
c: 
RESEARCH, INC. 

CRAY-1® 
COMPUTER SYSTEMS 

CRAY-1 S SERIES 
HARDWARE 

REFERENCE MANUAL 

HR-0808 



c: 
RESEARCH J INC. 

CRAY-1® 
COMPUTER SYSTEMS 

CRAY-1 S SERIES 
HARDWARE 

REFERENCE MANUAL 

HR-0808 

Copyright© 1980,1981 by CRAY RESEARCH, INC. This manual 
or parts thereof may not be reproduced in any form without 
permission of CRAY RESEARCH, INC. 



RECORD OF REVISION RESEARCH. INC. PUBLICATION NUMBER HR-0808 

Each time this manual is revised and reprinted, all changes issued against the previous version in the form of change packets are 
incorporated into the new version and the new version IS assigned an alphabetic level. Between reprints, changes may be issued 
against the current version in the form of change packets. Each change packet is assigned a numeric designator starting with 
01 for the first change packet of each revision level. - ' 

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand 
corner. Changes to part of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite 
the page number indicates that the entire page is new; a dot in the same place indicates that information has been moved trom 
one page to another, but has not otherwise changed. 

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to: 

CRAY RESEARCH, INC., 
1440 Northiand Drive, 
Mendota Heights, Minnesota 55120 

Revision 

01 

A 

02 

B 

B-Ol 

HR-0808 

Description 

June, 1980 - Original printing 

December, 1980 - This change corrects and updates material 
for the Disk Storage Channel and the Block Multiplexer 
Channel of the I/O Subsystem. Parts 3 and 4 are affected. 

June, 1981 - This revision incorporates change packet 01. No 
other changes have been made. 

July, 1981 - This change corrects the Central memory sizes 
and phasing associated with certain configurations. Part 1, 
section 2 and part 2, section 2 are affected. 

September, 1981 - Reprint with revision. This printing 
includes technical corrections and information on the 
expanded I/O Subsystem. All previous printings are obsolete. 

November, 1981 - Change packet. This packet corrects block 
multiplexer channel information in part 3, section 7, 
resulting in partial reorganization of the section. 
Miscellaneous changes were made in part 2, section 6. 

ii B-Ol 



CONTENTS 

PREFACE 

PART 1 - SYSTEM 

1. SYSTEM DESCRIPTION. 

INTRODUCTION • • • 
SYSTEM COMPONENTS 

Central Processing Unit • • 
Maintenance Control Unit 
Input/Output Subsystem 
Mass storage • • • • • • 
Condensing units • • • • 
Power Distribution Units 
Motor-Generators 

2. SYSTEM CONFIGURATION • 

INTRODUCTION • • • • 
S/250, S/500, S/1000 Models •••••••• 
S/1200, S/2200, S/4200 Models ••••••••••• 
S/1300, S/2300, S/4300 r.1odels • 
S/1400, S/2400, S/4400 Models. 

MAINTENANCE CON'I'ROL UNIT • • • • • 
INTERFACES TO FRONT-END COMPUTER 
SYSTEM OPERATION • • • • • • • • • 

I/O Subsystem communication 
Job flow • • • • 
Deadstart • • • • • • • • • 

FIGURES 

1-1 
1-2 
1-3 
1-4 
1-5 
1-6 
1-7 

Typical CRAY-l Computer System . • • • • • 
Central Processing Unit chassis variations • 
Maintenance Control Unit • • • • • • 
I/O Subsystem • • • • • • • • • • • • • • • • • • 
DCU-3 Disk Controller Unit • 
DD-29 Disk Storage Unit • • •• 
Condensing Unit • • • • • 

HR-0808 v 

iii 

1-1 

1-1 
1-4 
1-4 
1-6 
1-7 
1-7 
1-11 
1-12 
1-13 

2-1 

2-1 
2-1 
2-2 
2-3 
2-5 
2-8 
2-8 
2-9 
2-9 
2-12 
2-13 

1-2 
1-5 
1-6 
1-8 
1-10 
1-10 
1-11 

B 



FIGURES (continued) 
1-8 Power Distribution Units ••• 
1-9 
2-1 
2-2 
2-3 

2-4 

2-5 

2-6 

2-7 
2-8 

Motor-generator equipment 
Block diagram of S/250, S/500, and S/lOOO systems .•••• 
Block diagram of S/1200, S/2200, and S4200 systems. 
Block diagram of S/1300, 5/2300, S/4300 systems with 
block multiplexer channels • • • • . • • • • • • • • • • 
Block diagram of S/1300, S/2300/, and S/4300 systems with 
increased disk capacity . • •• • ••••••• 
Block diagram of S/1400, S/2400, and S/4400 systems with 
block multiplexer channels • •. ••••••••.• 
Block diagram of S/1400, 5/2400, and S/4400 systems with 
increased disk capacity • • • • • ••• 
I/O Subsystem communication 
Job flow diagram • . . • . . 

'l'ABLES 

1-1 
1-2 
1-3 

Models of the CRAY-l S Series of Computer Systems 
CRAY-l System characteristics • • . • • •• • ••••• 
Characteristics of a 00-29 Disk Storage Unit •••.•••• 

PART 2 - CENTRAL PROCESSING UNIT 

1. GENERAL INFORMATION 

INTRODUCTION • • • . . 
Register conventions 
Number conventions 
Clock period •••. 

MEMORY SECTION . • • . . . • • • 

2. 

CONTROL SECTION 
COMPUTATION SECTION 
INPUT/OUTPUT SECTION 

CENTRAL MEMORY SECTION • • 

INTRODUCTION . • . • . 
MEMORY CYCLE TIME 
MEMORY ACCESS 
MEMORY ORGANIZATION 
MEMORY ADDRESSING 
SPEED CONTROL 
8-BANK PHASING . • . 
MEMORY ERROR CORRECTION 

HR-0808 vi 

1-12 
1-13 
2-1 
2-2 

2-4 

2-5 

2-6 

2-7 
2-11 
2-12 

1-1 
1-3 
1-9 

1-1 

1-1 
1-2 
1-2 
1-2 
1-4 
1-4 
1-5 
1-7 

2-1 

2-1 
2-1 
2-1 
2-3 
2-4 
2-4 
2-5 
2-5 

B 



3. CPU CONTROL SECTION 

INSTRUCTION ISSUE AND CONTROL 
P register 
NIP register 
CIP reg ister 
LIP register 
Instruction buffers • • 

EXCHANGE MECHANISM • • 
Exchange package 

Memory error data 
Exchange registers 

XA register •••• 
M register 
F register • • • 

Active exchange package 
Exchange sequence • • • • 

Initiated by deadstart sequence • • • • • 
Initiated by interrupt flag set • • • • • • 
Initiated by program exit • • • • • •••• 
Exchange sequence'issue conditions. 

Exchange package management • • • • • • 
MEMORY FIELD PROTECTION • • • • 

BA register • 
LA register • 
Program range error • 
Operand range error • • 

REAL-TIME CLOCK • • • • 
PROG~~BLE CLOCK • • • • 

Instructions 
Interrupt interval register • 
Interrupt countdown counter • • • • • • • • 
Clear programmable clock interrupt request • • • • 

DEADSTART SEQUENCE • • • • • • • • • • • • • • • • • • • • • • 

4. CPU COMPUTATION SECTION 

INTRODUCTION • • • • • 
OPERATING REGISTERS 
ADDRESS REGISTERS 

A registers • 
B registers • 

SCALAR REGISTERS 
S registers • 
T registers • 

VECTOR REGISTERS • 
V registers • 

V register reservations 
Vector control registers 

VL register 
VM register • • • • 

HR-0808 vii 

3-1 

3-1 
3-2 
3-2 
3-2 
3-3 
3-3 
3-5 
3-5 
3-7 
3-7 
3-8 
3-8 
3-8 
3-9 
3-9 
3-10 
3-10 
3-10 
3-11 
3-11 
3-12 
3-13 
3-13 
3-13 
3-14 
3-14 
3-14 
3-14 
3-15 
3-15 
3-15 
3-16 

4-1 

4-1 
4-1 
4-2 
4-3 
4-4 
4-5 
4-5 
4-6 
4-7 
4-7 
4-9 
4-10 
4-10 
4-10 

B 



5. 

FUNCTIONAL UNITS • . . • . . • 
Address functional units 

Address add unit • • 
Address multiply unit 

Scalar functional units ••••. 
Scalar add unit 
Scalar shift unit •••• 
Scalar logical unit • • •. 
Scalar population/parity/leading zero unit ••••• 

Vector functional units ••••••• 
Vector functional unit reservation • 
Vector add unit • • •• 
Vector shift unit • • •• 
Vector logical unit ••••• 
Vector population/parity unit • • • • • • • • ••• 
Recursive characteristics of vector 
functional units •••••• 

Flc3ting-point functional units .. 
Floating-point add unit •••. 
Floating-point multiply unit • • • . • 
Reciprocal approximation unit • • • • • • • • • • • 

ARITHMETIC OPERATIONS • • • •• .•.• • • • • • 
Integer arithmetic • • • • • • •••• 
Floating-point arithmetic • • • • • • • • • • • 

Normalized floating-point numbers • • • • 
Floating-point range errors 
Double-precision numbers • • • • • • • • • 
Addition algorithm • • • •• • ••• 
Multiplication algorithm . • • •• • ••• 
Division algorithm • • • • • • • • • • • 
Derivation of the CRAY-l Algorithm •••••• 

LOGICAL OPERATIONS • . • • • • • • • • • • • 

CPU INPUT/OUTPUT SECTION • 

INTRODUCTION • 
MEMORY CHANNEL • • 
I/O CHANNELS • 

Channel groups . • • • • • • • • • 
I/O instructions . • • • • • 
Basic I/O channel operation • 
Input channel programming • ••••••••• 

Input channel error conditions • 
Output channel programming • • • • 

Output channel error condition • 
16-bit asynchronous channels 

Input channels • 
Output channels 

HR-0808 viii 

4-11 
4-12 
4-12 
4-12 
4-12 
4-13 
4-13 
4-13 
4-13 
4-14 
4-14 
4-14 
4-15 
4-15 
4-15 

4-16 
1-18 
4-18 
4-18 
4-19 
4-19 
4-19 
4-20 
4-21 
4-21 
4-23 
4-23 
4-23 
4-25 
4-26 
4-31 

5-1 

5-1 
5-1 
5-2 
5-2 
5-2 
5-3 
5-4 
5-6 
5-7 
5-7 
5-7 
5-7 
5~9 

B 



I/O CHANNELS (continued) 
16-bit high-speed asynchronous 

Input channels • • • • • • 
Output channels 

16-bit synchronous channels 
Input channels • • 

channels • • 

Output channels • • • • • 
Programmed master clear to external device 

Sequence for asynchronous channels • 
Sequence for high-speed asynchronous and 
synchronous channels • 

Memory access • • • • 
I/O lockout • • • • • • 
Memory bank conflicts • 
I/O Memory conflicts 
I/O Memory request conditions • 
I/O Memory addressing • • • • 

6. CPU INSTRUCTIONS • 

INSTRUCTION FORMAT • • 
Arithmetic, logical format 
Shift, mask format 
Immediate constant format • 
Memory transfer format • • • • • • • • 
Branch format • • • 

SPECIAL REGISTER VALUES • • • • • • • • 
INSTRUCTION ISSUE 
INSTRUCTION DESCRIPTIONS • 

7. CPU INTERFACES •• 

INTRODUCTION • 
PHYSICAL DESCRIPTION • 
CABLING LIMITATIONS 
OPERATION • • • • • • • 

FIGURES 

1-1 
1-2 
2-1 
2-2 
2-3 
2-4 
3-1 
3-2 
3-3 

Basic organization of the CPU 
Control and data paths in the CPU 
Memory address (16 banks) •••• 
Memory address (8 banks) • • • 
Memory data path with SECDED • 
Error correction matrix 
Instruction issue and control elements • • 
Instruction buffers • • • • • • 
Exchange package • • • • • • • • • • • 

HR-0808 ix 

5-11 
5-11 
5-13 
5-15 
5-15 
5-17 
5-19 
5-19 

5-20 
5-22 
5-22 
5-22 
5-23 
5-23 
5-23 

6-1 

6-1 
6-1 
6-2 
6-2 
6-3 
6-4 
6-5 
6-5 
6-6 

7-1 

7-1 
7-1 
7-2 
7-2 

1-1 
1-3 
2-4 
2-4 
2-5 
2-7 
3-1 
3-3 
3-6 

B 



FIGURES (continued) 
4-1 Address registers and functional units • 
4-2 Scalar registers and functional units . • • • . 
4-3 Vector registers and functional units 
4-4 Integer data formats • . • • • • • 
4-5 Floating-point data formats 
4-6 Integer multiply in floating-point multiply unit 
4-7 49-bit floating-point addition ••••••. 
4-8 Floating-point multiply partial-product sums pyramid . 
4-9 Newton's method • • . • • •••••• 
5-1 Basic I/O program flow chart . • • • • • • • . 
5-2 Channel I/O control •• • • • • • • • • 0 0 

6-1 General form for instructions 0 0 • 0 0 0 0 0 0 0 

6-2 Format for arithmetic and logical instructions 00 0 0 

6-3 Format for shift and mask instructions • • 0 •• 0 0 

6-4 Format for immediate constant instructions 0 

6-5 Format for memory transfer instructions 
6-6 Two-parcel format for branch instructions . . . . 
6-7 Vector left double shift, first element, VL greater than 1 0 

6-8 Vector left double shift, second element,VL greater than 2 0 

6-9 Vector left double shift, last element 0 0 •• 0 •• 0 

6-10 Vector right double shift, first element • 0 •• 0 0 

6-11 Vector right double shift, second element, 
VL greater than 1 • 0 • 0 • 0 0 0 • • 0 0 0 

6-12 Vector right double shift, last operation 
7-1 Typical interface cabinet • • 0 • 0 • • 0 0 

TABLES 

1-1 
1-2 
1-3 

1-4 
2-1 
5-1 
5-2 
5-3 
5-4 

5-5 

5-6 
5-7 

Characteristics of the CPU memory section 
Characteristics of the CPU control section 
Characteristics of CPU computation section • 
Characteristics of the CPU input/output section 
Vector memory rate x 80 x 106 references per second 
Channel word assembly/disassembly • 0 • • • • • • 

16-bit asynchronous input channel signal exchange 
16-bit asynchronous output channel signal exchange 0 

16-bit high-speed asynchronous input channel 
signal exchange • • . • • • • • • 0 • • 0 • • 

16-bit high-speed asynchronous output channel 
signal exchange • 0 • • • 0 • • • • • • 0 • • • • • • 

16-bit synchronous input channel signal exchange 
16-bit synchronous output channel signal exchange •• 0 0 • 

HR-0808 x 

4-2 
4-5 
4-7 
4-19 
4-20 
4-22 
4-23 
4-24 
4-25 
5-5 
5-21 
6-1 
6-2 
6-2 
6-3 
6-4 
6-4 
6-66 
6-66 
6-66 
6-67 

6-68 
6-68 
7-2 

1-4 
1-5 
1-6 
1-7 
2-4 
5-3 
5-8 
5-10 

5-12 

5-14 
5-16 
5-18 

B 



PART 3 - I/O SUBSYSTEM 

1. 

2. 

3. 

4. 

GENERAL INFORMATION 

INTRODUCTION 
MEMORY SECTION • 
CONTROL SECTION 
COMPUTATION SECTION 
INPUT/OUTPUT SECTION 
I/O SUBSYSTEM CLOCK 

I/O MEMORY SECTION 

INTRODUCTION 
MEMORY SPEEDS 
MEMORY ORGANIZATION 
MEMORY ACCESS 
MEMORY ADDRESSING 
MEMORY PARITY PROTECTION 

lOP CONTROL SECTION 

INTRODUCTION 
INSTRUCTION CONTROL NETWORK 

Instruction stack 
Forward relative branch 
Backward relative branch 

II register 
B register 
RP register 
DP register 
P register 
Program exit stack 

Program Exit Stack and I/O Interrupts 
Program Exit Stack Timing Note 

Program fetch request flag 
MA register 

lOP COMPUTATION SECTION 

INTRODUCTION 
OPERAND REGISTERS 
FUNCTIONAL UNITS 

Adder 
Shifter 

ACCUMULATOR 
Carry-bit register 
Addend registers 

HR-0800 xi 

1-1 

1-1 
1-1 
1-3 
1-3 
1-4 
1-4 

2-1 

2-1 
2-1 
2-2 
2-2 
2-2 
2-3 

3-1 

3-1 
3-1 
3-3 
3-5 
3-5 
3-6 
3-6 
3-6 
3-6 
3-7 
3-7 
3-10 
3-10 
3-10 
3-11 

4-1 

4-1 
4-1 
4-2 
4-2 
4-2 
4-3 
4-3 
4-4 

B 



5. INPUT/OUTPUT SECTION .• 

INTRODUCTION 
I/O CONFIGURATION • • • • • 
I/O SPEEDS • • • • • • . • • • . 
CHANNEL CHARACTERISTICS • • • • 

Accumulator channels 
Function designators • 
Function strobe 
Accumulator data • 
Read done • • • • • • 
Read busy • • • • • 
Busy/done . • • • 
Master clear • • 
Clock 
Interrupt 

Channels using a DMA port • • 
I/O Memory data • . • • • • • . 
I/O Memory address • • • • • • • 
Request read • • 
Request write 
Acknowledge read • • 
Acknowledge write 

Read sequence • • • • • • 
Write sequence ••.• 

STANDARD CHANNELS • . • • • • • • • • • • 
Channel for I/O requests (CH. 0) ••••• 
Channel for program fetch request (CH. 1) 
Channel to program exit stack (CH. 2) 

Deadstart sequence • • • • • • • 
Channel for I/O Memory error (CH. 3) 
Channel to real-time clock (CH. 4) •••• 

Channel to Buffer Memory (CH. 5) 
Error handling ••••••••• 
Buffer Memory interface deadstart 
Buffer Memory interface dead dump 

CHANNEL FOR I/O PROCESSOR INPUT (CH. 6, 10, 12) 
CHANNEL FOR I/O PROCESSOR OUTPUT (CH. 7, 11, 13) 
INTERRUPT SEQUENCE • • • . • • • • • • • • • • • 

6. lOP INSTRUCTIONS • 

INSTRUCTION FORMAT 
INSTRUCTION DESCRIPTIONS • 

HR-0808 xii 

5-1 

5-1 
5-1 
5-2 

5-2 
5-2 
5-3 
5-3 
5-3 
5-3 
5-3 
5-4 
5-4 
5-4 
5-4 
5-4 
5-5 
5-5 
5-5 
5-5 
5-5 
5-6 
5-6 
5-6 
5-7 
5-9 
5-9 
5-10 
5-11 
5-12 
5-12 
5-13 
5-16 
5-16 
5-16 
5-16 
5-17 
5-18 

6-1 

6-1 
6-2 

B 



7. INTERFACES .• 

INTRODUCTION . • • • 
INTERFACE CHARACTERISTICS 
INTERFACE FUNCTION CODES • 
DISK STORAGE UNIT CHANNEL 

Disk storage unit characteristics 
DSU data sequence pattern • • • • • • • 
Sector identification word 
I/O Memory address register • • 
Status response register •••• 
DKA : 0 - clear channel 
DKA : 1 - select mode • 

Parameter OOOxxx - release unit 
Parameter OOlxxx - reserve unit 
Parameter 002xxx - clear fault flags 
Parameter 003xxx - return to zero cylinder 
Parameter 004xxx - select cylinder margin 
Parameter 005xxx - read sector number 
Parameter 006xxx - read error flags 
Parameter 007000 - read cylinder register 
Parameter 007001 - read head register 
Parameter 007002 - read margin/difference 

. 

register • • • • • • • • • • • • • • • • • • • 
Parameter 007003 - read interlock register 
Timing notes • • • 

DKA : 2 - read disk data 
DKA : 2 - abnormal conditions • • • • 
DKA : 2 - special modes • • • • • • • 
Buffer echo mode • • 

DKA : 3 - write disk data •• 
Fire code generation • 
Lost data error 
Lost function error •••• 
Format mode 
Buffer echo mode • • 

DKA 4 - select head group 
DKA 5 - select cylinder • 
DKA 6 - clear interrupt enable 
DKA 7 - set interrupt enable 

. . . 

7-1 

7-1 
7-1 
7-2 
7-6 
7-6 
7-7 
7-8 
7-8 
7-9 
7-9 
7-9 
7-10 
7-10 
7-11 
7-11 
7-11 
7-11 
7-12 
7-15 
7-15 

7-16 
7-17 
7-17 
7-18 
7-19 
7-20 
7-21 
7-21 
7-22 
7-22 
7-22 
7-23 
7-23 
7-24 
7-24 
7-25 
7-25 

DKA 10 - read local memory address 7-25 
DKA 11 - read status response • • • 7-25 
DKA 14 - enter local memory address • • • • • • • • •• 7-26 
DKA 15 - status response register diagnostic • • • •• 7-26 

CONSOLE DISPLAY CHANNEL • • • • • • • • •• 7-26 
CONSOLE KEYBOARD CHANNEL • • • 
PERIPHERAL EXPANDER CHANNEL 

HR-0808 

Interface registers • • • 
Channel assignments • • • 
EXB : 0 - idle channel 

xiii 

7-27 
7-28 
7-28 
7-29 
7-29 

B 



PERIPHERAL EXPANDER CHANNEL (continued) 
EXB 1 - DIA 
EXB 2 - DIB • • • • • • • • • • • • 
EXB 
EXB 
EXB 
EXB 
EXB 
EXB 
EXB 
EXB 
EXB 
EXB 
EXB 

3 - DIC • • • • • • 
4 - read busy/done, interrupt number 
5 - load device address .••• 
6 - MSKO mask out • • • • 
7 - set interrupt mode • • • • • 
10 - read data bus status 
11 - read status 1 
13 - read status 2 
14 - DOA (Data out A) 
15 - DOB (Data out B) 
16 - DOC (Data out C) 

EXB 17 - send control 
Delayed functions 
Transfer speeds • • • • 

CHANNEL FOR INPUT FROM CRAY-l CHANNEL 
I/O Memory address register • • • 
CIA 0 - clear channel • • • • • 
CIA 1 - enter I/O Memory address 
CIA 2 - enter parcel count 
CIA 3 - clear channel parity error flags 
CIA 4 - clear ready waiting • • • • 
CIA 6 - clear interrupt enable flag • • • • • • • • • • 
CIA 7 - set interrupt enable flag 
CIA 10 - read memory address 
CIA 11 - read ready waiting/error flags • • • • • • • • 

CHANNEL FOR OUTPUT TO CRAY-l CHANNEL • • • • • • • 
I/O Memory address register • • • • • 
COA 0 - clear channel • • • • • • • • • • • • • • 
COA 1 - enter I/O Memory address • • • • • • 
COA 2 - enter parcel count • • • • • • • • • • • • • • 
COA 3 - clear error flag • • • • 
COA 4 - set/clear external control signals • • • • 
COA 6 - clear interrupt enable flag 
COA 7 - set interrupt enable flag • • • • 
COA 10 - read I/O Memory address •• • • • • • • • • • 
COA 11 - read error flags 

MEMORY CHANNEL • • • • • • • 

7-29 
7-29 
7-29 
7-29 
7-30 
7-30 
7-32 
7-32 
7-32 
7-33 
7-34 
7-35 
7-35 
7-35 
7-36 
7-36 
7-37 
7-37 
7-37 
7-38 
7-38 
7-38 
7-38 
7-38 
7-38 
7-38 
7-38 
7-40 
7-40 
7-40 
7-41 
7-41 
7-41 
7-41 
7-42 
7-42 
7-42 
7-43 
7-43 

Signal Descriptions • • • • • • • • • • • 7-44 

HR-0808 

Central processing unit to I/O processor input channel 7-44 
I/O Processor to central processing unit 
output channel • • • • • • • • • • • • • • 

Memory Channel functions for input from CPU • • 
Interface registers ••••••• 
HIA 0 - clear channel busy, done flags 

• • • 7-48 

HIA 1 - enter I/O Memory starting address • • • • 

7-50 
7-51 
7-51 
7-51 

HI!'. 2 - --~--CUI...C.L upper Central Mewory address 7--51 

xiv B 



Memory Channel functions for input from CPU (continued) 
HIA 3 - enter lower Central Memory address • • • 
HIA 4 - read Central Memory, enter block length 
HIA 6 - clear interrupt enable • • • • 
HIA 7 - set interrupt enable • • • 
HIA 14 - enter diagnostic mode • • 
Memory channel input error processing 
Memory channel input sequence • • • • 

Memory Channel functions for output to CPU 
Interface registers • • • • • • • 
HOA 0 - clear channel busy, done flags 
HOA 1 - enter I/O Memory address • 
HOA 2 - enter upper Central Memory address • • • • 
HOA 3 - enter lower Central Memory address • • • • 
HOA 5 - write Central Memory, enter block length 
HOA 6 - clear interrupt enable • • • • 
HOA 7 - set interrupt enable • • • • • • • • 
HOA 14 - en ter diagnos tic mode • • • 
Central Memory output error processing • 
Memory channel output sequence • • 

ERROR LOGGING CHANNEL • • •• 
Interface Registers • • • • • 
ERA 0 - idle channel ••••••••••••••••• 
ERA 6 - clear interrupt enable flag 
ERA 7 - set interrupt enable flag • •••• • • • • 
ERA 10 - read error status • • • • 
ERA 11 - read error information (first parameter) 
ERA 12 - read error information (second parameter) 
ERA 13 - read error information (third parameter) 

BLOCK MULTIPLEXER CHANNEL • • • • • • • • • • 

HR-0808 

General characteristics 
Transfers rates 
Data handling 
Record size • 
Parity 
Interrupts 
BMA : 0 - clear channel busy and done flags • 
BMA : 1 - send reset function • • • • 

Parameter xxxxxO - clear output tag lines 
Parameter xxxxxi - interface disconnect 
Parameter xxxxx2 - selective reset 
Parameter xxxxx3 - system reset 

BMA : 2 - channel command • • • • 
Parameter command bits ••••• 

BMA 3 - read request-in address 
BMA : 4 - asynchronous I/O • • • • 

xv 

7-51 
7-52 
7-52 
7-52 
7-52 
7-53 
7-53 
7-56 
7-56 
7-56 
7-56 
7-57 
7-57 
7-57 
7-57 
7-57 
7-57 
7-58 
7-60 
7-61 
7-61 
7-61 
7-62 
7-62 
7-62 
7-63 
7-63 
7-65 
7-66 
7-66 
7-67 
7-67 
7-67 
7-68 
7-68 
7-69 
7-69 
7-69 
7-69 
7-70 
7-70 
7-70 
7-71 
7-73 
7-74 

B-Ol 



BLOCK MULTIPLEXER CHANNEL (continued) 
BMA 5 - delay counter diagnostic ••••• 
BMA 6 - clear channel interrupt enable flag 
BMA 7 - set channel interrupt enable flag 
BMA 10 - read I/O Memory address • • • • • • • • 
BMA 11 - read byte coun ter ••••••••••• 
BMA 12 - read status • • • • • • 
BMA 13 - read inpu t tags • • •• •••• 
BMA 14 - enter I/O Memory address • • • • • 
BMA 15 - en ter byte coun t • • • • • • • • • 
BMA 16 - enter device address/mode 

Parameter mode bits 
BMA : 17 - enter output tags. 

PROGRAMMING EXAMPLES • • • • • • • • 

8. BUFFER MEMORY 

INTRODUCTION • • 
MEMORY SPEEDS 
MEMORY ORGANIZATION 
MEMORY ACCESS 
MEMORY ADDRESSING 
ERROR PROTECTION • • 

FIGURES 

1-1 
2-1 
3-1 
3-2 
3-3 
3-4 
5-1 
6-1 
7-1 
7-2 
7-3 
7-4 
7-5 
7-6 
7-7 
7-8 
7-9 
7-10 
7-11 
7-12 
7=13 

Basic organization of an I/O Processor • 
I/O Memory address format 
I/O Processor block diagram 
Instruction format • • • • • • • • • • • 
Instruction stack operation 
Program exit stack ••••• 
Buffer Memory address formation •• 
Instruction format • • • • • • • • • • 
DSU data sequence pattern • • ••• 
Sector 10 format • • • • • • • • • • 
Status response error flags •• 
Offset margin status word ••••••••••••••• 
Difference register example •••••• 
Interlock register status bits • •••• • • • • • 
Format mode sector pattern ••• 
Memory Channel signals • • • • • • • • • • • • • 
Address and word count formats • 
Memory Channel sequence, input to I/O Processor. 
Memory Channel sequence, output from I/O Processor • 
BMC-4 data assembly/disassembly • • • • • • • • • 
Channel read sequence •• 

7-14 Channel ASYNCHRONOUS I/O sequence •• 

HR-0808 xvi 

7-76 
7-76 
7-76 
7-76 
7-77 
7-78 
7-79 
7-80 
7-81 
7-81 
7-82 
7-84 
7-84 

8-1 

8-1 
8-1 
8-1 
8-2 
8-2 
8-3 

1-2 
2-3 
3-2 
3-3 
3-4 
3-8 
5-14 
6-1 
7-7 
7-8 
7-13 
7-16 
7-16 
7-17 
7-23 
7-44 
7-47 
7-55 
7-60 
7-68 
7-73 
7-74 

B 



FIGURES (continued) 
7-15 Asynchronous data and status processing •• 
8-1 Parcel packing in memory word. • • 
8-2 Buffer Memory port assignments • 
8-3 Buffer Memory address formation. • • • •• 

TABLES 

2-1 
3-1 
4-1 
4-2 
5-1 
5-2 
5-3 
7-1 
7-2 
7-3 
7-4 
7-5 
7-6 
7-7 
7-8 
7-9 
7-10 
7-11 
7-12 
7-13 
7-14 
7-15 
7-16 
7-17 
7-18 
7-19 
7-20 
7-21 
7-22 
7-23 
7-24 
7-25 
7-26 
7-27 
7-28 
7-29 
7-30 

I/O Processor memory characteristics ••••• 
Characteristics of the lOP control section ••• 
Characteristics of the I/O computation section 
Accumulator sources and destinations • • • • • 
Characteristics of the lOP input/output section •• 
I/O Processor standard channel assignments 
Standard channel functions • • • 
Interface functions. • • • • • • • • • • • • • 
Sector ID parity bit assignments 
DKA : 1 parameters • • • •• ••••••••••• 
Parameter 006 error flags. • • •• •• •• 
Interlock status bits. • • • •• • •••• 
Peripheral device mask bits for interrupt disabling. 
Read status 1 bit assignments. • • • • • • 
Read status 2 bit assignments. • • • ••••• 
Accumulator bit control signals. • • • • • • 
Ready waiting/error flags. • • •••••••••• 
External control signal bits • • • ••••••••• 
Error flags ••••••••••• 
Input channel diagnostic modes • 
Input channel error codes ••• 
Output channel diagnostic modes. • • • •••• 
Output channel error codes • • • 
Error status register bits •••• 
First error parameter selection ••• 
Send reset function parameters • • 
Channel command function parameter bits. 
Channel command bit assignments •• • • 
Read I/O Memory address response bits 
Status register bits ••••••••••••• 
Input tags status bits • • • • • • 
I/O Memory address register bits •••••• 
Device address register bits • • 
Command chaining mode selection 
Interrupt mode selection • • • • • • 
Channe~ type mode selection • • • • • 
Output tags register bits. • • ••••••••• 

HR-0808 xvii 

7-75 
8-2 
8-2 
8-3 

2-1 
3-1 
4-1 
4-3 
5-1 
5-7 
5-8 
7-3 
7-9 
7-10 
7-14 
7-18 
7-31 
7-33 
7-34 
7-35 
7-39 
7-42 
7-43 
7-53 
7-54 
7-58 
7-59 
7-62 
7-64 
7-69 
7-71 
7-72 
7-77 
7-79 
7-80 
7-81 
7-82 
7-83 
7-83 
7-83 
7-84 

B-Ol 



PART 4 - APPENDIX SECTION 

A. SUMMARY OF CPU TIMING INFORMATION. • 

SCALAR INSTRUCTIONS. . 
VECTOR INSTRUCTIONS. 
HOLD ISSUE • • • • 
HOLD MEMORY. • • • • • • • 
INTERRUPT TIMING • 

B. PHYSICAL ORGANIZATION OF CPU • 

MAINFRAME. • • • 
Modules • 
Clock • 
Power Supplies 

COOLING. • • • • • • • 

C. SOFTWARE CONSIDERATIONS 

SYSTEM MONITOR • • 
USER PROGRAM • • • 
OPERATING SYSTEM • 
SYSTEM OPERATION • 
FLOATING-POINT RANGE ERRORS. • • 

D. CPU INSTRUCTION SUMMARY. • • • 

E. I/O PROCESSOR INSTRUCTION SUMMARY. 

F. SYSTEM CHANNEL ASSIGNMENTS •• 

G. lOP PROGRAMMING CONSIDERATIONS 
EXIT STACK TIMING. • • • • • • 
EXIT STACK INTERRUPT HANDLING. • 
SYSTEM INTERRUPT ENABLE. • • • • 

A-I 

A-I 
A-3 
A-4 
A-5 
A-6 

B-1 

B-1 
B-1 
B-4 
B-5 
B-5 

C-1 

C-1 
C-1 
C-1 
C-2 
C-2 

D-1 

E-1 

F-1 

G-1 
G-1 
G-1 
G-1 

SYSTEM INTERRUPT DISABLE • • • • •••• •• • • G-2 
SYSTEM INTERRUPT CLEARED OR SET BY THE ENABLES FOR 

INDIVIDUAL CHANNELS • 
I/O CHANNEL TIMING • • • • • • 

Buffer memory errors 
BUFFER MEMORY DEADSTART TIME • 
ERROR LOGGING AND BLOCK MULTIPLEXER CHANNELS • 
I/O INSTRUCTIONS AFTER DEADSTART • • • • • • • 
PERIPHERAL EXPANDER CHANNEL TRANSFERS. • 

H. LIST OF ABBREVIATIONS. • • • • • • • • • 

HR-0808 xviii 

G-2 
G-2 
G-2 
G-3 
G-3 
G-3 
G-3 

H-1 

A 



FIGURES 

B-1 
B-2 
B-3 

Physical organization of CPU •• 
General chassis layout. • 
Clock pulse waveform. • • • • • 

TABLES 

B-2 
B-3 
B-4 

F-l Typical Model 4400 system channel assignments • • • • • • •• F-l 

HR-0808 xix B 





PART 1 

SYSTEM 



I 

SYSTEM DESCRIPTION 

INTRODUCTION 

The CRAY-l S Series of Computer Systems is based on a powerful 
general-purpose central processing unit CPU capable of extremely high 
processing rates. These rates are achieved by combining scalar and 
vector capabilities into the CPU, which is joined to a large, fast, 
bipolar integrated circuit memory. Vector processing, which is the 
performance of iterative operations on sets of ordered data, provides 

1 

results at rates greatly exceeding the result rates of conventional 
scalar processing. Scalar operations complement the vector capability by 
providing solutions to problems not readily adaptable to vector 
techniques. Table 1-1 summarizes the models available in the S Series of 
computer systems. These models are described in greater detail in 
section 2 under System Configurations. The Model S/250 is no longer 
available. 

Table 1-1. Models of the CRAY-l S Series of Computer Systems 

I~ 5/250 5/500 S/1000 5/1200 5/1300 5/1400 5/2200 5/2300 5/2400 5/4200 5/4300 

I C?U 
: Central Memory s lze 1/4M 1/2M l!'-l 1M 1M 1M 2M 2M 2M 4M 4M 

(64-bit words) 

'RONT-END INTERFACES 1-3 1-3 1-3 1-3 1-3 I 1-3 1-3 1-3 1-3 1-3 1-3 
i 

'/0 SUBSYSTEM 
I/O Processors 
Bu ffer memory Size I-8M I-8M I-8M I-8M I-8M I-8M I-8M I-8M 
DCU 4 Disk Controller Units 1-4 1-8 1-12 1-4 1-8 1-12 1-4 1-8 
DD-29 Disk Storage Units 2-16 2-32 2-48 2-16 2-32 2-48 2-16 2-32 
Block Multiplexer Controllers I 1-4 1-4 1-4 1-4 1-4 
Block Multiplexer Channels I 1-16 1-16 1-16 1-16 1-16 

i 
;lASS STORAGE SUBSYSTEM 

1 DCU-3 Disk CO!"ltrol Units 2-8 2-8 2-8 
DD-29 Disk Storage Un its 2-32 2-32 2-32 I I 

The CRAY-l S Series of Computer Systems encompasses a wide variety of 
configurations. On the advanced models, a sophisticated I/O Subsystem 
matches the high processing rates with high input/output transfer rates 
for communication with mass storage units, other peripheral devices, and 
a wide variety of host computers. Several combinations of memory size 
and I/O capabilities are offered. 

An optimum system can be configured for a particular use. This section 
briefly describes the system components, configurations, and operation. 
Table 1-2 gives the overall system characteristics. Figure 1-1 
illustrates a typical system. 

HR-0808 
Part 1 
1-1 B 

5/4400 

4M 

1-3 

I-8M 
1-12 
2-48 
1-16 
1-16 



HR-0808 

Figure 1-1. Typical CRAY-l Computer System 

Part 1 
1-2 B 



Table 1-2. CRAY-l System characteristics 

Configuration - Central Processing Unit 

CPU Speed 

Memories 

- Maintenance Control Unit (MCU) or I/O Subsystem with 2 to 
4 I/O Processors 

- 12.5 ns CPU clock period 

- SO million floating-point additions per second rate 

- SO million floating-point multiplications per second rate 

- Simultaneous floating-point addition and multiplication 

- SO million 1/2 precision floating-point divisions per 
second rate 

- 25 million full precision floating-point divisions per 
second rate 

- Up to 4 million 64-bit words in CPU Central Memory 

- 65 thousand l6-bit parcels in each I/O Processor I/O 
Memory 

I - 1 to S million 64-bit words of I/O Subsystem Buffer Memory 

I 

Mass Storage - 600 million byte disk drive 

- 4S disk drives maximum 

Input/Output 

Physical 

HR-OSOS 

- 3S.7 Mbits/s disk drive transfer rate 

- Up to 12 CPU channel pairs (if no I/O Subsystem) 

- 1 standard and 1 optional Memory Channel to CPU; approx. 
SOO Mbits/s 

- Many other mainframe interfaces 

- 6 Direct memory access (DMA) ports to each I/O Processor 

- 40 channels; input or output sharing the six DMA ports 
per I/O Processor 

- 100 sq ft floor space for CPU 

- 10 sq ft floor space for I/O Subsystem 

- 5~25 tons, CPU weight 

- 1.5 tons, I/O Subsystem weight 

- Liquid refrigeration of each chassis 

- 400 Hz power from motor-generators 

Part 1 
1-3 B 



SYSTEM COMPONENTS 

The CRAY-l Computer System is composed of a Central Processing Unit 
(CPU), a Maintenance Control Unit or I/O Subsystem, and mass storage 
devices. Supporting this equipment are condensing units for 
refrigeration, power distribution units for the CPU and the I/O 
Subsystem, and motor-generators providing system power. 

CENTRAL PROCESSING UNIT 

The CPU is a single integrated processing unit having a memory section, a 
control section, a computation section, and an input/output section. 

The memory section contains from 262,144 to 4,194,304 words of 64 bits 
each. Memory is organized in 8 or 16 interleaved banks to allow fast 
access to successive addresses. The bipolar integrated circuits and the 
interleaving give a 4-clock-period (50 nanosecond) bank cycle time and an 
overall memory performance of one word every 12.5 nanoseconds. Single 
error correction/double error detection (SECDED) protects data integrity. 

The control section contains registers and circuitry that controls 
instruction issue, transfers execution from program to program, and 
recognizes modes, error flags, and interrupt conditions. 

The computation section handles the scalar and vector operations. It is 
composed of scalar, vector, and address registers; instruction buffers; 
and segmented functional units. 

The input/output (I/O) section contains up to 12 channel pairs; each 
input or output channel carries 16 data bits, 3 control bits, and 4 
parity bits. Normal channel speed is 50 or 160 Mbits per second, 
maximum. A single Memory channel communicates with the I/O Subsystem at 
approximately 850 Mbits per second. 

Because superior performance is achieved using the Memory channel and I/O 
Subsystem channels, all but one of the CPU channels are generally not 
used when an I/O Subsystem is present. 

The Central Processing Unit computation section is located in four 
columns of mainframe chassis. An additional four or eight columns 
contain Central Memory. Some versions of the CRAY-l Computer System use 
the 8-column chassis with four columns of memory and four columns of 
computation section. Other models have an additional four columns to 
house more memory. These variations are discussed later with the 
description of each configuration. The bench at the base of each column 
houses the DC power supplies for that column. Figure 1-2 shows these 
variations nf CPU chassis~ Part 2 of this publication describes the CPU 
in detail. 

HR-0808 
Part 1 
1-4 B 



HR-0808 

Figure 1-2. Central Processing Unit chassis variations 

Part 1 
1-5 B 



MAINTENANCE CONTROL UNIT 

The Maintenance Control Unit (MCU) is used for supervisory operation and 
maintenance on CRAY-l System Models 5/250, 5/500, and 5/1000. It 
consists of a minicomputer, a tape drive, a card reader, a removable pack 
disk drive, a line printer, and 2 operator consoles. It may be used to 
enter jobs locally. Figure 1-3 shows the Maintenance Cuntrol Unit. 

HR-0808 

Figure 1-3. Maintenance Control Unit 

Part 1 
1-6 B 



I 

INPUT/OUTPUT SUBSYSTEM 

Models S/1200 through S/4400 of the CRAY-l S Series are equipped with an 
I/O Subsystem composed of 2, 3, or 4 I/O Processors, a Buffer Memory, and 
required interfaces. Each I/O Processor (lOP) is independent and handles 
some portion of the I/O requirements for the system. I/O Processors are 
designed for fast data transfer between a front-end computer peripheral 
device and Buffer Memory or between Buffer Memory and the Central 
Processing Unit. Each I/O Processor has a computation section, a memory 
section, a control section, and an I/O section. Part 3 of this 
publication describes the I/O Processor in detail. One I/O Processor is 
assigned a supervisory role for the group of I/O Processors. 

The computation section of an lOP has functional units and operand 
registers, and uses an accumulator in single-address operation. 

The I/O Processor Memory holds 65,536 words of 16 bits each in bipolar 
integrated circuits; 16-bank phasing is used in this memory to maintain 
high-speed data transfers. 

The I/O Processor section has six direct memory access (DMA) ports 
divided among the channels. A DMA port can transfer data at peak rates 
of approximately 850 Mbits per second; one port may be receiving data at 
the same time another port is sending data. Interfaces with internal 
buffering connect the I/O Processor to mass storage devices or to other 
high-speed equipment. Several independent channels may share one DMA 
port and this is done for some peripheral devices such as disk storage 
units. A standard set of peripherals provide for supervisory control and 
for maintenance: a tape drive, a line printer, and two operator 
consoles. Cray Research interfaces connect I/O Processors with front-end 
or host computers for network operation. Appendix F lists the various 
functions assigned to channels in a typical I/O Subsystem. 

The Buffer Memory assists data transfer between peripheral devices and 
the Central Processing Unit. Buffer memory stores 1 million to 8 million 
words of 64 bits each, using single error correction/double error 
detection (SECDED) data protection. All I/O Processors share the Buffer 
Memory. The Central Processing Unit is not directly connected to the 
Buffer Memory. An I/O Processor relays data between the Buffer Memory 
and the CPU. 

The I/O Subsystem is housed in a 4-column chassis similar to the CPU 
chassis. Figure 1-4 shows this chassis. 

MASS STORAGE 

The basic unit of mass storage for the CRAY-l Series Computer Systems is 
the DD-29 Disk Storage Unit (DSU). This is a 600 Mbyte disk drive having 
a maximum data transfer rate of 35.4 Mbits per second. 

HR-0808 
Part 1 

1-7 B 



HR-0808 

Fiqure 1-4. I/O Subsystem 

Part 1 
1-8 

B 



I 

On Models S/250, S/500, and S/lOOO, up to four DD-29s can be connected to 
one DCU-3 Disk Controller Unit (figure 1-5). A mass storage subsystem 
composed of 2 to 8 DCU-3 Disk Controller Units and 2 to 32 Disk Storage 
Units can be configured on the Models S/250, S/500, and S/lOOO. However, 
the actual number of units depends on the number of available I/O channel 
pairs <e.g., if 4 channel pairs are used from front-end computer systems, 
including 1 for the MCU, the remaining 8 can be used for mass storage.} 
Operating and programming information for the DCU-3 is included in CRI 
Publication HR-0630. 

On models S/1200 through S/4400, up to four DD-29s can be connected to 
one DCU-4 Disk Controller Unit. The DCU-4 Controller Unit interfaces the 
four disk units with the I/O Processor through two DMA ports. The I/O 
Processor and the Disk Controller Unit are fast enough to keep all four 
DSUs operating at full speed without missing data or skipping 
revolutions. A minimum of 2 and a maximum of 48 DD-29s can be 
configured. Figure 1-6 shows a DD-29 Disk Storage Unit. The DCU-4 Disk 
Controller Unit is housed in the I/O Subsystem chassis. 

Each DD-29 Disk Storage Unit has two ports for controllers. A second 
independent data path to each disk storage unit may exist through another 
Cray Research controller. Reservation logic is provided to control 
access to each disk storage unit. 

Operational characteristics of the DD-29 Disk Storage Units are 
I summarized in table 1-3. Further information about the DCU-4 and DD-29 

I 

is presented in part 3, section 7 of this publication. 

Table 1-3. Characteristics of a DD-29 Disk Storage Unit 

Bit capacity per 
drive 

Tracks per surface 

Sectors per track 

4.848 x 109 

823 

18 

Bits per sector 32,768 

CPU words per sector 512 

Head groups per drive 10 

Recording surfaces 
per drive 

HR-0808 

40 

Maximum Latency 

Access time 

Data transfer rate 

Bits per cylinder 

CPU words per cylinder 

Part 1 
1-9 

16.6 ms 

15 - 80 ms 

38.7 x 106 

bits/s 

92,160 

B 



HR-0808 

Figure 1-5. DCU-3 Disk Controller unit 

Figure 1-6. 00-29 Disk Storage Unit 

Part 1 
1-10 B 



CONDENSING UNITS 

The condensing units contain the major components of the refrigeration 
system used to cool the computer chassis. Heat is removed from the 
condensing unit by a secondary cooling system that is not part of the 
CRAY-l Computer System. Figure 1-7 shows the condensing unit. 

HR-0808 

Figure 1-7. Condensing Unit 

Part 1 
1-11 B 



POWER DISTRIBUTION UNITS 

The Central Processing Unit, I/O Subsystem, and disk controller units all 
operate from 400 Hz 3-phase power. The Power Distribution Unit (PDU) for 
the CPU contains adjustable transformers to regulate the voltage to each 
power supply for the CPU. The PDU also contains temperature monitoring 
equipment that checks temperatures at strategic locations on the CPU 
chassis. Automatic warning and shutdown circuitry protect the mainframe 
in case of overheating or excessive cooling. The control switches for 
the motor-generators and the Condensing Unit are mounted on the CPU Power 
Distribution Unit. 

The Power Distribution Unit for the I/O Subsystem performs similar 
functions for the I/O Subsystem chassis. 

The disk controller units have these functions built into the disk 
controller unit cabinet. 

Figure 1-8 shows the Power Distribution Units for the CPU and for the I/O 
Subsystem • 

HR-0808 

. - " ... e,~ 0# "" 

1 ~ """" 

.. 

Fiyure 1-8. Power Distribution Units 

Part 1 
1-12 B 



MOTOR-GENERATORS 

The Motor-generators (MGs) units convert primary power from the 
commercial mains to the 400 Hz power used by the computer system. They 
isolate the system from transients and fluctuations on the commercial 

I power mains. The equipment consists of two or three MGs and a control 
cabinet. Figure 1-9 shows a Motor-generator and the control cabinet. 

HR-0808 

Figure 1-9. Motor-generator equipment 

Part 1 
1-13 B 





I 

SYSTEM CONFIGURATION 2 

INTRODUCTION 

Several combinations of the basic system components are supported in the 
S Series of CRAY-l Computer Systems. The Central Memory of the Central 
Processing Unit (CPU) is available in several different sizes. The I/O 
Subsystem is present on larger models in the S Series and consists of two 
to four processors. The following paragraphs describe the models 
available in the CRAY-l S Series. 

S/250, S/500, AND S/lOOO MODELS 

The S/500 has a 1/2-million-word Central Memory, and the S/lOOO a 
I-million word Central Memory. The S/250, which is a discontinued model, 
has a 1/4-million-word Central Memory. Figure 2-1 shows these types of 
configurations. 

1 TO 3 

FRONT·END 

COMPUTERS 

1 TO 3 

FRONT·END 

INTERFACES 

MCU 

PRINTER 

CPU 

% TO 1 MILLION 

64·BIT WORDS 

MASS STORAGE SUBSYSTEM 

2 TO 8 DCU·3 CONTROLLERS 

2 TO 32 00·29 DISK UNITS 

Figure 2-1. Block diagram of S/250, S/500, and S/lOOO systems 

HR-0808 
Part 1 

2-1 B 



I 

All of these systems use the Maintenance Control Unit for supervlslon and 
maintenance. This consists of a minicomputer supporting the standard 
group of peripherals: a magnetic tape unit, a line printer, a removable 
pack disk drive, and two operator consoles. The mainframe of the 5/250, 
5/500 and 5/1000 models have eight chassis columns as standard. Up to 
three front-end computer interfaces and up to 32 disk storage units can 
be connected to the Central Processing Unit via the CRAY-l I/O channels. 

5/1200, 5/2200, 5/4200 MODELS 

The 5/x200 systems all have the common characteristic of a 2-processor 
I/O 5ubsystem. They differ in size of the Central Memory: 5/1200 has 1 
million words; 5/2200 has 2 million words; and 5/4200 has 4 million 
words. The 5/1200 and 5/2200 CPU chassis has 8 columns as standard. The 
5/4200 CPU chassis has 12 columns as standard. Figure 2-2 shows a 
configuration [or these systems. 

, TO 3 FRONT-END COMPUTERS 

, TO 3 

FRONT-END 

INTERFACES 

BUFFER MEMORY 
BIOP 

PERIPHERAL 

EXPANDER 

PRINTER 

1 OR 2 OR 4 MILLION 

"(.'.~ 54-BIT WORDS ... ~", . 
~ .... 
';. ."" .• ....... 

1 TO 4 DCU-4 

CONTROLLERS 
2 TO 16 00-29 

DISK UNITS 

Figure 2-2. Block diagram of 5/1200, 5/2200, and 5/4200 systems 

HR-0808 
Part 1 

2-2 B 



I 

The Master I/O Processor (MIOP) controls the front-end interfaces and the 
standard group of station peripherals. The Peripheral Expander 
interfaces the station peripherals to one DMA port of the MIOP. The 
Master I/O Processor also connects to the Buffer Memory and to the CPU 
over a CRAY-l channel pair. Data from the front-end computer goes to 
Buffer Memory via the MIOP, and then to the CPU via the Buffer I/O 
Processor. The Master I/O Processor communicates with the CPU operating 
system to coordinate the activities of the I/O Subsystem. 

The Buffer I/O Processor (BlOP) is the main link between the Central 
Processing Unit and the mass storage devices. Data from mass storage is 
often transferred through the BIOP I/O Memory to the Buffer Memory. Then 
the data is returned to the BIOP I/O Memory and sent to the CPU. The 
BIOP is the only I/O Processor having a standard Memory Channel to the 
CPU. The Memory Channel operates at speeds of approximately 800 Mbits 
per second. A second Memory Channel to another lOP is optional. A Model 
S/x200 supports up to 16 disk storage units. 

S/1300, S/2300, S/4300 MODELS 

The S/x300 systems all have the common characteristic of a 3-processor 
I/O Subsystem. They differ in size of the Central Memory: S/1300 has 1 
million words; S/2300 has 2 million words; and the S/4300 has 4 million 
words. The S/1300 and S/2300 CPU chassis has 8 columns as standard. The 
S/4300 CPU chassis has 12 columns as standard. These configurations are 
the same as those described previously, except for the addition of a 
third I/O Processor. The third I/O Processor can be used either, to 
control block multiplexer channels or to handle additional disk storage 
units. These two configurations are shown in figures 2-3 and 2-4, 
respectively. 

The Auxiliary I/O Processor (XIOP) used for block multiplexer channels 
interfaces to a maximum of four BMC-4 Block Multiplexer Controllers, each 
of which can handle up to four block multiplexer channels. The XIOP uses 
one DMA port for each controller and another DMA port to connect with the 
Buffer Memory. Thus, data flow from the block multiplexer channel goes 
through the XIOP to the Buffer Memory, then from the Buffer Memory 
through the Buffer I/O Processor to the CPU. 

