
- - - - -- - - - - - - - - -i' ~:.

·bji'
I' t 'It ",~ '., ~ ,>.

• ~''''''··''v';·'''':'''''~\II:'¥¥t:i ,",e~"".< ... ~., ~",.~~"
':, ~<~ "':'~ ~,-

":,'" "

.. , .. ,:~ ,:",," .. ,'.,

~
,i ~'':;' l

. '

'·TiR~NSMITTALNOTICE D,8:~e:, May 1991 """""~"
'. ' ... ~. :' . .:. . '

'''''.~~.'''''''''~' '. '.' '" ."', ~'.~ " ~""·~1'-ft.c,,:~•.

Publication Number: CSM-I023-009 PUblicatiOii~'!""nMS Macrocode Assembler Progfammer '

;'':--

Remove I Insert

* I'
i

i .. I h"·,

,~tl;- '",; , ,

Page N umbetS '.

All

.'.' '-'~',: ~
.,

Reference Manual
'. 'j ',"', ".1-'

of Sheets Generalc6ri.te~t;·Qf;~nual described and chapges (if any)listed'::~~""'"

''C,'' ''"''''i:r~''':'' "'',0. t May 1991. Original printing .. This document deseribes the syntax for writiAg~ progrtlms with
. the device maintenance system (OMS) assembler. Tb~. format of asse~bler input and output
fil,s, syntax, and the tnacrocode instruction set are described.

t,.

.\

Cray, Research, Inc.

.-
1It~<1.',

of •
);

It

--=>
L

---D

•
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Reader Comment Form

Title: DMS Macrocode Assembler Programmer
Reference Manual

Number: CSM·I023·000

Your feedback on this pUblication will help us provide better documentation in the future. Please
take a moment to answer the few questions below.

For what purpose did you primarily use this manual?
_____ Troubleshooting
_____ Tutorial or introduction
____ Reference information
_____ Classroom use
____ Other-please explain ______________________________________ ___

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria and
explain your ratings:
____ Accuracy ___ __

_____ Organization ___ _

__ Readability _______________________________________ _

__ Physical qualities (binding, printing, page layout) _________________ _
_____ Amount of diagrams and photos ___________________________________ _

__ Quality of diagrams and photos

Completeness (Check one)
___ Too much information _______________________________________ _

___ Too little information _____________________________________ _

___ Just the right amount of information

Your comments help Harqware Publications and Training improve the quality and usefulness of
your publication~. Please use the space provided below to share your comments with us. When
possible, please'give specific page and paragraph references. We will respond to your comments in
writing within 48 hours.

NAME _____________________________ _

JOB TITLE ________________ _

FIRM ____________________________ _

ADDRESS ____________________ _
PESEAPCH, INC.

CITY _______ STATE, ______ ,ZIP ____ _

DATE _________________________ _

[or attach your business card]

Fold

._--~

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST. PAUL, MN

POSTAGE WilL BE PAID BY ADDRESSEE

c:1I=t •• :"Y'
~ESEA~CH. INC.

Attn: Hardware Publications & Training
no Industrial Boulevard
Chippewa Falls, WI 54729

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

-- -----------------------------------~
Fold

STAPLE

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Record of Revision
Each time this manual is revised and reprinted, all changes issued against the previous version are incorporated into the new
version, and the new version is assigned an alphabetic level which is indicated in the publication number on each page of the
manual.

Changes to part ofa page are indicated by a change bar in the margin directly opposite the change. Achange bar in the footer
indicates that most, if not all, of the page is new. If the manual is rewritten, the revision level changes but the manual does
not contain change bars.

REVISION DESCRIPTION

May 1991. Original printing.

CSM·1023-000 Cray Research Proprietary iii

I
I
I
I
I
I
I
I
I
I
I'
I
I
I
I
I
I
I
I

I
I

Preface

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I CSM-1023-000

This programmer reference manual is written for programmers, field
engineers, and anyone requiring detailed information on the device
maintenance system (OMS) assembler, specifically.

Topics covered include invoking the assembler, file formats, syntax,
variable space allocation, and assembly errors. An instruction
reference table is also provided. The information contained in this
manual does not duplicate information contained in the lOS Model E
Offline Diagnostic Reference Manual, which is used for broader
reference purposes in the field and in STCO. Refer to the lOS Model E
Offline Diagnostic Reference Manual, publication number
COM-IOIS-OOO, for information on OMS, OME, MOS, tests, utilities,
and monitors.

The following conventions are used throughout this manual:

• Square brackets [] indicate an optional entry.

• Angle brackets < > indicate a required entry.

• Bold type indicates a command as discussed in text.

Reader comment forms are located at the front and the back of this
manual. Please use them to offer comments, suggestions, or
corrections regarding this publication. Information on other hardware
and software publications can be obtained via the online publications
catalog.

