0 andk != 0, then Ai = Ak.
• If j = 0 andk = 0, then Ai = 1.
• If j != 0 andk = 0, then Ai = Aj + 1.

The following special cases exist for instruction 031:

• If j = 0 andk != 0, then Ai = -Ak.
• If j = 0 andk = 0, then Ai = -1.
• If j != 0 andk = 0, then Ai = Aj - 1.

Hold Issue Conditions

Instructions 030 and 031 hold issue under any of the following conditions:

• The Ai register is reserved.
• The Aj or Ak register is reserved (except A0).

Execution Time

The issue times for instructions 030 and 031 are as follows:

• The instruction issue time is 1 CP.
• Register Ai is ready in 2 CPs.

Machine Instruction CAL Syntax Description

030ijk Ai Aj + Ak Transmit the integer sum of (Aj) and (Ak) to Ai.

030i0kb Ai Ak Transmit (Ak) to Ai.

030ij0b Ai Aj + 1 Transmit the integer sum of (Aj) and 1 to Ai.

031ijk Ai Aj-Ak Transmit the integer difference (Aj) and (Ak) to Ai.

031i00b Ai -1 Transmit -1 to Ai.

031i0kb Ai -Ak Transmit the negative of (Ak) to Ai.

031ij0b Ai -Aj-1 Transmit the integer difference (Aj) and 1 to Ai.
b Special CAL syntax.

CPU Instruction Descriptions System Programmer Reference

230 Cray Research Proprietary CSM-0301-0B0

Description

Instructions 030 and 031 execute in the address add functional unit, overflow is
not detected by either instruction.

Instruction 030 forms the integer sum of the contents of the Aj and Ak registers
and enters the result into the Ai register.

Instruction 031 forms the integer difference of the contents of the Aj and Ak
registers and enters the result into the Ai register. Instruction 031i00 is generated
in place of instruction 020ijkm if the operand is -1.

Instruction 032

Special Cases

The following special cases exist for instruction 032:

• If j = 0, (Ai) = 0.
• If k = 0, (Ak) = 1.
• If j != 0 andk = 0, (Ai) = (Aj).

Hold Issue Conditions

The 032 instruction holds issue under any of the following conditions:

• The Ai register is reserved.
• The Aj or Ak register is reserved (except A0).

Execution Time

The instruction issue times are as follows:

• The instruction issue time is 1 CP.
• Register Ai is ready in 4 CPs.

Machine Instruction CAL Syntax Description

032ijk Ai Aj*Ak Transmit the integer product of (Aj) and (Ak) to Ai.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 231

Description

Instruction 032 forms the integer product of the contents of the Aj and Ak
registers and enters the low-order 32-bit result into the Ai register. Instruction
032 executes in the address multiply functional unit, and overflow conditions
are not detected.

Instruction 033

Special Cases

The following special cases exist for instruction 033:

• If (A j) = 0, then (Ai) = highest priority channel causing an interrupt.

• If (A j) ≠ 0 andk = 0, then (Ai) = current address of channel (Aj).

• If (A j) ≠ 0 andk = 1, then (Ai) = I/O error flag of channel (Aj).

• After instruction 0012j0 issues, 033i00 issues immediately because the
JS ASIC ensures that all local instructions are held until all global
instructions are completed.

All 033ij1 instructions return a 1-bit channel error flag, regardless of the type of
channel.

Hold Issue Conditions

The 033 instruction holds issue under any of the following conditions:

• The Ai or Aj (except A0) register is reserved.
• A shared register conflict occurs or the shared operation buffer is full.

Machine Instruction CAL Syntax Description

033i00 Ai CI Transmit the channel number of the highest priority
interrupt request to Ai (j = 0).

033ij0 Ai CA,Aj Transmit the current address of the channel (Aj) to Ai (j ≠ 0,
k = 0).

033ij1 Ai CE,Aj Transmit the error flag of channel (Aj) to Ai (j ≠ 0, k = 1).

CPU Instruction Descriptions System Programmer Reference

232 Cray Research Proprietary CSM-0301-0B0

Execution Time

The instruction issue times for instruction 033 are as follows:

• The instruction issue time is 1 CP.

• For 033i00, register Ai is ready in 8 CPs.

• For 033ij0, register Ai is ready in 39 CPs if no conflicts occur with
other CPUs.

• For 033ij1, register Ai is ready in 41 CPs if no conflicts occur with
other CPUs.

Description

Instruction 033 enters channel status information into the Ai register. Thej and
k designators and the contents of register Aj define the information. Instruction
033 does not interfere with channel operation and is not protected from user
execution.

Instruction 033i00 enters the channel number of the highest priority interrupt
request into the Ai register. For each channel, there is a single priority bit that
indicates whether it is a high- or low-priority channel. When a processor requests
the highest-priority channel, that channel is determined as follows:

1. If any channel marked as high priority has an interrupt pending, the
lowest-numbered, high-priority channel is the one returned.

2. If no channels marked as high priority have an interrupt pending, the
lowest-numbered, low-priority channel with an interrupt pending is
returned.

Instruction 033ij0 enters the contents of the CA register for the channel that is
specified by the contents of the Aj register into the Ai register.

Instruction 033ij1 enters the error flag for the channel that is specified by the
contents of the Aj register into the low-order bit of the Ai register. The high-order
bits of the Ai register are cleared. The error flag can be cleared only in monitor
mode by using the 0012 instruction.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 233

Instructions 034 through 037

Special Cases

The following special cases exist for instructions 034 through 037:

• If (A i) register = 0, initiate a zero-block transfer.

• If (A i) register is in a range greater than 100 (octal) and less than 200
(octal), a wrap-around condition occurs.

• If (A i) register is greater than 177 (octal), bits 7 through 23 are truncated
and the block length is equal to the value of 0 through 6.

• On a J90se CPU, instructions 034 through 037 must be synchronized with
the system clock, which runs at half the rate of the CPU clock. Therefore,
a 1-CP hold issue may occur for clock alignment.

Hold Issue Conditions

The 034 through 037 instructions hold issue under any of the following
conditions:

• The A0 register is reserved.

Machine Instruction CAL Syntax Description

034ijk Bjk, Ai, ,A0 Load (Ai) words from memory starting at address (A0) to B
registers starting at register jk.

034ijkb Bjk,Ai 0,A0 Load (Ai) words from memory starting at address (A0) to B
registers starting at register jk.

035ijk ,A0 Bjk,Ai Store (Ai) words from B registers starting at register jk to
memory starting at address (A0).

035ijkb 0,A0 Bjk,Ai Store (Ai) words from B registers starting at register jk to
memory starting at address (A0).

036ijk Tjk,Ai 0,A0 Load (Ai) words from memory starting at address (A0) to T
registers starting at register jk.

036ijkb Tjk,Ai 0,A0 Load (Ai) words from memory starting at address (A0) to T
registers starting at register jk.

037ijk ,A0 Tjk,Ai Store (Ai) words from T registers starting at register jk to
memory starting at address (A0).

037ijkb 0,A0 Tjk,Ai Store (Ai) words from T registers starting at register jk to
memory starting at address (A0).

b Special CAL syntax.

CPU Instruction Descriptions System Programmer Reference

234 Cray Research Proprietary CSM-0301-0B0

• The Ai register is reserved.

• Instruction 034 holds issue if port A is busy, when instruction 035 is in
progress or in unidirectional memory mode, or there are any uncompleted
073i00 or 076 instructions and a block write (035, 037, 177) is busy.

• Instruction 035 holds issue when a block write (035, 037, 177) is busy or
when instruction 034 is in progress or in unidirectional memory mode and
port A or port B is busy.

• Instruction 036 holds issue if port B is busy, when instruction 037 is in
progress or in unidirectional memory mode, or when there are any
uncompleted 073i00 or 076 instructions and a block write (035, 037, 177)
is busy.

• Instruction 037 holds issue when a block write (035, 037, 177) is busy,
when instruction 036 is in progress or in unidirectional memory mode, or
when there are any uncompleted 073i00 or 076 instructions and port A or
port B is busy.

Execution Time

The instruction issue times are as follows:

• The instruction issue time is 1 CP.

• For instruction 034 or 036,

• If (A i) != 0, B or T registers are reserved for (Ai) + 36 CPs.

• If (A i) = 0, B or T registers are reserved for 4 CPs.

• If (A i) != 0, port A or B is busy for (Ai) + 7 CPs,
if A i ≥ 4 Ai + (4-7) CPs.

• If (A i) = 0, port A or B is busy for 5 CPs.

NOTE: On the J90se CPU, instructions 034 and 036 with a block
length of less than or equal to 1008 release the B or T registers
individually as they are written. This is different from the J90
classic CPU, where all the B or T registers are reserved until
the last register is written.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 235

• For instruction 035 or 037,

• If (Ai) != 0, B or T registers are reserved for (Ai) + 4 CPs.

• If (Ai) = 0, B or T registers are reserved for 4 CPs.

• If (Ai) != 0, port A or port B is busy for (Ai) + 8 CPs,
if Ai ³ 3 Ai + (5 - 8) CPs.

• If (Ai) = 0, port A or port B is busy for 5 CPs.

Description

Instructions 034 through 037 perform block transfers between central memory
and B or T registers. Instruction 034ijk transfers words from central memory
directly into the B registers. Instruction 035ijk stores words from B registers
directly into central memory.

Instruction 036ijk transfers words from central memory directly into T registers.
Instruction 037ijk stores words from T registers directly into central memory.

For the 034 through 037 instructions, processing of B and T registers is circular.
The first register involved in the transfer is specified by thejk fields; the
low-order 7 bits of the contents of the Ai register specify the number of words
transmitted. Successive transfers involve successive B or T registers until B77
or T77 is reached. Register B00 is processed after B77 and register T00 is
processed after T77 if the count in the content of the Ai register is not exhausted.

The first memory location that is referenced by the transfer instruction is
specified by the contents of register A0. The contents of register A0 are not
altered by execution of the instruction. Memory references are incremented by
1 for successive transfers.

For transfers of B registers to central memory, each 32-bit value is right adjusted
in the word; the high-order 32 bits are cleared. When transferring from memory
to B registers, only the 32 low-order bits are transmitted; the 32 high-order bits
are ignored.

If the contents of the Ai register equal 0, no words are transferred. Ifi = 0, the
contents of register A0 are used for the block length and the starting memory
address. The CAL assembler issues a warning message wheni = 0.

NOTE: Instruction 034 uses port A, instructions 035 and 037 use either ports
A or B, and instruction 036 uses port B for block transfers.

CPU Instruction Descriptions System Programmer Reference

236 Cray Research Proprietary CSM-0301-0B0

Instruction 040 through 041

Special Cases

There are no special cases.

Hold Issue Conditions

Instructions 040 through 041 hold issue under any of the following conditions:

• Si register is reserved.
• The second or third parcel is not in a buffer.

Execution Time

The instruction issue times for instructions 040 and 041 are as follows:

• If both parcels are in the same buffer, the issue time is 2 CPs.

• If parcel 0 is in a different buffer than parcels 1 and 2, the issue time
is 5 CPs.

• If parcels 0 and 1 are in a different buffer than parcel 2, the issue time
is 6 CPs.

• The Si register is ready in 1 CP.

Description

These instructions transmit a quantity into the Si register. Depending on the
instructionexp value, either the 040i00mn or the 041i00mn instruction is
generated. If the expression has a positive value, or either a relocatable or external
relative attribute, the following instruction is generated.

• Instruction 040i00mn is generated with the 32-bitmn field containing the
expression value.

Machine Instruction CAL Syntax Description

040i00mn
or
041i00mn

Si exp Transmit exp into Si (040) or transmit one’s complement of
exp into Si (041).

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 237

If the expression has a negative value and an absolute relative attribute, the
following instruction is generated:

• Instruction 041i00mn is generated with the 32-bitmn field containing the
one’s complement of the expression value.

Instructions 042 through 043

Special Cases

There are no special cases.

Hold Issue Conditions

Instructions 042 through 043 hold issue when the Si register is reserved.

Execution Time

The issue times for instructions 042 and 043 are as follows:

• The instruction issue time is 1 CP.
• Register Si is ready in 1 CP.

Description

Instruction 042 generates a mask of 100 (octal) -jk 1’s from right to left in the
Si register. For example, ifjk = 0, the Si register contains all 1 bits (integer value
= -1) and ifjk = 77 (octal), the Si register contains 0’s in all but the low-order bit
(integer value = 1).

Machine Instruction CAL Syntax Description

042ijk Si <exp Form ones mask in Si exp bits from right; the jk field gets
1008 - exp.

042ijkb Si # >exp Form zeroes mask in Si exp bits from left; the jk field gets
exp.

042i77b Si 1 Enter 1 into Si register.

042i00b Si -1 Enter -1 into Si register.

043ijk Si >exp Form ones mask in Si exp bits from left; the jk field gets exp.

043ijkb Si #<exp Form zeroes mask in Si exp bits from right; the jk field gets
1008 exp.

043i00b Si 0 Clear the Si register.
b Special CAL syntax.

CPU Instruction Descriptions System Programmer Reference

238 Cray Research Proprietary CSM-0301-0B0

Instruction 043 generates a mask ofjk 1’s from left to right in the Si register.
For example, ifjk = 0, the Si register contains all 0 bits (integer value = 0) and
if jk = 77 (octal), the Si register contains 1’s in all bits except the low-order bit
(integer value = -2).