HR-0808 
Part 1 

2-3 B 



1 TO 3 FRONT-END COMPUTERS 

1 TO 3 

FRONT-END 

INTERFACES 

BUFFER MEMORY 
BIOP 

XIOP 

PERIPHERAL 

EXPANDER 

.....•. 

PRINTER 

; .... . ~ : .. 
• ::...... CPU ....... 

1 OR 2 OR 4 MILLION 

, ... '"" 64-BIT WORDS 
.:~" ..... 

~ .. 
;. ." .. ...... 

1 TO 4 DCU-4 
CONTROLLERS 

1 TO 4 

BLOCK MULTIPLEXER 

CONTROLLERS 

1 TO 16 CHANNELS 

2 TO 16 00-29 

DISK UNITS 

Figure 2-3. Block diagram of 8/1300, 8/2300, and 8/4300 
systems with block multiplexer channels 

When the third I/O Processor is used for additional disk storage units, 
it is called a Disk I/O Processor, or DIOP. This processor can handle up 
to four disk controller units with up to 16 disk storage units. This 
addition effectively doubles the mass storage capacity over that of the 
8/X200 models--up to 32 disk storage units are possible. The disk data 
is transferred through the DIOP into Buffer Memory and then to the 
Central Processor through the Buffer I/O Processor. 

HR-0808 
Part 1 

2-4 B 



1 TO 3 FRONT-END COMPUTERS 

1 TO 3 

FRONT-END 

INTERFACES 

BUFFER MEMORy ... ----.. 
BIOP 

DIOP 

PERIPHERAL 

EXPANDER 

.....•. 

PRINTER 

.: '. . .. . :: .. 
·i···.··· 
•••••• CPU 

, OR 2 OR 4 MILLION 

1 TO 4 DCU-4 
CONTROLLERS 

1 TO 4 DCU-4 

CONTROLLERS 

2 TO 16 00-29 

DISK UNITS 

1 TO 16 00-29 

DISK UNITS 

Figure 2-4. Block diagram of S/1300, S/2300, and S/4300 
systems with increased disk capacity 

S/1400, S/2400, S/4400 MODELS 

The S/x400 systems all have the common characteristic of a 4-processor 
I/O Subsystem. They differ in the size of Central Memory: the S/1400 
has 1 million words; the S/2400 has 2 million words; and the S/4400 has 4 
million words. The S/1400 and S/2400 CPU chassis has 8 columns as 
standard. The S/4400 CPU chassis has 12 columns as standard. Figures 
2-5 and 2-6 show these configurations. In these configurations, the 
third I/O Processor is assigned to Block Multiplexer Controllers or disk 
storage units and the fourth processor handles additional disk storage 
units. A MIOP and a BIOP are used as in the configurations described 
previously. These two configurations are shown in figure 2-5 for the 
block multiplexer channels, and figure 2-6 for the increased disk 
capacity. Each configuration is a permanent, factory-wired configuration. 

HR-0808 
Part 1 

2-5 B 



1 TO 3 FRONT·END COMPUTERS 

1 TO 3 

FRONT-END 

INTERFACES 

BUFFER MEMORY 

MIOP 

BIOP 

XIOP 

DIOP 

PRINTER 

PERIPHERAL 

EXPANDER 

CPU 

, OR 2 OR 4 MILLION 

64·BIT WORDS 

1 TO 4 DCU-4 

CONTROLLERS 

1 TO 4 

..... ----1 BLOCK MULTIPLEXER 

CONTROLLERS 

1 TO 16 CHANNELS 

1 TO 4 DCU-4 

CONTROLLERS 

2 TO 16 00-29 

DISK UNITS 

1 TO 16 00-29 

DISK UNITS 

Figure 2-5. Block diagram of 5/1400, 8/2400, and 8/4400 
systems with block multiplexer channels 

HR-0808 
Part 1 

2-6 B 



1 TO 3 FRONT-END COMPUTERS 

1 TO 3 

FRONT-END 

INTERFACES 

BUFFER MEMORY ... ----. 

MIOP 

BIOP 

DIOP 

DIOP 

PRINTER 

PERIPHERAL 

EXPANDER 

TO 4 DCU-4 

CONTROLLERS 

1 TO 4 DCU-4 

CONTROllERS 

1 TO 4 OCU-4 

CONTROLLERS 

CPU 

OR 2 OR 4 MILLION 

54-BIT WORDS 

2 TO 16 00-29 

DISK UNITS 

1 TO 16 00-29 

DISK UNITS 

1 TO 16 00·29 

DISK UNITS 

Figure 2-6. Block diagram of 5/1400, 5/2400, and 5/4400 
systems with increased disk capacity 

When the third I/O Processor is used as an auxiliary I/O Processor (XIOP) 
for block multiplexer channels, it can handle up to 16 channels via a 
maximum of four Block Multiplexer Controllers. Channel data flows to the 
CPU via the Buffer Memory and the Buffer I/O Processor. 

When the third I/O Processor is used for expanded disk capacity, it is 
called a Disk I/O Processor, DIOP. This configuration makes available 
the maximum mass storage resource. Up to 48 disk storage units can be 
controlled by a BIOP and two DIOPs. 

HR-0808 
Part 1 

2-7 B 



I 

MAINTENANCE CONTROL UNIT 

The S/250, S/500, and S/lOOO CRAY-l Computer Systems are each equipped 
with a 16-bit minicomputer system that serves as a maintenance tool and 
provides control for the system initialization. After the CRAY-l 
operating system has been initialized and is operational, communication 
with the Maintenance Control Unit (MCU) is via a software protocol. The 
MCU is connected to a CRAY-l channel pair with additional control signals 
for execution of the master clear operation, I/O master clear operation, 
dead dump operation, and sample parity error operation. The Maintenance 
Control Unit includes: 

1. A l6-bit minicomputer with 32K words of 16-bit memory 
2. A 132-column line printer 
3. An 800 bpi 9-track tape unit 
4. Two display terminals 
5. A removable pack disk drive 

Included with the MCU system is a software package that enables it to 
serve as a local batch station during production hours. As a local 
station, it may be used to submit diagnostic routines for execution or to 
submit other batch jobs. These diagnostics are typically stored on the 
local disk and are submitted to the CRAY-I by operator command. 

The system initialization procedure is referred to in this manual as the 
deadstart sequence. This sequence is described in detail with the CPU 
control section. 

Detailed information about the MCU is presented in separate publications. 

INTERFACES TO FRONT-END COMPUTER 

A front-end computer system is a self-contained system that executes 
under the control of its own operating system. The CRAY-I computer 
systems is interfaced to one or more front-end computer systems that 
provide input data to the CRAY-I Computer System and receive output from 
the CRAY-I to be distributed to a variety of peripheral equipment. The 
interfaces compensate for differences in channel widths, machine word 
size, electrical logic levels, and control protocols. The MIOP 
communicates through a CRAY-I I/O channel pair to a channel adapter 
module in the CPU chassis. The channel adapter module drives long cables 
of up to 300 feet. The interface cabinet is usually placed near the 
front-end computer; the CRAY-I and the front-end computer cables connect 
to the interface cabinet. The standard interfaces are described in part 
2, section 7. 

HR-0808 
Part I 

2-8 B 



A primary goal of the interface is to maXimize the utility of the 
front-end channel connected to the CRAY-I. Such a channel is generally 
slower than CRAY-I channels. 

Peripheral equipment attached to the front-end computer varies depending 
on the use of the System. 

A front-end computer may service the CRAY-I in the following ways: 

• As a local operator station 

• As a local batch entry station 

• As a data concentrator for multiplexing several other stations 
into a single CRAY-I channel 

• As a remote batch entry station 

Detailed information about the front-end system is not presented in this 
publication. 

SYSTEM OPERATION 

The overall system consists of the components as described previously, 
the communication paths among them, and the software that moves the data 
within the devices. The following paragraphs briefly describe the system 
communication and job flow for systems that include an I/O Subsystem. 
Following that is a description of the deadstart process used to bring 
the system to an operational state. 

I/O SUBSYSTEM COMMUNICATION 

The CRAY-I S Series system provides communication paths between the 
Central Processing Unit and two I/O Processors, between each I/O 
Processor and the Buffer Memory, and among all the I/O Processors. The 
arrangement is shown in figure 2-7. 

Communication between the Central Processing Unit and the I/O Processors 
is over one approximately 50 Mbits per second CRAY-I I/O channel pair to 
the Master I/O Processor, and over one approximately 850 Mbits per second 
Memory Channel to the Buffer I/O Processor. The CRAY-I I/O channel pair 
is used for exchanging system control information with the Master lOP, 
while the Memory Channel transfers data through the Buffer lOP. 

HR-0808 
Part I 

2-9 B 



One DMA port of each I/O Processor is connected with the Buffer Memory 
through an approximately 800 Mbit/second channel. The Buffer Memory is 
used to organize data from one I/O Processor and store it until the 
Buffer I/O Processor can remove that data and pass it to the Central 
Processing Unit. In this way, each I/O Processor communicates with every 
other I/O Processor in high-speed data block transfers. 

Additionally, each I/O Processor is connected with the other I/O 
Processors by slower channels called "accumulator channels". These 
channels pass one l6-bit parcel at a time from the accumulator of one I/O 
Processor to the accumulator of another I/O Processor. These are used 
primarily for control and status reporting. 

Any errors occurring in the system memories or Memory Channel are 
reported to the Master I/O Processor via special error channels that are 
separate from the data channels. Thus all error handling for the system 
is initiated by the Master I/O Processor. 

The resulting communications network among the processors speeds the flow 
of data from the front-end computers, peripheral devices and mass storage 
units; it stores the data as necessary; and "it passes the data to the 
CPU. The network also facilitates transfer of results from the CPU to 
the final destination. 

HR-0808 
Part 1 

2-10 B 



BUFFER MEMORY 

HR-0808 

MIOP 

BIOP 

XIOP 

OR 
DIOP 

DIOP A-0126 

••••••• 50 Mbit/s CRAY-l I/O Channel Pair 
_ _ _ _ Approx. 800 Mbi t/ s Memory Channel 

Approx. 800 Mbit/s DMA channel 

Accumulator channel 

Figure 2-7. I/O Subsystem communication 

Part 1 
2-11 B 



JOB FLOW 

Figure 2-8 shows a simplified view of the job flow within the system; 
numbers index the sequence of operations. Jobs originate in the 
front-end computer network, with the front-end computer passing (1) job 
control statements, programs, and data files to the Master I/O 
Processor. The Master I/O Processor transfers the job (2) to the Buffer 
Memory. The MIOP informs the CRAY-I Operating System (3) of the 
existence of data in the Buffer Memory. The CRAY-I Operating System 
stores data by a request (4) to the MIOP to have the DIOP store the 
data. The MIOP commands the Disk I/O Processor (5) to transfer data from 
the Buffer Memory (6) to mass storage (7). 

The operating system analyzes the resources required for the job, and 
when these are available, calls the Master I/O Processor for the job 
(8). The MIOP tells the DIOP (9) to bring the job in from mass storage 
(10) and store it in Buffer Memory (11) for transfer to the Buffer lOP. 
As soon as possible, the Buffer lOP begins transferring the job from 
Buffer Memory (12) to its own I/O Memory and then to the Central 
Processing Unit (13) over the Memory Channel. When the transfer is 
complete, the CPU begins executing the job control statements. 

Several transfers to and from mass storage may be necessary during job 
execution. Output from the job is sent to mass storage (14 - 20), and 
when the job is finished, the MIOP is notified. The Master I/O Processor 
tells the Disk I/O Processor (21) to bring in the results from mass 
storage (22) and place them in Buffer Memory (23). The operating system 
tells the MIOP (24) to take data from the Buffer Memory (25) and pass it 
to the front-end computer (26). 

HR-0808 

Figure 2-8. Job flow diagram 

Part 1 
2-12 

A-OI04A 

B 



DEADSTART 

A model S/1200 through S/4400 system is initially started from a magnetic 
tape bootstrap which loads into the memory of the Master I/O Processor. 
This program is enough to load further software from the tape and store 
it in Buffer Memory. When the Buffer Memory has the deadstart program, 
the Master I/O Processor commands the Buffer I/O Processor to deadstart 
from Buffer Memory. The Buffer I/O Processor loads the program which 
enables it to load further program data from a disk storage unit. The 
disk data is passed through the Buffer Memory to the Master I/O Processor 
which can completely initiate the I/O Subsystem. Then, under control of 
the Master I/O Processor, the main portion of the operating system is 
loaded into the Central Memory and the system becomes operational. 

Initial installation of the deadstart program and operating system on the 
disk storage unit is done by maintenance personnel from magnetic tape. 
In the case of a failure in the Master I/O Processor, a maintenance 
deadstart panel can be used to load a deadstart or diagnostic program 
into the Master or Buffer I/O Processor. 

For a Model S/250, S/500, 
Unit, deadstarting occurs 
through the minicomputer. 
the same disk storage unit 
described with the control 

HR-0808 

or S/lOOO system using a Maintenance Control 
from the removable-pack disk storage unit 

The main operating system is then loaded from 
into Central Memory. This operation is 
section of the Central Processing Unit. 

Part 1 
2-13 B 





PART 2 

CENTRAL PROCESSING UNIT 



I 

GENERAL INFORMATION 

INTRODUCTION 

The Central Processing Unit (CPU) is the computer that executes programs, 
runs user jobs, and oversees the job flow within the CRAY-l S Series 
Computer System. Scalar and vector processing capabilities are combined 
with large, fast Central Memory and high-volume I/O channels. Figure 1-1 
represents the basic organization of the Central Processing Unit. The 
memory is expandable from one-quarter million to four million words of 
64-bits each. The Memory Channels are used for high-speed data transfers 
to and from I/O Processors in the I/O Subsystem. Twelve I/O channel 
pairs provide access to front-end computers, mass storage controllers, 
and to the I/O Subsystem. 

r--------------------------------, 

CONTROL 
COMPUTATION SECTION 

SECTION fo- • Regi sters 

• Ins tructi on • Functional units 
buffers 

• Contra 1 
registers 

• Exchange MEMORY SECTION 
mechanism 

- 0.25 M to 4 M 
• Interrupt 

system 
64-bit bipolar words 

• Rea l-ti me 
clock 

• Program-
able clock 

I/O SECTION 
- • 12 I/O channel pairs 

• 1 or 2 Memory channels 

CPU L _____________________________________ ~ 

HR-0808 

Figure 1-1. Basic organization of the CPU 

Part 2 
1-1 

A-0125 

B 

1 



The following paragraphs provide additional general information about the 
four sections of the CPU; later sections describe the features in greater 
detail. 

Figure 1-2 illustrates the components of the CPU and presents a 
generalized view of the flow of data in the system. 

REGISTER CONVENTIONS 

Frequent use is made in this manual of parenthesized register names. 
This is shorthand notation for the expression "the contents of register 
___ .n For example, "Branch to (P)" means "Branch to the address 
indicated by the contents of the program parcel counter, P." 

Extensive use is also made of subscripted designations for the A, B, S, 
T, and V registers. For example, "Transmit (Tjk) to Si" means "Transmit 
the contents of the T register specified by the jk designators to the S 
register specified by the i designator." 

In this manual, register bit positions are numbered from right to left as 
powers of 2, starting with bit 20. Bit 263 of an S, V, or T register 
value represents the most significant bit in the operand. Bit 223 of 
an A or B register value represents the most significant bit in the 
operand. 

NUMBER CONVENTIONS 

Unless otherwise indicated, numbers in this manual are decimal numbers. 
Octal numbers are indicated with an 8 subscript. Exceptions are register 
numbers, channel numbers, and instruction forms, which are given in octal 
without the subscript. 

CLOCK PERIOD 

The basic unit of CPU computation time is 12.5 nanoseconds and is 
referred to as a clock period (CP). Instruction issue, memory 
references, and other timing considerations are often measured in clock 
periods. 

HR-0808 
Part 2 
1-2 B 



Memory 

HR-0808 

Vector Regi sters 

V7 

V6 

( (AO)+(AK)) 
V5 

rPoP/Pari ty 

I Shift 

Loqi cal 

~ 
V4 

V3 

V2 

77 

T77 1 

(AD) 

Add 

Vector 

___ ,...-_---.:.;SJ::.-· __ Functional 

f-- I' /r.-_....;V::;..j _+-_ ..... -+ __ ----<.-..1 Un its 
/ Vk 

Vj 

Vt--...:..::.. 

r Reci p. Appr 

I Multiply 

Add 

L..V;.,.,.i_---1 Floating 
~---1 

L-_..:.V.:,ec:.:t:,:o.:,.r .,;.M::.as:.:k~_J-I·----4 .rt----S::..i~ Po i nt 

Real-Time Clock 

Sj Functi ona 1 
l. .... S....;:j+--+-___ -I .... Un its 
L 

Sk 
1. Sj 

Prog. Clock I nt. ,....--2- f--< 

Scalar Registers 

S7 r Pop/LZ 

S6 I Shift 

S5 I Logical 
f4- ---< AK 

Add 

Sca 1 ar 

Functi ona 1 

Units r-

'1-___ T_OO __ ~...-' r

Tjk 

h s: S2 S3 7/ :~ 
... ~ Si 

( (Ah) + j km) SO ~.L,4 __ --;:--:------...... +--...... --I 
Exchange 

S4 

Control ---Vector 

XA Control I--

Vector 
Ai 

Length 
Address Reg is ters 

B77 I A7 
Ak 

(AD) 
~~§llPfUA--'i A5 A6 I Multi ply 

Add r- h A4 

BOO ~:13 -r.-___ A:::...
j ---+---+---+-~f--~ 

Al ~ Ak Address 
I 

~ " Functional 
((Ah) + jkm) AD Units 

Ak I 1 Ai 

1 P 

3 
r--..L-_-..., 

I L+l 
I 
I 

00 I--.j.-+--+ 0 

~I--+--+--+--I 

17 tj::t::tj 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I , 

f--

Instruction 
Buffers 

-~ -'---, "-
11,,1 1I1111/18L--_~ 

ii' II / 

Ak 

II 1111/ 
IIIII ~lI' / 

I CA III I CL "II / 
i i 2 

B-007'''9A 

: I/O : 
, control , 

1 NIP CIP I 
L _______ ~ 

L LIP ]---. 

Executi on 

* The vector population count 
functional unit shares its 
input path with the Reciprocal 
Approximation unit. Therefore. 
chaining of these units can 
on 1 y be done with grea t ca re. 

Figure 1-2. Control and data paths in the CPU 

Part 2 
1-3 B 



I 
MEMORY SECTION 

The memory for the CRAY-l consists of 8 or 16 banks of bipolar LSI 
memory. Four memory size options are available: 524,288 or 1,048,576 or 
2,097,152 or 4,194,304 words. A 226,144-word memory is no longer 
available. Each word is 72 bits--64 data bits and 8 check bits. The 
banks are independent of each other. 

Sequentially addressed words reside in sequential banks. The memory 
cycle time is 4 CPs (50 ns). The access time, that is, the time required 
to fetch an operand from memory to an operational register, is 11 CPs 
(137.5 ns). There is no inherent memory speed degradation for l6-bank 
memories of less than 4 million words. 

The maximum transfer rate for B, T, and V registers is one word per CP. 
For A and S registers, it is one word per 2 CPs. Transfer of 
instructions to the instruction buffers occurs at a rate of 16 parcels 
(four words) per CP. 

Thus, the CPU memory sizes support the requirements of scientific 
applications, while the low cycle time is well suited to random access 
applications. The phased memory banks allow high communication rates 
through the I/O section and provide low read/store times for vector 
registers. 

Table 1-1 summarizes the features of the CPU memory section. CPU Memory 
is described in detail in section 2. 

Table 1-1. Characteristics of the CPU memory section 

- From 0.25M to 4M words of bipolar integrated circuit memory 

- 64 data bits and 8 error correction bits per word 

- 8 or 16 interleaved banks 

- 4 CP bank cycle time 

- 1 word per CP transfer rate to B, T, and V registers 

- 1 word per 2 CP transfer rate to A and S registers 

- 4 words per CP transfer rate to instruction buffers 

- Single error correction/double error detection (SECDED) 

CONTROL SECTION 

The control section performs all decisions related to instruction issue 
and coordinates the activities for the three types of processing: 
address, scalar, and vector. 

HR-0808 
Part 2 

1-4 B 



The control section executes 128 basic instruction codes as either 
16-bit (1 parcel) or 32-bit (2 parcel) instructions and provides for 
register reservation, memory field protection, memory access, and 
interrupt control. 

Table 1-2 summarizes features of the control section. This section is 
described in greater detail in section 3. 

Table 1-2. Characteristics of the CPU control section 

- 12.5 nanosecond clock period (CP) 

- 4 instruction buffers of 64 16-bit parcels each 

- 128 basic instruction codes 

- Program exchange mechanism 

- Error/monitor interrupt flags 

- Memory and program field protection 

COt<lPUTATION SECTION 

The computation section contains registers and functional units that 
operate together to execute a program of instructions stored in memory. 

Eight address (A) registers are used to store 24-bit integers or 
addresses. Sixty-four intermediate address (B) registers store data 
for use by the A registers. Eight scalar (S) registers store 64-bit 
operands for scalar operations. Sixty-four intermediate (T) registers 
store data temporarily for the S registers. Eight vector (V) 

registers are made up of 64 elements in each register. Each element 
stores one 64-bit operand. The vector registers are used in vector 
processing. 

A series of operands can be an ordered set, called a vector. A vector 
instruction operates on a series of operands, doing the same function 
repetitively, and producing a series of results. Scalar processing 
starts an instruction, handles one operand or operand pair, then stops 
the operation. The main advantage of vector over scalar processing is 
the elimination of the instruction start-up time for all but the first 
operand. 

Arithmetic operations ar~ integer or floating-point. Integer 
arithmetic is performed in twos complement mode. Floating-point 
quantities have signed magnitude representation. 

HR-0808 
Part 2 

1-5 B 



Floating-point instructions provide for addition, subtraction, 
multiplication, and reciprocal approximation. The reciprocal 
approximation instructions allow a floating-point divide operation using 
a multiple instruction sequence. These instructions produce 64-bit 
results. 

Integer or fixed-point operations are provided as follows: integer 
addition, integer subtraction, and integer multiplication. An integer 
multiply operation produces a 24-bit result; additions and subtractions 
produce either 24-bit or 64-bit results. No integer divide instruction 
is provided; the operation is accomplished through a software algorithm 
using floating-point hardware. 

The instruction set includes Boolean operations for OR, AND, equivalence, 
and exclusive OR and for a mask-controlled merge operation. Shift 
operations allow the manipulation of either 64-bit or l28-bit operands to 
produce 64-bit results. With the exception of 24-bit integer arithmetic, 
most operations are implemented in vector as well as scalar 
instructions. The integer product is a scalar instruction designed for 
index calculation. Full indexing capability allows the programmer to 
index throughout memory in either scalar or vector modes. The index may 
be positive or negative in either mode. This allows matrix operations in 
vector mode to be performed on rows or the diagonal as well as 
conventional column-oriented operations. 

Population and parity counts are provided for both vector and scalar 
operations. Additionally, scalar operations may include leading zero 
counts. 

Table 1-3 summarizes the characteristics of the CPU computation section. 

HR-0808 

Table 1-3. Characteristics of CPU computation section 

- Integer and floating-point arithmetic 

- Twos complement integer arithmetic 

- Sign and magnitude floating-point arithmetic 

- Address, scalar, and vector processing modes 

- Thirteen functional units 

- Eight 24-bit address (A) registers 

- Sixty-four 24-bit intermediate address (B) registers 

- Eight 64-bit scalar (S) registers 

- Sixty-four 64-bit intermediate scalar (T) registers 

- Eight 64-element vector (V) registers, 64 bits per element 

Part 2 
1-6 B 



I 
INPUT/OUTPUT SECTION 

One or two Memory Channels transfer data between Central Memory and the 
Buffer I/O Processor. Each channel is 64 bits wide and uses 8 check bits 
with each word. Data words are transferred in blocks of 16 under control 
of Data Ready and Data Transmit control signals. A maximum transfer rate 
of approximately 850 Mbits per second is possible on this channel. 

Normal input and output communication with the CPU is over 12 full duplex 
l6-bit channel pairs. Associated with each channel are control lines 
that indicate the presence of data on the channel. 

Table 1-4 summarizes features of the channels in the CPU input/output 
section. Channels are described in detail in section 5. 

Table 1-4. Characteristics of the CPU input/output section 

Up to twelve I/O channel pairs; 50 or 160 Mbits/s maximum rate 

- Four channel groups containing either 6 input or 6 output channels 

- Channel groups served equally by memory (scans each group every 4 
CPs) 

- Channel priority resolved within channel groups 

- 16 data bits, 3 control bits, and 4 parity bits in each direction 

- Lost data detection 

I One or two Memory Channels; approx. 800 Mbits/s maximum rate each 

- 64 data bits, 3 control bits, and 8 check bits in each direction 

HR-0808 
Part 2 
1-7 B 





I 

CENTRAL MEMORY SECTION 

INTRODUCTION 

The Central Memory of the CPU consists of 8 or 16 banks of bipolar LSI 
memory. Four memory sizes are available: 

524,288 words - 8 banks, 
1,048,576 words - 8 banks, 
2,097,152 words - 8 banks, 
4,194,304 words - 16 banks. 

2 

The banks are independent of each other. A 262,144-word 8-bank memory is 
no longer available. 

MEMORY CYCLE TIME 

The memory cycle time is 4 CPs (50 ns). The access time, that is, the 
time required to fetch an operand from memory to an operational register, 
is 11 CPs (137.5 ns). 

MEMORY ACCESS 

The Central Memory of the CPU is shared by the computation section and 
the I/O section. A single port access is provided. 

Because of the interleaving scheme used to address the independent banks, 
it is possible to reference memory every clock period with a new 
request. It is not possible, however, to reference anyone bank sooner 
than its 4-CP cycle time. Trying to reference a bank more often than 
every 4 CPs causes memory conflicts. These conflicts are handled in an 
orderly, predictable manner. 

Block transfers require all memory requests to be completed before the 
block transfers can issue. Once issued, they inhibit all other memory 
requests. Multiple block transfers cannot issue without allowing one 
waiting I/O reference to complete. The maximum duration of a lockout 
caused by block transfers is one block length. 

HR-0808 
Part 2 

2-1 B 



Vector block transfers may conflict with themselves. Therefore, the 
vector logic provides for identifying these conditions (speed control) 
and for slowing or disallowing the vector operations that would be 
affected by the slowed memory referencing rate. The vector logic 
identifies 1/4 speed (4 CPs), 1/2 speed (2 CPs), and full speed (1 CP) 
data rates from memory. 

Fetch operations bring instructions from Central Memory to the 
instruction buffers. Fetch operations require completion of all other 
types of memory references before the fetch operations reference memory. 
Once the fetch request is honored, all other types of memory reference 
are inhibited. 

Exchange operations require memory to be quiet before referencing 
memory. After the exchange has issued, all other memory references are 
inhibited. 

Scalar and I/O memory references are examined in three registers for 
possible memory conflicts. These three registers contain the low-order 
bits of each of the referenced memory addresses. These registers, plus 
the address register, represent the 4 CPs between referencing anyone 
bank. The first register is rank A, the second is rank B, and the third 
is rank C. At each clock period, the contents of the registers are 
shifted down one rank until they are discarded unless a conflict arises, 
in which case the conflicting address is held in rank B until the 
conflict is resolved. 

I/O requests are tested against ranks A, B, and C. Coincidence with rank 
A, B, or C disallows the request. An I/O request that is disallowed must 
wait 8 CPs before it can request again. 

The following conditions must be present for an I/O memory request to be 
processed: 

1. I/O request 

2. No coincidence in rank A, B, or C 

3. No scalar memory reference in CP 2 of its 
sequence (scalar priority over I/O) 

4. No fetch request 

5. No 176, 177, or 034 through 037 instruction in progress 

6. No exchange sequence or request 

7. No 033 request (not a memory conflict) 

Scalar instruction memory requests are tested in ranks A. B, and C for 
memory conflicts. Scalar instructions have priority over I/O requests 
arriving in memory in the same clock period. 

HR-0808 
Part 2 

2-2 B 



A scalar conflict in rank A (CP 2 of a scalar instruction) causes a hold 
storage on this instruction for 3 CPs. At the same time, a hold issue 
signal blocks the issue of another scalar reference instruction. The 
only memory conflict that may occur in rank A is a scalar reference 
conflicting with a previous I/O reference. It is not possible for a 
scalar to conflict with a scalar in rank A because it takes 2 CPs to 
issue a scalar reference instruction. 

A scalar conflict in rank B (CP 3) causes a hold storage on this 
instruction for 2 CPs. Also, a hold issue signal blocks issue of another 
scalar reference instruction. 

A scalar conflict in rank C (CP 4) causes a hold storage on this 
instruction for 1 CP. There is also a hold issue signal, which blocks 
issue of another scalar reference instruction. 

The Memory Channel shares the same access with the normal I/O channels, 
but the normal I/O channels have priority. The Memory Channel operates 
in blocks of 16 words with a l-CP pause between blocks to allow other 
memory operations to break the Memory Channel transfer. 

Under normal operating conditions on codes performing a mix of vector and 
scalar instructions, the memory access supports four disk and three 
interface channel pairs without degrading the CPU computation rate. 
However, a single program requiring memory access continuously will be 
measurably degraded by maximum I/O transfer conditions. This degradation 
is caused by the delays imposed on the issue of vector memory 
instructions because block transfers require memory quiet before issue. 

MEMORY ORGANIZATION 

Central Memory is organized into 8 or 16 banks to minimize memory 
conflicts and to exploit the speed of the memory chips. In a l6-bank 
machine, each bank occupies half a column and contains 72 modules: Each 
module contributes one data or check bit to each 72-bit word in the bank; 
a memory word consists of 64 data bits and 8 check bits. 

The 8-bank organization is standard on the 8-column mainframes. The 
16-bank phasing is standard on the 5/4200 and larger mainframes. A 
maintenance feature for all l6-bank systems permits them to operate with 
only 8 banks using either the left or right half of memory. This is 
accomplished by installing two special modules and setting the bank 
select switch (on the Power Distribution Unit) to the left or right banks. 

HR-0808 
Part 2 

2-3 B 



MEMORY ADDRESSING 

A word in a 16-bank memory is addressed in a maximum of 22 bits as shown 
in figure 2-1. The low-order 4 bits specify one of the 16 banks. The 
next field specifies an address within the chip. The high-order bits 
specify one of the chips on the module. 

chip bit address 4-bit 
address in chip bank 

Figure 2-1. Memory address (16 banks) 

A word in an 8-bank memory is addressed in a maximum of 21 bits as shown 
in figure 2-2. In this case, the low-order 3 bits specify one of the 
eight banks. The next field specifies an address within the chip. The 
high-order bits specify one of the chips on the module. 

chip bit address 3-bit 
address in chip bank 

Figure 2-2. Memory address (8 banks) 

SPEED CONTROL 

For vector read and vector store instructions, the low-order 4 bits of 
(Ak) determines speed control (table 2-1). 

Table 2-1. Vector memory rate x 80 x 10 6 references per second 

Phasing 1-3 4 

8-bank 1 1/2 

16-bank 1 1 

HR-0808 

. Increment or multiple 

5-7 

1 

1 

8 

1/4 

1/2 

Part 2 
2-4 

9-11 

1 

1 

in (Ak) 

12 13-15 16 

1/2 1 1/4 

1 1 1/4 

B 



For eight banks, incrementing by eight places causes successive 
references in the same bank so that a word is transferred every 4 CPs. 
If (Ak) is incremented by 4, an a-bank memory transfers words every 2 CPs. 

a-BANK PHASING 

A l6-bank system can be readily modified to run on either the right or 
left a banks for maintenance purposes. This is accomplished by replacing 
two modules and setting the bank select switch on the Power Distribution 
Unit to the right or left banks. If the situation warrants it, the 
machine can continue running on one half of memory while repairs are made 
to the other half. 

The effect of a-bank phasing on instruction fetches is a predictable 
increase of 4 CPs for filling an instruction buffer. Otherwise, the 
amount of performance degradation for a banks as compared with 16 banks 
is not readily predictable since it largely results from an increase of 
memory conflicts. 

For other differences, refer to the preceding paragraphs on Memory 
Addressing and Speed Control. 

MEMORY ERROR CORRECTION 

An error correction and detection network between the CPU and memory 
assures that the data written into memory can be returned to the CPU with 
consistent precision (figure 2-3). 

0 

t -DATA BITS ~ 

63 

CHECK BITS 
/64 

~ 

HR-oaoa 

ERROR CORRECT 
MEMORY .. DATA MERGE - a DATA FANOUT - -

~ 
-- ER ROR DETECT 

Figure 2-3. Memory data path with SECDED 

Part 2 
2-5 

I 

.. CPU -

A-0063 

B 

I 



The network operates on the basis of single error correction, double 
error detection (SECDED). If 1 bit of a data word is altered, the single 
error alteration is automatically corrected before passing the data word 
to the computer. If 2 bits of the same data word are altered, the double 
error is detected but not corrected. In either case, the CPU may be 
interrupted depending on interrupt options selected to prevent incorrect 
data from contaminating a job. For 3 or more bits in error, results are 
ambiguous. 

'J.'he SECDED error processing scheme is based on error detection and 
correction codes devised by R. W. Hamming§. An a-bit check byte is 
appended to the 64-bit data word before the data is written in memory. 
The a check bits are each generated as even parity bits for a specific 
group of data bits. Figure 2-4 shows the bits of the data word used to 
determine the state of each check bit. An X in the horizontal row 
indicates that data bit contributes to the generation of that check bit. 
Thus, check bit 264 is the bit .. makin .. g gr.o.up p.arity .. even for the group 
-- c ,_ ~ J.._ .... 1 .... 1 .... S .... 7 2q .... 11 211 ,,1 S ,,17 ,,19 22] 223 Ui. UJ.I...::::> ,-, ,-, ,-", -, ,---, - , ,.', ,- " , .. , , 

225, 227, 229, and 231 through 255. 

The a check bits are stored in memory at the same location as the data 
word. When read from memory, the same 72-bit matrix of figure 2-4 is 
used to generate a new set of parity bits, which are even parity bits of 
the data word, and the old check bits. The resulting a parity bits are 
called syndrome§§ bits (S bits), shown as bits 64 through 71 in figure 
2-4. The states of these S bits are all symptoms of any error that 
occurred. If all syndrome bits are 0, no memory error occurred. 

Any change of state of 1 data bit will cause an odd number of syndrome 
bits to be set to 1. An error in two columns changes the parity states 
of an even number of bit groups. Therefore, a double error appears as an 
even number of syndrome bits set to 1. 

The matrix is designed so that SECDED decodes the syndrome bits and 
determines the error condition using the following five rules: 

1. If all syndrome bits are 0, no error occurred. 

2. If only 1 syndrome bit is 1, the associated check bit is in 
error. 

§ Hamming, R.W., "Error Detection and Correcting Codes", Bell System 
Technical Journal, 29, No.2, pp. 147-160 (April, 1950). 

§§ Syndrome: Any set of ~haracteristics regarded as identifying ~ r.~rtain 

type, condition, etc. Websters New World Dictionary. 

HR-0808 
Part 2 

2-6 B 



3. If more than I syndrome bit is I and the parity of all syndrome 
bits SO through S7 is even, then a double error (or an even number 
of bit errors) occurred within the data bits or 
check bits. 

4. If more than I syndrome bit is I and the parity of all syndrome 
bits is odd, then a single and correctable error is assumed to 
have occurred. The syndrome bits can be decoded 
to identify the bit in error. 

5. If 3 or more memory bits are in error, the parity of all syndrome 
bits is odd and results are ambiguous. 

50 

51 

52 

53 

54 

55 

56 

57 x 

x 

CHECK BYTE 

x 

x 

x 

x 

x 

x 

50 x x x x x x x x 

51 x x x x x x x x 

52 

53 x x x x x x x x 

54 x x x x 

55 x x x x 

56x x x x 

57 x x x x 

50 x x x x 

51 x x x x 

52 x x x x 

53 x x x x 

54 x x x x x x x x 

55 

56 x x x x x x x x 

57 x x x x x x x x 

x x x x x x x x 

x x x x x x x x 

x x x x x x x x x x x x x x x x 

x x x x x x x x x x x x x x x x 

x x x x x x x x 

x x x x x x x x 

x x x x x x x x 

x x x x x x x x 

x x x x x x x x x x x x 

x x x x x x x x x x x x 

x x x x x x x x x x x x 

x x x x 

x x x x 

x x x x x x x x x x x x 

x x x x x x x x x x x x 

x x x x x x x x x x x x 

x x x x x x x x 

x x x x x x x x 

x x x x x x x x 

x x x x x x x x 

x x x x x xx x x x x x x x x x 

x x x x x xx x x x x x x x x x 

x x x x x x x x 

x x x x x xx x 
8-0072 

Figure 2-4. Error correction matrix 

HR-0808 
Part 2 

2-7 B 





I 

CPU CONTROL SECTION 

INSTRUCTION ISSUE AND CONTROL 

This section describes the instruction buffers and registers involved 
with instruction issue and control. Figure 3-1 illustrates the general 
flow of instruction parcels through the registers and buffers. 

I 3 

I 2 

I I 

00 0 

, .. I I NIP CIP --I 
I 1 ____ ... 

3 

~ 
., 

LIP -------
EXECUTION 
~ 

~ 

- INSTRUCTION 

17 BUFFERS A-OOTO 

Figure 3-1. Instruction issue and control elements 

P REGISTER 

The P register is a 24-bit register which indicates the next parcel of 
program code to enter the next instruction parcel (NIP) register in a 
linear program sequence. The high-order 22 bits of the P register 
indicate the word address for the program word in memory. The low-order 
2 bits indicate the parcel within the word. The contents of the P 
register are normally advanced by 1 as each parcel successfully enters 
the NIP register. The value in the P register normally corresponds to 
the parcel address for the parcel currently moving to the NIP register. 

HR-0808 
Part 2 
3-1 B 



The P register is entered with new data on an instruction branch or on an 
exchange sequence. The contents of P are then advanced sequentially 
until the next branch or exchange sequence. The value in the P register 
is stored directly into the terminating exchange package during an 
exchange sequence. 

The P register is not master cleared. An indeterminate value is stored 
in the terminating exchange package at address 0 during the deadstart 
sequence. 

NIP REGISTER 

The NIP (next instruction parcel) register is a 16-bit register that 
holds a parcel of program code prior to entering the eIP register. A 
parcel of program code that has entered the NIP register must be 
executed. There 1S no mechanism to discard 1t. 

The NIP register is not master cleared. An undetermined instruction may 
issue during the master clear interval before the interrupt condition 
blocks data entry into the NIP register. 

eIP REGISTER 

The eIP (current instruction parcel) register is a 16-bit register that 
holds the instruction waiting to issue. If this instruction is a 
2-parcel instruction, the eIP register holds the upper half of the 
instruction and the LIP holds the lower half. Once an instruction enters 
the eIP register, it must issue. Issue may be delayed until previous 
operations have been completed but then the current instruction waiting 
for issue must proceed. Data arrives at the eIP register from the NIP 
register. The indicators which make up the instruction are distributed 
to all modules which have mode selection requirements when the 
instruction issues. 

The control flags associated with the eIP register are generally master 
cleared; the register itself is not. An undetermined instruction will 
issue during the master clear sequence. 

LIP REGISTER 

The LIP (lower instruction parcel) register is a 16-bit register that 
holds the lower half of a 2-parcel instruction at the time the 2-parcel 
instruction issues from the eIP register. 

HR-0808 
Part 2 

3-2 B 



INS1'RUCTION BUFFERS 

The CPU has four instruction buffers, each of which holds 64 consecutive 
16-bit instruction parcels (figure 3-2). Instruction parcels are held in 
the buffers prior to being delivered to the NIP or LIP registers. 

The beginning instruction parcel in a buffer always has a word address 
that is a multiple of 20S ' (that is, a parcel address that is a 
multiple of 100S). This allows the entire range of addresses for 
instructions in a buffer to be defined by the high-order lS bits of the 
beginning parcel address. For each buffer, there is an lS-bit beginning 
address register that contains this value. 

The beginning address registers are scanned each clock period. If the 
high-order lS bits of the P register match one of the beginning 
addresses, an in-buffer condition exists and the proper instruction 
parcel is selected from the instruction buffer. An instruction parcel to 
be executed is normally sent to the NIP. However, the second half of a 
2-parcel instruction is blocked from entering the NIP and is sent to the 
LIP instead, and is available when the upper half issues from the CIP. 
At the same time, a blank parcel is entered into the NIP. 

HR-OSOS 

4 5 

10 II 
--- ----
14 15 
--- ----
20 21 
--- ----
24 25 
--- ----
30 3! 
--- ----
34 35 
--- ----
40 41 
--- ----
44 45 
--- ----
50 51 
--- ----
54 55 
--- ----

60 61 --- ----
64 65 --- ----
70 71 
--- ----
74 75 

6 

12 

16 

22 

26 
---
32 
---
36 

42 

46 
---
52 

56 
---
62 

66 

72 ---
76 

7 

13 

17 

23 

27 
---

33 
---

37 

43 

47 
---

53 

57 
---

63 

67 

73 
---

77 

A-0139 

~-- BUFFER 3 

t4--- BUFFER 2 

~-- BUFFER 

~-- BUFFER 0 

Figure 3-2 Instruction buffers 

Part 2 
3-3 B 



I 

On an in-buffer conditon, if the instruction is in a different buffer 
than the previous instruction, a change of buffers occurs, normally 
necessitating a 2-CP delay of issue. 

An out-of-buffer condition exists when the high-order 18 bits of the P 
register do not match any instruction buffer beginning address. When 
this conditon occurs, instructions must be loaded into one of the 
instruction buffers from memory before execution can continue. The 
instruction buffer that receives the instructions is determined by a 
2-bit counter. Each occurrence of an out-of-buffer condition causes the 
counter to be incremented by 1 so that the buffers are selected in 
rotation. 

Buffers are loaded from memory four words per CP, an operation that fully 
occupies memory. The first group of 16 parcels delivered to the buffer 
always contains the instruction required for execution. For this ~eason, 
the branch out-of-buffer time is an apparent constant 11 CPs for 16-bank 
memories and 15 CPs for 8-bank memories. 

An instruction buffer is loaded with one word of instructions from each 
of the 16 memory banks or two words from each of 8 banks. The first four 
instruction parcels residing in an instruction buffer are always from 
bank O. 

An exchange sequence voids the instruction buffers by setting their 
beginning address registers to all ones. This prevents a match with the 
P register and causes the buffers to be loaded as needed. 

Both forward and backward branching is possible within the buffers. A 
branch does not cause reloading of an instruction buffer if the 
instruction being branched to is within one of the buffers. Multiple 
copies of instruction parcels cannot occur in the instruction buffers. 
Because instructions are held in instruction buffers prior to issue, no 
attempt should be made to dynamically modify instruction sequences. As 
long as the unmodified instruction is in an instruction buffer, the 
modified instruction in memory will not be loaded into an instruction 
buffer. 

Although optimization of code segment lengths for instruction buffers is 
not a prime consideration when programming the CPU, the number and size 
of the buffers and the capability for both forward and backward branching 
can be used to good advantage. Large loops containing up to 256 
consecutive instruction parcels can be maintained in the four buffers, or 
as an alternative, a main program sequence in one or two of the buffers 
could make repeated calls to short subroutines maintained in the other 
buffers. The program and subroutines remain in the buffers undisturbed 
as long as no out-of-buffer condition causes a buffer to be reloaded. 

HR-0808 
Part 2 

3-4 B 



EXCHANGE MECHANISM 

Exchange mechanism refers to the technique employed in the CPU for 
switching instruction execution from program to program. This technique 
involves the use of blocks of program parameters known as exchange 
packages and a CPU operation referred to as an exchange sequence. 

Throughout the discussion of the exchange package, an alternate bit 
position representation is used. The bits are numbered from left to 
right with bit 0 assigned to the 263 bit position. This notation is 
for the convenience of CAL programmers. 

EXCHANGE PACKAGE 

An exchange package (figure 3-3) is a 16-word block of data in memory 
which is associated with a particular computer program. It contains the 
basic parameters necessary to provide continuity from one execution 
interval for the program to the next. These parameters consist of the 
following: 

Program address register (P) - 24 bits 
Base address register (BA) - 18 bits 
Limit address register (LA) - 18 bits 
Mode register (M) - 4 bits 
Exchange address register (XA) - 8 bits 
Vector length register (VL) - 7 bits 
Flag register (F) - 9 bits 
Current contents of the eight A registers 
Current contents of the eight S registers 

The exchange package contents are arranged in a 16-word block. Data is 
swapped from memory to the computer operating registers and back to 
memory by the exchange sequence. This sequence exchanges the data in a 
currently active exchange package residing in the operating registers 
with an inactive exchange package in memory. The XA address of the 
currently active exchange package specifies the address of the inactive 
exchange package to be used in the swap. The data is exchanged and a new 
program execution interval is initiated by the exchange sequence. 

The B register, T register, and V register contents are not swapped in 
the exchange sequence. The data in these registers must be stored and 
replaced as required by specific coding in the program which supervises 
the object program execution, or by any program that needs this data. 

HR-0808 
Part 2 

3-5 B 



S 

R'RAB 

P 

BA 

LA 

XA 

VL 

0 2 10121516 18 

E B 
n 

n+1 

n+2 

n+ 3 

n+4 

n+5 

n+ 6 

n+7 

n+8 

n+9 

n+IO 

n+1I 

n +12 

n + 13 

n+ 14 

n+ 15 

Registers 

Syndrome bits 

Read address for error 
221219 20 

JR'I RA I B I 
Program address, 24 bits 

Base address, 18 bits 

Limit address, 18 bits 

Exchange address, 8 bits 

Vector length, 7 bits 

E - Er ror t~iI~e (bits 0,1) 

10 Uncorrectable memory 

01 Correctable memory 

R - Read mode (bits 10,11) 

00 Scalar 

01 I/O 

10 Vector 

11 Fetch 

24 

P 

31 36 40 63 

AO 

AI 

A2 

A3 

A4 

A5 

A6 

A7 

so 
SI 

S2 

S3 

S4 

S5 

S6 

S7 

Bit M - Modes 

36 Interrupt on correctable 
memory error 

37 

38 

39 

31 

32 

Interrupt on floating-point 

Interrupt on uncorrectable 
memory error 

Monitor mode 

F - Flags 

PCI interrupt 

MCU interrupt 

33 Floating-point error 

34 Operand range 

35 Program range 

36 Memory error 

37 I/O interrupt 

38 Error exit 

39 Normal exit 

Figure 3-3. Exchange Package 

HR-0808 
Part 2 

3-6 B 



Memory error data 

Two bits in the M (mode) register determine whether or not the exchange 
package contains data relevant to a memory error if one occurs prior to 
an exchange sequence. The bits are bit 36, the "Interrupt on correctable 
memory error bit" and bit 38, the "Interrupt on uncorrectable memory 
error bit". The error data, consisting of four fields of information, 
appears in the exchange package if bit 38 is set and an uncorrectable 
memory error. is detected or if bit 36 is set and correctable memory error 
is encountered. 

Error type (E) - The type of memory error encountered, uncorrectable or 
correctable, is indicated in bits 0 and 1 of the first word of the 
exchange package. Bit 0 is set for an uncorrectable memory error; bit 1 
is set for a correctable memory error. 

Syndrome (S) - The 8 syndrome bits used in detecting a memory data error 
are returned in bits 2 through 9 of the first word of the exchange 
package. Refer to section 2 for additional information. 

Read mode (R) - This field indicates the read mode in progress when a 
memory data error occurred and consists of bits 10 and 11 of the first 
word of the exchange package. These bits assume the following values: 

00 Scalar (includes memory references with A, B, S, or T 
registers, or exchange sequence) 

01 I/O 

10 Vector 

11 Instruction fetch 

These bits are not valid for range errors. 

Read address (R'RAB) - The R'RAB field contains the address at which a 
memory data error occurred. Bits 12 through 15 (B) of the first word of 
the exchange package contain bits 23 through 20 of the address and 
may be considered as the bank address; bits 0 through 15 (RA) of the 
second word of the exchange package contain bits 219 through 24 of 
the address. Bits 214 and 215 of the third word of the exchange 
package (R') contain bits 221 (or 0) and bit 220 of the address. 

EXCHANGE REGISTERS 

Three special registers are instrumental in the exchange mechanism: the 
exchange address (XA) register, the mode (M) register, and the flag (F) 
register. 

HR-0808 
Part 2 
3-7 B 



XA Register 

The XA (exchange address) register specifies the first word address of a 
l6-word exchange package loaded by an exchange operation. The register 
contains the high-order 8 bits of a l2-bit field that specifies the 
address. The low-order bits of the field are always 0; an exchange 
package must begin on a l6-word boundary. The l2-bit limit requires that 
the absolute address be in the lower 4096 (10,000 8) words of memory. 

When an execution interval terminates, the exchange sequence exchanges 
the contents of the registers with the contents of the exchange package 
at the beginning address (XA) in memory. 

M Register 

The M (mode) register is a 4-bit register that contains part of the 
exchange package for a currently active program. Bits are assigned as 
follows in word 2 of the exchange package: 

Bit 36 Correctable memory error mode flag. When this bit is set, 
interrupts on correctable memory data errors are enabled. 

Bit 37 Floating-point error mode flag. When this bit is set, 
interrupts on floating point errors are enabled. 

Bit 38 Uncorrectable memory error mode flag. When this bit is set, 
interrupts on uncorrectable memory data errors are enabled. 

Bit 39 Monitor mode flag. When this bit is set, all interrupts 
other than memory errors are inhibited. 

The 4 bits are selectively set during an exchange sequence. Bit 37, the 
floating-point error mode flag, can be set or cleared during the 
execution interval for a program through use of the 0021 (EFI) and 0022 
(DFI) instructions. The remaining bits are not altered during the 
execution interval for the exchange package and can be altered only when 
the exchange package is inactive in storage. 

F Register 

The F {flag} register is a 9-bit register that contains part of the 
exchange package for the currently active program. This register 
contains nine flags which are individually identified within the exchange 
package. Setting any of these flags causes interruption of program 
execution. wnen one or more flags are set, a request interrupt signal is 
sent to initiate Bn ex~hangp ~pqupnce. The content of the F reqister is 

HR-0808 
Part 2 

3-8 B 



stored along with the rest of the exchange package and the monitor 
program can analyze the nine flags for the cause of the interruption. 
Before the monitor program exchanges back to the package, it may clear 
the flags in the F register area of the package. If any bit is set, 
another exchange occurs immediately. 

Any flag other than the memory error flag can be set in the F register 
only if the currently active exchange package is not in monitor mode. 
This means that these flags will set only if the low-order bit of the M 
register is O. With the exception of the memory error flag, if the 
program is in monitor mode and the conditions for setting an F register 
are otherwise present, the flag remains cleared and no exchange sequence 
is initiated. 

ACTIVE EXCHANGE PACKAGE 

An active exchange package is an exchange package that is currently 
residing in the computer operating registers. The interval of time in 
which the exchange package is active is called the execution interval for 
the exchange package and also for the program with which it is 
associated. The execution interval begins with an exchange sequence in 
which the subject exchange package moves from memory to the operating 
registers. The execution interval ends as the exchange package moves 
back to memory in a subsequent exchange sequence. 

EXCHANGE SEQUENCE 

The exchange sequence is the vehicle for moving an inactive exchange 
package from memory into the operating registers and at the same time 
moving the currently active exchange package from the operating registers 
back into memory. This swapping operation is done in a fixed sequence 
when all computational activity associated with the currently active 
exchange package has stopped. The same l6-word block of memory is used 
as the source of the inactive exchange package and the destination of the 
currently active exchange package. The location of this block is 
specified by the content of the exchange address register and is a part 
of the currently active exchange package. The exchange sequence may be 
initiated in three different ways. 

1. Deadstart sequence 

2. Interrupt flag set 

3. Program exit 

HR-0808 
Part 2 
3-9 B 



Initiated by deadstart sequence 

The deadstart sequence forces the exchange address register content to 0 
and also forces a 000 code in the NIP register. These two actions cause 
the execution of a program error exit using memory address 0 as the 
location of the exchange package. The inactive exchange package at 
address 0 is then moved into the operating registers and a program is 
initiated using these parameters. The exchange package swapped out to 
address 0 is largely indeterminate as a result of the deadstart operation 
and is in effect discarded by the subsequent entry of new data at these 
storage addresses. 

Initiated by interrupt flag set 

An exchange sequence can be initiated by setting anyone of the interrupt 
flags in the F register. One or more flags set results in a request 
interrupt signal which initiates an exchange sequence. 

