
***************** •• *********************
* *
* *
* CRAY 2 *
* *
* COMPUTING SYSTEM *
* *
* December 20, 1982 *
* *
*********************************~******

Table of Contents

Introduction . 1
2
3
4

Hardware design ••.
Common memory . • • •
Background processing
Foreground processing •

Foreground System • • • .
System dead start • ~

Host system interface • .
.DD29 disk storage unit ••.•.•••..
Disk system organization
Foreground communication channels • • • • •
Disk controller • • . • • . • • • . • . .
Foreground processor instruction su~~ary

5

6
1
8
9

• 10
'1
12
15

Background Processor . • • • • . . • . • • •
General description • • • .

• • • • • • • •• 16

Floating point data format
Fixed point data format •
Instruction format
Vector registers ••••
Scalar registers
Address registers •
Local memory
Instruction stack • •
Instruction issue
Floating point multiply unit
Floating point add unit •
Vector mask register
Vector length register
Real time clock . • . . .
Semaphor~ flags • .
Status register .•
Channel interface .
Instruction summary •

17
• • . • • • • 19

• 20
21
22

• 23
• • •• 24

•• •• • • 25
. 26

• • •. • 27
• 28 .., ..
• .,:) I

• • • • • • • 34
• 35

35
• 36

• • • • • 37
• • 40

42

Introduction

The.Cray-2 computing system is an evolution of the Cray-l system and provides an
order of magnitude performance improvement at a comparable price. There are
several factors which make this possible.

1) Large Semiconductor Memory

The semiconductor industry has made giant strides forward in the development of
large integrated circuit memory chips in the decade since the Cray-1 computer
was designed. A million words of direct access memory was the largest memory
practical at the time of the original Cray-1 design. This was later expanded
to four million words as larger memory circuits became available. This size is
the limit that addressing allows in a Cray-l system.

The Cray-2 system contains a direct access memory of 256 million words. This
increase of almost two orders of magnitude changes the way that large scientific
problems can be solved;

2) Multi-processors

The Cray-2 system contains four independent background processors each somewhat
faster than a Cray-1 computer. These four processors can be brought to bear
on a single large computation using the common 256 million word memory.
Computation is time interlocked with high speed semaphore flags which control
the step advances during the computation.

3) Integrated Foreground Processing

The Cray~2 system brings control of the peripheral support equipments lnto the
main frame hardware. A single foreground processor coordinates the data flow
into and out of the system common memory. The synchronous operation of this
foreground processor with the four background processors allows an order of
magnitude increase in data throughput over the original Cray-1 system.

4) Liquid Immersion Cooling

The Cray-2 system operates in a small liquid filled main frame cabinet. The
,circuits are cooled by direct liquid contact with the integrated circuit

packages. This liquid immersion technology allows greatly reduced physical
size and higher speed computation than is possible with previous techniques.

Hardware Design

The Cray-2 hardware is constructed of synchronous networks of binary circuits.
These circuits are packaged in 320 pluggable modules. The modules each contain
750 integrated circuit packages. Total integrated circuit ~opulation in the
system is 240000 units of which 75000 are memory.

The pluggable modules are three dimensional structures with an array of circuit
packages 8 by 8 by 12 units. There are eight printed circuit boards which
form the module structure. Circuit interconnections are made in all three'

·directions within the module. External dimensions of the module are one inch
by four iDches by eight inches. One end of the module contains a circuit
connector which mates with a connector in the cabinet frame. This connector
has 288 pairs of pins for twisted pair wire communication between the modules
in the cabinet frame.

Modules are arranged in the cabinet frame in 14 columns each 24 modules high.
The columns are arranged in a portion of a circle with a 20 degree angle between
columns. An inert electronic liquid circulates in the cabinet frame and flows'
through the module circuit boards across the four inch surface. Liquid velocity
is one inch per second through the modules~ Total module column height is 24
inches.

The semicircle of mod~le columns is located on top of a similar structure
containing power supplies for the system. Total power consumption for the
system is 180 kilowatts. Total cabinet height including the power supplies
is 43 inches.

There are 20 types of integrated circuit packages used in the logical networks
of the machine. The circuits consist of emitter coupled logic gates with a
maximum gate width of six inputs. Total gate capacity of the circuit packages
is 16. Most of the 20 types of circuit packages contain two levels of gates
within the package. The package has 16 connecting pins.

A 250 megahertz oscillator controls the timing throughout the circuit modules
in the machine. The oscillator signal is transmitted as a square wave over
120 ohm twisted pair wires to each of the module connectors. Wire lengths are
controlled so that the travel time to the individual modules is accurate·within
100 picoseconds. The oscillator square wave is delivered to each individual
circuit package within the module. An 800 picosecond pulse is formed from the
square wave to gate data into register latches within the packages. This
800 picosecond strobe pulse occurs simultaneously throughout the machine with
a periDd of 4 nanoseconds. This time is referred to as the machine clock
period.

Common Memory.

Th~ Cray-2 system common memory consists of 128 storage banks of two million
words each. Each word consists of 64 data bits and eight error correction bits.
This memory is shared by the foreground processor, background processors and
peripheral equipment controllers .. It contains program code for the background
processors as well as data for problem solution. System tables are located here
for the .foreground processor but foreground program code is not. Data buffers
for the disk files are located directly in the background job data fields in
this memory.

Each two million word memory bank occupies one Cray-2 circuit module. There is
an independent data path from each bank to each of four memory access ports.
A background processor and a foreground communication channel are associated
with each memory port." Total memory bandwidth is 64 gigabits per second. Total
memory capacity is 11 gigabits. Each background processor can read or write a
word of data per clock period in a vector mode.

The integrated circuits used in the common memory contain 256 thousand bits of
data. The bank of memory consists of a 8 by 8 by 9 array of these circuits
in a three dimensional package. The memory bank module then contains 516 of
these memory circuits and 192 logic circuits to support the memory access paths.
Memory access time at the circuit level is 100 nanoseconds. Memory cycle time
is 160 nanoseconds.

The Cray-2 logic circuits are significantly faster than the memory circuits.
This speed discrepancy is used to minimize the number of physical data paths
that are necessary to connect the 128 memory bank modules to the four memory
ports. Data is transported between memory bank and access port in a three
clock period long packet of data. The packet is 24 bits wide. A similar packet
four clock periods long is used between access port and memory bank. In this
case the memory bank address precedes the write data packet.

An eight bit error correction code is generated at the memory access port as the
write data is transmitted to the memory bank. This code is interpreted at a
readout port for single error correction and double error detection.

Background Processing

The four background processors in the Cray-2 system are composed of processing
elements similar to those in a Cray-1 processor. The Cray-2 instruction
set includes similar registers and arithmetic functions. Incompatibilities
exist in order to allow the Cray-2 to address the large common memory.

Computation in a background mode implies a memory to memory computation. A job
is initiated by the foreground processor. Data is moved from the disk file~ to
the semiconductor memory under foreground processor supervision. The program
code for the background processors is positioned in the common memory and the
computatiohal field is defined. The foreground processor then initiates the
background computation using one or more background processors as required.
The background processors may call for further peripheral activity through the
foreground processor as the computation proceeds. .

Each background processor has a small high speed local memory to hold scalar
operands during the computation. Data is moved from the common memory to the
local memory and returned at the end of each computation. Arrays of data are
addressed by the background processors directly in the common memory_ The
access to common data is interlocked by the background processor semaphore
flags.

Resources of a background processor are summarized below.

