
\

!<J
CRA V RESEARCH, INC.
SOFTWARE TRAINING

TR-APML

COURSE NAME:

TYPE OF MATERIAL:

RELEASE LEVEL (include BF):

lOS

APML (lOS ASSEMBLER)
SELF-STUDY WORKBOOK

V115BF3

) . DATE PRINTED: DECEMBER 1988

SECURITY CLASS: PUBLIC

\)

J

CRA Y RESEARCH, INC.

APML Assembler Self-Study

Software Training Workbook

TR-APML

This manual is not for further
distribution without written
approval from the nearest CRA Y
RESEARCH, INC., regional or
country sales office.

Copyright 1987, 1988 by Cray Research, Inc. This item and information
contained herein is proprietary to Cray Research, Inc. This item and the information contained
shall be kept confidential and may not be reproduced, modified, disclosed or transferred, except
with the prior written consent of Cray Research, Inc. This item and all copies, if any, are subject to
return to Cray Research, Inc.

Pagef- 2 APML Assembler Self-Study Workbook

RECORD OF REVISION PUBLICATION NUMBER TR-APML

Each time this manual is revised and reprinted, all changes issued against the previous revision in
the form of change packets are incorporated into the new version and the new version is assigned
an alphabetic level. Between reprints, changes may be issued against the current version in the
form of change packets. Each change packet is aSSigned a numeric designator, starting with 01 for
for the first change packet of each revision level.

Requests for copies of Cray Research, Inc. Software Training publications and comments about
these publications should be directed to:

Cray Research, Inc.
Software Training
2520 Pilot Knob Road
Mendota Heights MN 55120

Revision

A

Description

June, 1987 - Original Printing

April, 1988 - Reprint with revision; typographical errors corrected; UNICOS
information added where pertinent; answer to exercise 4 of section 3
corrected.

The UNICOS operating system is derived from the AT&T UNIX System V operating system. UNICOS is also based in
part on the Fourth Berlceley Software Distribution under license from The Regents of the University of California.

CRA Y, CRA Y-l, SSD, and UNICOS are registered tiadem.arks and COS, CRA Y-2, CRA Y X-MP, CRA Y Y -MP, CSIM,
HSX, lOS, SUPERLINK are trademarks of Cray Research, Inc.

CDC is a registered trademark of Control Data Corporation. Data General is a trademark of Data General Corporation.
DEC is a trademark of Digital Equipment Corporation. HYPERchannel and NSC are registered trademarks of Network
Systems Corporation. IBM is a registered trademark ofIntemational Business Machines Corporation. AMPEX is a
registered trademark of Ampex Corporation. Hayes is a registered trademark of Hayes Microcomputer Products, Inc.
Motorola is a registered trademark of Motorola, Inc.

4113/88

J

)

)

APML Assembler Self-Study Workbook Page1- 3

Introduction

This self-study workbook is intended to teach APML, the I/O
Subsystem assembler, to Cray Research, Inc. analysts and developers, and Cray
customers. It assumes that the student is familiar with the X -MP CAL
Assembler and the architecture of the I/O Subsystem, and has access to a CRA Y
machine to run assembly exercises.

For an introduction to the architecture of the I/O subsystem, the
student is referred to the lOS Architecture Self-Study Workbook, publication
TR-IA. This information will be assumed in this present workbook.

To complete this self-study, you will need the the following
manuals and materials:

SM-0036
SM-0046
SM-0007
SQ-0059A

AMPL Assembler Programmer's Reference Manual
lOS Internal Reference Manual
lOS Tables Manual
APML Reference Card For COS and UNICOS

$APTEXT listing for your site
$KERNEL listing for your site

Access to your CRA Y -lor X-MP to run sample assemblies

4/13/88

Page1-4· APML Assembler Self-Study Workbook

.~

This self-study is based...)
... on the V1.15 BF3 version of the lOS software. However, because
APML is a very stable product, you will fmd the materials equally
applicable to both earlier and later releases of the assembler. A quick
glance at the page, in the introduction to the SM-0036 manual,
showing record of revisions will demonstrate how infrequently this
product has been modified. The biggest change in the last several years
is the inclusion of infonnation on accessing APML from UNICOS,
which is not really a change in the language itself. There are currently
no plans for significant changes to APML. You may be confident that
this material will be accurate for future releases of the lOS software.

)
4/13~8

)

)

)

APML Assembler Self-Study Workbook Page t - 5

Table Of Contents

Introduction
Table Of Content:s i -6

Section 1-The APML Assembler
APML Is][)ifferent•••..
Programming Language uvels .. .
The Name Al?1VlL .. .

1-2
1-3
1-4

The APML Assembler.. 1-4
An APML Source Listing
APML vs. CAL Assembly Listmgs .. .

1-4
1-5

APML Features ... 1-6
AS~Illl>I)r ~()~SS•....•.•....••..... ~
APML Files .. .

1-6
1-8

APML is llsecl l>~•.....•.•........................... 1-5>
lOS Generation Overview ... 1-9
To Invoke The APML Assembler ... 1-11
Readmg Assigmn.ent 1 .. 1-11
COS APML Control Statement .. 1-12
UNICOS APML Command Lme .. l-l2

Section 2 - APML Syntax I
Assignm.ent Statem.ent ... 2-1
APML Source Statement Formats .. 2-3
The APML Assigmn.ent Statement .. 2-4
Sym.bol Meanings ... 2-5
Operan.d N otati()n .. 2-6
APML NOTATION .. 2-7
The lOP Instruction Set ~ 2-8
Machine Instru.ction FOlll1ats ... 2-10
Readmg The Assigmn.ent Statement Syntax][)iagram 2-11
How to read the syntax diagrams .. 2-12
An Odd Quirk of APML ... 2-15
APML Branch Instru.ctions ... 2-18
Correct Usage Of P Register .. 2-19
The annotated APML listing .. 2-20

Section 3 - APML Syntax II
Condition Syntax ... 3-1
Any APML assignment statement may be made conditional 3 -2
Comparin.g the condition syntax diagram to the actual conditional
machine instructions ... 3-3
Reading conditional statements .. 3-4

4113/88

Paget- 6 APML Assembler Self-Study Workbook

--~

A Modest Proposal ... 3-4
)

/

Don't Use A Explicitly As An Operand 3-5
Exercises For Section 3 ... 3-6

Section 4 - APML Syntax m
Pseudoinstru.ctions ... 4-1
AP::L\.1I.., Pseudos .. 4-2
AP::L\.1I.., Pseudoinstru.ctions List by Class 4-3
Required Pseudos ... 4-4

ID ENT all.d END .. 4-4
~~ .•.•...•...................................•.•..•...•.•.....•................. ~-:;
~~1l<:]t[... ~-<5

UNIQUE PSEUDOS .. 4-8
PDA 1l A .. 4-8
IJASE~c:r ... 4-S>
NEWP Ac:rE ... 4-13

Section 5- Macros and $APfEXT
Introductory Reading Assignment .. 5-1
~A1?1lE~T .. :;-~
Macros ... :; -~
The fIrSt page of the $AP1'EXT assembly listing 5-3
Descriptions Of Some Important Macros

REc:rDEFS ... :;-6
)

REc:rIS1'ER Macro .. 5-8
NE~1l ... 5-10
EXI'f S1l ACK MACROS .. 5-14
AN ANNOYINc:r QUIRK
CONDITIONAL IJLOCK MACROS 5-16

Sample Listings Demonstrating Macros 5-17
$U~ and $END1lIL .. 5 -29
FIELD ... 5-30
c:rE1l an.d PUT .. 5 -3 2
ADDRESS, S1l0RE, RS1l0RE, COPY and CLEAR 5-34
Exercise For Section 5 ~ .. 5 -3 5
Optional Programming Exercise .. 5-36

Appendix A: Answers To Review Questions and Exercises

4/13/88

)

)

)

Section 1-The APML Assembler

Module Objectives: with the aid of all available reference materials, upon
completion of this self-study module, the learner is able to:

1. Describe the general characteristics of the APML assembler.

2. Describe where AMPL fits in the hierarchy of high-level to low-level
languages.

Page 1-2 APML Assembler Self-Study Workbook

APML Is Different .••

.. .from any language you have worked with. While it is categorized as
an assembler, it includes many features usually associated with a
compiler (such as multiple object statement generation from a single
source statement). And, due to the requirements of the lOS operating
system software, it does NOT do some things a garden-variety
assembler would be expected to do (like automatically adding the base
register to memory references, since it is more common to reference
data areas OUTSIDE the current overlay, not INSIDE it).

Its syntax is also unusual for an assembler. The typical APML source
statement looks very much like a FORTRAN assignment statement.
The APML assignment statement is a very rich, versatile construct,
with capabilities far more sophisticated than the usual assembler
source statement, though not as sophisticated as the typical compiler.
For instance, a single APML assignment statement could add the
contents of one of the lOP's operand registers to the contents of a
parcel in memory, shift the sum 4 bits right, and place the result in the
B register. This would require several source statements in a lesser
assembly language. While a FORTRAN assignment statement provides
automatic order-of precedence evaluation, APML simply processes
from left to right. Nor does APML provide the libraries of advanced
math functions one would expect to fmd with a true high-level
language.

APML also provides a sophisticated mechanism for making virtually
any statement conditional. The syntax for conditions is very rich,
rivaling the capabilities of many compilers.

In summation, APML's unique characteristics place it somewhere
between the typical macro assembler and the typical compiler
language. It includes many features nonnally associated with a
compiler, while retaining the "flavor" and closeness-to-the
architecture of an assembler.

4/13/88

)

)

)

)

APML Assembler Self-Study Workbook Page 1 - 3

COMPILER - FORTRAN, Pascal, BASIC, C

APML - in a class by itself ...

MACRO ASSEMBLER

SIMPLE ASSEMBLER

MACHINE LANGUAGE

Compiler languages totally insulate the programmer from the actual machine
environment and the instruction set of the machine. One source
statement may generate many object statements.

Assembly languages require a greater degree of hardware-specific knowledge
on the part of the programmer. One source statement generates one
object statement. Source and object statements have similar syntax.

Macro assemblers pennit the programmer to include pre-written assembly
language routines in their program, to be modified by
programmer-supplied parameters, and assembled as part of their
program.

APML combines characteristics of a macro assembler and a simplified
compiler. One APML source statement may generate many object
statements. Low-level machine language instructions may also be
included, and macro expansion is supported.

4/13/88

Page 1 - 4 APML Assembler Self-Study Workbook

The Name APML.. •

... stands for "A-Processor Middle Language." "A-Processor" was the
original engineering name for what became known as the I/O
Processor. This also explains how $APTEXT, the lOS system text,
gets its name, and the occasional references to the lOPs as A0 - A3 in
certain comments and symbols. The designation of APML as a "Middle
Language" reflects its intennediate status between an assembler and a
compiler. Current literature simply refers to APML as the I/O
Subsystem Assembler.

The APML Assembler ...

... executes in the Cray mainframe, NOT in the I/O subsystem. The
binaries that are generated will eventually be disposed to expander tape
or disk, from which they will be loaded into the lOS at start-up time
for execution. This makes the testing of lOS software somewhat
trickier than the testing of software designed to run in the Cray. In the
lOS, there are no jobs. All lOS software is system software, which
must be integrated into the lOS operating system. In order to run a
simple stand-alone APML routine, you must either get dedicated time,
during which you can run your stand-alone program as if it were the)
complete lOS operating system, or test with CSIM, the Cray
Simulator, in lOP simulation mode. This is a much more practical
approach to testing lOS code in a training situation, and is in fact what
we do in the lOS internals class in Mendota Heights for most of our 0

exercises. In this workbook, our exercises ask you to produce a clean
assembly only.

An APML Source Listing._

... doesn't look anything like a similar CAL listing. You would never
guess that these two assemblers are produced from the same source
code! The major similarity is the overall layout of the page, with
source on the right and object on the left, in typical assembly li~ting
fashion. We will examine listings in detail on later pages.

4/13/88

APML Assembler Self-Study Workbook Page 1 - 5

APML Vs. CAL Assembly Listings
CALX CRAY XMP

CAL 1

IDENT CALX
START BEGIN

0 0000000000000000000012 NUM CON 10
1 1 SUM BSS 1

2a+ BEGIN *
2a 1001 00000000+ A1 NUM,O

c <opdef> A2 1
d <opdef> A3 2

3a <opdef> A4 0
b 031110 LOC A1 A1-1
c 030442 A4 A4+A2
d 030233 A2 A3+A2

4a 030001 AO A1
b 011 00000003b+ JAN LOC
d 1104 00000001+ SUM, 0 A4

5b <macro> ENDP
END

)
APMLX lOP
APML

IDENT APMLX
0 SC EQUALS 0
1 REG1 EQUALS 1
2 REG2 EQUALS 2
3 REG3 EQUALS 3

SCRATCH SC
0 010012 024001 R!REG1=12
2 010001 024002 R!REG2=1
4 010000 024003 R!REG3=0
6 027001 LOC R!REG1=R!REG1-1
7 020003 022002 024003 R!REG3=R!REG3+R!REG2

12 010002 025002 R!REG2=R!REG2+2
14 020001 107007 P=LOC,R!REG1#0
16 014000 /000024 024000 (SUM) =R! REG3

020003 034000
23 001000 EXIT
24 SUM <1>

END

)

4/13/88

Page 1 - 6 APML Assembler Self-Study Workbook

APML Feafumi

1. Extremely flexible assignment and conditional syntax

2. Free Field Format - same as in CAL
Columns 1 to 72 are scanned
a. Location field begins in column 1
b. Result field begins with the first non-blank character after location
c. Operand field begins with the first non blank character after result
d. Comment field begins with a period
e. A line beginning with * or . is a comment line

3. Limited set of mathematical functions reflects environment where entities being
calculated are addresses or counters

Assembly Process

The APML assembler executes in the mainframe under COS or UNICOS

APML is loaded into central memory and begins executing as a result of a
COS JCL statement or UNICOS command

Control Statement parameters specify options and datasets for the assembler run

Source statements may generate more than one object statement

Assembles each module as encountered; BIND will later resolve externals

Two passes are made by the assembler for each module:

Pass ONE:

Pass TWO:

Assembler reads each statement
Expands complex assignment, conditional code
Expands macros and assigns memory blocks
Breaks sequences of code into 'pages'

Optimize code to one parcel when possible
Optimize to one parcel jumps
Jumps outside a page are two parcel tid jumps

Assigns BLOCK origins
Substitute values for constants and symbols
Generate object code and listings

4/13/88

)

)

)

APML Assembler Self-Study Workbook

APML Assembler
SOURCE CODE MACRO AND FIELD

DEFINITIONS

filename.s

$IN
$APTEXT

AIPJOOJL

filename.o

$BLD

BINARY
LOAD

MODULE

LISTING

4/13/88

CROSS
REFERENCE

Page 1-7

Pagel-8 APML Assembler Self-Study Workbook

APML is used by_

... developers, almost exclusively. In fact, the original IDS system
software was written by about five people. The total number of people
who have ever written APML code for a living is extremely small -
certainly less than twenty. One side effect of this very small audience is
that APML is very seldom upgraded or enhanced. It has no major bugs
in it, but is defInitely not "polished" in many ways. Changes to make
the language prettier are seldom if ever made. Why expend developer
time on a product that only a handful of people will use? This
"language written for twenty users" syndrome gives APML some
unique idiosyncracies, which we will note in our studies.