Cray Research Proprietary v

I
I
I
I
I
I
I
I:

. 1

I
I
I
I
I
I
I
I
I
I

I
I Contents

I
I

Invoking dmsasm 1

I Environment 2

I File Formats 3

I Source Files 3

Listing Files 4

Binar~ Files 4

I External Device Modules 4

File Location and Naming 5

I File Contents 5

I Assembler Syntax 6

Comments 6

I Constants 6

Literal Constants 6

I Identifiers 7

EX,Rressions 7

I
O,Rerators 8

Variable Addresses 9

Statements 9

I Assignments 9

Indirect Assignments 10

I Jum,Rs 10

Pseudo-instructions and Text Dis,Rla~s 11

I BASE 12

BSSZ 12

I
CON 12

EQU 13

INCLUDE 13

I
I CSM-1023-000 Cray Research Proprietary vii

I

Assembler Syntax (continued) I
Pseudo-instructions (continued) I

IF, ELSE, ENDIF 13

ENDASM 13 I
DISPLAY 14

DEFDISP 14 I TEXT 15

PFMT and TFMT 16

I Message List 18

Variable Space Allocation 18 I
Assembly Errors 18 I

,

I Instruction Reference 18

I
Tables I

Table 1. Macrocode Built-in Instructions 19

I
I
I
I
I
I
I

viii Cray Research Proprietary CSM-1023-000

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

OMS Macrocode Assembler

Invoking dmsasm

This document describes the syntax for writing programs with the
device maintenance system (OMS) assembler, referred to in this
document as dmsasm or simply as the assembler. The format of
assembler input and output files, syntax, and the macrocode
instruction set are described.

The assembler resides in the system binary directory along with all
other Cray Research MWS application programs. The assembler is
invoked from the UNIX shell with the following format (square
brackets [] indicate an optiona~entry, and angle brackets < > indicate
a required entry). The only required argument is the name of the
assembly source file, < source.d > ..

...
,'.- "" - ',"-' ... ~:

dmsasm [-i < inc! >] [-0 <outfile>] [on < Ipp >] [-0 < sym > [= value]] [ow < limit>]
[-Ivu] < source.d >

CSM-1023-000

-i <incl>

-0 < outfile >

-n <lpp>

-Includes the device module specified by
<inc!.> in the assembly. Has the sa:me
effect as the line include incl in the
source file. You may specify more than
one -i option.

Gives the output binary file a name
specified by < outfile > (instead of the
default). The listing file also has the
name < outfile > .lst.

Sets the number oflines per page in the
listing to < I pp >. If this number is not
specified, the assembler looks for the
UNIX environment variable IPP and
uses its value as the number of lines per
page. If IPP does not exist, the default
setting is 66.

Cray Research Proprietary

Environment

2

DMS Macrocode Assembler Programmer Reference Manual

-D <sym> [=valuel Defines the symbol <sym> as an equate
as ifit were defined in the source code. A
value may be assigned-by including the
[= valuel portion of the definition; the
default value is 1 (true). The assignment
string may have to be put in quotation
marks to protect it from premature
processing by the shell. Symbols defined
in this way should only be used as
arguments to IF pseudo-instructions.

-w < limit> Instructs the assembler to issue a
warning message if the code (excluding
text displays) exceeds parcel limits. The
default limit can also be set with
MACROLIMIT = <limit> in the shell
environment. (refer to "Environment"
below).

-1 Disables listing file generation.

~U 0 Disables warnings about unreferenced
variables.

-v Causes the assembler to print out the
version number when invoked. The
version number is also indicated in the
listing.

The assembler sets the return value that is passed to the shell
(accessed as $?) to the error count for the assembly (0 means no errors).

The assembler uses two UNIX environment variables:

• LPP, ifset, determines the decimal number of lines per page in the
listing.

• MACRO LIMIT, if set, determines the maximum code/variable size
(in octal parcels) to allow before issuing a warning. If this variable
is not set, no checking is done. The limit check is only performed on
code and variable space, not on displays.

Cray Research Proprietary CSM-1023-000

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

OMS Macrocode Assembler Programmer Reference Manual

File Formats

Source Flies

CSM-1023-000

There are four file types involved in using the assembler:

Description

Source files ASCII text files read by the assembler.

Listing files [optional] output listings from the assembler.

Binary files Binary (macrocode) output from the assembler.

External device
modules

Files containing instructions specific to
a certain device (such as a disk drive), which
are explicitly included in a program at
assembly time.

The assembler source files are simple ASCII text files, which may be
created with the UNIX vi editor or any other text editor. Tabs and
character spaces are treated equally. Where space is allowed in the
syntax, any number of tabs and/or spaces may appear. Each line is
always terminated by a UNIX newline character. The maximum
allowed length of a source line is 80 characters. Long literal strings
may also be continued (refer to "Literal Constants" on page 6).