The scalar logical functional unit executes instructions 042 and 043.

Instructions 044 through 051

NOTE: For instructions 044 through 051, the abbreviation SB in the CAL
syntax refers to the sign bit, not a shared address register.

Machine Instruction CAL Syntax Description

044ijk Si Sj&Sk Transmit the logical product of (Sj) and (Sk) to Si.

044ij0b Si Sj&SB Transmit the sign bit of (Sj) to Si.

044ij0b Si SB&Sj Transmit the sign bit of (Sj) to Si (j ≠ 0)

045ijk Si #Sk&Sj Transmit the logical product of (Sj) and complement of (Sk)
to Si.

045ij0b Si #SB&Sj Transmit the (Sj) with sign bit cleared to Si.

046ijk Si Sj\Sk Transmit the logical difference of (Sj) and (Sk) to Si.

046ij0b Si Sj\SB Toggle the sign bit of (Sj) , then enter into Si.

046ij0b Si SB\Sj Toggle the sign bit of (Sj) , then enter into Si (j ≠ 0)

047ijk Si #Sj\Sk Transmit the logical equivalence of (Sk) and (Sj) to Si.

047i0kb Si #Sk Transmit the one’s complement if (Sk) to Si.

047ij0b Si #Sj\SB Transmit the logical equivalence of (Sj) and sign bit to Si.

047ij02 Si #SB\Sj Transmit the logical equivalence of (Sj) and sign bit to Si
(j ≠ 0).

047i00b Si #SB Transmit the one’s complement of sign bit into Si.

050ijk Si
Sj!Si&Sk

Transmit the logical product of (Si) and (Sk) complement
ORed with the logical product of (Sj) and (Sk) to Si.

050ij0b Si
Sj!Si&SB

Transmit the scalar merge of (Si) and sign bit of (Sj) to Si.

051ijk Si Sj!Sk Transmit the logical sum of (Sj) and (Sk) to Si.

051i0kb Si Sk Transmit the (Sk) to Si.

051ij0b Si Sj!SB Transmit the logical sum of (Sj) and sign bit to Si.

051ij0b Si SB!Sj Transmit the logical sum of (Sj) and sign bit to Si (j ≠ 0).

051i00b Si SB Transmit the sign bit into Si.
b Special CAL syntax.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 239

Special Cases

The following special cases exist for instructions 044 through 051:

• If j = 0, (Sj) = 0.
• If k = 0, (Sk) = 63.

Hold Issue Conditions

Instructions 044 through 051 hold issue under the following conditions:

• The Si register is reserved.
• The Sj or Sk register is reserved (except S0).

Execution Time

The issue times for instructions 044 through 051 are as follows:

• The instruction issue time is 1 CP.
• Register Si is ready in 1 CP.

Description

The scalar logical functional unit executes instructions 044 through 051.
Instruction 044 forms the logical product (AND) of the contents of the Sj register
and the contents of the Sk register and enters the result into the Si register. Bits
of the Si register are set to 1 when corresponding bits of the Sj register and the
Sk register are 1, as in the following example:

The contents of the Sj register are transmitted to the Si register if thej andk
designators have the same nonzero value. The Si register is cleared if thej
designator is 0. The sign bit of the contents of the Sj register is transmitted to
the Si register if thej designator is nonzero and thek designator is 0. The two
special forms of instruction 044ij0 perform the same function; however, in the
second form,j must not equal 0. Ifj equals 0, an assembly error results.

(Sj) = 1 1 0 0

(Sk) = 1 0 1 0

(Si) = 1 0 0 0

CPU Instruction Descriptions System Programmer Reference

240 Cray Research Proprietary CSM-0301-0B0

Instruction 045 forms the logical product (AND) of the contents of the Sj register
and the complement of the Sk register and enters the result into the Si register.
Bits of the Si register are set to 1 when corresponding bits of the Sj register and
the complement of the Sk register are 1, as in the following example in which
the contents of Sk’= the complement of the contents of Sk:

Si is cleared if the j andk designators have the same value or if thej designator
is 0. The content of the Sj register with the sign bit cleared is transmitted to the
Si register if thej designator is nonzero and thek designator is 0. Instruction
045ij0 performs the identical function.

Instruction 046 forms the logical difference (exclusive OR) of the contents of
the Sj register and the contents of the Sk register and enters the result into the Si
register.

Bits of the Si register are set to 1 when corresponding bits of the Sj register and
the Sk register are different, as in the following example:

Si is cleared if thej andk designators have the same nonzero value. The contents
of the Sk register are transmitted to the Si register if thej designator is 0 and the
k designator is nonzero. The sign bit of the contents of the Sj register is
complemented and the result is transmitted to the Si register if thej designator
is nonzero and thek designator is 0. The two special forms of instruction 046ij0
perform the same function; however, in the second form,j must not equal 0. If
j equals 0, an assembly error results.

Instruction 047 forms the logical equivalent of the contents of the Sj register and
the contents of the Sk register, and enters the result into the Si register.

Bits of the Si register are set to 1 when corresponding bits of the Sj register and
the Sk register are the same as in the following example:

if (Sk) = 1 0 1 0

(Sj) = 0 1 0 1

(Sk’) = 0 1 0 1

(Si) = 0 1 0 0

(Sj) = 1 1 0 0

(Sk) = 1 0 1 0

(Si) = 0 1 1 0

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 241

Si is set to all 1’s if thej andk designators have the same nonzero value. The
complement of the contents of the Sk register is transmitted to the Si register if
thej designator is 0 and thek designator is nonzero. All bits except the sign bit
of the contents of the Sj register are complemented, and the result is transmitted
to the Si register if thej designator is nonzero and thek designator is 0. The result
is the complement produced by instruction 046. The two special forms of
instruction 047ij0 perform the same function; however, in the second form,j
must not equal 0. Ifj equals 0, an assembly error results.

Instruction 047i0k forms the one’s complement of the contents of Sk and enters
the value into Si.

Instruction 050 merges the contents of the Sj register with the contents of the Si
register, depending on the ones mask in Sk. The result is defined by the following
Boolean equation in which Sk’ is the complement of Sk, as shown in the
following example:

Instruction 050 is used for merging portions of 64-bit words into a composite
word. Bits of the Si register are cleared when the corresponding bits of the Sk
register are 1 if thej designator is 0 and thek designator is nonzero. The sign bit
of the contents of the Sj register replaces the sign bit of the Si register if thej
designator is nonzero and thek designator is 0. The sign bit of the Si register is
cleared if thej andk designators are both 0.

Instruction 051 forms the logical sum (inclusive OR) of the contents of the Sj
register and the contents of the Sk register. Bits of the Si register are set when
one of the corresponding bits of the Sj register and the Sk register are set, as in
the following example:

(Sj) = 1 1 0 0

(Sk) = 1 0 1 0

(Si) = 1 0 0 1

(Si) = (Sj)(Sk) + (Si) (Sk’)

if (Sk) = 1 1 1 1 0 0 0 0

(Sk’) = 1 0 1 0 1 0 1 0

(Si) = 1 1 0 0 1 1 0 0

(Sj) = 1 1 1 1 0 0 0 0

(Si) = 1 0 1 0 1 1 0 0

CPU Instruction Descriptions System Programmer Reference

242 Cray Research Proprietary CSM-0301-0B0

The contents of the Sj register are transmitted to the Si register if thej andk
designators have the same nonzero value. The contents of the Sk register are
transmitted to the Si register if thej designator is 0 and thek designator is nonzero.
The contents of the Sj register with the sign bit set to 1 are transmitted to the Si
register if thej designator is nonzero and thek designator is 0. A ones mask that
consists of only the sign bit is entered into the Si register if thej andk designators
are both 0.

Instructions 052 through 055

Special Cases

There are no special cases.

Hold Issue Conditions

Instructions 052 through 055 hold issue under any of the following conditions:

• The Si register is reserved.
• For instructions 052 and 053, when the S0 register is reserved.

Execution Time

The issue times for instructions 052 through 055 are as follows:

• The instructions issue time is 1 CP.
• For instructions 052 and 053, register S0 is ready in 3 CPs.
• For instructions 054 and 055, register Si is ready in 3 CPs.

(Sj) = 1 1 0 0

(Sk) = 1 0 1 0

(Si) = 1 1 1 0

Machine Instruction CAL Syntax Description

052ijk S0 Si <exp Shift (Si) left exp places to S0; exp = jk.

053ijk S0 Si >exp Shift (Si) right exp places to S0; exp = 1008-jk.

054ijk Si Si <exp Shift (Si) left exp places to Si; exp = jk.

055ijk Si Si >exp Shift (Si) right exp places to Si; exp = 1008-jk.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 243

Description

The scalar shift functional unit executes instructions 052 through 055. The
instructions shift values in an S register by an amount specified byexp (jk field);
all shifts are end-off with zero fill.

Instruction 052 shifts the contents of the Si registerjk places to the left and enters
the result into the S0 register; the shift range is 0 through 63 left. If the shift
count is 64, instruction 053000 is generated and register S0 is cleared.

Instruction 053 shifts the contents of the Si register to the right by 100 (octal)
- jk places and enters the result into the S0 register; the shift range is 1 through
100 (octal) right. If the shift count is 0, then instruction 052000 is generated and
the contents of register S0 are not altered.

Instruction 054 shifts the contents of the Si register to the leftjk places and enters
the result into the Si register; the shift range is 0 through 77 (octal) left. If the
shift count is 100 (octal), instruction 055i00 is generated and the Si register is
cleared.

Instruction 055 shifts (Si) to the right by 100 (octal) -jk places and enters the
result into the Si register; the shift range is 1 through 100 (octal) right. If the
shift count is 0, then instruction 054i00 is generated and the contents of the Si
register are not altered.

Instructions 056 through 057

Special Cases

The following special cases exist for instructions 056 through 057:

• If j = 0, (Sj) = 0.

• If k = 0, (Ak) = 1.

Machine Instruction CAL Syntax Description

056ijk Si Si,Sj <Ak Shift (Si) and (Sj) left by (Ak) places to Si.

056ij0b Si Si,Sj <1 Shift (Si) and (Sj) left one place to Si.

056i0kb Si Si <Ak Shift (Si) left (Ak) places to Si.

057ijk Si Sj,Si >Ak Shift (Si) and (Si) right by (Ak) places to Si.

057ij02 Si Sj,Si >1 Shift (Si) and (Si) right one place to Si.

057i0k2 Si Si >Ak Shift (Si) right (Ak) places to Si.
b Special CAL syntax.

CPU Instruction Descriptions System Programmer Reference

244 Cray Research Proprietary CSM-0301-0B0

• Perform a circular shift ifi = j != 0 and Ak is greater than or equal to 0,
and less than or equal to 64.

Hold Issue Conditions

Instructions 056 through 057 hold issue under any of the following conditions:

• The Si register is reserved.
• The Sj or Ak register is reserved (except S0 and/or A0).

Execution Time

The instruction issue times are as follows:

• The instruction issue time is 1 CP.
• Register Si is ready in 3 CPs.

Description

The scalar shift functional unit executes instructions 056 and 057. The instruction
shifts 128-bit values formed by logically joining two S registers. Shift counts
are obtained from the Ak register. All shift counts are considered positive and
all 32 bits of the contents of the Ak register are used for the shift count.

Replacing the Ak register reference with 1 is the same as setting thek designator
to 0; a reference to register A0 provides a shift count of 1. Omitting the Sj register
reference is the same as setting thej designator to 0; the contents of the Si register
are concatenated with a word of 0’s.

The shifts are circular if the shift count does not exceed 64, and thei andj
designators are equal and nonzero. For instructions 056 and 057, the contents of
the Sj register are unchanged, providedi != j. For shifts greater than 64, the shift
is end-off with zero fill. Instruction 056 produces a 128-bit quantity by
concatenating the contents of the Si register and the contents of the Sj register.
This instruction shifts the resulting value to the left by an amount specified by
the low-order bits of the Ak register and enters the high-order bits of the result
into the Si register. The Si register is cleared if the shift count exceeds 127.
Instruction 056 produces the same result as instruction 054 if the shift count does
not exceed 63 and thej designator is 0. The special forms of 056 perform the
same function.

Instruction 057 produces a 128-bit quantity by concatenating the contents of the
Sj register and the contents of the Si register. This instruction shifts the resulting
value to the right by an amount specified by the low-order 7 bits of the contents

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 245

of the Ak register and enters the low-order bits of the result into the Si register.
The Si register is cleared if the shift count exceeds 127. Instruction 057 produces
the same result as instruction 055 if the shift count does not exceed 63 and the
j designator is 0. The special forms of 057 perform the same function.

Instructions 060 through 061

Special Cases

The following special cases exist for instruction 060 or 061:

• If j = 0 andk = 0, then (Si) = bit 63.

• For instruction 060, ifj = 0 andk != 0, then (Si) = (Sk).

• For instruction 060, ifj != 0 andk = 0, then (Si) = (Sj) with bit 63
complemented.

• For instruction 061, ifj = 0 andk != 0, then (Si) = -(Sk).

• For instruction 061, ifj != 0 andk = 0, then (Si) = (Sj) with bit 63
complemented.