As an analyst or customer, you will probably never have occasion to
~ctually write an overlay to integrate into the IDS software. You are
quite likely to need to read APML listings for debugging purposes,
however. And the best way to learn to read a language is still to write
something in it. To this end, this self study includes several
programming exercises, in which you will write APML programs.

If you attend the IDS Internals class, usually given in Mendota Heights,
you will write a series of overlays, and test them, first with CSIM, and
then in dedicated lab time. From this exercise, you will also learn
important concepts of how the IDS system software is structured. IDS
operating system concepts are beyond the scope of this self-study.

APML, as you would expect, is just one of several important utility
routines needed to produce the IDS operating system software. The
diagram on the opposite page summarizes the flow of the generation
process under COS. The following page diagrams the flow of the IDS
make process under UNICOS. The functions of the other routines are
beyond the scope of this self study workbook. For details of generating
IDS software from either COS or UNICOS, see the IDS Internals class.

4/13/88

, -------'
,,--,/

lOS Generation Overview

---.1 BUILD

-OR- I
~
~
00

H /
DISPOSE I / a" " H/ I AlJSfAPE I_I ~-~ I_I

BIND

OVERLAYS

~

,,~.,

~
>

I
Sf
CIl

~ I
CIl
a
~

£
~

Ii
~

I

\0

~

~
~
~ a
(I)

~ u
(I)

!l
"8
~
fI'.I

-<

~

o -I -
l

(\

exdf extd

/~ ..

lOS Make Overview
"...- "

-E-
'-----'"

-~~-

-~~-

tape.boot
dlsk.boot

4-1 = I~ I AlmAn 1--
I ~ L __ ..!!.-__ ---'I --0--

,-,r'-'"

00

~
~

)
~

)

APML Assembler Self-Study Workbook Page 1- 11

To Invoke The APML Assembler_

From COS, write a job that includes an APML control statement. This
statement and its parameters are shown on the following page. The
parameters are identical with those used in the CAL control statement.

From UNICOS, write a script that includes an APML command. This
command and its parameters are shown on the following page. The
parameters are identical with those used in the CAL command.

Reading Assignment 1

At this point, please read the following sections in the SM-0036 APML
Reference:

Section 1: Introduction

Section 2: APML Assembler Language
2-1 thru2-6

Section 7: Channel Interface Functions

SectionS: Format of Assembly Listing

4/13/88

Page 1- 12 APML Assembler Self-Study Workbook

COS APML Control Statement

I APML, CPU= type , I=idn , L=ldn , B=bdn , E=edn , T~st ,~

ABORT,DEBUG,LIST=name , S=sdn , SYM=sym , X=xdn •

CPU= MUST be lOP
1= Source Input Dataset
L= List Output Dataset
B= Object Binary Output
E= Error Listing
ABORT Abort on Assembly Error
DEBUG Clears Fatal Error Flag
LIST All List Pseudos Activated
LIST= Matching Name Not Ignored

default
lOP
$IN
$OUT
$BLD
None
Do Not Abort
Set Flag
List Pseudos Ignored

S= System Text Defmitions $APTEXT
SYM Symbol Tables None
T= Binary System Text None
X= Global Cross Reference None

(Note that these parameters are identical to the COS CAL control statement.)

UNICOS APML Command Line
I apml [-t bsys] [-r xreij [-g sym] [-I listing] [-m tmwords] [-L] >
5 [-s text1 ,text2,text3, ... ,textn] [h] or [-i nlist] [-0 binary] name.s I

)

)

)

APML Assembler Self-Study Workbook

Sample COS job to assemble an APML source program from $IN:

JOB,JN=APML,US=xxx,T=2.
ACCOUNT,AC=nnn,UPW=xxx.
APML.
IEOF

(YOUR PROGRAM GOES HERE)
IEOF

Sample COS job to assemble an APML source program from IOPPL:

JOB,JN=OVLIST,US=.
ACCOUNT,AC=,UPW=.
ACCESS,DN=IOPPL,OWN=SYSTEM,ID=Vl15BF1.
UPDATE,P=IOPPL,I=O,N=O,Q=AMAP:ICOM:CONMAN.
APML,I=$CPL,L=LIST,LIST,B=O.
DISPOSE,DN=LIST,MF=TB,TEXT='/ul/sjh/ios/ovlist'.

Page 1-13

UNICOS commands to assemble anAPML source program from IOPPL:

cp /usr/src/ios/pl/ioppl /yourpath/ioppl
update -p ioppl -s aptext.s -q AT
/lib/apml-t aptext -m 150000 aptext.s
update -p ioppl -s icom.s -q ICOM
/lib/apml-s aptext -m 150000 -llistfile -h icom.s

4/13/88

Page 1- 14 APML Assembler Self-Study Workbook

)
4113/88

•

APML Assembler Self-Study Workbook Page 1 - 15

.) Review Questions for Section 1

)

)

1) What characteristics of APML make it difficult to classify in the
traditional high levell10w level hierarchy?

2) How do lOS binaries get from the Cray, where they are assembled, to the
I/O Subsystem, where they execute?

3) What makes APML code more cumbersome to test than similar CAL
code?

4113/88

Page 1- 16 APML Assembler Self-Study Workbook

)

4/13/88

)

,

)

)

Section 2 - APML Syntax I: Assignment Statement

Upon completion of this module the student will be able to:

1. Identify valid and invalid APML source statements, and locate errors
in syntax.

2. Recognize the standard APML notation symbols used in SM-0007
and SQ-0059, and in this workbook.

3. Follow program logic in an APML assembly listing, using both the
source and· object listings.

Page2-2 APML Assembler Self-Study Workbook

The table on the opposite page summarizes the possible source
statement formats in APML.

An APML Source Statement may be one of the following

1. An assignment statement or a conditional assignment statement
(format "a" or "b" on the following page)

2. A pseudoinstruction, specifying assembly options or conditions to the
APML assembler (format "f')

3. A comment line (format "d")

4. Data Definition (format "c")

5. A macro call (format "f')

Format "e" on the following page shows a neat way to assign a symbol
to the beginning of a routine. It says, in essence, "Assign the current
assembly location counter value to the label, and do not advance the
assembly counter." This results in the following statement being
assembled at the address specified by label. If we then branch to label,
we branch to the statement following the format" e" statement.

The advantage to this is that it allows us to easily add statements to the
beginning of the routine, by inserting them after the statement format
"e". We do not need to remove the label from the former first
statement in the routine.

4/13/88

)

)

)

APML Assembler Self-Study Workbook Page 2 - 3

a)
b)
c)
d)
e)
f)

Location

L
L
L
*
L
L

L

assIgn

condition

datal

name

params

.comment

*

APML Source Statement Formats

Result COimnent

assign . COlrunent
assign, condition .comment
datal,data2,data3COlnment
COinment

* .comment

name params .comlnent

optional statement label
must begin in column 1

assignment always has an = or :

assignment condition

data item or see PDAT A pseudo

pseudo or macro name

any parameters or arguments needed

Always preceded by a period

A comma means tIF when used to delimit the condition
portion of an assignment statement. A comma in column
one indicates a continuation

Asterisk indicates entire line is a comment, or assigns
current location· counter to L

3(30/88

Page 2 - 4 APML Assembler Self-Study Workbook

The APML Assignment Statement ..

.. .is the primary statement format. It is used for moving data within
the lOP, for branching, for setting flags, even for issuing channel
functions. In its most common form, it looks much like a FORTRAN
assignment statement, with which it has much in common .

The form of the assignment statement is:

R = expression

where R is the result field, where the result will be put, and
expression is any valid APML expression, defmed on the following
pages. The expression will be evaluated (strictly left-to-right, no
order-of-precedence), and the result placed in R.

The structure of the APML expression is simpler than that of the
FORTRAN expression, reflecting the relatively simpler range of
functions needed in the context of the I/O Processor. The general form
of an expression is:

operand operator operand [operator operand ...]

where operand is a valid APML operand (usually representing an
lOP register or local memory address), and operator is a valid
APML operator, as listed on the facing page in the column labeled
"ASSIGNMENT". Not all operations may be performed on all
operands. Legal constructs are defined by the APML Assignment
Statement "Railroad Diagram", found by folding out this page to the
left.

Fold Out»»

4/13/88

CONSTANT k CHANEL FUNCTION

ied

k
lOB

)
/

)

~~

')

)

•

APML Assembler Self-Study Workbook Page 2 - 5

Any assignment statement may be made conditional by adding a
comma and a valid APML condition. Operators for conditions are
defmed at the bottom of this page, in the column labeled
"CONDITION". Legal condition constructs are defmed by the APML
Condition "Railroad Diagram", on a fold-out at the end of the
following chapter. These fold-outs are placed in such a way that you
may refer to them both while you read the rest of these two chapters.

Symbol Meanina

Symbol Assignment Condition

- Equal Equal
Not Equal
+ Add Add

Subtract Subtract
& Logical Product Logical Product

Channel Function
< Shift Left Less Than
> Shift Right Greater Than
« Circular Shift Left
» Circular Shift Right
<= Less Than or Equal
>= Greater Than or Equal

4113/88

•

Page 2- 6 APML Assembler Self-Study Workbook

Operand Notation-

... is summarized on the facing page. There are several things to notice
about how operands are specified.

First, note that the only way to access local memory is to store the
Local Memory (LM) address in an operand register. You cannot
simply refer to a location by symbol, as you would in virtually any
other language that comes to mind. This reflects the fact that, in the
lOS operating system software, overlays must be re-entrant. Upon
request, the KERNEL will allocate data areas out of a pool of so
called "free memory", and return a pointer to this work area in an
operand register. Since there is no variable data in the overlay itself,
and constants are more practically established as equates, there is little
motivation to access a data area within the confmes of the current
overlay. With 512 (decimal) operand registers in each lOP, there is no
particular shortage, and we see that a great many of them are kept
loaded with the addresses of pertinent local memory structures. For a
fuller discussion of how operand registers are allocated, how local
memory is allocated, operand register pointers, and KERNEL
functions, see the lOS Internals class.

Notice also that there are three ways to refer to the contents of an
operand register (abbreviated OR). The fIrst method is to equate the
operand register number to a two-character symbol. Such symbols are
given special treatment by the APML assembler. When a two
character symbol is used, it is assumed to mean the contents of the
operand register with that number. (Any other symbol resolves to the
value equated to it.) The second method is to precede the symbol with
"R!". This is the preferred method of referring to the contents of an
operand register. (As you examine lOS system software, code that
makes use of two-character symbols is the old code.) To indirectly
refer to the contents of an operand register, you may place the number
of the operand register into the B register, and use the notation (B).

4113/88

)

)

)

APML Assembler Self-Study Workbook Page 2-7

) APML NOTATION

SYMBOL MEANING

A ACCUMULATOR

B BREGISTER

C CARRY BIT

(B) CONTENTS OF OPERAND REGISfER

ADDRESSED BY B

DO CONTENTS OF OPERAND REGISfER

(2-CHARACTER SYMBOL)

R!Sym CONTENTS OF OPERAND REGISfER

[DO] OPERAND REGISTER NUMBER OF DO

(DO) CONTENTS OF LOCAL MEMORY ADDRESSED

(OD+K) CONTENTS OF MEMORY ADDRESSED BY SUM

OF CONTENTS OF OPERAND REGISTER DO

ANDK(WIllCHMAYBEA CONSTANT, OR,

) AND DISPLACEMENT ADDRESS)

E EXIT STACK POINTER

(E) EXIT STACK ENTRY ADDRESSED BY E

I INTERRUPT ENABLE FLAG

100 I/O CHANNEL ADDRESSED BY B

100 I/O CHANNEL MNEMONIC DEFINED BY

K POSITIVE NUMERIC OR CHARACTER

(K) CONTENTSOFMEMORYADDRESSEDBYK

P P REGISTER (pROGRAM ADDRESS REGISTER)

R INDICATES RETURN JUMP

<n> RESERVE n PARCELS

«n» RESERVE AND INITIALIZE n PARCELS

)

4/13/88

Page 2 - 8 APML Assembler Self-Study Workbook

The lOP Instruction ~t_

.. .is documented both in the HR-0081 lOS Hardware Reference
Manual, and in the SQ-0059A APML Reference Card. Look now at
the reference card, pages 2-4. Pages 2 and 3 show the machine
instructions, with columns for octal instruction code ("lOP"),
symbolic description ("APML"), and verbal description. The operand
notation used in the "APML" column is indicated at the top of page 4.
Note that it is a subset of the notation listed on the previous page.

At the bottom of page 4 the two possible machine instruction formats
are shown. The majority of APML instructions occupy 1 parcel of
memory, and consist of a 7-bit I-field, and a 9-bit d-field. A smaller
number of machine instructions occupy 2 parcels of memory, and add
a 16-bit k -field.

The i-field always contains the machine instruction code, as defmed in the
"lOP" column on pages 2 and 3 of SQ-0059A.

The d-field contains one of the following:

1) the number of an operand register (000-777). Note that the 9-
bit size of this field is just the right size to hold an operand
register number. (For example, op code 020.)