Initiated by program exit 

Two program exit instructions cause the initiation of an exchange 
sequence. The timing of the instruction execution is the same in either 
case and the difference is only in which of the two flags in the F 
register is set. The two instructions are: 

Program code 000 ERR - Error exit 

Program code 004 EX - Normal exit 

The two exits provide a means for a program to request its own 
termination. A non-monitor (object) program will usually use the normal 
exit instruction to exchange back to the monitor program. The error exit 
allows for termination of an object program that has branched into an 
unused area of memory or into a data area. The exchange address selected 
is the same as for a normal exit. 

Each of these instructions has a flag in the F register. The appropriate 
flag is set providing the currently active exchange package is not in 
monitor mode. The inactive exchange package called in this case is 
normally one that executes in monitor mode and the flags are sensed for 
evaluation of the cause of program termination. 

The monitor program selects an inactive exchange package for activation 
by setting the address of the inactive exchange package into the XA 
register and then executing a normal exit instruction. 

HR-0808 
Part 2 
3-10 B 



Exchange sequence issue conditions 

An exchange sequence initiated by an instruction other than 000 or 004 
has the following hold issue conditions, execution time, and special 
cases: (The corresponding information for the 000 and 004 instructions is 
provided with the instruction descriptions in section 6 of this manual.) 

Hold issue conditions: 

Instruction buffer data invalid 

NIP not blank 

Wait exchange flag not set 

S, V, or A registers busy 

Execution time: 

50 CPs; consists of an exchange sequence (36 CPs) 
and a fetch operation (14 CPs) 

Special cases: 

Block instruction issue 

Block I/O references 

Block fetch 

EXCHANGE PACKAGE MANAGEMENT 

Each 16-word exchange package resides in an area defined during system 
deadstart that must lie within the lower 4096 words of memory. The 
package at address 0 is that of the monitor program. Other packages 
provide for object programs and monitor tasks. These packages lie 
outside of the field lengths for the programs they represent as 
determined by the base and limit addresses for the programs. Only the 
monitor program has a field defined so that it can access all of memory 
including the exchange package areas. This allows the monitor program to 
define or alter all exchange packages other than its own when it is the 
currently active exchange package. 

Proper management of exchange packages dictates that a non-monitor 
program always exchange back to the monitor program that exchanged to 
it. This ensures that the program information is always swapped back 
into its proper exchange package. 

HR-0808 
Part 2 
3-11 B 



Consider the case where exchange packages exist for programs A, B, and 
C. Program A is the monitor program, program B is a user program, and 
program C is an interrupt-processing program. 

The monitor program, A, begins an execution interval following 
deadstart. No interrupts can terminate its execution interval since it 
is in monitor mode. The monitor program voluntarily exits by issuing a 
004 EX exit instruction. Before doing so, however, it sets the contents 
of the XA register to point to B's exchange package so that B will be the 
next program to execut~ and it sets the exchange address in B's exchange 
package to point back to the monitor. 

The exchange sequence to B causes the exchange address from B's exchange 
package to be entered in the XA register. At the same time, the exchange 
address in the XA register goes to B's exchange package area along with 
all other program parameters for the monitor program. When the exchange 
is complete, program B begins its execution interval. 

Suppose further that while B is executing, an interrupt flag sets 
initiating an exchange sequence. Since B cannot alter the XA register, 
the exit is back to the monitor program. Program B's parameters swap 
back into B's exchange package area; the monitor program parameters held 
in B's package during the execution interval swap back into the operating 
registers. 

The monitor, upon resuming execution, determines that an interrupt has 
caused the exchange and sets the XA register to call the proper interrupt 
processor into execution. It does this by setting XA to point to the 
exchange package for programC. Then, it clears the interrupt and 
initiates execution of C by executing a 004 exit instruction. Depending 
on the design of the operating system, the interrupt-processing program 
could execute in monitor mode or in user mode. 

Further guidance on exchange package management is contained in the Cray 
Research, Inc. CRAY-l Operating System maintenance documentation. 

MEMORY FIELD PROTECTION 

Each object program at execution time has a designated field of memory 
holding instructions and data. The field limits are specified by the 
monitor program when the object program is loaded and initiated. The 
field may begin at any word address that is a multiple of 16 and may 
continue to another address that is one less than a multiple of 16. The 
field limits are contained in two registers, the base address register 
(BA) and the limit address register (LA), described later. 

HR-0808 
Part 2 

3-12 B 



I 

All memory addresses contained in the object program code are relative to 
the base address which begins the defined field. An object program 
cannot read or alter any memory location with an absolute address lower 
than the base address. Each object program reference to memory is 
checked against the limit and base addresses to determine if the address 
is within the bounds assigned. A memory write reference beyond the 
assigned field limits is allowed to issue, but no write occurs. A memory 
read reference beyond the assigned field limits issues and completes, but 
data consisting of all zeros is transferred to the appropriate registers. 

BA REGISTER 

The 18-bit BA register holds the base address of the user field during 
the execution interval for each exchange package. The contents of this 
register are interpreted as the high-order 18 bits of a 22-bit memory 
address. The low-order 4 bits of the address are assumed O. Absolute 
memory addresses are formed by adding the product of 24 x (BA) to the 
relative address specified by the CPU instructions. The BA register 
always indicates a bank 0 memory address. 

LA REGISTER 

The 18-bit LA register holds the limit address of the user field during 
the execution interval for each exchange package. The contents of LA are 
interpreted as the high-order 18 bits of a 22-bit memory address. The 
low-order 4 bits of the address are assumed O. The LA register always 
indicates a bank 0 memory address. 

The final address that can be executed or referenced by a program is at 
[(LA) x 24] - 1. Note that the (LA) is absolute, not relative; it is 
not added to (BA). 

PROGRAM RANGE ERROR 

The program range error flag sets if an out-of-range memory reference was 
for an instruction fetch. This could occur in a non-monitor mode program 
on a branch or jump instruction that calls for a program address that is 
above or below the limits. The program range error flag causes an error 
condition that terminates program execution. The monitor program should 
check the state of the program range error flag and take appropriate 
action, perhaps aborting the user program. 

HR-0808 
Part 2 

3-13 B 



I 

OPERAND RANGE ERROR 

The operand range error flag sets if an out-of-range memory reference was 
called to read or write an operand for an A, B, S, T, or V register. The 
operand range error flag causes an error condition that terminates the 
user program execution. The monitor program should check the state of 
the operand range error flag and take appropriate action, perhaps 
aborting the user program. 

REAL-TIME CLOCK 

Programs can be timed precisely by using the clock period counter. This 
counter is advanced one count each clock period of 12.5 nanoseconds. 
Since the clock is advanced synchronously with program execution, it may 
be used to time the program to an exact number of clock periods. 

Instructions used with the real-time clock are: 

0014jO RT Enter the real-time clock register with (Sj) 

072ixx Si RT Transmit (RTC) to Si 

The clock period counter is a 64-bit counter that can be read by a 
program through the use of the 072 instruction and can be reset only by 
the 0014jO monitor instruction. 

PROGRAMMABLE CLOCK 

A programmable clock is incorporated to measure the duration of intervals 
accurately. A periodic interrupt can be generated with intervals 
selected under monitor program control. The clock frequency is 80 Mhz. 
Intervals from 12.5 nanoseconds to about 53.7 seconds are possible; 
however, intervals shorter than about 100 microseconds are not practical 
due to the monitor overhead involved in processing the interrupt. 

I NS'l'RUCTIONS 

Supporting the programmable clock are four monitor mode instructions and 
two additional registers: the interrupt interval register (II) and the 
interrupt countdown counter (ICD)~ 

HR-0808 
Part 2 

3-14 B 



0014j4 Enter interrupt interval (II) register with (Sj) 

0014j5 Clear the programmable clock interrupt request 

0014j6 Enable the programmable clock interrupt request 

0014j7 Disable the programmable clock interrupt request 

INTERRUPT INTERVAL REGISTER 

The interrupt interval (II) register is a 32-bit register that can be 
loaded with a binary value equal to the number of clock periods that are 
to elapse between programmable clock interrupt requests. The interrupt 
interval is transferred from the lower 32 bits of the Sj register into 
both the interrupt interval and the interrupt countdown (ICD) counter 
when the 0014j4 instruction is executed. 

This value is held in the II register and is transferred to the ICD each 
time the counter reaches 0 and generates an interrupt request. The 
content of the II register is changed only by another 0014j4 instruction. 

INTERRUPT COUNTDOWN COUNTER 

The interrupt countdown (ICD) counter is a 32-bit counter that is preset 
to the contents of the interrupt interval register when the OOl4j4 
instruction is executed. This counter runs continuously but counts down, 
decrementing by 1 each clock period until the content of the counter is 
O. At this time, it sets the programmable clock interrupt request. The 
counter then samples the interval value held in the interrupt interval 
register and repeats the countdown to zero cycle, setting the 
programmable clock interrupt request at regular intervals determined by 
the interval value. When the programmable clock interrupt request is 
set, it remains set until a 0014j5 instruction, clear programmable clock 
interrupt request, is executed. A programmable clock interrupt request 
can be set only after the 0014j6 instruction has been executed to enable 
the interrupt. A programmable clock interrupt request only causes an 
interrupt when not in monitor mode; a request set in monitor mode is held 
until the system switches to user mode. 

CLEAR PROGRAMMABLE CLOCK INTERRUPT REQUEST 

Following a program interrupt interval, an active programmable clock 
interrupt request may be cleared by executing the 0014j5 clear 
programmable clock interrupt instruction. 

HR-0808 
Part 2 

3-15 B 



Following any deadstart, the monitor program should ensure the state of 
the programmable clock interrupt by clearing programmable clock interrupt 
requests (0014jS) and disabling programmable clock interrupt requests 
(0014j7). 

DEADSTART SEQUENCE 

The deadstart sequence is that sequence of operations that starts a 
program running in the CPU after power has been turned off and then 
turned on again or whenever a new system is to be re-initialized in the 
CPU. All registers in the machine, all control latches, and all words in 
memory are assumed to be invalid after power has been turned on. The 
following sequence of operations to begin a program is initiated by the 
Meu or the I/O Subsystem. 

1. Turn on master clear signal. 

2. Turn on I/O clear signal. 

3. Turn off I/O clear signal. 

4. Load memory via MCU channel. 

S. Turn off master clear signal. 

The master clear signal halts all internal computation and forces the 
critical control latches to predetermined states. The I/O clear signal 
clears the input channel address register of the MeU channel and 
activates the MCU input channel. All other input channels remain 
inactive. The MeU or I/O Subsystem then loads an initial exchange 
package and monitor program. The exchange package must be located at 
address 0 in memory. Turning off the master clear signal initiates the 
exchange sequence to read this package and to begin execution of the 
monitor program. Subsequent actions are dictated by the design of the 
operating system. 

HR-0808 
Part 2 
3-16 B 



CPU COMPUTATION SECTION 4 

INTRODUCTION 

The CPU section consists of operating registers and functional units 
which are associated with three types of processing: address, scalar, 
and vector. For address processing, there are two levels of 24-bit 
registers and two integer arithmetic functional units. For scalar 
processing, there are two levels of 64-bit scalar registers, four 
functional units dedicated solely to scalar processing and three 
floating-point units shared with the vector operations. For vector 
processing, there are a set of 64-element registers of 64 bits each, four 
functional units dedicated solely to vector applications, and three 
floating-point functional units supporting both scalar and vector 
operations. 

Vector and scalar processing are performed on data while address 
processing operates on internal control information such as addresses and 
indexes. The flow of data in the computation section is generally from 
memory to registers and from registers to functional units. The flow of 
results is from functional units to registers and from registers to 
memory or back to functional units. Data flows along either the scalar 
or vector path depending on the mode of processing it is undergoing. An 
exception is that scalar registers can provide one of the operands 
required for vector operations performed in the vector functional units. 

The flow of address information is from memory or from control registers 
to address registers. Information in the address registers can then be 
distributed to various parts of the control network for use in 
controlling the scalar, vector, and I/O operations. The address 
registers can also supply operands to two integer functional units. The 
units generate address and index information and return the result to the 
address registers. Address information can also be transmsitted to 
memory from the address registers. 

OPERATING REGISTERS 

Operating registers are a primary programmable resource of the CPU. They 
enhance the speed of the system by satisfying the heavy demands for data 
that are made by the functional units. A single functional unit may 
require one to three operands per clock period and may deliver results at 

HR-0808 
Part 2 
4-1 B 



a rate of one per clock period. Moreover, multiple functional units can 
be in use concurrently. To meet these requirements, the CPU has five 
sets of registers: three primary sets and two intermediate sets. 

The three primary sets of registers are address, scalar, and vector 
designated in this manual as A, S, and V, respectively. These registers 
are considered primary because functional units can access them directly. 

For the scalar and address registers, an intermediate level of registers 
exists which is not accessible to the functional units. These registers 
act as buffers for the primary registers. Block transfers are possible 
between these registers and memory so that the number of memory reference 
instructions required for scalar and address operands can be greatly 
reduced. The intermediate registers that support scalar registers are 
referred to as T registers. The intermediate registers that support the 
address registers are referred to as B registers. 

ADDRESS REGISTERS 

The two types of address registers (figure 4-1) are designated A 
registers and B registers. 

Memory 

HR-0808 

CA 
i 
( 

I , 

Exchange 
Control 

Ak 

~ 

Vector 
Contro 1 

IIII 

\1111 

Iii II I CL 
( 

I/O 
I 
I 

control I , 

Sj Si 

POP/LZ 

Shifts 

Ak 

p' 31
8 II ~ 

III " 
1111111/ 

II' 2 /~ 

Multiply 

Add 

Address 

Functional 

Units 

8-00'11 

Fignrl? 4-1, Address registere ~nd function3.1 units 

Part 2 
4-2 B 



A REGISTERS 

The eight 24-bit A registers serve a variety of applications, but are 
primarily used as address registers for memory references and as index 
registers. They are used to provide values for shift counts, loop 
control, and channel I/O operations, and also to receive values of 
population count and leading zeros count. In address applications, they 
are used to index the base address for scalar memory references and for 
providing both a base address and an index increment for vector memory 
references. 

The address functional units support address and index generation by 
performing 24-bit integer arithmetic on operands obtained from A 
registers and by delivering the results to A registers. There are 
several address adders devoted exclusively to calculations for memory 
references. These are not available to the program. 

Data can move directly between memory and A registers or can be placed in 
B registers as an intermediate step. This allows buffering of the data 
between A registers and memory. 

Data can also be transferred between A and S registers. 

The vector length register and XA register are set by transmitting a 
value to it from an A register. 

At most, one A register can be entered with data during each clock 
period. Issue of an instruction is delayed if it would have caused data 
to arrive at the A registers at the same time as data already being 
processed which is scheduled to arrive from another source. 

When an instruction issues that delivers new data to an A register, a 
reservation is set for that register to prevent issue of instructions 
that use the register until the new data has been delivered. 

In this manual, the A registers are individually referred to by the 
letter A and a numeric subscript in the range 0 through 7. Instructions 
reference A registers by specifying the subscript as the h, i, j, or k 
designator as described in part 2, section 6. 

HR-0808 
Part 2 

4-3 B 



The only register to which an implicit reference is made is the AO 
register. The use of this register is implied in the following 
instructions: 

OIOijkm 
Ollijkm 
012ijkm 
013ijkm 

034ijk 
035ijk 
036ijk 
037ijk 

JAZ 
JAN 
JAP 
JAA 

Bjk,Ai ,AO 
,AO Bjk,Ai 
Tjk,Ai ,AO 
,AO Tjk,Ai 

Refer to part 2, section 6 for additional information concerning the use 
of A registers by instructions. 

B REGISTERS 

There are sixty-four 24-bit B registers in the computation section. The 
B registers are used as intermediate storage for the A registers. 
Typically, the B registers contain data to be referenced repeatedly over 
a sufficiently long span so that it is not desirable to retain the data 
in either A registers or in memory. Examples of uses are loop counts, 
variable array base addresses, and dimensions. 

The transfer of a value between an A register and a B register requires 
only 1 CP. A block of B registers may be transferred to or from memory 
at the maximum rate of one 24-bit value per clock period. No 
reservations are made for B registers and no instructions can issue 
during block transfers to and from B registers. 

In this manual, B registers are individually referred to by the letter B 
and a 2-digit octal subscript in the range 00 through 77. Instructions 
reference B registers by specifying the B register number in the jk 
designator as described in part 2, section 6. 

The only B register to which an implicit reference is made is the BOO 
register. On execution of the return jump instruction (007), register 
BOO is set to the next instruction parcel address {P} and a branch to 
an address specified by ijkm occurs. Upon receiving control, the called 
routine conventionally saves (BOO) so that the BOO register is free 
for the called routine to initiate return jumps of its own. When a 
called routine wishes to return to its caller, it restores the saved 
address and executes a 005000 instruction. This instruction, which is a 
branch to (BOO), causes the address saved in BOO to be entered into P as 
the address of the next instruction parcel to be executed. 

HR-0808 
Part 2 

4-4 B 



SCALAR REGISTERS 

The two types of scalar registers (figure 4-2) are designated S registers 
and T registers. 

(AO) 

Memory 

((Ah) + jkm) 

51 

Sea 1 ar Regi s ters 

TO: V. Reg 

Vj 

F.P. F. Units 

VM, RTC 
PCI 

Sj 

Sk 

Add 

~------t--~.----..t Scalar 
SO Functional 

'---____ ~L--L...,.#tt----------II....-.;-----t~---I Uni ts 

Ai Ak 

Figure 4-2. Scalar registers and functional units 

S REGISTERS 

The eight 64-bit S registers are the principal scalar registers for the 
CPU. These registers serve as the source and destination for operands in 
the execution of scalar arithmetic and logical instructions. The related 
functional units perform both integer and floating-point arithmetic 
operations. 

S registers may furnish one operand in vector instructions. Single-word 
transmission of data between an S register and an element of a V register 
is also possible. 

Data can move directly between memory and S registers or can be placed in 
T registers as an intermediate step. This allows buffering of scalar 
operands between S registers and memory. 

Data can also be transferred between A and S registers. 

Other uses of the S registers are the setting or reading of the vector 
mask (VM) register or the real-time clock (RTC) register, or setting the 
interrupt interval (II) register. 

HR-0808 
Part 2 

4-5 B 



At most, one S register can receive data during each clock period. Issue 
of an instruction is delayed if it would have caused data to arrive at 
the S registers at the same time as data already being processed which is 
scheduled to arrive from another source. 

When an instruction issues that delivers new data to an S register, a 
reservation is set for that register to prevent issue of instructions 
that use the register until the new data has been delivered. 

In this manual, the S registers are individually referred to by the 
letter S and a numeric subscript in the range 0 through 7. Instructions 
reference S registers by specifying the subscript as the i, j, or k 
designator as described in part 2, section 6. 

The only register to which an implicit reference is made is the So 
register. The use of this register is implied in the following branch 
instructions. 

014ijkm 
OISijkm 
016ijkm 
017ijkm 

JSZ 
JSN 
JSP 
JSM 

Refer to part 2, section 6 for additional information concerning the use 
of S registers by instructions. 

T REGISTERS 

There are sixty-four 64-bit T registers in the computation section. The 
T registers are used as intermediate storage for the S registers. 

Data may be transferred between T and S registers and between T registers 
and memory. The transfer of a value between a T register and an S 
register requires only I CP. T registers reference memory through block 
read and block write instructions. Block transfers occur at a maximum 
rate of one word per clock period. No reservations are made for T 
registers and no instructions can issue during block transfers to and 
from T registers. 

In this manual, T registers are refe~red to 
octal subscript in the range 00 through 77. 
registers by specifying the octal subscript 
described in part 2, section 6. 

HR-0808 
Part 2 
4-6 

by the letter T and a 2-digit 
Instructions reference T 

as the jk designator as 

B 



VECTOR REGISTERS 

Figure 4-3 illustrates the registers and functional units used for vector 
operations. 

Vector Registers 

V7 

V6 
I Pop/Pari ty 

AI:: "I Shift V5 
((AO)+(AK) ) J Logical 

V4 
Add 

V3 ~ V2 Vector 
Vl 

LO°t--vO 
Sj Functional - - Units Vj 

-j/ - r--
Vk 

~'- 'l' Vi 
r--

W 
~ 

Memory 
Vj I Reci p. Appr 

1 ~'ulti ply 
77 Add 

Vector V~ Control 

• ~ 

Vector Sj Vi Floating 

Control Vector Mask J Si Point 

V ~ Sj Functional 

rvector J Units 
Length ~ 

. ~ Sk 
r--

04-0193 

Ak I 

S i Sj Sk 

Figure 4-3. Vector registers and functional units 

V REGISTERS 

Eight V registers, each with 64 elements are the major computational 
registers of the CPU. Each element of a V register has 64 bits. When 
associated data is grouped into successive elements of a V register, the 
register quantity may be treated as a vector. Examples of vector 
quantities are rows or columns of a matrix or elements of a table. 

Computational efficiency is achieved by identically processing each 
element of a vector. Vector instructions provide for the iterative 
processing of successive vector register elements. A vector operation 
begins by obtaining operands from the first element of one or more V 

HR-0808 
Part 2 

4-7 B 



registers and delivering the result to the first element of a V 
register. Successive elements are provided each clock period and as each 
operation is performed, the result is delivered to successive elements of 
the result V register. The vector operation continues until the number 
of operations performed by the instruction equals a count specified by 
the content of the vector length (VL) register. 

Since many vectors exceed 64 elements, a long vector is processed as one 
or more 64-element segments and a possible remainder of less than 64 
elements. Generally, it is convenient to compute the remainder and 
process this short segment before processing the remaining number of 
64-element segments. However, a programmer may choose to construct the 
vector loop code in any of a number of ways. The processing of long 
vectors in FORTRAN is handled by the compiler and is transparent to the 
programmer. 

A result may be received by a V register and retransmitted as an operand 
to a subsequent operation in the same clock period. This use of a 
register as both a result and operand register allows for the "chaining" 
of two or more vector operations together. In this mode, two or more 
results may be produced per clock period. Chained operation is detected 
automatically by the CPU and is not explicitly specified by the 
programmer, although the programmer may reorder certain code segments in 
order to enable chained operation. 

A conflict may occur between scalar and vector operations only for the 
floating-point operations and storage access. With the exception of 
these operations, the functional units are always available for scalar 
operations. A vector operation occupies the selected functional unit 
until the vector is processed. 

Parallel vector operations may be processed in two ways: 

1. Using different functional units and all different V registers 

2. Using the result stream from one vector register simultaneously 
as the operand to another operation using a different functional 
unit (chain mode) 

Parallel operations on vectors allow the generation of two or more 
results per clock period. Most vector operations use two vector 
registers as operands or one scalar and one vector register as operands. 
Exceptions are vector shifts, vector reciprocal, and the load or store 
instructions. 

The contents of a V register are transferred to or from memory in a block 
mode by specifying a first word address in memory, an increment or 
decrement for the memory address, and a vector length. The transfer then 
proceeds beginning with the first element of the V register at a maximum 
ratp of one worrl per cln~k periorl, depending l1pnn h~nk conflicts. 

HR-0808 
Part 2 

4-8 B 



Single-word data transfers are possible between an S register and an 
element of a V register. 

In this manual, the V registers are individually referred to by the 
letter V and a numeric postscript in the range 0 through 7. Vector 
instructions reference V registers by specifying the postscript as the i, 
j, or k designator as described in section 6 of this manual. 

Individual elements of a V register are designated in this manual by 
decimal numbers in the range 00 through 63. These appear as subscripts 
to vector register references. For example, V629 refers to element 29 
of vector register 6. 

V register reservations 

The term "reservation" describes the register condition when a register 
is in use and therefore not available for use as a result or as an 
operand register for another operation. During execution of a vector 
instruction, reservations are placed on the operand V registers and on 
the result V register. These reservations are placed on the registers 
themselves, not on individual elements of the V register. 

A reservation for a result register is lifted during "chain slot" time. 
Chain slot time is the clock period that occurs at functional unit time 
plus 2 CPs. During this clock period, the result is available for use as 
an operand in another vector operation. Chain slot time has no effect on 
the reservation placed on operand V registers. A V register may serve 
only one vector operation as the source of one or both operands. 

No reservation is placed on the VL register during vector processing. If 
a vector instruction employs an S register, no reservation is placed on 
the S register. It may be modified in the next instruction after vector 
issue without affecting the vector operation. The length and scalar 
operand (if appropriate) of each vector operation is maintained apart 
from the VL register. Vector operations employing different lengths may 
proceed concurrently; however, the vector length should not normally be 
changed between operations that chain because chaining implies operations 
of the same length. 

The AO and Ak registers in a vector memory reference are treated in a 
similar fashion. They are available for modification immediately after 
use. 

The vector store instruction (177) is blocked from chain slot execution. 

A vector read cannot chain if speed control is in effect. Speed control 
is caused by bank conflict due to the increment, which varies between 
l6-bank and 8-bank machines. Speed control is in effect if the memory 
address increment is a multiple of eight on a l6-bank machine or is a 
multiple of four on an 8-bank machine. 

HR-0808 
Part 2 

4-9 B 



I 

VECTOR CONTROL REGISTERS 

Two registers are associated with vector registers and provide control 
information needed in the performance of vector operations. They are the 
vector length (VL) register and the vector mask (VM) register. 

VL register 

The 7-bit vector length register can be set to 0 through 100S and 
specifies the length of all vector operations performed by vector 
instructions and the length of the vectors held by the V registers. This 
register controls the number of operations performed for instructions 140 
through 177. The VL register may be set to an A register value using the 
0020 instruction. 

CAUTION 

Cray Research cautions users against increasing VL 
between operations that may chain together. In some 
code sequences where the vector length is increased, 
unexpected results may occur. 

Suppose, for example, that during a vector sequence 
the contents of VL are changed to a larger value and a 
second operation is initiated to chain to the first 
operation. The user may expect that the second 
operation will use the results of the first operation 
and the operands in the register unaltered by the 
first operation. However, when the instructions chain 
together, the second instruction does not receive the 
anticipated operands beyond the VL specified for the 
first operation. The user who intends to use the 
system in this manner must take care to avoid chained 
operations. Although there may be applications of the 
characteristic produced by chained operations with 
different contents for VL, Cray Research takes no 
responsibility for its use. Chained operation cannot 
be assured since I/O or other interrupts may "break" 
the chain. 

VM register 

The vector mask register has 64 bits, each of which corresponds to a word 
element in a vector register. Bit 0 corresponds to element 0, bit 63 to 
element 63. The mask is used in conjunction with vector merge and test 
instructions to ~llow operations to be performed on individual vector 
elernents~ 

Part 2 
HR-080S 4-10 B 



The vector mask register may be set from an S register through the 003 
instrucion or may be created by testing a vector register for a condition 
using the 175 instrucion. The mask controls element selection in the 
vector merge instructions (146 and 147). The contents of VM may be sent 
to an S register with an 073 instruction. 

FUNCTIONAL UNITS 

Instructions other than simple transmits or control operations are 
performed by hardware organizations known as functional units. Each unit 
implements an algorithm or a portion of the instruction set. Units are 
independent with the exception of the Reciprocal Approximation and Vector 
Population Count units, which share some logic. A number of functional 
units can be in operation at the same time. 

A functional unit receives operands from registers and delivers the 
result to a register when the function has been performed. The units 
operate essentially in 3-address mode with source and destination 
addressing limited to register designators. 

All functional units perform their algorithms in a fixed amount of time; 
no delays are possible once the operands have been delivered to the 
unit. The amount of time required from delivery of the operands to the 
unit until completion of the calculation is termed the functional unit 
time and is measured in l2.5-nanosecond clock periods. 

The functional units are fully segmented. This means that a new set of 
operands for unrelated computation may enter a functional unit each clock 
period even though the functional unit time may be more than 1 CP. This 
segmentation is possible by capturing and holding the information 
arriving at the unit or moving within the unit at the end of every clock 
period. 

Thirteen functional units are identified in this manual and are 
arbitrarily described in four groups: address, scalar, vector, and 
floating-point. The first three groups each act in conjunction with one 
of the three primary register types, A, S, and V, to support the address, 
scalar, and vector modes of processing available in the CRAY-l. The 
fourth group, floating-point, supports either scalar or vector operations 
and accepts operands from or delivers results to S or V registers 
accordingly. In addition, for vector operations, memory acts like a 
fourteenth functional unit. 

HR-0808 
Part 2 

4-11 B 



ADDRESS FUNCTIONAL UNITS 

The address functional units perform 24-bit integer arithmetic on 
operands obtained from A registers and deliver the results to an A 
register. The arithmetic is twos complement. 

Address add unit 

The address add unit performs 24-bit integer addition and subtraction. 
The unit executes instructions 030 and 031. The addition and subtraction 
are performed in a similar manner. The twos complement subtraction for 
the 031 instruction occurs as follows. The ones complement of the Ak 
operand is added to the Aj operand. Then a 1 is added in the low order 
bit position of the result. 

No overflow is detected in the functional unit. 

The result register reservation time is 2 CPs. 

Address multiply unit 

The address multiply unit executes instruction 032 which forms a 24-bit 
integer product from two 24-bit operands. No rounding is performed. The 
result consists of the least significant 24 bits of the product. 

This functional unit is designed to handle address manipulations that do 
not exceed its data capabilities. Therefore, the programmer must be 
careful when multiplying integers in the unit, because the unit does not 
detect overflow of the product and significant portions of the product 
could be lost. 

The result register reservation time is 6 CPs. 

SCALAR FUNCTIONAL UNITS 

The scalar functional units perform operations on 64-bit operands 
obtained from S registers and in most cases deliver the 64-bit results to 
an S register. The exception is the population/leading zero count unit 
which delivers its 7-bit result to an A register. 

Four functional units are exclusively associated with scalar operations 
and are described here. Three functional units are used for both scalar 
and vector operations and are described in the section, Floating-Point 
Functional Units. 

HR-0808 
Part 2 

4-12 B 



I 

Scalar add unit 

The scalar add unit performs 64-bit integer addition and subtraction. It 
executes instructions 060 and 061. The addition and subtraction are 
performed in a similar manner. The twos complement subtraction for the 
061 instruction occurs as follows. The ones complement of the Sk operand 
is added to the Sj operand. Then a 1 is added in the low-order bit 
position of the result. 

No overflow is detected in the unit. 

The result register reservation time is 3 CPs. 

Scalar shift unit 

The scalar shift unit shifts the entire 64-bit contents of an S register 
or shifts the double l28-bit contents of two concatenated S registers. 
Shift counts are obtained from an A register or from the jk portion of 
the instruction. Shifts are end off with zero fill. For a double shift, 
a circular shift is effected if the shift count does not exceed 64 and 
the i and j designators are equal and non-zero. 

All A register shift counts are considered positive, unsigned integers. 
If any bit higher than 2S is set, the shifted result is all zeros. 

The scalar shift unit executes instructions OS2 through OS7. 
Single-register shift instructions, OS2 through OSS, are executed in 2 
CPs. Double-register shift instructions, OS6 and OS7, are executed in 3 
CPs. 

Scalar logical unit 

The scalar logical unit performs bit-by-bit manipulation of 64-bit 
quantities obtained from S registers. It executes instructions 042 
through OSl, the mask and Boolean instructions. The 042-0Sl instructions 
execute in 1 CP. 

Scalar population/parity/leading zero unit 

This functional unit executes instructions 026 and 027. Instruction 
026ijO counts the number of bits in an S register having a value of 1 in 
the operand and executes in 4 CPs. The 026ijl instruction returns a 
I-bit population parity count of the Sj register's contents. Instruction 
027, which counts the number of bits of 0 preceding a 1 bit in the 
operand, executes in 3 CPs. For these instructions, the 64-bit operand 
is obtained from an S register and the 7-bit result is delivered to an A 
register. 

HR-0808 
Part 2 

4-13 B 



I 

VECTOR FUNCTIONAL UNITS 

Most vector functional units perform operations on operands obtained from 
one or two V registers or from a V register and an S register. The 
reciprocal unit and the population/parity unit, which require only one 
operand, are exceptions. Results from a vector functional unit are 
delivered to a V register. 

Successive operand pairs are transmitted from a vector register to a 
functional unit each clock period. The corresponding result arrives at a 
vector register n+2 CPs later, where n is the functional unit time and is 
constant for a given functional unit. The vector length determines the 
number of operand pairs to be processed by a functional unit. 

Four functional units are exclusively associated with vector operations 
and are described in this subsection. Three functional units are 
associated with both vector operations and scalar operations and are 
described in the subsection entitled Floating-Point Functional Units. 
When a floating-point unit is used for a vector operation, the general 
description of vector functional units given in this subsection applies. 

Vector functional unit reservation 

A functional unit engaged in a vector operation remains busy during each 
clock period and may not participate in other operations. In this state, 
the functional unit is said to be reserved. Other instructions that 
require the same functional unit will not issue until the previous 
operation is completed. Only one functional unit of each type is 
available to the vector instruction hardware. When the vector operation 
completes, the reservation is dropped and the functional unit is then 
available for another operation. 

I The functional unit is reserved for (VL)+4 CP. 

Vector add unit 

The vector add unit performs 64-bit integer addition and subtraction for 
a vector operation and delivers the results to elements of a V register. 
The unit executes instructions 154 through 157. The addition and 
subtraction are performed in a similar manner. For the subtraction 
operations, 156 and 157, the Vk operand is complemented prior to addition 
and during the addition a 1 is added into the low order bit position of 
the result. 

No overflow is detected by the unit. 

The functional unit time for the vector add unit is 3 CPs; the chain slot 
time is 5 CPs. 

HR-0808 
Part 2 

4-14 B 



I 

Vector shift unit 

The vector shift unit shifts the entire 64-bit contents of a V register 
element or the l28-bit value formed from two consecutive elements of a V 
register. Shift counts are obtained from an A register. Shifts are 
end-off with zero fill. 

All shift counts are considered positive unsigned integers. If any bit 
higher than 25 is set, the shifted result is all zeros. 

The vector shift unit executes instructions 150 through 153. 

Functional unit time is 4 CPs; chain slot time is 6 CPs. 

Vector logical unit 

The vector logical unit performs bit-by-bit manipulation of 64-bit 
quantities for instructions 140 through 147. The unit also performs the 
logical operations associated with the vector mask instruction, 175. 
Because the 175 instruction uses the same functional unit as instructions 
140 through 147, it cannot be chained with these logical operations. 

Functional unit time is 2 CPs, chain slot time is 4 CPs. 

Vector population/parity unit 

The vector population count unit counts the 1 bits in each element of the 
source vector register. The total number of 1 bits is the population 
count. This population count may be an odd or an even number, as shown 
by the low-order bit of the population count. 

The 174ijl instruction (vector population count) and the l74ij2 (vector 
population count parity) use the same operation code as the vector 
reciprocal approximation instruction. Therefore, some of the 
restrictions for the reciprocal approximation unit also apply for the 
vector population instructions. The vector population count instruction 
delivers the total population count to elements of the destination V 
register. 

The vector population count parity instruction delivers the low-order bit 
of the count to the destination V register. 

I The functional unit time is 6 CPs; chain slot time is 8 CPs. 

HR-0808 
Part 2 

4-15 B 



I 

I 

Recursive characteristic of vector functional units 

In a vector operation, the result register (designated by i in the 
instruction) is not normally the same V register as the source of either 
of the operands (designated by j or k). However, turning the output 
stream of a vector functional unit back into the input stream by setting 
i to the same register designator as j or k may be desirable under 
cert~in circumstances since it provides a facility for reducing 64 
.1 .... t.OOWn to just a few. The number of terms generated by the 
part'.l redootion is; determined by the number of values that can be in 
proceS8 in a functional unit at one time (i.e., functional unit time + 2 
CP) • 

When the i designator is the same as the j or k designator, a recursive 
characteristic is introduced into the vector processing because of the 
handling of element counters. At the beginning of an operation for which 
i is the same as j or k, the element counters for both the operand 
register and the operand/result register are set to O. Operand registers 
begin incrementing while the element counter for the result register is 
held at 0 until functional unit time +2 CP. However, when an operand 
register is the same as the result register, the element counter for the 
operand/result register is held at 0 and does not begin incrementing 
until the first result arrives from the functional unit at functional 
unit time + 2 CP. This counter then begins to advance by 1 each clock 
period. 

Note that until functional unit time + 2, the initial contents of element 
o of the operand/result register are repeatedly sent to the functional 
unit. The element counter for the other operand register, however, 
immediately begins advancing by 1 on each successive clock period, 
sending the contents of elements 0, 1, 2, ••• on successive clock periods. 

Thus, the first functional unit time + 2 elements of the operand/result 
register contain results based on the contents of element 0 of the 
operand/result register and on successive elements of the other operand 
register. These functional unit time + 2 elements then provide one of 
the operands used in calculating the results for the next functional unit 
time + 2 elements. The third group contains results based on the results 
delivered to the second group, and so on until the final group of 
functional unit time + 2 elements is generated as determined by the 
vector length. 

This recursive characteristic of vector processing is applicable to any 
vector operation, arithmetic or logical. The value initially placed in 
element 0 of the operand/result register may depend on the operation 
being performed. For example, when using the floating-point multiply 
unit recursively, element 0 of the operand/result register is usually set 
to an initial value of 1.0. 

As an example, consider the suw~ation of a vector of floating-point 
numbers with the following initial conditions for the vector operation: 

HR-0808 
Part 2 

4-16 B 



All elements of register VI contain floating-point values. 

Register V2 provides one set of operands and receives the 
results. Element 0 of this register contains a 0 value. 

The vector length register (VL) contains 64. 

A floating-point add instruction (171212) is then executed using register 
VI for one operand and using register V2 as an operand/result register. 
This instruction uses the floating-point add unit which has a functional 
unit time of 6 CPs causing sums to be generated in groups of eight 
(functional unit time + 2 = 8). The final eight partial sums of the 64 
elements of VI are contained in elements 56 through 63 of V2. 

Specifically, elements of V2 contain the following sums. 
(V200) 
(nOt) 

(V202) '"' 
(V203) 
(V201l) ,. 
(V20S) ,. 
(V20b) 
(V207) = 

(V2 00) 
:z (V200) 
:z (V200) 
= (V2 0 0) 
z (V20n) 

(V2 0 0) 
= rV2 0 n) 
• (V2 0 0) 

(V20R) '"' (V200) + (VI OR) c (V200) 
(Vl09) = (V?Ot) + (VI09) = rV2 0 0) 
(V2tO) :z (V20l) + (VitO) (V2 00) 
(V211) :z (V203) + (VIII) :z (V2 00) 
(V21l) c (V204) (VlI2)" (V2 00) 
(VlI]) = (V20S) (VII]) (VlOO) 
(V2111) = (V206) + (VIlli) (V2 00) 
(V2IS) '"' (V207) + (VIIS) '"' (VlOO) 

(VlOO) 
rVlOO) 
rVlOn) 
(VlOO) 
(VlOO) 
(Vlon) 

(V216) '"' (V20R) + (VI16) • 
(V217) • (Vl09) + (VI17) • 
eVlIA) c (VlIO) + (VI18) = 
(VlI9) c (VlII) + (VI19) '"' 
(VllO) c (Vlll) + (VI20) 
(V221) = (V?13) + (VI2t) 
(Vl22) = (V214) + (VI2l) 
(Vll]) (VlI~) + (VI2]) 

• (VlOO) 
'"' (V2 0 0) 

(Vll4) • (VlOO) 
(VI2S) '"' (V2 00) 
(VI26) :z (V2 00) 
(VI27) = (V2 00) 

(V2211) (V2Ill) 
(Vl25) = (Y217) 
(V226) (V2IR) + 
(V227) c (Y219) 
(V22S) • (V220) 
(V229) '"' (V221) 
(V230) '"' (Y?22) 
(V231) '"' (Vl23) 

(VI28) (V2 00) 
+ (V129) • (V2 00) 
+ (VI30) c (V2 00) 
+ (VI31) c rV2 00) 

(V232) = (V2211) (VI32) '"' (V2 00) 
(V233) = (V225) (VI33) = (V2 00) 
(V234) z (V226) + (Vi311) K rVlOO) 
eV235) = (V227) (VI35) c (V2 00) 
eV23b) K (Vl2A) (V136) '"' (VlOO) 
eV237) K (V229) + (VI37) S (VlOO) 
(V23e) • (Vl30) + (VI38) • (V2 00) 
CV239) K (Vl31) + (VI39) K (VlOO) 

(V240) • 
(V241) • 
(Vl42) • 
(V2113) c 
eVl44) '"' 
(Vl45) K 
(V24b) • 
(Vl47) '"' 

(V232) 
(V233) 
(V2311) 
(V235) 
(V236) 
(V237) 
(V238) 
(V239) 

(V2I1e) • (V2I1n) 
(V2119) (V2111) 
(V250) c (V242) 
(V251l K (V243) 
(V25l) K (V244) 
(V2S3) K (VlIl5) 
(V2SII) '"' (VlIl6) 
(V25S) c (V2117) 

(VIIIO) • (V2 00) 
(Vll1t) • (V2 00) 

+ (V1IIl) • (V2 00) 
+ (VI1I3) '"' (V2 00) 
+ (VIIIII) • (V2 00) 
+ (VI4S) '"' (V2 00) 
+ (VI116) • (VlOO) 
+ (VI47) c (V2 00) 

+ (VIliS) • (V2 00) 
+ (VI1I9) K (V2 00) 
+ (VI50) • (V2 00) 

(VI5t) '"' (V2 0 0) 
(Vl'52) '"' (V2 00) 

+ (V153) '"' (V2 00) 
+ (VI511) • (VlOO) 
+ (VI5S) '"' (VlOO) 

+ (VI'56) • (V2 0 0) + (VI00) 
(VI57) c (V2 00) (VIOl) 
(VI58) • (VlOO) (VIOl) 

+ eVI00) 
(VIOl) 
(VIOl) 

+ (VI03) 
+ (VI 011) 

eVlo'S) 
(VIOll) 

+ (VI07) 

+ (VI00) + (Vloe) 
(VIOl) (Vlnq) 
(VI02) (Vll0) 

+ (VI03) + (VIII) 
+ (Vl04) + (VI12) 
+ (VIOS) + (VI13) 
+ eVt06) + eVlll1) 
+ (VI07) + (V1tS) 

+ (VIOO) + (V108) + (V116) 
+ (vtOt) + (VI09) + (Vlt7) 
+ (VI02) + (VIIO) + (Vile) 

(VI03) + (Vttt) + (VI1Q) 
(VI04) + (VI12) + (V1l0) 

+ (V10S) + (V113) + (V1lt) 
+ (V106) + (Villi) + (V122) 
+ (VI07) + (VIIS) + (VIl3) 

+ (VIOO) + (VIoe) + (VII6) + (VIl4) 
+ (VIOl) + (VI09) + eVII7) + (VIlS) 
+ (VI02) + (VIIO) + (V1Ie) (Vll6) 
+ (VI03) (VIII) + (VI19) (VIlT) 
+ (VIOII) (V112) + (V120) + (VI28) 
+ (V10S) + (VII3) + (VI21) + (VI29) 
+ (V10ll) + (V114) + (VI22) (VI30) 
+ (VI07) + (VIIS) + (VI23) (VI31) 

+ (VIOO) + (VI OS) + (V116) + (VI211) + (VI3l) 
(VIOl) + (VI09) + (VI IT) + (VI2S) + (VI33) 
(VIOl) + (VII0) + (Vile) + eVIl6) + (VI34) 

+ (VI03) + (Viti) + (Vl19) + (V127) + eV13S) 
(VI04) + eV112) + (V120) + (V12S) (Vt36) 
(VIOS) + (VI13) (VI2t) + (VI29) (VI37) 

+ (VI06) + (V1111) (V122) + (Vt30) + (VI3S) 
+ (VI07) + (V115) + (VI23) + (V131) + (V13.) 

+ (VIOO) + (Vloe) + 
+ (V101) + (VI09, + 
+ (VI02) + (VII0) + 
+ (VI03) + (VIII) 
+ (VI 011) + (V1Il) 
+ (VIOS) (VI13) + 

(VI06) (Villi) + 
(VI07) + (VIIS) + 

(VI16) + (VI24) + (VI32) 
(VI17) + (VI25) + (VI33) 
(VIIS) + (VI26) (VI311) 
(VI19) + (VI27) (V135) 
(VI20) + (VI28) + (V136) 
(V121) (V129) (V137) 
(V1l2) (VI30) (VI3S) 
(VI23) + (VI31) + (VI3Q) 

+ (VI40) 
+ (V141) 
+ (VlI1Z) 

(VI43) 
eVtll4) 

+ (V145) 
+ (V14.) 
+ (V147) 

+ (VIOO) + (VI08) + (VI16) + (Villi) + (YI32) 
+ (VIOl) (VI09) + (VI17) + (VI25) + (VI33) 
+ (VI02) (VIIO) (Vile) (VI26) + (VI34) 

+ (Vl40) (Ville) 
+ (VlIII) (VI4Q) 
+ (VIIIl) + (VI50) 
+ (VI1l3) + (VI5t) 
+ (VIIIII) + CV152) 

(VI03) + (VI11) (VI19) (V127) + (VI35) 
(VI 011) + (VII2) + (VI20) (VI2S) + (V136) 

+ (VI05) + (VI13) + (Vlll) (Vll9) + (V137) 
+ (VI06) + (Villi) + (VI22) + (VI30) + eV138) 
+ eVI07) + (VIIS) + (VI23) + (V131) + (VI39) + 

(VIliS) + (V1S3) 
(VI1l6) + (V154) 
(VIIl7) + (VtSS) 

+ (VI08) 
+ (VIOQ) 
+ (VUO) 

(V124) + (V132) + (VIIIO) + (VI48) (VI5.) 
(V125) (VI33) + (Villi) (VI49) (VI57) 
(VI26) (VI311) + (VI1I2) (VI50) eVIse) 

(Vl5b) • (V2I1A) 
(V257) K (V2119) 
(Vl5e) '"' (V250) 
(V259) .. (V251) 
(Vl60) = (V252) 
(V261) • (V25') 
(V262) • (V2511) 
(V263) '"' (V2S~) 

+ (VI'59) '"' (V2 00) (VI03) 
(VI60) '"' (V2 00) (VIOII) 
(V161) • (V2 00) + (VI05) + 
(V162) • (V2 00) + (VI06) + 
(VI63) • (V2 00) + (VI07) + 

(VUIl 
(V112) 
(Vl13) 
(VI14) 
(VIIS) 

+ (VI16) + 
(VIl7) 
(VIIS) 
(V119) 
(V120) 

+ (VI2T) + eV135) + (VI1I3) + (VI51) + (VI5Q) 
+ (VI2S) + eV136) + (VI1I4) + eV152) (VlbO) 

(VI2Q) (VI37) (VIliS) (VI53) (YI61) + (VI2t) 
+ (VI2l) 
+ (V123) 

(Vll0) (VI3S) (VlI16) (VI511) + (VI62) 
+ (VI31) + (VI39) + (VI1l7) (VI55) + (VI63) 

HR-0808 
Part 2 

4-17 B 



FLOATING-POINT FUNCTIONAL UNITS 

The three floating-point functional units perform floating-point 
arithmetic for both scalar and vector operations. When executing a scalar 
instruction, operands are obtained from S registers and the result is 
delivered to an S register. When executing most vector instructions, 
operands are obtained from pairs of V registers or from a V register and 
an S register and the results are delivered to a V register. The 
reciprocal approximation unit, which requires only one input operand, is 
an exception. 

A particular floating-point unit is reserved during the entire execution 
of the vector instruction. 

Information on floating-point out-of-range conditions is contained in the 
subsection entitled Floating-Point Arithmetic, in this section. 

Floating-point add unit 

The floating-point add unit performs addition or subtraction of 64-bit 
operands in floating-point format. The unit executes instructions 062, 
063, and 170 through 173. 

A result is normalized even if the operands are unnormalized. 

Out-of-range exponents are detected as described under Floating-Point 
Arithmetic. 

Functional unit time is 6 CPs; chain slot time is 8 CPs. 

Floating-point multiply unit 

The floating-point multiply unit executes instructions 064 through 067 and 
160 through 167. These instructions provide for full- and half-precision 
multiplication of 64-bit operands in floating-point format and for 
computing two minus a floating-point product for reciprocal iterations. 

The half-precision product is rounded; the full-precision product is 
either rounded or unrounded. 

Input operands are assumed to be normalized. The unit delivers a 
normalized result except that the result is not guaranteed to be correct 
if either input operand is not normalized. 

Out-of-range exponents are detected as described under Floating-Point 
Arithmetic. However, if both operands have zero exponents, the result is 
considered as an integer product and is not normalized and is not 
considered out-af-range. ~his provides a fast ~ethod of co~puting a 
48-bit integer product. 

HR-0808 
Part 2 
4-18 B 



Functional unit time is 7 CPs; chain slot time is 9 CPs. 

Reciprocal approximation unit 

The reciprocal approximation unit finds the approximate reciprocal of a 
64-bit operand in floating-point format. The unit executes instructions 
070 and 174ijO. Since the Vector Population Count Unit shares some logic 
with this unit, the k designator must be 0 for the reciprocal 
approximation instruction to be recognized. 

The input operand is assumed to be normalized and if so the result is 
normalized. The high-order bit of the coefficient is not tested but is 
assumed to be a 1. If it is not a 1, the result will be incorrect. 

Functional unit time is 14 CPs; chain slot time is 16 CPs. 

ARITHMETIC OPERATIONS 

Functional units in the CPU perform either twos-complement integer 
arithmetic or floating-point arithmetic. 

INTEGER ARITHMETIC 

All integer arithmetic, whether 24 bits or 64 bits, is twos complement 
and is so represented in the registers as illustrated in figure 4-4. The 
address add unit and multiply units perform 24-bit arithmetic. The 
scalar add unit and the vector add unit perform 64-bit arithmetic. 

SIGN 

SIGN 

HR-0808 

TWOS COMPLEMENT INTEGER (24 BITS) 

TWOS COMPLEMENT INTEGER (64 BITS) 

Figure 4-4. Integer data formats 

Part 2 
4-19 B 



Multiplication of two scaled integer operands may be accomplished by 
using the floating-point multiply instruction. The floating-point 
multiply unit recognizes the conditions where both operands have zero 
exponents as a special case and returns the high-order 4S bits of the 
product of the coefficients as the coefficient of the result and leaves 
the exponent field zero. See figure 4-6. 

Division of integers would require that they first be converted to 
floating-point format and then divided using the floating-point units. 

FLOATING-POINT ARITHMETIC 

Floating-point numbers are represented in a standard format throughout 
the cpu. This format is a packed representation of a binary coefficient 
and an exponent (or power of two). The coefficient is a 4S-bit signed 
fraction. The sign of the coefficient is separated from the rest of the 
coefficient as shown in figure 4-5. Since the coefficient is signed 
magnitude, it is not complemented for negative values. 

BINARY POINT 

248'" 247 

I I 
COEFF. EXPONENT COEFFICIENT 
SIGN 

Figure 4-5. Floating-point data formats 

The exponent portion of the floating-point format is represented as a 
biased integer in bits 262 through 24S • The bias that is added to 
the exponents is 40000S • The positive range of exponents is 40000S 
through 57777S • The negative range of exponents is 37777S through 
20000S• Thus, the unbiased range of exponents is the following: 

2-20000S through 2+17777S 

In terms of decimal values, the floating-point format of the CRAY-l 
allows the expression of numbers accurate to about 15 decimal digits in 
the approximate decimal range of 10-2466 through 10+2466 • 

A zero value or an underflow result is not biased and is represented as a 
word of all zeros. 

A negative 0 is not generated by any floating-point functional unit, 
except in the case of a negative 0 operand going to the floating-point 
multiply functional unit. 

HR-OS08 
Part 2 

4-20 B 



I 

Normalized floating-point numbers 

A non-zero floating-point number in packed format is normalized if the 
most significant bit of the coefficient is non-zero. This condition 
implies that the coefficient has been shifted to the left as far as 
possible and, therefore, the floating-point number has no leading zeros 
in the coefficient. 

When a floating-point number has been created by inserting an exponent of 
40060 S into a word containing a 4S-bit integer, the result should be 
normalized before being used in a floating-point operation. 
Normalization is accomplished by adding the unnormalized floating-point 
operand to o. Since SO provides a 64-bit zero when used in the Sj field 
of an instruction, an operand in Sk can be normalized using the 062iOk 
instruction. Si, which can be Sk, contains the normalized result. 

The l70iOk instruction normalizes Vk into Vi if Vk and Vi are different 
registers. 

Floating-point range errors 

Overflow of the floating-point range is indicated by an exponent value of 
60000 S or greater in packed format. Underflow is indicated by an 
exponent value of l7777S or less in packed format. Detection of the 
overflow condition initiates an interrupt if the floating-point mode flag 
is set in the mode register and monitor mode is not in effect. The 
floating-point mode flag can be set or cleared by a user mode program. 