Source file names should end with a.d suffix; however, this convention
is optional and is neither emorced nor assumed by the assembler.
Therefore, you may use any file name for the source file. The
advantages of using the .d convention are easy generation of output
and listing of file names. If you do not use a .d suffix, the output file
defaults to the generic name dms.out. Refer to "Listing Files" and
"Binary Files" for more information.

NOTE: Even if the file ends in a.d suffix, you must still type the
full file name on the command line.

Cray Research Proprietary 3

Listing Files

Binary ~lIes

OMS Macrocode Assembler Programmer Reference Manual

The assembler, by default, produces a listing from an assembly. The
listing can be disabled with the -1 command line option. The format of
a listing line is shown below.

14: 000014 000063 000062 000027 10. b " a & b'10111

The maximum width of listing file lines is 132 characters. The
elements of the listing line shown above are as follows:

• The octal parcel address of the instruction in the binary output
followed by a colon. (14:)

• The octal 4-parcel macrocode instruction as it appears in the
binary output. This field is blank for instructions that do not
produce binary output, such as pseudo-instructions or comments.
(000014000063000062000027)

• The line number of the source line being assembled. This number
should correspond to the line number in the source file. (10.)

.: The actual input source line. (b = a & b'10111)

The source listing is followed by a listing of all defined program labels,
variables, and equates. Variables are listed with their parcel
addresses. Equates and labels are listed with their values. The listing
file name is the name of the binary output file with the .lst suffix
appended. If your input file does not end with .d, the listing has the
default name dms.out.lst (unless overridden with the -0 command line
option).

The final output of the assembler is a pure binary file containing the
macrocode generated by the assembler. The amount of code generated
determines the length of the file. Only enough of the file is saved to
contain the code; no trailing O's are appended. The default name for
the output file is the name of the input file with the.d removed, or if
specified, the name given by the user with the -0 command option. If
the input file does not end with .d, the binary file is named dms.out.

External Device Modules

4

The assembler is designed to have only the universally available part
of the macrocode instruction set available internally. Keep any
device-specific instructions externally in separate files. Include the
files at assembly time by using the INCLUDE pseudo-instruction in
the program. The requirements for these external files are described
in the following subsections.

Cray Research Proprietary CSM-1023-000

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DMS Macrocode Assembler Programmer Reference Manual

File Location and Naming

File Contents

CSM-1023-000

The include files must reside in the dmssys directory, which must be a
subdirectory of your home directory. E2.ch file is named for the device
it represents, followed with a.i suffix. For example, a file for a DD-40
disk device would be called DD40.i and must be in the $HOMEJdmssys
directory, where $HOME is the value of the user's UNIX HOME
environment variable. This file could then be referenced with the
statement include "DD40" in your source program.

NOTE: File names are case-sensitive (include "'dd40" would not
work in this example). You can avoid this problem by
making multiple links with different names to the device
file, so dd40 and DD40 reference the same file.

The device include files contain a series of instruction nameJopcode
entries, one per line. Each line consists of three fields separated by one
or more spaces. The first field is the ASCII mnemonic representation
of the instruction, which is not case-sensitive. 'The second field is the
octal representation of the instruction's opcode. The number requires
no special formatting. The third field is a bit mask that determines
which arguments may be used with this instruction. Bits 2, 1, and 0
correspond with the first, seC&nd, and third arguments, respectively;
thus the number has a value:from O±o 7.

A 1 bit indicates that the argument.is used; a 0 bit indicates that the
argument cannot be used. A 0 biteauses an assembly error if an
argument other than 0 appears in that field. A 1 bit issues a warning
only if an unexpected argument is used. If the assembler detects an
error in the include file while loading, an appropriate warning
message is issued and the rest of the include file is discarded.

Cray Research Proprietary 5

Assembler Syntax

Comments

Constants

Literal Constants

6

OMS Macrocode Assembler Programmer Reference Manual

This section describes the basic types of assembler source input:
comments, constants, literal constants, identifiers, expressions,
operators, variable addresses, statements, assignments, indirect
assignments,jumps, pseudo-instructions, and text displays.

The input to the assembler is not case-sensitive except in literal
strings. Any line may begin with a label that may be used injump
instructions. A label must begin with the first character of a line, or
else there must be at least one space before the start of the line. More
specific information is provided below.

A comment always begins with a semicolon (;). Comments may appear
anywhere in a source line. Anything between the semicolon and the
end ofthe line is ignored.

A constant in the assembler context is a number represented in one of
four bases: octal (default), decimal, binary, or hexadecimal. Specify
the base of a constant by prefixing it with the characters 0' for octal, D'
for decimal, B' for binary, or H' for hex (the letters can be lowercase). If
you do not specify a base prefix, the number is interpreted in the
current active base, set by the BASE pseudo-instruction. The EQU
pseudo-instruction can also be used to define symbolic constants
(equates).