Hold Issue Conditions

Instructions 060 through 061 hold issue under any of the following conditions:

• The Si register is reserved.
• The Sj or Sk register is reserved (except S0).

Machine Instruction CAL Syntax Description

060ijk Si Sj+Sk Transmit the integer sum of (Sj) and (Sk) to Si.

061ijk Si Sj-Sk Transmit the integer difference of (Sj) and (Sk) to Si.

061i0kb Si -Sk Transmit the negative of (Sk) to Si.
b Special CAL syntax.

CPU Instruction Descriptions System Programmer Reference

246 Cray Research Proprietary CSM-0301-0B0

Execution Time

The instruction issue times are as follows:

• Register Si is ready in 2 CPs.
• The instruction issue time is 1 CP.

Description

The scalar add functional unit executes instructions 060 and 061. Instruction
060ijk forms the integer sum of the contents of the Sj register and the contents
of the Sk register, and enters the result into the Si register; no overflow conditions
are detected. The contents of the Sk register are transmitted to the Si register if
the j designator is 0 and thek designator is nonzero. The sign bit is entered in
the Si register and all other bits of the Si register are cleared if thej andk
designators are both 0.

Instruction 061ijk forms the integer difference of the contents of the Sj register
and the contents of the Sk register, and enters the result into the Si register; no
overflow is detected. The high-order bit of the Si register is set and all other bits
of the Si register are cleared when thej andk designators are both 0.

Instruction 061i0k transmits the negative (two’s complement) of the contents of
the Sk register into the Si register. The sign bit is set if thek designator is 0.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 247

Instructions 062 through 063

Special Cases

The following special cases exist for instruction 062:

• If (Sk) exponent is valid,j = 0 andk != 0, then (Si) = (Sk) normalized.
• If (Sj) exponent is valid,j != 0 andk = 0, then (Si) = (Sj) normalized.

The following special cases exist for instruction 063:

• If (Sk) exponent is valid,j = 0 andk != 0, then (Si) = -(Sk) normalized.
The sign of (Si) is opposite of (Sk) if (Sk) != 0.

• If (Sj) exponent is valid,j != 0 andk = 0, then (Si) = (Sj) normalized.

Hold Issue Conditions

The 062 through 063 instructions hold issue under any of the following
conditions:

• The Si register is reserved.
• The Sj or Sk register is reserved (except S0).

Execution Time

The instruction issue times are as follows:

• The instruction issue time is 1 CP.
• Register Si is ready in 7 CPs.

Machine Instruction CAL Syntax Description

062ijk Si Sj+FSk Transmit the floating-point sum of (Sj) and (Sk) to Si.

062i0kb Si +FSk Transmit the normalized (Sk) to Si.

063ijk Si Sj-FSk Transmit the floating-point difference of (Sj) and (Sk) to Si.

063i0kb Si -FSk Transmit the normalized negative of (Sk) to Si.
b Special CAL syntax.

CPU Instruction Descriptions System Programmer Reference

248 Cray Research Proprietary CSM-0301-0B0

Description

The floating-point add functional unit executes instructions 062 and 063. The
functional unit considers all operands to be in floating-point format; the result
is normalized even if the operands are unnormalized. Thek designator is
normally nonzero. In the special forms, thej designator is assumed to be 0 so
that the normalized contents of Sk are entered into Si. For floating-point operands
with the sign bit set (bit = 1), a 0 exponent and 0 coefficient are treated as 0 (all
64 bits = 0, which is considered -0). However, no floating-point unit generates
a 0 except the floating-point multiply functional unit if one of the operands was
a 0. Normally, -0 occurs in logical manipulations when a sign is attached to a
number; that number can be 0.

Instruction 062ijk produces the floating-point sum of the contents of the Sj
register and contents of the Sk register and enters the normalized result into the
Si register. Instruction 062i0k transmits the normalized contents of the Sk register
to the Si register.

Instruction 063ijk produces the floating-point difference of the contents of the
Sj register and contents of the Sk register and enters the normalized result into
the Si register. Instruction 063i0k transmits the negative (two’s complement) of
the floating-point quantity in the Sk register to the Si register as a normalized
floating-point number.

Instructions 064 through 067

Special Cases

The following special cases exist for instructions 064 through 067:

• If j = 0, (Sj) = 0.
• If k = 0, (Sk) = bit 63.

Machine Instruction CAL Syntax Description

064ijk Si Sj*FSk Transmit the floating-point product of (Sj) and (Sk) to Si.

065ijk Si Sj*HSk Transmit the half-precision rounded floating-point product of
(Sj) and (Sk) to Si.

066ijk Si Sj*RSk Transmit the rounded floating-point product of (Sj) and (Sk)
to Si.

067ijk Si Sj* !Sk Transmit the reciprocal iteration: 2-(Sj) to Si.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 249

If both exponent fields are 0, an integer multiplication operation is performed.
Correct integer multiplication results are produced if any of the following
conditions occurs:

• Both operand sign bits are 0.

• The number of the 0 bits to the right of the least significant 1 bit in the two
operands is greater than or equal to 48.

The integer result obtained is the high-order 48 bits of the 96-bit product of the
two operands.

Hold Issue Conditions

Instructions 064 through 067 hold issue under any of the following conditions:

• The Si register is reserved.
• The Sj or Sk register is reserved (except S0).

Execution Time

The issue times for instructions 064 through 067 are as follows:

• The instruction issue time is 1 CP.
• Register Si is ready in 8 CPs.

Description

The floating-point multiply functional unit executes instructions 064 through
067 and considers all operands to be in floating-point format. The result may
not be normalized if the operands are not normalized.

Instruction 064ijk forms the floating-point product of the contents of the Sj
register and contents of the Sk register and enters the result into the Si register.

Instruction 065ijk forms the half-precision rounded floating-point product of the
contents of the Sj and Sk registers and sends the result to the Si register. The
low-order 19 bits of the result are cleared. This instruction can be used in the
division algorithm when only 30 bits of accuracy are required.

Instruction 066ijk forms the rounded floating-point product of the contents of
the Sj and Sk registers and sends the result to the Si register. This instruction is
used in the reciprocal approximation sequence.

CPU Instruction Descriptions System Programmer Reference

250 Cray Research Proprietary CSM-0301-0B0

Instruction 067ijk forms two minus the floating-point product of the contents of
the Sk register and contents of the Sj register and enters the result into the Si
register.

Instruction 070

Special Cases

The following special cases exist for instruction 070:

• (Si) is invalid if (Sj) is not normalized. A normalized value is indicated by
bit 47 of (Sj) = 1. No test is made of this bit to determine its value.

• If (Sj) = 0, a range error occurs and the result is invalid.

• If j = 0, (Sj) = 0.

Hold Issue Conditions

The 070 instruction holds issue under any of the following conditions:

• The Si register is reserved.
• The Sj register is reserved (except S0).

Execution Time

The issue times for the 070 instruction are as follows:

• Register Si is ready in 15 CPs.
• The instruction issue time is 1 CP.

Description

The reciprocal approximation functional unit executes instruction 070.
Instruction 070 forms an approximation to the reciprocal of the normalized
floating-point quantity in the Sj register and enters the result into the Si register.
The result is invalid if the contents of the Sj register are not normalized or are
equal to 0.

Machine Instruction CAL Syntax Description

070ij0 Sj /HSj Transmit the floating-point reciprocal approximation of (Sj)
to Si.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 251

The reciprocal approximation instruction produces a result of 30 significant bits.
The low-order 18 bits are 0’s. The number of significant bits is increased to 48
using the reciprocal iteration instruction and a multiplication operation.

Instruction 071

Special Cases

The following special cases exist for instruction 071:

• If k = 0, (Ak) = 1.
• If j = 0, (Si) = (Ak).
• If j = 1, (Si) = (Ak) sign extended.
• If j = 2, (Si) = (Ak) unnormalized.
• If j = 3, (Si) = 0.6x 260 (octal).
• If j = 4, (Si) = 0.4x 20 (octal).
• If j = 5, (Si) = 0.4x 21 (octal).
• If j = 6, (Si) = 0.4x 22 (octal).
• If j = 7, (Si) = 0.4x 23 (octal).

Hold Issue Conditions

The 071 instructions hold issue under any of the following conditions:

• The Si register is reserved.

• The Ak register is reserved (except A0). This hold issue condition applies
when thej designators equal 0 through 7.

Machine Instruction CAL Syntax Description

071i0k Si Ak Transmit (Ak) to Si with no sign extension.

071i1k Si +Ak Transmit (Ak) to Si with sign extension.

071i2k Si +FAk Transmit (Ak) to Si as unnormalized floating-point number.

071i30 Si 0.6 Transmit 0.75 x 248 as normalized floating-point constant
into Si.

071i40 Si 0.4 Transmit 0.5 as normalized floating-point constant into Si.

071i50 Si 1.0 Transmit 1.0 as normalized floating-point constant into Si.

071i60 Si 2.0 Transmit 2.0 as normalized floating-point constant into Si.

071i70 Si 4.0 Transmit 4.0 as normalized floating-point constant into Si.

CPU Instruction Descriptions System Programmer Reference

252 Cray Research Proprietary CSM-0301-0B0

Execution Time

The issue times for the 071 instruction are as follows:

• Instruction issue time is 1 CP.
• Register Si is ready in 2 CPs.

Description

Instruction 071 performs functions that depend on the value of thej designator.
These functions transmit information from an A register to an S register and
generate frequently used floating-point constants.

Instruction 071i0k transmits the 32-bit value in the Ak register to the low-order
bits of the Si register; the high-order bits of the Si register are zeroed. The value
is treated as an unsigned integer. A value of 1 is entered into the Si register when
thek designator is 0.

Instruction 071i1k transmits the 32-bit value in the Ak register to the low-order
bits of the Si register. The value is treated as a signed integer. The sign bit of the
Ak register is extended through the high-order bits of the Si register. A value of
1 is entered into the Si register when thek designator is 0.

Instruction 071i2k transmits the 32-bit value in Ak to Si as an unnormalized
floating-point quantity. For this instruction, the exponent in bits 62 through 48
is set to 40060 (octal). The sign of the coefficient is set according to the sign of
the contents in the Ak register. If the sign bit is set, the two’s complement of the
contents of the Ak register is entered into the Si register as the magnitude of the
coefficient, and bit 63 of the Si register is set for the sign of the coefficient.

A sequence of instructions converts an integer whose absolute value is less than
32 bits to floating-point format. The following CAL code is an example of this
instruction sequence:

Instructions 071i30 through 071i70 are initially recognized by the assembler as
the symbolic instruction Si exp. The assembler then checks the expression for
any of the constant values (explained in following paragraphs). If it finds one of
the instructions in the exact syntax shown, it generates the corresponding Cray

CAL code: A1 S1

S1 +FA1

S1 +FS1 12 CPs required

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 253

Research machine instruction. If none of the indicated constant values are found,
instruction 040ijkm or 041ijkm is generated. These constant values enable more
efficient instructions when entering commonly used values into Si.

Instruction 071i30 transmits the floating-point constant of 0.75x 248 into Si
(0400606000000000000000 (octal)). This constant is used to create
floating-point numbers from integer numbers (positive and negative) whose
absolute value is less than 47 bits. A sequence of instructions is used for
conversion of an integer in S1. The following CAL code is an example of this
instruction sequence.

Instruction 071i40 transmits a floating-point constant 0.4
(0400004000000000000000 (octal)) into the Si register.

Instruction 071i50 transfers the floating-point constant 1.0
(0400014000000000000000 (octal)) into the Si register.

Instruction 071i60 transfers the floating-point constant 2.0
(0400024000000000000000 (octal)) into the Si register.

Instruction 071i70 transfers the floating-point constant 4.0
(0400034000000000000000 (octal)) into the Si register.

CAL code: S2 0.6

S1 S2-S1

S1 S2-FS1 12 CPs required

CPU Instruction Descriptions System Programmer Reference

254 Cray Research Proprietary CSM-0301-0B0

Instructions 072 through 073

Special Cases

The following special cases exist for instructions 072 through 075:

• Instructions 072i02 and 072ij3, (Si) = 0 if CLN = 0.

• Instructions 073i02 and 073ij3 perform no operation if CLN = 0.

• Instruction 072i00 transmits the real-time clock (RTC) to Si. The RTC
will not be ready for some indeterminate number of cycles; the following
code ensures that the RTC is ready:

• The 0014j0 is a global instruction, and the 027ij7 is a local instruction.
All local instructions are held in the JS ASIC until all global instructions
are completed.

Machine Instruction CAL Syntax Description

072i00 Si RT Transmit (RTC) to Si.

072i02 Si SM Transmit (SM) to Si.

072ij3 Si STj Transmit (STj) to Si.

073i00 Si VM Transmit (VM) to Si.

073i11a, c Read the performance counter into Si.

073i21a, c Increment upper performance counter.

073i31a, c Clear all maintenance modes.

073i61a, c Increment current performance counter (lower).

073i01 Si SR0 Transmit (SR0) to Si.

073i02 SM Si Transmit (Si) to SM.

073ij3 STj Si Transmit (Si) to STj.
a These instructions are privileged to monitor mode.

c These instructions are not supported by CAL Version 2.