2) Immediate data for the instruction to use. (For example, op code
010.)

3) For channel functions, op codes 140-157, the channel number
on which the function will be issued.

4) For a relative branch instruction (op codes 070-073, and 100-
117), a count of the number of parcels to branch forward or
backward.

The k-field of 2-parcel instructions contains one of the following:

1) The branch address (relative to the base register indicated in the
d-field) for an absolute branch instruction (For example, op
code 075.)

2) Immediate data for the instruction to use (For example, op code
014.)

3/30/88

)

APML Assembler Self-Study Workbook Page 2 - 9

Machine Instruction Formats

I-parcel Instructions:

f d I
7 bits 9 bits

2-parcel Instructions:

f d k
7 bits 9 bits 16 bits

4/13/88

Page 2 - 10 APML Assembler Self-Study Workbook

Reading The Assignment Statement Syntax Diagram._

Start by selecting the receiving field from the list on the left.
Following any arrow, you next select a fIrst operand to follow the
equals sign, then (usually) an operation and a second operand. This
may then be the end of the statement, or you may select an additional
operation/operand pair, and so on until complete. Any assignment
statement may be made conditional by following it with a comma and a
condition. Condition syntax is described in the next section of this self
study.

4/13/88

)

\
I'

APML Assembler Self-Study Workbook Page 2-11

) APML Assignment Syntax
Result Operand Operand

A A Operator 8

8 8 dd

REGISTER
R!sym E

(E) (8)

(dd)

dd (R!sym)

OPERAND
R!sym (dd+k)

REGISTER

(8) (8) (k)

k

(dd)

(R!sym)
MEMORY

'\

) (dd+k) 8 /

(k) k

CONSTANT

This example shows how to traverse the diagram for the statement:

R!VAL = (6

)

4/13/88

CONSTANT

This example show how to traverse the diagram for the statement:

R!TBIS = + B

)
4/13/88

)

")

,

)

APML Assembler Self-Study Workbook

APMLAssignment Syntax

REGISTER

Result

A

8

E

(E)

dd

OPERAND
REGISTER R!sym

(8)

(dd)

MEMORY

(k)

CONSTANT

Operand

A

8

(dd)

(R!sym)

(dd+k)

(k)

k

Operand
8

dd

8

This example show how to traverse the diagram for the statement:

R!TBL+FLD = LS<2+TAG

4/13/88

Page 2 - 13

Page 2 - 14 APML Assembler Self-Study Workbook

An Odd Quirk of APML, Part One:

REGISTER

OPERAND
REGISTER

MEMORY

CONSTANT

APML Assignment Syntax
Result

A

dd

R!sym

(8)

(dd)

(R!sym)

(dd+k)

(k)

Operand

A

dd

R!sym

(8)

(dd)

(R!sym)

(dd+k)

(k)

k

B = E+S works fme, but. ..

4/13/88

Operand

8

dd

R!sym

(8)

(dd)

(R!sym)

8

k

)

)
/

)

- --

')
/

)
--~/

APML Assembler Self-Study Workbook Page2-15

An Odd Quirk of APML, Part Two:
APML' Assignment Syntax
Result Operand

A A

8
REGISTER

E

(E)

done
dd dd (Rlsym)

OPERAND
Rlsym Rlsym (dd+k) REGISTER

(8) (8) (k)

k

(dd) (dd)

MEMORY
(Rlsym)

(dd+k) 8

(k) k

CONSTANT

•• .B = 5+1: doesn't!
E (the Exit Stack Pointer) is legal as a first operand, but not as a
second operand. APML apparently is not aware of the commutative
law of addition

4/13/88

Page 2 - 16 APML Assembler Self-Study Workbook

APl\1L Branch Instructions...
... are typically pretty easy to read - they look like an assignment
statement with the P-register as the receiving field. A return branch
(subroutine call) has a receiving field of R rather than P.They can be
made conditional in the usual way: just follow with a comma and a
condition. .

The machine branch instructions, as shown on the APML Reference
Card, pages 2 and 3, come in two flavors - relative and absolute. The
distinction is no doubt familiar to you - Absolute branches specify an
address to branch to, while relative branches specify an offset from the
current p-register value. When we code a branch instruction, the APML
assembler examines it and decides whether it will generate a relative or
absolute machine branch instruction to accomplish it. As shown on the
following page, the APML assembler becomes quite testy if we attempt
to hard-code a relative branch instruction. In the example, we code a
branch instruction as:

P=P+2.
This certainly seems legitimate on the face of it. Mter all, there is a
hardware instruction with exactly this format (function code 070). And
yet, APML flags this statement with an error S7, a syntax error
indicating "illegal operand following P= or R=" (see SM-0036, p. 0-
3). Consulting our railroad diagram for an assignment statement with P
as receiving field, we fmd that, indeed, the statement does not conform.
But why not?

The answer lies in the fact that, at the source code level, the displacement
of 2 is ambiguous. Ooes the displacement refer to 2 parcels, or two
instructions (which may occupy a great many parcels)? Between this
ambiguity, and the fact that hard-coding a relative branch is a dreadful
programming practice anyway, the APML assembler forbids it. The
second example shows the legal way of coding the desired branch. We
specify the destination as a symbol. The APML assembler examines the
statement, and determines that a forward displacement of 2 parcels will
accomplish the branch (object code 070002).

4/13/88

")

)

)

APML Assembler Self-Study Workbook

Correct Usage Of P Register:

57 0 070000
1 050000
2 054000

o 070002
1 050000
2 054000

CAT

DOG

4/13/88

IDENT PRULES
P=P+2
A=B
B=A
END

IDENT PU5AGE
P=DOG
A=B
B=A·
END

Page 2 - 17 Page 2 - 18 APML Assembler Self-Study Workbook

The annotated APML listings on the following fold-out
pages ...

... demonstrate how to interpret the object code generated by the
assembler, and how to relate the source code you create to the generated
object code. In addition, several useful tips/tricks/traps are discussed.
Please examine them in detail.

Fold Out»»

4/13/88

Annotated APML Listing 1

11le SCRATCH pseudoinsrtuction
assigns up to 5 operand registers for
APML's use to hold intermediate
results, or for memory pointers. 11lis
is one of the pseudos which is unique
to APML, and does not appear in
CAL. See the chapter on pseudos for a
more complete discussion.

Look up any new opcodes in this group, and
see how the generated object code relates to
the given source statements.

APMLX

2

o

010012
010001 024002

024003

024003

Two new concepts are involved in tIus
source statement. First, this is a branch
instruction. Second, it is conditional. We
might paraphrase this statement in this way:
"Branch to LOC if operand register REG 1
is not = 0." Examine the object code to see'
how this is accomplished. .

024000

24

Here a s~lgle ob~ect statement has generated 5 parcels of object code, including the first
2-parcelmstructton we have encountered. The second parcel (k-field) of a 2-parcel
ins!ruction is easy to iden.tify in the object listing, because it will be preceeded by a slash.
11us statement also contams the first memory reference we have encountered: the receiving
fieI~ of this statement is the memOlY location at symbol SUM. Note that the symbol MUST
be m pm"entheses, t? indicate "c(;mtents of memory." As we follow the object code, we see
the acc!-.llnulator bemg ~oaded WIth the address of symbol SUM (24), and this address
stored mto operand regIster 0.You will recall that we need an operand register pointer to
access local memory. But w~y was operand register 0 used? It is not named anywhere in
th~ souyce statement. ~o~ (hd the assembler know to use that particular register to hold the
pomter l11le answer lIes Jll the SCRATCH pseudo at the beginning of the listing. This
statement tells the assembler to use SC (operand register 0) as a work register.

SC

R!REG1=12
R!REG2=1
R!REG3=0

LOC R!REG1=R!REG1-1

EXIT
SUM <1>

END

o

APML

The "=" pseudoinstruction from CAL, for
assigning assembly-time values to symbols,
becomes the "EQUALS" pseudoinstruction in
APML. This is one of the few differences in
APML pseudos vs. CAL pseudos. The symbol in
the label field of the EQUALS statement is replaced
by the expression in the result field of the
statement, wherever it is used in the assembly. In
this example, the symbols SC, REG 1, REG2,
REG3 will be used to refer to Operand Registers
0-3.

... "' .. r The first three executable (that is, non-pseudo)
~ instructions in this sample program are assignment

statements, which load operand registers with
initial values. Note that each of these assignment
statements generates 2 separate 1-parcel machine
instructions.
The first generated machine instruction in each pair
is opcode 010, which says: "Load the accum
ulator with the contents of the d-fIeld of this
instruction." In each case, the value loaded is the
~onstant value from the right side of the equals sign
m the source statement.
The second generated machine instruction in each
pair is opcode 024, which says: "Store the
contents of the accumulator into the operand
register named in the d-field." In each case, the
operand register stored into is the register number
equated to the symbol from the left side of the
equals sign in the source statement. For instance:

)

)

)

)

lCONDX

FrOln the object code, we see that OR430 has been
assigned to the sYlnbol SOURCE, and OR432 has
been assigned to symbol COUNT. REGDEFS
starts assigning registers with 430. Notice that
here the CONTENTS of register COUNT is
stored in melnory pointed to by register
SOURCE. COlnpare the object code here to the
statement at address 13.

This conditional statement is the exit test for this
"load the table" loop. It is one of the simpler
fonns, since it sunply loads the accumulator and
brances on non-zero.

Here the length of the table is loaded into
register COUNT. See the code below in which
this value is calculated. Compare the object
code of this instruction to the previous one,
where the address of a symbol is loaded into an
operand register. The form is identical! ---

Here the length of T ABLE1 is calculated.
The symbol T1END marks the next
available parcel after TABLE1. The
EQUALS pseudo calculates the difference
between the start and end of the table to
detelmine the length. The NEWPAGE
pseudo forces the assembler to assign
addresses to the sYlnbols, so that the
EQUALS can use them.

Annotated APML Listing 2

o <macro>

o 072023 START

1 020432 034430 ~ LOAD
I

3 026430

IDENT CONDX

lOP APML 2.1(02/23/97) 03/09/97 09:26:09 Page 1
(1)

__ The REGDEFS macro assigns available operand
REGDEFS " (SOORCE,DEST,COONT,WORK) registers for use by an overlay. In addition, it

sets up certain work registers, including the
scratch registers needed by the APML assembler
for memory pointers and intermediate results.
Examine the object code in this example to

R=SETSRC

(RISOORCE)=RICOONT I
RISOORCE=RISOORCE+l

~
determine the registers assigned. For further

~45 ~0~2~7;43~2~~==~======-=R:I;C~OO~N~T=~R~I~CO:O:NT~-~1=_ infonnation, see SM-0046.
r 020432 107005' P LOAD,RICOONTto
~-------------....;..--~- APML is smart ~nough to see that, for these

7 072014

10 014000 /000102 024431

13 030430 034431 MOVE

R=SETSRC

RIDEST=TABLE2

(RIDEST)=(RISOORCE)

RISOORCE=RISOORCE+l

RIDEST~RIDEST+l

RICOONT=RICOONT-l

P=MOVE,RICOONTto

EXIT

operations, there'is a single ulstIuctioll that will
accomplish it. If we were adding or subtracting,
say, 5 to the register, the object code would have
to be somewhat longer.

End of the progrrun.

Here we load register SOURCE with the
ADDRESS of TABLE!. Since we have not 1/ specified a base register with a BASEREG

::;;=:;:;;;:;::;:;:;;:;;::::::;:;;::;;;:::::::;:;:;::::;===========:::: pseudo, the d-field of tIus instruction is 0.
SETSRC RISOORCE=TABLEI Wh :========================:: en we test this program with CSIM as a

stand-alone progrrun, as opposed to integrating

50

102

R!COONT=TILEN

EXIT

TABLE 1 <50>

TIEND *

NEWPAGE -

TILEN EQUALS TIEND-TABJ,El

TABLE2 <50>

END

it as an overlay into the lOS operating system, it
will load at address 0, and execute correctly.

APML Assembler Self-Study Workbook Page 2 - 19

««Fold Out

4/13/88

Page 2 - 20 APML Assembler Self-Study Workbook

Review Questions for Section 2

1) Name three ways to refer to the contents of an operand register in APML
syntax.

2) What does the j-field of an lOP machine instruction contain?

3) What might the d-field of an lOP machine instruction contain?

4) What might the k-field of an lOP machine instruction contain?

5) How can an APML assignment statement be made conditional?

6) How do you refer to the contents of the B Register in APML syntax?

7) Explain the difference between the notation [DD] and the notation (DD).

4/13/88

)
.'

)

-)

)

Section 3 - APML Syntax IT: Condition Syntax

Module Objectives: with the aid of all available reference materials, upon
completion of this self-study module, the learner is able to:

1. Identify valid and invalid examples of APML conditions.

2. Construct conditional assignment statements.

3. Relate conditional assignment source statements to the object code
produced for them.

Page 3 - 2 APML Assembler Self-Study Workbook

Any APML assignment statement may be made conditional ...
... by adding a comma and a valid APML Condition. Condition syntax
is defmed by the APML Condition Syntax Diagram, found on a fold
out page at the end of this section. The fold-out on this page contains an
annotated assembly showing conditional statements. Please locate and
fold out these diagrams now.