Eight S registers - 64 bit length - For scalar operands
Eight A registers - 32 bit length - For address and integer operands
Eight V registers - 64 elements of 64 bits - For vector segments
Instruction buffer- 512 parcels of 16 bit length - For instruction loops
Local memory - 1024 words of 64 bit length - for scalar or vector backup
Floating point functional units - For computation in 64 bit floating point mode
Integer functional units For computation in 64 bit integer mode
Address functional units'- For computation in 32 bit integer mode

Foreground Processing

Th~ foreground processor supervises overall system activity and responds to
requests for interaction between the system members. System communication is
accomplished through four high speed synchronous data channels. These channels
interconnect the background proce~sors, foreground processor, disk control
units, and host system interfaces.

Instructions for execution in the foreground processor are loaded into a special
memory at system dead start time from a diskette at the maintenance console.
This memory then becomes a read only memory during system operation. Data for
supervision of the system is maintained in the common memory and is moved to a
foreground processor local data memory as required.

The majority of foreground processor activity involves data transfer between the
disk file storage units and the common semiconductor memory. The system has
provi~ion for 40 disk file units. Control for these units is organized into
groups of four units each. Group control allows the high speed circuits of the
Cray-2 to time share the supervision of the slower speed disk units.

All disk files may read or write data at the same time. Disk files may be
addressed as individual storage units, or they may be tied in synchronous groups
to provide higher transfer rates than the 35 megabit per second rate of the
individual disk units. Such synchronous grouping is of arbitrary size and may
extend from two units to the entire system complement. Grouping is under the
control of the foreground processor which decides the mapping and order of
disk sectors into a common buffer.

Resources of the foreground processor are summarized below.

Eight A registers - 32 bit length - Integer operands
Local data memory - 2048 words of 32 bit length - Temporary storage
Instruction memory - 32,768 parcels of 16 bit length
Integer functional units - For computation in 32 bit integer mode
Four communication channels - 4 gigabits per second each
Capacity of 40 DD29 disk files - 200 gigabits

FOREGROUND SYSTEM

System Dead Start

The Cray-2 system is initialized from the maintenance control console. This
control console is a microprocessor with diskette storage. The microprocessor
is connected to the Cray-2 cabinet over an eight bit low speed communication
path. The dead start process involves loading a special diskette with the
proper microprocessor program to sequence the initialization.

The process begins with a cont·rol signal from the· maintenance console to preset
the foreground control processor in a instruction memory load mode. The data
for the foreground instruction memory is then transmitted from the diskette to
the foreground processor.

The background processors and common memory are forced into an idle mode during
the loading of. the foreground processor memory. Foreground processor execution
then begins at address zero in the foreground memory. The preamble of this
program code clears common memory of noise data and presets nominal conditions
in the background processors.

The foreground processor then begins its normal scan of channel activity. A
job may be initiated by a host system interface or by a maintenance console
request for diagnostic activity.

Host System Interface

The Cray-2 system is intended to be connected into a host system. The host
system would contain the data concentration and communication equipment that
is appropriate for a large computational facility.

One or more wide bandwidth data paths should connect the host system equipment
to the Cray-2 cabinet frame. Bandwidth is likely limited by the host system
and configurations will vary depending on the type of front "end equipment used.

Each data path from the host system to the Cray-2 system requires an interface
module in. the Cray-2 cabinet frame. Provision is made for a number of these
,interface modules. These modules perform the function of'resynchronizing data
from devices with a different clock period and buffering the data as appropriate
between the two systems.

Bandwidth for each interface module is limited to one gigabit per second by the
internal structure ~f the Cray-2 system.

An alternative to the wide bandwith data path described above is shared disk
file storage. The DD29 disk files have dual access ports. One or more disk
file units can be designated as shared facilities and data can move between
host system and Cray-2 system through this media. Disk file data format is
the same as in the Cray-1 system.

DD29 Disk Storage Unit

The. Cray-2 system can support a number of DD29 disk storage units. These units
are manufactured by Control Data Corporation and are currently used in Cray-1
systems.

Each DD29 disk storage unit has a capacity of 4.8 gigabits of data. This data
is recorded on 40 surfaces which rotate at 3600 revolutions per minute. The
rotational latency is then 16~6 milliseconds.

The data is recorded and read back from the disk surfaces by forty recording
heads which can be positioned axiplly on the disk surface. These heads are
connected in ten groups of four recording heads each. Data from the four heads
in one group can be read concurrently into the disk controller.

The recording heads can be positioned on 822 tracks for each disk surface. All
heads move together in the positioning process. Moving to an adjacent track
requires 15 milliseconds. Hoving the maximum distance requires 80 milliseconds.

Each recording track on the disk surface is divided into 18 sectors. Each
sector contains 512 common memory words of'data plus error detection and
correction information. The position of the heads on the disk surface is
verified by data recorded and read back in each sector. The data within the
sector is self correcting through a Fire code polynomial generator.

Data transfer rate using the four recording heads in parallel is 35.5 megabits
per second. Consecutive sectors of data may be read or written with alternating
data buffers in the disk controller. The head group selection may be changed as
data is moving for the last sector on a disk track. The first sector on the
next The total
data package which may be moved from the disk surface without positioning the
recording heads is then 180 sectors. This package of data is called a disk
cylinder.

ni~k ~v~~pm nrQ~ni7~tion
- - - - - - J - - - -- - - Q - - - - - - - - - --

The Cray-2 system can include tip to 40 DD29 disk file storage units. These
units can be addressed as individual storage devices as they are in a Cray-1
system. There are problems with this approach which the large common memory
of the Cray-2 can avoid. These problems are the data transfer rate for
individual files, the rotational latency of the disk units, and the reliability
of mechanical devices.

The disk storage system on a Cray-2 has the option of operating in a synchronous
mode with all disk units running in parallel in a lock step mode. For this
approach.to look attractive the buffer size for individual disk references must
be of the order of 100,000 words. This was not practical in smaller memory
machines.

Consider a system configuration with 16 DD29 disk files as an example for the
synchronous mode of operation. The foreground processor is given a disk address
which consists of a pseudo-track number. This is the cylinder and head group
for a disk file with no flaws. A table lookup converts this pseudo-track into
a physical track for each disk unit. All disk units are positioned in parallel.

The foreground processor reads angular position for each disk surface to
determine the sector currently under the recording head. It then begins a
data stream from co~on memory to disk surfaces choosing the portion of the
common memory buffer appropriate for the current angular position of each disk
unit. Data to 15 of the disk units is directly from the common memory job
buffer. Data for the 16th disk unit is a logical difference data stream using
the word by word data from the desired file. All 16 disk units write one
track of data as-the basic reservation unit.

On data readback the 16th disk is read concurrently with the other 15 disks.
If the Fire code detectors indicate no data errors the 16th disk data is
discarded. If an error has occurred it can be corrected without time loss in
the data stream. .

The overhead introduced by this arrangement is one disk file on fifteen. The
benefit is three-fold.

1) Data rate is 525 megabits per second instead of 35 megabits per second.

2) The disk file rotational latency has gone to zero.

3) A·disk file may fail completely due to head crash or motor failure with
no loss of data or time.

A disk failure in this system can be corrected during system operation by
removing the defective file and replacing it with another unit. The new
unit can then be brought on line by running a background job which takes 2.5
minutes of disk system time to record the faulty unit data from the data on
the other 15 files.

Foreground Communication Channels

There are four communication channels in the system which link the background
processors, foreground processor, and peripheral equipment controllers. Most
of the data traffic is between controllers and memory. Data blocks are
generally 512 common memory words in length. Typical channel reservation
time is ten microseconds.

Each channel has associated with it one common memory access port and one
background processor control. The foreground processor is associated with'
all four channels in a supervisory role. Normally four peripheral controllers
are associated with each channel.r

Each channel consists of 16 data paths-and two control paths. One control path
carries a channel busy flag and the other a data ready flag. These 18 paths
interconnect the members of the communication group in a continuous loop. Each
membef receives data on 18 bit paths each clock period and transmits that data
onward to the next member in the following clock period. Data may then move
about the loop from any transmitting member to any receiving member.