RT Sj (0014j0)

SBj A0 (0027ij7)

JAZ label (010ijkm)

label Si RT (072i00)

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 255

The following special case exists for instructions 073i00, 073i02, and 073ij3:

• On a J90se CPU, instructions 073i00, 073i02, and 073ij3 must be
synchronized with the system clock, which runs at half the rate of the
CPU clock. Therefore, a 1-CP hold issue may occur for clock alignment.

Hold Issue Conditions

The 072 through 073 instructions hold issue under any of the following
conditions:

• The Si register is reserved.

• Instructions 072i02, 072ij3, 073ij3, and 073i02 hold issue when a shared
register access conflict occurs or when the shared operation buffer is full.

• For instruction 073i00, hold issue if vector instruction queue is full.

VIR Hold Issue Conditions

The 073i00 instruction holds issue at the VIR under any of the following
conditions:

• For instruction 073i00, when instruction 146/147 is in progress, the VM is
busy for (VL) + 7 CPs.

• For instruction 073i00, when instruction 175 is in progress, the VM is
busy for (VL) + 6 CPs.

• When instruction 003 is in progress, VM is busy for 4 CPs.

• After VIR 076 instruction issues, the 073i00 issue from the VIR is
delayed 6 CPs.

Execution Time

The issue times for instructions 072 through 073 are as follows:

• Instruction issue time is 1 CP.

• For instruction 073i02, if the SM register is ready, the 0034jk instruction
issues in 11 CPs.

• For instructions 072i00 and 073i11, the Si register is ready in 1 CP.

CPU Instruction Descriptions System Programmer Reference

256 Cray Research Proprietary CSM-0301-0B0

• For instructions 072i02 and 072ij3, the Si register is ready in 15 CPs.

• For instruction 037i00, the Si register is ready in 6 CPs.

• For instruction 073i00, the Si register is ready in 4 CPs from the VIR
issue.

Description

Instruction 072i00 transmits the 64-bit value of the real-time clock (RTC) into
the Si register. The RTC increments by 1 each CP and can be set only by the
monitor through use of instruction 0014j0.

NOTE: On the J90se CPU, the real-time clock increments at the system
clock rate, not the CPU clock rate (twice the system clock rate).
Therefore, on a J90se CPU, two successive 072i00 instructions that
issue during the same system clock period will return the same
value.

Instruction 072i02 transmits the values of all the semaphores into the Si register.
The 32-bit SM register is left-justified in the Si register with SM00 occupying
the sign bit.

Instruction 072ij3 transmits the contents of the STj register into the Si register.

Instruction 073i00 transmits the 64-bit contents of the VM register into the Si
register. The VM register is usually read after it is set by instruction 175. This
instruction takes 2 CPs to transfer the contents of the VM over the 32-bit bus.

Instruction 073i11 is used for performance monitoring and is privileged to
monitor mode. Each execution of the 073i11 instruction advances a pointer and
enters 16 bits of a performance counter into bit positions 32 through 47. It also
enters 16 bits of the status register into bit positions 48 through 63 of the Si
register.

Instruction 073i21 is used to test the operation of the performance counters by
incrementing the value stored in the counter while the CPU is in monitor mode.
When instruction 073i21 executes, the value of the performance counter
increments at bits 22 and 38. There must be an 8-CP delay between a 073i21
instruction and other performance monitor instructions. Instruction 073i21 also
loads Si register bits 32 through 63 with status and advances the performance
monitor pointer to the next counter.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 257

Instruction 073i31 is used for performance monitoring and is privileged to
monitor mode. Instruction 073i31 clears all maintenance modes that are set by
the 0015j1 instruction; allow 10 CPs for the maintenance mode to become
ineffective. It also clears the performance monitor pointer. Instruction 073i31
also reads status to bits 32 through 63 of the Si register.

Instruction 073i61 advances the current counter at bit position 0. This instruction
also reads status to bits 32 through 63 of the Si register. For a 073i61 instruction,
a carry does not propagate beyond bit 15.

Instruction 073i01 sets the low-order 32 bits to 1’s and returns the following
status bits to the high-order bits of Si register. The 073i01 instruction is privileged
to monitor mode; the processor number and cluster number bit positions return
a value of 0 if the instruction is not executed in monitor mode. The encoded
processor number for bit positions 44 through 42 is defined in word 0 of the
exchange package.

Si Bit Position Description

63 Clustered, CLN not equal to zero (CL)

57 Program state (PS)

53 Uncorrectable memory error occurred (UME)

52 Correctable memory error occurred (CME)

51 Floating-point error occurred (FPS)

50 Floating-point interrupt enabled (IFP)

49 Operand range interrupt enabled (IOR)

48 Bidirectional memory enabled (BDM)

44 Processor number bit 4 (PN4)

43 Processor number bit 3 (PN3)

42 Processor number bit 2 (PN2)

41 Processor number bit 1 (PN1)

40 Processor number bit 0 (PN0)

37 Cluster number bit 5 (CLN5)

36 Cluster number bit 4 (CLN4)

35 Cluster number bit 3 (CLN3)

34 Cluster number bit 2 (CLN2)

33 Cluster number bit 1 (CLN1)

32 Cluster number bit 0 (CLN0)

CPU Instruction Descriptions System Programmer Reference

258 Cray Research Proprietary CSM-0301-0B0

Instruction 073i02 sets the semaphore registers from 32 high-order bits of the
Si register. SM00 receives the sign bit of the contents of the Si register.

Instruction 073ij3 transmits the contents of the Si register into the STj register.

Instructions 074 through 075

Special Cases

There are no special cases.

Hold Issue Conditions

The 074 through 075 instructions hold issue under any of the following
conditions:

• The Si register is reserved.

• Instruction 075ijk issued in previous CP (for instruction 074ijk).

• Classic CPU: Instruction 036 in progress.

• J90se CPU: Instruction 036 in progress with block length less than or
equal to 1008 and register Tjk has not been written.

• J90se CPU: Instruction 036 in progress with block length greater than
1008.

• Instruction 037 in progress.

Execution Time

The issue times for instructions 074 through 075 are as follows:

• Instruction issue time is 1 CP.

• For instruction074ijk, the Si register is ready in 1 CP.

Machine Instruction CAL Syntax Description

074ijk Si Tjk Transmit (Tjk) to Si.

075ijk Tjk Si Transmit (Si) to Tjk.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 259

Description

Instruction 074 transmits the contents of the Tjk register into the Si register.

Instruction 075 transmits the contents of the Si register into the Tjk register.

Instructions 076 through 077

Special Cases

The following special cases exist for instructions 076 through 077:

• If j = 0 then (Si) = 0.

• If k = 0 then (Ak) = 1.

• On a J90se CPU, instructions 076 and 077 must be synchronized with the
system clock, which runs at half the rate of the CPU clock. Therefore, a
1-CP hold issue may occur for clock alignment.

Hold Issue Conditions

The instructions hold issue under any of the following conditions:

• The Ak register is reserved (except A0) or the vector instruction queue is
full.

• For instruction 076, register Si is reserved.

• For instruction 077, Sj is reserved.

• A 077 instruction was issued in the previous CP.

• A 035 or 037 instruction is in progress.

Machine Instruction CAL Syntax Description

076ijk Si Vj,Ak Transmit (Vj element (Ak)) to Si.

077ijk Vi,Ak Sj Transmit (Sj) to Vi element (Ak).

077i0kb Vi,Ak 0 Clear element (Ak) of register Vi.
b Special CAL syntax.

CPU Instruction Descriptions System Programmer Reference

260 Cray Research Proprietary CSM-0301-0B0

VIR Hold Issue Conditions

• Vi and Vj registers are reserved.

Execution Time

The instruction issue times are as follows:

• For instruction 076, issue time is 1 CP.

• For instruction 077, issue time is 2 CPs.

• For the instruction 076, register Si is ready in 8 CPs from VIR issue,
11 CPs from CIP issue if no delay occurred in execution.

• For the instruction 077, register Vi is ready in 3 CPs.

Description

For instruction 077, when followed by any other instruction, there is a 3-CP
delay between the two instructions, caused by the PC sending Sj and Ak values
to the VU.

For instruction 076, when followed by any other instruction, there is a 2-CP
delay between the two instructions, caused by the PC sending the Ak value to
the VU.

Instructions 076 and 077 transmit a 64-bit quantity between a V register element
and an S register.

Instruction 076ijk transmits the contents of an element of register Vj that is
indicated by the contents of the low-order 6 bits of Ak to register Si.

Instruction 077ijk transmits the contents of register Sj to an element of register
Vi as determined by the low-order 6 bits of the contents of the Ak register.
Element 1 (the second element of register Vi) is selected if thek designator is 0.

Instruction 077i0k zeroes element (Ak) of register Vi. The low-order 6 bits of
Ak determine which element is cleared. The second element of register Vi is
cleared if thek designator is 0.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 261

Instructions 10 h through 13 h

Special Cases

The following special case exists for instructions 10h through 13h:

• On a J90se CPU, instructions 10h through 13h must be synchronized with
the system clock, which runs at half the rate of the CPU clock. Therefore,
a 1-CP hold issue may occur for clock alignment.

The following special case exists for instructions 10hi00mn, 11hi00mn,
12hi00mn, and 13hi00mn:

• Only bits 0 through 31 of the Ah register and themn field are used to
calculate the memory address. Refer to the “Calculating Absolute
Memory Address” subsection for additional information.

Hold Issue Conditions

The instructions hold issue under any of the following conditions:

• Ports A or B busy.
• Ah is reserved ifh != 0.

Machine Instruction CAL Syntax Description

10hi00mn Ai exp,Ah Load from ((Ah) + exp) to Ai.

100i00mn Ai exp,0 Load from (exp) to Ai.

100i00mn Ai exp, Load from (exp) to Ai.

10hi0000 Ai ,Ah Load from (Ah) to Ai.

11hi00mn exp,Ah Ai Store (Ai) to (Ah) + exp.

110i00mn exp,0 Ai Store (Ai) to exp.

110i00mn exp, Ai Store (Ai) to exp.

11hi0000 ,Ah Ai Store (Ai) to (Ah).

12hi00mn Si exp,Ah Load from ((Ai) + exp) to Si.

120i00mn Si exp,0 Load from (exp) to Si.

120i00mn Si exp Load from (exp) to Si.

12hi0000 Si ,Ah Load from (Ah) to Si.

13hi00mn exp,Ah Si Store (Si) to (Ah) + exp.

130i00mn exp,0 Si Store (Si) to exp.

130i00mn exp, Si Store (Si) to exp.

13hi0000 ,Ah Si Store (Si) to (Ah).

CPU Instruction Descriptions System Programmer Reference

262 Cray Research Proprietary CSM-0301-0B0

• For instructions 10h and 11h, Ai is reserved.
• For instructions 12h and 13h, Si is reserved.
• If the second or third parcel is not in a buffer, a 3-CP delay occurs.

Execution Time

The instruction issue times for the 10h through 13h instructions are as follows:

• If parcel 0 is in one buffer and parcels 1 and 2 are in a different buffer, the
issue time is 5 CPs.

• If parcels 0 and 1 are in one buffer and parcel 2 is in a different buffer, the
issue time is 6 CPs.

• If all parcels are in the same buffer, the issue time is 2 CPs.

• For instruction 10h, register Ai is ready in 34 CPs.

• For instruction 12h, register Si is ready in 34 CPs.

• For instructions 10h or 12h, register Ai or Si is ready in 7 CPs if the data
is in the cache and the cache is enabled.

• A bank is ready for the next scalar read or store operation in 15 CPs.

Description

Instructions 10h through 13h transmit data between memory and an A register
or an S register.

For these instructions, only the value of the expression is used if theh designator
is 0 or if a 0 or blank field is used in place of Ah. Only the contents of Ah are
used if the expression is omitted. An assembly error occurs if an expression has
a parcel-address attribute.

Instructions10hi00mn through 10hi0000 load the low-order 32 bits of a memory
word directly into an A register. The memory address is determined by adding
the address in the Ah register to the expression value (mn field). Only the value
of the expression is used if theh designator is 0, or a 0 or blank field is used in
place of Ah. Only the contents of Ah are used if the expression is omitted. An
assembly error occurs if an expression has a parcel-address attribute.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 263

Instructions 11hi00mnthrough 11hi0000 store 32 bits from register Ai directly
into memory. The high-order bits of the memory word are cleared. The memory
address is determined by adding the address in the Ah register to the expression
value (mn field).

Instructions 12hijkm through 12hi000 and 12hi00mn through 12hi0000 load the
contents of a memory word directly into an S register. The memory address is
determined by adding the address in register Ah to the expression value (mn
field). Only the value of the expression is used if theh designator is 0, otherwise
a zero or blank field is used in place of the contents of register Ah. Only the
contents of register Ah are used if the expression is omitted. An assembly error
occurs if an expression has a parcel-address attribute.

Instructions 13hijkm through 13hi000 and 13hi00mn through 13hi0000 store the
contents of register Si directly into memory. The memory address is determined
by adding the address in the Ah register to the expression value (mn field).

CPU Instruction Descriptions System Programmer Reference

264 Cray Research Proprietary CSM-0301-0B0

Instructions 140 through 147

Special Cases

The following special cases exist for instructions 140 through 147:

• If j = 0, then (Sj) = 0.