Detection of floating-point error conditions by the floating-point units 
is described in the following paragraphs. 

Floatinq-point add unit - A floating-point add range error condition is 
generated for scalar operands when the larger incoming exponent is 
greater than or equal to 60000 S• The floating-point error flag is set 
and an exponent of 60000S is sent to the result register along with the 
computed coefficient, as in the following example: 

HR-OSOS 

60000.4 
+57777.4 
60000~6 

Range error 

Result register 

NOTE 

If the operands to a floating-point add are identical 
except for sign, the error is suppressed, even though 
both have exponents greater than or equal to 60000S • 

Part 2 
4-21 B 



I 

I 

I 

An underflow condition occurs when the smaller incoming unnormalized 
exponent is less than or equal to 177778 • This underflow condition is 
not detected, and the calculated result goes to the result register. 

Floating-point multiply unit - The out-of-range conditions are tested 
before normalizing. In the floating-point multiply unit, if the exponent 
of either operand is greater than or equal to 60000S or if the sum 
minus 1 of the two exponents is greater than or equal to 60000S' the 
floating-point error flag is set and an exponent of 60000 S is sent to 
the result register along with the computed coefficient. 

NOTE 

If either of the operands is (plus, minus) zero, the 
error is suppressed, even though the other operand may 
be out of range. 

An underflow condition is detected when the result exponent is less than 
or equal to l7777S and causes an all-zero exponent and coefficient to 
be returned to the result register. 

Underflow is also generated when either, but not both, of the incoming 
exponents is o. The condition where both exponents are equal to 0 is 
treated as an integer multiply and the result is treated normally with no 
normalization shift of the result allowed. The result is a 48-bit 
quantity starting with bit 247. When using this feature, one may 
consider the operands as 24-bit integers in bits 247 through 224 even 
though they are actually fractions with the binary point between bits 

248 and 247. In figure 4-6, operand 1 is 4 and operand 2 is 5 which 
produce a 4S-bit result of 24S. (In this case bit 263 obeys the 
usual rules for multiplying signs, i.e. - * + = + * - = -, and - * - + 
* + = +) • 

Operand 1 o --- 0 o ---------------- 0 4 ~ 

Operand 2 o --- 0 o ---------------- 0 5 ~ 

Result o --- 0 o --------------------------------------- 0 24 

;4-0/45 

Figure 4-6. Integer multiply in floating-point multiply unit 

HR-OSOS 
Part 2 

4-22 B 



I 

Floating-point reciprocal approximation unit - For the floating-point 
reciprocal approximation unit, an incoming operand with an exponent less 
than or equal to 200018 or greater than or equal to 600008 causes a 
floating-point range error. The error flag is set and an exponent of 
60000 8 is sent to the result register along with the computed 
coefficient. 

Double-precision numbers 

The CPU does not provide special hardware for performing double- or 
multiple-precision operations. Double-precision computations with 95-bit 
accuracy are available through software routines provided by Cray 
Research. 

Addition algorithm 

Floating-point addition or subtraction is performed in a 49-bit register 
(figure 4-7). Trial subtraction of the exponents occurs to select the 
operand to be shifted down for aligning the operands. The larger 
exponent operand carries the sign. The coefficient of the number with 
the smaller exponent is shifted right to align with the coefficient of 
the number with larger exponent. Bits shifted out of the register are 
lost; no round-up takes place. If the sum carries into the high-order 
bit, the low-order bit is discarded and an appropriate exponent 
adjustment is made. All results are normalized and if there is 
underflow, an all zero result is returned. 

Q .1 L---__ 48 __ ----' discarded 

• 
A-0132 

Figure 4-7. 49-bit floating-point addition 

Multiplication algorithm 

The floating-point multiply unit in the CPU has an input of 48 bits of 
coefficient into a multiply pyramid (figure 4-8). The pyramid truncates 
part of the low-order bits of the 96-bit product. To adjust for this 
truncation, a constant is unconditionally added above the truncation. 
The value of this constant is 9/256. This is an average value 
determined by summing all carries produced by all possible combinations 
that could be truncated, and dividing the sum by the number of possible 
combinations. This averages to nine carries which are injected at the 
2-56 position. 

HR-0808 
Part 2 
4-23 B 



The errors due to this truncation and rounding are in the range: 

-0.23 x 2-48 to +0.57 x 2-48 

or -8.17 x 10-16 to +20.25 x 10-16 • 

The effect of this error is, at most, a round up of bit 2-48 of the 
result. 

2-1 

(MULTIPLICAND) 

2-21 \ 
I~ ________ ~ ________ ~ __________ ~ __________ L-______ ~ 

CD 

ffi 
h = 1 

f 1 

k 

(MULTIPLIER) 

for half-precision 

for full-precision 

Truncation constant 

hh 

CD 

round 
A-O/03A 

round 

• I 
• I 

• 

~
IO : 

O' 

CD I 

Figure 4-8. Floating-point multiply partial-product sums pyramid 

The multiplication is commutative, that is, A times B equals B times A. 

In a full-precision rounded multipl~, 2 round bits are entered into the 
pyramid at bit position 2-50 and 2- 1 and ~llowed to propagate up the 
pyramid. 

HR-0808 
Part 2 
4-24 B 



For a half-precision multiply, round bits are entered into the pyramid at 
bit positions 2-32 and 2-31 • A carry resulting from this entry is 
allowed to propagate up and a 29-bit result (2-1 to 2-29) is 
transmitted back. 

Division algorithm 

The CRAY-l performs floating-point division by the method of reciprocal 
approximation. This facilitates the hardware implementation of a fully 
segmented functional unit. Operands may enter the reciprocal unit each 
clock period because of this segmentation. In vector mode, results are 
produced at a l-CP rate. These results may be used in other vector 
operations during chaining because all functional ~nits in the CRAY-l 
have the same result rate. The reciprocal approximation is based on 
Newton's method. 

Newton's method - The division algorithm is an application of Newton's 
method for approximating the real roots of an arbitrary equation 
F(x) = 0, for which F(x) must be twice differentiable with a continuous 
second derivative. The method requires making an initial approximation 
(guess), xo' sufficiently close to the true root, xt ' being sought 
(see figure 4-9). For a better approximation, a tangent line is drawn to 
the graph of y = F(x) at the point (x O' F(xO». The X intercept of 
this tangent line is the better approximation xl. This may be again 
repeated using xl to find x2' etc. 

y 

HR-0808 

y= F(x) 

Figure 4-9. Newton's method 

Part 2 
4-25 

x 

A-0128 

B 



I 

Derivation of the division algorithm 

A definition for the derivative F' (x) of a function F(x} at point x t is 

limit 

X~Xt x 

if this limit exists. If the limit does not exist, F(x) is not 
differentiable at the point t. 

For any point xi near to Xt, 

F'(x)'\tF(x.) -F(x t ) 
t - 1 where ~ means "approximately equal to". 

xi - x t 

This approximation improves as xi approaches Xt. 
an approximate solution and let Xt stand for the 
sought. The exact answer is the value of x that 
This is the case for x = x t ' therefore F(x t ) may 
giving: 

F(xi) 

xi - Xt 

Let xi stand for 
true answer being 
makes F(x) equal O. 
be replaced by 0, 

Notice that Xt - xi is the correction that must be applied to an 
approximate answer, xi' to give the right answer since xi + 
(xt - xi) equals x t • Solving approximation (1) for (xt - xi) 
gives: 

= correction '\t - F(xi) • 

F' (Xt) 

If this quantity is substituted into the approximation, then: 

Xt ~ (Xi + correction) = xi+l· 

This gives, then, an equation of the form: 

xi+l = xi - F(xi) 
F' (x i) 

where xi+l is a better approximation than xi to the true value, Xt, 

( 1) 

(2 ) 

being sought. The exact answer is generally not obtained at once because 
the correction term is not generally exact. However, the operation may 
be repeated until the answer becomes sufficiently close for practical use. 

To make use of Newton's method to find the reciprocal of a number B, 
simply use F(x) = (l/x - B). 

HR-0808 
Part 2 

4-26 B 



I 

First calculating F' (x) we have: 

where F' (x) = ( ~ _ B)' = ( :~). thus for any point xl t 0, 

F' (x ) = 
1 

and applying equation (2), 

xl -

xl + 

1 
xl 
-

2 
xl 

Choosing for x, a value near 

- B 

1 
2 

xl 

(~ - B) , 
xl 

2 
xl + x -

1 xlB, 

2 
x 2 = 2x l - xlB = xl (2-x l B) • 

1 

B 

This approximation technique using Newton's method is implemented in the 
CRAY-l. A hardware table look up provides an initial guess, xo' to 
start the process. 

xO(2 - xOB) 1st approximation, II 
Done 

x l (2 - x B) 1 2nd approximation, 12 in reciprocal 
unit 

x 2 (2 - x B) 2 3rd approximation, 13 

x (2 -3 x3B) 4th approximation Done with 
software 

The CRAY-l reciprocal approximation functional unit performs three 
iterations: II, 12 and 13. II is accurate to 8 bits and is found after a 
table look-up to choose the initial guess, xO. 12 is the second 
iteration and is accurate to 16 bits. 13 is the final (third) iteration 
answer of the reciprocal functional unit and its result is accurate to 30 
bits. 

A fourth iteration which uses a special instruction within the 
floating-point multiply functional unit to calculate the correction term, 
may be used to increase the accuracy of the reciprocal unit's answer to 
full precision. 

The division algorithm that computes 51/52 to full-precision requires 
four operations: 

HR-0808 

Performed by the reciprocal 
approximation unit 

Part 2 
4-27 B 



I 

I 

I 

I 

2. S4 (2 - (S3 * S2) ) Performed by the floating-point 
multiply unit in iteration mode 

3. S 5 S4 * S3 Performed by the floating-point 
multiply unit using 
full-precision. S5 now equals 
1/S2 to 48 bit accuracy. 

4. S6 S5 * Sl Performed by the floating-point 
multiply unit using full-precision 
rounded 

The reciprocal approximation at step 1 is correct to 30 bits. The 
additional Newton iteration (fourth iteration) at steps 2 and 3 increases 
this accuracy to 48 bits. This iteration answer is applied as an operand 
in a full-precision rounded multiply operation to obtain the quotient 
accurate to 48 bits. Additional iterations should not be attempted since 
erroneous results could be obtained. 

Where 29 bits of accuracy is sufficient, the reciprocal approximation 
instruction may be used with the half-precision multiply to produce a 
half-precision quotient in only two operations. 

Performed by the reciprocal 
approximation unit 

Performed by the floating-point 
multiply unit in half-precision 

The 19 low-order bits of the half-precision results are returned as zeroS 
with a round applied to the low-order bit of the 29-bit result. 

Another method of computing divisions is as follows: 

1. S3 = 1/S2 Performed by the reciprocal 
approximation unit 

2. S5 = Sl * S3 Performed by the floating-point 
multiply unit 

3. S4 = (2 - (S 3 * S 2) ) Performed by the floating-point 
multiply unit 

4. S6 S4 * S5 Performed by the floating-point 
multiply unit 

A scalar quotient is computed in 29 CPs since operations 2 and 3 issue in 
successive clock periods. with this method the full precision reciprocal 
1/5 2 is ~ever for~ed. 

HR-0808 
Part 2 
4-28 B 



I 

I 

A vector quotient using this procedure requires less than four vector 
times since operations I and 2 are chained together. This overlaps one 
of the multiply operations. (A vector time is I CP for each element in 
the vector.) 

For example, two 60-element vectors are divided in 3 * 60 CPs plus 
overhead. (The overhead associated with the functional units for this 
case is 38 CPs). 

LOGICAL OPERATIONS 

The scalar and vector logical units perform bit-by-bit manipulation of 
64-bit quantities. Operations provide for forming logical products, 
differences, sums and merges. 

A logical product is the AND function: 

operand I I 0 I 0 
operand 2 I I 0 0 
result I 0 0 0 

A logical difference is the exclusive OR function: 

operand I I 0 I 0 
operand 2 I I 0 0 
result 0 I I 0 

A logical sum is the inclusive OR function: 

operand I I o I 0 
operand 2 I I 0 0 
result I I I 0 

A logical equivalence is the exclusive NOR function: 

operand I I 0 I 0 
operand 2 I I 0 0 
result I 0 0 I 

The merge uses two operands and a mask to produce results as follows: 

operand I I 0 I 0 I 0 I 0 
operand 2 I I 0 0 I I 0 0 
mask I I I I 0 0 0 0 
result 1 0 1 0 1 1 0 0 

The bits of operand I pass where the mask bit is 1. The bits of operand 
2 pass where the mask bit is o. 

HR-0808 
Part 2 
4-29 B 





CPU INPUT jOUTPUT SECTION 

INTRODUCTION 

The Input/Output section of the Central Processing Unit contains one 
Memory Channel and 12 I/O channel pairs. The Memory Channel has one 
input channel and one output channel. The 12 I/O channel pairs are 
composed of 12 input channels and 12 output channels. The I/O channels 
are 16 bits wide, while the Memory Channel is 64 bits wide. 

MEMORY CHANNEL 

The Memory Channel transfers data between the Central Memory and the 
Buffer I/O Processor (BIOP). It has two independent channels, one for 
input to Central Memory, and one for output from Central Memory. Each 
channel is 64 bits wide, and handles data at approximately 850 Mbits per 
second. Each channel uses an additional 8 check bits for single error 
correction/double error detection (SECDED), just as is used in Central 
Memory. 

5 

The CPU side of the channel uses a pair of 16-word buffers to stream the 
data out of Central Memory. As one buffer block is being sent to the I/O 
Processor, the other buffer is filling from Central Memory. Another pair 
of buffers is used to speed data into Central Memory. 

At the I/O Processor end of the channels, the data passing into I/O 
Memory is double-buffered and disassembled into l6-bit parcels. The 
channel end passing data from I/O Memory simply assembles 64-bit words 
from the l6-bit parcels. 

The instruction fetch, exchange sequence, and normal I/O channel memory 
requests all take precedence over a Memory Channel Central Memory 
request. Data is sent in blocks, with 16 words as the normal block 
length. Each block transfer keeps Central Memory busy for 7 CPs and 
locks out all other memory requests. 

Between block transfers there is a l-CP wait that allows any other active 
memory requests to take over Central Memory. 

HR-0808 
Part 2 
5-1 B 



The Memory Channel is controlled by the Buffer I/O Processor. There are 
no CPU instructions for the Memory Channel. All data transfers between 
the Central Memory and the BIOP are initiated by the BIOP. All error 
handling is initiated by the BIOP. Since the Memory Channel is 
supervised by an I/O Processor, the programming details are contained in 
part 3, section 7. 

I/O CHANNELS 

The I/O channels have three basic types of control logic: 

1. 16-bit asynchronous; used for Maintenance Control Unit interface 
or front-end interfaces; the standard CRAY-I I/O channel 

2. l6-bit high-speed asynchronous 

3. 16-bit synchronous; used for disk storage access 

Each type of I/O channel has the same electrical interface to the I/O 
cable but differs in timing, protocol, and data rates. 

CHANNEL GROUPS 

I/O channels are numbered 2 through 31S and are divided into four 

groups as follows: 

Group 1 Input channels 2, 6, 12, 16, 22, 26 

Group 2 Output channels 3, 7, 13, 17, 23, 27 

Group 3 Input channels 4, 10, 14, 20, 24, 30 

Group 4 Output channels 5, 11, 15, 21, 25, 31 

I/O INSTRUCTIONS 

The instructions used with I/O channels are: 

OOlOjk 

OOlljk 

HR-OSOS 

Set the current address (CA) register for the channel 
indicated by (Aj) to (Ak) and activate the channel 

Set the limit address (CL) register tor the channel 
indi~ated by (Aj) to (Ak) 

Part 2 
5-2 B 



0012jx Clear the interrupt flag and error flag for the channel 
indicated by (Aj) 

033iOx Transmit channel number to Ai 

033ijO Transmit address of channel (Aj) to Ai 

033ijl Transmit error flag of channel (Aj) to Ai 

BASIC I/O CHANNEL OPERATION 

Each input or each output channel directly accesses the Central Memory. 
Input channels store external data in memory and output channels read 
data from memory. A primary task of a channel is to convert 64-bit 
Central Memory words into l6-bit parcels or l6-bit parcels into 64-bit 
Central Memory words. Four parcels make up one Central Memory word, with 
bits of the parcels assigned to memory bit positions as shown in table 
5-1. In both input and output operations, parcel 0 is always transferred 
first. 

Each channel consists of a data channel (4 parity bits, 16 data bits, and 
3 control lines), a 64-bit assembly or disassembly register, a channel 
current address register (CA), and a channel limit address register (CL). 

The three control signals are Ready, Resume, and Disconnect. These 
control signals coordinate the transfer of parcels over the channels. 
The method of coordination varies among the types of channel; the 
different methods are explained later. 

In addition to the three control signals, either the input or output 
channel of a pair has a Master Clear line. 

Table 5-1. Channel word assembly/disassembly 

Characteristic Bit position Number Comment 
of bits 

Channel data bits 215 _20 16 Four 4-bit groups 
Channel parity bits 4 One per 4-bit group 
CRAY-l word 

Parcel 0 
Parcel 1 
Parcel 2 
Parcel 3 

HR-0808 

263_2 0 
263_2 48 
247 _2 32 
231 _216 
215 _20 

Part 2 
5-3 

64 
16 First in or out 
16 Second in or out 
16 Third in or out 
16 Fourth in or out 

B 



I/O interrupts can be caused by the following: 

On all output channels, if (CA) becomes equal to (CL) , then for 
each of the channel types on the transmission of the last four 
parcels: 

16-bit asynchronous 

16-bit high-speed asynchronous 

Resume for last parcel 
transmitted sets interrupt 

Resume for last four parcels 
transmitted sets interrupt 

16-bit synchronous Interrupt sets when last Ready is 
sent 

16-bit asynchronous 

16-bit high-speed asynchronous 

16-bit synchronous 

Disconnect received and channel 
active, or CA = CL and channel 
active 

Disconnect received and channel 
active 

Disconnect received and channel 
active and CA = CL 

External device disconnect received on any input channel and 
channel is active 

Channel error condition (described later in this section) 

The number of the channel causing an interrupt can be determined by the 
use of a 033 instruction, which reads to Ai the highest priority channel 
number requesting an interrupt. The lowest numbered channel has the 
highest priority. The interrupt request continues until cleared by the 
monitor program at which time an interrupt from the next highest priority 
channel, if present, may be sensed. 

INPUT CHANNEL PROGRAMMING 

To start an input operation, the CPU program must perform the following 
steps: 

1. Set the channel limit address to the last word address+l 
(LWA+l). See figure 5-1. 

2. Set the channel current address to the first word address (FWA). 

HR-0808 
Part 2 

5-4 B 



Setting the current address causes the channel active flag to be set. 
The channel is then ready to receive data. When a 4-parcel word is 
assembled, the word is stored in memory at the address contained in the 
channel current address register. When the word is accepted by memory, 
the current address is advanced by 1. 

CLEAR 
INTERRUPT 

FLAG 

NO 

SET 
CHANNEL 

LIMIT 

GET 
CHANNEL 

INTERRUPT NO. 

DETERMINE 
NUMBER OF WORDS 

TRANSFERRED 

YES CLEAR 
IHT. & ERROR 

FLAGS 

Figure 5-1. Basic I/O program flow chart 

The external transmitting device sends a Disconnect pulse to indicate the 
end of the transfer. When the Disconnect is received, the channel 
interrupt flag sets and a test is performed to check for a partially 
assembled word. If the partial word is found, the valid portion of the 
word is stored in memory and the unreceived, low-order parcels are stored 
as zeros. 

The interrupt flag sets when a Disconnect pulse is received or when an 
error condition is detected. Setting the interrupt flag deactivates the 
input channel. 

HR-0808 
Part 2 
5-5 B 



Input channel error conditions 

1. Parity error 

16-bit asynchronous channel - When a parcel in error occurs, the 
parity fault flag sets immediately. The parity fault flag does 
not generate an interrupt; it is saved and sets the error flag 
when a disconnect occurs. Therefore, the program should check 
the state of the error flag when an interrupt is honored. 

16-bit high-speed asynchronous channel - Same as for 16-bit 
asynchronous channel. 

16-bit synchronous channel - The parcel that contains the error 
sets the parity fault flag. The parity fault flag causes the 
subsequent parcels to be stored as all zero parcels. No 
interrupt is generated by the parity fault. When the data 
transfer is complete, and the channel goes inactive, the parity 
fault flag sets the channel error flag. The program should check 
the state of the error flag when an interrupt is honored. 

2. Unexpected Ready pulse 

HR-0808 

16-bit asynchronous channel - If a Ready pulse is received when 
the channel is not active, the ready condition is saved until the 
channel is activated. At this time a Resume pulse is sent. No 
error flag is set and no interrupt request is generated. 

If a Ready pulse is received when the memory reference for the 
previous four parcels is not yet complete, or is received when 
the channel is active but CA = CL (an extra Ready), the error 
flag is set. An interrupt request is generated, but no Resume is 
sent and the data is discarded. When servicing the I/O 
interrupt, if the channel error flag is set and CA is not equal 
to CL, a programmed master clear sequence (described later in 
this section) should be executed on the interrupting channel to 
clear the external device. 

16-bit high-speed asynchronous channel - If an unexpected Ready 
pulse is received during a memory reference, the normal burst of 
four Resume pluses is sent and the data is not sampled. The 
error flag is set and an interrupt is generated. If the channel 
is not active or CA = CL when the unexpected Ready pulse arrives, 
no Resume pulses are sent; the data is not sampled; and the error 
flag is set to generate an interrupt. 

Part 2 
5-6 B 



16-bit synchronous channel - A Ready signal is not expected when 
the channel is inactive, or when CA = CL, or after the first 
Ready but before the end of the transfer. If an unexpected Ready 
signal is received, the error flag is set and an interrupt is 
generated. No further data of the block is transferred. No 
Resume signal is returned in response to the unexpected Ready 
signal. 

OUTPUT CHANNEL PROGRAMMING 

To start an output operation, the CPU program must: 

1. Set the channel limit address to the last word address+l (LWA+l) 

2. Set the channel current address to the first word address (FWA). 

Setting the current address causes the channel active flag to be set. 
The channel reads the first word from memory addressed by the contents of 
the channel's current address register. When the word is received from 
memory, the channel advances the current address by 1 and starts the data 
transfer. 

After each word is read from memory and the current address is advanced, 
the limit test is made. The test compares the contents of the channel's 
current address register and the channel's limit address register. If 
they are equal, the operation is complete as soon as the last parcel 
transfer is finished. Tables 5-3, 5-5, and 5-7 show the terminating 
sequence. 

Output channel error condition 

The interrupt flag also sets if an error is detected. The only error 
that an output channel detects is a Resume pulse received when the 
channel is not active. No external response is generated. 

16-BIT ASYNCHRONOUS CHANNELS 

Input channels 

Table 5-2 illustrates a general view of an input signal sequence. 

HR-0808 
Part 2 

5-7 B 



Data bits 2° throuth 2
15 

- Data bits 20, 21 , ••• , 215 are signals 
carrYIng the 16-61 parcel of data from the external device to the cpu. 
They must all be valid within 80 nanoseconds after the leading edge of 
the Ready signal. Data bit signals must remain unchanged on the lines 
until the corresponding resume is received by the external device. 
Normally, data is sent coincident with the Ready pulse and is held until 
the subsequent Ready pulse. 

Table 5-2. l6-bit asynchronous input channel signal exchange 

cpu EXTERNAL 

1. Activate channel (Set CL and CAl • 

2. ... Data 263_2 48 with Ready 

3. Resume .. 
4. ... Data 2 47_2 32 with Ready 

5. Resume .. 
6. ... Data 231_2 16 with Ready 

7. Resume ... 

8. ~.~------Data 215_2° with Ready 

9. Write word to memory and advance 
current address. 

lOa. Resume .. 

lOb. If (CA) = (CL) , go to 13. 

11. If more data, go to 2. 

12. ....1------- Di sconnect (ignored if 

13. Set interrupt and deactivate channel. 

HR-0808 
Part 2 
5-8 

CA = CL or if channel not 
active 

B 



Parity bits 0 through 3 - Parity bits 0 through 3 are each assigned to a 
4-bit group of data bits. The parity bits are set or cleared to give the 
bit group odd parity. Bit assignments are as follows: 

Parity Bit 0 Data Bits 20 - 23 

Parity Bit 1 Data Bits 24 - 27 
Parity Bit 2 Data Bits 28 - 211 
Parity Bit 3 Data Bits 212 - 215 

Parity bits are sent from the external device to the CPU at the same time 
as the data bits. They are held stable in the same way as are the data 
bits. 

Ready - The Ready signal sent to the CPU indicates that a parcel of data 
is being sent to the CPU input channel and may be sampled. The Ready 
signal is a pulse 50 ~10 nanoseconds wide (at 50% voltage points). The 
leading edge of Ready at the CPU begins the timing for sampling the data 
bits. 

Resume - Resume is sent from the CPU to the external device to show that 
the parcel was received and that the CPU is ready for the next data 
transmission. Resume is a pulse 50 +3 nanoseconds wide (at 50% voltage 
points). 

Disconnect - This signal is sent from the external device to the CPU and 
means that the transmission from the external device is complete. It is 
sent after the Resume is received for the last Ready. Disconnect is a 
pulse 50 ~10 nanoseconds wide (at the 50% voltage points) • 

Channel Master Clear - This signal may be programmed (see description of 
Programmed Master Clear later in this section) or may result from a Clear 
I/O Signal. 

Output channels 

Table 5-3 illustrates a general view of an output signal sequence. 

o 15 
Data bits 2 through 2 
carrYlng a 16-blt parcel 
They are all sent at the 
edge of the Ready pulse. 

- Data bits 20 , 21, ••• , 215 are signals 
of data from the CPU to an external device. 
same time, within 5 nanoseconds of the leading 

Data bit signals remain steady on the lines 
until the Resume pulse is received. 

HR-0808 
Part 2 
5-9 B 



Parit¥ bits 0 througn 3 - Parity bits 0, 1, 2, and 3 are each assigned to 
a 4-blt group of data bits. The parity bits are set or cleared to give 
the bit group odd parity. Bit assignments are as follows: 

Parity Bit 0 Data Bits 20 - 23 

Parity Bit 1 Data Bits 24 - 27 
Parity Bit 2 Data Bits 28 _ 211 

Parity Bit 3 Data Bits 212 _ 215 

Parity bits are sent from the CPU to the external device at the same time 
as the data bits. They are held stable in the same way as are the data 
bits. 

Table 5-3. l6-bit asynchronous output channel signal exchange 

CPU 

1. Activate channel (set CL and CAl. 

2. Read word from memory and advance 
current address. 

3. Data 263 _248 with Ready---~.~ 

4. ..... .. 1------ Res ume 

5. Data 247_2 32 with Ready---~ •• 

6. ..... .. I-----Resume 

7 • Data 231 _216 with Ready---~ •• 

8. ..... .. ..----- Resume 

9. 

10. ..... .. I-----Resume 

11. If (CA) i (CL), go to 2. 

12. Disconnect-----~ •• 

13. Set interrupt and deactivate channel. 

HR-0808 
Part 2 

5-10 

EXTERNAL 

B 



Ready - The Ready signal sent from the CPU to the external device 
indicates that the data is present and may be sampled. The Ready signal 
is a pulse 50 ~3 nanoseconds wide (at 50% voltage points). The leading 
edge of Ready may be used to time data sampling in the external device. 

Resume - Resume is sent from the external device to the CPU to show that 
the parcel was received and that the external device is ready for the 
next parcel transmission. Resume is a pulse 50 ~10 nanoseconds wide (at 
50% voltage points). 

Disconnect - Disconnect is a signal sent from the CRAY-l to the external 
device that means the transmission from the CRAY-l is complete. It is 
sent after the CPU has received the Resume from the last Ready. The 
Disconnect is a pulse 50 ~3 nanoseconds wide (at 50% voltage points) • 

Cabling Restrictions - The normal length of cable for the 16-bit 
asynchronous channel is 70 feet (21.3 meters). This assumes a 10-foot 
(305-cm) drop cable at the CPU, a 50-foot (15.3-meter) data cable, and 
another 10-foot (305-cm) drop cable at the external device. When used 
with a Cray Research, Inc. front-end interface, the cable length 
increases to 300 feet (91.5 meters). 

16-BIT HIGH-SPEED ASYNCHRONOUS CHANNELS 

Input channels 

Table 5-4 illustrates a general view of an input signal sequence. 

Data bits 2
0 

through 2
15 

- Data bits 20 , 21 , .•• , 215 are signals 
carryIng a 16-bIt parcel of data to the CPU. The data lines must be 
stable no later than 80 nanoseconds after the leading edge of the 
associated Ready pulse and must be held stable until at least 120 
nanoseconds after the leading edge of the same Ready_ Note that if the 
device is transmitting at the maximum allowable rate, it is normal for a 
data parcel to overlap the subsequent Ready pulse. Typically, data is 
transmitted 50 nanoseconds after the leading edge of Ready and held until 
50 nanoseconds after the leading edge of the following Ready pulse. 

Parity bits 0 through 3 - Parity bits 0, 1, 2, and 3 are each a parity 
bit assigned to a 4-bit group of data bits. The parity bits are set or 
cleared to give the bit group odd parity. Bit assignments are as follows: 

Parity Bit 0 Data 
Parity Bit 1 Data 
Parity Bit 2 Data 
Parity Bit 3 Data 

HR-0808 

Bits 20 - 23 

Bits 24 - 27 
Bits 28 - 211 
Bits 212 - 215 

Part 2 
5-11 B 



Table 5-4. 16-bit high-speed asynchronous input channel signal exchange 

CPU 

1. Activate channel (Set CL and CA). 

2. Resume -----t.~ 

3. Resume -----l ... 

4. Re s ume -----l.~ 

5. Resume -------I.~ 

6. ~.~------

7. ~.~----

8. ~.~---

9. ~.~-----

10. Write word to memory and advance 
current address; go to 2. 

EXTERNAL 

If done, go to 11. 

Data 263_2 48 with 

Data 247_2 32 with 

Data 231_2 16 with 

Data 215_20 with 

11. ~ ... ~--- Disconnect 

12. Set interrupt and deactivate channel. 

Ready 

Ready 

Ready 

Ready 

Parity bits are sent from the external device to the CPU at the same time 
as the data bits. They are held stable in the same way as are the data 
bits. 

Ready - The Ready signal sent to the CPU indicates that data will soon be 
sent to the CPU input channel and may be sampled. The Ready signal is a 
pulse 50 ~10 nanoseconds wide (at the 50% voltage points) sent in groups 
of four. The leading edge of Ready at the CPU begins the timing for 
sampling the data bits. 

The first Ready pulse of a group may be transmitted by the device as soon 
as it detects the leading edge of the first Resume pulse for that group. 
The time from the leading edge of one Ready pulse to the leading edge of 
the following Ready pulse in the same group must be greater than 90 
nanoseconds. 

HR-0808 
Part 2 
5-12 B 



Resume - This signal is sent to the external device to show that the CPU 
is ready for the next data transmission. Resume is a pulse 50 +3 
nanoseconds wide (at the 50% voltage points) sent in groups of four. 

For any group of Resume pulses, the time from the leading edge of one 
Resume to the leading edge of the next Resume is 100 +3 nanoseconds. 

Disconnect - This signal is sent from the external device to the CPU and 
indicates that the transmission from the external device is complete. It 
is sent after the last Ready. The Input Disconnect pulse must be 
transmitted no earlier than 20 nanoseconds after the leading edge of the 
final Ready pulse. Disconnect is a pulse 50 !10 nanoseconds wide (at the 
50% voltage points). 

Output channels 

Table 5-5 illustrates a general view of an output signal sequence. 

o 15 
Data bits 2 through 2 - Data bits 20, 21 , ••• , 215 are signals 
carrYlng a lb-blt parcel of data from the CPU to an external device. 
They are all sent at the same time, within 5 nanoseconds of the leading 
edge of the Ready pulse. Data bits remain steady on the lines until the 
next parcel is sent, or until the Resume pulse is received, whichever 
occurs first. 

Parity bits 0 through 3 - Parity bits 0, 1, 2, and 3 are each assigned to 
a 4-bit group of data bits. The parity bits are set or cleared to give 
the bit group odd parity. Bit assignments are as follows: 

Parity Bit 0 Data Bits 20 - 23 

Parity Bit 1 Data Bits 24 - 27 
Parity Bit 2 Data Bits 28 - 211 
Parity Bit 3 Data Bits 212 - 215 

Parity bits are sent from the CPU to the external device at tne same tlme 
as the data bits. They are held stable in the same way as are the data 
bits. 

Channel Master Clear - The Channel Master Clear may be programmed (see 
description of Programmed Master Clear later in this section) or may 
result from a Clear I/O signal. The Master Clear signal may be used by 
the external devices for control purposes or may be ignored. 

Ready - The Ready signal sent from the CPU to the external device 
indicates that the data is present and may be sampled. The Ready signal 
is a pulse 50 ~3 nanoseconds wide (at the 50% voltage points) sent in 
groups of four. For any group of Ready pulses, the time from the leading 
edge of one Ready to the leading edge of the next Ready is 100 ~3 
nanoseconds. The leading edge of Ready may be used to time data sampling 
in the external device. 

HR-0808 
Part 2 

5-13 B 



Table 5-5. 16-bit high-speed asynchronous output channel signal exchange 

CPU 

1. Activate channel (set CL and CAl • 

2. Read word from memory and advance 
current address. 

3. Data 263_2 4B with Ready • 
I 4. Data 247_2 32 with Ready • 

5. Data 231_2 16 with Ready • 
6. Data 215_2 0 with Ready • (with Disconnect if this is the last 

word) 

7. .. 
B. If (CA) ., (CL) , go to 2. 

9. Set interrupt and deactivate channel. 

EXTERNAL 

Resume 

Resume - Resume is sent from the external device to the CPU to show that 
the 64-bit word of four parcels was received and that the external device 
is ready for the next word (four parcels). Resume is a pulse 50 ~10 
nanoseconds wide (at the 50% voltage points). The pulse must be received 
at the CPU no earlier than 230 nanoseconds after the leading edge of the 
first Ready pulse is transmitted. 

Disconnect - Disconnect is a signal sent from the CPU to the external 
device that means the transmission from the CPU is complete. It is sent 
with the last Ready ~3 nanoseconds. The Disconnect pulse is 50 +3 
nanoseconds wide (at the 50% voltage points) • 

Cabling Restrictions - The 16-bit high-speed asynchronous channel can 
handle a cable length of up to 70 feet (21.3 meters). This assumes a 
lO-foot (305-cm) drop cable at the CPU, a 50-foot (15.3-meter) data 
cable, and another lO-foot (305-cm) drop cable at the external device. 

HR-OBOB 
Part 2 
5-14 B 



l6-BIT SYNCHRONOUS CHANNELS 

Input channels 

Table 5-6 illustrates a general view of an input signal sequence. 

o 15 
Data bits 2 through 2 - Data bits 20, 21, ••• , 215 are signals 
carrylng a l6-blt parcel of data from the external device to the CPU. 
They are all valid within 5 nanoseconds of each other. Data bit signals 
must remain unchanged on the lines until the next parcel is sent. Data 
lines must be stable at the CPU backpanel within 90 nanoseconds after the 
corresponding Resume pulse is transmitted from the CPU backpanel. 

Parity bits 0 through 3 - Parity bits 0, 1, 2, and 3 are each assigned to 
a 4-bit group of data bits. The parity bits are set or cleared to give 
the bit group odd parity. Bit assignments are as follows: 

Parity Bit 0 Data Bits 20 - 23 

Parity Bit 1 Data Bits 24 - 27 
Parity Bit 2 Data Bits 28 - 211 
Parity Bit 3 Data Bits 212 _ 215 

Parity bits are sent from the external device to the CPU at the same time 
as the data bits. They are held stable in the same way as are the data 
bits. 

Ready - The Ready signal is a block ready in response to the first resume 
of a block. The Ready signal is a pulse 50 ~10 nanoseconds wide (at the 
50% voltage points). It is sent from the external device to the CPU. 
Ready occurs within 5 nanoseconds of the leading edges of the first 
parcel of data bits. 

Resume - Resume is sent from the CPU to the external device to initiate 
the synchronous data transfer and to time the sending of data at the 
CPU. The first Resume pulse is 50 i3 nanoseconds wide (at the 50% 
voltage points). Following the first Resume, which awaits a Ready 
response, the signal is sent in one group of three Resumes (150 ±7 ns) 
followed by as many groups of four Resumes (200 ~9 ns) as required to 
complete the block transfer. 

Disconnect - Disconnect is a signal sent from the external device to the 
CPU indicating that transmission from the external device is complete. 
It is sent with parcel 2 of the last data word or at any later time. 
Disconnect is a pulse 50 ~10 nanoseconds wide (at the 50% voltage points) • 

Block length restrictions - The input channel has no restrictions on 
block length. The disk controller, which is the only device connected to 
this type of channel, has rigid restrictions on its block lengths. Input 
transmissions are limited to 1 or 4 or 512 64-bit words. 

HR-0808 
Part 2 
5-15 B 



Table 5-6. 16-bit synchronous input channel signal exchange 

CPU EXTERNAL 

1. Activate channel (set CL and CA). 

2. Resume ~ 

3. .. Data 263_2 48 with Ready 

4. Resume ~ 

150 ns 
247_2 32 , 5. Resume ~ .. Data no Ready 

pulse 

6. Resume • "'-Data 231_216 , no Ready 

7. .--Data 215_2 0 , no Ready 

8. Write word to memory; advance 
current address. 

9. I f last word, go to 16. 

10. Resume .. 
11. Resume .... 200 ns .. Data 263_2 48 , no Ready 

12. Resume ... pulse .. Data 247_2 32 , no Ready 

13. Resume .. .. Data 231_2 16 , no Ready 

14. ~Data 215_2 0 , no Ready 

15. Go to 8. 

16. Wait for Disconnect. ... If last word, Disconnect. 

17. Set interrupt and deactivate channel. 

Clock - A Clock signal is supplied over a separate cable (one per DCU 
cabinet) to the external device from the CPU. This Clock signal 
synchronizes signals at the external device interface connector. 

HR-0808 
Part 2 

5-16 B 



Cablins restrictions - The synchronous channels use a fixed length cable 
prov1d1ng constant propagation time for the signals. This cable delay is 
designed into the control logic; therefore, the cable length and 
propagation speed cannot be changed. The total cable length between the 
CPU and the external device is 17 feet (518 cm). The cable run for a 
synchronous channel uses one 10 foot (305 cm) drop cable at the CPU and 
one 7 foot (213 cm) length of data cable at the external device. 

Output channels 

Table 5-7 illustrates a general view of an output signal sequence. 

o 15 
Data bits 2 through 2 - Data bits 20 , 21, ••• , 215 ~re signals 
carrY1ng a l6-b1t parcel of data from the CPU to the external device. 
They are sent with the leading edge of the Ready pulse ~ 5 nanoseconds. 
Data bit signals remain unchanged on the lines until the next parcel is 
sent. 

Parity bits 0 through 3 - Parity bits 0, 1, 2, and 3 are each assigned to 
a 4-bit group of data bits. The parity bits are set or cleared to give 
the bit group odd parity. Bit assignments are as follows: 

Parity Bit 0 Data Bits 20 - 23 

Parity Bit 1 Data Bits 24 - 27 
Parity Bit 2 Data Bits 28 _ 211 

Parity Bit 3 Data Bits 212 _ 215 

Parity bits are sent from the CPU to the external device at the same time 
as the data bits. They are held stable in the same way as are the data 
bits. 

Channel Master Clear - The Channel Master Clear may be programmed (see 
description of Programmed Master Clear later in this section) or may be 
the result of a Clear I/O signal. The programmed Master Clear is a 
static signal sent from the CPU to an external device. The Master Clear 
signal may be used by the external device for control purposes or it may 
be ignored. 

Ready - The Ready signal is sent from the CPU to the external device to 
indicate that the data is valid. The first Ready signal is a pulse 50 ~3 
nanoseconds wide (at the 50% voltage points). Following the first Ready, 
which awaits a Resume response, the signal is sent in one group of three 
Readies (150 ~7 ns) followed by as many groups of four Readies (200 +9 
ns) as required to complete the block transfer. 

Resume - Resume is sent from the external device to the CPU in response 
to the first Ready signal. The Resume pulse is 50 ~10 nanoseconds wide 
(at the 50% voltage points). 

HR-0808 
Part 2 

5-17 B 



Table 5-7. l6-bit synchronous output channel signal exchange 

CPU 

1. Activate channel (set CL and CA). 

2. Read word from memory and advance 
current address. 

3. Data 263_2 48 with Ready • 
(With Disconnect if last word) 

4. ..... .. I-----Resume 

5. Data 247_2 32 with Ready • 
6. Data 231_216 with Ready • 
7. Data 215 _20 with Ready • 
8. If (CA) = (CL), go to 15. 

9. Read word from memory and advance 
current address. 

10. Data 263_2 48 with Ready • 
(with Disconnect if (CA) = (CL» 

11. Data 247 _232 -----!.~ 

12. 

13. 

14. If (CA) i- (CL), go to 9. 

I 

15. Set interrupt and deactivate channel. 

150 ns 
Ready 
pulse 

200 ns 
Ready 
pulse 

EXTERNAL 

Disconnect - Disconnect is a signal sent from the CPU to the external 
device indicating that the transmission from the CPU is complete. It is 
sent with parcel 0 of the last 64-bit data word. Disconnect is a pulse 
50 ~3 nanoseconds wide (at the 50% voltage points). 

Block length restrictions - The output channel has no restrictions on 
block length. The disk controller, which is the only device connected to 
this type of cllannel, has rigid restrictions on its block lengths. 
Output transmissions are limited to 1 or ~12 fi4-hit words. 

HR-0808 
Part 2 
5-18 B 



Clock - A Clock signal is supplied over a separate cable (one per DCU 
cabinet) to the external device from the cpu. This Clock signal 
synchronizes signals at the external device interface connector. 

Cabling restrictions - The 16-bit synchronous channels use a fixed length 
cable providing a constant propagation time for the signals. This cable 
delay is designed into the control logic; therefore, the cable length and 
propagation speed cannot be changed. The total cable length between the 
cpu and the external device is 17 feet (S18 cm). The cable run for a 
synchronous channel uses one 10-foot (30S cm) drop cable at the cpu and 
one 7-foot (213 cm) length of data cable at the external device. 

PROGRAMMED MASTER CLEAR TO EXTERNAL DEVICE 

The CPU contains a mechanism for sending a Master Clear signal to an 
external device. The Master Clear is sent by either the input channel or 
the output channel as follows: 

- Asynchronous channels - Master Clear sent on input channel 

- High-speed asynchronous channels - Master Clear sent on output 
channel 

- Synchronous channels - Master Clear sent on output channel 

Sequence for asynchronous channels 

The external Master Clear sequence for 16-bit normal-speed asynchronous 
channels is as follows: 

1. 0012jk Clear output channel to ensure that CPU activity on the 
channel pair has stopped. 

2. 0012jk Clear input channel to ensure that external activity on the 
channel pair has stopped. 

3. OOlljk 

4. OOlOjk 

S. 0012jk 

6. Delay 1 

HR-0808 

Set the input channel limit to an arbitrary value. 

Set the input channel current address equal to the same 
value. This initiates the Master Clear signal. 

Clear the input channel. This stops the input channel 
activity just initiated. 

Device dependent. This determines the duration of the 
Master Clear signal. 

Part 2 
S-19 B 



7. OOlljk 

8. Delay 2 

Set the input channel limit. This value may be the same 
value as used in steps 3 and 4. This turns off the Master 
Clear signal. 

Device dependent. This allows time for initialization 
activities in the attached device to complete. 

For Cray Research front-end interfaces, delays 1 and 2 should both be a 
minimum of 80 CPs. 

Sequence for high-speed asynchronous and synchronous channels 

The external Master Clear sequence for high-speed asynchronous and 
synchronous channels is as follows: 

1. 0012jk 

2. 0012jk 

3. OOlljk 

4. OOlOjk 

5. 0012jk 

6. Delay 1 

7. OOlljk 

8. Delay 2 

Clear output channel interrupt to ensure that CPU activity 
on the channel pair has stopped. 

Clear input channel interrupt to ensure that external 
activity on the channel pair has stopped. 

Set the output channel limit to an arbitrary value. 

Set the output channel current address equal to the same 
value. This initiates the Master Clear signal. 

Clear the output channel. This stops the output channel 
activity just initiated. 

Device dependent. This determines the duration of the 
Master Clear signal. 

Set the output channel limit. This value may be the same 
value as used in steps 3 and 4. This turns off the Master 
Clear signal. 

Device dependent. This allows time for initialization 
activities in the attached device to complete. 

9. Read disk subsystem status (high-speed synchronous channel 
only). A subsystem status should be taken and discarded to 
remove any false status left by the Master Clear sequence. 

For the synchronous channel, delay 1 should be a minimum of 1 CP and 
delay 2, a minimum of 20 CPs. 

HR-0808 
Part 2 

5-20 B 



INPUT ASSEMBLY REG. 

DATA IN ~ ___ . ~ ___ • 16 BITS • I CH 2 t:!l4 

12 CHANNELS ....... ' --.... 
{ 

.' I 

---1 .. ___ 3 .. 0 ... ' 

OUTPUT DISASSEMBLY REG. 

16 BITS,. ,PC-H----::r.-'h 
DATA OUT { :4 -yl 
12 CHAN NE LS -----4:::::::3: 1:' 

INPUT 
READY 

INPUT 
RESUME 

OUTPUT 
READY 

INPUT 
READY-·~"'"--

INPUT 
RESUME 

OUTPUT 
READY 

CHANNEL CONTROL 

!NPUT ADDRESS REG. 

ADV. 
~ .. C .. H. __ 2_@:6 

ADDR~ .. i ___ ~ 

I , 

OUTPUT ADDRESS REG. 

-' ... CH ... __ 3T:

7 
ADV. ADDR.~ .. I ___ ~ 

I/O DATA 

FAN IN 

rIo DATA 

FAN OUT 

I/O ADDR 

FAN IN 

Figure 5-2. Channel I/O control 

HR-0808 
Part 2 

5-21 

NO 

NO 

NO 

NO 

NO 

MEMORY 

DATA MERGE 

MEMORY 

DATA DISTR. 

SCALAR REF. 

BLOCK MODE 

EXCH. SEQ. 

FETCH 

MEMORY CONFLICT 

MEMORY 

ACCESS CONTR. 

MEMORY 

ADDR. REG. 

B 

MEMORY 

MEMORY 

MEMORY 

MEMORY 



MEMORY ACCESS 

Each of the four channel groups is assigned a time slot (figure 5-2), 
which is scanned once every 4 CPs for a memory request. The 
lowest-numbered channel in the group has the highest priority. A memory 
request, whether accepted or rejected, causes the requesting channel to 
miss the next time slot. Therefore, any given channel can request a 
memory reference only once every 8 CPs. However, another channel in the 
same group as a channel that has just made a memory request can cause a 
memory request 4 CPs later. During the next 3 CPs, the scanner allows 
requests from the other three channel groups. Therefore, it is possible 
to have an I/O memory request every clock period. 

I/O LOCKOUT 

An I/O memory request can be locked out by a transfer using the B, T, or 
V registers. Multiple transfers of these types cannot issue without 
allowing one waiting I/O reference to complete. The maximum duration of 
a lockout caused by these types of transfers is one block length. 

Exchange sequences and instruction fetch sequences can also cause 
lockouts. 

MEMORY BANK CONFLICTS 

Memory bank conflicts are tested for CPU scalar references and I/O memory 
references. All other memory references (block transfers, exchange 
sequences, instruction fetch sequences) delay issue until all memory 
banks are quiet. When a block transfer, exchange sequence, or 
instruction fetch sequence has issued, all other memory references are 
locked out. 

Each memory bank can accept a new request every 4 CPs. To test for a 
memory bank conflict, the 4 low-order bits§ of the memory address move 
through three registers staying I CP in each register. The first 
register is rank A, the second is rank B, and the third is rank C. In 
the fourth clock period, the address is placed in the memory address 
register. 

HR-0808 
Part 2 
5-22 B 



I/O MEMORY CONFLICTS 

Before testing for a memory bank conflict, a check is made to ensure that 
no block transfer, exchange sequence, or instruction fetch sequence is in 
progress, and that no address or scalar instruction requiring a memory 
reference is in its second clock period of execution. If any of these 
conditions exist, the I/O request is blocked and must be resubmitted 8 
CPs later. The 4 low-order address bits§ of an I/O reference are 
tested against address bits in ranks A, B, and C. Coincidence with rank 
A, B, or C disallows the I/O request. These ranks may be holding 
previous scalar or I/O memory requests. An I/O request that is 
disallowed must wait 8 CPs before it can request again. 

I/O MEMORY REQUEST CONDITIONS 

The following conditions must be present for an I/O Memory request to be 
processed: 

1. I/O request 

2. No coincidence in rank A, B, or C 

3. No address or scalar instruction requiring a memory reference in 
CP 2 of execution 

4. No fetch request 

5. No 176, 177 or 034 through 037 in process 

6. No exchange sequence 

7. No 033 request 

I/O MEMORY ADDRESSING 

All I/O memory references are absolute. The current address and limit 
address registers are 22 bits, allowing I/O access to all of memory. 
Setting of the current address and limit address registers is limited to 
monitor mode. I/O Memory reference addresses are not checked for range 
errors. 

§ Three bits for 8-bank phasing; refer to part 2, section 2 of this 
manual. 

HR-0808 
Part 2 
5-23 B 





CPU INSTRUCTIONS 

INSTRUCTION FORMAT 

Each instruction is either a l-parcel (16-bit) instruction or a 2-parcel 
(32-bit) instruction. Instructions are packed four parcels per word. 
Parcels in a word are numbered from left to right as 0 through 3 and can 
be addressed in branch instructions. A 2-parcel instruction may begin in 
any parcel of a word and may span a word boundary. A 2-parcel 
instruction that begins in the fourth parcel of a word ends in the first 
parcel of the next word. No padding to word boundaries is required. 

Figure 6-1 illustrates the general form of instructions: 

4 3, 3 I 3 3 16 

g h i j k m 

r- First parcel '1· Second parcel -1 
Figure 6-1. General form for instructions 

Five variants of this general format use the fields in different ways. 
Two of these variant forms are 2-parcel formats, two are l-parcel 
formats, and one is either a l-parcel or a 2-parcel format. 

ARITHMETIC, LOGICAL FORMAT 

For arithmetic and logical instructions, 
followed by three 3-bit address fields. 
the result register. The j and k fields 
registers or are combined to designate a 
This format is shown in figure 6-2. 

HR-0808 
Part 2 

6-1 

a 7-bit operation code (gh) is 
The first field, i, designates 
designate the two operand 
6-bit B or T register address. 

B 

6 



9 h 

T 
OPERATION 

CODE 

RESULT 
REG. 

OPERAND 
REG. 

k 

OPERAND 
REG. 

16 BIT iNSTRUCTION 

ARITHMETIC, LOGICAL 

Figure 6-2. Format for arithmetic and logical instructions 

SHIFT, MASK FORMAT 

The shift and mask instructions consist of a 7-bit operation code (gh) 
followed by a 3-bit field and a 6-bit field. The 3-bit i field 
designates the result and operand registers. The 6-bit combined jk field 
specifies a shift or mask count. This format is shown in figure 6-3. 

9 h 

T 
OPERATION 

CODE 

OPERAND AND 
RESULT REG. 

j k 

6 

SHIFT, MASK COUNT 

16 BIT INSTRUCTION 
SHIFT, MASK 

A-0068 

Figure 6-3. Format for shift and mask instructions 

IMMEDIATE CONS'l'AN'l' FORMAT 

The instructions that enter immediate constants into A registers have 
either ~ I-parcel or ~ 2-p~rccl form. 

HR-0808 
Part 2 
6-2 

~ .... , .. +-hn ')_ ...... ", ... ,.,01 F("\ ... m OViCTC 
- ... " ... 1 w .. " ........... J:"~40 _ ....... -. ---.,~ - •• ----

B 



for entering immediate constants into S registers. For the I-parcel 
form, the j and k fields are combined to give a 6-bit quantity. For the 
2-parcel form, the j, k, and m fields are combined to give a 22-bit 
quantity. In either form, a 7-bit operation code (gh) and a 3-bit result 
field designating a result register precede the immediate constant. The 
instruction format for immediate constant instructions is shown in figure 
6-4. 

g h 

T 
OPERATION 

CODE 

9 h 

RESULT 
REG. 

j k 

6 

CONSTANT 

k 

16 BIT INSTRUCTION 

6-BIT CONSTANT~A 

m 

~ ____ ~ ____ ~~ __ ~ ____________________ 2.2 ____________________ ~32 BIT INSTRUCTION 

T 
OPERATION 

CODE 

RESULT 

REG. 