Fold Out»»

4/13/88

APML Annotated Listing 3

~~~~~~~~~:~~-:::---------------------REGDEFS 

Object code says: "load the accumulator with 1CONDX2 

contents of OR 430 (R!THIS). Subtract contents of 
OR431 (R!THAT). Branch ahead 268 parcels if acc 
is zero (ie, if two values were equal). 

r 

lOP APML 2.1(02/23/87) 03/08/87 10:40:02 Page 1 
(1) 

As always, condition is evaluated first. Object code 
says: "load the accumulator with OR 434 
(R!POINT). Subtract contents of OR 433 
(R!COUNT). Branch ahead 4 parcels (ie, skip next 3 
parcels) if carry bit is clear (ie, ifR!POINT < 
R!COUNT). Branch ahead 3 parcels (ie, skip next 2 
parcels) if Acc = 0 (ie, if R!POINT = R!COUNT). 
If we don't take either branch, then R!POINT > 
R!COUNT, and we want to do the next two 
instructions. which accOlnplish the assignment. Load 
a value of 5 into the accumulator. Add the 
accumulator to OR 433 (ie R!COUNT), and place 
the result back in OR 433." 

o 

o 
3 

11 

30 

34 

<macro> 

020430 023431 102026 
020434 023433 100004 
102003 010005 025433 
020435 016000 /000004 

024410 150002 004005 
024411 030410 023411 
102006 030434 012430 
006003 033410 034410 
050000 013066 103002 
150000 
001000 

4 

IDENT q c 430 431 432 433 434 435 
REGDEFS ~ (THIS,THAT,WHAT,COUNT,POINT,TABLE1 

********************* 
* 
* 
* 

JUST A BUNCH OF CONDITIONAL STATEMENTS 
TO SHOW HOW THEY ARE ASSEMBLED. THEY DO 

NOT ADD UP TO A PROGRAM. 

* 
* 

.* 
************************************************** 

TAG 

FIELD 

P=TAG R!THIS=R!THAT 
R!COUNT=R!COUNT+5,R!POINT>R!COUNT 

(R!TABLE+FIELD)=(R!POINT)+THIS»3-(R!TABLE+FIELD), 
(R!TABLE+FIELD)#E>5 

IOR:10,B=66 

EXIT 
EQUALS 
END 

Object code says: "Load Acc with contents of B register. Subtract 66. If acc is non-zero, branch 
ahead 2 parcels (ie, skip next parcel). Issue channel function 10 (why?) on chatmeI0." 

Here's a really enormous one. Object code says: "Load the acc with contents of OR 435 (R!TABLE). Add the constant 4 (FIELD) to the acc, and save the result in scratch register 
OR 410 (REGDEFS assigns regs 410-414 as scratch). OR 410 now points to (R!TABLE+FlELD) in local memory. The following opcode (150) falls in the range 140-157 seen 
on the APML Quick Reference, indicating that this is a channel function. But what function is it? The d-field contains a 2, indicating the channel on which the function will be 
issued. To detennine the function being issued, subract the140 frOln the opcode, giving a 10. We are therefore issuing channel function 10 on channel 2. Channel 2 is the exit 
stack channel, and function 10, accourding to our handy APML card, is ... well, you can see for yourself. The Accumulator now holds the E pointer. The next parcel will right 
shift the acc 5 bits. We then store the result (E>5) into scratch register 411. The next parcel loads tile acc with the parcel of local memory that OR 410 points to -
(R!TABLE+FIELD), you will recall. We the subtract the contents of scratch register 411 (E>5), and then branch ahead 6 parcels (ie, skip the next 5 parcels) of the acc=0 (ie, if 
(R!TABLE+FIELD)= E>5)." We have now interpreted the parcels of this object code that implement the condition portion of this source statement. The last 5 parcels implelnent 
the assigrunent statement. Their interpretation is left as an exercise for the student. 



) 

) 

APML Assembler Self~Study Workbook 

Comparing the ~ndition syntax diagram to the actual 
conditional machine instructions ..• 

Page 3 - 3 

.. .it is clear that the source syntax gives us a much richer choice of 
conditions. All of the conditional machine instructions test either the 
accumulator equal/not equal to 0, or the carry bit set/clear (see the 
APML Quick Reference Card SQ-0059). However, at the source level, 
we may test any register for any value, and even compare a register to . 
the result of an expression. This is an extremely powerful and easy-to
use feature of APML. It is both convenient to code, and easy to 
interpret when reading a listing. The generated code is also very 
efficient. 

Note that the condition syntax defmed here will also be used in certain 
logic-structure macros, where a condition is required ($IP and 
$UNTll..., in particular). 

4/13/88 



Page 3 - 4 APML Assembler Self-Study Workbook 

Reading conditional statements 

Please see the table "Symbol Meanings" in the previous chapter for an 
explanation of notation. 

R!POINTER=R! TABLE+FIELD, R! TABLE4/:0 is read: "POINTER gets 
TABLE plus FIELD if TABLE is non-zero." 

MOS : 5, R! LENGTH> 5 is read: "Issue channel function five to buffer 
memory if LENGTH is greater than 5." 

B=R! CHAN, (COUNT) >THRESHLD is read: "Put the channel number into 
the B register if the local memory variable COUNT is greater than the 
constant TIIRESm...D." . 

A Modest Proposal: In reading APML to yourself, don't bother to say 
"Contents of Operand Register such-and-such" all the time. Instead, 
just say "such-and-such" when the operand is in an operand register. 
Be specific if a operand is something other than the contents of an 
operand register. Say, "The field such-and-such," or "The local 
memory variable such-and-such," or "The constant such-and
such"(for equates), and so on. Just a suggestion. 

4113/88 

) 



~ 
~ 
00 

'-. --.-/ 

1NOAOPRND 
Page 1 

( 1 ) 

0 
0 
0 
1 

5 
6 

13 
15 

22 

\~ 

Don't Use A Explicitly 
As An Operand ••• 

<macro> 

032410 054000 
020430 004002' 

024410 

024410 

013010 100003 
102002 02'4431 

001000 

lOP APML 2.1(03/17/87) 03/20/87 09:14:12 

IDENT NOAOPRND 
REGDEFS ,,(PNT,INDEX) 

START * 
A=5 
(LOC)=A 

A=10 
B=A+(LOC) 

A=R!PNT>2 
R!INDEX=A,R!PNT>10 

.LOAD ACC WITH VALUE 5 ..• 
••. AND IMMEDIATELY KILL IT! SEE OBJ CODE 

.ALSO PROB IF MEM ACCESS ON RIGHT OF ASG 
.ALWAYS CALCS MEM ADR FIRST 

.LOOKS OK, BUT CHECK OUT THE OBJECT CODE 

.ACC IS CLOBBERED BECAUSE OBJ CODE FOR CONDITION IS GENERATED FIRST 
EXIT 

-~---/ 

~ 
:> 
C'Il 

~ 

~ 
[f 
CIl 
CD 

~ 
CIl 

! 
~ 
~ 

~ 

~ 

~ 
W 

Ul 



Page 3 - 6 APML Assembler Self-Study Workbook 

) 
4/13/88 



) 

APML Assembler Self-Study Workbook Page 3-7 

1. APML most closely resembles a ________ language. 

2. Suppose Operand Register 17 is equated to both Rl and VAL, and the 
contents of Memory Location 1000 is 2241. What is the Accumulator 
value after each instruction in the following sequence? Assume that all 
registers retain values from previous instructions. 

Rl=1000 ,A= ___ _ 
A Rl ,A-____ _ 
A=~I] ,A ____ _ 
A=(Rl) ,A= ___ _ 
A-VAL ,A ____ _ 
A=(R!VAL) ,A-____ _ 
A=R!V AL ,A= ____ _ 

3. Suppose the symbol CAT has a value of 25 and Operand Register 25 is 
denoted by OR2. What is the accumulator value after each instruction in 
the following sequence? 
R!OR2=721 ,A-____ _ 
A R!OR2 ,A ____ _ 
A=CAT ,A ____ _ 
A R!CAT ,A-____ _ 

4. Which of the following APML statements are illegal? 
(O=LETTER,0=NUMBER) 

a) P=P+17 
b) E~B+Rl&17 
c) R2=E&(B»2 
d) R2=(B)&E>2 
e) A=B,B=E&R1 
f) A=B,P=1000 
g) A B,B=Rl&E 
h) A=B,0=0+(B)-10&0>0 

4/13/88 



Page 3 - 8 APML Assembler Self-Study Workbook 

Exercises For Section 3 Continued 

1) 

2) 

3) 

4) 

5) 

Each of the numbered items below shows more than one notation that will 
accomplish a certain type of assignment in APML. Determine the results 
of the five assignments being illustrated. . 

Rl EQUALS 1 
R2 EQUALS 2 
R3 EQUALS 3 
R5 EQUALS 5 
REG 1 EQUALS 1 
REG2 EQUALS 2 
REG3 EQUALS 3 
REG4 EQUALS 4 

R!REGl=12 
Rl=12 
operand register __ gets 

R!REG2=R!REG 1 
R!REG2=Rl 
R2 R!REGI 
R2 Rl 
operand register __ gets 

R!REG3=(R!REG1) 
R3=(R!REGl) 
R!REG3=(Rl) 
R3=(Rl) 
operand register __ gets 

R!REG4=REGl 
R!REG4=[Rl] 
operand register __ gets 

R5=(REGl) 
R5=([Rl]) 
operand register __ gets 

4/13/88 

) 

) 

) 
j 

/ 



-

) 

) 
-. / 

TEST ACCUMULATOR 

8 

dd 

R!sym 
,A 

(8) 

(dd) 

(R!sym) 

TEST CARRY BIT 

,C 

TEST CHANNEL STATUS 

,iod 

,lOB 

k 

0 

1 

ON 

BZ 

APML Condition Syntax 

SUBJECT OPERAND OPERAND 
RELATION OPERATION 

A B 

,B B dd 

REGISTER 
E Risym ,E 

,(E) (E) (B) 

(dd) 

,dd dd (Rlsym) 

OPERAND 
,Rlsym Risym (dd+k) 

REGISTER 

,(B) (B) (k) 

k 

done 
,(dd) (dd) 

MEMORY 
,(R!sym) (Rlsym) 

B 
,(dd+k) (dd+k) 

k 
,(k) (k) 

CONSTANT ,k k 



APML Assembler Self-Study Workbook Page 3 - 9 Page 3 - 10 APML Assembler Self-Study Workbook 

APML Condition Syntax Diagram Fold-Out 

««Fold Out 

4/13/88 4/13/88 



Section 4 - APML Syntax IV: Pseudoinstructions 
) 

MODULE OB.JECIlVES 

Upon completion of this module, the learner should be able to: 

1. Use basic APML Pseudos in a program 

2. Identify those Pseudos which are unique to APML 

3. Describe why these Pseudos are unique to APML 

) 
} 

/ 

) 



Page 4- 2 APML Assembler Self-Study Workbook 

APML Pseudos ... 
••• are source statements that instruct the assembler to do something AT 
ASSEMBLY TIME. This is in contrast to normal source statements 
which the assembler turns into object code to execute AT RUN TIME. 

The typical pseudo generates no object code. Instead, it affects the way 
object code is generated. (Data generation pseudos are the exception to 
this.) 

The pseudos available in the CAL assembler are also available in the 
APML assembler, with the following exceptions: 

a) The OPDEF pseudo is not available. (This is because the 
APML assignment statement is in fact implemented as an 
OPDEF.) 

b) The COMMON pseudo is not available. 

c) The "=" pseudo becomes "EQUALS." This reflects the special 
usage of the equals sign in the APML assignment statement. 

In addition, APML includes several unique pseudos, which are not 
available from CAL. 

In this self-study workbook, we will examine only those pseudos that 
are unique, different from those used in CAL, or required. The 
student is referred to section 6 in SM-0036, the APML Reference, 
and the appropriate materials on the CAL assembler for further 
information. 

4/13/88 

) 

) 



APML Assembler Self-Study Workbook Page 4 - 3 

, , APML Pselldoinstructions List by Class ) 
J 

CLASS psEUDOS IN CLASS 
Program Control IDENT, END, ABS, COMMENT, GLOBAL 

Code . Control BASEREG, SCRATCH, NEWPAGE 

Loader Linkage ENTRY, EXT, START 

Mode Control BASE,QUAL 

Block Control BLOCK, ORG, BSS, LOC, BITW, BITP 

Error Control ERROR, ERRIF 

Listing Control LIST, SPACE, EJECT, TITLE, 
SUBTITLE,TEXT,ENDTEXT 

Symbol Defmition EQUALS, SET, CHANNEL, MICSIZE 

\ Data Defmition CON, BSSZ, DATA, PDATA, VWD 
) 

Conditional Assembly IFA, IFC, IFE, ENDIF, ELSE, SKIP 

Instruction Defmition MACRO, LOCAL, ENDDUP, 
STOPDUP, ENDM 

Mi~ro Defmition MICRO,OCTMIC,DECMIC 

(BOLD indicates unique pseudos, or those different from CAL) 

4/13/88 



Page 4 - 4 APML Assembler Self-Study Workbook 

Required Pseudos... 

... must be present in every APML program for correct assembly. 
These pseudos are: IDENT, END, ABS, SCRATCH (SCRATCH is 
also a unique pseudo - i.e., not found in CAL). 

IDENT and END mark the beginning and end, respectively, of a module to be 
assembled. 

Location Result Operand 

IDENT name 
END 

name Name of this program module 

These pseudos function in the same way as they do in CAL. They form 
''bookends'' around an assembly module. You may include several 
such modules in the input dataset to APML, but each must begin with 
IDENT and end with END. 

In the operating system, on overlay must have an IDENT and an 
END. The IDENT pseudo is generated automatically by the 
OVERLA Y macro, which is used in every overlay in the system. 
However, you must remember to code an END explicitly at the end of 
the overlay. 

4/13/88 

) 

) 



) 
/ 

) 

) 

APML Assembler Self-Study Workbook Page 4 - 5 

Required Pseudos (Cont.) 
ABS declares a module as an absolute binary 

Location Result Operand 

ABS 

Since all overlays must be absolute, the OVERLAY macro includes an ABS 
pseudo. Note also that any code that is to be tested with CSIM must also be 
declared absolute. 
ABS must follow IDENT, and precede everything else. 

4/13/88 



Page 4- 6 APML Assembler Self-Study Workbook 

Required Pseudos (Cont.) 

SCRATCH is a unique pseudo used to declare the scratch operand registers 