• On a J90se CPU, instructions 140 through 147 must be synchronized with
the system clock, which runs at half the rate of the CPU clock. Therefore,
a 1-CP hold issue may occur for clock alignment.

Hold Issue Conditions

Instructions 140 through 147 hold issue under any of the following conditions:

• For instructions 140, 142, 144, and 146, if Sj register is reserved
(except S0).

• For instructions 140, 142, 144, and 146 of a 077 instruction was issued in
the previous CP, or a 035 or 037 is in progress, or the vector instruction
queue (VIQ) is full.

Machine Instruction CAL Syntax Description

140ijk Vi Sj&Vk Transmit logical products of (Sj) and (Vk elements) to Vi
elements.

141ijk Vi Vj&Vk Transmit logical products of (Vj elements) and (Vk elements)
to Vi elements.

142ijk Vi Sj !Vk Transmit logical sums of (Sj) and (Vk elements) to Vi
elements.

142i0kb Vi Vk Transmit (Vk elements) to Vi elements.

143ijk Vi Vj!Vk Transmit logical sums of (Vj elements) and (Vk elements) to
Vi elements.

144ijk Vi Sj Vk Transmit logical differences of (Sj) and (Vk elements) to Vi
elements.

145ijk Vi Vj Vk Transmit logical differences of (Vj elements) and (Vk
elements) to Vi elements.

145iiib Vi 0 Clear Vi elements.

146ijk Vi Sj !Vk&VM Transmit (Sj) if VM bit = 1; (Vk) if VM bit = 0 to Vi.

146i0kb Vi #VM&Vk Transmit vector merge of (Vk) and 0 to Vi.

147ijk Vi Vj !Vk&VM Transmit (Vj) if VM bit = 1; (Vk) if VM bit = 0 to Vi.
b Special CAL syntax.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 265

VIR Hold Issue Conditions

Instructions 140 and 147 hold issue at the VIR under any of the following
conditions:

• Vi and Vk (Vj for 141, 143, 145, and 147) registers are reserved unless
chaining or tailgating is permitted.

• Available functional units are busy.

Execution Time

The execution time for vector instructions that are issued directly from CIP to
the functional unit through the vector issue register (VIR) is 3 CPs longer than
the execution time of the instruction that is waiting to issue in the VIR. The issue
times for instructions 140 through 147 from the VIR are as follows:

• For Functional Unit Busy

• The functional unit is ready in (VL) + 1 CP (except for a 140
through 145 instruction following a 146 through 147 instruction or a
175 instruction).

• For Vector Register Busy

• Vi is ready for Vi use in (VL) + 2 CPs.

• Vi is ready for Vj or Vk use immediately (due to chaining).

• Vj or Vk is ready for Vj or Vk use in (VL) + 2 CPs.

• Vj or Vk is ready for Vi use in (VL) + 2 CPs.

• Vj or Vk is ready for Vi use immediately when Vj and Vk are not
involved in chaining or in use by a 176 or 177 instruction.

• Vector logical (140 through 147) execution time is (VL) + 1 CP until the
data is available for use by the next instruction.

• Unit busy time between the floating-point multiply and second vector
logical functional units is (VL) + 1 CP.

• Unit busy time between the second vector logical and floating-point
multiply functional units is (VL) + 1 CP.

CPU Instruction Descriptions System Programmer Reference

266 Cray Research Proprietary CSM-0301-0B0

Vector instructions may or may not start execution immediately; they execute
as data becomes available. In particular, a memory conflict that slows execution
of some elements of a vector load can cause delays in all instructions in the
operation chain, starting with that load.

Description

The contents of the VL register determine the number of operations that are
performed. All operations start with element 0 of the Vi, Vj, or Vk registers and
increment the element number by 1 for each operation that is performed. All
results are delivered to register Vi.

Instructions 140 through 145 can be executed in either the full vector logical or
the second vector logical functional units, provided the second vector logical
unit is enabled. If the second vector logical unit is disabled, instructions 140
through 145 can be executed only in the full vector logical unit. Instructions 146
and 147 execute in the full vector logical unit only.

For instructions 140, 142, 144, and 146, a copy of Sj is delivered to the functional
unit. The copy is held as one of the operands until completion of the operation.
Therefore, Sj can be changed immediately without affecting the vector operation.
For instructions 141, 143, 145, and 147, all operands are obtained from V
registers.

Instructions 140 and 141 form the logical products (AND) of operand pairs and
enter the results into Vi. Bits of an element of Vi are set to 1 when the
corresponding bits of Sj or (Vj element) and (Vk element) are 1, as shown in the
following example:

Instructions 142 and 143 form the logical sums (inclusive OR) of operand pairs
and deliver the results to Vi. Bits of an element of Vi are set to 1 when one of
the corresponding bits of (Sj) or (Vj element) and (Vk element) is 1, as shown
in the following example:

(Sj) or (Vj element) = 1 1 0 0

(Vk element) = 1 0 1 0

(Vi element) = 1 0 0 0

(Sj) or (Vj element) = 1 1 0 0

(Vk element) = 1 0 1 0

(Vi element) = 1 1 1 0

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 267

Instructions 144 and 145 form the logical differences (exclusive OR) of operand
pairs and deliver the results to Vi. Bits of an element are set to 1 when the
corresponding bit of the contents of Sj or (Vi element) is different from (Vk
element), as shown in the following example:

Instructions 146 and 147 transmit operands to Vi, depending on the contents of
the VM register. Bit 63 of the mask corresponds to element 0 of a V register. Bit
0 corresponds to element 63. The operand pairs that are used for the selection
depend on the instruction. For instruction 146, the first operand is always the
contents of Sj; the second operand is (Vk element). For instruction 147, the first
operand is (Vj element) and the second operand is (Vk element). If bit n of the
vector mask is 1, the first operand is transmitted; if bit n of the mask is 0, the
second operand, (Vk element), is selected. The following two examples illustrate
these points.

Example 1:

Instruction 146 is executed and the following register conditions exist:

Instruction 146726 is executed. Following execution, the first four elements of
V7 contain the following values:

The remaining elements of V7 are not altered.

(Sj) or (Vj element) = 1 1 0 0

(Vk element) = 1 0 1 0

(Vi element) = 0 1 1 0

(VL) = 4

(VM) = 0600000000000000000000

(S2) = -1

(V6, 00) = 1

(V6, 01) = 2

(V6, 02) = 3

(V6, 03) = 4

(V7, 00) = 1

(V7, 01) = -1

(V7, 02) = -1

(V7, 03) = 4

CPU Instruction Descriptions System Programmer Reference

268 Cray Research Proprietary CSM-0301-0B0

Example 2:

Instruction 147 is executed and the following register conditions exist:

Instruction 147123 is executed. Following execution, the first four elements of
V1 contain the following values:

The remaining elements of V1 are not altered.

Instructions 150 through 151

Special Cases

The following special cases exist for instructions 150 through 151:

• If k = 0, then (Ak) = 1.

• On a J90se CPU, instructions 150 and 151 must be synchronized with the
system clock, which runs at half the rate of the CPU clock. Therefore, a
1-CP hold issue may occur for clock alignment.

(VL) = 4

(VM) = 0600000000000000000000

(V2, 00) = 1 (V3, 00) = -1

(V2, 01) = 2 (V3, 01) = -2

(V2, 02) = 3 (V3, 02) = -3

(V2, 03) = 4 (V3, 03) = -4

(V1, 00) = -1

(V1, 01) = 2

(V1, 02) = 3

(V1, 03) = 4

Machine Instruction CAL Syntax Description

150ijk Vi Vj<Ak Shift (Vj elements) left by (Ak) places to Vi elements.

150ij0b Vi Vj<1 Shift (Vj elements) left one place to Vi elements.

151ijk SVi Vj>Ak Shift (Vj elements) right by (Ak) places to Vi elements.

151ij0b Vi Vj>1 Shift (Vj elements) right one place to Vi elements.
b Special CAL syntax.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 269

Hold Issue Conditions

The instructions hold issue under any of the following conditions:

• The Ak register is reserved (except A0).
• Instruction 077 was issued in the previous CP.
• Instruction 035 or 037 is in progress.
• The vector instruction queue is full.

VIR Hold Issue Conditions

The 150 and 151 instructions hold issue at the VIR under any of the following
conditions:

• Vi and Vj registers are reserved unless chaining or tailgating is permitted.
• The vector shift functional unit is busy.

Execution Time

The execution time for vector instructions that are issued directly from the CIP
to the functional unit (through the VIR) is 3 CPs longer than the execution time
for the instruction that is waiting to issue in the VIR. The issue times for
instructions 150 through 151 from the VIR are as follows:

For Functional Unit Busy:

• The functional unit is ready in (VL) + 1 CP.

For Vector Register Busy:

• Vi is ready for Vi use in (VL) + 2 CPs.

• Vi is ready for Vj or Vk use immediately (due to chaining).

• Vj is ready for Vj or Vk use in (VL) + 2 CPs.

• Vj is ready for Vi use in (VL) + 2 CPs.

• Vj is ready for Vi use immediately when Vj and Vk are not involved in
chaining or in use by a 176 or 177 instruction.

• Vector Shift (150, 151) execution time is (VL) + 2 CPs until the data is
available for use by the next instruction.

CPU Instruction Descriptions System Programmer Reference

270 Cray Research Proprietary CSM-0301-0B0

NOTE: Vector instructions may or may not start execution
immediately; they execute as data becomes available. In
particular, a memory conflict that slows execution of some
elements of a vector load can cause delays in all instructions in
the operation chain, starting with that load.

Description

Instructions 150 and 151 are executed in the vector shift functional unit. The
contents of the VL register determine the number of operations performed.
Operations start with element 0 of the Vi and Vj registers and end with elements
specified by (VL)-1.

All shifts are end-off with zero fill. Unlike shift instructions 052 through 055,
these instructions receive the shift count from Ak rather than thejk fields and all
32 bits of Ak are used for the shift count. Elements of Vi are cleared if the shift
count exceeds 63. All shift counts (Ak) are considered positive.

Instruction 150ijk shifts the contents of the elements of register Vj to the left by
the amount specified by the contents of Ak and enters the results into the elements
of Vi. The special form of this instruction shifts the contents of Vj one place to
the left and enters the results into Vi.

Instruction 151ijk shifts the contents of the elements of register Vj to the right
by the amount specified by the contents of Ak and enters the results into the
elements of Vi. The special form of this instruction shifts the contents of Vj one
place to the right and enters the results into Vi.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 271

Instructions 152 through 153

Special Cases

The following special cases exist for instructions 152 through 153:

• If k = 0, then (Ak) = 1.

• On a J90se CPU, instructions 152 and 153 must be synchronized with the
system clock, which runs at half the rate of the CPU clock. Therefore, a
1-CP hold issue may occur for clock alignment.

Hold Issue Conditions

The instructions hold issue under any of the following conditions:

• The Ak register is reserved (except A0).
• Instruction 077 was issued in the previous CP.
• Instruction 035 or 037 is in progress.
• The vector instruction queue is full.

VIR Hold Issue Conditions

The instructions hold issue at the VIR under any of the following conditions:

• Vi and Vj registers are reserved unless chaining or tailgating is permitted.
• The vector shift functional unit is busy.

Execution Time

The execution time for a vector instruction that is issued directly from the CIP
to the functional unit (through the VIR) is 3 CPs longer than the execution time
for instructions that are waiting to issue in the VIR. The issue times for
instructions 152 through 153 from VIR are as follows:

Machine Instruction CAL Syntax Description

152ijk Vi Vj,Vj<Ak Double shift of (Vj elements) left (Ak) places to Vi elements.

152ij0b Vi Vj,Vj<1 Double shift of (Vj elements) left one place to Vi elements.

153ijk Vi Vj,Vj>Ak Double shift of (Vj elements) right (Ak) places to Vi
elements.

153ij0b Vi Vj,Vj>1 Double shift of (Vj elements) right one place to Vi elements.
b Special CAL syntax.

CPU Instruction Descriptions System Programmer Reference

272 Cray Research Proprietary CSM-0301-0B0

For Functional Unit Busy:

• The functional unit is ready in (VL) + 1 CP.

For Vector Register Busy:

• Vi is ready for Vi use in (VL) + 2 CPs.

• Vi is ready for Vj or Vk use immediately (due to chaining).

• Vj is ready for Vj or Vk use in (VL) + 2 CPs.

• Vj is ready for Vi use in (VL) + 2 CPs.

• Vj is ready for Vi use immediately when Vj and Vk are not involved in
chaining or in use by a 176 or 177 instruction.

• Vector Shift 153 execution time is (VL) + 2 CPs until the data is available
for use by the next instruction.

• Vector Shift 152 execution time is (VL) + 3 CPs until the data is available
for use by the next instruction.

NOTE: Vector instructions may or may not start execution immediately;
they execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector load can
cause delays in all instructions in the operation chain, starting with
that load.

Description

The vector shift functional unit executes instructions 152 and 153. The
instructions shift 128-bit values that are formed by logically joining the contents
of two elements of the Vj register. The direction of the shift determines whether
the high-order bits or the low-order bits of the result are sent to Vi. Shift counts
are obtained from register Ak. All shifts are end-off with zero fill. The contents
of the VL register determine the number of operations performed.