------ Channel Sequence for Function Initiation

An idle channel is indicated by a zero bit moving about the channel busy path.
The data present flag and 16 data bits will also be zero values at this time.
Activity is initiated for the channel by the foreground processor. The
foreground processor breaks the channel loop at its node and transmits a
function code on to the next member of the loop. The busy flag is set by the
foreground processor and remains set as the function code moves around the
1nnn
~~~Y· 

The function code may be followed by a parameter for the addressed member of 
the communication group. The function code and parameter data are each 32 bits 
in length. They are encoded into four 16 bit parcels as they leave the 
foreground processor node. 

Each member of the channel group tests for a busy flag transition from zero to 
one state. This transition indicates a message is passing the node from the 

',foreground processor. Each member translates the function code to determine 
if action is required. If this member is addressed, and a response is required, 
the response is transmitted in the two clock periods following the parameter 
data. 

The foreground ~rocessor, having initiated the function transmission, waits 
for the zero to one transition on its busy flag input path. It then skips the 
two clock periods corresponding to its own parameter data and reads the two 
following parcels of response data. If this completes the com~unication for 
the function, the. foreground processor clears the busy flag, waits for the 
return transition, and the channel becomes idle. 



A disk controller supervises the activities of four DD29 disk files. This 
controller interprets function codes sent by the foreground. processor over 
the communication channel. The controller determines its own channel call 
number by wiring connections in the cabinet frame. 

The function code .transmitted from the foreground processo~ on the channel link 
consists of 32 bits plus an optional 32 bits of parameter data. The basic 32 
bit format is interpreted by the controller circuits as follows. 

4 bits) 'Controller number 
4 bits) Unit number 
8 bits) Function code 
16 bits) Next program address 

A zero controller number is interpreted as a general call for foreground 
request. 

Function codes are translated in the following manner. 

00) Release unit 
01) Reserve unit 
02) Clear fault flags 
03) Return to zero cylinder 
04) Select margin conditions 
05) Read sector number 
06) Read error flags 
01) Read disk status 

10) Select cylinder 
11) Select head group 
12) Read status response 
13) Enter error call address 

20) Begin normal read at specified sector 
21) Read correction code 
22) Begin early read at specified sector 
23) Begin late read at specified·sector 
24) Read format data in short block 

30) Begin normal write at specified sector 
31) Write format data 



------ Function 20 - Begin normal read at specified sector 

This foreground processor function call begins the process of streaming data 
from the disk surface to the common memory. The length of the data stream 
may be as short as one sector of disk data or as long as an entire disk 
cyiinder. The steps in the data transfer are as follows. 

1) Foreground to disk - Begin read at sector 

The disk controller reads the sector number from the parameter word and enters 
it in the appropriate disk unit coincidence regi~ter. The next program address 
is held for call to foreground on completion. 

2) Disk to foreground - Sector da~a ready 

The d~sk controller senses a full sector data buffer from the sector read 
operation. It then responds to the next channel call with the program address 
from step 1. 

3) Foreground to memo~y - Write block at address 

The memory port senses this function call and prepares its input buffer for a 
block of data intended for the common memory address in the parameter word. 

4) Foreground to disk - Transmit sector data 

The foreground processor holds the channel busy flag on this call in preparation 
for data transmission. The disk controller sends a burst of 64 common memory 
data words around the loop to the memory port. A data ready flag accompanies 
each element. The disk controller then pauses to wait for a memory response. 

5) Memory to disk - Buffer free 

The memory port loads a 64 word buffer with the data from the channel. When the 
buffer data has been moved into common memory the memory port sends a single 
data ready pulse to the disk controller. 

6) Disk to memory - Data burst 

The disk controller receives the data ready signal and sends the next 64 word 
burst of data over the channel. Steps 5 and 6 repeat until the sector data 
transmission is complete. The disk controller then senses the last data ready 
pulse from the memory port and drops the channel busy flag. 

Steps 2 through 6 repeat until the foreground processor requirement has been 
satisfied. 



------ Function 30 - Begin normal write at specified sector 

This foreground processor function call begins the process of streaming data 
from the common memory to the disk surface. The length of the data stream may 
be as short as one sector or as long as an entire disk cylinder. The steps in 
the data transfer are as follows. 

1) Foreground to disk - Begin write at sector 

The disk controller reads the sector number from the parameter word and enters 
it in the appropriate disk unit coincidence register. The p~ogram address is 
held for calIon completion. 

2) Foregro~nd to memory - Read block from address 

The memory port reads the common memory address from the parameter word and 
loads its 64 word buffer from that location. The channel busy flag remains set 
during this operation. The memory port then transmits a 64 word burst of data 
over the channel to the disk controller. A data ready flag accompanies each 
element. 

3) Disk to memory - Buffer free 

The disk controller loads the first 64 words of its sector data buffer with 
the data burst from the memory port. It then sents a data ready pulse to the 
memory port. 

4) Memory to disk - Data burst 

The memory port reads the next 64 words from the common memory and transmits 
the next data burs~ to the disk controller. Steps 3 and 4 repeat until the 
disk sector buffer is full~ The disk controller then drops the channel busy 
flag which frees the channel for other use. 

5) Disk to foreground - Sector data written 

The disk controller'moves the sector data to the write deskewing buffer for 
the appropriate disk unit. It begins recording on the disk surface as soon 
as the proper sector is under the recording head. It then responds to the 
next channel call with the program address from step 1. 

Steps 1 through 5 repeat until the foreground processor requirements are 
satisfied. 



Foreground Processor Instruction Summary 

000:--- Pass 
001--- Pass 
002i-- Enter Ai with console data 
003i-- Enter console data from Ai 

004i-k Enter Ai from local memory address Ak 
OOSi-k Store Ai into local memory address Ak 
006ijk Enter local memory address Ai from common address Aj with 
007ijk Store local memory address Ai into cormnon address Aj with 

010ijk Jump to Aj and hold return Ai if Ak is zero 
011 i jk Jump to Aj and hold return Ai if Ak is nonzero 
012ijk Jump to Aj and bold return Ai if Ak is positive 
013ijk Jump to Aj and hold return Ai if Ak is negative 

014ijk Jump to Aj and- hold return Ai if channel k is busy 
01Sijk Jump to Aj and hold return Ai if channel k is idle 
016ij- Jump to Aj and hold return Ai if console data ready 
017ij- Jump to Aj and hold return Ai if console data not ready 

020ijk Enter Ai with positive jk 
021ijk Enter Ai with negative jk 
022i-- Enter Ai with real time count 
023-- Unassigned 

024ijk Shift Ai left jk 
02Sijk Shift Ai right jk 
n?h.; -tv t'..,+.o.- A'; with integer sum Aj + Ak V'-V~.Jn. ""'1''''~1 .n~ 

027ijk Enter Ai with integer difference Aj - Ak 

030ijk Enter Ai with logical product Aj and Ak 
031ijk Enter Ai with logical product Aj and complement Ak 
032ijk Enter Ai with logical difference Aj and Ak 
033ijk Enter Ai with logical sum Aj and Ak 

034--k Abort channel k 
035ijk Function Aj on channel k with response Ai. Clear busy. 
036ijk Function Aj on channel k with parameter Ai. Clear busy. 
037ijk Function Aj on channel k with parameter Ai. Hold busy_ 

040i-- Enter Ai with positive 16 bit constant 
041 i-- Enter Ai with negative 16 bit- constant 
042i-- Enter Ai with 32 bit constant 
043i-- Unassigned 

0~4i-- Enter Ai from constant local memory address 
045i-- Store Ai into constant local memory address 

length Ak 
length Ak 



********************* 

BACKGROUND PROCESSOR 

***********~********* 





Floating point functions 

Each background processor has dedicated functional units to perform calulations 
in a floating point format. There are two independent units in each processor 
with functions assigned in two groups as follows. 

Floating point multiplication 
Reciprocal approximation 
Reciprocal iteration 

Floating point addition 
Floating point subtraction 
Float to fixed point conversion 

lnteger functions 

Each background processor has two dedicated functional units to perform fixed 
point calculations in a 64 bit mode. These units are similar but are 