A literal constant is a text string enclosed by quotation marks (" ").
Any literal constant can continue on two or more source lines if it
exceeds the SO-character limit. To continue a line, end it with a
backslash (\); any characters after the backslash on that line are
ignored. Subsequent lines are treated as continuations up to the
ending quotation mark. Continuing lines can be indented; any space
at the beginning of continuing lines is ignored. The maximum length
of a literal constant is 255 characters. Literal constants are used
mainly in the INCLUDE, TEXT, PFMT, and TFMT pseudo
instructions.

Cray Research Proprietary CSM-1023-000

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

OMS Macrocode Assembler Programmer Reference Manual

Identifiers

Expressions

CSM-1023-000

In dmsasm, an identifier can refer to a label or a named variable. The
rules for identifiers are as follows:

• Identifiers must begin with an alphabetic character (a-z or A-Z).

• Identifiers consist of up to 31 letters, digits, or underscore (_)
characters.

• Identifiers are not case-sensitive; therefore, Name is the same as
name.

• Identifiers are defined as labels if they begin with the first
character of a source line, unless a line contains a CON pseudo
instruction, in which case the label is treated as a variable
definition.

• Identifiers are not declared before use; they are defined by the first
reference to them, as in the BASIC language.

• The user can allocate storage for variables within the program
using the CON pseudo-instruction. Variables not defined this way
ha ve space allocated for them at the end of assembly by the
assembler.

• Identifiers may not have the same name as a reserved word.

• All variables use 1 parcel of storage.

There are two types of expressions recognized by the assembler:
constant expressions and variable expressions. A constant expression
is a grouping of numerical constants, symbolic constants (equates), and
operators. A variable expression is a variable grouped with a variable
or constant expression through a single operator. An expression
containing two variables cannot contain constants, because having
both requires more than one macrocode instruction. The constant
expression is always grouped together and evaluated by the assembler
before it is combined with the variable.

In instructions that take two arguments where one is a variable and
one is a constant, the variable must be the first argument.

Cray Research Proprietary 7

Operators

8

OMS Macrocode Assembler Programmer Reference Manual

Refer to the "Instruction Reference" subsection for more details. Below
are examples of code using expressions:

x=y+l
x= l+y
100
100-2+34
(100 & B'101) » 12
varl + 100
var2 - (100 + 234)
var2 - 100 + 234
var2 - 334
varl + var2
(varl-100) + var2
temp var1 - 100
final = temp + var2

OK

illegal
constant
constant expression
constant expression
variable expression
variable expression
equivalent to the above
same result as above
OK

Illegal!
Correct implementation
of expression above

The operators are listed below. Some of them can only operate on
constant expressions, while others can also operate on variables. All of
the operators can be applied to constants; those marked with asterisks
(.) can also be applied to variables.

Operator

+

•
. I
%

&

I
A

»
«

Description

Addition·
Subtraction·
Multiplication
Division
MOD (remainder)
Logical complement (unary)
Unary minus (negative number)
Logical AND·
Logical OR·
Logical exclusive-OR·
Logical shift right·
Logical shift left·

All the operators except the unary operators (- and -) have the same
priority. Therefore, expressions are evaluated strictly from left to
right. Parentheses may be used to change the order of evaluation.
U nary operators have precedence over the others. For example:

123 « 12 + 15 - 27
123« 12 + 15 - -27

Cray Research Proprietary

= «(123«12)+15)-27)
« (123«(- 12)+15)-(-27»

CSM-1023-000

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

OMS Macrocode Assembler Programmer Reference Manual

Variable Addresses

Statements

Assignments

CSM-1023·000

The @ operator allows a variable's address to be used in an expression.
Refer to the code example in the "Indirect Assignments" subsection.

In general, a statement is a macrocode mnemonic followed by a space
and the instruction arguments (if any):

[Label] <keyword> [arg1[,arg2[,arg3]]]

The number and meaning of each instruction's arguments are
described in the instruction description and in the documentation for
the macrocode interpreter. The arguments are separated by commas
and spaces (optional); an instruction may have from zero to three
arguments. An argument may be a constant, a label, a variable, or a
constant expression. The first argument generally must be an address
(of a variable) for the instruction to operate on. The second argument
(optional) may be a variable address or constant data. The third
argument may have a number ()f meanings depending on the
instruction. Consult the "Ins.truc~ion Reference" subsection for further
information.

The assembler issues an error lll~ssage and zeros out an instruction if
an argument appears in a position where none is allowed. The
assembler issues a warning if an argument does not appear where one
is expected, but still generates code for that instruction. There is a
one-to-one correspondence between the arguments' positions on the
source line and their positions in the binary code. For example, the
following line would assemble into 000200 000010 000000 000000
(assuming the opcode for SEEK is 200 octal):

seek 10

The following line would assemble into 000200 000010 000020 000030.
Consult the definition of each instruction for the correct placement of
arguments.

seek 10,20,30

For increased readability, the assembler provides an alternate way of
writing many simple operations, which looks more like a high-level
language specification than an assembler. This syntax can substitute
for any of the binary logical or arithmetic instructions supported by
the interpreter. Assignments in dmsasm encompass all operations
that store a result into a variable.