Instruction 152 performs left shifts. The operation starts with element 0 of Vj.
If the content of VL is 1, element 0 is joined with 64 bits of 0’s, and the resulting
128-bit quantity is then shifted left by the amount specified by the contents of
Ak. Only this one operation is performed. The 64 high-order bits that remain are
transmitted to element 0 of Vi.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 273

If the content of VL is 2, the operation starts by joining element 0 of Vj with
element 1; the resulting 128-bit quantity is then left shifted by the amount
specified by the contents of Ak. The high-order 64 bits that remain are transmitted
to element 0 of Vi. Figure 50 shows this operation.

Figure 50. Vector Left Double Shift, First Element, VL Greater than 1

If the content of VL is greater than 2, the operation continues by joining element
1 with element 2 and transmitting the 64-bit result to element 1 of Vi. Figure 51
shows this operation.

Figure 51. Vector Left Double Shift, Second Element, VL Greater than 2

If the content of VL is 2, element 1 is joined with 64 bits of 0’s and only two
operations are performed. In general, the last element of Vj, as determined by
the contents of VL, is joined with 64 bits of 0’s.Figure 52 shows this operation.

(Element 0) of Vj (Element 1) of Vj

Bits 63 0 63 0

Bits 63 0 63 063-(Ak)

(Element 0) of Vj (Element 1) of Vj

63 0

64-bit Result to Element 0 of Vi

(Ak)

64-(Ak)

(Element 1) of Vj (Element 2) of Vj

(Element 0) of Vj (Element 2) of Vj

64-bit Result to Element 1 of Vi

(Ak)

Bits 63 0 63 0

Bits 63 0 63 063-(Ak) 64-(Ak)

63 0

CPU Instruction Descriptions System Programmer Reference

274 Cray Research Proprietary CSM-0301-0B0

Figure 52. Vector Left Double Shift, Last Element

If the content of Ak is greater than or equal to 128, the result is all 0’s. If the
content of Ak is greater than 64, the result register contains at least the contents
of Ak -64 zeroes.

Example 1:

If instruction 152 is to be executed and the following register conditions exist,
instruction 152541 is executed:

Following execution, the first four elements of V5 contain the following values:

Instruction 153 performs right shifts. The original element 0 of Vj is joined with
64 high-order bits of 0’s and the 128-bit quantity is shifted right by the amount
specified by (Ak). The 64 low-order bits of the result are transmitted to element
0 of Vi. Figure 53 shows this operation.

(VL) = 4

(A1) = 3

(V4, 00) = 0 00000 0000 0000 0000 0007

(V4, 01) = 0 60000 0000 0000 0000 0005

(V4, 02) = 1 00000 0000 0000 0000 0006

(V4, 03) = 1 60000 0000 0000 0000 0007

(V5, 00) = 0 00000 0000 0000 0000 0073

(V5, 01) = 0 60000 0000 0000 0000 0054

(V5, 02) = 0 00000 0000 0000 0000 0067

(V5, 03) = 0 60000 0000 0000 0000 0070

[Element (VL)-1] of Vj 000 0

64-bit Result to Element (VL)-1 of Vj

(Ak)[Element (VL)-1] of Vj 000 0

Bits 63 0 63 0

Bits 63 0 63 063-(Ak) 64-(Ak)

63 0

NOTE: The elements are numbered 0 through 63 in the V registers; therefore, element (VL)-1 refers to the
VLth elements.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 275

Figure 53. Vector Right Double Shift, First Element

If the content of VL equals 1, only one operation is performed. However,
instruction execution continues by joining element 0 with element 1, shifting the
128-bit quantity by the amount specified by (Ak), and transmitting the result to
element 1 of Vi. Figure 54 shows this operation.

Figure 54. Vector Right Double Shift, Second Element, VL Greater than 1

The last operation performed by the instruction joins the last element of Vj, as
determined by the contents of VL, with the preceding element (refer to
Figure 55).

(Element 0) of Vj

(Element 0) of Vj

64-bit Result to Element 0 of Vi

(Ak)

000 0

000 0

(Ak)-1 (Ak)-1

Bits 63 0 63 0

Bits 63 0 63 0

63 0

(Element 1) of Vj

(Ak)-1 (Ak)

(Element1) of Vj

63 0

64-bit Result to Element 1 of Vi

(Ak)

(Element 0) of Vj

(Element 0) of Vj

64-(Ak) Bits

Bits 63 0 63 0

Bits 63 0 63 0

CPU Instruction Descriptions System Programmer Reference

276 Cray Research Proprietary CSM-0301-0B0

Figure 55. Vector Right Double Shift, Last Operation

Example 2:

If instruction 153 is executed and the following register conditions exist, then
instruction 153026 is executed:

Following execution, register V0 contains the following values:

The remaining elements of register V0 are not altered.

(VL) = 4

(A6) = 3

(V2, 00) = 0 00000 0000 0000 0000 0017

(V2, 01) = 0 60000 0000 0000 0000 0006

(V2, 02) = 1 00000 0000 0000 0000 0006

(V2, 03) = 1 60000 0000 0000 0000 0007

(V0, 00) = 0 00000 0000 0000 0000 0001

(V0, 01) = 1 66000 0000 0000 0000 0000

(V0, 02) = 1 50000 0000 0000 0000 0000

(V0, 03) = 1 56000 0000 0000 0000 0000

[Element (VL) -1] of Vj

Bits 63 0 63 0

(Ak)-1 (Ak)

263 20

64-bit Result to Element (VL) - 1 of Vj

(Ak)

[Element (VL)-2] of Vj

[Element (VL) -2] of Vj [Element (VL) -1] of Vj

NOTE: Elements are numbered 0 through 63 in the V registers; therefore, element (VL)-1 refers to
the VLth element.

Bits 63 0 63 0

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 277

Instructions 154 through 157

Special Cases

The following special cases exist for instructions 154 through 155:

• On a J90se CPU, instructions 154 and 155 must be synchronized with the
system clock, which runs at half the rate of the CPU clock. Therefore, a
1-CP hold issue may occur for clock alignment.

The following special cases exist for instructions 154 through 157:

• For instruction 154, ifj = 0, then (Sj) = 0 and
(Vi element) = (Vk element).

• For instruction 156, ifj = 0, then (Sj) = 0 and
(Vi element) = -(Vk element).

Hold Issue Conditions

The instructions hold issue under any of the following conditions:

• For instructions 154 and 156, if the Sj register is reserved (except S0).

• For instructions 154 and 156, if a 077 instruction was issued in the
previous CP, 035 or 037 is in progress, or VIQ is full.

Machine Instruction CAL Syntax Description

154ijk Vi Sj+Vk Transmit integer sums of (Sj) and (Vk elements) to Vi
elements.

155ijk Vi Vj + Vk Transmit integer sums of (Vj elements) and (Vk elements) to
Vi elements.

156ijk Vi Sj-Vk Transmit integer differences of (Sj) and (Vk elements) to Vi
elements.

156i0kb Vi -Vk Transmit two’s complement of (Vk elements) to Vi elements.

157ijk Vi Vj-Vk Transmit integer differences of (Vj elements) and (Vk
elements) to Vi elements.

b Special CAL syntax.

CPU Instruction Descriptions System Programmer Reference

278 Cray Research Proprietary CSM-0301-0B0

VIR Hold Issue Conditions

The instructions hold issue in the VIR under any of the following conditions:

• Vi and Vk (Vj for 155 and 147) registers are reserved unless chaining or
tailgating is permitted.

• Vector add functional unit is busy.

Execution Time

The execution time when the vector instruction issues directly from the CIP to
the functional unit (through the VIR) is 3 CPs longer than the execution time for
instructions that are waiting to issue in the VIR. The issue times for instructions
154 through 157 from VIR are as follows:

For Functional Unit Busy:

• Functional unit is ready in (VL) + 1 CP.

For Vector Register Busy:

• Vi is ready for Vi use in (VL) + 2 CPs.

• Vi is ready for Vj or Vk use immediately (due to chaining).

• Vj or Vk is ready for Vj or Vk use in (VL) + 2 CPs.

• Vj or Vk is ready for Vi use in (VL) + 2 CPs.

• Vj or Vk is ready for Vi use immediately when Vj and Vk are not involved
in chaining or in use by a 176 or 177 instruction.

• Execution time for the vector add/differences instructions (154 through
157) is VL + 1 CP until the data is available.

Vector instructions may or may not start execution immediately; they execute
as data becomes available. In particular, a memory conflict that slows execution
of some elements of a vector load can cause delays in all instructions in the
operation chain, starting with that load.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 279

Description

The vector add functional unit executes instructions 154 through 157.
Instructions 154 and 155 perform integer addition. Instructions 156 and 157
perform integer subtraction. The contents of the VL register determine the
number of additions or subtractions that are performed. All operations start with
element 0 of the V registers and increment the element number by 1 for each
operation performed. All results are delivered to elements of Vi. No overflow is
detected.

Instructions 154 and 156 deliver a copy of the contents of Sj to the functional
unit, where the copy is retained as one of the operands until the vector operation
completes. The other operand is an element of Vk. For instructions 155 and 157,
both operands are obtained from V registers.

Instruction 154ijk adds the contents of Sj to each element of Vk and enters the
results into elements of Vi. Elements of Vk are transmitted to Vi if thej designator
is 0.

Instruction 155ijk adds the contents of the elements of register Vj to the contents
of the corresponding elements of register Vk and enters the results into the
elements of register Vi.

Instruction 156ijk subtracts the contents of each element of Vk from the contents
of register Sj and enters the results into the elements of register Vi. Instruction
156i0k transmits the negative (two’s complement) of each element of Vk to Vi.

Instruction 157ijk subtracts the contents of the elements of register Vk from the
contents of the corresponding elements of register Vj and enters the results into
the elements of register Vi.

CPU Instruction Descriptions System Programmer Reference

280 Cray Research Proprietary CSM-0301-0B0

Instructions 160 through 167

Special Cases

The following special case exists for instructions 160, 162, 164, and 166:

• If j = 0, then (Sj) = 0.

The following special case exists for instructions 160 through 167:

• On a J90se CPU, instructions 160 through 167 must be synchronized with
the system clock, which runs at half the rate of the CPU clock. Therefore,
a 1-CP hold issue may occur for clock alignment.

Hold Issue Conditions

The instructions hold issue under any of the following conditions:

• For instructions 160, 162, 164, and 166, when the Sj register is reserved
(except S0), or when a 077 instruction was issued the previous CP.

• When a 035 or 037 is in progress, or the vector instruction queue is full.

Machine Instruction CAL Syntax Description

160ijk Vi Sj*FVk Transmit floating-point products of (Sj) and (Vk elements) to
Vi elements.

161ijk Vi Vj*FVk Transmit floating-point products of (Vj elements) and (Vk
elements) to Vi elements.

162ijk Vi Sj*HVk Transmit half-precision rounded floating-point products of
(Sj) and (Vk elements) to Vi elements.

163ijk Vi Vj*HVk Transmit half-precision rounded floating-point products of (Vj
elements) and (Vk elements) to Vi elements.

164ijk Vi Sj*RVk Transmit rounded floating-point products of (Sj) and (Vk
elements) to Vi elements.

165ijk Vi Vj*RVk Transmit rounded floating-point products of (Vj elements)
and (Vk elements) to Vi elements.

166ijk Vi Sj*Vk Transmit 32-bit integer product of (Sj) and (Vk elements) to
Vi elements.

167ijk Vi Vj*Vk Transmit reciprocal iterations: 2-(Vj elements)*(Vk elements)
to Vi elements.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 281

VIR Hold Issue Conditions

The instructions hold issue at the VIR under any of the following conditions:

• Vi and Vk (Vj for 161, 163, 165, and 167) registers are reserved unless
chaining or tailgating is permitted.

• Floating-point multiply functional unit is busy.

Execution Time

The execution time for a vector instruction that is issued directly from the CIP
to the functional unit (through the VIR) is 3 CPs longer than the execution time
for instructions that are waiting to issue in VIR. The issue times for instructions
160 through 167 from VIR are as follows:

For Functional Unit Busy:

• Functional unit is ready in (VL) + 1 CP.

For Vector Register Busy:

• Vi is ready for Vi use in (VL) + 2 CPs.

• Vi is ready for Vj or Vk use immediately (due to chaining).

• Vj or Vk is ready for Vj or Vk use in (VL) + 2 CPs.

• Vj or Vk is ready for Vi use in (VL) + 2 CPs.

• Vj or Vk is ready for Vi use immediately when Vj and Vk are not involved
in chaining or in use by a 176 or 177 instruction.

NOTE: Chaining cannot occur unless the data is already available
in Vi.

• For floating-point multiply instructions (160 through 167), execution time
is VL + 6 CPs until the data is available for use by the next instruction.

• Unit busy time between the floating-point multiply and second vector
logical functional units is (VL) + 1 CP.

• Unit busy time between the second vector logical and floating-point
multiply functional units is (VL) + 1 CP.

CPU Instruction Descriptions System Programmer Reference

282 Cray Research Proprietary CSM-0301-0B0

NOTE: Vector instructions may or may not start execution immediately;
they execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector load can
cause delays in all instructions in the operation chain, starting with
that load.