specialized, one for scalar use and one for vector use. These functions may 
then be performed concurrently. Each unit has the following modes. 

Long integer addition 
Long integer subtraction 
Long word data shift 
Population count 
Leading zero co~nt 

Logical functions 

Each background processor has two dedicated functional units to perform 
logical operations on 64 bit data in a bit by bit mode. These units are 
similar but are specialized, one for scalar use and one for vector uSe. These 
functions may then be performed concurrenly. Each unit has the following modes. 

Bit by bit logical product 
Bit by bit logical different 
Bit by bit logical sum 

Address functions 

Each background processor has 32 bit functional units for address or short 
integer computation. These units operate in a scalar mode only with the 
followirig functions. 

Integer addition 
Integer subtraction 
Integer product 



Floating Point Data Format 

floating point computation is performed on data in a special packed format 
within a 64 bit word. This format is generally referred to as 'sign and 
magnitude' to distinguish it from other forms in common use. The 64 bits of the 
data word are structured into three fields as listed below from highest order 
to lowest order bit position. 

1 bit) Sign of coefficient 
15 bits) Biased binary exponent 
48 bits) Fractional coefficient 

The numerical value of the floating point data is determined by multiplying the 
coefficient times a base 2 with a signed binary exponent. 

Coefficient 

The 48 bit coefficient" is a binary number with the binary point to the left of 
the highest order bit position. The highest order bit in the coefficent is 
normally a one value. The floating point number is said to be normalized if 
this is the case. Correct results in some" functional units depend on normalized 
operands. The range of decimal values for the coefficient in a normalized form 
is 0.5 to 1.0. 

Exponent 

The 15 bit exponent is a binary number with a bias to allow integer testing of 
floating point data. An octal value of 40000 represents a zero exponent. A 
larger value represents a positive exponent and a smaller value represents a 
negative exponent. A floating point representation of the integers zero, plus 
one, and minus one in a normalized form are then as follows in an octal form for 
each of the three fields. 

Zero: 
Plus one: 
Minus one: 

o 00000 0000000000000000 
o 40001 4000000000000000 

40001 4000000000000000 

Exponent values of 60000 and greater are considered to have overflowed the 
exponent range. Hardware tests are performed for these values to indicate 
floating point range error. Exponent values less than 20000 are considered 
to have underflowed the floating point range. Such values are treated in 
many cases as if they had a zero value. There is no hardware indication when 
a computation ~nderflows the floating point range. 



Fixed Point Data Format 

Fixed point computation is performed on data in a twos complement integer 
format. Long word arithmetic is performed with 64 bit integers. A fixed point 
representation of the integers zero, plus one, and minus one in this format are 
illustrated below using octal notation. 

Zero: 
Plus one: 
Minus one 

0000000000000000000000 
0000000000000000000001 
1777777777777777777777 

Address computation and short integer computation are al~o performed in a twos 
complement integer format. In this case the arithmetic is performed with 32 bit 
integers. A fixed point representation of the integers zero, plus one, and 
minus one in this format are illustrated below using octal notation. 

Zero: 
Plus one: 
Minus one: 

00000000000 
00000000001 
37777777777 



Instruction Format 

The. background processors translate instruction code in 16 bit parcels of data. 
These parcels are packed four per word in the common memory. The parcels are 
addressed as if the common memory had four times as many locations and the data 
were 16 bits long. A branch instruction to a parcel location out of the buffer 
area of the instructi-on stack results in a common memory reference. In this 
case the common memory address is formed in the instruction fetch hardware by 
shifting the instruction parcel address down by two bit positions. 

Instruction translation involves the interpretation of four designators within 
the 16 bit parcel. These designators are identified below from higher to 
lower order bit position. 

f designator - 7 bits 
i designator 3 bits 
j designator 3 bits 
k designator - 3 bits 

The f designator determines the instruction type. The f designator values are 
indicated in octal notation in the instruction descriptions. The it j, and k 
designators generally refer to V, S, or A registers in a three address format. 
The i designator generally specifies the destination register for the functional 
computation. The j and k designators generally specify the source operands. 

Constants are entered into the operating registe~s from the instruction stream. 
These constant values appear in parcels following the instruction which refer 
to them. There may be one, two, or four parcels of constant data depending on 
the specific instruction. The first parcel in a multiparcel group is always the 
highest order portion of the resulting constant. 

Single parcel constants are used to address the local memory. Two parcel 
constants are used to address the common memory. Four parcel constants are 
used to enter long word values in the S registers. 



Vector Registers (V) 

There are eight vector registers in each background processor. Each register 
contains 64 words of 64 bit length. These registers are used as a computational 
way station for data between the memory and the functional units. 

The instruction issue control mechanism reserves the vector registers which are 
involved in a functional unit streaming operation. This may be one, two, or 
three vector registers depending on the specific instruction~ The functional 
unit is reserved at this same time. The instruction sequence may then proceed 
to the next instruction and initiate concurrent activity as long as the 
resources .reserved are not required in the subsequent instruction. 

The length of the vector stream is determined by the content of a six bit length 
register (L). This register is preset before the vector instruction issues and 
may be used for a number of vector operations of the same length. Maximum 
vector length is 64 elements. A zero value in the L register is interpreted as 
a 64 bit length indicator. 

The it j, and k designators in a vector instruction may have the same value. 
In the case of identical source operands the data is streamed from the same 
vector register to both data paths. In the case of a destination register 
which is the same as the source register the vector register writing function 
takes priority over r~ading but ~ith a delay equal to the transit time of the 
functional unit. This may be useful as a recursive vehicle for merging vector 
data in some situations. 

The vector registers are implemented in the hardware with 16 by 4 register 
chips. These integrated circuit chips have a two clock period cycle time. One 
clock period is required for address soak. The second clock period is then 
used for readout or for write strobe. 

The 64 elements of a ve~tor register are arranged in four banks of 16 elements 
each. Each bank h~s its own address register but they share a common read/write 
register. Consecutive element addresses for vector data move through the four 
banks before advancing the pointer for the first bank. This allows data to 
stream into, or out oft a vector register in consecutive clock periods. Data 
coming from common memory and moving into a vector register may come out .of 
order with respect to the common memory access requests. This is because of 
quadrant and bank delays in the common memory access control mechanism. 



Scalar Registers (S) 

There are eight scalar registers in a background processor. Each register 
contains a single 64 bit word. These registers are used to support the vector 
registers in vector streaming where one element of the computation is a constant 
value. The scalar registers are used as computational way stations between the 
memory and the functional units where vector implementation of the work is not 
possible. 

The instruction issue control mechanism reserves a scalar register which is -the 
destination register for a functional operation. This interlocks subsequent 
instructions which wish to use the result in this register _as a source operand. 
Scalar registers used as the source for functional unit data are not reserved. 
The issue control mechanism tests the reservation flag at the time of issue for 
the instruction. If the register is free the data is immediately read and is 
free for the next instruction. Data is kept at the functional unit for those 
cases where a scalar operand is used in a vector streaming operation. 

The eight scalar registers as a group have one data readout path and one data 
destination path. Each path may be used independently in each clock period. An 
instruction which requires two scalar source operands reads these operands in 