CONSTANT 

22- BIT CONSTANT ~ A 

22- BIT CONSTANT-.S 

A-0066 

Figure 6-4. Format for immediate constant instructions 

MEMORY TRANSFER FORMAT 

Instructions that transfer data between the A or S registers and memory 
require a 32-bit format. For these instructions, a 4-bit operation code 
(g) is followed by two 3-bit fields and a 22-bit address field. The first 
3-bit field (h) designates an index register (Ah). 

When the h field is 0, the special value of 0 is considered to be the 
address index. Contents of Ah are not affected. The second 3-bit field 
(i) designates a result or source register. The 22-bit field formed by 
j, k, and m, specifies a memory address displacement value. Figure 6-5 
illustrates the format of memory transfer instructions. 

HR-0808 
Part 2 

6-3 B 



I 
OPERATION 

CODE 

ADDRESS 

INDEX REG. 

RESULT (OR SOURCE) 

REG. 

m 

22 

ADDRESS 
DISPLACEMENT 

32 BIT INSTRUCTION 

A ..... MEMORY 

S"'MEMORY 

Figure 6-5. Format for memory transfer instructions 

BRANCH FORMAT 

In general, the branch instructions are 2-parcel instructions. A 7-bit 
operation code (gh) is followed by a 24-bit field formed by combining i, 
j, k, and m. The high-order bit of the i field is unused. The 24-bit 
field contains a parcel address and allows branching to a parcel. 
Figure 6-6 illustrates the 2-parcel format for branch instructions. 

9 h k m 

4 3 

! 
22 2 

32 BIT INSTRUCTION 

1 1 
BRANCH 

T 
OPERATION 

CODE 
ONE UNUSED ADDRESS PARCEL 

BIT SELECT 

A-0065 

Figure 6-6. Two-parcel format for branch instructions 

The unconditional branch to (Bjk) instruction uses only the upper 
parcel. For this instruction, there is a 7-bit operation code (gh) 
followed by a null i field and a combined jk field which specifies a B 
register that contains a parcel address. The m field is ignored. 

HR-0808 
Part 2 
6-4 B-01 



I 

SPECIAL REGISTER VALUES 

The So and AO registers provide special values if referenced in the j 
or k fields of an instruction. In these cases, the special value is used 
as the operand and the actual value of the So or AO register is 
ignored. The special value is available regardless of existing AO or 
So reservations. This use does not alter the actual value of the So 
or AO register. If So or AO is used in the i field, as the 
operand, the actual value of the register is provided. 

Field Operand value 

Ai, i = 0 (AO) 

Aj, j = 0 0 

Ak, k = 0 1 

Si, i = 0 (SO) 

Sj, j = 0 0 

Sk, k = 0 263 

Ah, h = 0 0 

INSTRUCTION ISSUE 

Instructions are read a parcel at a time from the instruction buffers and 
delivered to the Next Instruction Parcel (NIP) register. The instruction 
is passed to the Current Instruction Parcel (CIP) register when the 
previous instruction issues. An instruction in CIP issues when the 
conditions in the functional units and registers are such that the 
functions required for execution may be performed without conflicting 
with a previously issued instruction. Instruction parcels may issue out 
of the CIP register at a maximum rate of one per clock period. Once an 
instruction has been delivered to the CIP, it must be completed in a 
fixed time frame following its final clock period in the CIP register. 
No delays are allowed from issue to delivery of data to the destination 
operating registers, except for scalar memory access instructions (IOh 
and 12h). 

Entry to the NIP is blocked for the second half of a 2-parcel 
instruction. The parcel is delivered to the Last Intruction Parcel (LIP) 
register, instead. The blank NIP for the second parcel is issued as a 
do-nothing instruction when it reaches the CIP. 

When special register values (AO or SO) are selected by an 
instruction for Ah, Aj, Ak, Sj or Sk, the normal "hold issue until 
operand ready" conditions do not apply. These values are always 
immediately available. 

HR-0808 
Part 2 

6-5 B-OI 



INSTRUCTION DESCRIPTIONS 

This section contains detailed information about individual instructions 
or groups of related instructions. Descriptions are presented with the 
CRAY-l Assembler Language (CAL) syntax and in the octal code sequence 
defined by the gh fields. Each subsection begins with boxed information 
consisting of the format and a brief summary of each instruction 
described in the sUbsection. The appearance of an m in a format 
designates that the instruction consists of two parcels. An x in the 
format signifies that the field containing the x is ignored during 
instruction execution. 

Following the header information is a more detailed description of the 
instruction or instructions, including a list of hold issue conditions, 
execution time, and special cases. Hold issue conditions refer to those 
conditions that delay issue of an instruction until the conditions are 
met. 

Instruction issue time assumes that if an instruction issues at CPn, the 
next instruction may issue at CPn + issue time if its own issue 
conditions have been met. 

HR-0808 
Part 2 

6-6 B 



I 

tAL Syntax Description Octal Code 

ERR Error exit 000000 

Programmer coded error exit OOOijk 

A 000 instruction is treated as an error condition and an exchange 
sequence occurs. The content of the instruction buffers is voided by 
the exchange sequence. If monitor mode is not in effect, the error exit 
rlag in the F register is set. All instructions issued prior to this 
instruction are run to completion. When the results of previously 
issued instructions have arrived at the operating registers, an exchange 
occurs to the exchange package designated by the contents of the XA 
register. The program address stored in the exchange on the terminating 
exchange sequence is advanced by one count from the address of the error 
exit instruction. The error exit instruction is not generally used in 
program code. Its purpose is to halt execution of an incorrectly coded 
program that branches into an unused area of memory or into a data area. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Execution time 

Instruction issue 50 CPs; this time includes an exchange 
sequence (36 CPs) and an instruction fetch operation (14 CPs) • 

Special cases 

Inhibit instruction issue 

Begin exchange sequence 

§ Special CAL syntax form 

HR-0808 
Part 2 

6-7 B 



ICAL Syntax Description Octal Code 

ICA,Aj Ak 

CL,Aj Ak 

CI,Aj 

XA Aj 

Set the current address (CA) register for the OOlOjk 
channel indicated by (Aj) to (Ak) and activate 
the channel 

Set the limit address (CL) register for the OOlljk 
channel indicated by (Aj) to (Ak) 

Clear the interrupt flag and error flag for 0012jx 
the channel indicated by (Aj) 

Enter the XA register with (Aj) 0013jk 

These instructions are privileged to monitor mode and provide operations 
useful to the operating system. Functions are selected through the i 
designator. The instructions are treated as pass instructions if the 
monitor mode bit is not set. 

When the i designator is 0, 1, or 2, the instruction controls the 
operation of the I/O channels. Each channel has two registers that 
direct the channel activity. The CA register for a channel contains the 
address of the current channel word. The CL register specifies the 
limit address. In programming the channel, the CL register is 
initialized first and then setting CA activates the channel. As the 
transfer continues, CA is incremented toward CL. When (CA) equal (CL), 
the transfer is complete for words at initial (CA) through (CL)-l. When 
the j designator is 0 or when the content of Aj is less than 2 or 
greater than 25, the functions are executed as pass instructions. When 
the k designator is 0, CA or CL is set to 1. 

When the i designator is 3, the instruction transmits bits 211 through 
24 of (Aj) to the exchange address (XA) register. When the j 
designator is 0, the XA register is cleared. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

For 0010 and 0011, Aj or Ak reserved 

For 0012 or 0013, Aj reserved 

Execution time 

Instruction issue, 1 CP 

HR-0808 
Part 2 

6-8 B 



I 

0010-0013 

Special cases 

If the program is not in monitor mode, the instruction becomes a 
no-op although all hold issue conditions remain effective. 

For 0010, 0011, and 0012: 
If j = 0, instruction is a no-op even in monitor mode 
If (Aj) is less than 2 or (Aj) is greater than or equal to 
31S' the instruction is a no-op 
If k = 0, CA or CL is set to 1 

For 0013: 
If j = 0, XA register is cleared 

Correct priority interrupting channel number can be read (via 033 
instruction) 2 CPs after issue of 0012 instruction. 

HR-OSOS 
Part 2 

6-9 B 



CAL Syntax Description Octal Code 

RT Sj Enter the real-time clock register with (Sj) 0014jO 

PCI Sj Enter interrupt interval (II) register with (Sj) 0014j4 

CCI Clear the programmable clock interrupt request 0014j5 

OCI Enable programmable clock interrupt request 0014j6 

DCI Disable programmable clock interrupt requests 0014j7 

These instructions perform specialized functions for managing the 
real-time and programmable clocks. They are privileged to monitor 
mode. The instructions are treated as pass instructions if the monitor 
mode bit is not set. 

When the k designator is 0, the instruction loads the contents of the Sj 
register into the real-time clock (RTC) register. When the j designator 
is 0, the real-time clock register is cleared. 

When the k designator is 4, this instruction loads the low-order 32 bits 
from the Sj register into both the Interrupt Interval (II) register and 
the Interrupt Countdown (ICD) counter. When the j designator is 0, II 
and ICD are cleared. 

When the k designator is 5, this instruction clears the programmable 
clock interrupt request if the request was previously set by an 
interrupt countdown to o. 

When the k designator is 6, this instruction enables repeated 
programmable clock interrupt requests at a repetition rate determined by 
the value stored in the Interrupt Interval (II) register. 

When the k designator is 7, this instruction disables repeated 
programmable clock interrupt requests until a 0014j6 instruction is 
executed to enable the requests. 

Hold issue conditions 

HR-0808 

034 - 037 in process 

Exchange in process 

Sj reserved 

Part 2 
6-10 B 



0014 

Execution time 

Instruction issue, 1 CP 

Special cases 

HR-0808 

If the program is not in monitor mode, these instructions 
become no-ops but all hold issue conditions remain effective. 

For 0014jO and 0014j4, if j=O, (Sj)=O. 

The instruction forms 0015, 0016, 0017 are not implementable in 
the CRAY-l/S hardware but they act as no-op instructions. 
There is no CAL syntax for them. 

Part 2 
6-11 B 



CAL Syntax Description Octal Code 

L Ak Transmit (Ak) to VL register 0020xk 

Transmit 1 to VL register 0020xO 

This instruction enters the vector length (VL) register with a value 
determined by the contents of Ak. The low-order 7 bits of (Ak) are 
entered into the VL register. The number of operations performed in a 

'vector instruction is determined by first subtracting 1 from the 
contents of VL and then adding 1 to the low-order 6 bits of the result. 

For example: 

if (VL)=lOOa then 100a-l = 77a 
and 77a+l = 100a 

if (VL) =0 then 0-1 = 177a 
and 77a + 1 = 100a 

Thus, the number of vector operations is 64 when the content of VL is 0 
or 64. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Ak reserved 

Execution time 

Instruction issue 1 CP 

VL register ready 1 CP 

Special cases 

Maximum vector length is 64 

(Ak) = 1 if k 

(VL) ~ if k 

o 

o and (Ak) = 0 

S Special CAL syntax torm 

HR-oaoa 
Part 2 

6-12 B 



I 

CAL Syntax Description Octal Code 

EFI Enable interrupt on floating-point error 002lxx 

DFI Disable interrupt on floating-point error 0022xx 

These instructions set (002lxx) or clear (0022xx) the floating-point 
mode flag in the M register. They do not check the previous state of 
the flag (there is no way of testing the flag). 

When set, the floating-point mode flag enables interrupts on 
floating-point range errors as described in section 4. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Ak reserved 

Execution time 

Instruction issue 1 CP 

Special cases 

The 0023, 0024, 0025, 0026 and 0027 instructions are not 
implemented but act as no-ops. There is no CAL Syntax for them. 

HR-0808 

CAUTION 

The operating system may have status bits that reflect 
whether interrupts on floating-point range errors are 
enabled or disabled. If so, those software status 
bits need to be modified to agree with the 
floating-point mode flag. 

Part 2 
6-13 B 



AL Syntax 

M Sj 

M O§ 

Description 

Transmit (Sj) to VM register 

Clear VM register 

Octal Code 

003xjx 

003xOx 

This instruction enters the vector mask (VM) register with the contents 
of Sj. The VM register is cleared if the j designator is o. This 
instruction is used in conjunction with the vector merge instructions 
"(146 and 147) in which an operation is performed depending on the 
contents of VM. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Sj reserved 

003 in process - unit busy 3 CPs 

14x in process - unit busy (VL) + 4 CPs 

175 in process - unit busy (VL) + 4 CPs 

Execution time 

Instruction issue 1 CP 

VM ready in 3 CPs except for use in 073 instruction 

VM ready in 6 CPs for 073 instruction 

Special cases 

(Sj) = 0 if j = 0 

§ Speclal CAL syntax torm 

HR-0808 
Part 2 

6-14 B 



~AL Syntax Description Octal Code 

EX Normal exit 004xxx 

Normal exit, programmer encoded 004ijk 

This instruction causes an exchange sequence. The contents of the 
instruction buffers are voided by the exchange sequence. If monitor 
mode is not in effect, the normal exit flag in the F register is set. 
All instructions issued prior to this instruction are run to 
completion. When all results have arrived at the operating registers as 
a result of previously issued instructions, an exchange sequence occurs 
to the exchange package designated by the contents of the XA register. 
The program address stored in the exchange package is advanced one count 
from the address of the normal exit instruction. This instruction is 
used to issue a monitor request from a user program. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Execution time 

Instruction issue 50 CPs; this time includes an exchange 
sequence (36 CPs) and an instruction fetch operation (14 CPs) 

Special cases 

Inhibit instruction issue 

Begin exchange sequence 

§ Special CAL syntax form 

HR-0808 
Part 2 

6-15 B 



I 

ICAL Syntax 
I 

Description Octal Code 

I 
IJ Bjk 
I 

Branch to (Bjk) 005xjk 
! 

This instruction sets the P register to the 24-bit parcel address 
specified by the contents of Bjk causing execution to continue at that 
address. The instruction is used to return from a subroutine. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Execution time 

Instruction issue: 

Instruction parcel and following parcel both in a buffer and 
branch address in a buffer, 7 CPs 

Instruction parcel and following parcel both in a buffer and 
branch address not in a buffer, 16 CPs 

Parcel following instruction parcel not in a buffer and branch 
address in a buffer, 16 CPs 

Parcel following instruction parcel not in a buffer and branch 
address not in buffer, 25 CPs 

Special cases 

HR-0808 

The parcel foliowing an 005 instruction is not used for 
branching; however, it can cause a delay of the 005 instruction 
if it is out of buffer. See execution times. 

Part 2 
6-16 B 



CAL Syntax Description Octal Code 

J exp Branch to ijkrn 006ijkrn 

This 2-parcel instruction sets the P register to the parcel address 
specified by the low-order 24 bits of the ijkrn field. Execution 
continues at that address. The high-order bit of the ijkm field is 
ignored. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Execution time 

Instruction issue: 

Both parcels of instruction in the same buffer and branch 
address in a buffer, 5 CPs 

Both parcels of instruction in the same buffer and branch 
address not in a buffer, 14 CPs 

Both parcels of instruction in different buffers and branch 
address in a buffer, 7 CPs 

Both parcels of instruction in different buffers and branch 
address not in a buffer, 16 CPs 

Second parcel of instruction not in a buffer and branch 
address in a buffer, 16 CPs 

Second parcel of instruction not in a buffer and branch 
address not in a buffer, 25 CPs 

Special cases 

None 

HR-0808 
Part 2 

6-17 B 



I 

AL Syntax Description Octal Code 

exp Return jump to ijkmj set BOO to (P) 007ijkm 

This 2-parcel instruction sets register BOO to the address of the 
following parcel. The P register is then set to the parcel address 
specified by the low-order 24 bits of the ijkm field. Execution 
continues at that address. The high-order bit of the ijkm field is 
ignored. The purpose of this instruction is to provide a return linkage 
for subroutine calls. The subroutine is entered via a return jump. The 
subroutine returns to the caller at the instruction following the call 
by executing a branch to the contents of the BOO register. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Execution time 

Instruction issue: 

Both parcels of instruction in the same buffer and branch 
address in a buffer, 5 CPs 

Both parcels of instruction in the same buffer and branch 
address not in a buffer, 14 CPs 

Both parcels of instruction in different buffers and branch 
address in a buffer, 7 CPs 

Both parcels of instruction in different buffers and branch 
address not in a buffer, 16 CPs 

Second parcel of instruction not in a buffer and branch 
address in a buffer, 16 CPs 

Second parcel of instruction not in a buffer and branch 
address not in a buffer, 25 CPs 

Special cases 

None 

HR-0808 
Part 2 

6-18 B 



I 

I 

CAL Syntax Description Octal Code 

JAZ exp Branch to ijkm if (AO) 0 OlOijkm 

JAN exp Branch to ijkm if (Ao) i" 0 Ollijkm 

JAP exp Branch to ijkm if (Ao ) positive 012ijkm 

JAM exp Branch to ijkm if (AO) negative 013ijkm 

These 2-parcel instructions test the contents of AO for the condition 
specified by the h field. If the condition is satisfied, the P register 
is set to the parcel address specified by the low-order 24 bits of the 
ijkm field and execution continues at that address. The high-order bit 
of the ijkm field is ignored. If the condition is not satisfied, 
execution continues with the instruction following the branch 
instruction. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

AO busy in previous 2 CPs 

Execution time 

HR-0808 

Instruction issue: 

Both parcels of instruction in the same buffer and branch 
address in a buffer, 5 CPs 

Both parcels of instruction in the same buffer and branch 
address not in a buffer, 14 CPs 

Both parcels of instruction in different buffers and branch 
address in a buffer, 7 CPs 

Both parcels of instruction in different buffers and branch 
address not in a buffer, 16 CPs 

Second parcel of instruction not in a buffer and branch 
address in a buffer, 16 CPs 

Part 2 
6-19 B 



010-013 

Second parcel of instruction not in a buffer and branch 
address not in buffer, 25 CPs 

Both parcels of instruction in the same buffer and branch not 
taken, 2 CPs 

Both parcels of instruction in different buffers and branch 
not taken, 4 CPs 

Second parcel of instruction not in a buffer and branch not 
taken, 13 CPs 

Special case 

HR-0808 

(AD) 0 is considered a positive condition. 

Part 2 
6-20 B 



I 
I 

I 

CAL Syntax Description Octal Code 

JSZ exp Branch to ijkm if (SO) 0 014ijkm 

JSN exp Branch to ijkm if (SO) i 0 015ijkm 

JSP exp Branch to ijkm if (SO) positive 016ijkm 

JSM exp Branch to ijkm if (SO) negative 017ijkm 

These 2-parcel instructions test the contents of So for the condition 
specified by the h field. If the condition is satisfied, the P register 
is set to the parcel address specified by the low-order 24 bits of the 
ijkm field and execution continues at that address. The high-order bit 
of the ijkm field is ignored. If the condition is not satisfied, 
execution continues with the instruction following the branch 
instruction. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

So busy in previous 2 CPs 

Execution time 

Instruction issue: 

Both parcels of instruction in the same buffer and branch 
address in a buffer, 5 CPs 

Both parcels of instruction in the same buffer and branch 
address not in a buffer, 14 CPs 

Both parcels of instruction in different buffers and branch 
address in a buffer, 7 CPs 

Both parcels of instruction in different buffers and branch 
address not in a buffer, 16 CPs 

Second parcel of instruction not in a buffer and branch address 
in a buffer, 16 CPs 

HR-0808 
Part 2 
6-21 B 



014-017 

Second parcel of instruction not in a buffer and branch 
address in a buffer, 25 CPs 

Both parcels of instruction in the same buffer and branch not 
taken, 2 CPs 

Both parcels of instruction in different buffers and branch 
not taken, 4 CPs 

Second parcel of instruction not in a buffer and branch not 
taken, 13 CPs 

Special case 

HR-0808 

(S) 0 is considered a positive condition. o 

Part 2 
6-22 B 



leAL Syntax Description Octal Code 

~i exp Transmit jkm to Ai 020ijkm 

Ai exp Transmit ones complement of jkm to Ai 02lijkm 

The 020 instruction enters into Ai a 24-bit value that is composed of 
the 22-bit jkm field and 2 high-order bits of O. 

The 021 instruction enters into Ai a 24-bit value that is the complement 
of a value formed by the 22-bit jkm field and 2 high-order bits of O. 
The complement is formed by changing all 1 bits to 0 and all 0 bits to 
1. Thus, for the 021 instruction, the high-order 2 bits of Ai are set 
to 1 and the instruction provides a means of entering a negative value 
into Ai. The instructions are both 2-parcel instructions. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

A register access conflict 

Ai reserved 

Execution time 

Instruction issue: 

Both parcels in same buffer, 2 CPs 

Both parcel in different buffers, 4 CPs 

Second parcel not in a buffer, 13 CPs 

Ai ready, 1 CP 

Special cases 

None 

HR-0808 
Part 2 
6-23 B 



CAL Syntax Description Octal Code 

i exp Transmit jk to Ai 022ijk 
L...-___________ ._ ••.. ~,.,= ... ~. _--~=~ ___________________ ___' 

This I-parcel instruction enters the 6-bit quantity from the jk field 
into the low-order 6 bits of Ai. The high-order 18 bits of Ai are 
zeroed. No sign extension occurs. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

A register access conflict 

Ai reserved 

Execution time 

Instruction issue, 1 CP 

Ai ready, 1 CP 

Special cases 

None 

HR-0808 
Part 2 
6-24 B 



CAL Syntax Description Octal Code 

Ai Sj Transmit (Sj) to Ai 023ijx 

This instruction enters the low-order 24 bits of (Sj) into Ai. The 
high-order bits of (Sj) are ignored. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

A register access conflict 

Ai reserved 

Sj reserved 

Execution time 

Instruction issue, 1 CP 

Ai ready, 1 CP 

Special case 

(Sj) o if j o 

HR-0808 
Part 2 

6-25 B 



ICAL Syntax Description 

IAi Bjk 024ijk Transmit 
I 
Bjk Ai 025ijk Transmit 

The 024 instruction enters the 

The 025 instruction enters the 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

(Bjk) to Ai 

(Ai) to Bjk 

contents of 

contents of 

Bjk 

Ai 

A register access conflict (024 only) 

Ai reserved 

Execution time 

For 024, Ai ready, 1 CP 

into Ai. 

into Bjk. 

Instruction issue for 024 or 025, 1 CP 

Special cases 

None 

HR-0808 
Part 2 

6-26 

Octal Code 

024ijk 

025ij k 

B 



~AL Syntax Description Octal Code 

~i PSj Population count of (Sj) to Ai 026ijO 

Ai QSj Population count parity of (Sj) to Ai 026ijl 

The 026ijO instruction counts the number of bits set to 1 in (Sj) and 
enters the result into the low-order 7 bits of Ai. The high-order 17 
bits of Ai are zeroed. 

The 026ijl instruction counts the number of bits set to 1 in (Sj). 
Then, the low-order bit, which shows the odd/even state of the result is 
transferred to the low-order bit position of the Ai register. The 
high-order 23 bits are cleared. The actual population count is not 
transferred. 

The instructions are executed in the population/leading zero count unit. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

A register access conflict 

Ai reserved 

Sj reserved 

Execution time 

Instruction issue, 1 CP 

Ai ready, 4 CPs 

Special case 

(Ai) o if j o 

HR-0808 
Part 2 

6-27 B 



AL Syntax Description Octal Code 

Ai ZSj Leading zero count of (Sj) to Ai 027ijx 

This instruction counts the number of leading zeros in Sj and enters the 
result into the low-order 7 bits of Ai. The high-order 17 bits of Ai 
are zeroed. 

The instruction is executed in the population/leading zero count unit. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

A register access conflict 

Ai reserved 

Sj reserved 

Execution time 

Instruction issue, 1 CP 

Ai ready, 3 CPs 

Special cases 

(Ai) = 64 if j = 0 

(Ai) 0 if (Sj) is negative 

HR-0808 
Part 2 

6-28 B 



CAL Syntax Description Octal Code 

~i Aj+Ak Integer sum of (Aj) and (Ak) to Ai 030ijk 

Ai Ak§ Transmit (Ak) to Ai 030iOk 

Ai Aj+l§ Integer sum of (Aj) and 1 to Ai 030ijO 

Ai Aj-Ak Integer difference (Aj) less (Ak) to Ai 031ijk 

Ai -l§ Transmit -1 to Ai 031iOO 

Ai -Ak§ Transmit the negative of (Ak) to Ai 031iOk 

Ai Aj-l§ Integer difference (Aj) less 1 to Ai 031ijO 

These instructions are executed in the address add unit. 

The 030 instruction forms the integer sum of (Aj) and (Ak) and enters 
the result into Ai. No overflow is detected. 

The 031 instruction forms the integer difference of (Aj) and (Ak) and 
enters the result into Ai. No overflow is detected. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

A register access conflict 

Ai, Aj, or Ak reserved 

Execution time 

Instruction issue, 1 CP 

Ai ready, 2 CPs 

§ Special CAL syntax form 

HR-0808 
Part 2 

6-29 B 



030-031 

SEecia1 cases 

For 030: 

(Ai) = (Ak) if j 

(Ai) = 1 if j 

(Ai)= (Aj) + 1 if j 

For 031: 

(Ai)= -(Ak) if j 

(Ai) = -1 if j 

(Ai) = (Aj) -1 if j 

HR-0808 

0 and 

0 and 

i 0 and 

= 0 and 

= 0 and 

i 0 and 

Part 2 
6-30 

k f 0 

k = 0 

k 0 

k ~ 0 

k 0 

k 0 

B 



~AL Syntax Description Octal Code 

Ai Aj*Ak Integer product of (Aj) and (Ak) to Ai 032ijk 

This instruction forms the integer product of (Aj) and (Ak) and enters 
the low-order 24 bits of the result into Ai. No overflow is detected. 

This instruction is executed in the address multiply unit. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

A register access conflict 

Ai, Aj, or Ak reserved 

Execution time 

SEecial 

HR-0808 

Instruction issue, 1 CP 

Ai ready, 6 CPs 

cases 

(Ai) - 0 if j 0 

(Ak) 1 if k 0 

Thus 

(Ai) = (Aj) if j f; 0 and k = 0 

Part 2 
6-31 B 



~AL Syntax Description Octal Code 

Ai CI 

Ai CA,Aj 

Ai CE,Aj 

Channel number of highest priority interrupt 
request to Ai 

Current address of channel (Aj) to Ai 

Error flag of channel (Aj) to Ai 

033iOx 

033ijO 

033ijl 

This instruction enters channel status information into Ai. The j and k 
designators and the contents of Aj define the desired information. 

The channel number of the highest priority interrupt request is entered 
into Ai when the j designator is O. The contents of Aj specifies a 
channel number when the j designator is nonzero. The value of the 
current address (CA) register for the channel is entered into Ai when 
the k designator is o. The error flag for the channel is entered into 
the low-order bit of Ai when the k designator is 1. The high-order bits 
of Ai are cleared. The error flag can be cleared only in monitor mode 
using the 0012 instruction. 

The 033 instruction does not interfere with channel operation. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

A register access conflict 

Ai reserved 

Aj reserved 

Execution time 

Instruction issue, 1 CP 

Ai ready, 4 CPs 

HR-0808 
Part 2 
6-32 B 



Special cases 

(Ai) highest priority channel causing interrupt if (Aj) 

HR-0808 

(Ai) = current address of channel (Aj) if 

(Aj) ! 0 and k = 0 

(Ai) I/O error 

(Aj) ! 0 

(Ai) = 0 if (Aj) 

2 CPs must elapse 
issuing an 033iOx 

flag of channel 

and k = 1 

= 1 

after an 00l2jx 
instruction. 

Part 2 
6-33 

(Aj) if 

instruction issue before 

033 

o 

B 



AL Syntax Description Octal Code 

Bjk,Ai ,AD Block transfer (Ai) words from memory 
starting at address (AD) to B registers 
starting at register jk 

§ 
Bjk,Ai O,AO Block transfer (Ai) words from memory 

starting at address (AD) to B registers 
starting at register jk 

,AD Bjk,Ai Block transfer (Ai) words from B registers 
starting at register jk to memory starting 
at address (Ao) 

O AD B 'k ,§ , J ,Al Block transfer (Ai) words from B registers 
starting at register jk to memory starting 
at address (AQ) 

Tjk,Ai ,AD Block transfer (Ai) words from memory 
starting at address (AD) to T registers 
starting at register jk 

§ 
Tjk,Ai O,AO Block transfer (Ai) words from memory 

starting at address (AD) to T registers 
starting at register jk 

,AD Tjk,Ai Block transfer (Ai) words from T registers 
starting at register jk to memory starting 
at address (AD) 

§ 
O,AO Tjk,Ai Block transfer (Ai) words from T registers 

starting at register jk to memory starting 
at address (AD) 

034ijk 

034ijk 

035ijk 

035ijk 

036ijk 

036ijk 

037ijk 

037ijk 

These instructions perform block transfers between memory and B or T 
registers. 

In all of the instructions, the amount of data transferred is specified 
by the low-order 7 bits of (Ai). See special cases for details. 

The first register involved in the transfer is specified by jk. 
Successive transfers involve successive B or T registers until B77 or 
T77 is reached. Since processing of the registers is circular, BOO 
will be processed after B77 and TOO will be processed after T77 if 
the count in (Ai) is not exhausted. 

§ Special CAL syntax form 

HR-0808 
Part 2 

6-34 B 



I 

034-037 

The first memory location referenced by the transfer instruction is 
specified by (AO). The AO register contents are not altered by 
execution of the instruction. Memory references are incremented by 1 
for successive transfers. 

For transfers of B registers to memory, each 24-bit value is right 
adjusted in the word, the high-order 40 bits are zeroed. When 
transferring from memory to B registers, only the low-order 24 bits are 
transmitted; the high-order 40 bits are ignored. 

Hold issue conditions 

AD through A7 reserved (034, 036) 

AO Ai, or So through S7 reserved (035, 037) 

Block sequence flag set (034 - 037, 176, 177) 

034 - 037 in process 

Exchange in process 

Scalar reference in CP 2 

Rank B data valid 

Fetch request in previous clock period 

I/O memory request 

Execution time 

For 034, 036: 

Instruction issue 14 CPs + (Ai) if (Ai) ~ 0; 5 CPs if (Ai) 0 

For 035, 037: 

Instruction issue 6 CPs + (Ai) if (Ai) ~ 0; 7 CPs if (Ai) = 0 

Special cases 

1. Block all issues when in process. 

2. Block all I/O references. 

HR-0808 
Part 2 
6-35 B 



034-037 

3. (Ai) = 0 causes a zero-block transfer. 

(Ai) in the range greater than 100a and less than 200a 
causes a wrap-around condition. 

If (Ai) is greater than 177a, bits 27 through 223 are 
truncated. The block length is equal to the value of 20 
through 26. 

4. (AO) is used as the block length if i O. 

Part 2 
HR-Oa08 6-36 B 



CAL Syntax Description Octal Code 

Si exp Transmit jkm to Si 040ijkm 

Si exp Transmit complement of jkm to Si 04lijkm 

These 2-parcel instructions provide .for entering immediate values into 
an S register. 

The 040 instruction enters into Si a 64-bit value that is composed of 
the 22-bit jkm field and 42 high-order bits of O. 

The 041 instruction enters into Si a 64-bit value that is the complement 
of a value formed by the 22-bit jkm field and 42 high-order bits of O. 
The complement is formed by changing alII bits to 0 and all 0 bits to 
1. Thus, for the 041 instruction, the high-order 42 bits of Si are set 
to 1 and the instruction provides for entering a negative value into Si. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

S register access conflict 

Si reserved 

Execution time 

Instruction issue: 

Both parcels in same buffer, 2 CPs 

Both parcels in different buffers, 4 CPs 

Second parcel not in a buffer, 13 CPs 

Si ready, 1 CP 

Special cases 

None 

HR-0808 
Part 2 

6-37 B 



I 

I 

CAL Syntax Description Octal Code 

Si <exp 

S i # > exp§ 

Si >exp 

Si # <exp§ 

Si O§ 

Form exp 
right 

64-jk bits of ones mask in Si from 

Form exp = jk bits of zeros mask in Si from 
left 

Enter 1 into Si 

Enter -1 into Si 

Form exp = jk bits of ones mask in Si from 
left 

042ijk 

042ijk 

042i77 

042iOO 

043ijk 

Form exp = 64-jk bits of zeros mask in Si from 043ijk 
left 

Clear Si 043iOO 

The 042 instruction generates a mask of 64-jk ones from right to left in 
Si. For example, if jk = 0, Si contains alII bits and if jk = 778 , 
Si contains zeros in all but the low-order bit. 

The 043 instruction generates a mask of jk ones from left to right in 
Si. For example, if jk = 0, Si contains all 0 bits and if jk = 77 8 , 
Si contains ones in all but the low-order bit. 

These instructions are executed in the scalar logical unit. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

S register access conflict 

Si reserved 

Execution time 

Instruction issue, 1 CP 

Si ready, 1 CP 

Special cases 

None 

§ Special CAL synLdx [ULJII 

HR-0808 
Part 2 

6-38 B 



CAL Syntax Descr iption Octal Code 

Si Sj&Sk 

Si Sj&SB§ 

Si SB&Sj§ 

Si #Sk&Sj 

Si #SB&Sj§ 

Si Sj Sk 

Si Sj SB§ 

Si SB Sj§ 

Si #Sj Sk 

Si #Sk§ 

Si #Sj'SB§ 

Si #SB'Sj§ 

Si #SB§ 

Logical product of (Sj) and (Sk) to Si 044ijk 

Sign bit of (Sj) to Si 044ijO 

Sign bit of (Sj) to Si (j i 0) 044ijO 

Logical product of (Sj) and complement of 045ijk 
(Sk) to Si 

(Sj) with sign bit cleared to Si 045ijO 

Logical difference of (Sj) and (Sk) to Si 046ijk 

Toggle sign bit of (Sj), then enter into Si 046ijO 

Toggle sign bit of (Sj); then enter into Si 04bijO 
(j "I 0) 

Logical equivalence of (Sk) and (Sj) to Si 047ijk 

Transmit ones complement of (Sk) to Si 047iOk 

Logical equivalence of (Sj) and sign bit to Si 047ijO 

Logical equivalence of (Sj) and sign bit to Si 047ijO 
(j "I 0) 

Enter ones complement of sign bit into Si 047iOO 

Si Sj!Si&Sk Scalar merge 050ijk 

Si Sj!Si&SB§ Scalar merge of (Si) and sign bit of (Sj) to Si 050ijO 

Si Sj!Sk Logical sum of 

Si Sk§ Transmit (Sk) 

Si Sj! SB§ Logical sum of 

Si SB!Sj§ Logical sum of 
(j "I 0) 

Si SB§ Enter sign bit 

§ Special CAL syntax 

HR-0808 

(Sj) and (Sk) 

to Si 

(Sj) and sign 

(Sj) and sign 

into Si 

Part 2 
6-39 

to Si 05lijk 

05liOk 

bit to Si 05lijO 

bit to Si 05lijO 

05liOO 

B 



044-051 

These instructions are executed in the scalar logical unit. 

The 044 instruction forms the logical product (AND) of (Sj) and (Sk) and 
enters the result into Si. Bits of Si are set to 1 when the 
corresponding bits of (Sj) and (Sk) are 1 as in the following example: 

(Sj) 1 1 0 0 
(Sk) 1 0 1 0 

(Si) = 1 0 0 0 

(Sj) is transmitted to Si if the j and k designators have the same 
non-zero value. Si is cleared if the j designator is o. The sign bit of 
(Sj) is extracted into Si if the j designator is non-zero and the k 
designator is o. 

The 045 instruction forms the logical product (AND) of (Sj) and the 
complement of (Sk) and enters the result into Si. Bits of Si are set to 
1 when the corresponding bits of (Sj) and the complement of (Sk) are 1 as 
in the following example: 

(Sj) 1 1 0 0 
(Sk) 1 0 1 0 
(Sk I ) 0 1 0 1 
(Si) 0 1 0 0 

where (Sk I) = complement of (Sk) 

Si is cleared if the j and k designators have the same value or if the j 
designator is o. (Sj) with the sign bit cleared is transmitted to Si if 
the j designator is non-zero and the k designator is o. 

The 046 instruction forms the logical difference (exclusive OR) of (Sj) 
and (Sk) and enters the result into Si. Bits of Si are set to 1 when the 
corresponding bits of (Sj) and (Sk) are different as in the following 
example: 

(Sj) 1 1 0 0 
(Sk) 1 0 1 0 

(Si) 0 1 1 0 

Si is cleared if the j and k designators have the same non-zero value. 
(Sk) is transmitted to Si if the j designator is 0 and the k designator 
is non-zero. The sign bit of (Sj) is complemented and the result is 
transmitted to Si if the j designator is non-zero and the k designator is 
o. 

HR-0808 
Part 2 

6-40 B 



044-051 

The 047 instruction forms the logical equivalence of (Sj) and (Sk), and 
enters the result into Si. Bits of Si are set to 1 when the 
corresponding bits of (Sj) and (Sk) are the same as in the following 
example: 

(Sj) 1 1 0 0 
(Sk) 1 0 1 0 

(Si) 1 0 0 1 

Si is set to all ones if the j and k designators have the same non-zero 
value. The complement of (Sk) is transmitted to Si if the j designator 
is 0 and the k designator is non-zero. All bits except the sign bit of 
(Sj) are complemented and the result is transmitted to Si if the j 
designator is non-zero and the k designator is O. The result is the 
complement of that produced by the 046 instruction. 

The 050 instruction merges the contents of (Sj) with (Si) depending on 
the ones mask in Sk. The result is defined by the following Boolean 
equation: 

(Si) = (Sj) (Sk) + (Si) (SkI) 

where SkI is the complement of Sk as illustrated: 

(Sk) 1 1 1 1 0 0 0 0 I 
(Sk ) 0 0 0 0 1 1 1 1 
(Si) 1 1 0 0 1 1 0 0 
(Sj) 1 0 1 0 1 0 1 0 
(Si) 1 0 1 0 1 1 0 0 

The 050 instruction is intended for merging portions of 64-bit words into 
a composite word. Bits of Si are cleared when the corresponding bits of 
Sk are 1 if the j designator is 0 and the k designator is non-zero. The 
sign bit of (Sj) replaces the sign bit of Si if the j designator is 
non-zero and the k designator is O. The sign bit of Si is cleared if the 
j and k designators are both O. 

The 051 instruction forms the logical sum (inclusive OR) of (Sj) and (Sk) 
and enters the result into Si. Bits of Si are set when 1 of the 
corresponding bits of (Sj) and (Sk) is set as in the following example: 

HR-0808 

(Sj) 1 1 0 0 
(Sk) 1 0 1 0 
(Si) 1 1 1 0 

Part 2 
6-41 B 



044-051 

(Sj) is transmitted to Si if the j and k designators have the same 
non-zero value. (Sk) is transmitted to Si if the j designator is 0 and 
the k designator is non-zero. (Sj) with the sign bit set to 1 is 
transmitted to Si if the j designator is non-zero and the k designator is 
O. A ones mask consisting of only the ~ign bit is entered into Si if the 
j and k designators are both o. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

S register access conflict 

Si, Sj, and Sk reserved 

Execution time 

Instruction issue, 1 CP 

Si ready, 1 CP 

Special cases 

HR-0808 

(Sj) 0 if j 0 

63 
(Sk) 2 if k 0 

Part 2 
6-42 B 



CAL Syntax Description Octal Code 

SO Si <exp Shift (Si) left exp = jk places to So 052ijk 

SO Si >exp Shift (Si) right exp = 64-jk places to So 053ijk 

Si Si <exp Shift (Si) left exp = jk places to Si 054ijk 

Si Si >exp Shift (Si) right exp = 64-jk places to Si 055ijk 

These instructions are executed in the scalar shift unit. They shift 
values in an S register by an amount specified by jk. All shifts are 
end-off with zero fill. 

The 052 instruction shifts (Si) left jk places and enters the result 
into SO. 

The 053 instruction shifts (Si) right by 64-jk places and enters the 
result into SO. 

The 054 instruction shifts (Si) left jk places and enters the result 
into Si. 

The 055 instruction shifts (Si) right by 64-jk places and enters the 
result into Si. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

S register access conflict 

Si reserved 

S reserved (052 and 053 only) 
o 

Execution time 

Instruction issue, 1 CP 

For 052, 053, S ready, 2 CPs 
o 

For 054, 055, Si ready, 2 CPs 

Special cases 

None 

HR-0808 
Part 2 
6-43 B 



I 

ICAL Syntax Description Octal Code 
I 

1 

'S· I l. Si ,Sj< Ak Shift (Si) and (Sj) left by (Ak) places to Si 056ijk 

Is i S i,Sj< l§ Shift (Si) and (Sj) left one place to Si 056ijO 

lSi Si< Ak§ Shift (Si) left (Ak) places to Si 056iOk 

Si Sj ,Si> Ak Shift (Sj) and (Si) right by (Ak) places to Si 057ijk 

Si Sj,Si>l§ Shift (Sj) and ( Si) right one place to Si 057 ij 0 

Si Si> Ak§ Shift (Si) right (Ak) places to Si 057iOk 

These instructions are executed in the scalar shift unit. They shift 
128-bit values formed by logically joining two S registers. Shift counts 
are obtained from register Ak. A shift of one place occurs if the k 
designator is o. 

All shifts are end-off with zero fill if i ~ j. The shift is circular 
if the shift count does not exceed 64 and the i and j designators are 
equal and nonzero. For both the 056 and 057 instructions, (Sj) are 
unchanged, provided i ~ j. 

The 056 instruction performs left shifts of (Si) and (Sj) with (Si) 
initially the most significant bits of the double register. The 
high-order 64 bits of the result are transmitted to Si. Si is cleared 
if the shift count exceeds 127. The 056 instruction produces the same 
result as the 054 instruction if the shift count does not exceed 63 and 
the j designator is o. 

The 057 instruction performs right shifts of (Sj) and (Si) with (Sj) 
initially the most significant bits of the double register. The 
low-order 64 bits of the result are transmitted to Si. Si is cleared if 
the shift count exceeds 127. The 057 instruction produces the same 
result as the 055 instruction if the shift count does not exceed 63 and 
the j designator is o. 

All shifts counts, (Ak), are considered positive. All 24 bits of (Ak) 
are used for the shift count. 

§ Special CAL syntax form 

HR-0808 
Part 2 

6-44 B 



I 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

S register access conflict 

Si, Sj, or Ak reserved 

Execution time 

Instruction issue, 1 CP 

Si ready, 3 CPs 

Special cases 

(Sj) o if j o 

(Ak) 1 if k = 0 

Circular shift if i j I 0 and (Ak) less than 64. 

HR-0808 
Part 2 

6-45 

056-057 

B 



CAL Syntax Description Octal Code 

Si Sj+Sk Integer sum of (Sj) and (Sk) to Si 060ijk 

Si Sj-Sk Integer difference of (Sj) and (Sk) to Si 06lijk 

Transmit negative of (Sk) to Si 06liOk 

These instructions are executed in the scalar add unit. 

The 060 instruction forms the integer sums of (Sj) and (Sk) and enters 
the result into Si. No overflow is detected. 

The 061 instruction forms the integer difference of (Sj) and (Sk) and 
enters the result into Si. No overflow is detected. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

S register access conflict 

Si, Sj, or Sk reserved 

Execution time 

Si ready, 3 CPs 

Instruction issue, 1 CP 

S;Eecial cases 

(S i) = 2
63 

if j 

For 060: 

( Si) (Sk) if j 

(S i) (Sj) with 
lc'or 061: 

(Si) -(Sk) if j 

(S i) (Sj) with 

§ Special CAL syntax form 

HR-080B 

0 

= 0 

2
63 

= 0 

263 

and k 0 

and k f 0 

complemented 

and k f 0 

complemented 

Part 2 
6-46 

if 

if 

j = 0 and k I 0 

j f 0 and k 0 

B 



CAL Syntax Description Octal Code 

Si Sj+FSk Floating sum of (Sj) and (Sk) to Si 062ijk 

Si +FSk§ Normalize (Sk) to Si 062iOk 

Si Sj-FSk Floating difference of (Sj) and (Sk) to Si 063ijk 

Si -FSk§ Transmit normalized negative of (Sk) to Si 063iOk 

These instructions are performed by the floating-point add unit. 
Operands are assumed to be in floating-point format. The result is 
normalized even if the operands are not. Underflow and overflow 
conditions are described in section 4. 

The 062 instruction forms the sum of the floating-point quantities in Sj 
and Sk and enters the normalized result into Si. 

The 063 instruction forms the difference of the floating-point 
quantities in Sj and Sk and enters the normalized result into Si. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Si register access conflict 

Si, Sj, or Sk reserved 

170 - 173 in process; unit busy (VL) + 4 CPs 

Execution time 

Instruction issue, 1 CP 

Si ready, 6 CPs 

§ Special CAL syntax form 

HR-0808 
Part 2 

6-47 B 



062-063 

Special cases 

For 062: 

(Si) (Sk) 

(Si) = (Sj) 

E'or 063: 

(Si) = - (Sk) 

(Si) (Sj) 

HR-0808 

normalized if 

normalized if 

normalized if 

Sign of (Si) 

normalized if 

(Sk) exponent is valid, 

(Sj) exponent is valid, 

(Sk) exponent is valid, 

is opposite that of (Sk) 

(Sj) exponent is valid, 

Part 2 
6-48 

j 0 and k 1 0 

j :f 0 and k 0 

j = 0 and k :f o. 
if (Sk) :f O. 

j 1 0 and k = 0 

B 



I 

CAL Syntax Description Octal Code 

Si Sj*FSk Floating-point product of (Sj) and (Sk) to Si 064ijk 

Si Sj*HSk Half-precision rounded floating-point 065ij k 
product of (Sj) and (Sk) to Si 

Si Sj*RSk Rounded floating-point product of (Sj) and 066ijk 
(Sk) to Si 

Si Sj*ISK Reciprocal iteration; 2-(Sj)*(Sk) to Si 067ijk 

These instructions are executed by the floating-point multiply unit. 
Operands are assumed to be in floating-point format. The result is not 
guaranteed to be normalized if the operands are not. 

The 064 instruction forms the product of the floating-point quantities 
in Sj and Sk and enters the result into Si. 

The 065 instruction forms the half-precision rounded product of the 
floating-point quantities in Sj and Sk and enters the result into Si. 
The low-order 19 bits of the result are cleared. 

The 066 instruction forms the rounded product of the floating-point 
quantities in Sj and Sk and enters the result into Si. 

The 067 instruction forms two minus the product of the floating-point 
quantities in Sj and Sk and enters the result into Si. This instruction 
is used in the divide sequence as described in section 4 under 
Floating-Point Arithmetic. 

In the evaluation C = 2-B * A, B must be a reciprocal of A of less than 
47 significant bits. Otherwise C will be in error. The reciprocal 
produced by the reciprocal approximation instruction meets this 
criterion. 

Hold issue conditions 

HR-0808 

034 - 037 in process 

Exchange in process 

S register access conflict 

Si, Sj, or Sk reserved 

160 - 167 in process; unit busy (VL) + 4 CPs 

Part 2 
6-49 B 



064-067 

Execution time 

Instruction issue, 1 CP 

Si ready, 7 CPs 

Special cases 

HR-0808 

(Sj) 

(Sk) 

o if j o 

2
63 

if k = 0 

If both exponent fields are 0, an integer multiply is 
performed. Correct integer multiply results and produced if the 
following conditions are met: 

1. Both operand sign bits are o. 

2. The sum of the zero bits to the right of the least 
significant one bit in the two operands is greater than 
or equal to 48. 

In this case the integer result obtained is the high-order 48 
bits of the 96-bit product of the two operands. 

Part 2 
6-50 B 



CAL Syntax Description Octal Code 

Si /HSj Floating-point reciprocal approximation 
of (Sj) to Si 

070ijx 

This instruction is executed in the reciprocal approximation unit. 

The instruction forms an approximation to the reciprocal of the 
normalized floating-point quantity in Sj and enters the result into Si. 
This instruction occurs in the divide sequence to compute the quotient 
of two floating-point quantities as described in part 2, section 4 under 
Floating-Point Arithmetic. 

The reciprocal approximation instruction produces a result that is 
accurate to 30 bits. A second approximation may be generated to extend 
the accuracy to 48 bits using the reciprocal iteration instruction. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Si or Sj reserved 

174 in process; unit busy (VL) + 4 CPs 

Execution time 

Si ready, 14 CPs 

Instruction issue, 1 CP 

Special cases 

(Si) is meaningless if (Sj) is not normalized; the unit assumes 

that bit 247 of (Sj) = 1; no test is made of this bit. 

HR-0808 

(Sj) 0 produces a range error; the result is meaningless. 

(Sj) 0 if j = 0 

Part 2 
6-51 B 



I 

CAL Syntax Description Octal Code 

I 
Si Ak Transmit (Ak) to Si with no sign extension 071iOk 

Si +Ak Transmit (Ak) to Si with sign extension 071ilk 

Si +FAk Transmit (Ak) to Si as unnormalized 071i2k 
floating-point number 

Si 0.6 Transmit constant 0.75 x 248 to Si 071i3k 

Si 0.4 Transmit constant 0.5 to Si 071i4k 

Si 1. Transmit constant 1.0 to Si 071i5k 

Si 2. Transmit constant 2.0 to Si 071i6k 

Si 4. Transmit constant 4.0 to Si 071i7k 

These instructions perform functions that depend on the value of the j 
designator. The functions are concerned with transmitting information 
from an A register to an S register and with generating frequently used 
floating-point constants. 

When the j designator is 0, the 24-bit value in Ak is transmitted to 
Si. The value is treated as an unsigned integer. The high-order bits 
of Si are cleared. 

When the j designator is 1, the 24-bit value in Ak is transmitted to 
Si. The value is treated as a signed integer. The sign bit of Ak is 
extended to the high-order bit of Si. 

When the j designator is 2, the 24-bit value in Ak is transmitted to Si 
as an unnormalized floating-point quantity. The result can then be 
added to 0 to normalize. For this instruction, the exponent in bits 
262 through 248 is set to 400608. The sign of the coefficient is 
set according to the sign of Ak. If the sign bit of Ak is set, the twos 
complement of Ak is entered into Si as the magnitude of the coefficient 
and bit 263 of Si is set for the sign of the coefficient. 

A sequence of instructions which would be used to convert to 
floating-point format, an integer whose absolute value is less than 24 
bits is: 

HR-0808 

(CAL) Al 51 
Sl 
S 

+FAI 
+FSI 9 CPs required. 

Part 2 
6-52 B 



I 

When the j designator is 3, the floating-point constant of 0.75 x 24a 

is entered into Si (400606000000000000000a ). This constant is used to 
create floating-point numbers from integer numbers (positive and 
negative) whose absolute value is less than 47 bits. A sequence of 
instructions which would be used for conversion of an integer in Sl is: 

(CAL) S2 0.6 
Sl S2-S1 
Sl S2-FSl 11 CPs required. 

When the j designator is 4, the floating-point constant 0.5 (= 0 40000 
4000 0000 0000 OOOOa) is entered into Si. 

When the j designator is 5, the floating-point constant 1.0 (= 0 40001 
4000 0000 0000 OOOOa) is entered into Si. 

When the j designator is 6, the floating-point constant 2.0 (= 0 40002 
4000 0000 0000 OOOOa) is entered into Si. 

When the j designator is 7, the floating-point constant 4.0 (= 0 40003 
4000 0000 0000 OOOOa) is entered into Si. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Si register access conflict 

Si reserved 

Ak reserved (all instructions) 

Execution time 

Instruction issue, 1 CP 

Si ready, 2 CPs 

HR-oaoa 
Part 2 
6-53 B 

071 



071 

Special cases 

I (Ak) 1 if 

(Si) = (Ak) 

( Si) = (Ak) 

(Si) = (Ak) 

(Si) 0.6 x 

(Si) 0.4 x 

(S i) 0.4 x 

(Si) 0.4 x 

(Si) = 0.4 x 

HR-0808 

k = 0 

if j 0 

sign extended if j 

unnorma1ized 

2
60 

(octal) 
0 

2 (octal) 
1 

2 (octal) 
2 

2 (octal) 
3 

2 (octal) 

if j 

if j 

if j 

if j 

if j = 

if j = 

Part 2 
6-54 

= 1 

= 2 

3 

4 

5 

6 

7 

B 



CAL Syntax Description Octal Code 

Si RT Transmit (RTC) to Si 072ixx 

Si VM Transmit (VM) to Si 073ixx 

Si 'l'j k Transmit (Tjk) to Si 074ijk 

Tjk Si Transmit (Si) to Tjk 075ijk 

These instructions transmit register values to Si except for instruction 
075 which transmits (Si) to Tjk. 