Description

The floating-point multiply functional unit executes instructions 160 through
167. The contents of the VL register determine the number of operations
performed by an instruction. All operations start with element 0 of the V registers
and increment the element number by 1 for each successive operation.

The functional unit operates under the assumption that operands are in
floating-point format. Instructions 160, 162, 164, and 166 send a copy of the
contents of Sj to the functional unit, where the copy is retained as one of the
operands until the completion of the operation. Therefore, the contents of Sj can
be changed immediately without affecting the vector operation. The other
operand is an element of Vk. For instructions 161, 163, 165, and 167, both
operands are obtained from V registers. All results are delivered to elements of
Vi. If either operand is not normalized, there is no guarantee that the product is
normalized. If neither operand is normalized, the product is not normalized.

Instruction 160ijk forms the floating-point products of the contents of Sj and
elements of Vk and enters the results into elements of Vi.

Instruction 161ijk forms the floating-point products of the contents of elements
of Vj and elements of Vk and enters the results into elements of Vi.

Instruction 162ijk forms the half-precision rounded floating-point products of
the contents of the Sj register and the contents of elements of the Vk register and
enters the results into elements of Vi. This instruction can be used in a divide
algorithm when only 30 bits of accuracy are required.

Instruction 163ijk forms the half-precision rounded floating-point products of
the contents of elements of the Vj register and elements of the Vk register and
enters the results into elements of Vi. This instruction can be used in a divide
algorithm when only 30 bits of accuracy are required.

Instruction 164ijk forms the rounded floating-point products of the contents of
the Sj register and the contents of elements of Vk and enters the results into
elements of Vi.

Instruction 165ijk forms the rounded floating-point products of the contents of
element Vi.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 283

Instruction 166ijk forms the 32-bit product of the contents of Sj and the contents
of Vk and enters the result into Vi. The Sj operand must be left-shifted by 31
(decimal) places and the Vk operand must be left-shifted by 16 (decimal) places
before executing the 166ijk instruction.

Instruction 167ijk forms 2 minus the floating-point products of the contents of
the elements of Vj and elements of Vk and enters the results into the elements
of Vi. This instruction is used in the division operation sequence of instructions.

Instructions 170 through 173

Special Cases

The following special case exists for instructions 170 and 172:

• If j = 0, then (Sj) = 0.

The following special case exists for instructions 170 through 173:

• On a J90se CPU, instructions 170 through 173 must be synchronized with
the system clock, which runs at half the rate of the CPU clock. Therefore,
a 1-CP hold issue may occur for clock alignment.

Machine Instruction CAL Syntax Description

170ijk Vi Sj+FVk Transmit floating-point sums of (Sj) and (Vk elements) to Vi
elements.

170i0kb Vi +FVk Transmit normalized (Vk elements) to Vi elements.

171ijk Vi Vj+FVk Transmit floating-point sums of (Vj elements) and (Vk
elements) to Vi elements.

172ijk Vi Sj-FVk Transmit floating-point differences of (Sj) and (Vk elements)
to Vi elements.

172i0kb Vi -FVk Transmit normalized negative of (Vk elements) to Vi
elements.

173ijk Vi Vj-FVk Transmit floating-point differences of (Vj elements) and (Vk
elements) to Vi elements.

b Special CAL syntax.

CPU Instruction Descriptions System Programmer Reference

284 Cray Research Proprietary CSM-0301-0B0

Hold Issue Conditions

The instructions hold issue under any of the following conditions:

• For instructions 170 and 172, if the Sj register is reserved (except S0) or if
a 077 instruction was issued in the previous CP.

• For instructions 170 through 173, 077 issued last CP, 035 or 037 is in
progress, or vector instruction queue is full.

VIR Hold Issue Conditions

The instructions hold issue at the VIR under any of the following conditions:

• Vi and Vk (Vj for 171, 173) registers are reserved unless chaining or
tailgating is permitted.

• Floating-point add functional unit is busy.

Execution Time

The execution time for a vector instruction that is issued directly from the CIP
to the functional unit (through the VIR) is 3 CPs longer than the execution time
for instructions that are waiting to issue in the VIR. The issue times for
instructions 170 through 173 from the VIR are as follows:

For Functional Unit Busy:

• Functional unit is ready in (VL) + 1 CP.

For Vector Register Busy:

• Vi is ready for Vi use in (VL) + 2 CPs.

• Vi is ready for Vj or Vk use immediately (due to chaining).

• Vj or Vk is ready for Vj or Vk use in (VL) + 2 CPs.

• Vj or Vk is ready for Vi use in (VL) + 2 CPs.

• Vj or Vk is ready for Vi use immediately when Vj and Vk are not involved
in chaining or in use by a 176 or 177 instruction.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 285

• The execution time for the floating add/difference (170 through 173)
instructions is VL + 5 CPs until the data is available for use by the next
instruction.

NOTE: Vector instructions may or may not start execution
immediately; they execute as data becomes available. In
particular, a memory conflict that slows execution of some
elements of a vector load can cause delays in all
instructions in the operation chain, starting with that load.

Description

The floating-point add functional unit executes instructions 170 through 173.
Instructions 170 and 171 perform floating-point addition; instructions 172 and
173 perform floating-point subtraction. The contents of the VL register
determine the number of additions or subtractions that are performed by an
instruction. All operations start with element 0 of the V registers and increment
the element number by 1 for each operation performed. All results are delivered
to Vi in normalized state, and the results are normalized even if the operands are
not normalized.

Instructions 170 and 172 deliver a copy of (Sj) to the functional unit, where it
remains as one of the operands until the completion of the operation. The other
operand is an element of Vk. For instructions 171 and 173, both operands are
obtained from V registers.

Instruction 170ijk forms the floating-point add by summing the contents of the
Sj and the Vk register and enters the results into elements of register Vi.

The special form of the instruction (170i0k) normalizes the contents of the
elements of Vk and enters the results into elements of register Vi.

Instruction 171ijk forms the floating-point sums of the contents of the elements
of Vj and elements of Vk and enters the results into the elements of register Vi.

Instruction 172ijk forms the floating-point differences of the contents of Sj and
elements of register Vk and enters the results into register Vi. Instruction 172i0k
transmits the negatives (two’s complements) of floating-point quantities in the
elements of Vk to Vi.

Instruction 173ijk forms the floating-point differences of the contents of the
elements of register Vj less the contents of the elements of registers Vk and enters
the results into the elements of register Vi.

CPU Instruction Descriptions System Programmer Reference

286 Cray Research Proprietary CSM-0301-0B0

Instruction 174

Special Cases

The following special cases exist for instruction 174:

• When a 174 instruction issues, if the Vj register element is not
normalized, the Vi register element is invalid. Bit 47 of the Vj register
element must be 1. This bit is not tested.

• On a J90se CPU, instruction 174 must be synchronized with the system
clock, which runs at half the rate of the CPU clock. Therefore, a 1-CP
hold issue may occur for clock alignment.

Hold Issue Conditions

The 174 instruction holds issue for the following conditions:

• When a 035 or 037 is in progress, or the vector instruction queue is full.

VIR Hold Issue Conditions

The instruction holds issue at the VIR under any of the following conditions:

• The Vi and Vj registers are reserved unless chaining or tailgating is
permitted.

• The reciprocal or pop/parity functional units are busy.

Execution Time

The execution time for a vector instruction that issues directly from the CIP to
the functional unit (through the VIR) is 3 CPs longer than the execution time for
an instruction that is waiting to issue in the VIR.

Machine Instruction CAL Syntax Description

174ij0 Vi /HVj Transmit floating-point reciprocal approximation of (Vj
elements) to Vi elements.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 287

The issue times for the 174 instruction from the VIR are as follows:

For Functional Unit Busy:

• Functional unit is ready in (VL) + 1 CP (except for a Pop/Parity following
a reciprocal).

For Vector Register Busy:

• Vi is ready for Vi use in (VL) + 2 CPs.

• Vi is ready for Vj or Vk use immediately (due to chaining).

• Vj is ready for Vj or Vk use in (VL) + 2 CPs.

• Vj is ready for Vi use in (VL) + 2 CPs.

• Vj is ready for Vi use immediately when Vj and Vk are not involved in
chaining or in use by a 176 or 177 instruction.

• Execution time for the floating-point reciprocal (174) instruction is VL +
14 CPs until the data is available for use by the next instruction.

• Unit busy time between the floating-point reciprocal and pop/parity
functional units is (VL) + 13 CPs.

• Unit busy time between the pop/parity and floating-point reciprocal
functional units is (VL) + 1 CP.

Description

The reciprocal approximation functional unit executes instruction 174. The
instruction forms an approximate value of the reciprocal of the normalized
floating-point quantity in each element of Vj and enters the result into elements
of Vi. The contents of the VL register determine the number of elements for
which approximations are found.

Instruction 174 occurs in the divide sequence to compute the quotients of
floating-point quantities. The reciprocal approximation instruction produces
results of 30 significant bits. The low-order 18 bits are 0’s. The number of
significant bits can be extended to 48 by using the reciprocal iteration instruction
and a multiply instruction.

CPU Instruction Descriptions System Programmer Reference

288 Cray Research Proprietary CSM-0301-0B0

NOTE: Vector instructions may or may not start execution immediately;
they execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector load can
cause delays in all instructions in the operation chain, starting with
that load.

Instruction 174 ij 1 through 174 ij 2

Special Cases

There are no special cases.

Hold Issue Conditions

These instructions hold issue under the following conditions:

• When the vector instruction queue is full.

VIR Hold Issue Conditions

These instructions hold issue at the VIR under any of the following conditions:

• The Vi and Vj registers are reserved unless chaining or tailgating is
permitted.

• The reciprocal unit or pop/parity functional units are busy.

Execution Time

The execution time for a vector instruction that issues directly from the CIP to
the functional unit (through the VIR) is 3 CPs longer than the execution time for
instructions that are waiting to issue in the VIR.

Machine Instruction CAL Syntax Description

174ij1 Vi PVj Transmit population count of (Vj elements) to Vi elements.

174ij2 Vi QVj Transmit population count parity of (Vj elements) to Vi
elements.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 289

The issue times for instructions 174ij1 through 174ij2 issued from the VIR are
as follows:

For Functional Unit Busy:

• Functional unit is ready in (VL) + 1 CP (except for a Pop/Parity following
a reciprocal).

For Vector Register Busy:

• Vi is ready for Vi use in (VL) + 2 CPs.

• Vi is ready for Vj or Vk use immediately (due to chaining).

• Vj is ready for Vj or Vk use in (VL) + 2 CPs.

• Vj is ready for Vi use in (VL) + 2 CPs.

• Vj is ready for Vi use immediately when Vj and Vk are not involved in
chaining or in use by a 176 or 177 instruction.

• Execution time for the pop/parity (174) instruction is (VL) + 3 CPs until
the data is available for use by the next instruction.

• Unit busy time between the pop/parity and floating-point reciprocal
functional units is (VL) + 1 CP.

• Unit busy time between the floating-point reciprocal and pop/parity
functional units is (VL) + 13 CPs.

Description

The vector population/parity functional unit executes instructions 174ij1 and
174ij2; it shares some logic with the reciprocal approximation functional unit.

Instruction 174ij1 counts the number of bits that are set to 1 in each element of
Vj and enters the results into corresponding elements of Vi. The results are
entered into the low-order 7 bits of each Vi element; the remaining high-order
bits of each Vi element are cleared.

Instruction 174ij2 counts the number of bits that are set to 1 in each element of
Vj. The least significant bit of each element result shows whether the result is
an odd or even number. Only the least significant bit of each element is

CPU Instruction Descriptions System Programmer Reference

290 Cray Research Proprietary CSM-0301-0B0

transferred to the least significant bit position of the corresponding element of
register Vi. The remainder of the element is set to 0’s. The actual population
count results are not transferred.

NOTE: Vector instructions may or may not start execution immediately;
they execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector load can
cause delays in all instructions in the operation chain, starting with
that load.

Instruction 175

Special Cases

The following special cases exist for instruction 175:

• If the Vj elementn = 0, andk = 0 or 4, then VM bitn = 1.

• If the Vj elementn ≠ 0, andk = 1 or 5, then VM bitn = 1.

• If the Vj elementn is positive (0 is a positive condition), andk = 2 or 6,
then VM bitn = 1.

• If the Vj elementn is negative, andk = 3 or 7, then VM bitn = 1.

• If the Vj elementn = 0 andk = 4, then the Vi compressed element =n.

• If the Vj elementn ≠ 0 andk = 5, then the Vi compressed element =n.

Machine Instruction CAL Syntax Description

1750j0 VM Vj,Z Set VM bit if (Vj element) = 0.

1750j1 VM Vj,N Set VM bit if (Vj element) ≠ 0.

1750j2 VM Vj,P Set VM bit if (Vj element) ≥ 0.

1750j3 VM Vj,M Set VM bit if (Vj element) < 0 (Vj is negative).

175ij4 Vi, VM Vj,Z Set VM bit if (Vj elements) = 0; also, the compressed indices
of the Vj element = 0 are stored in Vi.

175ij5 Vi, VM Vj,N Set VM bit if (Vj elements) ≠ 0; also, the compressed indices
of the Vj element ≠ 0 are stored in Vi.

175ij6 Vi, VM Vj,P Set VM bit if (Vj elements) ≥ 0; also, the compressed indices
of the Vj element ≥ 0 are stored in Vi.