the two clock periods following instruction issue. The destination path must be 
reserved at issue time for the specific clock period of data arrival. 

An exception to the destination path reservation described above is made for the 
common memory read to scalar register. A separate path ·from the common memory 
to the scalar registers as a group is provided because the arrival time cannot 
be known at issue time. 



Address Registers (A) 

There are eight address registers in a background processor. Each register 
contains a single 32 bit word. These registers are used to calculate memory 
locations for both the local memory and the common memory. T~ey are also used 
to compute integer results in a 32 bit mode. 

The instruction issue control mechanism reserves an address register which is 
the destination register for a functional operation. This interlocks subsequent 
instructions which wish to use the result in this register as a source operand. 
Address registers used as the source for functional unit data are not reserved. 
The issue control mechanism test~ the reservation flag at the time of issue for 
the instruction. If the register is free the data is immediately read and is 
free for the next instruction. Data is kept at the functional unit for those 
cases where an address operand is used in a vector streaming operation. 

The eight address registers as a group have one data readout path and one data 
destination path. Each path may be used independently in each clock period. An 
instruction which requires two address source operands reads these operands in 
the two clock periods following instruction issue. The destination path must be 
reserved at issue time for the specific clock period of data arrival. 

.., ! 



Local Memory 

There are 1024 words of local memory associated with each background processor. 
Each word is 64 bits in length. This memory is treated as ~ register file to 
hold scalar operands during a computation period and then return the data to 
the common memory. 

The local memory i~ implemented in hardware with 256 by one .register chips. 
These integrated circuit chips have a three clock period cycle time. The first 
clock period is used for address soak only. The second clock period is used 
for address soak plus chip select. The third clock period is used for data 
readout or for write strobe. 

The local memory is organized into four banks of 256 words each. Each bank has 
its own address register. All four banks share a data write register and a 
data readout register. A scalar reference initiates all four banks at the same 
clock period. The proper bank is then sampled to the readout register three 
clock periods later for a read reference or the write strobe is enabled to the 
proper bank for a write reference. 

Vector references to the local memory require one extra clock p~riod for address 
setup. This is to allow an arbitrary starting point for the vector stream. The 
bank address registers then advance sequentially for the length of the vector 
stream. Data moves at the rate of one word per clock period in a vector mode. 

The local memory is reserved at instruction issue time ·in the same manner as 
a functional unit. The reservation has a three clock period duration for a 
scalar reference. The reseivation has a duration of four clock periods plus 
the vector length·for a vector reference. 



Instruction Stack 

Ea~h background processor has an instruction stack to allow program loops to 
execute without additional common memory references. This instruction stack 
contains a contiguous field of 512 parcels of program code. Programs may loop 
within this field using any of th~ branch instructions. 

The instruction stack is implemented in hardware with 16 by 4 register chips. 
These integrated circuit chips have a two clock period cycle time. One clock 
period is required for address soak. The second clock period is then uSed- for 
readout or for write strobe. 

The instruction stack is organized into four banks of 32 words each. Each word 
is 64 bits in length. Each bank has its own address register. The four banks 
share a common data write register and a data readout register. Consecutive 
addresses in the instruction stack move through the four banks before advancing 
the ~ointer for the first bank. This allows the common memory data to enter 
the instruction stack ·64 bits wide with a word each clock period. 

A branch out of the instruction stack field initiates a fetch vector in the 
common memory. The common memory address is formed from the requested branch 
destination parcel address by a shift down of two bit positions. The fetch 
vector length is always 32 common memory words. The instruction stack is 
cleared and limit registers which represent the instruction stack parcel 
boundaries are reset to correspond with the new field. The arriving data is 
then entered in the first 128 parcel positions of the instruction stack. 

Data is read from the instruction stack to the instruction issue control 
module one parcel at a time. A threshold test is made with each parcel readout 
to determine if the program sequence is nearing the end of the available data 
in the instruction stack. A new fetch vector is initiated when the readout 
enters the last 64 parcels of the available data. 

The instruction stack limit registers are adjusted with each new fetch vector. 
The oldest 128 parcels of data are discarded as a full instruction stack 
advances. 



Instruction Issue 

Background instructions are translated in several steps and are allowed to 
issue sequentially by an instruction issue control mechanism. Instruction 
parcels are delivered one at a time from the instruction stack. These parcels 
are placed in a queue where the translation functions occur. The instruction 
issue control process involves checking the reservation flags for the registers 
and functional unit involved in the instruction sequence. The instruction 
parcel waits in the issue position in the queue until all required resources 
are free. 

An instruction is considered to issue during the last clock period in which it 
resides in the instruction issue queue. That instruction-parcel is then 
discarded and the next instruction parcel shifts forward in the queue. The 
instruction stack continues to fill the queue as the parcels shift forward. 

The instruction issue mechanism makes reservations for the assigned resources 
during the clock period that the instruction issues. Tests for the next 
instruction can then be made against the updated reservation flags. This 
reservation and test process takes two clock periods for a complete interactive 
cycle. The maximum instruction issue rate is then one instruction every other 
clock period. 

Constants are intermi~ed with instruction parcels in the instruction stream. 
The constant parcels are passed through the instruction issue queue without 
test. An instruction with a following constant parcel may then issue and the 
following parcel issue without additional delay. Multiparcel constants 
delay the next instruction issue by one clock period for each constant parcel 
beyond the first.-

Detail control signals are sent from the issue control module to the register 
modules and functional unit modules in the two clock periods following issue. 
These signals are formed and transmitted concurrent with the translation and 
issue test of the _following instruction parcel. Most instructions involve a 
two clock period time sequence of register selection and readout for source 
operands. 

The issue control module sends the detail control signals to the destination 
register module at a later time. This delay corresponds to the transit time 
of the source operands through the functional unit. A shift register in the 
issue control module provides the memory vehicle for these destination tags. 

The S- registers have a single destination path for data entry into the eight 
member registers. The issue control mechanism must reserve this path in 
addition to the more obvious register reservation at issue time. The path 
reservation is for the one clock period of intended use. 

The A registers have a single destination path for data entry into the eight 
member registers. This path must be reserved for an A register destination in 
the same manner as for the S registers. 



---------------------------~ 
Floating Point Multiply Unit 

The.floating point multiply unit performs floating pOint calculations for both 
scalar and vector instructions. The unit is reserved during the period of the 
vector stream for the case of a vector instruction sequence. Scalar use is 
locked out during this period. No.reservation is made at the time of issue 
for a scalar floating· multiply instruction. Successive scalar instructions 
may issue at the maximum rate. 

The floating point multiply unit accepts vector element pairs at the rate of 
one pair per clock period. The source operands move through the unit, stopping 
at an internal register briefly for each clock period boundary. The transit 
time through the unit is a constant for each mode of operation. 

Floating. Point Pr6duct 

The floating point multiply unit forms the product of two operands in floating 
point format and delivers a result in floating point format. If both operands 