The 072 instruction enters the 64-bit value of the real-time clock into 
Si. The clock is incremented by 1 each clock period. The real-time 
clock can be set only by the monitor through use of the 0014 instruction. 

The 073 instruction enters the 64-bit value of the vector mask (VM) 
register into Si. The VM register is usually read after having been set 
by the 175 instruction. 

The 074 instruction enters the contents of Tjk into Si. 

The 075 instruction enters the contents of Si into Tjk. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Si register access conflict (072, 073, and 074 only) 

Si reserved 

For 073 only: 

175 in process, VM busy (VL) + 6 CPs 

003 in process, VM not available until 6 CPs after 003 issue 

Execution time 

Instruction issue, 1 CP 

For 072 through 074, Si ready, 1 CP 

For 075, Tjk ready, 1 CP 

Special cases 

None 

HR-0808 
Part 2 
6-55 B 



I 

CAL Syntax Description Octal Code 

Si Vj,Ak Transmit (Vj element (Ak) ) to Si 076ijk 

Vi ,Ak Sj Transmit (Sj) to Vi element (Ak) 077ijk 

Vi,Ak O§ Clear Vi element (Ak) 077iOk 

These instructions transmit a 64-bit quantity between a V register 
element and an S register. 

The 076 instruction transmits the contents of an element of register Vj 
to Si. 

The 077 instruction transmits the contents of register Sj to an element 
of reg ister Vi. 

The low-order 6 bits of (Ak) determine the vector element for either 
instruction. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Ak reserved 

Si register access conflict (076 only) 

For 076, Si and Vj reserved 

For 077, Vi and Sj reserved 

Execution time 

Instruction issue, 

For 076, Si ready, 

For 077, Vi ready, 

SEecial cases 

(Sj) = 0 if j = 0 

(Ak) 1 if k = 0 

§ Special CAL syntax form 

HR-0808 

1 

5 

1 

CP 

CPs 

CP 

Part 2 
6-56 B 

I 
i 

I 



CAL Syntax Description Octal Code 

Ai exp,Ah 

Ai exp,O§ 

Ai exp,§ 

exp,Ah Ai 

exp,O Ai§ 

exp, Ai§ 

Si exp,Ah 

S i exp, O§ 

S i exp,§ 

exp,Ah Si 

exp,O Si§ 

Sl'§ exp, 

Read from «Ah) + jkm) to Ai 

Read from (jkm) to Ai 

Read from (jkm) to Ai 

Read from (Ah) to Ai 

Store (Ai) to (Ah) + jkm 

Store (Ai) to jkm 

Store (Ai) to exp 

Store (Ai) to (Ah) 

Read from «Ah) + jkm) to Si 

Read from (exp) to Si 

Read from (exp) to Si 

Read from (Ah) to Si 

Store (Si) to (Ah) + jkm 

Store (Si) to exp 

Store (Si) to exp 

Store (Si) to (Ah) 

lOhijkm 

lOOijkm 

lOOijkm 

lOhiOOO 

llhijkm 

llOijkm 

llOijkm 

llhiOOO 

l2hijkm 

l20ijkm 

l20ijkm 

l2hiOOO 

l3hijkm 

l30ijkm 

l30ijkm 

l3hiOOO 

These 2-parcel instructions transmit data between memory and an A 
register or an S register. The content of Ah (treated as a 22-bit signed 
integer) is added to the signed 22-bit integer in the jkm field to 
determine the memory address. If h is 0, (Ah) is 0 and only the jkm 
field is used for the address. The address arithmetic is performed by an 
address adder similar to but separate from the address add unit. 

The lOh and llh instructions transmit 24-bit quantities to or from A 
registers. When transmitting data from memory to an A register, the 
high-order 40 bits of the memory word are ignored. On a store from Ai 
into memory, the high-order 40 bits of the memory word are zeroed. 

§ Special CAL syntax form 

HR-0808 
Part 2 

6-57 B 



I 

I 

10h-13h 

The l2h and l3h instructions transmit 64-bit quantities to or from 
register Si. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Rank A bank conflict 

Rank B bank conflict 

Rank C bank conflict 

and 

and 

and 

Storage hold continuation 

Ah reserved 

unit busy 3 CPs 

unit busy 2 CPs 

unit busy 1 CP 

For 10h only, Ai register access conflict 

For 10h and llh only, Ai reserved 

For l2h and l3h only, Si reserved 

For l2h only, Si register access conflict 

Fetch request in previous clock period 

176 in process unit busy (VL) + 4 CPs 

177 in process unit busy (VL) + 5 CPs 

Execution time 

Instruction issue: 

Both parcels in same buffer, 2 CPs 

Parcels in different buffers, 4 CPs 

Second parcel not in a buffer, 13 CPs 

10h only, Ai ready, 11 CPs 

l2h only, Si ready, 11 CPs 

Memory ready for next scalar read or store, 4 CPs 

Special cases 

For 10h, l2h only: 

Rank A conflict, 3 CPs delay before Ai or Si ready 

Rank B conflict, 2 CPs delay before Ai or Si ready 

Rank C conflict, 1 CP delay before Ai or Si ready 

For l2h only: 

Hold storage, 1 CP delay if 070 register access conflict 
occurs (when the result entering coincides with a reciprocal 

HR-0808 

approximation result entering Si). 

Part 2 
6-58 B 



leAL Syntax 

Vi Sj&Vk 

Vi Vj&Vk 

Vi Sj !Vk 

Vi Vj!Vk 

Vi Sj/Vk 

Vi Vj/Vk 

Description 

Logical products of (Sj) and (Vk elements) 
to Vi elements 

Logical products of (Vj elements) and (Vk 
elements) to Vi elements 

Logical sums of (Sj) and (Vk elements) 
to Vi elements 

Transmit (Vk) elements to vi elements 

Logical sums of (Vj elements) and 
(Vk elements) to Vi elements 

Logical differences of (Sj) and 
(Vk elements) to Vi elements 

Logical differences of (Vj elements) and 
(Vk elements to Vi elements 

Clear Vi elements 

~i Sj!Vk&VM If VM bit 
If VM bit 

1, transmit (Sj) to Vi elements 
0, transmit (Vk elements) to Vi 

Vi #VM&Vk§ 

elements 

Vector merge of (Vk) elements and 0 to vi 
elements 

Vi Vj!Vk&VM If VM bit 
elements 

1, transmit (Vj elements) to vi 

If VM bit = 0, transmit (Vk elements) to Vi 
elements 

Octal Code 

l40ijk 

l4lijk 

142ijk 

l42iOk 

l43ijk 

l44ij k 

145ij k 

l45iii 

l46ijk 

l46iOk 

l47ijk 

These instructions are executed by the vector logical unit. The number 
of operations performed is determined by the contents of the VL 
register. All operations start with element 0 of the Vi, Vj, or Vk 
register and increment the element number by 1 for each operation 
performed. All results are delivered to Vi. 

§ Special CAL syntax form 

HR-0808 
Part 2 

6-59 B 



140-147 

For instructions 140, 142, 144, and 146, a copy of the content of Sj is 
delivered to the functional unit where it is held as one of the operands 
until the completion of the operation. For instructions 141, 143, 145, 
and 147, all operands are obtained from V registers. 

Instructions 140 and 141 form the logical products (AND) of pairs of 
operands and enter the result into Vi. Bits of an element of vi are set 
to 1 when the corresponding bits of (Sj) or (Vj element) and (Vk element) 
are 1 as in the following: 

(Sj) or (Vj element) 
(Vk element) 
(Vi element) 

110 0 
1 0 1 0 

1 0 0 0 

The 142 and 143 instructions form the logical sums (inclusive OR) of 
pairs of operands and deliver the results to Vi. Bits of an element of 
Vi are set to 1 when one of the corresponding bits of (Sj) or (Vj 
element) and (Vk element) is 1 as in the following: 

(Sj) or (Vj element) 
(Vk element) 
(Vi element) 

110 0 
1 0 1 0 

= 1 1 1 0 

The 144 and 145 instructions form the logical differences (exclusive OR) 
of pairs of operands and deliver the results of Vi. Bits of an element 
are set to 1 when the corresponding bit of (Sj) or (Vj element) are 
different from (Vk element) as in the following: 

(Sj) or (Vj element) = 1 1 0 0 
(Vk element) = 1 0 1 0 
(Vi element) 0 1 1 0 

The 146 and 147 instructions transmit operands to Vi depending on the 
contents of the vector mask register (VM). Bit 263 of the mask 
corresponds to element 0 of a V register. Bit 20 corresponds to 
element 63. Operand pairs used for the selection depend on the 
instruction. For the 146 instructions, the first operand is always (Sj), 
the second operand is (Vk element). For the 147 instruction, the first 
operand is (Vj element) and the second operand is (Vk element). If bit n 
of the vector mask is 1, the first operand is transmitted; if bit n of 
the mask is 0, the second operand, (Vk element), is selected. 

HR-0808 
Part 2 
6-60 B 



140-147 

Examples 

1. Suppose that a 146 instruction is to be executed and the following 
register conditions exist: 

(VL) 4 
(VM) 0 60000 0000 0000 0000 0000 

(52) -1 
(V600) 1 
(V60l) 2 
(V602) 3 
(V603 ) 4 

Instruction 146726 is executed. Following execution, the first four 
elements of V7 contain the following values: 

(V700) 1 
(V70l) -1 
(V702) -1 
(V703) 4 

The remaining elements of V7 are unaltered. 

2. Suppose that a 147 instruction is to be executed and the following 
register conditions exist: 

(VL) 4 
(VM) 0 600000 0000 0000 0000 0000 
(V200) 1 (V300) = -1 
(V20l) 2 (V30l) -2 
(V202) 3 (V302) = -3 
(V203) 4 (V303) -4 

Instruction 147123 is executed. Following execution, the first four 
elements of VI contain the following values: 

(VlOO) -1 
(VIOl) 2 
(Vl02) 3 
(Vl03) -4 

The remaining elements of VI are unaltered. 

HR-0808 
Part 2 

6-61 B 



140-147 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Vi or Vk reserved 

14x in process, unit busy (VL) + 4 CPs 

175 in process, unit busy (VL) + 4 CPs 

003 in process, unit busy 3 CPs 

For 140, 142, 144, 146 only, Sj reserved 

For 141, 143, 145, 147 only, Vj reserved 

Execution time 

Instruction issue, 1 CP 

Vi ready, 9 CPs if (VL) is less than or equal to 5 

Vi ready, (VL) + 4 CPs if (VL) greater than 5 

Vj or Vk ready, 5 CPs if (VL) is less than or equal to 5 

Vj or Vk ready, (VL) CPs if (VL) greater than 5 

Unit ready, (VL) + 4 CPs 

Chain slot ready, 4 CPs 

Special cases 

(Sj) = 0 if j = 0 

For 145 only, if i j 

HR-0808 

k, (Vi) 

Part 2 
6-62 

o. 

B 



I 

CAL Syntax 

Vi Vj <Ak 

Vi Vj < l§ 

Vi Vj >Ak 

vi Vj > l§ 

Description 

Shift (Vj) elements left by (Ak) 
places to Vi elements 

Shift (Vj),elements left one place to vi 
elements 

Shift of (Vj) elements right by (Ak) 
places to Vi elements 

Shift (Vj) elements right one place to Vi 
elements 

Octal Code 

150ijk 

l50ijO 

15lijk 

l51ijO 

These instructions are executed in the vector shift unit. The number of 
operations performed is determined by the contents of the VL register. 
Operations start with element 0 of the Vi and Vj registers and end with 
elements specified by (VL) - 1. 

All shifts are end-off with zero fill. The shift count is obtained from 
(Ak) and elements of Vi are cleared if the shift count exceeds 63. All 
shift counts (Ak) are considered positive. All 24 bits of Ak are used 
for the shift count. 

Unlike the 052-055 shift instructions, these instructions get the shift 
count from Ak, rather than the jk fields. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Vi or Vj reserved 

Ak reserved 

150 - 153 in process, unit busy (VL) + 4 CPs 

§ Special CAL syntax form 

HR-0808 
Part 2 

6-63 B 



150-151 

Execution time 

Instruction issue, 1 CP 

Vi ready, 11 CPs if (VL) is less than or equal to 5 

Vi ready, (VL) + 6 CPs if (VL) greater than 5 

Vj ready, 5 CPs if (VL) is less than or equal to 5 

Vj ready, (VL) CPs if (VL) greater than 5 

Unit ready, (VL) + 4 CPs 

Chain slot ready, 6 CPs 

Special case 

(Ak) = 1 if k = 0 

HR-0808 
Part 2 

6-64 B 



CAL Syntax Description Octal Code 

Vi Vj ,Vj< Ak Double shifts of (Vj elements) left (Ak) l52ijk 
places to Vi elements 

Vi Vj, Vj< l§ Double shifts of (Vj elements) left one place l52ijO 
to Vi elements 

Vi Vj, Vj> Ak Double shifts of (Vj elements) right (Ak) l53ijk 
places to Vi elements 

Vi Vj ,Vj> l§ Double shifts of (Vj elements) right one place l53ijO 
to Vi elements 

These instructions are executed in the vector shift unit. They shift 
l2S-bit values formed by logically joining the contents of two elements 
of the Vj register. The direction of the shift determines whether the 
high-order bits or the low-order bits of the result are sent to Vi. 
Shift counts are obtained from register Ak. 

All shifts are end-off with zero fill. 

The number of operations is determined by the contents of the VL 
register. 

The 152 instruction performs left shifts. The operation starts with 
element 0 of Vj being joined with element 1 and the resulting l2S-bit 
quantity is then shifted left by the amount specified by (Ak). The 64 
high-order bits remaining are transmitted to element 0 of Vi. Figure 
6-7 illustrates this operation. 

If (VL) is 1, element 0 is joined with 64 bits of 0 and only the one 
operation is performed. If (VL) is greater than 2, the operation 
continues by joining element 1 with element 2 and transmitting the 
64-bit result to element 1 of Vi. This is illustrated in figure 6-S. 

If (VL) is 2, however, element 1 is joined with 64 bits of 0 and only 
two operations are performed. In general, the last element of Vj as 
determined by (VL) is joined with 64 bits of zeros. Figure 6-9 
illustrates this operation. 

§ Special CAL syntax form 

HR-OSOS 
Part 2 

6-65 B 



152-153 

(ELEMENT 0) OF Vj (ELEMENT I) Of VJ 

END OFF 64-81T RESULT TO ELEMENT 0 OF Vi 

Figure 6-7. Vector left double shift, first element, 
VL greater than 1 

(ELEMENT I) OF Vj (ELEMENT 2) OF Vj 

.... _(_E_L_E_M_E_N_T_I_)_ ... Q_F_ •••• ·._.V_J ... :> ........... j_<_>_ .... _(_.~_1._§_M_gN_·::T_:_.2_:)iIiIiii:iiiioH _0_F_V_j_~14- (Ak) 

HR-0808 

END OFF 64-81T RESULT TO ELEMENT 1 OF Vi 

Figure 6-8. Vector left double shift, second element, 
VL greater than 2 

(ELEMENT (VL) - I) OF Vj 000 ......... 0 

END OFF 64-81T RESULT TO ELEMENT (VL)-I OF Vj 

f'igure 6 .. 9. Vector left. dOi..iLle shifL, lasL e:i.elllellL 

Part 2 
6-66 

A-OO?3 

A-OO?5 

B 



lS2-lS3 

If (Ak) is greater than 128, the result is all zeros. If (Ak) is 
greater than 64, the result register contains at least (Ak) - 64 zeros. 

Example 

Suppose that a lS2 instruction is to be executed and the following 
register conditions exist: 

(VL) 4 
(AI) 3 
(V400) 0 00000 0000 0000 0000 0007 
(V40l) 0 60000 0000 0000 0000 OOOS 
(V402) 1 00000 0000 0000 0000 0006 
(V403) 1 60000 0000 0000 0000 0007 

Instruction lS2S4l is executed and following execution, the first four 
elements of Vs contain the following values: 

(VSOO) 
(VSOl) = 
(VS02) 
(VS03) = 

o 00000 0000 0000 0000 0073 
o 00000 0000 0000 0000 00S4 
o 00000 0000 0000 0000 0067 
o 00000 0000 0000 0000 0070 

The lS3 instruction performs right shifts. Element 0 of Vj is joined 
with~ high-order bits of 0 and the 128 bit quantity is shifted right 
by the amount specified by (Ak). The 64 low-order bits of the result 
are transmitted to element 0 of Vi. Figure 6-10 illustrates this 
operation. 

000 ......... 0 (ELEMENT 0) OF Vj 

" 
64- BIT RESULT TO END OFF 
ELEMENT 0 OF Vi 

Figure 6-10. Vector right double shift, first element 

If (VL) = 1, only the one operation is performed. In the general case, 
however, instruction execution continues by joining element a with 
element 1, shifting the 128-bit quantity by the amount specified by 
(Ak), and transmitting the result to element 1 of Vi. This operation is 
shown in figure 6-11. 

HR-0808 
Part 2 
6-67 B 



152-153 

(ELEMENT 0) OF Vj 

64-(Ak) BITS 

(ELEMENT I) OF Vj 

. 
64-BIT RESULT TO 

ELEMENT I OF Vj 
END OFF 

Figure 6-11. Vector right double shift, second element, 

VL greater than 1 

The last operation performed by the instruction joins the last element of 
Vj as determined by (VL) with the preceding element. Figure 6-12 
illustrates this operation. 

A-OO?4 
(ELEMENT (VL)-2) OF Vj 

(Ak)~ (ELEMENT 

(ELEMENT (VL) - I) OF Vj 

............................ 
............... '.' ........... . 

>:>·l~l.;~MftNf .dv L) - I) OF V j 

64- BIT RESULT TO 
ELEMENT (VL)-I OF Vj 

END OFF 

Figure 6-12. Vector right double shift, last operation 

Example 

Suppose that a 153 instruction is to be executed and the following 
register conditions exist: 

(VL) = 4 
(A6 ) 3 
(V200) a 
(V20l) a 
(V202) 1 
(V203) = 1 

HR-0808 

00000 0000 
60000 0000 
00000 0000 
60000 0000 

0000 0000 
0000 0000 
0000 0000 
0000 0000 

Part 2 
6-68 

0017 
0006 
0006 
0007 

B 



152-153 

Instruction 153026 is executed and following execution, register va 
contains the following values: 

(VOOO) 
(Vaal) 
(V002) 
(V003) 

a 00000 0000 0000 0000 0001 
1 66000 0000 0000 0000 0000 
1 50000 0000 0000 0000 0000 
1 56000 0000 0000 0000 0000 

The remaining elements of va are unaltered. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Vi or Vj reserved 

Ak reserved 

150 - 153 in process, unit busy (VL) + 4 CPs 

Execution time 

Instruction issue, 1 CP 

Vi ready, 11 CPs if (VL) is less than or equal 

Vi ready, (VL) + 6 CPs if (VL) is greater than 

Vj ready, 5 CPs if (VL) is less than or equal 

Vj ready, (VL) CPs if (VL) is greater than 5 

Unit ready, (VL) + 4 CPs 

Chain slot ready, 6 CPs 

Special case 

(Ak) = 1 if k a 

HR-0808 
Part 2 

6-69 

to 5 

5 

to 5 

B 



CAL Syntax Description Octal Code 

fi Sj+Vk 

Vi Vj+Vk 

Vi Sj-Vk 

Vi -Vk§ 

Vi Vj-Vk 

Integer sums of (Sj) and (Vk elements) to 
Vi elements 

Integer sums of (Vj elements) and (Vk 
elements) to Vi elements 

Integer differences of (Sj) and (Vk elements) 
to Vi elements 

Transmit negative of (Vk elements) to Vi 
elements 

Integer differences of (Vj elements) and (Vk 
elements) to Vi elements 

These instructions are executed by the vector add unit. 

l54ijk 

l55ijk 

l56ijk 

l56iOk 

l57ijk 

Instructions 154 and 155 perform integer addition. Instructions 156 and 
157 perform integer subtraction. The number of additions or subractions 
performed is determined by the contents of the VL register. All 
operations start with element 0 of the V registers and increment the 
element number by 1 for each operation performed. All results are 
delivered to elements of Vi. No overflow is detected. 

Instructions 154 and 156 deliver a copy of (Sj) to the functional unit 
where the copy is retained as one of the operands until the vector 
operation completes. The other operand is an element of Vk. For 
instructions 155 and 157, both operands are obtained from V registers. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Vi or Vk reserved 

154 - 157 in process, unit busy (VL) + 4 CPs 

For 154 and 156 only, Sj reserved 

For 156 and 157 only, Vj reserved 

§ Special CAL syntax form 

HR-0808 
Part 2 

6-70 B 



Execution time 

Instruction issue, 1 CP 

Vi ready, 10 CPs if (VL) is less than or equal to 5 

Vi ready, (VL) + 5 CPs if (VL) is greater than 5 

Vj or Vk ready, 5 CPs if (VL) is less than or equal to 5 

Vj or Vk ready, (VL) CPs if (VL) is greater than 5 

Unit ready, (VL) + 4 CPs 

Chain slot ready, 5 CPs 

Special cases 

154-157 

For 154, if j = 0, then (Sj) 

For 156, if j 0, then (Sj) 

o and (Vi element) (Vk element) 

HR-0808 
Part 2 
6-71 

o and (Vi element) = -(Vk element) 

B 



I 

ICAL Syntax Description Octal Code 

Vi Sj*FVk 

Vi Vj*FVk 

Vi Sj*HVk 

Vi Vj*HVk 

Vi Sj*RVk 

Vi Vj*RVk 

i Sj*IVk 

i Vj*IVk 

Floating-point products of (Sj) and 160ijk 
(Vk elements) to Vi elements 

Floating-point products of (Vj elements) 16lijk 
and (Vk elements) to Vi elements 

Half-precision rounded floating-point products 162ijk 
of (Sj) and (Vk elements) to Vi elements 

Half-precision rounded floating-point products 163ijk 
of (Vj elements) and (Vk elements) to Vi elements 

Rounded floating-point products of (Sj) 
and (Vk elements) to Vi elements 

Rounded floating-point products of 
(Vj elements) and (Vk elements) to vi elements 

Reciprocal iterations; 2 - (Sj) * (Vk 
elements) to Vi elements 

Reciprocal iterations; 2 - (Vj elements) * 
(Vk elements) to Vi elements 

164ijk 

165ijk 

166ijk 

167ijk 

These instructions are executed in the floating-point multiply unit. 
The number of operations performed by an instruction is determined by 
the contents of the VL register. All operations start with element 0 of 
the V registers and increment the element number by I for each 
successive operation. 

Operands are assumed to be in floating-point format. Even-numbered 
instructions in the group deliver a copy of (Sj) to the functional unit 
where the copy is retained as one of the operands until the completion 
of the operation. The other operand is an element of Vk. For 
odd-numbered instructions in the group, both operands are obtained from 
V reg isters. 

All results are delivered to elements of Vi. If either operand is not 
normalized, there is no guarantee that the products will be normalized. 

Out-of-range conditions are described in section 4. 

The 160 instructiou forms the products of the f1oating-poiut quantity in 

Sj and the floating-point quantities in elements of Vk and enters the 
result into Vi. 

HR-0808 
Part 2 
6-72 B 



160-167 

The 161 instruction forms the products of the floating-point quantities 
in elements of Vj and Vk and enters the results into Vi. 

The 162 instruction forms the half-precision rounded products of the 
floating-point quantity in Sj and the floating-point quantities in 
elements of Vk and enters the results into Vi. The low-order 19 bits of 
the result elements are zeroed. 

The 163 instruction forms the half-precision rounded products of the 
floating-point quantities in elements of Vj and Vk and enters the 
results into Vi. The low-order 19 bits of the result elements are 
zeroed. 

The 164 instruction forms the rounded products of the floating-point 
quantity in Sj and the floating-point quantities in elements of Vk and 
enters the results into Vi. 

The 165 instruction forms the rounded products of the floating-point 
quantities in elements of Vj and Vk and enters the results into Vi. 

The 166 instruction forms for each element, two minus the product of the 
floating-point quantity in Sj and the floating-point quantity in 
elements of Vk. It then enters the results into Vi. See the 
description of the 067 instruction for more details. 

The 167 instruction forms for each element pair, two minus the product 
of the floating-point quantities in elements of Vj and Vk and enters the 
results into Vi. See the description of the 067 instruction for more 
details. 

Hold issue conditions 

HR-0808 

034 - 037 in process 

Exchange in process 

Vi or Vk reserved 

16x in process, unit busy (VL) + 4 CPs 

For 160, 162, 164, and 166, Sj reserved 

For 161, 163, 165, and 167, Vj reserved 

Part 2 
6-73 B 



160-167 

Execution time 

Instruction issue, 1 CP 

Vi ready, 14 CPs if (VL) is less than or equal to 5 

Vi ready, (VL) + 9 CPS if (VL) is greater than 5 

Vj or Vk ready, 5 CPS if (VL) is less than or equal to 5 

Vj or Vk ready, (VL) CPs if (VL) is greater than 5 

Unit ready, (VL) + 4 CPs 

Chain slot ready, 9 CPs 

Special case 

(Sj) o if j 

HR-0808 

o 

Part 2 
6-74 B 



CAL Syntax 

Vi Sj+FVk 

Vi +FVk§ 

Vi Vj+FVk 

Vi Sj-FVk 

Vi -FVk§ 

Vi Vj-FVk 

Description 

Floating-point sums of (Sj) and 
(Vk elements) to Vi element 

Transmit normalized (Vk elements) to Vi 
elements 

Floating-point sums of (Vj elements) and (Vk 
elements) to Vi elements 

Floating-point differences of (Sj) and (Vk 
elements) to Vi elements 

Transmit normalized negatives of (Vk 
elements) to Vi elements 

Floating-point differences of (Vj elements) 
and (Vk elements) to Vi elements 

Octal Code 

170ijk 

170iOk 

171ijk 

172ijk 

172iOk 

173ijk 

These instructions are executed by the floating-point add unit. 
Instructions 170 and 171 perform floating-point addition; instructions 
172 and 173 perform floating-point subtraction. The number of additions 
or subtractions performed by an instruction is determined by the 
contents of the VL register. All operations start with element 0 of the 
V registers and increment the element number by 1 for each operation 
performed. All results are delivered to vi. The results are normalized 
even if the operands are not. 

Instructions 170 and 172 deliver a copy of (Sj) to the functional unit 
where it is retained as one of the operands until the completion of the 
operation. The other operand is an element of Vk. For instructions 171 
and 173, both operands are obtained from V registers. 

Out-of-range conditions are described in section 4. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Vi or Vk reserved 

170 - 173 in process, unit busy (VL) + 4 CPs 

For 170, 172, Sj reserved 

For 171, 173, Vj reserved 

§ Special CAL syntax form 

HR-0808 
Part 2 

6-75 B 



170-173 

Execution time 

Instruction issue, 1 CP 

Vi ready, 13 CPs if (VL) is less than or equal to 5 

Vi ready, (VL) + 8 CPs if (VL) is 

Vj and Vk ready, 5 CPs if (VL) is 

Vj and Vk ready, (VL) CPs if (VL) 

Unit ready, (VL) + 4 CPs 

Chain slot ready, 8 CPs 

Special case 

(Sj) o if j o 

HR-0808 
Part 2 

6-76 

greater than 5 

less than or equal 

is greater than 5 

to 5 

B 



CAL Syntax Description Octal Code 

Vi /HVj Floating-point reciprocal approximation of 
(Vj elements) to Vi elements 

l74ijO 

This instruction is executed in the reciprocal approximation unit. 

The instruction forms an approximate value of the reciprocal of the 
normalized floating-point quantity in each element of Vj and enters the 
result into elements of Vi. The number of elements for which 
approximations are found is determined by the contents of the VL 
register. 

The 174 instruction occurs in the divide sequence to compute the 
quotients of floating-point quantities as described in section 4 under 
Floating-Point Arithmetic. 

The reciprocal approximation instruction produces results that are 
accurate to 30 bits. A second approximation may be generated to extend 
the accuracy to 48 bits using the reciprocal iteration instruction. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Vi or Vk reserved 

174 in process, unit busy for (VL) + 4 CPs 

Execution time 

Instruction issue, 1 CP 

Vi ready, 21 CPs if (VL) is less than or equal to 5 

Vi ready, (VL) + 16 CPs if (VL) is greater than 5 

Vj ready, 5 CPs if (VL) is less than or equal to 5 

Vj ready, (VL) CPs if (VL) is greater than 5 

Unit ready, (VL) + 4 CPs 

Chain slot ready, 16 CPs 

Special case 

(Vi element) is meaningless if (Vj element) is not normalized; 
the unit assumes that bit 247 of (Vj element) is 1; no test of 
this bit is made. 

HR-0808 
Part 2 

6-77 B 



CAL Syntax Description Octal Code 

Vi PVj 

Vi QVj 

Population count of (Vj elements) to Vi 
elements 

Population count parity of (Vj elements) to 
Vi elements 

l74ijl 

l74ij2 

The l74ijl instruction counts the number of bits set to 1 in each 
element of Vj and enters the results into corresponding elements of Vi. 
The results are entered into the low-order 7 bits of each Vi element; 
the remaining high-order bits of each Vi element are zeroed. 

The 174ij2 instruction counts the number of bits set to 1 in each 
element of Vj. The least significant bit of each element result shows 
whether the result is an odd or an even number. Only the least 
significant bit of each element is transferred to the least significant 
bit position of the corresponding element of register Vi. The remainder 
of the element is set to zeros. The actual population count results are 
not transferred. 

These instructions use the vector population count unit, which shares 
some logic with the reciprocal approximation functional unit. 

Hold issue conditions 

034-037 in process 

Exchange in process 

Vi reserved 

Vk reserved 

174 in process; unit busy for (VL) + 4 CPs 

Execution time 

HR-0808 

Instruction issue, 1 CP 

vi ready, 13 CPs if (VL) is less than or equal to 5 

Vi ready, (VL) + 8 CPs if (VL) is greater than 5 

Vj ready, 5 CPs if (VL) is less than or equal to 5 

Vj ready, (VL) CPs if (VL) is greater than 5 

Unit ready, (VL) + 4 CPs 

Chain slot ready, 8 CPs 

Part 2 
6-78 B 



leAL Syntax Description Octal Code 

VM vj,z VM 1 where (Vj element) 0 175xjO 

WM Vj,N VM = 1 where (Vj element) 1 0 175xjl 

VM Vj,p VM 1 where (Vj element) positive, 
(bit 263 = 0) 

175xj2 

Vr.l Vj,M VM = 1 where (Vj element) negative, 175xj3 
(bit 263 = 1) 

The 175xjk instruction creates a vector mask in VM based on the results 
of testing the contents of the elements of register Vj. Each bit of VM 
corresponds to an element of Vj. Bit 263 corresponds to element 0; 
bit 20 corresponds to element 63. 

The type of test made by the instruction depends on the low-order 2 bits 
of the k designator. The high-order bit of the k designator is not 
interpreted. 

If the k designator is 0, the VM bit is set to 1 when (Vj element) is 0 
and is set to 0 when (Vj element) is nonzero. 

If the k designator is 1, the VM bit is set to 1 when (Vj element) is 
nonzero and is set to 0 when (Vj element) is zero. 

If the k designator is 2, the VM bit is set to 1 when (Vj element) is 
positive and is set to 0 when (Vj element> is negative. A zero value is 
considered positive. 

If the k designator is 3, the VM bit is set to 1 when (Vj element) is 
negative and is set to 0 when (Vj element) is positive. A zero value is 
considered positive. 

The number of elements tested is determined by the contents of the VL 
register. VM bits corresponding to untested elements of Vj are zeroed. 

The 175 vector mask instruction provides a vector counterpart to the 
scalar conditional branch instructions. 

The 175 vector mask instruction uses the vector logical unit. 

HR-0808 
Part 2 

6-79 B 



175 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

Vj reserved 

14x in process, unit busy (VL) + 4 CPs 

003 in process, VM busy 3 CPs 

175 in process, unit busy (VL) + 4 CPs 

Execution time 

Instruction issue, 1 CP 

Vj ready, 5 CPs if (VL) is less than or equal 

Vj ready, 

VM ready 

VM ready 

5Eecial cases 

k = 0 or 

k = 1 or 

k = 2 or 

k = 3 or 

HR-0808 

(VL) CPs if (VL) is greater than 5 

except for 073 instruction, (VL) + 

for 073 instruction, (VL) + 6 CPs 

4, VM bit xx = 
5, VM bit xx = 
6, VM bit xx = 
7, VM bit xx = 

1 if (Vj 

1 if (Vj 

1 if (Vj 

1 if (Vj 

Part 2 
6-80 

element xx) 

element xx) 

element xx) 

element xx) 

4 

to 5 

CPs 

= 0 

~ 0 

is positive 

is negative 

B 



CAL Syntax Description Octal Code 

Vi 

Vi 

,AO,Ak 

§ ,AO,l 

Transmit (VL) words from memory to Vi elements 176ixk 
starting at memory address (AO) and 
incrementing by (Ak) for successive addresses 

Transmit (VL) words from memory to Vi elements 176ixO 
starting at memory address (AO) and 
incrementing by 1 for successive addresses 

,AO,Ak Vj Transmit (VL) words from Vj elements to memory 177xjk 
starting at memory address (AO) and 
incrementing by (Ak) for successive addresses 

,AO,l Vj§ Transmit (VL) words from Vj elements to memory 177xjO 
starting at memory address {AO> and 
incrementing by 1 for successive addresses 

These instructions transfer blocks of data between V registers and 
memory. 

The 176 instruction transfers data from memory to elements of register 
Vi. 

The 177 instruction transfers data from elements of register Vj to 
memory. 

Register elements begin with 0 and are incremented by 1 for each 
transfer. Memory addresses begin with (AO) and are incremented by the 
contents of Ak. Ak contains a signed 22-bit integer which is added to 
the address of the current word to obtain the address of the next word. 
Ak may specify either a positive or negative increment allowing both 
forward and backward streams of reference. The two high-order bits of 
(Ak) are ignored. 

The number of words transferred is determined by the contents of the VL 
register. 

§ Special CAL syntax form 

HR-0808 
Part 2 

6-81 B 



I 

I 

I 

I 

176-177 

H01d issue conditions 

034 - 037 in process 

Exchange in process 

AO reserved 

Ak reserved where k = 1 through 7 

Block sequence flag set (034 - 037, 176, 177) 

Scalar reference (3 CPs maximum) 

Rank B data valid 

Fetch request in last clock period 

For 176, vector register i reserved 

For 177, vector register j reserved 

I/O memory request 

Execution time 

For 176 (assuming no bank conflicts): 

Instruction issue except for 034-037, 100-137, 

Instruction issue for above exceptions, (VL) + 

Vi ready, 14 CPs if (VL) is less than or equal 

Vi ready, (VL) + 9 CPs if (VL) is greater than 

For 177 (assuming no bank conflicts): 

Instruction issue except for 034-037, 100-137, 

Instruction issue for above exceptions, (VL) + 

Vj ready, 5 CPs if (VL) is less than or equal 

Vj ready, (VL) CPs if (VL) is greater than 5 

Special cases 

The increment, (Ak), = 1 if k = 0 

176, 177, 1 CP 

4 CPs 

to 5 

5 

176, 177, 1 CP 

5 CPs 

to 5 

Chain slot issue is 9 CPs if full speed for 176, blocked for 177 

Inhibit I/O references 

HR-0808 

Inhibit 034 - 037, 100 - 137, 176, 177 

Part 2 
6-82 B 



176-177 

Special cases (continued) 

HR-0808 

(Ak) determines speed control. Successive addresses are 
located in successive banks. References to the same bank can 
be made every 4 CPs or more. Incrementing (Ak) by 16 (16-bank 
memory) or 8 (8-bank memory) places successive memory 
references in the same bank, so a word is transferred every 4 
CPs. If the address is incremented by 8 (16-bank memory) or 4 
(8-bank memory), every other reference is to the same bank and 
words can transfer every 2 CPs. With any address incrementing 
that allows 4 CPs before addressing the same bank, one word can 
transfer each CP. 

Part 2 
6-83 B 





CPU INTERFACES 7 

INTRODUCTION 

The CRAY-I Computer is designed for use with front-end computers in a 
network of computers. Front-end interfaces connect the CRAY-I I/O 
channels to channels of other computers. In S Series systems that do not 
have an I/O Subsystem, the interfaces are connected to CPU I/O channels. 
The interfaces adapt the CPU I/O channels to handle differences in 
voltage levels, grounding requirements, word sizes, data rates, and 
protocols. Each interface is designed to accommodate a specific type of 
computer, interfacing it to one CPU low-speed asynchronous I/O channel 
pair. 

Standard interface hardware exists for the Maintenance Control Unit 
(MCU). Cray Research also offers standard interfaces for a variety of 
computers produced by other manufacturers and is continually expanding 
the list of front-end intefaces that it offers. 

This section describes the physical construction, cabling limitations, 
and operation cornmon to the interfaces. Specific information for each 
interface is contained in separate documentation. 

PHYSICAL DESCRIPTION 

Each interface is housed in a stand-alone cabinet (figure 7-1) located 
near the host computer. The cabinet is air-cooled, and operates directly 
from the 60 Hz AC power mains. The power consumption and therefore the 
heat generated by the interface cabinet varies with the complexity of the 
interface. The cabinet contains two or more logic modules and 
appropriate cabling connector panels. Internal power supplies provide 
the required logic and communication voltages. Cabinet grounding is 
flexible and can be configured to specific site requirements~ 

HR-0808 
Part 2 
7-1 B 



Figure 7-1. Typical interface cabinet 

The MCU interface is built on a circuit board that is installed in the 
MCU computer chassis. 

CABLING LIMITATIONS 

An interface can be located as far as 320 cable feet from the CRAY-l 
CPU. This generally allows enough distance to locate the interface 
cabinet near the front-end computer, easily meeting the cable length 
requirements of the front-end machine. 

Connectors and cabling are supplied with the interface, so that it is 
ready to connect to host and CRAY-l cabling. 

The MCU interface has special cabling considerations. 

OPERATION 

The interface uses hardware logic to perform all command translation and 
protocol conversion needed to transfer data. Thus, its operation is 
invisible to the front-end user and the CRAY-l user~ The CRAY-l is often 
treated simply as another peripheral device of the front-end system. 

HR-0808 
Part 2 

7-2 B 



PART 3 

I/O SUBSYSTEM 



GENERAL INFORMATION 

INTRODUCTION 

The I/O Subsystem provides high-capacity data communications between the 
Central Processing Unit and peripheral devices, storage devices, and 
front-end computers. The I/O Subsystem is composed of two to four I/O 
Processors, a group of interfaces, and a Buffer Memory. This part of the 
manual describes these components. 

The I/O Processor is a fast, multipurpose computer capable of extremely 
high data transfer rates. A l6-bit processor and a fast bipolar memory 
combine to support high-speed I/O operations. The input and output 
capabilities make the I/O Processor useful for network control, mass 
storage access, and computer interfacing. 

Figure 1-1 shows the basic organization of an I/O Processor. The I/O 
Memory stores 65K parcels of 16 bits each. The control section has 
instruction stack, program exit stack, and control logic. The 
computation section consists of registers and functional units having 
interconnected data paths. The I/O section is based in six direct memory 
access (DMA) ports, and each port can handle data at approximately 850 
Mbits per second. These DMA ports are expandable into multiple I/O 
channels for specialized interfacing needs. 

MEMORY SECTION 

The memory of an I/O Processor consists of four sections of four banks 
each of bipolar LSI (large scale integration) memory. All memory 
sections are independent of each other. The memory cycle time is 4 CPs 
meaning a section is ready for use again 4 CPs after the preceding memory 
reference. An exception to this is the I/O write operation which 
requires 6 CPs. The access time is the time required to bring an operand 
from memory to the accumulator, which is 7 CPs. Memory capacity is fixed 
at 65,536 parcels of 16 bits of data plus 2 odd parity bits for each 
parcel. 

HR-0808 
Part 3 
1-1 B 

1 



HR-0808 

COMPUTATION SECTION 

• 512 l6-bit Operand Registers 

• Functional Units 

• Accumulator 

CONTROL SECTION 

• Instruction Stack 

• Program Exit Stack 

MEMORY SECTION 

• 65,536 parcels of l6-bits each 

• Bipolar Random Access Memory 

INPUT/OUTPUT SECTION 

• 6 Direct Memory Access ports 

• l6-bit port width 

• Approximately 2.56 gigabits/s 
peak rate 

Other I/O 

Processors 
Buffer 

Memory 

Functionally 
Dependent 
Interfaces 

A-O/~l" 

Figure 1-1. Basic organization of an I/O Processor 

Part 3 
1-2 B 



CONTROL SECTION 

The I/O Processor executes 128 instruction codes as either l6-bit 
(l-parcel) or 32-bit (2-parcel) instructions. A wide assortment of 
branching and I/O instructions are included in the set. Instructions are 
stored in memory, and transferred into the instruction stack, under the 
control of a program address counter. Instructions issue from the 
instruction stack and are decoded into the control signals that enable 
the functions of the instruction. 

The instruction stack provides fast access to a moving window of program 
instructions. The instruction stack holds 32 instruction parcels (16 
bits each). The program is free to branch quickly about inside the 
stack, only slowing when more instructions must be read from memory. The 
instruction stack is actually a 32-parcel circular buffer: the parcels 
held for the longest time are overwritten by newly transferred 
instructions. Details are given in the control section discussion in 
this part of the manual. 

The program exit stack is a last-in-first-out set of 16 registers that 
stores return addresses for program subroutine calls. The 16 registers 
provide for 14 nested levels of subroutines in the program; a pointer 
keeps track of the levels involved. An interrupt is generated when the 
stack is emptied or filled. The stack may be loaded or unloaded by the 
program. Therefore, the processor is not limited to the 14 nested 
levels, and it is possible to nest an unlimited number of subroutines by 
means of the software. 

COMPUTATION SECTION 

The computation section contains operating registers, functional units 
and an accumulator which operate together to execute a program of 
instructions stored in memory. All arithmetic (addition and subtraction) 
is in twos complement mode in a single adder. Floating-point arithmetic 
is not incorporated. A shift unit provides left or right shifts of up to 
31 bit positions, either circular or end-off shifting. A logical product 
operation is provided. 

Any of the 512 operand registers are used for temporary data storage or 
for indirect addressing to the memory. All operand registers are 16 bits 
wide. 

The accumulator is a l6-bit signed register for temporary storage of 
operands or results. All movement of data within this single-address 
machine uses the accumulator either as the source of data or as the 
destination for results. The instruction code specifies the register or 
memory address from which data is brought to the accumulator or the 
register or memory address to which data is sent from the accumulator. 

HR-0808 
Part 3 
1-3 B 



I 

All transfers between memory and operand registers take place via the 
accumulator, and accumulator data can also be sent to or received from 
specialized I/O channels. A seventeenth accumulator bit occupies the 
216 bit position as the carry flag. When operations in the adder or 
shifter yield a carry, the accumulator 216 bit is toggled. The carry 
flag is available for conditional testing. 

INPUT/OUTPUT SECTION 

Communication with the I/O Processor is through six direct memory access 
(DMA) ports. Each port is bidirectional and can transfer four 16-bit 
data words every 6 CPs. Input and output channels may be active at the 
same time, as long as they use different ports and are referencing 
different memory sections. The ports are assigned to channels with the 
possibility of several channels sharing one port. The slower the 
required data rate on the channels, the more channels may be multiplexed 
into one DMA port. The I/O Processor has a total of 40 channels. 

Channels use Busy and Done flags for signalling the I/O Processor, and 
can communicate directly with the I/O Processor accumulator for control 
information. The use of the flags and the accumulator varies with the 
specific design of the channel interface logic. All channels communicate 
status and functions through the accumulator. Some low-speed devices may 
transfer data directly to and from the accumulator, using one of the 
channel registers. 

I/O SUBSYSTEM CLOCK 

The clock controlling the entire I/O Subsystem is a crystal-controlled 
oscillator running at 80 MHz. This gives a clock period of 12.5 
nanoseconds. The speed can be adjusted slightly higher or lower, for 
maintenance purposes. When doing operations that require exact timing 
information, such as interval timing with the real-time clock, contact 
maintenance personnel to verify the clock period. 

HR-0808 
Part 3 
1-4 B 



I/O MEMORY SECTION 

INTRODUCTION 

The I/O Processor memory, called the I/O Memory, consists of 16 banks of 
bipolar LSI (large scale integration) storage circuits. Each 4-bank 
section is independent of the other sections. The following paragraphs 
describe the memory speeds, memory organization, memory access, memory 
addressing, and memory parity protection. 

MEMORY SPEEDS 

Table 2-1. I/O Processor memory characteristics 

65,536 parcels of 16 bits 

16 banks of 4,096 parcels each 

4 CP bank cycle time 

Read to accumulator in 7 CPs 

1 instruction fetched/CP 

1 data parcel/CP on sequential addressing 

Dual odd parity protection 

6 full-duplex direct-memory-access ports 

The memory cycle time is 4 CPs. The access time, that is, the time 
required to fetch an operand from memory to the accumulator, is 7 CPs. 
Instructions are fetched from memory at a rate of one parcel per clock 
period, in 4-parcel bursts. I/O operations transfer data in bursts of 
four parcels, one parcel each clock period. Due to the memory 
organization, explained later in this section, it is possible to 
reference sequential addresses every clock period, regardless of whether 
the operation is a read or a write. However, the same section can only 
be referenced once every 6 CPs. The data transferred in the operation 
may be one parcel of operand data or four parcels of I/O data. 

HR-0808 
Part 3 

2-1 B 

2 



MEMORY ORGANIZATION 

The 16 banks of 4096 parcels each are divided into four sections of four 
banks each. Each section has separate access paths and sequence 
controls, as well as write data registers and read data registers. The 
four banks within a section share a common sequence control. A reference 
to anyone bank of the section also references the other three banks in 
the section, but only the addressed bank transfers data. 

A read reference to a memory section causes all four banks in that 
section to read out parcels to their read registers. The addressed 
parcel or parcels are then gated to the destination. In the case of an 
operand reference, a single parcel goes to the accumulator. In an I/O 
reference each of the four parcels is gated to the output channel in 
sequence. The read reference and transmission sequence are fixed with 
reference to timing of the initiation and moving of data. Once the 
reference has been started, it continues automatically. After 4 CPs, the 
section is then free to begin another overlapping reference. 

A write sequence from the I/O section can be assembling data for a memory 
section in the bank write data registers at the same time that an I/O 
read reference is reading data from that same memory secton. The actual 
data moved per reference may vary from one operand parcel to a four 
parcel burst for I/O operation. 

MEMORY ACCESS 

Each memory section has three 16-bit data paths for reading and two 
16-bit data paths for writing. One read path and one write path go to 
the accumulator. One read path and one write path go to the I/O section 
as Direct Memory Access (DMA) ports. The last read path goes to the 
instruction stack and carries instruction parcels. The DMA ports are 
explained in greater detail in the description of the I/O section later 
in this manual. 

MEf.10RY ADDRESSING 

A parcel in the 16-bank I/O Memory is addressed in 16 bits as shown in 
figure 2-1. 

The low-order 4 bits specify one of the 16 banks. 
specifies ao address withio the storage chip. The 

The next higher field 

the storage chip. 

HR-0808 
Part 3 

2-2 

k~~~ ___ ~ __ k~~~ __ ,_~~ 
... .lL'-:J.&.i v.i..\.AC,,- U.L'-O I;;)C.\.::""-

B 



chip address section bank 
and/or chip selects select select 

Figure 2-1. I/O Memory address format 

Three address paths go to each of the four memory sections: one from the 
I/O, one from the accumulator, and one for instruction fetch references. 

MEMORY PARITY PROTECTION 

Data stored in memory is protected by an odd parity scheme. When a 
16-bit word is stored in memory, 2 additional parity bits are generated 
and stored at the same address. One parity bit is assigned to the 
high-order 8 bits of the data word, and the other is assigned to the 
low-order 8 bits. Each parity bit is set or cleared to make the sum of 1 
bit in the byte and parity bit an odd number. When the data is read from 
memory, it is checked for odd parity. If parity is even, an error has 
occurred in storage and an interrupt is generated. 

The error handling routine may use the I/O Processor I/O Memory error 
channel to determine the location of the failing hardware and issue this 
information for maintenance people. Normally, no further I/O Processor 
operation would be attempted until the memory fault is corrected. The 
I/O Memory error channel is described with the Input/Output section in 
section 5. 

HR-0808 
Part 3 

2-3 B 





lOP CONTROL SECTION 

INTRODUCTION 

The control section of an I/O Processor consists of an instruction 
control network, an instruction stack, and a program exit stack. 
Characteristics are summarized in table 3-1. 

Table 3-1. Characteristics of lOP control section 

Single addressing mode 

128 operation codes 

Instruction stack 

Program exit stack, 16 primary levels 

3 

Instructions can move data from a source to the accumulator or from the 
accumulator to a destination. Operand registers serve as temporary 
storage for operands and results. The functional units receive operand 
pairs and produce single results. In this single-address machine, one 
operand address is designated by the instruction and the other operand is 
contained in the accumulator. A typical data flow is: from memory to 
accumulator; from accumulator with an operand to functional unit and 
result back to accumulator; and from accumulator to memory. Figure 3-1 
shows the organization of an I/O Processor and following paragraphs 
describe the elements of the control section. 

INSTRUCTION CONTROL NETWORK 

Figure 3-1 shows the general organization of the instruction control 
network for an I/O Processor. Important features are the instruction 
stack, II register, B register, RP and DP registers, exit stack, and P 
register. The decoding of operation codes into data path enablings, 
register reservations, and functional unit requirements are some of the 
activities of the instruction control network that are beyond the scope 
of this manual. 

HR-0808 
Part 3 
3-1 B 



-

L!l-O/3rS 

HR-0808 

I B I B -- -I I RP I 
-- OPERAND , 

REGISTERS 

III 1 D ~DP I ( 512) 

I I I j 

~-~ 
INSTRUCT I ON 

k 

STACK 

- EXIT r--.... 
STACK 

• -- 1 p 
-. 

C-tl 
-

. 
r- J V t-- --
t--- ~ 

I ACCUMULATOR l-. ADDER 

I--- ~ 

t--

~ 
... 

""""-~ 
!'"' 

~ l-- - SHIFTER 
- ADDEND ~ 

... .. 
~ 

---
H:ARRY L ~ 

I MA 1 
, , • 

-
I/O MEMORY .......-

-
65 K X 16 

Figure 3-1. I/O Processor block diagram 

Part 3 
3-2 B 

I 



I . 

I 

INSTRUCTION STACK 

Instructions occupy one or two parcels and consist of two designators and 
a constant field as shown in figure 3-2. 

f FIELD d FIELD PARCEL 1 

7 BITS 9 BITS 

k FIELD PARCEL 2 

(ONLY WITH 
16 BITS 2-PARCEL 

INSTRUCTIONS) 

Figure 3-2. Instruction format 
. 

The 7-bit f designator is the operation code that specifies which 
instruction is to be executed, and also designates where and how the 
execution occurs. The 9-bit d field can contain data, address, or shift 
count. The 16-bit k field is a constant field that occupies the program 
parcel immediately following the d and f field parcel. A more detailed 
explanation of the instruction formats is given at the beginning of the 
Instructions section. 

Program instructions are fetched from memory and stored in a 32-position, 
l6-bit instruction stack. Instructions are one parcel (16 bits) or two 
parcels (32 bits). The stack capacity for 32 instruction parcels allows 
short program loops to execute in the stack without reference to memory. 

The instruction stack consists of two banks of registers with 16 parcels 
of program code in each bank (figure 3-3). The addresses alternate 
between the two banks so that the loading of data from storage can 
interleave with the readout of instructions for execution. Instructions 
are fetched from the memory in bursts of four parcels. Each burst 
references a storage address that is a multiple of four. The issue 
control selects which parcel of the four is received first. Loading is 
then continued sequentially. Memory supplies one parcel each CP if there 
are no memory conflicts. 

The instruction passes directly into execution if the instruction 
sequence can issue in that clock period. The instruction is stored in 
the instruction stack regardless of whether it issues immediately or 
waits for issue. When an issue delay occurs, arriving parcels are stored 
in the instruction stack. 

HR-0808 
Part 3 

3-3 B 



HR-0808 

FROM 
MEMORY 

3 

} BURST 
2 
i 

0024_ 0 
3 

} BURST 
2 

0020_ I BURST 

15 2 3 15 
0 I 
2 3 
0 I 
2 3 
0 I 
2 3 
0 I 
2 3 
0 I 
2 3 
0 I 
2 3 
0 I 
2 3 

0 0 I 0 

BUFFER 
0 

BUFFER 
A 3 B 

2 

A-OOOtSC 

TO II REG. 