needed to generate code from complex APML statements. Scratch 
registers hold memory pointers and intermediate results. If SCRATCH 
is omitted, an error (type F - "too many entries ") will be generated 
wherever a scratch register is needed, but not available. 

The REGDEFS macro, used in all overlays, automatically assigns 
scratch registers for the programmer. 

Location Result Operand 

SCRATCH Rl,R2,R3,R4,RS 

RI-R5 Up to 5 previously dermed symbols. Symbols must 
be defmed elsewhere,and must not have been defined 
with SET 

example: 

SCRATCHX 

51 
52 
53 
54 
55 
56 
57 
60 

o 014000 /000017 024051 
014000 /000016 024052 
030051 033052 101005 
030051 032052 013046 
034052 

15 001000 
16 
17 

IDENT SCRATCHX 
sr EQUALS 51 
S2 EQUALS 52 
S3 EQUALS 53 
S4 EQUALS 54 
S5 EQUALS 55 
S6 EQUALS 56 
S7 EQUALS 57 
S10 EQUALS 60 

HOLD 
TEMP 

SCRATCH S1,S2,S3,S4,S5 
(HOLD)=(TEMP)+(HOLD)-46,. (TEMP) < (HOLD) 

EXIT 
<1> 
<1> 
END 

4/13/88 

) 



') 

APML Assembler Self-Study Workbook Page 4-7 

Unique Pseudos.. • 

... are SCRATCH (previous page), EQUALS, PDATA, BASEREG, and 
NEWPAGE 

PDATA 

Logically identical to DATA generation pseudo 

Allows unrestricted use of two character symbols as data 

Location Result Operand 

L PDATA datal,data2,data3._ 

L Statement label with parcel attribute 

datal Can be anyone of the following: 

number· 
symbol 
character string 

use as many parcels as necessary 
parcel storage reservation 
* assigns current parcel counter to L 

4/13/88 



Page 4 - 8 

Unique Pseudos (Cont) 
BASEREG 

APML Assembler Self-Study Workbook 

A base register is required for two parcel jumps and for referencing data in a 
relocatable piece of code (overlay). 

Two-parcel (Absolute) branches ru::e generated whenever the destination of the 
jump is within a different PAGE of the module. The whole concept of pages 
comes up, in a round-about way, because of the fact that, in the lOP, some 
jump instructions occupy 1 parcel, while others occupy 2 parcels. Notice the 
problem encountered when we wish to branch to some point in our program. 
The assembler must decide whether to generate a I-parcel relative branch (the 
preferred method), or a 2-parcel absolute branch (if the displacement is 
greater than the 7778 maximum that can be held in the d-field of the branch). 
It therefore needs to determine the distance to the destination before it can 
determine the length of the instruction. BUT ... if the branch destination 
address is greater than the address of the branch instruction, then it must 
determine the length of this branch instruction, AND ALL OTHER BRANCH 
INSTRUCTIONS BETWEEN, before it can assign an address to the 
destination! This chicken-or-egg problem must be resolved, and the PAGE 
mechanism is the method chosen to break the deadlock. As the assembler 
progresses in examining source statements, it keeps a table of unresolved 
branch destinations. Whenever the assembler encounters a PAGE 
BOUNDARY (derIDed below), it determines, for each branch in the preceding 
page, whether the destination also falls within the page. It can now determine 
the size (1 or 2 parcels) of all branches in that page, and then assign values to 
all symbols in the page. 

A page, then, is a logical construct of the APML assembler. It is a block of 
code within which all branches are relative (single parcel jumps). Maximum 
page size is 51210 parcels - the maximum displacement that could be specified 
in the d field of a relative branch instruction. 

Two parcel jumps, DD+K are generated by the assembler for branch points 
outside of the current 'page'. 

4/13/88 

-~ 

) 

) 



) 

) 

APML Assembler Self-Study Workbook 

Unique Pseudos (Cont) 
Pages are delimited by 'page boundaries' which are formed as follows: 

By an IDENT statement 

Every 51210 parcels 

By a pseudo instruction which forces.a word boundary 
(i.e. BSS/BSSZ) 

By a PDATA pseudo with a label 

By a NEWPAGE pseudo instruction 

Page 4 - 9 

The BASEREG pseudo is used to declare a base operand register, which the 
assembler then uses for all two-parcel branches 

Location Result Operand 

BASEREG r 

r operand register used for base 

4/13/88 



Page 4 - 10 APML Assembler Self-Study Workbook 

) 

) 
J 

4/13/88 



) 

) 

) 

APML Assembler Self-Study Workbook 

Unique Pseudos (Cont) 
BASEREG (cont.) 

example: 

BREGX 

0 075003 /001744 
2 

1744 
1744 001000 

3 %B 

NEXT 

LOCAL:MEM:ORY 

KERNEL 

IDENT BREGX 
EQUALS 3 
BASEREG %B 
P=NEXT 
<1742> 

* 
EXIT 
END 

P=NEXT PAGE 

Page 4 - 11 

BREAK 
k (=1744) ------------------------ ~~~-

NEXT * 

07 / 10017441 P NEXT 

Base Register displacement 

4/13/88 



Page 4 - 12 

Unique Pseudos (Cont) 
NEWPAGE 

Allows the programmer to force a new page 

This is useful primarily in two situations: 

APML Assembler Self-Study Workbook 

First, it can be used to prevent a page break from falling in the middle of a 
loop. A small loop will execute more rapidly if its branches are the single
parcel (relative) type, which permit an "in-stack" condition. If a page break 
should fall within the loop, two-parcel (absolute) branches must be generated, 
which do not permit an "in-stack" condition. 

Second, NEWPAGE forces the assembler to assign values to symbols so that 
they may be used to calculate values for other symbols, as shown in the 
examples on the following page. 

Location Result Operand 

NEWPAGE 

4/13/88 

) 

) 



) 

APML Assembler Self-Study Workbook 

Unique Pseudos (Cont) 
NEWPAGE (cont.) 

examples: 
Without NEWPAGE - Assembly Error: 

NPAGEX1 

3 %B 

0 TBL 
110 TBLEND 

XW6 TBLLEN 
110 001000 

Page 4-13 

IDENT NPAGEX1 
EQUALS 3 
BASEREG %B 
<110> 

* 
EQUALS TBLEND-TBL 
EXIT 
END 

When the assembler encounters the symbol TBLLEN during its ftrst pass, it 
has not yet encountered its ftrst page break, and therefore has not yet assigned 
values to the symbols TBLEND and TBL, on which the value of TBLLEN 
depends. The assembler gives the unhelpful error code XW6: "Expression 
Error; Location Field Symbol Not Defined." The real problem is that, at this 
point in the assembly, the symbols have not had their values assigned to them. 

) With NEWPAGE - Clean: 

NPAGEX2 

o 
110 

110 001000 

3 

110 

IDENT NPAGEX2 
%B EQUALS 3 

BASEREG %B 
TBL <110> 
TBLEND * 

NEWPAGE 
TBLLEN EQUALS TBLEND-TBL 

EXIT 
END 

By adding a NEWPAGE pseudo before TBLLEN, we force the assembler to 
go back and assign values to the symbols that precede. Now the assembler 
knows the values of TBLEND and TBL, and can successfully calculate the 
value for TBLLEN. Notice, from the location counter values, that NEWPAGE 
does NOT insert any slack parcels - it simply causes the assembler to perform 
calculations that would othetwise be postponed. 

4/13/88 



Page 4 - 14 APML Assembler Self-Study Workbook 

Review Questions for Section 4 

1) List the pseudoinstructions that appear in APML, but not in CAL. 

2) Why is the concept of the "page" needed in APML? 

3) How are the operand registers defmed as SCRATCH used by the APML 
assembler? 

4/13/88 

) 



) 
Section 5: - Macros and $APTEXT 

Module Objectives: 

With the aid of all furnished reference materials, upon completion of this 
module, the learner should be able to: 

1. Interpret a Macro defmed in $APTEXT 

2. Use the REGDEFS, OVERLAY, LISTOP, and exit stack 
manipulating macros in a program 

3. Interpret and code data structures using the FIELD macro 

4. Use the PUT, GET, RPUT, RGET, ADDRESS and STORE 
macros in a program to manipulate data structures defmed 
with the FIELD macro 

5. Locate, in $APTEXT, data structures defmed with the 
FIELD inacro 



Page 5 - 2 APML Assembler Self-Study Workbook 

Introductory Reading Assignment: 
SM -0036 Section 6 pp. 6-45 - 6-63 

... noting the discussion of MICROs, DECMIC, IFA and IFC in 
particular. 

SM -0046 section describing $APTEXT macros ... 
... skim to get a feel for what's there, and how it's laid out. 

$APTEXT ••• 

Macros. •• 

... is the lOS system text. It includes macros, field and table 
defmitions, and constant values. In this self-study, we will concern 
ourselves with studying certain important macros and field 
defmitions. A more full presentation of the contents of $APTEXT 
is a part of the lOS Internals course. 

. .. used most frequently in the lOS code will be found in $APTEXT. 
But many overlays use special-purpose macros, not needed by other 
overlays. These macros will be defmed in the overlay that uses 
them. The bottom line is: most BUT NOT ALL macros are defined 
here in $APTEXT. 

The exact contents of $APTEXT changes with new versions of the lOS 
Software, but its overall layout stays the same. Please follow along 
in your site's $APTEXT listing as we locate its major sections. 

4/13/88 



APML Assembler Self-Study Workbook Page 5 - 3 

The rIrSt page of the $APTEXT assembly listing._ 
.. .looks like this (again, fmd the page in your own listing), 

1 1$ APT EXT - SYSTEK TEXT FOR cos I/O SUBSYSTEK lOP APML 2.0 (04/08/86) 04/09/86 12:34:14 Paqe 1 
2 (1) 
3 
4 Copyriqht Cray Research, Inc., 1979 thru 1983 AT.3 
5 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

List options for $APTEXT (all tables are listed by default): 

$ALL 
MACROS 
AT 
!{sR 
KDEF 
0049 
EXP 
SFE 
FILE 
UCHN 
BMX 

All of APTEXT 
All macros 
All of APTEXT (except the macros) 
Kernel service requests 
Kernel data definitions 
0049 data definitions 
Expander data definitions 
station/Front End data definitions 
File manaqement definitions 
User channel definitions 
BMX data definitions 

AT.s 
AT.6 
AT.? 
AT.B 
AT.9 

AT.10 
AT.ll 
AT.12 
AT.13 
AT.14 
AT.1S 
AT.16 
AT.17 

This page shows symbols that can be used in a LIST parameter to specify that 
only specified tables in $APTEXT are to be produced. 

The page or two following will be constants, including such things as 
conversion values, etc. 

4/13/88 



Page 5 - 4 APML Assembler Self-Study Workbook 

We then get into macros. Notice that the subtitle line at the top of each page in 
this section says MACROS/Macros: 

$ APT EXT - SYSTEM TEXT FOR cos I/O SUBSYSTEM 
MACROSI Macros 

lOP APML 2.0 (04/08/86) 04/09/86 12:34:14 Paqe 40 
(40) 

This section contains many of the macros most commonly 
encountered in IDS system code. Stop now to page through your 
listing and clip pages with other headings of the form "MACROS 
xxxxx" . 

One heading says "Macros Used Only By Other Macros." These will not be 
encountered anywhere but within $APTEXT (or in overlays that 
defme their own macros). Another says "KSR/ KERNEL Service 
Function Calls." These macros set up parameter passing and 
branching for commonly-used routines in the IDS KERNEL that 
overlays may execute. 

Following the macros are constant, field and table definitions for the various 
software subsystems, and for the KERNEL. These consist 
primarily of EQUALS and SET pseudos, NEXT and REGISTER 
macros, and FIELD macros. We will examine this section of 
$APTEXT when we discuss the FIELD macro. 

4/13/88 

) 

) 



APML Assembler Self-Study Workbook Page 5 - 5 

.. ) Descriptions Of Some Important Macros: 

) 

On the following pages, you will fmd discussions of several of the most 
common or useful macros used in the lOS software. 

4/13/88 



Page 5 - 6 APML Assembler Self-Study Workbook 

REGDEFS_ 
... automatically assigns various operand registers, for use by the 
system, in overlays. It also assigns registers for the overlay's use. 

Most macros in $APTEXT include a comment block that describes the 
function of the macro, and the parameters it requires, as well as the 
result it produces. Following is the REGDEFS macro as it appears 
in the $APTEXT listing: 

************************************************************************ 

* * 
* REGDEFS Define overlay registers * 
* * 
* start REGDEFS global, pars, local, temp * 
* * 
* start Optional; specifies starting register number. * 
* Default is %GBLREG. * 
* global List of global registers. * 
* pars List of parameter registers * 
* local List of registers used locally * 
* temp List of temporary registers * 
* * 