Cray Research Proprietary 9

Indirect Assignments

Jumps

10

OMS Macrocode Assembler Programmer Reference Manual

The general syntax is as follows:

[Label] <var) = <const expr)

or:

[Label] <var) = <var) <operator) <var or const)

The simplest assignment is to set a variable to a constant. Any of the
variable operators listed previously may also be applied to a variable
expression in an assignment. For an example of how the assembler
rewrites an operation, refer to the following line, which is translated
by the assembler from:

a = a + 100

to:

ADDL a,100,a

A,ssigpments can also be made indirectly where a variable's contents
,are y.sed as an address of data to be retrieved. The indirect operand is

enclosed in square brackets ([]). Indirect operands can appear on
either side of an assignment, but not on both. Examples of code areas
follow.

data con 100
con 0
a = data
addr = ctdata
b = [addr]
add r = add r+l
'i, = [addr]
[addr] = 200
[a] = [addr]

declares data as a variable

a = 100
addr = data's address
b = 100 (data's contents)
increment address
b = 0 (contents of [data+l])
store 200 at "data+l" location
Illegal (src & dest both indirect)

You cannot mix expressions with indirect addressing because doing so
requires more than one instruction.

An alternate form for jump instructions is provided. The macrocode
instruction set provides for both conditional and unconditional jumps.
The general syntax for ajump is as follows:

[Label] jump address [, condition]

Cray Research Proprietary CSM·1023·000

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

OMS Macrocode Assembler Programmer Reference Manual

The conditions may be applied to a variable and a constant or to two
variables. A conditional expression takes the following form:

<var> CONDITION <var or const expr>

The first part of a conditional comparison must be a variable, as
defined by the interpreter syntax of the jump instructions. The valid
conditions are as follows:

if exprl equals expr2
1 = if exprl not equal to expr2
> if exprl > expr2
< if exprl < expr2
>= if exprl >= expr2
<= if exprl <= expr2

Examples of code are as follows:

jump L1 unconditional jump
jump l2. a > b jump if a > b
jump l3. x 1" ° jump if x non-zero
jump lab. x < ° jump if x is negative

The instructions above would~translated by the assembler into the
equivalent assembler stateme'fi.ts tielow:

, "t

JUMP L1

IFGT a.b.l2
IFNE
IFlT

x,O,l3
x. 0.1 ab

Pseudo-instructions and Text Displays

CSM-1023-000

The assembler pseudo-instructions and text displays are described in
the following subsections. The syntax for a pseudo-instruction is as
follows:

pseudo [const expr or literal]

The general pseudo-instructions are BASE, BSSZ, CON, EQU,
INCLUDE, IF, ELSE, ENDIF, and ENDASM. All may be entered in
either uppercase or lowercase letters.

Cray Research Proprietary 11

BASE

BSSZ

CON

12

OMS Macrocode Assembler Programmer Reference Manual

There is also a set of special pseudo-instructions used to set up APML
type diagnostic displays to be decoded by DMS; these are DISPLAY,
DEFDISP, TEXT, PFMT, and TFMT. At the end of a macrocode
program the programmer can include formatted text displays, which
are available for viewing under DMS as the program executes. The
displays correspond to function keys on the terminal as follows (only
keys associated with user-defined displays are listed):

Key Function

Fl Running display
F2 Error display
F3 Help display
F5 Device status display
F6 Parameter (test setup) display

Each function key can display multiple screens (up to 64). The user can
scroll through the screens with the pf and pb commands in DMS.
Corresponding to each display (defined by a DISPLAY pseudo
instruction) is fixed text and a list offormats that define memory
locations displayed within the text .

. ' .. ~' "~I ••

The BASE instruction sets the active number base. The argument to
BASE is a constant expression· with values of2 (binary), 8 (octal), 10
(decimal), or 16 (hexadecimal). Any other numbers cause errors and
ate ignored. Any number of BASE instructions may be included in a
pr()gram~· ..

The BSSZ instruction reserves a block of memory cleared to O's. The
argument is the number of parcels to reserve, which is always rounded
to a multiple of four.

The CON instruction reserves 1 parcel of storage at the current
location with the value specified in the CON statement inserted into it.
If code is generated after a CON statement, the code address is
automatically rounded to a multiple offour again.

Cray Research Proprietary CSM-1023-000

I
I
I
I
I
I
I
I
I
II
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DMS Macrocode Assembler Programmer Reference Manual

Eau

INCLUDE

IF, ELSE, ENDIF

ENDASM

CSM-1023-000 -

The EQU instruction equates a symbol with a value. The form of the
equate line is as follows:

<Ident> EQU <const expr>

This instruction defines the value of < Ident > to be the same as the
constant expression argument. Unlike labels, equates must be defined
before they are referenced or they produce erroneous results. An
equated identifier may be used any where a numeric constant can be
used.