175ij7 Vi, VM Vj,M Set VM bit if (Vj elements) ≤ 0; also, the compressed indices
of the Vj element ≤ 0 are stored in Vi.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 291

• If the Vj elementn is positive (0 is a positive condition), andk = 6, then Vi
compressed element =n.

• If the Vj elementn is negative andk = 7, then Vi compressed element =n.

• On a J90se CPU, instruction 175 must be synchronized with the system
clock, which runs at half the rate of the CPU clock. Therefore, a 1-CP
hold issue may occur for clock alignment.

Hold Issue Conditions

The 175 instruction holds issue under any of the following conditions:

• When the vector instruction queue is full.

VIR Hold Issue Conditions

This instruction holds issue at the VIR under any of the following conditions:

• Vi (Vi for 175ij4 through 175ij7) register is reserved unless vector
chaining or tailgating is permitted.

• The main vector logical functional unit is busy.

Execution Time

The execution time for a vector instruction that issues directly from the CIP to
the functional unit (through the VIR) is 3 CPs longer than the execution time for
instructions that are waiting to issue in the VIR. The instruction issue times for
the 175 instruction that is issued from the VIR are as follows:

For Functional Unit Busy:

• Functional unit is ready in (VL) + 1 CP (except for a 140 through 145
instruction following a 146 through 147 or 175).

• For Vector Register Busy

• Vi is ready for Vi use in (VL) + 2 CPs.

• Vi is ready for Vj or Vk use immediately (due to chaining).

• Vj is ready for Vj or Vk use in (VL) + 2 CPs.

CPU Instruction Descriptions System Programmer Reference

292 Cray Research Proprietary CSM-0301-0B0

• Vj is ready for Vi use in (VL) + 2 CPs.

• Vj is ready for Vi use immediately when Vj and Vk are not involved
in chaining or in use by a 176 or 177 instruction.

• Execution time for the vector logical (175 withk = 0 through 3)
instruction is (VL) + 4 CPs until the vector mask is available for use by
the same vector logical unit.

• Execution time for the vector logical (175 withk = 0 through 3)
instruction is (VL) + 5 CPs until the data is available for use by the next
instruction.

NOTE: Vector instructions may or may not start execution immediately;
they execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector load can
cause delays in all instructions in the operation chain, starting with
that load.

Description

The full vector logical functional unit executes the vector mask and compressed
index instruction 175. Instructions 1750j0 through 1750j3 create a mask in the
VM register. The 64 bits of the VM register correspond to the 64 elements of
Vj. Elements of Vj are tested for the specified condition. If the condition is true
for an element, the corresponding bit is set to 1 in the VM register. If the condition
is not true, the bit is set to 0.

Instructions 175ij4 through 175ij7 create an identical vector mask (as in
instructions 1750j0 through 1750j3) and a compressed index list in register Vi,
based on the results of testing the contents of the elements of register Vj.

The contents of the VL register determine the number of elements that are tested;
however, the entire VM register is cleared before elements of Vj are tested. If
the content of an element is 0, it is considered positive. Element 0 corresponds
to bit 0, element 1 to bit 1, and so on, from left to right in the register.

The type of test made by the instruction depends on the low-order 2 bits of the
k designator. The high-order bit of thek designator is used to select the
compressed index option.

For instruction 1750j0, if the Vj register element is 0, the VM bit is set to 1. If
the Vj register element is not 0, the VM bit is set to 0.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 293

For instruction 1750j1, if the Vj register element is not 0, the VM bit is set to 1.
If the Vj register element is 0, the VM bit is set to 0.

For instruction 1750j2, if the Vj register element is positive, the VM bit is set to
1. If the Vj register element is negative, the VM bit is set to 0. A value of 0 is
positive.

For instruction 1750j3, if the Vj register element is negative, the VM bit is set
to 1. If the Vj register element is positive, the VM bit is set to 0. A value of 0 is
positive.

Instructions 175ij4, 175ij5, 175ij6, and 175ij7 are compressed index instructions.
These instructions test for zero, nonzero, positive, and negative elements,
respectively. A vector mask and a compressed index are generated, based on the
tested condition.

For instruction 175ij4, if the Vj register element is 0, the VM bit is set to 1 and
the Vi register compressed element is set to the Vj register element index. If the
Vj register element is 0, data is written to the Vi register elements, and the Vi
register element pointer is advanced. Refer toFigure 56 for an example of the
175ij4 instruction.

Figure 56. Compressed Index Example

For instruction 175ij5, if the Vj register element is not 0, the VM bit is set to 1
and the Vi register compressed element is set to the Vj register element index.
If the Vj register element is not 0, data is written to the Vi register elements, and
the Vi register element pointer is advanced.

VL Register

010110011101 . . .

VM Registers

148

-1

0

5

0

0

 -15

24

0

0

 -17

0

0

Vj Register
(Result)

018

038

048

078

118

138

108

Vj Register
(Tested)

CPU Instruction Descriptions System Programmer Reference

294 Cray Research Proprietary CSM-0301-0B0

For instruction 175ij6, if the Vj register element is positive, the VM bit is set to
1 and the Vi register compressed element is set to the Vj register element index.
If the Vj register element is positive, data is written to the Vi register elements,
and the Vi register element pointer is advanced (a value of 0 is positive).

For instruction 175ij7, if the Vj register element is negative, the VM bit is set to
1 and the Vi register compressed element is set to the Vj register element index.
If the Vj register element is negative, the Vi register elements are written to the
Vi register elements, and the Vi register element pointer is advanced.

The contents of the VL register determine the number of elements that are tested.
The VM register bits that correspond to the untested elements of the Vj register
are cleared.

Vector mask instruction 175jk, k = 0 through 3, and the compressed index
instructions 175ijk, k = 4 through 7, are a vector counterpart to the scalar
conditional branch instructions.

Instruction 176 through 177

Special Cases

The following special cases exist for instructions 176 through 177:

• For instructions 176i0k and 1770jk, increment (A0) by 1 ifk = 0.

• Instructions 176 and 177 use port B. If port B is busy, instructions 176 and
177 use port A.

• Only bits 0 through 31 of the A0, Ak, and Vk registers are used to
calculate memory addresses. Refer to the “Calculating Absolute Memory
Address” subsection for additional information.

Machine Instruction CAL Syntax Description

176i0k Vi ,A0,Ak Load from memory starting at (A0) increased by (Ak) and
load into Vi.

176i00 Vi ,A0,1 Load from consecutive memory addresses starting with (A0)
and load into Vi.

176i1k Vi ,A0,Vk Load from memory using memory address ((A0) + (Vk)) and
load into Vi.

1770jk ,A0,Ak Vj Store (Vj) to memory starting at (A0) increased by (Ak).

1770j0 ,A0,1 Vj Store (Vj) to memory in consecutive addresses starting with
(A0).

1771jk ,A0,Vk Vj Store (Vj) to memory using memory address ((A0) + (Vk)).

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 295

• Memory conflicts slow the loading or storing of individual vector
elements.

• For instruction 176, if there is an instruction that uses the 176 result
register as a source, the execution of that instruction is delayed whenever
there is a delay in instruction 176 results.

• On a J90se CPU, instructions 176 and 177 must be synchronized with the
system clock, which runs at half the rate of the CPU clock. Therefore, a
1-CP hold issue may occur for clock alignment.

Hold Issue Conditions

The 176 through 177 instructions hold issue under any of the following
conditions:

• The A0 register is reserved.

• For instruction 176, when ports A and B are busy.

• For instruction 177, when port A or B is busy with a write reference or if
ports A and B are busy.

• For instructions 176i1k and 1771jk, when 176i1k or 1771jk is in progress
or when there are any uncompleted 073i00 or 076 instructions.

• For instructions 176i0k and 1770jk, when Ak is reserved whenk = 1
through 7.

• For instructions 176 and 177, if a 035 or 037 is in progress.

• If the system is not in bidirectional memory mode, or if an uncompleted
076 instruction exists, then instruction 176 holds issue when port A or B
is busy with a write reference, and instruction 177 holds issue when port
A or B is busy.

• The vector instruction queue is full.

CPU Instruction Descriptions System Programmer Reference

296 Cray Research Proprietary CSM-0301-0B0

VIR Hold Issue Conditions

These instructions hold issue at the VIR under any of the following conditions:

• Vi (and Vk for 176ijk) register is reserved for a 176 instruction and
tailgating is not permitted.

• Vj (and Vk for 177ijk) register is reserved for a 177 instruction and
chaining is not permitted.

Execution Time

The execution time for vector instructions issued directly from CIP to the vector
load and store control section through the VIR is 3 CPs longer than the execution
time for the instruction that is waiting issue in the VIR. The issue times for
instructions 176 and 177 from the VIR are as follows:

• For instruction 176i0k:

• The instruction issues in 1 CP.

• The Vi register is ready in (VL) + 35 CPs if memory is available.

• Port A or B is busy (VL) + 4 CPs if VL≥ 4, or a minimum of 7 CPs.

• For instruction 1770jk:

• The instruction issues in 1 CP.

• The Vj register is ready in (VL) + 2 CPs.

• Port A or B is busy (VL) + 7 CPs, if VL≥ 3, or a minimum of 9 CPs.

• For instruction 176i1k:

• The instruction issues in 1 CP.

• The Vi register is ready in (VL) + 40 CPs, if memory is available.

• The Vk register is ready in (VL) + 2 CPs.

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 297

• Port A or B is busy (VL) +9 CPs, if VL≥ 3, or a minimum or
12 CPs.

• Instruction 176i1k is busy (VL) + 12 CPs.

• For instruction 1771jk:

• The instruction issues in 1 CP.

• The Vi and Vk registers are ready in (VL) + 2 CPs.

• Port A or B is busy (VL) + 10 CPs, if VL≥ 3, or a minimum of
12 CPs.

Description

Instructions 176 and 177 transfer blocks of data between V registers and memory.
Instruction 176 reads data from memory to elements of register Vi. Instruction
177 stores data from elements of register Vj to memory. The contents of the
VL register determine the number of elements that are transferred. Tailgating is
possible with the 176 instruction, and chaining is possible with the 177
instruction.

Instructions 176i0k and 176i00 load words into elements of register Vi directly
from memory. A0 contains the starting memory address; it is 32 bits wide. This
address is incremented by the contents of register Ak (which is 32 bits wide) for
each word that is transmitted. The contents of Ak can be positive or negative,
which allows both forward and backward streams of references. If thek
designator is 0, or if 1 replaces Ak in the operand field of the instruction, the
address is increased by 1.

Instruction 176i1k gathers words from nonsequential memory locations and
loads them into sequential elements of register Vi. Registers Vk and A0 generate
the nonsequential memory address. The low-order bits of each element of Vk
contain a signed integer, which is added to the contents of A0 to obtain the
memory address.Figure 57 shows an example of the 176i1k instruction.

CPU Instruction Descriptions System Programmer Reference

298 Cray Research Proprietary CSM-0301-0B0

Figure 57. Gather Instruction Example

In Figure 57, the VL register is set to 4, which results in a transfer of 4 elements.
The 176i1k instruction adds the contents of A0 to the contents of each element
of register Vk to form a memory address. The contents of that address are then
loaded into the Vi register. Because A0 = 100 and Vk element 0 = 4, the content
of address 104 is loaded into Vi element 0. Similarly, A0 + Vk element 1 = 102,
and the content of memory location 102 is loaded into Vi element 1. This process
continues until the number of elements that are transferred equals the VL count.

Instructions 1770jk and 1770j0 store words from elements of register Vj directly
into memory. A0 contains the starting memory address. This address is
incremented by the contents of register Ak for each word that is transmitted. The
contents of Ak can be positive or negative, allowing both forward and backward
streams of references. If thek designator is 0, or if 1 replaces Ak in the result
field of the instruction, the address is incremented by 1.

Instruction 1771jk scatters words from elements of register Vj to nonsequential
memory locations. Registers Vk and A0 generate the nonsequential memory
address. The low-order bits of each element of Vk contain a signed integer, which
is added to the contents of A0 to obtain the memory address.Figure 58 shows
an example of the 1771jk instruction.

VL Register

A0

100

4

Vk Register
(Index)

4

2

7

0

Memory
Contents/Address

250

200

600

400

Vi Register
(Result)

102

103

100

101

106

107

104

105

108

400

500

200

300

100

250

600

700

350

System Programmer Reference CPU Instruction Descriptions

CSM-0301-0B0 Cray Research Proprietary 299

Figure 58. Scatter Instruction Example

In Figure 58, the VL register is set to 4, which results in a transfer of 4 elements.
The 1771jk instruction adds the contents of A0 to the contents of each element
of register Vk to generate a memory address. An element of Vj is stored at the
resulting memory address. Because A0 = 100 and Vk element 0 = 4, the content
of Vj element 0 is stored in address 104. Similarly, A0 + Vk element 1 = 102,
and the content of Vj element 1 is stored in memory location 102. This process
continues until the number of elements that are transferred equals the VL count.

VL Register

A0

100

4

Vk Register
(Index)

4

2

7

0

Memory
Contents/Address

400

500

200

300

Vj Register
(Store Data)

102

103

100

101

106

107

104

105

110

300

x

500

x

x

400

200

x

x