are normalized the result will also be normalized. Instructions which use this 
sequence are the following. 

124ijk 
154ijk 
155ijk 

Enter Si with floating product Sj * Sk 
Enter Vi with floating product Sj * Vk 
Enter Vi with floating product Vj * Vk 

The product is formed by merging the 48 bit coefficients into a matrix of 
logical product circuits. All combinations of coefficient bits are formed in 
the same clock period. The resulting 48 x 48 bits are then summed using three 
input adder circuits. The exponents are added to form the result exponent. 
A one count correction to the exponent is required if the resulting coefficient 
must be shifted by one bit position for normalization. 

The 48 x 48 matrix of logical product bits is truncated eight bit positions 
below the lowest order result coefficient bit. Round bits are added to this 
lower field to give an equal population of high and low round errors for 
random operands. A round bias will exist over narrow ranges of operands 
because of the one bit correction shift after the round operation. 

·.The Sj operand is held in the floating multiply unit during the execution of 
the 154 instruction. This frees the Sj register for other use during the vector 
streaming period. 



Several special cases are treated in floating point multiplication for operands 
out L"_" _ .. _ 

lV.L..l.UW;:). 

;) One or both operands have overflow exponent 
2) Sum of operand exponents is an overflow 
3) Sum of exponents is an underflow 
4) Both exponents are underflow 

Cases 1 and 2 cause a floating point error signal to the background processor 
status register. The computational result delivered to the destination 
register is forced to an overflow value. Case 3 results in an all zero word 
sent to the destination register. Case 4 computes the coefficients with no 
·normalize correction. Result exponent is zero for this case. This last case 
aids mutiple precision calculations. 

Reciprocal Approximation 

The floating point mutiply unit forms a 25 bit approximation to the reciprocal 
of a floating point operand value. This approximation is computed in t~o steps. 
The first step is a table lookup using a read only memory. The second step is 
a linear interpolation using the multiply mechanism. Instructions which use 
this sequence are the following 

126i-k 
157i-k 

Enter Si with reciprocal approximation of Sk 
Enter Vi with.reciprocal approximation of Vk 

The table used in the first step of the reciprocal approximation contains 4096 
words of data each 26 bits long.\ The address for the table lookup is taken from 
the highest order 13 bits of the operand coefficient. The operand is assumed 
normalized so that only 12 bits are required in the table address. 

The table readout is separated into two sections each 13 bits in length. These 
values are then used in a linear interpolation computation. The form of this 
computation is as follows. 

Let A be a reciprocal approximation for the upper 13 bits of operand coefficient 
Let B be the operand coefficient truncated at 26 bits 
Let R be the better reciprocal approximation 
Then the iteration step for interpolation is: 

R = 2A - A*A'B 

The two approximations read from the table are 2A and -A*A. The multiply unit 
is then used to form the product in the iteration formula with the additional 
sum included in the hardware pyramid~ 



There are two special case~ treated in the reciprocal approximation sequence. 

1) Operand exponent has overflow value 
2) Operand exponent has underflow value 

Both cases cause an error signal to be sent to the background processor status 
register. Both cases cause the computational result to be forced to an overflow 
value. 

Reciprocal Iteration 

The floating point multiply unit forms a floating point number which is used 
in a second iteration for the reciprocal of a full precision operand. The first 
iteration is formed "in the reciprocal approximation described above. The second 
iteration uses the same process to form a reciprocal approximation with ~7 bits 
of coefficient accuracy. The instructions which use this sequence are the 
following. 

125ijk 
156ijk 

Enter Si with"the reciprocal iteration 2 - Sj * Sk 
Enter Vi with the reciprocal iteration 2 - Vj * Vk 

The above instructions are followed by a normal floating point multiply 
instruction to complete the iteration. 

An error signal is sent to the background processor status register if either 
of the operands in the above instructions has an overflow exponent. An overflow 
result exponent is forced in this case. 



-----------------------
Floating Point Add Unit 
-----------------------

The floating point add unit pe~forms floating point calculations for both 
scalar and vector instructions. The unit is reserved during the period of the 
vector stream for the case of a vector instruction sequence. Scalar use is 
locked out during this period. No reservation is made at the time of issue for 
a scalar floating add operand. Successive scalar instructions may issue at the 
maximum rate. 

The floating point add unit accepts vector element pairs at the rate of one 
pair per clock period. The source operands move through the unit, stopping 
at an internal register briefly for each clock period boundary. The transit 

. time through the unit is a constant for all modes. 

Floating Addition 

The floating point add unit forms the sum of two operands in floating point 
format and delivers a result in floating point format. The result will always 
be normalized regardless of source operand status. Instructions which use this 
sequence are the following. 

120ijk 
170ijk 
171ijk 

Enter Si with the floating sum Sj + Sk 
Enter Vi with the floating sum Sj + Vk 
Enter Vi with the floating sum Vj + Vk 

.The sum is formed by first subtracting operand exponents. The sign of the 
exponent difference determines the larger operand. The larger operand 
coefficent is entered in a 49 bit adder with a one round bit in the 49th bit 
position. The smaller operand coefficient is entered in the adder with a zero 
round bit in the 49th bit position. A binary illustration of the two quantities 
is shown below. 

lxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxl 
lxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxO 

The smaller operand coefficient field is then complemented if the algebraic 
signs of the operands disagree. The smaller operand coefficient field is 
shifted down by the amount of the exponent difference. The two quantiti.es now 
appear as in the binary illustrations below. 

lxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxl 
000001xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxO 

lxxxxxxxxxxxxxxxxxxxxxxxxxxxxixxxxxxxxxxxxxxxxxxl 
111110xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxl 

signs 
agree 

signs 
disagree 



The two quantities are now added in the 49 bit window illustrated above to form 
the result coefficient. A carry from the highest order bit is retained as part 
of the result coefficient. 

The. result coefficient may be negative if the operand exponents were equal or 
if the operands were not normalized. The floating add unit hardware anticipates 
this possibility and forms a second result coefficient which includes a 
complement of the data and the addition of a one bit in the 48th bit position. 

The next step in the floating add process involves a test of the leading zeros 
in the r~sult coefficient to determine the amoun~ of shift necessary to 
normalize it. An overflow of the adder means a negative correction of one-bit 
position. Leading zeros in the result coefficient can mean as much as a 47 
bit positive correction. 

A special test is made for all zero bits in the result coefficient. In this 
case the exponent field'in the result is also-cleared. A word of all zeros 
is delivered to the destination register. 

The result coefficient-is shifted by the appropriate amount and a correction is 
made in the larger operand exponent. The algebraic sign of the resulting 
floating point form is computed from the types of steps in the process. 

A special case test is made for one or both operands with an overflow exponent. 
In this case an error signal is sent to the background processor status register 
and an overflow exponent is forced in the result delivered to the destination 
register. 

Floating Subtraction 

The floating point add unit forms the difference of two operands in floating 
point format and delivers a result in floating point format. This mode of 
operation is essentially identical to the addition mode. The only difference 
is the toggle of the sign bit for the subtrahend operand. The instructions 
which use this form of the sequence are the following. 

121ijk 
172ijk 
173ijk 

Enter 5i with floating difference Sj - Sk 
Enter Vi with floating difference Sj - Vk 
Enter Vi wit~ floating difference Vj - Vk 



Floating to Fixed Conversion 

The floating point add unit forms an integer representation of a floating 
point operand. This process iS,accomplished by adding the operand to a constant 
in floating point format and then masking the coefficient field into the result 
integer. The result must be complemented and a plus one added if the resulting 