************************************************************************ 

MACRO 
<prototype> START REGDEFS GLOBAL, PARS, LOCAL, TEMP 

LOCAL $$S 
<definition> $$S SET %GBLREG 
<definition> IFC I START I ,NE" 1 - -
<definition> $$S SET START 
<definition> $$S REGISTER (GLOBAL) 
<definition> IFE $REGORG,GT,$$S+%GBLNUM,1 
<definition> ERROR .Too many global registers defined 
<definition> $$S SET $$S+%GBLNUM 
<definition> SCRATCH %S1,%S2,%S3,%S4,%S5 
<definition> $$S REGISTER (%S1,%S2,%S3,%S4,%S5) 
<definition> REGISTER (%T1,%T2,%T3,%T4,%T5,%T6) 
<definition> REGISTER (%W1,%W2,%W3,%W4,%W5) 
<definition> %P EQUALS $REGORG 
<definition> REGISTER (PARS) 
<definition> %NP EQUALS $REGORG-%P 
<definition> REGISTER (LOCAL) 
<definition> REGISTER (TEMP) 

REGDEFS ENDM 

See also the REGISTER macro, following, which is used by REGDEFS to 
assign symbols to operand register numbers. 

In the discussion of the $IF macro, there is a sample assembly listing, with 
macros expanded, showing the code generated by REGDEFSo 

4/13/88 

) 
/ 

, 

) 
/ 



APML Assembler Self-Study Workbook Page 5-7 

) The REGDEFS macro_ 

) 

.. .is used in all overlays to automatically assign operand registers needed by 
that overlay. 

REGDEFS always assigns scratch registers for APML's use to symbols %S 1-
%S5, which are equated to 410-414. It equates symbols %T1-%T6 to 415-422 
for use as temporary registers by macros, and % W1-% W5 to 423-427 for 
work registers used by KERNEL service requests, or by overlays. 

The four parameters in the REGDEFS macro allow the programmer to 
specify: 

a) up to 8 global registers, which will be available to all overlays 
within an activity (see the lOS class for further details on 
activities), which will be equated to 400·A07. 

b) Parameter Registers, which will contain values passed from a 
previous overlay. Parameter registers, by convention, are 
assumed to contain an initial value when an overlay begins 
execution. Symbols specified in REGDEFS as parameter registers 
are equated to registers starting with 430. 

c) Local Registers are registers to be used by the overlay, but whose 
initial contents is, by convention, undefmed. Symbols specified in 
REGDEFS as local registers are equated to operand registers 
starting wherever the parameter registers left off. 

d) Temp Registers are not used in current lOS software. Symbols 
specified in REGDEFS as Temp registers will be equated to 
registers starting wherever the local registers left off. 

Because the REGDEFS-macro assigns operand registers, for the overlay's use, 
according to established conventions, the programmer is assured that operand 
register usage by the overlay will not conflict with usage by the KERNEL or 
various utility routines. 

4/13/88 



Page5-8 APML Assembler Self-Study Workbook 

REGISTER Macro 
This macro is used in the listing above for the REGDEFS macro, among many 
other places. Its function is to assign successive operand register numbers to 
symbols. After one REGISTER macro has assigned values to the specified 
symbols (by generating EQUATEs), it leaves the value of a symbol SET to the 
next available value. The next REGISTER macro in the sequence of 
REGISTER macros then picks this value up, and EQUATES it to the fIrst 
symbol in its list. 

Location 

. . 
ongln 

OrIgIn 

syml 

Generates the following: 

Result Operand 

REGISTER (sym1,sym2, ... ) 

Starting operand register number in octal. 

List of symbols to be assigned to an operand 
register. 

syml EQUALS ongln 
sym2 EQUALS origin+ 1 
sym3 EQUALS origin+2 
sym4 EQUALS origin+3 

These equates appear in the listing following the REGISTER macro if the list 
option REGISTER is specified. 

Example: see the $IF sample listing. . 

4/13/88 

-~) 

/ 

) 

\ 

) 



\'''------, " ..... ,----/ ,-",; 

~ 
> en 
~ 

~ 
ff 
en 
0 

REGISTER Macro Listing 
MACRO 

<prototype> REGORG REGISTER REGLIST 
LOCAL $MSIZE 

<definition> $REG IFC I_REGORG_I, NE, " 
<definition> $REGORG SET REGORG 
<definition> $REG ELSE 

~ en 
8. 

AT.1839 '< 

AT.1840 ~ 
AT.1841 ~ 
AT.1842 f AT.1843 
AT.1844 

<definition> IFA itDEF,$REGORG,1 AT.184S 

~ <definition> ERROR .Register origin must be specified AT.1846 .... <definition> $REG ENDIF 
~ 
00 <definition> $REG ECHO REG=(REGLIST) 

AT.1847 
AT.1848 

<definition> IFC I_REG_I, NE" 6 AT.1849 
<definition> IFC I_REG_I,NE, '*',4 AT.18S0 
<definition> $MSIZE MICRO 'REG ' ,D'8 AT.18S1 
<definition> REGS LIST MAC AT.18S2 
<definition> "$MSIZE" EQUALS $REGORG AT.18S3 
<definition> REGS LIST * AT.18S4 
<definition> $REGORG SET $REGORG+1 AT.18SS 
<definition> $REG ENDDUP AT.18S6 

REGISTER ENDM AT.18S7 

"t1 
~ 

~ 
VI 

\0 



Page 5 - 10 APML Assembler Self-Study Workbook 

NEXT 

Assign successive values symbols. This allows such things as lists of error 
codes, function codes, result codes, etc. to be conveniently maintained. Adding 
a new item does not require programmer knowledge of the last assigned value. 
By inserting a new NEXT macro at the end of the current list, the next value in 
the sequence will automatically be assigned. 

Location Result Operand 

sym NEXT value 

sym optional symbol name 

value optional initial value 

Symbol 
Present 

Symbol 
Blank 

Value Present 

symbol=value 
$next=value+ 1 

$next=value+ 1 

Value Blank 

symbol=$next 
$next=$next+ 1 

$next=$next+ 1 

4/13/88 

) 



) 

) 
/ 

-' 

) 

APML Assembler Self-Study Workbook Page 5 - 11 

NEXT macro Example: PUNT codes from $APTEXT 

These codes appear on the IOP-0 KERNEL console in the event of a lOP halt. 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

The displayed code identifies the error condition detected by the lOS 
software, and gives the analyst an indication of where the halt occurred. 
When the code is displayed on the lOP console in the halt message it is 
shown as a number. The numeric value assigned to each symbol can be 
found in the cross reference of $APTEXT. The symbols themselves are 
used within the source listings, at the locations where the lOS software 
detects error conditions. 

************************************************************************ AT.4345 
* * AT.4346 
* Kernel halt error codes * AT.4347 
* * AT.4348 
************************************************************************ AT.4349 

AT.4350 
<macro> NEXT -1 AT.4351 
<macro> PTSHUH NEXT .No error code specified on SPUNTIF macro AT.4352 
<macro> PT$MEMER NEXT .Local memory error AT.4353 
<macro> PTSSTART NEXT .MaS error on deadstart AT.4354 
<macro> PTSMOS NEXT .MaS error AT.4355 
<macro> PTSHISP NEXT .High-speed channel error AT.4356 
<macro> PTSCRAY NEXT .Invalid message received from Cray-1 AT.4357 
<macro> PTSDISK NEXT .Invalid parameter in disk request AT.4358 
<macro> PTSEXECO NEXT .Program was executing at location 0 AT.4359 
<macro> PTSCLOBO NEXT .Local memory location zero overwritten AT.4360 
<macro> PTSACCUM NEXT .Undefined message received on accumulator channel AT .4361 
<macro> PTSNOIAY NEXT .OVerlay does not exist AT.4362 
<ma=o> PTSSTACK NEXT .Stack overflow or underflow AT.4363 
<macro> PTSLOCAL NEXT .Local memory buffer not available AT.4364 
<macro> PTSNCMQS NEXT .MaS disk buffer not available AT.4365 
<macro> PTSMAP NEXT .Invalid buffer release call AT.4366 
<macro> PTSCONFG NEXT .Buffer memory incorrectly configured AT.4367 
<macro> PTSMSGCH NEXT .IOP message channels incorrectly configured AT.4368 
<macro> PTSSMDSZ NEXT .Software stack exceeds allowable size AT.4369 
<macro> PTSBADAD NEXT .Bad parameter address. AT.4370 
<macro> PTSBADPR NEXT .Bad parameter AT. 4371 
<macro> PTSKILL NEXT .Stop request received from CPU AT.4372 
<macro> PTSLOSP NEXT .Low-speed channel error AT.4373 
<macro> PTSBLOCK NEXT .Block number error AT.4374 

AT.4375 
<macro> PTSBMCHE NEXT 0'40 .Block Mux interrupt processor error AT.4376 
<macro> PTSIlMDE NEXT .Block Mux Demon error AT.4377 
<macro> PTSBMSIO NEXT .Block Mux Start IIO error AT. 4378 
<macro> PTSBMACT NEXT .Illegal tape activity during CRAY startup AT.4379 
<macro> PTSIlMDAT NEXT .Bad data in CPU tape configuration map AT.4380 

4/13/88 



Page 5 - 12 APML Assembler Self-Study Workbook 

NEXT macro Example: PUNT codes from $APTEXT (continued) 
I 
/ 

0 <macro> PTSDD49 NEXT 0'50 .DD49 disk driver code error AT.4382 
0 <macro> PTSNOOBG NEXT .The debugger is not loaded AT.4383 
0 <macro> PT$BMRQ NEXT .Bad buffer memory allocation request AT.4384 
0 <macro> PT$HSIA NEXT .Bad 1m address on hi speed I/O call AT.4385 
0 <macro> PT$IOLEN NEXT .Invalid I/O length specified AT.4386 
0 <macro> PTSNOHSP NEXT .No HISP channel for request AT.4387 
0 <macro> PT$NACT NEXT .Illegal activity activation requested AT.4388 
0 <macro> PT$BMDAL NEXT .Buffer memory DAL queue exhausted AT.4389 
0 <macro> PT$BDEMC NEXT .Illegal Demon call AT.4390 
0 <macro> PT$BKSR NEXT .Undefined kernel service request AT.4391 
0 <macro> PT$IKSR NEXT .Illegal kernel service request AT.4392 
0 <macro> PT$BKSRP NEXT .Bad kernel service request parameter AT.4393 
0 <macro> PT$BDEV NEXT .Requested device not configured AT.4394 
0 <macro> PT$BIOP NEXT .Illegal lOP requested AT.4395 
0 <macro> PT$QFULL NEXT .Requested queue full AT.4396 

0 <macro> PT$IOADD NEXT .Illegal I/O address specified AT.4397 
0 <macro> PT$SMER NEXT .SMOD error AT.4398 
0 <macro> PT$IMSP NEXT .Local memory space exhausted AT.4399 
0 <macro> PT$BOVL NEXT .Illegal overlay load requested AT.4400 
0 <macro> PT$IMCER NEXT .Corrupted local memory chain AT.4401 
0 <macro> PT$IMREL NEXT • Bad local memory release AT.4402 
0 <macro> PT$BDIOP NEXT .Bad I/O parameter AT.4403 
0 <inacro> PT$UXINT NEXT • Unexpected interrupt received AT.4404 
0 <macro> PT$DISKE NEXT .Disk error AT.4405 
0 <macro> PT$AMAl' NEXT .AMAl' not available to system AT.4406 
0 <macro> PT$CMAX NEXT .Illegal overlay number read AT.4407 
0 <macro> PT$INIT NEXT .IOP initialization error AT.4408 
0 <macro> PTSMOSC NEXT .MDS configuration error AT.4409 
0 <macro> PTSOVLSZ NEXT .OVerlay too large for loading AT.4410 
0 <macro> PT$EOF NEXT .Premature tape EOF encountered AT. 4411 
0 <macro> PT$XSOV NEXT .Exit stack fault AT.4412 
0 <macro> PTSDEV NEXT .Illegal device type PI0610BA.4 
0 <macro> PT$IAST NEXT .ALL PUNT CODES PRECEDE THIS LINE!!! AT.4413 

-. 

) 

4/13188 



\ 

) 

APML Assembler Self-Study Workbook Page 5 - 13 

EXIT STACK MACROS 

These macros are required to avoid timing problems associated with 
manipulating the exit stack. They include necessary delays to ensure that data 
arrives before it is accessed. 

EGET destination 

Reads the E pointer and stores it in memory or a register 

EPUT source 

Stores a memory location or register in the E pointer 

EINCR 

Increments the E pointer value 

EDECR 

) Decrements the E pointer value 

.) 

EXSGET destination 

Stores the contents of the Exit Stack Entry pointed to by the E 
pointer into a memory location or a register 

EXSPUT source 

Loads the contents of a memory location or a register into the Exit 
Stack Entry pointed to by the E pointer 

4/13/88 



Page 5 -14 APML Assembler Self-Study Workbook 

AN ANNOYING QUIRK: 

When a parameter involving parentheses is used, such as contents of a 
memory location or the operand register indicated in B, the macro 
processor assumes the parentheses are intended to group several operands 
together as a single parameter and strips them off, leaving an expression 
that will be assembled as contents of operand register or contents of B. To 
avoid this problem, you must double the parentheses around such operands. 

4/13/88 

) 

) 



APML Assembler Self-Study Workbook Page 5 - 15 

. -) CQNDIDONAL BWCK MACROS 

) 

$IF $ELSEIF $ELSE $ENDIF; 
$UNTIL and $ENDTIL 

These macros allow structured techniques to be applied to APML code. These 
are among the most frequently used of all macros. Inspection of virtually any 
page of the KERNEL or overlays will reveal several usages of these macros. 
$IF structures may be nested up to 10 levels, and $UNTIL structures may be 
nested up to 10 levels. 

FORMAT: 

Location 

L 

L 
condl 
and/or 

Result Operand 

$IF (cond1), and/or, (cond2) 
$ELSEIF (cond1), and/or, (cond2) 
$ELSE 
$ ENDIF 

optional statement label 