The INCLUDE instruction means to include a device module. The
argument is a literal constant and the name of the device, which must
correspond exactly to the name of the device file in the dmssys
directory as described previously. The.i suffix must not be included in
the name. An INCLUDE pseudo~instruction may appear anywhere in
a program. The instructions defined by the include file are only
recognized after the INCLUDE pseudo~instruction is assembled.

These instructions allow conditional assembly. The IF pseudo
instruction takes one argument, whillh must be a constant or constant
expression. The expression may also contain relational operators = = ,
! =, >, <, > = ,and < =. If an undefined symbolic name is used in the
expression, it is treated as having a value of 0, which allows optional
definition of symbols from the command line.

This expression is evaluated at assembly time and is treated as true if
it is nonzero; if it is zero, it is treated as false. If true, the code
following the IF instruction up to the matching ELSE or ENDIF
instruction is assembled; iffalse, it is skipped. The ELSE instruction
is optional, but each IF instruction must have a corresponding ENDIF
instruction. Skipped code is not shown on the listing. IF blocks may be
nested up to 32 deep.

The ENDASM instruction unconditionally terminates assembly of the
source file, whether or not the end of the file is reached. The ENDASM
pseudo-instruction is optional at the end ofa program.

Cray Research Proprietary 13

DISPLAY

DEFDISP

14

OMS Macrocode Assembler Programmer Reference Manual

The DISPLAY instruction and the OEFDISP, PFMT, and TFMT
instructions, described below, generate APML-type text displays.
They should only appear after all program code in the source file.
There must be exactly one DISPLAY pseudo-instruction at the
beginning of your display definition for the displays to be generated
correctly. This instruction takes no arguments.

The first function of the DISPLAY pseudo-instruction is to force
allocation of all program variables, which means that no new
variables may be used after the DISPLAY instruction is assembled.
You can, however, define new labels for text and format statements.
The DISPLA Y instruction also generates the T line for the display
header (used by OMS to read the displays).

The DISPLAY pseudo-instruction is immediately followed by one or
more OEFDISP lines with the following format:

[Label] DEFDISP <display *>.<format addr>.<text addr>.
~'scrRll length>

\ This lim) follows the order used in the VWO statement used to define
,,,the MWS/CPU interface data in APML. The display number is the
display designator recognized by OMS. The format and text addresses
are normally labels assigned to the display text and formats, which
follow the OEFDISP pseudo-instructions. The scroll length field is

.. used to indicate to OMS that the display can be scrolled with the df
and db 'commands, and to indicate to OMS how many parcels to scroll
the display. If the scroll length field is set to 0, OMS does not allow
scrolling on that display screen.

NOTE: The OEFDISP section must be followed by a parcel of all 1
bits (CON -1).

The first argument (< display # >) defines to which key the display
corresponds from the choices listed below. Any other display number is
invalid for user displays and is ignored by OMS. The range of numbers
allows for the stated 64 (0-77 octal) displays per key. For multiple
pages, include one OEFDISP line for each page with succeeding
display numbers (for example, displays 200-203 define four pages of
error display).

Key Display Number (octal)

Fl 100-177
F2 200-277
F3 400-477
F5 700-777
F6 500-577

Cray Research Proprietary CSM-1023-000

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DMS Macrocode Assembler Programmer Reference Manual

TEXT

CSM-1023-000

DMS currently ignores the lowest 6 bits of the number and simply
defines the displays in the order in which they are defined in the
program, but this process is not guaranteed to be true in the future.

The second argument (< format addr >) is the address of the beginning
of a list of PFMT and TFMT statements that defines the data to be
displayed. This field is normally the label of the first format line.

The third argument (< text addr >) is the address of the start of a list
of TEXT pseudo-instructions that defines the fixed text portion of the
display.

The fourth argument (< scroll length >) defines the total length
(highest address to lowest address) of a display so that DMS can
reference multiple memory images using the same display. For
example, if the program contains a series of error information buffers,
each 10 parcels long, then a single error display screen can be used by
DMS to display anyone of the buffers by adding the scroll length as an
index to the base address of the first display.

The TEXT pseudo-instruction defines ASCII format text that can be
used in programs, and ASCII format for display text and message lists
(refer to "Message List"). The format of the text is the same as defined
for APML text displays. Thesyntax'is as follows:

[Label] TEXT <literal constant>

For displays, a list of TEXT pseudo-instructions is defined, one for each
line ofthe display (20 lines maximum). The first fine usually has a
label used as the third argument of the DEFDISP pseudo-instruction.

NOTE: The text definitions must be followed by a parcel of alII
bits (CON -1).