integer is negative. This mechanism already exists in the mid sequence option 
of the floating pOint addition sequence. The instructions which use this form 
of the floating add sequence are the following. 

132i-k Enter Si with integer form of floating Sk 
174i-k Enter Vi with integer form of floating Vk 

The consta~t which is used as the second operand for this ~equence is the 
quantity illustrated below in octal notation. 

o 40060 0000000000000000 

The addition of the specified operand to this constant will shift the operand 
coefficient down by the desired amount to separate the integer portion. The 
round bit is omitted in this process. The resulting integer is at most 48 bits 
in length. A negative result is sign extended by special hardware to form a 
64 bit integer result. 

An operand with a floating point value greater than a 48 bit integer is sensed 
as an error condition.. A signal is sent to the background processor status 
register and a zero result is delivered to the destination register. 



Vector Mask Register (M) 

The vector mask register is a 64 bit special purpose register which is 
explicitly referenced in the background processor instructions. The vector 
mask register is used to merge vector data according to a set of precomputed 
element flags. In effect it proviqes a vehicle for implementing vector branch 
operations. 

One bit 6f the vector mask register is associated with each element in the 64 
element vector registers. The highest order bit of the vector mask corresponds 
to the first element of the vector data. The bits of the mask then proceed in 
order to represent the following ~ector elements. 

The vector mask data can be formed by a vector streaming operation in which each 
element of the stream is evaluated for a specific criterion. The instructions 
for this purpose are the following. 

030--k 
031--k 
032--k 
033--k 

Enter mask bits where Vk has zero elements 
Enter mask bits where Vk has nonzero elements 
Enter mask bits where Vk has positive elements 
Enter mask bits where Vk has negative elements 

The vector mask register is cleared at the beginning of these instruction 
sequences and then bits are entered one at a ti~e as the vector stream passes 
the test station. 

The vector mask data can be used to merge two vector streams into a single 
result stream. The instructions for this purpose are the following. 

146ijk Enter Vi with Sj masked into Vk 
147ijk Enter Vi with Vj masked into Vk 

Elements of the j operand are selected where there are one bits in the mask. 
Elements of the k operand are selected where there are zero bits in the mask. 

Data may be moved to, or from, the vector mask register using an S register 
as a way station. Instructions for this purpose are the following. 

'034--k Enter M from Sk 
'114i-- Enter Si from M 



Vector Length Register (L) 

The vector length register is ~ six bit special purpose register which is 
explicitly referenced in the background processor instructions. The vector 
length register is used to hold the vector segment length during a portion of 
the background computation. All vector streaming operations capture the 
segment length at the time of instruction issue from the L register. 

The L register content is interpreted modulo 64. The allowed values are one 
through 64. A zero value is therefore interpreted as a 64. The L register 
may be set either from a constant in the instruction stream or from a computed 
paramete~. The instructions which co~~unicate explicitly. with the L register 
are the following. 

025i--
036-jk 
037--k 

Enter Ai from L 
Enter L with jk 
Enter L from Ak 

Real Time Clock 

Each background processor has a 64 bit register which counts continuously at the 
clock period rate. This count value may then be used to determine the passage 
of real time to an accuracy of one clock period. The instruction which reads 
the real time clock is the following. 

115i-- Enter 51 with real time count 



Semaphore Flags 

The ~our background processors share access to 16 semaphore flags. These flags 
are single bit registers which provide time interlocks for common memory access 
to critical parameter fields. 

The semaphore flags are continuously moving between the background processors. 
The flags are organized in four groups of four flags each. There are four flags 
in each processor in each clock period. In the following clock period the flags 
will have moved in a circular fashion to new positions. The reason for this 
rotation of flag positions is to provide each processor an exclusive access 
to any flag in a four clock period unit of time. The processor can then read 
or alter the flag without interference from another processor. 

It is essential for the read and alter function to occur in the same clock 
period. The background processor instructions which perform these functions are 
the following. 

004--k 
005--k 
006--k 
007--k 

Jump to constant parcel if semaphore Ak clear 
Jump to constant parcel if semaphore Ak set 
Jump to constant parcel if semaphore Ak clear. Set semaphore 
Jump to constant parcel if semaphore Ak set. Clear semaphore 

The lowest order four bits of data in A register k select the flag. The 
branch test and optional flag alteration occur in the same clock period. 



Status Register 

The background processor requires a number of mode flags and error condition 
flags to indicate to the foreground processor the status of the computation. 
These flags are collected into a background processor status register which 
resides in the background processor channel interface. There are 16 bits in 
this status register with bit significance as follows. 

Enable Flags 

bi t 15) 
bi t 14) 
bit 13) 
bit 12) 

UnaSSigned 
~nable semaphore access 
Enable memory field error 
Enable floating point error 

Mode Flags 

bit 11 ) .Interrupt on semaphore error 
bit 10) Interrupt on memory field error 
bit 09) Interrupt on floating pOint error 
bit 08) Interrupt on error exit 
bit 07 ) Interrupt on normal exit 
bit 06 ) Interrupt on idle processor 

Status Flags 

bit 05) 
.• \ 

Semaphore error 
bit 04) Memory field error 
bit 03) Floating ·point error 
bit 02) Error exit 
bit 01) Normal exit 
bit 00) Idle processor 

A status flag is s~t by a transient condition in the background processor and 
remains set until action is taken by the foreground processor. The enable flags 
and mode flags are generally set and cleared by the foreground processor. An 
exception is the enable for floating point error and memory field error for 
which there is a special background processor instruction as well. . 

A call to the foreground processor occurs when a mode flag and the corresponding 
status flag are both set. The foreground processor then reads the status 
register to determine the reason for the call. See 'Background Processor 
Channei Interface' for details. 

Individual bits in the status register have the following functions. 



Bit 14 - Enable semaphore access 

This bit permits the background processor program to alter the state of the 
interprocessor semaphore flags. If this bit is cleared an instruction execution 
whi~h attempts to alter a semaphore flag is aborted and bit five in the status 
register is set. 

Bi t 13 - Enable memory fi eld ·error 

This bit enables the setting of an error status flag if the program makes a 
reference to a common memory address outside the prescribed field. Such a 
reference may be for either an operand or an instruction fetch. 

Bit 12 - Enable floating point error 

This bit enables the set~ing of an error status flag if a floating point 
calculation is made with an operand which is larger than the floating point 
range. 

Bit 11 - Interrupt on semaphore error 

This bit enables a foreground processor call if the semaphore error flag is also 
set. 

Bit 10 - Interrupt on memory field error 

This bit enables a foreground processor call if the memory field error flag is 
also set. 

Bit 09 - Interrupt on floating point error 

This bit enables a foreground processor call if the floating point error flag 
is also set. 

Bit 08 - Interrupt on error exit 

This bit enables a foreground processor call when the background processor 
executes an error exit instruction. 

Bit 07 ~ Interrupt on normal exit 

This bit enables a foreground processor call when the background processor 
executes a normal exit instruction. 

Bit 06 - In~errupt on idle proces~or 

This bit enablgs a foreground processor call when the background processor 
is in an idle mode. 



Bit 05 - Semaphore error 

Tbis bit is set when enabled by a zero bit 14 in the status register and a 
background processor instruction attempt to alter a semaphore flag. 

Bit 04 - Memory field error 

This bit is set when enabled by bit 13 in the status register and a background 
processor attempt to reference common memory beyond the prescribed range. 

Bit 03 - Floating point error 

This bit is set when enabled by bit 12 in the status register and a background 
computation with an operand larger than the foating point range. 

Bit 02 - Error exit 

This bit is set when the background processor executes an error exit 
instruction. 

Bit 01 - Normal exit 

This bit is set when the background processor executes a normal exit 
instruction. 

Bit 00 - Idle processor 