any valid APML conditional expression 
logical operator 'AND' or 'OR' 
If blank cond2 is ignored 

$IF must be the fIrst conditional block macro of a sequence. It may have one or 
more $ELSIFs following, and may have one $ELSE following. It must 
have a corresponding $ENDIF. 

$ELSEIF allows the construction of CASE-type structures. It occurs between 
$IF and $ENDIF and must precede any $ELSE. 

$ELSE is optional and delimits last block before $ENDIF - the block that will 
be executed if the specified condition is false. 

4/13/88 



Page 5 - 16 APML Assembler Self-Study Workbook 

Sample Listings Demonstrating Macros 

On the following pages, you will fmd listings of the $IF, $ELSE, $ELSEIF and 
$ENDIF macros, as they appear in $APTEXT, and a small sample 
program, SHOWIF. 

Two separate SHOWIF listings are given: one assembled with listing option 
LEVELS, and one assembled with listing option MAC. The fIrst listing, 
which matches the appearance you will probably want for a typical 
APML listing, is very short - only a 15 or so lines. The second listing, 
with macros expanded, spans six pages! This second listing should help 
to give you a feel for the code generated by the $IF-$ELSE-$ENDIF 
macros, and also the REGDEFS macro, which in fact is responsible for 
generating most of the listing. 

Shading in these listings is used in two ways. First, it is used to indicate levels 
of macro nesting - macros which invoke other macros. For instance, the 
REGDEFS macro invokes the REGISTER macro. Second, shading is 
used to indicate the nesting of $IF structures by the programmer. This is 
most clearly shown in the short listing of SHOWIF. 

The large arrows at the left margins of the second listing indicate the actual 
input file statements. Any statement that has no arrow was generated by 
a macro. 

C~mpare the listing of the REGDEFS macro to the code it generates in the 
SHOWIF expanded listing. Pay particular attention to how micros are 
used to generate unique symbol names in nested structures.Do the same 
with the conditional block macros. By examining these listings, you 
should get a better understanding of just what these macros do, and how 
they function. 

4/13/88 

) 



\ 
',-./ '.'-'~-. ,-/ 

$IF Macro Listing ~ 
> 

MACRO AT.16l 
c:Il 

~ 
<prototype> $IF CON01,ANDOR,COND2 AT.162 ~ LOCAL YES1,YES2 AT.163 
<definition> IFA #DEF,/"$QUAL"/%%AA,l AT .164 Ef 
<definition> UAA SET -1 .Initialize IF level AT.165 C'I'l 

('1) 

<definition> UAA SET %%AA+l .Increment IF level AT.166 7t: 
<definition> ERRIF %%AA,GT,O'9 .Too many IF levels AT .167 C'I'l 

<definition> %%ZZ OECMIC %%AA AT .168 g 
<definition> LEVEL LIST MAC AT.169 
<definition> .»»> "%%ZZ" AT.170 ~ <definition> LEVEL LIST * AT. 171 

~ <definition> IFA #DEF,/"$QUAL"/%%B"%%ZZ",2 AT. 172 
<definition> %%B"%%ZZ" SET -1 .Init this IF level counter AT.173 
<definition> %%C"%%ZZ" SET -1 .Init this ENDIF level counter AT.174 ~ 

<definition> %%B"%%ZZ" SET %%B"%%ZZ"+l .Incr IF level counter AT.175 

~ <definition> %%C"%%ZZ" SET %%C"%%ZZ"+l .Incr ENDIF level counter AT.176 .... <definition> ERRIF %%B"%%ZZ",GT,D'9999 .IF macro overflow AT.177 
~ 
00 <definition> UYY DECMIC %%B"%%ZZ",4 AT.178 

<definition> UXX DECMIC %%C"%%ZZ",4 AT.179 
<definition> $LASTIF MICRO '%%"%%ZZ"L"%%XX", AT.180 
<definition> $NEXTIF MICRO '%%"%%ZZ"N"%%YY'" AT.18l 
<definition> %%O"%%ZZ" SET 0 .Clear ELSE flag for this level AT .182 
<definition> IFC 'ANDOR',NE,,3 AT.183 
<definition> IFC 'ANDOR',NE, 'AND',2 AT.184 
<definition> IFC 'ANDOR',NE, 'OR',l AT.18S 
<definition> ERROR .Illegal separator AT.186 
<definition> P = YES1, CONDl AT.187 
<definition> IFC 'ANDOR',EQ, 'OR',l AT.188 
<definition> P YES1, COND2 AT.189 
<definition> P = /"$QUAL"/"$NEXTIF" AT.190 ~ 

~ 
<definition> YESl * AT .191 ~ 
<definition> IFC 'ANDOR',EQ, 'AND',3 AT .192 tit 
<definition> P YES2, COND2 AT .193 
<definition> P = /"$QUAL"/"$NEXTIF" AT .194 ....... 

-...] 

<definition> YES2 * AT.195 
$IF ENDM AT.196 



~ ... 
~ 
00 

'~ 

<prototype> 
<definition> 
<definition> 
<definition> 
<definition> 
<definition> 

<prototype> 
<definition> 
<definition> 
<definition> 
<definition> 
<definition> 
<definition> 
<definition> 
<definition> 
<definition> 
<definition> 
<definition> 
<definition> 

<definition> 
<definition> 
<definition> 

$ELSE Macro Listing 
MACRO 
$ELSE 
P = /"$QUAL"/"$LASTIF" 

"$NEXTIF" * 
ERRIF 
ERRIF 

%%D"%%ZZ" SET 
$ELSE ENDM 

/"$QUAL"/%%AA,LT,O .No IF encountered yet 
/"$QUAL"/%%D"%%ZZ",EQ,l .ELSE already encountered 
1 .Set ELSE flag for this level 

$ENDIF Macro Listing 
MACRO 
$ENDIF 
IFE 

"$NEXTIF" * 
"$LASTIF" * 
ULL DECMIC 
LEVEL LIST 

LEVEL LIST 
ERRIF 

UAA SET 
IFE 

UZZ DECMIC 
UYY DECMIC 

UXX DECMIC 
$LASTIF MICRO 
$NEXTIF MICRO 
$ENDIF ENDM 

/"$QUAL"/%%D"%%ZZ",EQ,O,l 

UAA 
MAC 

* 
/"$QUAL"/%%AA,LT,O 
UM-1 

%%AA,GE,O,l 
UAA 
%%B"%%ZZ",4 

%%C"%%ZZ",4 
'%%"%%ZZ"L"%%XX'" 
'%%"%%ZZ"N"%%YY'" 

\~, 

.Define $NEXTIF if necessary 

.««< "%%LL" 

.No IF encountered yet 

.Decrement IF level 

AT.51 
AT.52 
AT.53 
AT.54 
AT.55 
AT.56 
AT.57 
AT.58 

AT.86 
AT.87 
AT.88 
AT.89 
AT.90 
AT.91 
AT.92 
AT.93 
AT.94 
AT.95 
AT.96 
AT.97 
AT.98 
AT.99 

AT.100 
AT.101 
AT.102 
AT.103 

, 
",--" 

~ 
VI , -00 

~ 
> 
fIl 

~ 
§. ..... 
~ 
CI.l 
0> 

~ 
CI.l 
a 
~ 

~ 
~ g-
~ 



\,----/' 

$ELSEIF Macro Listing 
MACRO 

<prototype> $ELSEIF CONDl,ANDOR,COND2 
LOCAL YESl,YES2 

<definition> P = /"$QUAL"/"$LASTIF" 
<definition> "$NEXTIF" * 
<definition> ERRIF /"$QUAL"/%%AA,LT,O .No IF encountered yet 
<definition> %%B"%%ZZ" SET %%B"%%ZZ"+l .Incr this IF level counter 
<definition> ERRIF %%B"%%ZZ",GT,D'9999 .IF MACRO overflow 
<definition> UYY DECMIC %%B"%%ZZ",4 
<definition> $NEXTIF MICRO '%%"%%ZZ"N"%%YY", 
<definition> ERRIF /"$QUAL"/%%D"%%ZZ",EQ,l .ELSE already encountered 

~ <definition> IFC 'ANDOR' , NE, , 3 ... 
~ <definition> IFC 'ANDOR',NE, 'AND',2 
00 

<definition> IFC 'ANDOR',NE, 'OR',l 
<definition> ERROR .Illegal separator 
<definition> P = YESl, CONDI 
<definition> IFC 'ANDOR',EQ, 'OR',l 
<definition> P YESl, COND2 
<definition> P = /"$QUAL"/"$NEXTIF" 
<definition> YESI * 
<definition> IFC 'ANDOR',EQ, 'AND',3 
<definition> P YES2, COND2 
<definition> P = /"$QUAL"/"$NEXTIF" 
<definition> YES2 * 

$ELSEIF ENDM 

----

AT.60 
AT.61 
AT.62 
AT.63 
AT.64 
AT.65 
AT.66 
AT.67 
AT.68 
AT.69 
AT.70 
AT.71 
AT.72 
AT.73 
AT.74 
AT.75 
AT.76 
AT.77 
AT.78 
AT.79 
AT.80 
AT.81 
AT.82 
AT.83 
AT.84 

~ 
> rI) 
rI) 

8 
0-n .., 
en 
(l 

~ 
en 

~ 
~ 
~ 

~ 

~ 
~ 
VI 

..... 
\0 



WIF 

0 
0 

4 

10 
12 
13 
15 

15 
~ 16 .... 
~ 
OC; 20 
00 

20 

Annotated IF-ELSE-ENDIF Nested Structure 

<macro> 
<macro> 

<macro> 

010005 024432 
<macro> 

010006 024432 
<macro> 

<macro> 
010001 024432 

<macro> 

001000 

START 

IDENT SHOWIF 

lOP APML 2.1(03/19/87) 04/01/87 16:56:08 Page 1 

(1) 

REGDEFS ,,(THIS,THAT,THOSE) 

EXIT 
END 

$IF 1 

$IF 1 

$ENDIF 1 

$ENDIF 1 

• Notice that the $IF and $ELSEIF macros display a comment of the fonn ".»»> n" and ".««< nil. These are very helpful in 
locating the endpoints of conditional block structures. You must include the list option "LEVEL" in your APML control 
statement for these comment lines to be generated in the listing. The $ELSE macro generates no such comment, nor does the 
$ELSEIF. 

• Logically, when a $ELSE macro is encountered, it will be paired with first $IF macro that precedes it, that has not already been 
paired with a $ELSE. We will see how this is accomplished in a few pages, when we examine the code generated by these 
macros. 

• Indentation is for readability only. 

On the following pages, this same example is shown with the list option MAC, which shows the expanded macros. 

'",,--~.-,,,,/ \,-_/ '-.......----" 

i 
Ut 

~ 

~ 
> fIl 

~ 

~ n 
"'1 
C/.) 
o 
~ 
C/.) 

8 
~ 

~ 
~ 
8" 
~ 



----~ 
'",-/' 

Annotated Cross-Reference'For 
IF-ELSE-ENDIF Example 

Next Available Operand Register • 433 
_ .................. ,~~ 10 

Number of global registers - always 10 _ ~ 40~ 

First global Operand Register - always 400 ~430 
a Number of parameter registers specified in second parameter 

~ s:::= :;:ili: ::first parameterrel~r 
always 430 

%SI-%S5 are the Scratch registers assigned by REGDEF~ 
%Tl-%T6 are the Temp registers assigned by REGDEFS 

%Wl-%W5 are the Work registers assigned by REGDEFS-. 

Notice that THIS, THAT and THOSE are asigned to operand 
registers 430, 431, and 432 by REGDEFS ... 

410 
411 
412 
413 
414 
415 
416 
417 
420 
421 
422 
423 
424 
425 
426 
427 
431 
430 
432 

$REGORG 
%GBLNUM 
%GBLREG 
%NP 
%P 
%S 
%S' 
%S 
%S~ 

%S~ 

%T 

%T. 
%T 

%T' 
%T' 
%Tl 
%W 
%W, 
%W 
%W 
%W' 
THAT 
THIS 
THOSE 

$APTEXT 
$APTEXT 

1: 2 D 
1: 2 F 
1: 2 
1: 2 D 
1: 2 D 
1: 2 
1: 2 
1: 2 
1: 2 
1: 2 
1: 2 D 
1: 2 D 
1: 2 D 
1: 2 D 
1: 2 D 
1: 2 D 
1: 2 D 
1: 2 D 
1: 2 D 
1: 2 D 
1: 2 D 
1: 2 D 
1: 2 D 
1: 2 D 

1: 2 F 

1: 2 

1: 2 
1: 2 D 
1: 2 D 
1: 2 D 
1: 2 D 
1: 2 D 

1: 4 

1: 4 
1: 7 

1: 2 

1: 6 
1: 9 

----~' 

1:13 

~ 
:> 
{Il 

~ 

~ 
0-
1"1 
en o 
~ 
en g 
~ 
~ 

~ 

~ 
~ 
VI 

tv 
I-" 



Page 5 - 22 APML Assembler Self-Study Workbook 

I 
4/13/88 



APML Assembler Self-Study Workbook Page 5 - 23 

, 
) 

J 

'" 
CD '" 01-
III 
PI 

r--..., 
,.., .., 
~ ,.., 
r--
00 

" ,.., 
0 

" ~ 
0 

r--
00 

" 0\ ,.., 
" .., 
0 

,.., 
N 
o-l 
:E 

~ 
PI 
0 .... 

) 

1 
J 

4/13/88 



Page 5 - 24 APML Assembler Self-Study Workbook 

') 

.., 
(I) 

.., 
01-
<U 
P, 

<-
'" ..... .., 
.,. 
..... 
<-co ..... ..... 
0 ..... .,. 
0 

<-co ..... 
en ..... ..... .., 
0 -..... 
~ 
...:I ::;: 
p, 
..: 

~ 
H 

) 

4/13/88 



) 

) 

) 

APML Assembler Self-Study Workbook 

... ..... 
r-
CIO ..... ..... 
o ..... ... 
o 

r-
CIO ..... 
'" ..... ..... 
'" o 

Page 5 - 25 

4/13/88 



~ .... 
~ 
00 

_..-/ 

lSHOWlF 

,~ 

lOP APML 2.1(03/19/87) 04/01/87 14:31:57 Page 5 
( 5 ) 

) 

-""" 

i 
VI 
I 

tv 
0'\ 

~ 
> 
~ 
§. 
no 
"1 
en o 
~ 
en 
8' 
~ 

~ 
~ 

~ 



) 

) 
/ 

) 

APML Assembler Self-Study Workbook 

.... 
eg 
...... 
r-i 
o ...... .... 
o 

.... 
eg 
...... 
'" .... 
...... 
'" o 
.... 
...; 

4113/88 

Page 5 - 27 

o 
o 
o .... 
o 
o 

o 
N 



Page 5 -28 APML Assembler Self-Study Workbook 

\ 

) 

4/13/88 



) 

APML Assembler Self-Study Workbook Page 5 - 29 

$UNTIL and $ENDTIL 

Together, these macros define a loop. $UNTIL marks the start of the loop, and 
specifies the exit test condition. This condition consists of one or two APML 
conditions connected by an AND or OR relationship. $ENDTIL marks the end 
of the loop. The statements in between constitute the repeated procedure. 
$UNTILs may be nested up to 10 levels. 

Upon entering the $UNTIL, the condition is checked. If false, the routine 
between $UNTIL and $ENDTIL is executed once, and control passes back to 
the $UNTIL, where the condition is checked again. When the condition 
becomes true, control passes to the statement following $ENDTIL. If the 
condition is true initially, the procedure is skipped altogether. 

FORMAT: 

Location Result Operand 

Example: 

$UNTIL (cond1), ANDIOR, (cond2) 

$ENDTIL 

L optional statement label. 

cond1,cond2 any valid APML conditional expression. 

and/or logical operator 'AND' or 'OR'. 
If blank cond2 is ignored. 

See virtually any page in the KERNEL. 

4/13188 



Page 5 - 30 APML Assembler Self-Study Workbook 

FIELD 

FIELD describes the location of a field within a table. 

sym 

Location Result Operand 

sym FIELD p,s,w[,L ] 

Field symbol name. By convention, this name has the 
fonn : TTT@FF, where TTT is a three-letter 
abbreviation identifying the table to which the field 
belongs, and FF is a two-letter abbreviation identifying 
this field in the table. The name may not be longer than 6 
characters, because the FIELD macro generates a series 
of EQUALS pseudos, giving them names in the form: 
SYM@Z, where SYM is the symbol used on the FIELD 
macro, and Z is one of the SuffIX codes shown below. If 
the SYM is longer than 6 characters, then the addition of 
the @Z will give a name longer than the maximum 8 
characters. 

p Parcel offset of the field from the beginning of the table 