Each line must end with a tilde C) character, which denotes the end of
line to DMS. Thus, a line of text as displayed on the screen can be
formed of more than one TEXT line, with the last line terminating
with a tilde. It is recommended, however, that a one-to-one
correspondence be maintained, and textJine continuation (\) be used
for long lines instead. Finally, if the line is terminated by a double
tilde (- -), DMS clears from the end of the text to the edge of the screen;
otherwise, the screen contents after the end of the text are not cleared.

Cray Research Proprietary 15

PFMT and TFMT

16

OMS Macrocode Assembler Programmer Reference Manual

These two pseudo-instructions put formatted data onto the screen at a
specified position. The basic unit of display is a single parcel (or a
single macrocode variable). The address of the parcel to display is
normally the name of a variable or the label on a CON pseudo
instruction, although a numeric address can be hard-coded (not
recommended because the address is taken relative to the OMS
diagnostic base for the currently selected device).

PFMT is the equivalent of the APML parcel format macro. Place any
options in a literal string, separated by commas and/or one or more
spaces. Each option takes the form OPT = value, where OPT is one of
the allowed options for PFMT, and value can be a constant, variable,
label, or equate name. The option may be in uppercase or lowercase
letters. The value of a numeric constant is interpreted according to the
current base setting. The base can be overridden in the usual way, by
preceding the number with the < base type> notation. If the base is
hexadecimal, a number must begin with a digit. No spaces are allowed
around the = character within options. The same default values for
all options are, in effect, the same as in the APML macros.

To obtain a PFMT with just default options, use a null string
surrounded by quotation marks as the argument. The PFMT syntax is

. ,as follows:

[label] PFMT "[opt=value][.opt=value][•...]"

The options allowed are sadd, line, col, np, pm, ndr, ndl, bbp, ebp, slz,
xd, txt, bold, dec, and base. The base, dec, and bold options are unique
to OMS.

The PFMT options are described below. Many of the options are flags
.. witnvalue-O equaling false or 1 equaling true. Although all options

have. default values, the options sadd, line, and col should always be
included.

Option Meaning

sadd Start address for display (variable name).

line Line number on which to display (range 1-20).

col Column number on which to display (range 1-80).

np Number of parcels to display (default = 1).

pm

ndr

Parcel merge flag; if set, combine np parcels into one
number (default = 0).

Number/digits right justified; specifies field width and
that the number is right justified and filled with
leading O's on the left (default = 0 [use ndl instead]).

Cray Research Proprietary CSM-1023-000

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

OMS Macrocode Assembler Programmer Reference Manual

CSM-1023-000

Option

sIz

ndl

bbp

ebp

xd

txt

bold

dec

base

Meaning

Suppress leading zeros flag (default = 0).

Number/digits left justified; specifies field width and
that the number is left justified (default ndl = 6).

Beginning bit position; allows extraction of a range of
bits from the data (range 0-15, default = 0).

Ending bit position; used with bbp to extract a range of
bits (range 0-15, default = 15).

Allow extended digits; if the number does not fit within
ndr/ndl digit limits, the field is extended to display the
whole value. Ifxd=O, the value is truncated instead
(default=O).

Flag specifies to display the data in ASCII format
(default = 0). '

Flag specifies to display the data in bold (reverse video)
(default=O). ·;::k.

Flag specifies to display the data in decimal instead of
octal (default = 0).

Flag signals DMS to display the data from the device's
buffer area instead offrom the diagnostic area
(default = 0).

The TFMT pseudo-instruction is used in the same way as PFMT to
display running text messages. The'sadd field in a TFMT contains the
address ofa location that contains a message number. When a nonzero
value is inserted into thesadd::location by a running program, DMS
displays the message associated with that number at the location
given by the line and col options to TFMT (refer to "Message List").
The madd option allows numeric data to be inserted into a line of text.
The data starting at the madd address is inserted into the text
wherever one or more # characters appear (one # for each octal digit
desired). Each successive # grouping is replaced with a number from
the next parcel after the first madd address. None of the other PFMT
options are valid for TFMT. The TFMT syntax is as follows:

[label] TFMT "[opt=value][,opt=value][, ...]"

NOTE: The format list must be followed by a parcel of all 1 bits
(CON -1).

Cray Research Proprietary 17

Message List

OMS Macrocode Assembler Programmer Reference Manual

Each macrocode program can only have one message list. This list
consists of TEXT pseudo-instructions that define a list of running text
messages for display with TFMT pseudo-instructions. Each message is
terminated with the single or double tilde as is the display text. The
messages are assigned numbers in the order they are defined, starting
with 1 (with a maximum of200 currently supported by DMS). When
the program displays a message, it puts the message number into the
variable listed as sadd in a TFMT pseudo-instruction, and the message
is displayed. To erase the message, the TFMT location is written with
aO.

To define a message list, a DEFDISP pseudo-instruction is used with a
display number of 1000 octal. The <formataddr> and <scroll
length> arguments are ignored; the < text addr> argument is the
address of the start of the message list described above.