This bit is set when the background processor is in an idle mode. 



Channel Interface 

The background processors have an interface to the foreground processor for 
the control information necessary to sequence the background jobs. This 
interface is a node in one of the four foreground communication channels. 

The foreground processor directs background computation through a set of 
background processor directives. These directives are transmitted over the 
communication channel as a function call with a background processor node 
address. The function call consists of a 32 bit primary code and an option~l 
32 bit parameter. The call addressee may respond with a 32 bit parameter. 
Organization of the primary code i~ as follows. 

4 bits) 
4 bits) 
8 bits) 
16 bits) 

Node address 
Unassigned 
Function code 
Interrupt ad~ress 

Function codes are translated as follows 

00) Null function -
01) Read status register (response) 
02) Read program address (response) 
03) Interrupt and idle 
04) Enter base address (parameter) 
05) Enter limit address (parameter) 
06) Enter status data (parameter) 
07) Enter program address and start (parameter) 

All function calls to the background processor node store the interrupt 
address in a holding register. This includes the null function call. 
The address in the holding register is used to interrupt the foreground 
processor when required by conditions in the background processor status 
register. 

The interrupt process is accomplished by responding to a general channel call 
with the address in the holding register. This address begins a foreground 
processor sequence to process the interrupt request. 

Individual function calls are described as follows. 



Function one - Read status register 

This function call directs the background processor channel node to respond 
with a readout of the processor status register. The status register data 
consists of 16 bits which are transmitted in the low order portion of the 32 
bit response field. See 'Background Processor Status Registe~' for bit 
significance in this data. 

Function two - Read program address 

This function call directs the background processor channel node to respond 
with a readout of the current value in the program address register. The 
background processor is not stopped in this process. 

Function three - Interrupt and idle 

This function call directs the background processor channel node to interrupt 
the background processor computation and change to an idle mode. No further 
activity will occur in this processor until directed by another foreground 
call. 

Function four - Enter base address 

This function call directs the background processor channel node to replace 
the current value of the base address with the value in the function parameter. 
The background processor should be in an idle mode for this call. 

Function five - Enter limit address 

This function call directs the background processor channel node to replace 
the current value of the limit address with the value in the function parameter. 
The background processor should be in an idle mode for this call. 

Function six - Enter status data 

This function call directs the background processor channel node to enter the 
status register with the lowest order 16 bits of the parameter data. See 
'Background Processor Status Register' for details of this register. 

Function seven - Enter program address and start 

.This function call directs the background processor channel node to enter the 
program address register with the function parameter data and then begin 
backgrourid processor execution of the instruction code at that common memory 
address. 



------------------~ 
Instruction Surrunary 
-------------------

000.:.-- Error exit 
001--- 'Normal exi t 

002i-k Jump to parcel Ak and hold· return parcel Ai 
003--- Jump to constant parcel 

004--k Jump to constant parcel if semaphore Ak clear 
005--k ~ump to constant parcel if semaphore Ak set 

006--k Jump to constant parcel if semaphore Ak clear. Set semaphore 
007--k Jump to constant parcel if semaphore Ak set. Clear semaphore 

010--k Jump t·o constant parcel if Ak is zero 
011--k Jump to constant parcel if Ak is nonzero 

012--k Jump to constant parcel if Ak is positive 
013--k Jump to constant parcel if Ak is negative 

014--k Jump to constant parcel if Sk is zero 
015--k Jump to constant parcel if Sk is nonzero 

016--k Jump to constant parcel if Sk is positive 
017--k Jump to constant parcel if Sk is negative 

020ijk Enter Ai with integer sum Aj + Ak 
021ijk Enter Ai with integer difference Aj - Ak 

022ijk Enter Ai with integer product Aj • Ak 
023--- Unassigned 

024i-k Enter Ai from Sk 
025i-- Enter Ai from L 

026ijk Enter Ai with positive jk 
027ijk Enter Ai with negative jk 

030--k Enter M bits where Vk has zero elements 
031--k Enter M bits where Vk has nonzero elements 

032--k Enter M bits where Vk has positive elements 
033--k Enter M. bits where Vk has neg~tive elements 

034--k Enter M from Sk 
035--k Alter status register enable flags 

036--k Enter L from Ak 
037--- Unassigned 



040i- Enter Ai with positive 16 bit constant 
""1': t:"_+.,.._ A': .... .: ~~ ~ .............. ~.; ... - 11:. L: .... constant V-' I J.-- £;'ll"'~l I\J. WJ."'l! lI~~a",J.Y~ IV UJ. \, 

042i-- Enter Ai with 32 bit constant 
043--- Unassigned 

044i-- Enter Ai from constant local memory address 
045i-- Store Ai into constant local memory address 

046i-k Enter Ai from local memory address Ak 
047i-k Store Ai into local memory address Ak 

050i-- Enter Si with positive 16 bit constant 
051i-- Enter Si with negative 16 bit constant 

052i- Enter Si with positive 32 bit constant 
053i-- Enter Si with 64 bit constant 

054i-- Enter Si from constant local memory address 
055i-- Store Si into constant local memory address 

056i-k Enter Si from local memory address Ak 
057i-k Store Si into local memory address Ak 

060ijk Enter Si from common memory address Aj + Ak 
061ijk Store Si into common memory address Aj + Ak 

062--- Unassigned 
063--- Unassigned 

064--- Unassigned" 
065--- Unassigned 

066--- Unassigned 
067--- Unassigned 

070ijk Enter Vi from common memory address Aj with increment Ak 
011ijk Store Vi into common memory address Aj with increment Ak 

072ijk Enter Vi from common memory address Aj + Vk 
073ijk Store Vi into common memory address Aj + Vk 

074i-k Enter Vi from local memory address Ak 
075i-k Store Vi into local memory address Ak 

076--- Unassigned 
077--- Unassigned 



100ijk 
1011jk 

102ijk 
103ijk 

104ijk 
1051jk 

106i-k 
107i-k 

11 Oi jk 
lllijk 

112ijk 
113i jk 

114i-
1151--

116i jk 
117ijk 

120ijk 
1211jk 

122i-k 
,123-

124ijk 

Enter Si with logical product Sj and Sk 
Enter Si with logical product Sj and complement Sk 

Enter Si with logical difference Sj and Sk 
Enter Si with logical sum Sj and Sk 

Enter Si with integer sum Sj + Sk 
Enter Si with integer difference Sj - Sk 

Enter Si with population count of Sk 
Enter Si with leading zero count of Sk 

Enter Si with Si shifted left 64 - jk 
Enter Si with 5i shifted right jk 

Enter 5i with 5i,5j shifted left Ak 
Enter 5i with Sj,Si shifted right Ak 

Enter Si from H 
Enter Si with real time count 

Enter Si with positive jk 
Enter Si with negative jk 

Enter Si with floating sum Sj + Sk 
Enter 5i with floating difference Sj - Sk 

Enter 5i with integer form of floating Sk 
Unassigned -

Enter 5i with floating product Sj • 5k 
1251jk Enter S1 with reciprocal iteration 2 - Sj * Sk 

126i-k 
127---

130i-k 
131i-k 

132i-k 
,133---

134---
135---

136---
137--

Enter 5i with reciprocal approximation of Sk 
Unassigned 

Enter 5i with zero extended Ak 
Enter 5i with sign extended Ak 

Enter' 5i wi th floating form of Ak 
Unassigned 

Unassigned 
Unassigned 

Unassign'ed 
Unassigned 



140ijk Enter Vi with logical product Sj and Vk 
141ijk Enter \1.; with logical product u..: and 'Fl. y. 

'J ,~ 

142ijk Enter Vi with logical d.i fference Sj and Vk 
143i jk Enter Vi with logical difference Vj and Vk 

144ijk Enter Vi with logical sum Sj and Vk 
145ijk Enter Vi with logical sum Vj and Vk 

146ijk Enter Vi with Sj masked into Vk 
141ijk Enter Vi with Vj masked into Vk 

150i jk Enter Vi with Vj elements shifted left Ak 
151ijk Enter Vi with Vj elements shifted right Ak 

152ijk Enter Vi with Vj long shifted left Ak 
153ijk Enter Vi with Vj long shifted right Ak 

154ijk Enter Vi with floating product Sj * Vk 
155ijk Enter Vi with floating product Vj * Vk 

156ijk Enter Vi with reciprocal iteration 2 - Vj * Vk 
151i-k Enter Vi with reciprocal approximation Vk 

160i jk Enter Vi with integer sum Sj + Vk 
161ijk Enter Vi wi tho integer sum Vj + Vk 

.162ijk Enter Vi with integer difference Sj - Vk 
163ijk Enter Vi with integer difference Vj - Vk 

16LJi-k Enter Vi with population count of Vk 
165i-k Enter Vi with leading zero count of Vk 

166--- Unassigned 
161--- Unassigned 

110ijk Enter Vi with floating sum Sj + Vk 
171ijk Enter Vi with floating sum Vj + Vk 

172ijk Enter Vi with floating difference Sj - Vk 
173ijk Enter Vi with floating difference Vj - Vk 

174i-k Enter Vi with integer form of floating Vk 
175--- Unassigned 

176--- Unassigned 
177--- Pass 


	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45