Figure 3-3. Instruction stack operation 

Part 3 
3-4 B 



I 

The instruction stack is implemented as a circular buffer so that when 
the stack has been filled and new program code is required, the new code 
is stored in the beginning address of the stack. Loading continues 
circularly with the issue control circuits keeping a record of the 
current section of memory that is represented in the instruction stack. 
In an attempt to keep the next instructions to be executed in the stack, 
internal (background) fetches are performed as instructions execute 
sequentially. 

In the following discussion, all numbers are octal. 

Normally, two internal fetches are performed to keep the load point of 
the stack minimally 108 locations ahead of the next instruction to 
issue (stack point). Since fetches are performed on a 4-parcel boundary, 
the load pointer (L) can actually be 178 parcels ahead of the stack 
pointer (S) if S is at parcel 0 of a 4-parcel group. Once the condition 
L-S ~108 is satisfied, internal fetches are stopped. When S increments 
to the point that L-S <108 , then internal fetches resume. For 
sequential instructions, when the stack fills up, loading will begin 
again at location O. Out-of-stack branch conditions will also cause a 
fetch beginning at stack location O. Once this fetch is accomplished, 
barring other branches, the internal fetch mechanism will take over. All 
absolute branches (074-077, 120-137) are considered to be out-of-stack. 
Relative jumps (070-073, 100-117) may be in- or out-of-stack depending on 
the offset, d, and the location of the stack pointer. 

Forward relative branch 

Forward relative branches into the area of the stack which has been or 
will be satisfied by predetermined internal fetches will be in-stack, 
that is, a forward branch of 108 to 178 parcels. Normally, 138 is 
the maximum; but under certain conditions, a forward branch of up to 
178 parcels is considered in-stack. In this case, an extra internal 
fetch is generated to retrieve the desired instructions. It is, however, 
impossible to predict when this will happen. Thus 10 8 parcels should 
be considered the upper limit for in-stack forward branches. 

Backward relative branch 

When the stack is filling for the first time after an out-of-stack 
condition, backward relative branches to stack location 0 are valid. 
After the stack is filling for succeeding times, backward branches into 
the area being loaded by internal fetches necessitates an out-of-stack 
condition. However, since the load pointer can only get a maximum of 
178 parcels ahead of the stack pointer, a reverse jump of 23 8 parcels 
is guaranteed. If the stack pointer is at parcel 3 of a 4-parcel group, 
a reverse jump of 278 may be achieved. However, the maximum loop size 
guaranteed to be in-stack is 23 8 parcels. 

HR-0808 
Part 3 

3-5 B 



I 

I 

II REGISTER 

The II (Instruction Issue) register is a l6-bit register that receives 
the instruction parcel from the instruction stack. The instruction 
parcel may stay in the II register for more than 1 CP and leaves the II 
register when a new instruction is needed. The f field of the 
instruction parcel (29_2l5 ) is the operation code and is translated 
by logic associated with the II register to determine the particular 
sequence of operations required. Bits 2° - 28 of the instruction 
parcel are the d field, sent to the RP, DP or addend register, or to the 
accumulator. If the f field translation shows this parcel is the first 
of a 2-parcel instruction, the second parcel is sent from the instruction 
stack to the addend register or accumulator and is not interpreted as an 
instruction. 

B REGISTER 

The B register is a 9-bit address register used to designate one of the 
512 operand registers. The B register is loaded from the accumulator, 
taking the low-order (2° - 28 ) bits. Accumulator bit 2° goes into 
B register 2° location. The contents of B may also address the I/O 
channel for an I/O instruction or may be used as an operand. In I/O 
instructions, the B register is an alternate for the instruction d field 
low-order bits 20 - 28 and can be altered by the program, in contrast 
to the d field which is part of the program. 

RP REGISTER 

The RP (Register Pointer) register is a 9-bit register that directly 
addresses one of the 512 operand registers for reading or writing. The 
RP register receives the d field from the II register on issue of each 
instruction using operand registers. 

The operand registers are built to automatically read out data as 
addressed by the RP register, unless an instruction specifically demands 
a write into an operand register. The automatic read occurs each clock 
period, and if the read data is not needed, it is ignored. 

DP REGISTER 

The DP (Destination Pointer) register contains a 9-bit pointer that 
selects one of the 512 opera~d ~egisters to receive the co~tents of the 
accumulator. The DP register receives the pointer from the D or B 

register bits 2°-28 • The pointer is sent when the instruction 

HR-0808 
Part 3 

3-6 B 



I 

issues. In a write operation from the accumulator to an operand 
register, there is usually a delay between the time the instruction 
issues and the time the register pointer is required. The DP register 
stores the pointer during the delay period. 

A disadvantage exists if the next instruction calls for reading an 
operand register. Because the transfer of a pointer from the DP register 
to the RP register uses the same path into RP as is used by the pointer 
coming from II, instruction issue may be blocked until the path into RP 
is again free. 

P REGISTER 

The 16-bit P (Program address) register holds the memory address of the 
instruction currently awaiting issue. The P register contents are 
automatically incremented as each instruction is executed in program 
sequence. A delay between reading from the instruction stack and issue 
keeps the address in P two program steps behind the instruction stack 
readout address. This delay is invisible to the programmer. 

Branch instructions alter the P register content by either adding a 
positive or negative displacement value, or by entering an entirely new 
value. 

PROGRAM EXIT STACK 

The I/O Processor has a special hardware mechanism for storing the 
program return addresses when subroutines are called, and for storing the 
return addresses when the program is suspended to handle interrupts. 
This mechanism is the program exit stack, which consists of sixteen 
16-bit registers. The program exit stack is addressed by a 4-bit 
pointer, the E register. The program can access and modify the contents 
of the program exit stack and the E register through I/O channel 
functions. The program exit stack is shown in figure 3-4. 

The zero position in the stack is reserved for the interrupt handler 
starting address. This address is entered in the stack by the deadstart 
program and generally remains unaltered for the remainder of system 
execution. Interrupts cause the hardware to reference the stack zero 
position without reference to the E register. 

HR-0808 
Part 3 

3-7 B 



ISA 
SRA 

ISRA 

~ ACCUMULATOR 

l t 
I I/O 

t 
POINTER 

E 0 ISA 
~ 

I SRA 
~ 

2 SRA 
~ 3 SRA - 4 SRA - 5 SRA - 6 SRA - 7 SRA - 8 SRA 

- 9 SRA 

- 10 SRA 

~ II SRA 
~ 12 SRA 

~ 13 SRA 
~ 14 SRA 

IP1 DATA 
"'"""-

15 rSRA 

L 

Interrupt Start Address 
= Subroutine Return Address 

-

A-OOO$A 

EXIT STACK 
BOUNDARY FLAG 

EXIT STACK 
BOUNDARY FLAG 

INTERRUPT 

Interrupted Subroutine Return Jump Destination Address 

Figure 3-4. Program exit stack 

Positions 1 through 14 in the program exit stack are used for subroutine 
return addresses. A subroutine call from a routine advances the E 
pointer by 1 and then stores in the stack the return address at which the 
routine will continue when the called subroutine finishes. An exit from 
the subroutine to the routine reads the currently-pointed location in the 
stack for the return address. Then the E pointer decrements by one count 
to point to the higher level stack location. As a program goes into 
deeper levels of subroutines; the E count increases and more subroutine 
return addresses are stored. As the program exits out of subroutines, 
the E count drops back toward O. 

HR-0808 
Part 3 

3-8 B 



I 

I 

When the E pointer approaches the full limit of the stack, an exit stack 
interrupt is generated to allow the software to reconfigure the stack. 
The sequence is as follows: 

1. E reaches 13 

2. Subroutine call 

3. E goes to 14 

4. New return address loads to stack position 14 

5. Interrupt sets 

6. Return jump to new subroutine enters new value to P, but does 
not jump 

7. Interrupt blocks further instruction issue (if system and 
channel interrupts are enabled) 

8. Stack loads the address that was interrupted to position 15 

9. Interrupt handler begins executing 

When the E pointer reaches 0 and an exit instruction issues, an interrupt 
sets and the program jumps to the interrupt handler routine. 

The sequence is as follows: 

1. E reaches 0 

2. Exit instruction occurs (normal or error) 

3. Interrupt sets 

4. Interrupt blocks further instruction issue (if system and 
channel interrupts are enabled) 

5. Interrupt handler begins executing 

If return jumps are used in an interrupt handler, it should be verified 
that there are enough levels left available in the stack. An interrupt 
with the exit stack pointer at 13 10 will cause the pointer to go to 
~410 and leave only one location open. A worse case exists if a return 
Jump which causes a program fetch request (PFR) interrupt is issued with 
the stack pointer at 13 10 . The return address will go in 1410 and 
the interrupt address with go into 15 10. This will now leave two 
interrupts present--both the exit stack boundary and PFR, with the PFR 
being the highest priority and no stack locations available. If the 
stack pointer is allowed to increment from 15 10 , it will clear to 0, 
and incorrect return addresses will be used. 

A suggested way of reconfiguring the program exit stack is to keep the 
stack half full. This gives wide freedom to call deeper levels or exit 
to higher levels. The deepest level interrupt is characterized by E = 
15. When handling it, save the higher half (1-7) of the stack in memory, 

HR-0808 
Part 3 
3-9 B 



I 

move the lower half (8-15) to the higher part of the stack (1-8). This 
is the old 15 location that holds the interrupted subroutine return 
address. Exit back to the interrupted subroutine, and operation 
continues. 

When a reconfigured stack exits to the E = 0 level, it exits directly to 
the interrupt handler routine. This highest level interrupt is 
characterized by E = 0 with the exit stack interrupt present. The 
handling routine can then rebuild the original higher half of the stack, 
reading it from memory. Set E to 7, and exit to that subroutine return 
address. 

Program Exit Stack and I/O Interrupts 

An I/O interrupt is treated much like a subroutine call. The interrupted 
program address is stored in the program exit stack at the next stack 
position and the entrance address for the interrupt routine is read from 
the zero position of the stack. On servicing the interrupt, the hardware 
clears the system interrupt enable flag to prevent other interrupts from 
interrupting the handling routine •. 

If return jumps are used in the interrupt handling routine, enough 
locations must be left in the exit stack to handle the maximum number of 
levels encountered in the interrupt handling routine. Then, when the 
interrupt handling routine is finished, it sets the system interrupt 
enable flag. The exit at the end of the handling routine reads from the 
exit stack the return address for the interrupted program. 

Program Exit Stack Timing Note 

After any modification to the stack locations or to the E pointer, at 
least 4 CPs must elapse before a program exit, return jump, or enabling 
system interrupts. A simple way to achieve the required delay is to read 
the modified contents back to the accumulator before exiting the 
routine. Modifying stack locations or the E pointer should only be done 
when system interrupts are disabled. 

PROGRAM FETCH REQUEST FLAG 

The program fetch request (PFR) flag is set during execution of jump 
instructions 074 - 077 and 120 - 137 when the instruction sequence finds 
a zero value in operand register d. This condition requires the monitor 
program to locate and fetch a segment of program code and to find a 
location in the I/O Memory for execution. 

HR-0808 
Part 3 

3-10 B 



The setting of the program fetch request flag suspends execution of the 
current program sequence with an interrupt request at the completion of 
the interrupted instruction. The monitor program then reads the channel 
number through the channel 1 interface input register and interprets that 
number as the operand register requiring service. 

MA REGISTER 

The MA (Memory Address) register holds the address for an I/O Memory 
reference. The MA register contains 16 bits. It receives address 
information from an operating register, and holds it for I/O Memory use. 
This register is used for both read and write memory references. 

HR-0808 
Part 3 
3-11 B 





lOP COMPUTATION SECTION 4 

INTRODUCTION 

The I/O Processor adds, subtracts, left shifts, and right shifts, using 
the adder, shifter and logical functional units. Temporary data storage 
is provided by a block of operand registers. All transfers to operand 
registers and all results from the functional units pass through the 
accumulator. These parts of the computation section are described in 
this section. Characteristics are summarized in table 4-1. Refer to the 
I/O Processor block diagram in the preceding section, which shows the 
organization the computation section in the I/O Processor. 

Table 4-1. Characteristics of the I/O computation section 

OPERAND REGISTERS 

16-bit architecture 

Twos complement arithmetic 

Integer addition/subtraction unit 

Shift unit 

Logical operations 

512 operand registers, 16 bits wide 

Computation in the I/O Processor is supported by 512 operand registers. 
Each operand register contains 16 bits of data and has a 1 CP access 
time. The registers are addressed by the Register Pointer (RP) 
register. The only data path into the operand registers is from the 
accumulator. Operand register output data can go to either the 
accumulator or the addend register as operand data, or it can go to the 
Memory Address (MA) register as memory address data. The operand 
registers act as temporary locations for data, as index registers, and as 
indirect address registers for memory. 

HR-0808 
Part 3 

4-1 B 



FUNCTIONAL UNITS 

The computation section consists of an adder functional unit and a 
shifter functional unit. The computation section performs all the 
arithmetic required by the instruction set. 

ADDER 

The arithmetic logic of the I/O Processor is a twos complement adder that 
can also be used for subtraction. Adder operands come from the 
accumulator, instruction fields, B register, P register, operand 
registers, and memory. Except for the accumulator contents, operands 
come to the adder through the addend register. Adder results go to the 
accumulator for distribution, as needed and to the P register. The 
17-bit operands are received from the accumulator and returned to the 
accumulator; the seventeenth bit corresponds to the carry bit of the 
accumulator. Operands from the addend register have 16 bits. The adder 
is also used by the branch instructions for P address calculations. 

This adder can also be used for subtraction. In twos complement 
arithmetic, subtraction takes place by adding the ones complement of the 
subtrahend (the number subtracted from the minuend) to the minuend and 
then adding 1. When subtracting, the contents of the addend register are 
inverted and passed to the adder. The subtraction control signal is a 1, 
which is added to the intermediate result to give the final difference. 
Either an add or subtract occupies 1 CP; another clock period is required 
to put the results into the accumulator and carry bit register. 

SHIFTER 

The shifter implements the shifting instructions of the I/O Processor. 
It shifts up to 31 places left or right, either circularly or end-off 
with zero fill. The shifter receives the 17-bit accumulator data 
(including carry bit) to be shifted and the 5-bit addend register shift 
count. The shifted results, 17 bits, are returned to the accumulator and 
carry bit register. One CP is required for the shift; this is 
independent of the shift count and type of shift. Any shift instruction 
occupies a total of 2 CPs. 

The maximum number of places an operand can be shifted is 31. If the 
shift count is 0 for a left or right shift, no shift occurs. With an 
end-off shift, if the count is greater than 16, the zero filling clears 
the result. In all shifts, the carry bit is treated as the highest order 
bit (216 ) of the operand and the result. 

HR-0808 
Part 3 

4-2 B 



ACCUMULATOR 

The accumulator is a l6-bit register that temporarily stores operands and 
results. Data from a wide variety of sources can be routed to the 
accumulator; many destinations for accumulator contents are available. 
Sources and destinations are listed in the table 4-2. 

The accumulator is used to perform the logical product function. Logic 
at the input of the accumulator is enabled by the logical product 
instructions and creates the logical product of two operands. The result 
goes directly to the accumulator, with no extra time taken for the 
logical product function 

Table 4-2. Accumulator sources and destinations 

Sources Destinations 

B register Operand registers 
II register d field Adder/Shifter 
II register k field B register 
Operand registers Memory 
Adder/Shifter I/O channels 
Memory 
I/O channels 

Program branch instructions require arithmetic to form the destination 
address from two operands. These 070-137 instructions do not alter 
the content of the accumulator. Execution of these sequences is 
performed with a separate background accumulator not visible to the 
programmer. 

CARRY-BIT REGISTER 

The carry bit register is a l-bit register that holds the carry 
qenerated in the adder or shifter. The carry bit is treated as if it 
~ere bit 216 of the accumulator operand and is included in all adds, 
subtracts, and shifts. 

The carry bit can be set by several conditional instructions that test 
I/O channel flags. The carry bit is also used as a criterion for many 
conditional jump and return jump instructions. 

HR-0808 
Part 3 

4-3 B 



ADDEND REGISTERS 

'rhe addend register supplies operands to the adder and shifter. Whenever 
two operands are required, the accumulator supplies one operand and the 
addend register supplies the other. The l6-bit addend register receives 
data from either the B register, the instruction stack, the operating 
registers, or memory. Its only destinations are the adder and the 
shifter. 

HR-0808 
Part 3 
4-4 B 



INPUT jOUTPUT SECTION 5 

INTRODUCTION 

The I/O Processor supports up to 40 channels for input or output use. 
There are six Direct Memory Access (DMA) ports to I/O memory, which can 
be used by these 40 channels. Some of the channels and one of the ports 
are assigned standard purposes for the system, but the remainder are free 
for peripheral device or Central Processing Unit support. This section 
describes I/O configuration, speeds, and channel characteristics as well 
as the interrupt scheme used. The standard channels are also covered in 
this section. Table 5-1 summarizes characteristics of the lOP 
input/output section. 

Table 5-1. Characteristics of the lOP input/output section 

Supported by 6 full-duplex direct-memory-access ports 

Approximately 850 megabits/s per DMA port (maximum speed) 

16 data bits, 2 status bits (Busy and Done) 

Channel number selected by instruction or register contents 

Simultaneous input and output via separate ports 

I/O CONFIGURATION 

The I/O channels are numbered octally; in general, an input channel of a 
channel pair is given an even number. The 12 standard channels (numbers 
0-138 ) are the same among all of the I/O Processors of the computer 
system. Channels 0148 through 0178 may be channel options or may be 
an optional group of channels. The 0208 through 0478 channels are 
implemented as optional groups of four channels. Channels 0148 through 
0478 are variable among the I/O Processors, depending on the overall 
system configuration. Five D~ffi ports to the I/O memory are available to 
the interfaces associated with channels 0148 through 047 8• 

HR-0808 
Part 3 

5-1 B 



I 

(The sixth DMA port connects to the Buffer Memory.) Faster devices 
connect to an I/O Processor via the DMA ports, which allow block 
transfers. The slower devices can be supported via the accumulator 
channels. Several devices may be interfaced to share a single DMA port 
among the devices while each device has a unique channel number. This 
method is used in supporting groups of four disk storage units and Block 
Mux Channels. 

I/O SPEEDS 

The DMA ports are each capable of transferring a block of data at the 
approximate rate of 850 Mbits per second. Only 3 DMA ports can be active 
at once. DMA ports may be transferring data into I/O Memory, while other 
DMA ports simultaneously are transferring data from I/O Memory. This 
gives a maximum memory data rate of approximately 2.56 billion bits a 
second. 

The maximum speed of accumulator channels depends on the speed of the 
interrupt service routine. 

CHANNEL CHARACTERISTICS 

The operating characteristics for the accumulator channels and the 
channels using DMA ports are similar in many respects. The following 
descriptions outline the control and data signals that are used and give 
the requirements for each signal. The channels are described 
independently of the interfaces that may be connected to them. 

ACCUMULATOR CHANNELS 

Each accumulator channel uses the following signals: 

Function designators 
Function strobe 
Accumulator data 
Busy/done flag to carry bit 
Read done 
Read busy 
Master clear 
Clock 
Interrupt 

HR-0808 
Part 3 
5-2 B 



Within each interface are two I-bit registers comprising the done and 
busy flags for the channel. The interface is able to set or clear these 
flags, and the I/O Processor can sample them by means of the read done 
and read busy control signals. 

Function Designators 

Bits 20 - 23 of the f field of I/O instructions are used as a 
function code (0 - 17 S) to an interface (see the Instructions section 
in this part of the manual). This function is interpreted by the 
interface in a manner unique to the interface. The same function code 
can mean entirely different operations to different interfaces. The 
function code is 4 bits sent on lines from the I/O Processor instruction 
logic to the interface, prior to any other channel action. The function 
code may be stable on the lines for only 1 CPo 

Function Strobe 

The function strobe signal accompanies the function code bits. This 
signal alerts the interface to the presence of the function code. 

Accumulator Data 

The use of the accumulator data depends on the function code and the 
particular interface. For example, it may be treated as a parameter for 
a Buffer Memory transfer, or as a character for a display. The outgoing 
data from the accumulator is reliable only for the clock period 
containing the function strobe signal. Data coming from the interface to 
the accumulator also depends on the function code and interface. 

Read Done 

When the read done signal is sent to the interface, the interface done 
flag is sent back to the accumulator carry bit. The done flag is carried 
on the busy/done signal line described below. 

Read Busy 

When the read busy signal is sent to the interface, the interface busy 
flag is sent back to the accumulator carry bit. The busy flag is carried 
on the busy/done signal line described below. 

HR-OSOS 
Part 3 

5-3 B 



I 

Busy/Done 

The busy signal is a response to the read busy or read done signals to 
the interface. If the read busy signal has been received, the interface 
busy flag is copied to the busy/done line. If the done flag has been 
requested, the interface done flag is sent on the busy/done line. The 
busy/done flag simply carries the set or cleared state of the requested 
flag. The signal arrives back at the I/O Processor to enter the carry 
bit position. It becomes the new carry bit in the same clock period that 
the read busy/done instruction issues. 

Master Clear 

A master clear signal is sent to each interface when the I/O Processor is 
deadstarted. After that, the only master clear function would have to be 
an interface interpretation of one of the function codes as a master 
clear command. 

The I/O Processor clock signal is sent to each interface to synchronize 
the logical operations. The clock signal is a pulse approximately 12.5 
nanoseconds wide. The clock speed can be varied for maintenance, in 
which case the pulse width stays constant. This clock is similar to the 
clock used in the Central Processor; however, the two clock generators 
are independent. 

Interrupt 

The interrupt signal from an interface to the I/O Processor causes an 
interrupt request in the I/O Processor for the channel. An interrupt 
occurs if all of the following are true: (1) the interrupt condition 
remains present, (2) the interrupt enable flag is set for the interface 
channel, and (3) the system interrupt enable is set. 

CHANNELS USING A D~~ PORT 

A channel using a DMA port is an accumulator channel with connections to 
the I/O Memory. In addition to the accumulator channel signals already 
described, the DMA channel also uses the following signals which are 
described next: 

I/O Memory data 
I/O Memory addrPRR 
Request read 
Request write 
Acknowledge write 

HR-0808 
Part 3 

5-4 B 



I/O Memory Data 

A group of 16 lines carries data from I/O Memory to the interface. A 
second group of 16 lines carries interface data to the I/O Memory. Data 
is transferred in groups of four l6-bit parcels, one parcel per clock 
period in sequential clock periods. When writing data into I/O Memory, 
the first parcel must be sent in the clock period after the acknowledge 
write is received from the I/O Processor. When reading data from I/O 
Memory, the data is received 7 CPs after the acknowledge read signal. In 
either case, the data is reliable for only 1 CP. 

I/O Memory Address 

The I/O Memory address comes from the interface to the I/O Processor on 
14 lines. The interface receives the address from the accumulator under 
a specific function code, or the interface may be intelligent enough to 
create its own address. Any transfer of four parcels must have an 
address, which is the I/O Memory address for the first parcel of the 
4-parcel group. The I/O Processor logic then takes care of incrementing 
the address for the later three parcels of the group. The I/O Memory 
address must be stable during the clock period of the request read or the 
request write signals. 

Reguest Read 

The request read signal is sent from the interface to the I/O Processor 
to take data from I/O Memory. This signal accompanies the I/O Memory 
address bits to the I/O Processor. 

Reguest Write 

The request write signal is sent from the interface to the I/O Processor 
when data is to be sent to I/O Memory. This signal accompanies the I/O 
Memory address bits to the I/O Processor. 

Acknowledge Read 

The acknowledge read signal is sent from the I/O Processor when the read 
requested by the interface can be performed. It has a minimum delay 
after the request read of 1 CP, but the delay may be stretched by memory 
conflicts. It occurs 7 CPs before the first parcel of data of the 
4-parcel group and lasts 1 CP. 

HR-0808 
Part 3 

5-5 B 



Acknowledge Write 

The acknowledge write signal is sent from the I/O Processor when the 
requested write can be performed. It has a minimum delay after the 
request write signal of 1 CP, but memory conflicts may increase the 
delay. The interface must place the first parcel of data on the lines to 
the I/O Processor in the clock period after the acknowledge write signal 
is received at the interface. 

READ SEQUENCE 

The interface begins the read from I/O Memory after being issued an I/O 
instruction that commands the interface to start a transfer from I/O 
Memory to a peripheral. An address may be in the accumulator when the 
instruction issues and the interface may take that address as the 
starting address. Then, the interface sends a request read signal and 
the address bits to the I/O Processor. After a minimum delay of I CP, 
the acknowledge read signal is received at the interface. After 7 CPs, 
the interface takes the first parcel. It then takes the three following 
parcels in 3 CPs. To read another four parcels from I/O Memory to the 
interface, another request read and address must be sent from the 
interface. 

WRITE SEQUENCE 

The interface begins the write into I/O Memory after being issued an I/O 
instruction that commands the interface to start a transfer from a 
peripheral to I/O Memory. The address for the transfer may be contained 
in the accumulator at the time of instruction issue, or other means may 
be used to generate the address. Then, the interface sends a request 
write signal and the address bits to the I/O Processor. After a minimum 
delay of 1 CP, the acknowledge write signal is received from the I/O 
Processor. The interface must send the first parcel of data to the I/O 
Processor in the clock period after the acknowledge write signal was 
received. Each of the next 3 CPs transfers another parcel into the I/O 
Memory. 

If another group of four parcels is to be written into I/O Memory, 
another request write and address must be sent from the interface. 

HR-0808 
Part 3 
5-6 B 



I 

STANDARD CHANNELS 

Standard functions are assigned to 12 of the 40 available channels, which 
are the same for all I/O Processors. The interface logic has been built 
into each I/O Processor to handle each standard channel. The functions, 
channel numbers, and A Programming Machine Language (APML) mnemonics are 
listed in table 5-2. Another six standard channels interconnect the 
system I/O Processors as shown in the table. The standard channels are 
all accumulator channels except for the one DMA port used by the Buffer 
Memory. 

Table 5-2. I/O Processor standard channel assignments 

Channel 
Number Mnemonic Function 

000 lOR Interrupt request 

001 PFR Program fetch request 

002 PXS Program exit stack 

All lOPs 
003 LME I/O Memory error 

004 RTC Rea I-t ime c loc k 

005 MOS Buffer Memory interface 

006 AlA) I/O Processor input 
BIOP 

I/O 007 AOA Processor output 

010 AlB I/O Processor input 

} DIOP 
I/O 011 AOB Processor output 

MIOP 0 

012 AIC} XIOP or 
I/O Processor input 

2nd DIOP 
T In AOC .J.. v P ocessor out ut 013 I r p 

Table 5-3 lists the functions for each of the standard channels. These 
functions are explained in subsequent paragraphs. 

HR-0808 
Part 3 
5-7 B 



I 

I 
I 

Table 5-3. Standard channel functions 

Device Mnemonic Function 

/1/0 REQUEST CH. 0 TOR 

I 
lolRead interrupt channel number 

PROGRAM FETCH PFR 
REQUEST CH. 1 PFR 

PFR 
PFR 

PROGRAM EXIT 
STACK CH. 2 

I/O MEMORY 
ERROR CH. 3 

REAL-TIME CLOCK 
CH. 4 

PXS 
PXS 
PXS 
PXS 
PXS 
PXS 
PXS 

LME 
LME 
LME 
LME 

RTC 
RTC 
RTC 
RTC 

MOS 

a Clear the program fetch request flag 
6 Clear the channel interrupt enable flag 
7 Set the channel interrupt enable flag 
10 Read the operand register number 

a Clear the exit stack boundary flag 
6 Clear the channel interrupt enable flag 
7 Set the channel interrupt enable flag 
10 Read exit stack pointer, E 
11 Read exit stack address, (E) 
14 Enter exit stack pointer, E 
15 Enter exit stack address, (E) 

a Clear the I/O Memory parity error flag 
6 Clear the channel interrupt enable flag 
7 Set the channel interrupt enable flag 
10 Read error information 

a Clear the channel done flag 
6 Clear the channel interrupt enable flag 
7 Set the channel interrupt enable flag 
10 Read real-time clock 

a Clear the channel busy and done flags BUFFER MEMORY 
CH. 5 MOS 1 Enter the I/O Memory address for next transfer 

I/O PROCESSOR 
INPUT 
(AIA-AIC) 
CH. 6, 10, 12 

I/O PROCESSOR 
OUTPUT 

I (AOA-AOC) 
ICH 7, II", 13 

I 
I 

HR-0808 

MOS 
MOS 
MOS 
MOS 
MOS 
MOS 
MOS 

AlA 
AlA 
AlA 
AlA 

AOA 
AOA 

,AOA 

IAOA 
/AOA 

i 

2 Enter upper portion of Buffer Memory address 
3 Enter lower portion of Buffer Memory address 
4 Read Buffer Memory to I/O Memory 
5 Write Buffer Memory to I/O Memory 
6 Clear the channel interrupt enable flag 
7 Set the channel enable interrupt flag 
14 Set the control flags 

a Clear the channel done flag 
6 Clear the channel interrupt enable flag 
7 Set the channel interrupt enable flag 
10 Read input to accumulator and resume channel 

a Clear the channel busy and done flags 
1 Enter control bits from accumulator 
n IClear the channel interrupt enable flag 
7 ISet the channel interrupt enable flag 
l4lset the channel busy flag and output 

laccumulator data 

Part 3 
5-8 B 

I 



I 

I 

CHANNEL FOR I/O REQUESTS (CH. 0) 

The I/O Processor has the 0 channel number reserved for reading the 
interrupt requests. The only function implemented is the following. 

lOR: 10 Read interrupt channel number 

This function replaces the accumulator content with the highest priority 
channel number currently requesting an interrupt. The channel number is 
loaded into the low-order 9 bits of the accumulator content. The 
high-order bits are forced to o. Only the four least significant bits 
are used for the channel number. A zero value means there are no 
unhandled channel interrupts. 

The interface register used by this channel contains the number of the 
highest priority channel on which an interrupt is present. ~he value is 
changed either by clearing the interrupt enable flag for the appropriate 
channel or by clearing the done flag for that channel. 

For this channel the done flag is always set and the busy flag is always 
cleared. This channel can be used with the 040-043 instructions to set 
or clear the carry flag. 

CHANNEL FOR PROGRAM FETCH REQUEST (CH. 1) 

'I'he I/O Processor has an I/O channel that responds to the program fetch 
request flag when that flag is set. (The program fetch request flag is 
explained in the lOP control section of this manual.) This channel 
provides a mechanism for calling the I/O Processor monitor program when a 
new section of program code is required. 

A 9-bit interface register holds the operand register number associated 
with the interrupt request. This register is cleared and a new number 
entered at the time the program fetch request flag is set. 

PFR : O§ Clear the program fetch request flag. This flag is 
treated as the channel done flag. There is no busy 
flag for this channel. 

PFR Clear the channel interrupt enable flag. The program 
fetch request flag is not altered in this process. 

PFR Set the channel interrupt enable flag. The program 
fetch request flag is not altered in this process. 

§ Allow 1 CP before checking busy or done. 
§§ Allow 1 CP before checking the interrupt channel number (IOR:lO). 

HR-0808 
Part 3 
5-9 B 



I 

PFR 10 Replace the content of the accumulator with the 
content of the interface register. The interface 
register content is loaded into the low-order 9-bit 
positions in the accumulator. The high-order bits 
are forced to O. The content of the interface 
register remains unchanged until a new PFR occurs. 
The done flag is cleared. 

CHANNEL TO PROGRAM EXIT STACK (CH. 2) 

The I/O Processor has an I/O channel connected to the program exit stack 
hardware. This channel provides the monitor program with the information 
needed to reorganize the content of the program exit stack when the stack 
overflows. 

PXS 

PXS 

PXS 

PXS 10 

PXS 11 

PXS 14 

PXS 15 

Clear the exit stack boundary flag. This flag is 
treated as the channel done flag. There is no busy 
flag for this channel. 

Clear the channel interrupt enable flag. The exit 
stack boundary flag is not altered in this process. 

Set the channel interrupt enable flag. The exit 
stack boundary flag is not altered in this process. 

Load the E designator into the low-order 4 bits of 
the accumulator. The high-order bits of the 
accumulator are forced to O. 

Replace the accumulator content with the content of 
the program exit stack address currently pointed by 
the E designator. 

Replace the E designator with the low-order 4 bits of 
the accumulator content. 

Enter the program exit stack with the accumulator 
contents at the address currently pointed by the E 

designator. 

§ Allow 1 CP before checking b~sy or done. 
§§ Allow 1 CP before checking the interrupt channel number (IOR:IO). 

HR-0808 
Part 3 

5-10 B 



I 

CAUTION 

The exit stack is both an I/O device and an integral 
part of the processor. Return and exit instructions 
and interrupts use the exit stack values immediately. 
The I/O channel access to the exit stack takes 4 CPs to 
complete. Time must be allowed for the I/O channel to 
complete the transfer before using the exit stack value 
by a return, exit or interrupt. 

Any attempt to use a value changed in the stack within 
5 CPs after it was changed has potentially disastrous 
effects on the program execution sequence. 

A simple way to provide delay is to change the exit 
stack, then read the value back from the exit stack to 
the accumulator. Then do the exit or return. 

For examI:>le: 
I~O'r RECOMMENDED RECOT'w1MENDED 

(E) AAAB (E) = Al..Ab 

l'~XIT A = (E) (delay) 

EXIT 

or: A = AAAB A = AAAB 

?XS 15 PXS 15 

EXIT PXS 11 

EXIT 

Deadstart Sequence 

location 0 is cleared to a zero value. On the On master clear, stack 
deadstart interrupt, P 
at memory location O. 
value plus I (wrapping 

is therefore set to 0 and program execution begins 
The exit stack pointer, E, is set to the current 
around to 0 if the current value is 15. 

HR-0808 
Part 3 
5-11 B 



I 

CHANNEL FOR I/O MEMORY ERROR (CH. 3) 

The I/O Processor has an I/O channel connected to the error detection 
circuits in the I/O Memory. This channel provides the error indication 
in the event of memory malfunction and provides maintenance information. 
The intent of this channel is to provide information helpful to the 
maintenance function as quickly as possible. No attempt at continued 
operation is expected beyond system shutdown. 

LME 0 Clear the I/O Memory parity error flag. 

LME 6§ Clear the channel interrupt enable flag. 

LME 7§ Clear the channel interrupt enable flag. 

LME 10 Read error information into the five lowest-order 
positions of the accumulator as follows. 

Bit Meaning 

2
0 

Bank number 2
0 

21 Bank number 21 

2 
2 Section number 2

0 

3 
2 Section number 21 

4 
2 Error bit: 

0 = Error in 
o 7 

2 -2 byte 

1 = Error in 28-215 byte 

CHANNEL TO REAL-TIME CLOCK (CH. 4) 

The I/O Processor real-time clock (RTC) is a 17-bit counter/timer which 
interrupts the I/O Processor at I-millisecond intervals. The real-time 
clock increments every clock period. Upon reaching a count of 2341778 , 
it sets the RTC channel done flag, clears to 0, and continues 
incrementing. There is no busy flag for this channel. Since the 
accumulator only holds 16 bits, the low-order bit of the counter is 
ignored, giving a timing accuracy of 2 CPs, and a count of 1160778. 

§ Allow 1 CP before checking the interrupt channel number (lOR 

HR-0808 
Part 3 

5-12 

10) • 

B 



I 

There is no capability to set the real-time clock. To time an interval, 
the RTC must be read at the beginning and end of an interval. Thus to 
time an interval, the program must: 

- Read the clock at the beginning of the interval, 
- Store the value in a register and 
- Read the clock at the end of the interval. 

This instruction timing adds 8 CPs (4 clock counts) to the measured 
sequence. The algorithm for determining an interval without RTC 
interrupts is: 

Time {ns)8 = (RTC ending8 - RTC beginning8 - 4) x 2 (CP ns) 

If RTC interrupts do occur during the interval, the algorithm becomes: 

Time {ns}8 = «RTC ending8 - RTC beginning8 - 4) + 
(116077 8 x number of interrupts)} x 2 (CP ns) 

For time intervals expected to be less than 1 millisecond, synchronize 
their beginnings with the occurrence of an RTC interrupt, thus 
eliminating the possibility of an RTC interrupt occurring sometime during 
the timing sequence. 

The commands for the real-time clock channel are as follows: 

RTC O§ Clear the channel done flag. 

RTC 6§§ Clear the channel interrupt enable flag. 

RTC 7§§ Set the channel interrupt enable flag. 

RTC 10 Read the real-time clock count into the accumulator. 

CHANNEL TO BUFFER MEMORY (CH 5.) 

The I/O Processor has an I/O channel connected to the Buffer Memory. 
This channel allows the I/O processor program to transfer blocks of data 
in either direction between its I/O Memory and the Buffer Memory. The 
function requests for this channel are summarized below. 

§ Allow 1 CP before checking busy or done. 
§§ Allow 1 CP before checking the interrupt channel number (lOR 10) • 

HR-0808 
Part 3 

5-13 B 



I 

I 

I 

This channel has three interface registers used to control the block copy 
operations. The Buffer Memory address is held in a 24-bit register. The 
high-order 15 bits of this address are entered with a function 2 
request. The low-order 9 bits are entered with a function 3 request. 
The I/O Memory address is held in a 14-bit register which is entered with 
a function 1 request. The block length in Buffer Memory words is held in 
a 14-bit register. This register is entered with a function 4 or 5 
request. 

The I/O Memory address in the channel register is forced to a value that 
is a multiple of four. This is done by forcing the 2 low-order bits of 
the register content to zero values. This provision allows the maximum 
data rate to the I/O Processor I/O Memory. 

All three register values are cleared to 0 at the end of a block copy. A 
zero value will be used if a register entry is omitted in the next 
sequence. 

At the end of a read transfer (done flag set), the busy flag is left set 
if a multiple bit error occurred in the transfer. 

MOS 

MOS 1 

MOS 2 

MOS 3 

Clear the channel busy and channel done flags. 

Enter the accumulator content in the channel 
interface register for the I/O Memory address. The 2 
low-order bits are forced to o. 

Enter the 15 low-order bits of the accumulator 
content as the 15 high-order bits of the Buffer 
Memory address. See figure 5-1. 

Enter the 9 low-order bits of the accumulator content 
as the 9 low-order bits of the Buffer Memory 
address. See figure 5-1. 

MOS:2 MOS:3 FUNCTION 

ADDRESS BITS 

UPPER ADDRESS LOWER ADDRESS I 
ACCUMULATOR BITS 

Figure 5-1. Buffer Memory address formation 

§ Allow 1 CP before checking busy or done. 

HR-0808 
Part 3 

5-14 B 



I 

I 

I 

I 

MOS 

MOS 

MOS 

MOS 

MOS 14 

Initiate the transfer of the block of data from the 
Buffer Memory to the I/O Processor I/O Memory. The 
channel busy flag is set and the channel done flag is 
cleared by the function request. The 14 low-order 
bits of the accumulator content at the time of the 
function request is entered in the channel interface 
block length register. The channel done flag is set 
and the channel busy flag is cleared when the block 
transfer has been completed. If the block length 
register contains a zero value, the block length is 
set to 65,536 parcels (full I/O Memory). The busy 
flag is left set if a multiple-bit error occurred in 
the transfer. Single-bit errors are automatically 
corrected. 

Initiate the transfer of a block of data from the I/O 
Processor I/O Memory to the Buffer Memory. The 
channel busy flag is set and channel done flag is 
cleared by the function request. The 14 low-order 
bits of the accumulator content at the time of the 
function request is entered in the channel interface 
block length register. The channel done flag is set 
and the channel busy flag is cleared when the block 
transfer has been completed. 

Clear the channel interrupt enable flag. 

Set the channel interrupt enable flag. 

Enter the 3 low-order bits of the accumulator content 
in the control register. This is used for diagnostic 
purposes only. 

0 
2 Disable error correction 
21 Disable write check bits 

22 = Disable refresh 

Setting a control bit to 0 enables error correction, 
write check bits, or refresh. 

§ Allow 1 CP before checking busy or done. 
§§ Allow 1 CP before checking tee interrupt channel number (lOR 

HR-0808 
Part 3 

5-15 

10) • 

B 



I 

I 

Error Handling 

When an error occurs, the busy and done flags are both set. AMOS: 0 command 
must be issued to the channel to clear the busy and done flags before another 
read or write is initiated. 

Buffer Memory Interface Deadstart 

The Buffer Memory interface has provisions for deadstarting the I/O 
Processor. If the I/O processor is master cleared with the deadstart signal 
set, the I/O Memory address register, the Buffer Memory address register, and 
the block length register are cleared. This sets up a 65K parcel transfer. A 
MOS : 4 read Buffer Memory function is initiated when the I/O Processor master 
clear signal goes to O. The interrupt enable flag is set (MOS : 7), and when 
the transfer is complete, the I/O Processor interrupts. 

Buffer Memory Interface Dead Dump 

The Buffer Memory interface also provides for a dead dump of the I/O 
Processor. If the I/O Processor is master cleared with the dead dump signal 
set, the I/O Memory address, Buffer Memory address and the block length 
registers are cleared. AMOS: 5 Buffer Memory function write is initiated 
when master clear goes to O. The interrupt enable flag is cleared (MOS : 6) 
and no interrupt occurs when the transfer completes. 

CHANNEL FOR I/O PROCESSOR INPUT (CH. 6, 10, 12) 

The I/O Processor has three input channels for connection to other I/O 
Processors. These provide a communication link between I/O Processors. These 
channels have no busy flags. Each channel uses a single 16-bit register to 
hold the data parcel being transferred. The register is cleared as soon as 
the data enters the receiving accumulator. 

AlA : O§ 

AlA 

AlA 

AlA 10 

Clear the channel done flag. There is no busy flag for 
this channel. 

Clear the channel interrupt enable flag. 

Set the channel interrupt enable flag. 

Read the accumulator data of the other I/O Processor into 
the accumulator of this I/O Processor, and resumes the 
channel. The data does not remain in the interface 
register after it has been read. 

§ Allow 1 CP before checking busy or aone. 
§§ Allow 1 CP before checking the interrupt channel number (lOR 

HR-0808 
Part 3 
5-16 

10) • 

B 



I 

I 

CHANNEL FOR I/O PROCESSOR OUTPUT (CH. 7, 11, 13) 

The I/O Processor has three output channels that connect to other I/O 
Processors. These provide a communications link between I/O Processors, 
and provide the ability to master clear, deadstart, or dead dump another 
I/O Processor. 

A 3-bit control register receives the 3 low-order bits of the sending I/O 
Processor accumulator and causes the required action. A 16-bit register 
holds transmitted data until it is loaded into the receiving accumulator, 
at which time the data register is cleared. 

ADA 

ADA 1 

Clear the channel busy and done flags. 

Enter the 3 low-order accumulator bits into the 
control register. A set bit in the register 
positions causes the following actions: 

Bit Meaning 

20 Master clear 
21 Deadstart 
22 Dead dump 

To perform a deadstart from Buffer Memory, set the 
master clear and deadstart control bits simultaneously 
and keep them set for at least 200 nanoseconds. Then 
clear both bits. The deadstart control bit has no 
effect without the master clear control bit. The 
deadstart transfer is initiated with a block length of 
65K parcels starting at I/O Memory address O. In 
approximately 2 milliseconds the transfer completes and 
then interrupts the I/O Processor. 

To perform a dead dump from I/O Memory to Buffer 
Memory, set the master clear and dead dump control bits 
simultaneously and keep them set for at least 200 
nanoseconds. Then clear both bits. The dead dump 
control bit has no effect without the master clear 
control bit. The dead dump transfer initiates with a 
block length of 65K parcels starting with I/O Memory 
address 0 contents going into Buffer Memory address O. 
The dead dump completes in approximately 2 
milliseconds, but does not interrupt the I/O Processor 
at completion. 

§ Allow 1 CP before checking busy or done. 
§§ Allow 1 CP before checking the interrupt channel number (lOR 

HR-0808 
Part 3 

5-17 

10) • 

B 



I 

I 

AOA 

AOA 

AOA 

INTERRUPT SEQUENCE 

Clear channel interrupt enable flag. 

Set channel interrupt enable flag. 

Set the channel busy flag and output accumulator 
data. When data is accepted by receiving I/O 
Processor the busy flag clears and the done flag 
sets. 

The I/O Processor program is interrupted for service by a monitor 
program when an interrupt request is present and the system interrupt 
enable flag is set. The system interrupt enable flag applies to the 
entire I/O Processor, as contrasted to the channel interrupt enable 
flags that only apply to the particular channel. The 003 I = 1 
instruction sets the system interrupt enable flag. The interruption 
occurs upon completion of an instruction in the currently executing 
program. 

A jump or exit instruction must be completed before interrupts are 
actually set. Therefore, interrupts are not actually enabled until 
the first non-branching instruction is executed. 

The interrupt sequence begins by the hardware clearing of the system 
interrupt enable flag to prevent further interrupts. The address for 
the next instruction in the interrupted program is stored in the exit 
stack. The entry in the exit stack is made by first advancing the E 
register by one count, and then entering the exit stack at the newly 
pointed position. This is the same sequence which occurs on a return 
jump execution. The execution of the interrupted program is then 
suspended and a new program sequence initiated. The address for 
beginning the monitor program sequence is obtained from the 0 position 
in the exit stack, without using the E register. 

The monitor program, when finished, restores the system interrupt 
enable flag and exits to the interrupted program as if it were a 
subprogram call. The last two statements in the monitor program 
should be the equivalent of the following: 

1=1 1=1 (Set system interrupt enable flag) 

EXIT or P = do. (Exit or jump to interrupted program) 

§ Allow 1 CP before checking busy or done. 
§§ Allow 1 C? before checking the interrupt channel number (lOH 

HR-0808 
Part 3 

5-18 

10) • 

B 



I 
I 

When issuing an 1=1, the system interrupt enable is delayed until the 
next non-branch or non-I/O instruction is issued. The instructions 
that do not enable interrupts are the 40-43 and 70-137. This allows 
the executive/monitor to get back to the interruptible activity before 
an interrupt is accepted. 

An 1=0 instruction should be used at the interrupt handler entrance. 
If a redundant 1=1 is executed and an interrupt occurs before a 
non-branch or non-I/O instruction is encountered, the interrupt 
handler will be entered (with interrupts disabled). But interrupts 
will be re-enabled when the first non-branch or non-I/O instruction is 
issued within the interrupt handler. 

After issuing a command 6 or 7 to any I/O channel, allow 3 clock 
periods be~ore seeing its effect on system interrupt. (Assuming 
system interrupts are, or will be, enabled.) 

HR-0808 
Part 3 

5-19 B 





lOP INSTRUCTIONS 6 

INSTRUCTION FORMAT 

Each I/O Processor instruction occupies one or two 16-bit parcels in the 
I/O Memory. The instruction consists of two designators and a constant 
field as illustrated in figure 6-1. 

f FIELD d FIELD PARCEL 1 

7 BITS 9 BITS 

k FIELD PARCEL 2 
(ONLY WITH 

16 BITS 2-PARCEL 
INSTRUCTIONS) 

Figure 6-1. Instruction format 

The f designator is the instruction function code and specifies which of 
the instructions in the machine repertoire is intended for execution. 
The d designator has several uses, depending on the instruction function, 
but in general specifies where in the machine resources the function of 
the f designator is to be performed. The d designator may be thought of 
as a displacement specification and is used in several ways: 

• To point to a specific operand register where one is required, 

• To specify the amount of the displacement of data in a shift 
instruction, 

• To specify the amount of displacement forward or backward in 
program code for a branch instruction, 

• As an operand value. 

HR-0808 
Part 3 

6-1 B 



I 

The d designator is always treated as a 9-bit positive integer. Small 
integers may be entered directly into the computation from instructions 
using the d designator as a constant. Separate instructions are provided 
to add or subtract this 9-bit constant rather than to consider it as a 
sign extended quantity. A branch instruction may designate a forward or 
a backward displacement from the current program location. Separate 
instructions are provided for the forward and backward jumps using the d 
designator as a 9-bit displacement magnitude. 

Certain instructions use the program parcel immediately following the 
instruction as a constant field, designated k. These instructions may be 
considered to be 2-parcel instructions. 

INSTRUCTION DESCRIPTIONS 

The I/O Processor instruction repertoire is described on the following 
pages. The mnemonics for each instruction are pseudo machine language 
statements representing the individual operations performed. Special 
symbols used in the descriptions are: 

> Shift right 

< Shift left 

» Shift right circular 

« Shift left circular 

& Logical product 

# Not equal to 

dd Contents of operand register specified by d field 

(dd) Contents of memory location specified by dd 

iod 3-character channel mnemonic, i.e., lOR, PXS, ••• 

B Contents of register B 

(B) Contents of operand register specified by B register 

The following descriptions explain the results of each instruction and 
show the steps and times involved in executing the instruction. 

HR-0808 
Part 3 

6-2 B 



000 Instruction 

PASS 

This instruction performs no operation. It is used to fill program 
fields with null operations where desired. 

CP 0 

HR-0808 

Issue. 

Part 3 
6-3 B 



I 

001 Instruction 

EXIT 

The EXIT instruction terminates execution of the current program sequence 
and returns to the sequence that was suspended in calling this 
subprogram. The current P register value is discarded. The beginning 
address for the reinitiated sequence is obtained from the program exit 
stack at the location currently pointed by E. The value of E is then 
decremented by 1. The decrementing is blocked and the exit stack 
boundary flag is set if the value of E was previously o. The exit stack 
boundary flag will cause an interrupt of the program sequence for 
restructuring the content of the program exit stack. 

If the EXIT instruction follows a modification of the program exit stack 
or of the E pointer, at least 4 CPs must elapse between the last 
modification and the EXIT instruction. Reading the modified value back 
to the accumulator may be used as the necessary delay. 

CP 0 

HR-0808 

Issue. Transmit exit stack data to P. 
Decrement E. 

Part 3 
6-4 B 



002 Instruction 

1=0 

This instruction clears the system interrupt enable flag. 

CP 0 

HR-0808 

Issue. Clear system interrupt enable flag. 

Part 3 
6-5 B 



I 

003 Instruction 

I = 1 

This instruction sets the system interrupt enable flag. 

When issuing an I = 1, the system interrupts enable is delayed until the 
next non-branch or non-I/O instruction is issued. Instructions that do 
not enable interrupts after I = 1 issue are the 040-043 and 070-137 
instructions. The delay in setting flag for this instruction allows the 
interrupt program to re-enable the interrupt mode and then exit to the 
interrupted program. 

If the instruction following the I = 1 is an I = 0, the I 
precedence and system interrupts are disabled. 

CP 0 

HR-0808 

Issue. Set delay interrupt enable flag. 

Part 3 
6-6 

o takes 

B 



004 Instruction 

A = A > d 

This instruction shifts the content of the accumulator and the associated 
carry flag to the right by d bit positions. The carry flag may be 
regarded as a seventeenth bit to the left of the accumulator content for 
this operation. Zero values are entered in the carry flag and propagated 
to the right as the shift progresses. No shift is performed if the shift 
count is O. The accumulator and carry flag are cleared if the shift 
count is greater than 16 decimal. 

The low-order 5 bits of the addend-register content are interpreted in 
determining the shift count. High-order bits are ignored. 

CP 0 

CP 1 

CP 2 

HR-0808 

Issue. Transmit d to addend register. 

Transmit accumulator data and inverted d to shifter. Shift mode. 
The addend register is free in this CP. 

Transmit shifter result to accumulator. 

Part 3 
6-7 B 



I 

005 Instruction 

A = A < d 

This instruction shifts the content of the accumulator and the associated 
carry flag to the left by d bit positions. The carry flag may be 
regarded as a seventeenth bit to the left of the accumulator content for 
this operation. Zero values are entered in the low-order bit positions 
of the accumulator and are propagated to the left as the shift 
progresses. Bits shifted from the carry flag are discarded. No shift is 
performed if the shift count is O. The accumulator and carry flag are 
cleared if the shift count is greater than 1710• 

The low-order 5 bits of the addend register content are interpreted in 
determining the shift count. High-order bits are ignored. 

CP 0 Issue. Transmit d to addend register. 

CP 1 

CP 2 

HR-0808 

Transmit accumulator data and d to shifter. Shift mode. 
The addend register is free in this CPo 

Transmit shifter result to accumulator. 

Part 3 
6-8 B 



I 

006 Instruction 

A = A» d 

This instruction shifts the content of the accumulator and the associated 
carry flag to the right in a circular mode by d bit positions. The carry 
flag may be regarded as a seventeenth bit to the left of the accumulator 
content for this operation. No bits are discarded in this shift mode. 
Bits shifted from the right end of the accumulator are returned to the 
carry flag. No shift is performed if the shift count is o. 

The low-order 5 bits of the addend register content are interpreted in 
determining the shift count. High-order bits are ignored. 

CP 0 

CP 1 

CP 2 

HR-0808 

Issue. Transmit d to addend register. 

Transmit accumulator data and inverted d to shifter. Shift mode. 
The addend register is free in this CP. 