Variable Space Allocation

Assembly Errors

AUhe. end of assembly, the assembler scans a list of variables defined
in the program and sequentially allocates 1 parcel of storage for each .

. Th~varIable space begins immediately after the last instruction in the
-~.-program .. The listing lists variables and their allocated addresses.

Each symbol in the listing is identified with its value (address if a
;;a:dable; CON, or label) and type. Types ofindicators are V (variable),

-(}(CON), L (label), or E (equate). Variables are allocated in the order
. the.y are defined (rll"st referenced) in the program.

Two types of messages are issued by the assembler: errors and
warnings. Errors are generally serious and inhibit code generation for
the line with the error; instead of generating code, the assembler
generates a PASS instruction. A warning is less serious and may still
allow code to be generated. Error messages appear both on the stderr
output (user's terminal by default) and in the listing file. If an error
line begins with a label, then the label definition is not removed, so the
label points to the line with the PASS instruction.

Instruction Reference

18

The following pages contain a reference table listing the interpreter's
built-in instructions. Refer to the interpreter documentation for a
more detailed description. Refer to the documentation for individual
device drivers for a description of device-specific opcodes.

Cray Research Proprietary CSM-1023-000

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

OMS Macrocode Assembler Programmer Reference Manual

Table 1. Macrocode Built-in Instructions

Mnemonic Opcode Arguments

PASS 000 None

END 001 1

JUMP 002 1

LOOP 003 1,2

IFEQ 004 1,2,3

IFNE 005 1,2,3

IFLT 006 1,2,3

IFGT 007 1,2,3

IFLE 010 1,2,3

IFGE 011 1,2,3

IFPS OJ? ,. 1,3

IFNG Ol3, 1,3

ANDL
~.

"Q14. 1,2,3
"

ADDL " ,.",.", '01"5 1,2.3 " ' "

SUBL
§ ~< "'''OlS 1,2,3

"
EXOR 017.: 1,2,3

SHFR 020 1,2,3

SHFL 021 , 1,2,3

GENUSR 022 1,2,3

COMP 023 1,2.3

RAN .. , ••• Q2~'_$~'. 1,2,3

OR 025 1,2,3

PLANT 026 1,2,3

ASGN 030 1,2

GEND 031 1,2,3

RPTERR 032 1,2,3

IPC 034 None

CSM-1 023-000 Cray Research Proprietary 19

20

OMS Macrocode Assembler Programmer Reference Manual

Table l. Macrocode Built-in Instructions
(continued)

Mnemonic Opcode Arguments

IEC 035 None

LIND 036 1,2

SIND 037 1,2

VERD 040 1,2,3

MOVP 041 1,2

STOP 042 1

SETPARM 043 1,2,3

PUT 044 1,2,3

GET 045 1,2,3

SHFRC 046 1,2,3

SHFLC 047 1,2,3

SAVEBUF 050 1,2

LOADBUF 051 1,2

MUXOUT 054 1,2

EIOX 055 1,2

JMPSR 056 1

EXIT 057 None

WIOB 060 1,2,3

RIOB 061 1,2,3

SETPTR 062 1,~, 3

CSTAT 063 1,2,3

CVAR 064 1,2

FLOADBUF 065 1,2,3

FSAVEBUF 066 1,2,3

Cray Research Proprietary CSM-1023-000

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Reader Comment Form

Title: DMS Macrocode Assembler Programmer
Reference Manual

Number: CSM·I023·000

Your feedback on this publication will help us provide better documentation in the future. Please
take a moment to answer the few questions below.

For what purpose did you primarily use this manual?
___ Troubleshooting
___ Tutorial or introduction
___ Reference information
___ Classroom use
___ Other· please explain __________________________ _

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria and
explain your ratings:
___ Accuracy ____________ ~ ______________________ __

___ Organization __________________________________ _

__ Readability ____________________ ,...__---------

___ Physical qualities (binding, printing, page layout) ________________ _

___ Amount of diagrams and photos _______________________ _

__ Quality of diagrams and photos

Completeness (Check one)
___ Too much information __________________________ _

___ Too little information ___________________________ _

___ Just the right amount ofinformation

Your comments help Hardware Publications and Training improve the quality and usefulness of
your publications. Please use the space provided below to share your comments with us. When
possible, please give specific page and paragraph references. We will respond to your comments in
writing within 48 hours.

NAME ___________________ _

JOB TITLE, ________________ _

FIRM ___________________ _

ADDRESS ________________ _
RESEARCH, INC.

CITY ________ STATE _____ ZIP ____ _

DATE __________________ _

[or attach your business card]

Fold

._--~

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 818~ ST. PAUL. MN

POSTAGE WILL BE PAID BY ADDREsseE

~ESEA~CH, INC.

Attn: Hardware Publications & Training
no Industrial Boulevard
Chippewa Falls, WI 54729

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

---~
Fold

STAPLE

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