s Starting bit of the field within the parcel (default is 0) 

w bit Width of Field (default is 16) 

L=parcellength of field 

Note thatp, s, and ware specified in decimal. 

4/11/88 

') 
/ 

) 



) 

) 

APML Assembler Self-Study Workbook Page 5 - 31 

The following five symbols are assigned values by EQUALS pseudos 
generated by the FIELD macro: 

... @P 

... @S 

... @N 

... @M 

... @X 

Parcel offset from the beginning of table 

Starting bit of the field (numbered from the left) 

Width of the field 

Mask for field, right justified 

Complement of mask in proper position in field 

If P=* then @P is undefmed 

If S=* then @S, @N are undefmed 

4/13/88 



Page 5 - 32 APML Assembler Self-Study Workbook 

GET and PUT 

These macros make use of the parameters generated by the FIELD macro to 
greatly simplify the manipulation of the data in the fields. We supply the name of 
the field, and a pointer to the start of the table in local memory, and the macros 
will move data to or from them. Any necessary masking or shifting is done for us. 

GET Loads a field from a table into local memory location 
or an operand register 

PUT Stores data in a field in a table from an operand register 
or a local memory location 

The RPUT and RGET macros are variations, used less frequently, for those 
situations where the parcel containing the data field has been previously loaded 
into an operand register, or where there is a pointer, in an operand register, to the 
specific parcel in local memory containing the field. 

RGET 

RPUT 

Loads an operand register or memory location from a 
field in an operand register or memory location 

Loads a field in an operand register or memory 
location from an operand register or memory location 

4/6/88 

... ) 

) 

) 
/ 



APML Assembler Self-Study Workbook Page 5 - 33 

') FORMATS: 

) 

Location Result· Operand 

L I GET dest, field ,base 
L PUT source,field,base 
L RGET dest,field,source 
L RPlJf source, field ,dest 

dest Destination operand register or pointer to local memory 
location to receive data from field 

field Field to be loaded, defmed by the FIELD macro 

base An operand register containing table base address 

source Source operand register or pointer to local memory location 
containing data to be placed into field 

These field manipulating macros are to be found on nearly every page of the 
lOS system software. The FIELD macros that defme the data areas 
to be manipulated account for perhaps half of the $APTEXT 

. listing. 

4/13/88 



Page 5 - 34 APML Assembler Self-Study Workbook 

ADDRESS, STORE, RSTORE, COpy and CLEAR 

ADDRESS returns the local memory address of the designated field. 

STORE and RSTORE places a constant value into the designated field. 

COpy moves an arbitrary area of local memory to another area of local 
memory. 

CLEAR sets the designated area of local memory to 0, or to blanks if 
BLANKS-YES is specified on the macro call. 

FORMATS: 

Location 

L 
L 
L 
L 
L 

L 
ex! 
ex2 
constant 
source 
dest 
result 

Result Operand 

ADDRESS result, field ,base 
STORE constant, field ,base 
RSTORE constant, field ,dest 
COPY source,dest,length 
CLEAR START = ex1 ,COUNT =ex2 

Optional statement label 
starting address of area to be cleared 
length of area to be cleared 
any constant value 
operand register containing address of data to be copied 
operand register containing address of destination 
operand register or memory location to receive address of field 

4/13/88 

) 

) 

) 



) 

APML Assembler Self-Study Workbook Page 5 - 35 

Exercise For Section 5 

Skill: Intetpret system macros from $APTEXT and write APML using them 

Task: 
A. Write Field Macros to derme the following data structure 

Parcel0 16 bits -Forward Link 
Parcel 1 16 bits -Backward Link 
Parcel2 bits 0-7 -Message Number 
Parcel 2 bits 9-14 -Reply Status 
Parcel3 bits 3-6 -Priority 

B. Write a GET macro to read the priority field into register 
R!PRI. Assume that register R!BASE already contains the 
base address of the data structure. 

C. (OPTIONAL) - Assemble the above statements with 
APML,MAC. to get a listing of the code generated by the 
FIELD and TABLE macros. You will have to add a few 
statements to assemble it without errors. 

Related Reading: 

SM-0046 
SM-0036 

chapter 10 
chapter 7 

Intended Lesson Result: To be able to read and write using the $APTEXT 
macros and read their text defmitions in the $APTEXT listing 

4/13/88 



Page 5 - 36 APML Assembler Self-Study Workbook 

Optional Programming Exercise 

Write an APML routine to sort a table of parcel values in 
memory. The table starts at address TABLE, and 
symbol T ABLEX is the next available parcel 
following the table. Use of discussed macros is 
encouraged. 

4/13/88 

) 

) 



Appendix A: Answers To Review Questions and Exercises 

) 

) 



Page A - 2 APML Assembler Self-Study Workbook 

Answers To Review Questions for Section 1 

1) 

2) 

3) 

What characteristics of APML make it difficult to classify in the 
traditional high levellIow level hierarchy? 

APML generally retains the flavor of an assembler, with object 
code shown for each source statement, and ability to write 
statements at the machine instruction level. However, it also 
displays many characteristics usually associated with compilers. 
These characteristics include multiple source statements generated 
from a single object statement, and a sophisticated mechanism and 
syntax for making virtually any statement conditional. 

How do lOS binaries get from the Cray, where they are assembled, to the 
I/O Subsystem, where they execute? 

APML binaries are disposed to expander tape or disk, from which 
they will be loaded into the lOS at start-up time. 

What makes APML code more cumbersome to test than similar CAL 
code? 

The fact that there is no mechanism for executing "jobs" in the lOS. 
All lOS software is system software, and must be integrated with 
the lOS operating system. 

4/14/88 

) 

) 



APML Assembler Self-Study Workbook Page A - 3 

.) Review Questions for Section 2 

) 

1) Name three ways to refer to the contents of an operand register in APML 
syntax. 

a) a two-character symbol 
b) R!symbol 
c) (B) [indirect reference to the contents of the operand register 

whose number is in the B register] 

2) What does the I-field of an lOP machine instruction contain? 
the 7 -bit function code for the instruction 

3) What might the d-field of an lOP machine instruction contain? 
an operand register number; an immediate value; a channel 
number; a branch displacement 

4) What might the k-field of an lOP machine instruction contain? 
and absolute machine address; immediate data 

5) How can an APML assignment statement be made conditional? 
by following it with a comma and an APML condition 

6) How do you refer to the contents of the B Register in APML syntax? 
the symbolB 

7) Explain the difference between the notation [DD] and the notation (DD). 
[DO] gives the operand register number for a two-character 
symbol. 
(DO) gives the contents of memory at the address indicated in OR 
00 

4/14/88 



Page A - 4 APML Assembler Self-Study Workbook 

Answers To Exercises For Section 3~~) 

1. APML most closely resembles a macro assembly language. 

2. 

3. 

4. 

ra4\ 
'd 

R1=1000 
A=R1 
A=[R1] 
A=(R1) 
A=VAL 
A=(R!VAL) 
A=R!VAL 

R!OR2 .... 721 
A=R!OR2 
A=CAT 
A=R!CAT 

,A=1000 
,A=1000 
,A=17 
,A=2241 
,A=17 
,A=2241 
,A=1000 

,A·721 
,A=721 
,A=25 
,A=721 

Statements with errors are underlined. Look up the error codes (circled, 
at left of listing) in SM -0036 appendix A. 

IDENT APML2 
0 <macro> REGDEFS " (R1, R2) 

* SOLUTION FOR SECTION 2 EXERCISE, QUESTION 4 
0 070000 P=P+l7 
1 050000 022430 011017 E=B+Rl&17 

154002 
5 150002 061000 004002 R2=E&(B»2 

024431 
11 070000 R2=(B)&E>2 
12 150002 021430 024410 A=B,B=E&R1 

050000 023410 103002 
050000 

21 070000 1\=5 P='QQO 
22 070000 A=BrB=Rl&E 

23 010000 062000 013010 A=B,0=0+(B)-10&0>0 
011000 004000 024410 
010000 023410 103002 
050000 

4/14/88 



) 

) 

APML Assembler Self-Study Workbook Page A- 5 

Each of the numbered items below shows more than one notation that will 
accomplish a certain type of assignment in APML. Detennine the five 
assignments being illustrated. 

R1 
R2 
R3 
R5 
REG 1 
REG2 
REG3 
REG4 

EQUALS 1 
EQUALS 2 
EQUALS 3 
EQUALS 5 
EQUALS 1 
EQUALS 2 
EQUALS 3 
EQUALS 4 

1) R!REG1=12 
R1=12 

2) 

operand register 1 gets 12 

R!REG2=R!REG 1 
R!REG2=R1 
R2=R! REG 1 
R2=R1 
operand register 2 gets 12 

3) R!REG3=(R!REG1) 
R3=(R!REG1) 
R!REG3=(R1) 
R3=(R1) 
operand register .3. gets contents of LM where operand register 1 
points 

4) R!REG4=REG 1 
R!REG4=[R1 ] 
operand register 4 gets 1 

5) R5=(REG 1) 
R5=([R1]) 
operand register 5 gets contents of LM parcell 

4/14/88 

.. 



• 

PageA- 6 APML Assembler Self-Study Workbook 

Answers to Review Questions for Section 4 

1) List the pseudoinstructions that appear in APML, but not in CAL. 
BASEREG, SCRATCH, NEWPAGE, EQUALS, PDATA 

2) Why is the concept of the "page" needed in APML? 
Since object code instructions may be of varying lengths, and since 
the assembler must decide whether to generate a I-parcel relative 
of 2-parcel absolute branch, the address of a destination symbol is 
indetenninate during pass 1. A page break forces the assembler to 
go back and assign addresses to all symbols in the preceding page, 
allowing a determination of whether a relative or absolute branch 
will be generated for the branches within that page. 

3) How are the operand registers defined as SCRATCH used by the APML 
assembler? 

They will be used to hold pointers to memory address operands, 
and to hold intennediate results. 

4/14/88 

) 
/ 



APML Assembler Self-Study Workbook Page A -7 

) Answers To Exercises For Section 5 

A&B: 
JOB,JN=TNGDEFS,T=S,US=. 
ACCOUNT,AC=,UPW=. 
APML,MAC. 
-e 

IDENT EXSS 
REGDEFS " (BASE, PRI) 

EXS@FL FIELD 0 .START BIT & LENGTH DEFAULT TO 0 AND 16 
EXS@BL FIELD 1 
EXS@MSG FIELD 2,0,8 
EXS@REP FIELD 2,9,6 
EXS@PRI FIELD 3,3,4 

* 
GETPRI GET R!PRI,EXS@PRI,R!BASE 

EXIT 

) 

) 
/ 

4/14/88 



0 <macro> 
0 SORT 
0 010001 024432 
2 <macro> 
4 010000 024432 
6 014000 /000037 024431 

11 020431 012001 024430 
14 <macro> 
20 <macro> 
24 030430 024432 
26 030431 034430 
30 020432 034431 
32 <macro> 
32 026431 
33 026430 
34 <macro> 
35 <macro> 

~ 

11,1111::1:11111111111:::'1 

TABLE .... 
~ 
00 

46 TABLEX 

~/ 

IDENT SAMPLE1 en REGDEFS ,,(NEXT,TBLC,TMP) 0 
* ...... 

R!TMP=l .FORCE 1 TIME THRU LOOP s:: 
f"'+ 

$UNTIL (R!TMP=O) ~. 

0 
R!TMP=O :::::s 
R!TBLC=TABLE .!NIT CURRENT TO START OF TABLE 

~ R!NEXT=R!TBLC+1 .START COMPARISON W NEXT ITEM 
$UNTIL (R!NEXT=TABLEX) 

$IF ( (R!NEXT)«R!TBLC) ) 0 
R!TMP=(R!NEXT) .EXCHANGE TABLE ITEMS, AND '"C 
(R!NEXT)=(R!TBLC) .SET EXCHANGE FLAG (TMP) f"'+ 

~. 

(R!TBLC)=R!TMP g 
$ENDIF e. R!TBLC=R!TBLC+1 
R!NEXT=R!NEXT+1 .COMPARE NEXT ITEM IN TBL ON NEXT PASS 4' $ENDTIL 0 

$ENDTIL 
~ EXIT 

* .VALUES TO BE SORTED 

~ 55 iP 
27 
72 S· 
10 (JQ 
5 

~ 36 
103 (l) 

* .END OF TABLE (i 
END ~. 

00 
(l) .. 

',,-,) ,-j 

i 
:> 
00 

~ 
:> 
I:Il 

~ 

~ n 
lOt 
C/) 
CD 

~ 
C/) 

a 
~ 

~ 
~ 
0'" 
o 
~ 



" 

) 

) 

• 

APML Assembler Self-Study Workbook Page A-9 

Partial CSIM Output For Optional Programming Exercise 

At 17:30:59 on 06/08/87: Cray CPU/lOS simulation 
DEFIOS""SIM. 
DEFCPU,MEM=400000. 
START,TNGDEFB. 
Dataset TNGDEFB loaded into MIOP. 
RUN,T=35,HT=IOP. 
P=000032 
A=000003 C=l 
B=OOO 
000430 000040 
000431 000037 
000432 000000 
000433 000000 
000434 000000 
000435 000000 
000436 000000 
000437 000000 
DUMP, FW=0,LW=277,HT=IOPO. 

X.17 CSIM version of 05/13/87 08:22:; 

0000000 010001 024432 020432 102033 010000 024432 014000 000037 "'Y"f" 
0000010 024431 020431 012001 024430 020430 017000 000046 102016 & 
0000020 030430 033431 100002 070007 030430 024432 030431 034430 1 7 p 1 1 9 
0000030 020432 034431 026431 026430 071020 071033 00100dI::ii:~iii 9 - - r r 

000004 of¥~ifii.i::::::iiii[fil::iiiii:i:::::iiiii~lfii:ii!'M::l:l@iitii 000000 000000 - : C. 

4/14/88 



PageA-IO APML Assembler Self-Study Workbook 

) 

4/14/88 