Transmit shifter result to accumulator. 

Part 3 
6-9 B 



007 Instruction 

A = A « d 

This instruction shifts the content of the accumulator and the associated 
carry flag to the left in a circular mode by d bit positions. The carry 
flag may be regarded as a seventeenth bit to the left of the accumulator 
content for this operation. No bits are discarded in this shift mode. 
Bits shifted from the carry flag are returned to the low-order bit 
position in the accumulator. No shift is performed if the shift count is 
o. 

The low-order 5 bits of the addend register content are interpreted in 
determining the shift count. High-order bits are ignored. 

CP 0 Issue. Transmit d to addend register. 

CP 1 'l'ransmi t accumulator data and d to shifter. Shift mode. 
The addend register is free in this CP. 

CP 2 Transmit shifter result to accumulator. 

HR-0808 
Part 3 
6-10 B 



010 Instruction 

A = d 

This instruction enters the d designator in the accumulator as a 9-bit 
positive integer and clears the carry flag. The high-order bits are o. 

CP 0 

HR-0808 

Issue. Transmit d to accumulator. 

Part 3 
6-11 B 



011 Instruction 

A = A & d 

This instruction forms the bit-by-bit logical product of the previous 
accumulator content and the d designator and places the result in the 
accumulator. The d designator is treated as a 9~bit positive integer. 
It then clears the carry flag. 

The logical product of the previous accumulator content and the d operand 
from the instruction is formed at the input to the accumulator. 

CP 0 

HR-0808 

Issue. Transmit d and accumulator to accumulator. 

Part 3 
6-12 B 



012 Instruction 

A = A + d 

This instruction adds the d designator to the previous accumulator 
content in the 16-bit twos complement mode. The d designator is treated 
as a 9-bit positive integer in this addition. The instruction 
complements the carry flag if a carry is propagated from the accumulator 
in the addition process. 

CP 0 Issue. Transmit d to addend register. 

CP 1 

CP 2 

HR-0808 

Transmit data to adder. Add mode. 

Transmit adder result to accumulator. 

Part 3 
6-13 B 



013 Instruction 

A = A - d 

This instruction subtracts the d designator from the previous accumulator 
content in a 16-bit twos complement mode. The d designator is treated as 
a 9-bit positive integer in this operation. The subtraction is performed 
by complementing the content of the addend register and adding the result 
to the previous accumulator content. One is then added to the result. 
The instruction complements the carry flag if a carry is propagated from 
the accumulator during either addition process. 

CP 0 

CP 1 

CP 2 

HR-0808 

Issue. Transmit d to addend register. 

Transmit data to adder. Subtract mode. 

Transmit adder result to accumulator. 

Part 3 
6-14 B 



I 

014 Instruction 

A = k 

This instruction enters a l6-bit constant in the accumulator and clears 
the carry flag. The constant is obtained from the next sequential parcel 
in the program field. The next instruction is obtained from the 
following parcel. 

CP 0 

CP 1 

HR-0808 

Issue. Read next parcel out of instruction stack. 

Transmit k data to accumulator. The function of CP 1 is delayed 
if the next parcel of instruction buffer data is not available in 
the instruction stack. 

Part 3 
6-15 B 



I 

015 Instruction 

A = A & k 

This instruction forms the bit-by-bit logical product of the previous 
accumulator content and a 16-bit constant and places the result in the 
accumulator. It then clears the carry flag. The constant is obtained 
from the next sequential parcel in the program field. The next 
instruction is obtained from the following parcel. 

The logical product of the previous accumulator content and the operand 
constant is formed at the input to the accumulator. 

CP 0 

CP 1 

HR-0808 

Issue. Read the next parcel out of the instruction stack. 

Transmit k data to accumulator. The function of CP 1 is delayed 
if the next parcel of instruction buffer data is not available in 
the instruction stack. 

Part 3 
6-16 B 



I 

016 Instruction 

A = A + k 

This instruction adds a l6-bit constant to the previous accumulator 
content in a twos complement mode. The constant is obtained from the 
next sequential parcel in the program field. The next instruction is 
obtained from the following parcel. The instruction complements the 
carry flag if a carry is propagated from the accumulator in the addition 
process. 

CP 0 

CP 1 

CP 2 

CP 3 

HR-0808 

Issue. Read next parcel out of the instruction stack. 

Transmit k data to addend register. The function of CP 1 is 
delayed if the next parcel of instruction buffer data is not 
available in the instruction stack. 

Transmit data to adder. Add mode. 

Transmit adder result to accumulator. 

Part 3 
6-17 B 



I 

017 Instruction 

A = A - k 

This instruction subtracts a 16-bit constant from the previous 
accumulator content in a twos complement mode. The constant is obtained 
from the next sequential parcel in the program field. The next 
instruction is obtained from the following parcel. The subtraction is 
performed by complementing the constant and adding the result to the 
accumulator content. One is then added to the result. The instruction 
complements the carry flag if a carry is propagated from the accumulator 
in either addition process. 

This instruction is redundant in the sense that an equivalent function 
can be performed with the 016 instruction using a different constant. 
This instruction is included in the list for completeness in the 
translational pattern. 

CP 0 

CP 1 

CP 2 

CP 3 

HR-0808 

Issue. Read next parcel out of the instruction stack. 

Transmit k data to addend register. The function of CP 1 is 
delayed if the next parcel of instruction buffer data is not 
available in the instruction stack. 

Transmit data to adder. Subtract mode. 

Transmit adder result to accumulator. 

Part 3 
6-18 B 



020 Instruction 

A = dd 

This instruction enters the content of operand register d in the 
accumulator and clears the carry flag. 

CP 0 

CP 1 

HR-0808 

Issue. Transmit d data to RP. 

Transmit operand register data to accumulator. 

Part 3 
6-19 B 



021 Instruction 

A = A & dd 

This instruction forms the bit-by-bit logical product of the previous 
accumulator content and the content of operand register d and places the 
result in the accumulator. It then clears the carry flag. 

The logical product of the previous accumulator content and the operand 
register content is formed at the input to the accumulator. No 
additional time is required for this function. 

CP 0 

CP 1 

HR-0808 

Issue. Transmit d data to RP. 

Transmit operand register data to accumulator. 

Part 3 
6-20 B 



022 Instruction 

A = A + dd 

This instruction adds the content of operand register d to the previous 
accumulator content. The addition is performed in the twos complement 
mode. It complements the carry flag if a carry is propagated from the 
accumulator in the addition process. 

CP 0 

CP 1 

CP 2 

CP 3 

HR-0808 

Issue. Transmit d data to RP. 

Transmit operand register data to addend register. 

Transmit data to adder. Add mode. The data in the accumulator 
and addend register is transmitted to the adder in this clock 
period. The addend register is free in this clock period to 
accept another operand. 

Transmit adder result to accumulator. 

Part 3 
6-21 B 



023 Instruction 

A = A - dd 

This instruction subtracts the content of operand register d from the 
previous accumulator content. The subtraction is performed by 
complementing the subtrahend and adding the result to the accumulator 

I content in ones complement mode. One is then added to the result. The 
instruction complements the carry flag if a carry is propagated from the 
accumulator in the addition process. 

CP 0 

CP I 

CP 2 

CP 3 

Issue. Transmit d data to RP. 

Transmit operand register data to addend register. 

Transmit data to adder; subtract mode. The data in the 
accumulator and addend register is transmitted to the adder in 
this clock period. The addend register is free in this clock 
period to accept another operand. 

Transmit adder result to accumulator. 

HR-0808 
Part 3 

6-22 B 



I 

024 Instruction 

dd = A 

This instruction stores the accumulator content in operand register d. 

This instruction cannot issue if the OP register contains a pointer from 
a previous instruction. 

CP 0 Issue. Transmit d data to RP and OP. 

CP I Transmit accumulator data to operand register. The function of CP 
I is delayed if the data is not available in the accumulator 

HR-0808 

during the indicated clock period. In this case, the pointer in 
RP and OP is held until the accumulator data is available. 

Part 3 
6-23 B 



I 

025 Instruction 

dd = A + dd 

This instruction adds the content of operand register d to the previous 
accumulator content. The addition is performed in a twos complement 
mode. The instruction complements the carry flag if a carry is 
propagated from the accumulator in the addition process. It then 
replaces the content of operand register d with the new accumulator 
content. 

This instruction cannot issue if the OP register contains a pointer from 
a previous instruction. 

CP 0 Issue. Transmit d data to RP and OP. 

CP 1 Transmit operand register data to addend register. The RP pointer 
is discarded in CP 1 and reentered with the same pointer from OP 
in CP 3. The function at CP 1 is delayed if the data is not 
available in the accumulator. 

CP 2 

CP 3 

CP 4 

HR-0808 

Transmit data to adder. Add mode. 

Transmit adder result to accumulator. Transmit OP data to RP. 

Transmit accumulator data to operand register. 

Part 3 
6-24 B 



I 

026 Instruction 

dd = dd + 1 

This instruction replaces the content of operand register d with the 
previous content increased by 1. The result is left in the accumulator 
as well as in the operand register. The carry flag is cleared at the 
beginning of this operation. One is entered in the accumulator. The 
content of the operand register enters the addend register and is then 
added to the accumulator content ina twos complement mode. The carry 
flag is set if a carry is propagated from the accumulator in the addition 
process. The result is then returned to the operand register. 

This instruction cannot issue if the OP register contains a pointer from 
a previous instruction. 

CP 0 

CP 1 

CP 2 

CP 3 

CP 4 

HR-0808 

Issue. Transmit d data to RP and OP. 

Transmit operand register data to addend register. 
Enter a +1 in the accumulator. 

The RP pointer is discarded in CP 1 and reentered with the same 
pointer from OP in CP 3. 

Transmit data to adder. Add mode. 

Transmit adder result to accumulator. Transmit OP data to RP. 

Transmit copy of accumulator data to operand register. 

Part 3 
6-25 B 



I 

I 

027 Instruction 

dd = dd - 1 

This instruction replaces the content of operand register d with the 
previous content decreased by 1. The result is left in the accumulator 
as well as in the operand register. The carry flag is cleared at the 
beginning of this operation. The accumulator bits are forced set. The 
content of the operand register is entered in the addend register and 
then added to the accumulator content. The carry flag is set if a carry 
is propagated from the accumulator in the addition process. The result 
is then returned to the operand register. 

This instruction cannot issue if the OP register contains a pointer from 
a previous instruction. 

CP 0 

CP 1 

CP 2 

CP 3 

CP 4 

HR-0808 

Issue. Transmit d data to RP and OP. 

Transmit operand register data to addend register. 
Enter a -1 in the accumulator. 

The RP pointer is discarded in CP 1 and reentered with the same 
pointer from OP in CP 3. 

Transmit data to adder. Add mode. 

Transmit adder result to accumulator. Transmit OP data to RP. 

Transmit copy of accumulator data to operand register. 

Part 3 
6-26 B 



I 

I 

030 Instruction 

A = (dd) 

This instruction enters the content of an I/O Memory location in the 
accumulator. The I/O Memory address is obtained from operand register 
d. It then clears the carry flag. 

CP 0 Issue. Transmit d data to RP. The function of CP 0 is delayed if 
the MA data from a previous instruction has not been accepted. 

CP I 

CP 2 

CP 3 

CP 4 

CP 5 

CP 6 

HR-0808 

Transmit operand register data to MA. 

Transmit MA data to bank address registers. Send Memory Read 
Reference. The function of CP 2 is repeated until the acceptance 
signal is received. 

Acceptance signal from I/O Memory. The function of CP 2 is 
repeated until the acceptance signal is received. 

Transmit memory data to accumulator. 

Part 3 
6-27 B 



I 
I 

031 Instruction 

A = A & (dd) 

This instruction forms the bit-by-bit logical product of the previous 
accumulator content and the content of an I/O Memory location and places 
the result if the accumulator. The I/O Memory address is obtained from 
operand register d. It then clears the carry flag. 

CP 0 

CP 1 

CP 2 

CP 3 

CP 4 

CP 5 

CP 6 

HR-0808 

Issue. Transmit d data to RP. The function of CP 0 is delayed if 
the MA data from a previous instruction has not been accepted. 

Transmit operand register data to MA. 

Transmit MA data to bank address registers. Send memory read 
reference. The function of CP 2 is repeated until the acceptance 
signal is received. 

Acceptance signal from I/O Memory. 

Transmit memory data to accumulator. The logical product of 
memory data and the accumulator content is done at the input to 
the accumulator. No additional time is required for this function. 

Part 3 
6-28 B 



I 

I 

032 Instruction 

A = A + (dd) 

This instruction adds the content of an I/O Memory location to the 
content of the accumulator. The I/O Memory address is obtained from 
operand register d. The instruction complements the carry flag if a 
carry is propagated from the accumulator in the addition process. 

CP 0 Issue. Transmit d data to RP. The function of CP 0 is delayed if 
the MA data from a previous instruction has not been accepted. 

CP I 

CP 2 

CP 3 

CP 4 

CP 5 

CP 6 

CP 7 

CP 8 

HR-0808 

Transmit operand register data to MA. 

Transmit MA data to bank address registers. Send read request to 
memory. 

Acceptance signal from I/O Memory. 

The function of CP 2 is repeated until the acceptance signal is 
received. 

Transmit memory data to addend register. 

Transmit data to adder. Add mode. 

The data from the accumulator and addend register is transmitted 
to the adder in CP 7. The addend register is free in this clock 
period to accept another operand. 

Transmit adder result to accumulator. 

Part 3 
6-29 B 



I 

I 

033 Instruction 

A = A - (dd) 

This instruction subtracts the content of an I/O Memory location from the 
content of the accumulator. The I/O Memory address is obtained from 
operand register d. The subtraction is performed by complementing the 
subtrahend and adding the result to the accumulator content in a ones 
complement mode. A 1 is then added to the result. The instruction 
complements the carry flag if a carry is propagated from the accumulator 
during either addition process. 

CP 0 

CP 1 

CP 2 

CP 3 

CP 4 

CP 5 

CP 6 

Issue. Transmit d data to RP. The function of CP 0 is delayed if 
the MA data from a previous instruction has not been accepted. 

Transmit operand register data to MA. 

Transmit MA data to bank address registers. Send read request to 
memory. 

Acceptance signal from I/O Memory. 

The function of CP 2 will be repeated until the acceptance signal 
is received. 

Transmit memory data to addend register. 

CP 7 Transmit data to adder. Subtract mode. 

CP 8 

HR-0808 

The data from the accumulator and addend register is transmitted 
to the adder in CP 7. The addend register is free in this clock 
period to accept another operand. 

The complementing of the addend data is accomplished in the 
transmission of the data from the addend register to the adder. 
The addition of +1 to the result is accomplished in this same 
clock period in the adder. 

Transmit adder result to accumulator. 

Part 3 
6-30 B 



I 

I 

034 Instruction 

(dd) = A 

This instruction replaces the content of an I/O Memory location with the 
current content of the accumulator. The I/O Memory address is obtained 
from operand register d. 

CP 0 Issue. Transmit d data to RP. The function of CP 0 is delayed if 
the MA data from a previous instruction has not been accepted or 
the accumulator data is not available. 

CP 1 

CP 2 

CP 3 

HR-0808 

Transmit operand register data to MA. 

Transmit MA data to bank address registers. Transmit a copy of 
the accumulator data to bank operand registers. Send write 
request to memory. 

The function of CP 2 is repeated until an acceptance signal is 
received. 

Acceptance signal from I/O Memory. 

Part 3 
6-31 B 



I 

I 
I 

I 

I 

035 Instruction 

(dd) = A + (dd) 

This instruction replaces the content of an I/O Memory location with its 
previous content plus the current accumulator content. The I/O Memory 
address is obtained from operand register d. The addition is performed 
using the accumulator in a 16-bit twos complement mode. The carry flag 
is complemented if a carry is propagated from the accumulator in the 
addition process. The result is left in the accumulator as well as 
transmitted to the I/O Memory location. 

CP 0 Issue. Transmit d data to RP. The function of CP 0 is delayed if 
the MA data from a previous instruction has not been accepted or 

CP I 

CP 2 

the accumulator data is not available. 

Transmit operand register data to MA. 

Transmit MA data to bank address registers. Send read requet to 
memory. The functions of CP 2 is repeated until an acceptance 
signal is received. 

CP 3 Acceptance signal from I/O Memory. The MA data is held from CP 3. 

CP 4 

CP 5 

CP 6 

CP 7 

CP 8 

CP 9 

Transmit memory data to addend register. 

Transmit data to adder. Add mode. 

Transmit adder result to accumulator. 

Transmit MA data to bank address registers. Transmit a copy of 
the accumulator data to bank operand registers. Send write 
request to memory. 

The function of CP 9 is repeated until an acceptance signal is 
received. 

CP 10 Acceptance signal from I/O Memory. 

HR-0808 
Part 3 

6-32 B 



I 

036 Instruction 

(dd) = (dd) + 1 

This instruction increments the content of an I/O Memory location by 1. 

The I/O Memory address is obtained from operand register d. This 
operation is performed using the accumulator. The accumulator and carry 
flag are cleared. A +1 is entered in the accumulator. The content of 
the memory location is entered in the addend register and then added to 
the accumulator contents. The result is returned to I/O Memory. The 
result remains in the accumulator. The carry flag is complemented if a 
carry is propagated from the accumulator in the addition process. 

CP 0 Issue. Transmit d data to RP. The function of CP 0 is delayed if 
the MA data from a previous instruction has not been accepted. 

CP 1 

CP 2 

CP 3 

CP 4 

CP 5 

CP 6 

CP 7 

CP 8 

CP 9 

Transmit operand register data to MA. 

Transmit MA data to bank address registers. Send read request to 
memory. The function of CP 2 is repeated until an acceptance 
signal is received. 

Acceptance signal from I/O Memory. The MA data is held from CP 3. 

Transmit memory data to addend register. Clear carry flag and 
enter plus one in accumulator. 

Transmit data to adder. Add mode. 

Transmit adder result to accumulator. 

Transmit MA data to bank address registers. Transmit copy of 
accumulator data to bank operand registers. Send write request to 
memory. The function of CP 9 is repeated until the acceptance 
signal is received. 

CP 10 Acceptance signal from I/O Memory. 

HR-0808 
Part 3 

6-33 B 



I 

037 Instruction 

(dd) = (dd) - 1 

This instruction decrements the content of an I/O Memory location by 1. 
The I/O Memory address is obtained from operand register d. This 
operation is performed using the accumulator. The carry flag is 
cleared. The accumulator bits are forced set. The content of the I/O 
memory location is entered in the addend register and then added to the 
accumulator content. The result is returned to the I/O memory location. 
The result also remains in the accumulator. The carry flag is 
complemented if a carry is propagated from the accumulator in the 
addition process. 

CP 0 Issue. Transmit d data to RP. The function of CP 0 is delayed if 
the MA data from a previous instruction has not been accepted. 

CP 1 

CP 2 

CP 3 

CP 4 

CP 5 

CP 6 

CP 7 

CP 8 

CP 9 

Transmit operand register data to MA. 

Transmit MA data to bank address registers. Send read request to 
memory. The functions of CP 2 is repeated until an acceptance 
signal is received. 

Acceptance signal from I/O Memory. The MA data is held from CP 3. 

Transmit memory data to addend register. Clear carry flag and 
enter all ones in accumulator. 

Transmit data to adder. Add mode. 

Transmit adder result to accumulator. 

Transmit MA data to bank address registers. Send write request to 
memory. Transmit copy of accumulator data to bank operand 
registers. 

The function of CP 9 is repeated until the acceptance signal is 
received. 

CP 10 Acceptance signal from I/O Memory. 

HR-0808 
Part 3 

6-34 B 



I 

040 Instruction 

C = 1, iod = DN 

This instruction forces the carry flag to the same state as the channel d 
done flag. 

Another instruction that would alter the state of the carry flag before 
CP 4 cannot issue in CP 1 or CP 2. A delay of 1 CP must be inserted if 
an I/O instruction is issued that alters the Busy or Done flags before 
the 40 instruction. 

Channel 000 is always done. The carry flag can be set by setting 
d = 000 in this instruction. 

CP 0 

CP 1 

CP 2 

CP 3 

HR-0808 

Issue. Transmit d designator to I/O channels. 

Force state of carry flag. 

Part 3 
6-35 B 



I 

041 Instruction 

C = 1, iod = BZ 

This instruction forces the carry flag to the same state as the channel d 
busy flag. 

Another instruction that would alter the state of the carry flag before 
CP 4 cannot issue in CP 1 or CP 2. A delay of 1 CP must be inserted if 
an I/O instruction is iS$ued that alters the Busy or Done flags before 
the 41 instruction. 

Channel 000 is never busy. The carry flag can be forced clear by setting 
d to 000 in this instruction. 

CP 0 Issue. Transmit d designator to I/O channels. 

CP 1 

CP 2 

CP 3 Force state of carry flag. 

HR-0808 
Part 3 

6-36 B 



I 

042 Instruction 

C = 1, lOB = DN 

This instruction forces the carry flag to the same state as the done flag 
of the channel specified by the contents of the B register. 

Another instruction that would alter the state of the carry flag before 
CP 4 cannot issue in CP 1 or CP 2. A delay of 1 CP must be inserted if 
an I/O instruction is issued that alters the Busy or Done flags before 
the 42 instruction. 

This instruction cannot issue if the B register is reserved. 

Channel 000 is always done. The carry flag can be forced clear by 
setting B to 000 in this instruction. 

CP a 

CP 1 

CP 2 

CP 3 

HR-0808 

Issue. Transmit B designator to I/O channels. 

Force state of carry flag. 

Part 3 
6-37 B 



I 

043 Instruction 

C = 1, rOB = BZ 

This instruction forces the carry flag to the same state as the busy flag 
of the channel specified by the contents of the B register. 

Another instruction that would alter the state of the carry flag before 
CP 4 cannot issue in CP 1 or CP 2. A delay of 1 CP must be inserted if 
an I/O instruction is issued that alters the Busy or Done flags before 
the 43 instruction. 

This instruction cannot issue if the B register is reserved. 

Channel 000 is never busy. The carry flag can be forced clear by setting 
B to 000 for use by this instruction. 

CP a Issue. Transmit B designator to r/o channels. 

CP 1 

CP 2 

CP 3 Force state of carry flag. 

HR-0808 
Part 3 

6-38 B 



I 

044 Instruction 

A = A > B 

This instruction shifts the content of the accumulator and the associated 
carry flag to the right by B bit positions. The carry flag may be 
regarded as a seventeenth bit to the left of the accumulator content for 
this operation. Zero values are entered in the carry flag and propagated 
to the right as the shift progresses. No shift is performed if the shift 
count is o. The accumulator and carry flag are cleared if the shift 
count is greater than 1710 • 

The low-order 5 bits of the addend register content are interpreted in 
determining the shift count. High-order bits are ignored. 

CP 0 

CP 1 

CP 2 

HR-0808 

Issue. Transmit B to addend register. 

Transmit data and inverted B to shifter. Shift mode. The addend 
register is free in this CPo 

Transmit shifter result to accumulator. 

Part 3 
6-39 B 



I 

045 Instruction 

A = A < B 

This instruction shifts the content of the accumulator and the associated 
carry flag to the left by B bit positions. The carry flag may be 
regarded as a seventeenth bit to the left of the accumulator content for 
this operation. Zero values are entered in the low-order bit positions 
of the accumulator and are propagated to the left as the shift 
progresses. Bits shifted from the carry flag are discarded. No shift is 
performed if the shift count is O. The accumulator and carry flag are 
cleared if the shift count is greater than 17 10 • 

The low-order 5 bits of the addend register content are interpreted in 
determining the shift count. High-order bits are ignored. 

CP 0 

CP 1 

CP 2 

HR-oaoa 

Issue. Transmit B to addend register. 

Transmit data and B to shifter. Shift mode. The addend register 
is free in this CP. 

Transmit shifter result to accumulator. 

Part 3 
6-40 B 



046 Instruction 

A = A» B 

This instruction shifts the content of the accumulator and the associated 
carry flag to the right in a circular mode by B bit positions. The carry 
flag may be regarded as a seventeenth bit to the left of the accumulator 
content for this operation. No bits are discarded in this shift mode. 
Bits shifted from the right end of the accumulator are returned to the 
carry flag. No shift is performed if the shift count is o. 

The low-order 5 bits of the addend register content are interpreted in 
determining the shift count. High-order bits are ignored. 

CP 0 

CP 1 

CP 2 

HR-0808 

Issue. Transmit B to addend register. 

Transmit data and inverted B to shifter. Shift mode. The addend 
register is free in this CP. 

Transmit shifter result to accumulator. 

Part 3 
6-41 B 



047 Instruction 

A = A « B 

This instruction shifts the content of the accumulator and the associated 
carry flag to the right in a circular mode by B bit positions. The carry 
flag may be regarded as a seventeenth bit to the left of the accumulator 
content for this operation. No bits are discarded in this shift mode. 
Bits shifted from the right end of the accumulator are returned to the 
carry flag. No shift is performed if the shift count is o. 

The low-order 5 bits of the addend register content are interpreted in 
determining the shift count. High-order bits are ignored. 

CP 0 

CP 1 

CP 2 

HR-0808 

Issue. Transmit B to addend register. 

Transmit data and B to shifter. Shift mode. The addend register 
is free in this CP. 

Transmit shifter result to accumulator. 

Part 3 
6-42 B 



050 Instruction 

A = B 

This instruction enters the B register content in the accumulator as a 
9-bit positive integer and clears the carry flag. The high-order bits 
are o. 

CP 0 

HR-0808 

Issue. Transmit B to accumulator. 

Part 3 
6-43 B 



051 Instrucion 

A = A & B 

This instruction forms the bit-by-bit logical product of the previous 
accumulator content and the B register content, and places it in the 
accumulator. The B register content is treated as a 9-bit positive 
integer. The instruction clears the carry flag. 

The logical product of the previous accumulator content and the operand 
from the instruction is formed at the input to the accumulator. 

CP 0 

HR-0808 

Issue. Transmit B and accumulator to accumulator. 

Part 3 
6-44 B 



I 

052 Instruction 

A = A + B 

This instruction adds the B register content to the previous accumulator 
content in the l6-bit twos complement mode. The B register content is 
treated as a 9-bit positive integer in this addition. The instruction 
complements the carry flag if a carry is propagated from the accumulator 
in the addition. 

CP 0 

CP 1 

CP 2 

HR-0808 

Issue. Transmit B to addend register. 

Transmit data to adder. Add mode. 

Transmit adder result to accumulator. 

Part 3 
6-45 B 



I 

053 Instruction 

A = A - B 

This instruction subtracts the B register content from the previous 
accumulator content in a 16-bit twos complement mode. The B register 
content is treated as a 9-bit positive integer in this operation. The 
subtraction is performed by complementing the content of the addend 
register and adding the result to the previous accumulator content. One 
is then added to the result. The instruction complements the carry flag 
if a carry is propagated from the accumulator during either addition. 

CP 0 

CP 1 

CP 2 

HR-0808 

Issue. Transmit B to addend register. 

Transmit data to adder. Subtract mode. 

Transmit adder result to accumulator. 

Part 3 
6-46 B 



054 Instruction 

B = A 

This instruction replaces the B register content with the low-order 9 
bits of the accumulator content. 

This instruction cannot issue until the accumulator sequence has been 
completed for any previous instructions. 

CP 0 

CP 1 

CP 2 

HR-0808 

Issue. B register is free. 

Issue + 1 (is accumulator ready). 

Issue + 2 (transmit accumulator data to B register). 

Part 3 
6-47 B 



055 Instruction 

B = A + B 

This instruction adds the content of the B register to the previous 
accumulator content. The B register content is treated as a 9-bit 
positive integer in this operation. The addition is performed in a 
l6-bit twos complement mode. The instruction complements the carry flag 
if a carry is propagated from the accumulator in the addition process and 
then replaces the B register content with low-order 9 bits of the 
accumulator content. 

CP 0 

CP 1 

CP 2 

CP 3 

HR-0808 

Issue. Transmit B to addend register. 

Transmit data to adder. Add mode. 

Transmit adder result to accumulator. The addend register is free 
in this CPo 

Transmit a copy of the accumulator data to B register. 

Part 3 
6-48 B 



056 Instrucion 

B = B + 1 

This instruction replaces the content of the B register with its previous 
content increased by 1. The result is left in the accumulator as well as 
in the B register. The carry flag is cleared at the beginning of this 
operation. One is entered in the accumulator. The content of the B 

register is then added to the accumulator content in a l6-bit twos 
complement mode. The B register content is treated as a 9-bit positive 
integer in this process. The low-order 9 bits of the accumulator content 
are then returned to the B register. 

CP 0 

CP 1 

CP 2 

CP 3 

HR-0808 

Issue. Transmit B to addend register. Enter a +1 in the 
accumulator. 

Transmit data to adder. Add mode. The addend register is free in 
this CPa 

Transmit adder result to accumulator. 

Transmit a copy of the accumulator data to B register. 

Part 3 
6-49 B 



I 

I 

057 Instruction 

B = B-1 

This instruction replaces the content of the B register with its previous 
content decreased by 1. The result is left in the accumulator as well as 
in the B register. The carry flag is cleared at the beginning of this 
operation. The accumulator bits are forced set. The content of the 
operand register is entered in the XB register and then added to the 
accumulator content. The B register content is treated as a 9-bit 
positive integer in this process. The carry flag is complemented if a 
carry is propagated from the accumulator in the addition process. The 
low-order 9 bits of the accumulator content are then returned to the B 
register. 

CP 0 

CP 1 

CP 2 

CP 3 

HR-0808 

Issue. Transmit B to addend register. Enter a -1 in the 
accumulator. 

Transmit accumulator data to adder. Add mode. The addend 
register is free in this CP. 

Transmit adder result to accumulator. 

Transmit a copy of the accumulator data to B register. 

Part 3 
6-50 B 



060 Instruction 

A = (B) 

This instruction enters the content of operand register B in the 
accumulator. It then clears the carry flag. 

CP 0 

CP 1 

HR-0808 

Issue. Transmit B data to RP. 

Transmit operand register data to accumulator. 

Part 3 
6-51 B 



061 Instruction 

A = A & (B) 

This instruction forms the bit-by-bit logical product of the previous 
accumulator content and the content of operand register B and places the 
result in the accumulator. It then clears the carry flag. 

The logical product of the previous accumulator content and the operand 
register content is formed at the input to the accumulator. No 
additional time is required for this function. 

CP 0 

CP 1 

HR-0808 

Issue. Transmit B data to RP. 

Transmit operand register data to accumulator. 

Part 3 
6-52 B 



062 Instruction 

A = A + (B) 

This instruction adds the content of operand register B to the previous 
accumulator content. The addition is performed in a twos complement 
mode. The instruction complements the carry flag if a carry is 
propagated from the accumulator in the addition process. 

CP 0 Issue. Transmit B data to RP. 

CP I Transmit operand register data to addend register. 

CP 2 Transmit data to adder; add mode. The data in the accumulator and 
addend register is transmitted to the adder in CP 2. The addend 
register is free in this clock period to accept another operand. 

CP 3 

HR-0808 

Transmit adder result to accumulator. 

Part 3 
6-53 B 



063 Instruction 

A = A - (B) 

This instruction subtracts the content of operand register B from the 
previous accumulator content. The subtraction is performed by 
complementing the subtrahend and adding the result to the accumulator 
content in a twos complement mode. A one is then added to the result. 
The instruction complements the carry flag if a carry is propagated from 
the accumulator during either addition process. 

CP 0 

CP I 

CP 2 

CP 3 

HR-0808 

Issue. Transmit B data to RP. 

Transmit operand register data to addend register. 

Transmit data to adder; subtract mode. The data in the 
accumulator and addend register is transmitted to the adder in CP 

2. The addend register is free in this clock period to accept 
another operand. 

Transmit adder result to accumulator. 

Part 3 
6-54 B 



I 

064 Instruction 

(B) = A 

This instruction stores the accumulator content in operand register B. 

This instruction cannot issue if the DP register contains a pointer from 
a previous instruction. 

CP 0 Issue. Transmit B data to RP and DP. 

CP I 

HR-0808 

Transmit accumulator data to operand register. The function of CP 
I is delayed if the data is not available in the accumulator 
during the indicated clock period. In this case, the pointer in 
RP and DP is held until the accumulator data is available. 

Part 3 
6-55 B 



I 

065 Instruction 

(B) = A + (B) 

This instruction adds the content of operand register B to the previous 
accumulator content. The addition is performed in a twos complement 
mode. The instruction complements the carry flag if a carry is 
propagated from the accumulator in the addition process. It then 
replaces the content of operand register B with the new accumulator 
content. 

This instruction cannot issue if the DP register contains a pointer from 
a previous instruction. 

CP 0 

CP 1 

CP 2 

CP 3 

CP 4 

HR-0808 

Issue. Transmit B data to RP and DP. 

Transmit operand register data to addend register. The RP pointer 
is discarded in CP 1 and reentered with the same pointer from DP 
in CP 3. 

Transmit data to adder. Add mode the function at CP 2 is delayed 
if the data is not available in the accumulator. The addend 
register is free in this CP. 

Transmit adder result to accumulator. Transmit DP data to RP. 

Transmit a copy of the accumulator data to operand register. 

Part 3 
6-56 B 



I 

I 

066 Instruction 

(B) = (B) + 1 

This instruction replaces the content of operand register B with its 
previous content increased by 1. The result is left in the accumulator 
as well as in the operand register. The carry flag is cleared at the 
beginning of this operation. One is entered in the accumulator. The 
content of the operand register entered in the addend register and is 
then added to the accumulator content in a twos complement mode. The 
carry flag is complemented if a carry is propagated from the accumulator 
in the addition process. The result is then returned to the operand 
register. 

This instruction cannot issue if the OP register contains a pointer from 
a previous intruction. 

CP 0 

CP 1 

CP 2 

CP 3 

CP 4 

HR-0808 

Issue. Transmit B data to RP and OP. 

Transmit operand register data to addend register. Enter a plus 
one in the accumulator. 

The RP pointer is discarded in CP 1 and re-entered with the same 
pointer from OP in CP 3. 

Transmit data to adder. Add mode. The addend register is free in 
this CP. 

Transmit adder result to accumulator. Transmit OP data to RP. 

Transmit copy of accumulator data to operand register. 

Part 3 
6-57 B 



I 

I 

067 Instruction 

(B) = (B) - 1 

This instruction replaces the content of operand register B with its 
previous content decreased by 1. The result is left in the accumulator 
as well as in the operand register. The carry flag is cleared at the 

beginning of this operation. The accumulator bits are forced set. The 
content of the operand register is entered in the addend register and 
then added to the accumulator content. The carry flag is complemented if 
a carry is propagated from the accumulator in the addition process. The 
result is then returned to the operand register. 

This instruction cannot issue if the OP register contains a pointer from 
a previous intruction. 

CP 0 

CP 1 

Issue. Transmit B data to RP and OP. 

Transmit operand register data to addend register. Enter an all 
ones value in the accumulator. 

The RP pointer is discarded in CP 1 and re-entered with the same 
pointer from OP in CP 3. 

CP 2 Transmit data to adder. Add mode. The addend register is free in 
this CPo 

CP 3 Transmit adder result to accumulator. Transmit OP data to RP. 

CP 4 Transmit copy of accumulator data to operand register. 

HR-0808 
Part 3 
6-58 B 



070 Instruction 

P = P + d 

This instruction terminates the current program sequence and begins a new 
sequence. The initial address for the new sequence is obtained by adding 
the d designator to the address of the current instruction. The d 
designator is treated as a 9-bit positive integer and is added in a 
l6-bit twos complement mode. The accumulator content and carry flag are 
not altered in this process. 

The issue of further instruction is blocked until the branch mode is 
resolved. 

CP 0 Issue. Transmit P data to accumulator. Transmit d data to addend 
register. 

CP 1 

CP 2 

CP 3 

Transmit accumulator data to adder. Add mode. 

Transmit adder result to P register. The first instructon in the 
new program sequence is transmitted from the instruction stack to 
the II register in CP 2 if the branch is within the range of the 
stack. That intruction may issue at CP 4. 

If the branch is out of stack, a fetch request at the new P 
address will be generated. This action may be delayed m CPs due 
to a previous internal fetch request. 

CP m+l Memory request generated by the fetch. A delay of n CPs is 
possible due to memory conflicts. 

CP n+l Acceptance signal from memory. 

CP n+2 Transmit memory data to II register. 

CP n+3 II data available for decode. 

CP n+4 Issue new instruction. 

HR-0808 
Part 3 
6-59 B 



071 Instruction 

P = P - d 

This instruction terminates the current program sequence and begins a new 
sequence. The initial address for the new sequence is obtained by 
subtracting the d designator to the address of the current instruction. 
The d designator is treated as a 9-bit positive integer and is subtracted 
in a 16-bit twos complement mode. The accumulator content and carry flag 
are not altered in this process. 

The issue of further instruction is blocked until the branch mode is 
resolved. 

CP 0 

CP 1 

Issue. Transmit P data to accumulator. Transmit d to addend 
register. 

Transmit accumulator data to adder. Subtract mode. 

CP 2 Transmit adder result to P register. The first instruction in the 
new program sequence is transmitted from the instruction stack to 
the II register in CP 2 if the branch is within the range of the 
stack. This intruction may issue at CP 4. 

CP 3 If the branch is out of stack, a fetch request at the new P 
address will be generated. This action may be delayed m CPs due 
to previous internal fetch requests. 

CP m+l Memory request generated ,by the fetch. A delay of n CPs is 
possible due to memory conflicts. 

CP n+l Acceptance signal from memory. 

CP n+2 Transmit memory data to II register. 

CP n+3 II data available for decode. 

CP n+4 Issue new instruction. 

HR-0808 
Part 3 
6-60 B 



072 Instruction 

R = P + d 

This instruction suspends execution of the current program sequence and 
calls a subprogram for execution by the following actions. It advances 
the value of E by 1 and stores the address of the next sequential 
instruction of this program sequence in the program exit stack. Then, it 
begins executing a new program sequence. The initial address for the new 
sequence is obtained by adding the d designator to the address of the 
current instruction. The d designator is treated as a 9-bit positive 
integer and is added in a 16-bit twos complement mode. The accumulator 
content and carry flag are not altered in ths process. 

CP 0 

CP 1 

Issue. Transmit P data to accumulator. Transmit d to addend 
register. 

Transmit accumulator data to adder. Add mode. Advance E by 1. 

CP 2 Transmit P+l data to program exit stack. Transmit adder result to 
P register. 

CP 3 If the branch is out of stack, a fetch reqest at the new P address 
will be generated. This action may be delayed m CPs due to a 
previous internal fetch request. 

CP m+l Memory request generated by the fetch. A delay of n CPs is 
possible due to memory conflicts. 

CP n+l Acceptance signal from memory. 

CP n+2 Transmit memory data to II register. 

CP n+3 II data available for decode. 

CP n+4 Issue new instruction. 

HR-0808 
Part 3 

6-61 B 



073 Instruction 

R = P - d 

This instruction suspends execution of the current program sequence and 
calls a subprogram for execution by the following actions. It advances 
the value of E by 1 and stores the address of the next sequential 
instruction of this program sequence in the program exit stack. Then, it 
begins executing a new program sequence. The initial address for the new 
sequence is obtained by subtracting the d designator from the address of 
the current instruction. The d designator is treated as a 9-bit positive 
integer and is subtracted in a 16-bit twos complement mode. The 
accumulator content and carry flag are not altered in ths process. 

CP 0 

CP 1 

Issue. Transmit P data to accumulator. Transmit d to addend 
register. 

Transmit accumulator data to adder. Subtract mode. Advance E by 
1. 

CP 2 Transmit P+l data to program exit stack. Transmit adder result to 
P register. 

CP 3 If the branch is out of stack, a fetch request at the new P 
address will be generated. This action may be delayed m CPs due 
to a previous internal fetch request. 

CP m+l Memory request generated by the fetch. A delay of n CPs is 
possible due to memory conflicts. 

CP n+l Acceptance signal from memory. 

CP n+2 Transmit memory data to II register. 

CP n+3 II data available for decode. 

CP n+4 Issue new instruction. 

HR-0808 
Part 3 

6-62 B 



074 Instruction 

P = dd 

This instruction terminates the current program sequence and begins a new 
sequence. The initial address for the new sequence is obtained from 
operand register d. 

The program fetch request flag is set if the content of operand register 
d is O. The issue of further instructions is blocked until the first 
instruction of the new sequence is in the II register. 

CP 0 

CP 1 

CP 2 

Issue. Transmit d data to RP. 

Transmit operand register data to accumulator. Enter 0 in the 
addend register. 

Transmit accumulator data to adder. Add mode. 

CP 3 Transmit adder result to P register. A fetch request at the new P 
address will be generated. This action may be delayed m CPs due 
to a previous internal fetch request. 

CP m+l Memory request generated by fetch. A delay of n CPs is possible 
due to memory conflicts. 

CP n+l Acceptance signal from memory. 

CP n+2 Transmit memory data to II register. 

CP n+3 II data available for decode. 

CP n+4 Issue new instruction. 

HR-0808 
Part 3 

6-63 B 



075 Instruction 

P = dd + k 

This instruction terminates the current program sequence and begins a new 
sequence. The initial address for the new sequence is obtained by adding 
the content of operand register d to the next parcel of the current 
program sequence. The addition is performed in a 16-bit twos complement 
mode. The content of the accumulator and carry flag are not altered in 
this process. 

The program fetch request flag is set if the content of operand register 
d is O. The issue of further instructions is blocked until the first 
instruction of the new program sequence is not in the II register in CP 1. 

CP 0 Issue. Transmit d data to RP. 

CP 1 Transmit operand register data to accumulator. Transmit k data to 
addend register. 

CP 2 Transmit accumulator data to adder. Add mode. 

CP 3 Transmit adder result to P register. A fetch request at the new P 
address will be generated. This action may be delayed m CPs due 
to a previous internal fetch request. 

CP m+l Memory request generated by the fetch. A delay of n CPs is 
possible due to memory conflicts. 

CP n+l Acceptance signal from memory. 

CP n+2 Transmit memory data to II register. 

CP n+3 II data available for decode. 

CP n+4 Issue new instruction. 

HR-0808 
Part 3 
6-64 B 



076 Instruction 

R = dd 

This instruction suspends execution of the current program sequence and 
calls a subprogram for execution by the following actions. It advances 
the value of E by 1 and stores the address of the next sequential 
instruction of this sequence in the program exit stack. It then begins 
executing a new program sequence. The initial address for the new 
sequence is obtained from operand register d. 

The exit stack boundary flag is set if the advanced E value is 14. The 
program fetch request flag is set if the content of operand register d is 
o. The issue of further instructions is blocked until the first 
instruction of the new program sequence is in the II register. 

CP 0 

CP 1 

CP 2 

CP 3 

Issue. Transmit d data to RP. 

Transmit operand register data to accumulator. Enter a 0 value in 
addend register. 

Transmit accumulator data to adder. Add mode. Advance E by 1. 

Transmit P+l data to exit stack. Transmit adder result to P 
register. A fetch request at the new P address is generated. 
This action may be delayed m CPs due to a previous internal fetch 
request. 

CP m+l Memory request generated by the fetch. A delay of n CPs is 
possible due to memory conflicts. 

CP n+l Acceptance signal from memory. 

CP n+2 Transmit memory data to II register. 

CP n+3 II data available for decode. 

CP n+4 Issue new intruction. 

HR-0808 
Part 3 
6-65 B 



077 Instruction 

R = dd + k 

This instruction suspends execution of the current program sequence and 
calls a subprogram for execution by the following actions. It advances 
the value of E by 1 and stores the address two greater than the address 
of the current instruction in the program exit stack. Then it begins a 
new program sequence. The initial address for the new sequence is 
obtained from operand register d to the next parcel of the current 
program sequence. The addition is performed in a 16-bit twos complement 
mode. The content of the accumulator and carry flag are not altered in 
this process. 

The exit stack boundary flag is set if the advanced E value is 14. The 
program fetch request flag is set if the content of operand register d is 
O. The issue of further instructions is blocked until the first 
instruction of the new program sequence is in the II register. 

CP 0 Issue. Transmit d data to RP. 

CP 1 Transmit operand register data to accumulator. Transmit k data to 
addend register. 

CP 2 

The entry of the k data in the addend register is delayed if the 
next parcel of the program sequence is not in the II register in 
CP 1. 

Transmit accumulator data to adder. Add mode. Advance E by 1. 

CP 3 Transmit P+l data to exit stack. Transmit adder result to P 
register. A fetch requst at the new P address is generated. This 
action may be delayed m CPs due to a previous internal fetch 
request. 

CP m+l Memory request generated by the fetch. A delay of n CPs is 
possible due to memory conflicts. 

CP n+l Acceptance signal from memory. 

CP n+2 Transmit memory data to II register. 

CP n+3 II data available for decode. 

CP n+4 Issue new i~st~ucti0n-

HR-0808 
Part 3 
6-66 B 



100-137 Conditional Branch Instructions 

Instructions 100 through 137 are branch instructions that jump to a new 
program sequence only if a branch condition is met. There are eight 
branch modes, which are represented in the unconditional form by 
instructions 070 through 077. All possibilities of these eight modes are 
combined with four branch criteria to form the set of instructions 100 
through 137. The branch criteria are as follows: 

------ C 0 
------ C 1 
------ A 0 
------ A # 0 

The first of these branch conditions, C = 0, causes the branch to be 
taken if the carry flag is O. If the carry flag is set, the current 
program sequence is continued. 

The second branch condition, C = 1, is the complement of the first. The 
branch is taken if the carry flag is set. The current sequence is 
continued if the carry flag is O. 

The third branch condition, A = 0, causes the branch to be taken if the 
accumulator content is o. If the accumulator content is nonzero, the 
current sequence is continued. 

The final branch condition, A # 0, is the complement of the third. The 
branch is taken if the accumulator content is nonzero. The current 
sequence is continued if the accumulator content is o. 

The timing of the above sequences is the same as the timing of the 
corresponding instruction in the unconditional mode, if the branch is 
taken. Formation of the branch condition requires I CP after the 
accumulator has received the desired data. The issue of the next 
instruction is delayed until the branch criterion is available. If the 
branch criterios is available in CP 0 and the branch is not taken based 
on that criterion, the next instruction in the current program sequence 
may issue in the next clock period. 

HR-0808 
Part 3 

6-67 B 



I 

140-177 I/O Channel Instructions 

Instructions 140 through 177 allow I/O processor control of the I/O 
channel activity. The d designator in instructions 140 through 157 
specifies which I/O channel is addressed. In the 160 through 177 
instructions, the content of the B register specifies the channel. 
The low-order 4 bits of the function code for the instruction are sent 
to the channel interface control along with a go function signal. 
This 4-bit code is then interpreted by the channel interface control 
circuits in a manner unique to that channel. 

This series of instructions may provide the accumulator data to the 
interface and the data coming back from the interface may replace the 
present accumulator contents. Instructions 150 through 153 and 170 
through 173 read a 16-bit quantity into the accumulator. This 
quantity is whatever value the channel interface provides as a result 
of its interpretation of the channel function. This data transfer is 
defined in the description for each individual channel. Instructions 
140 through 177 may transfer data from the accumulator to the channel 
interface. 

None of the I/O channel instructions involves any significant delay in 
the execution of the program sequence. There is no mechanism for the 
I/O channel control to delay execution of further instructions as a 
result of interpreting the 4-bit code. Delays in executing program 
functions must be programmed through sampling of the channel busy and 
done flags or through the equivalent use of the interrupt mechanism. 

After issuing any comment to the I/O channels, allow 1 CP (by issuing 
a pass instruction, or other instruction) before checking the channel 
busy or done flags. One CP should also be allowed after any : 6 or : 
7 I/O instruction (modifying channel interrupt flag) before checking 
for the channel interrupt number (lOR: 10). 

HR-0808 
Part 3 

6-68 B 



INTERFACES 7 

INTRODUCTION 

Interfaces are required to adapt the I/O Processor to peripheral devices 
to take advantage of its capabilities. The main purposes of an interface 
are buffering data, generating control signals for the peripheral device, 
and possibly multiplexing several devices into the same I/O Processor 
channel. This section describes the characteristics of the interfaces, 
gives a table of currently used functions for the interfaces, and 
describes operational characteristics of the interfaces. 

INTERFACE CHARACTERISTICS 

The I/O Processor provides for 40 I/O channels. These channels are 
addressed by the d designator in the program instruction or by the B 
register contents. Data may be transferred from the I/O Processor 
accumulator to an interface register or from an interface register to the 
accumulator. I/O Memory ports may be used for block transfers of data 
into or out of I/O Memory. Data transfers and channel interface actions 
are a function of each interface logic control. 

Each interface may interpret up to 16 function signals from the I/O 
Processor program. These functions are generated by instructions 140 
through 177. Interpretation of each function is specifically designated 
by each interface. However, three of the function codes are fairly 
common among interfaces and are described below. 

iod : 0 or lOB: O. 

This function clears the channel busy and done flags and places the 
channel in an idle status. 

iod : 6 or lOB : 6. 

This function clears the channel interrupt flag for the associated 
channel, which blocks any further interrupt requests from that channel. 

iod : 7 or lOB: 7. 

This function sets the channel interrupt enable flag for the associated 
channel and enables the interrupt requests from that channel. 

HR-0808 
Part 3 
7-1 B 



Each channel interface provides for a busy flag. This flag is 
normally set during the active period of the channel and cleared 
during an idle period. The setting and clearing of this flag depends 
on the channel interface interpretation of the 16 function codes. The 
channel busy flag may be sensed by the I/O Processor program through 
execution of the 041 and 043 instructions. 

Each channel interface provides for a done flag. This flag is 
normally used to signal the I/O Processor program when some step of 
the channel activity has reached a point where program action is 
required. Setting and clearing of the flag is normally a function of 
the interface hardware, but the program may set or clear the flags for 
special purposes. The program may sense the state of this flag 
through the 040 and 042 instructions. An interrupt is normally 
generated by the interface hardware when the channel done flag is set 
and the channel interrupt enable flag is also set. The system must 
have interrupts enabled to process the interrupt. 

INTERFACE FUNCTION CODES 

Table 7-1 lists all the currently supported peripheral devices and 
briefly explains each function code interpretation that has been 
implemented. The mnemonic shown is for A Programming Machine 
Language, APML. 

HR-0808 
Part 3 

7-2 B 



Device 

DISK STORAGE 
UNI'l' 
(DKA-DKP) 

CONSOLE KEYBOARD 
(TIA,TIB,TIC ••. ) 

CONSOLE DISPLAY 
( TOA , TOB , TOC ••• ) 

EXPANDER CHASSIS 

, 

I 
I 
I 
I 

HR-0808 

Table 7-1. Interface functions 

Mnemonic 

DKA : 0 
DKA : 1 
DRA : 2 

DKA : 3 
DKA : 4 

DKA : 5 
I DKA : 6 
I 

DKA : 7 
DKA : 10 
DKA : 11 
DKA : 14 

I DKA : 15 

TIA : 0 
TIA : 6 
TIA : 7 
TIA : 10 

TOA : 0 I 

TOA : 6 I 
TOA : 7 
TOA : 14 

EXB : 0 
EXB : 1 
EXB : 2 

EXB : 3 
EXB : 4 
EXB : 5 I EXB : 6 
EXB : 7 
EXB : 10 
EXB : 11 
EXB : 13 
EXB : 14 
EXB : 15 
EXB : 16 
EXB : 17 

Function 

Clear the channel control 
Select mode or request status 
Read data into I/O Memory 
Write data from I/O Memory 
Select a new head group 
Select a new cylinder 
Clear the channel interrupt enable flag 
Set the channel interrupt enable flag 
Read I/O Memory current address 
Read status response 
Enter I/O Memory beginning address 
Status response register diagnostic 

Clear the channel done flag 
Clear the channel interrupt enable flag 
Set the channel interrupt enable flag 
Read data into accumulator and clear 
done flag 

Clear the channel busy and done flags 
Clear the channel interrupt enable flag 
Set the channel interrupt enable flag 
Send accumulator data to display 

Idle the channel 
Data input from A register (DIA) 
Data input from B register (DIB) 
Data input from C register (DIC) 
Read busy/done flag, interrupt number 
Load device address 
Send interface mask (MSKO) 
Set interrupt mode 
Read data bus status 
Read status 1 
Read status 2 

Data output to A register 
Data output to B reg ister 
Data output 
Send control 

Part 3 
7-3 

to C register 

(DOA) 
(DOB) 
(DOC) 

B 

I 

I 

I 



Table 7-1. Interface functions (continued) 

Device 

" I NPUT FROM 
CPU I/O CHANNEL 
I (CIA,CIB ,CIC .•• ) 

I 

: 

I 
10UTPUT TO 
,CPU I/O CHANNEL 
I (COA,COB,COC ••• ) 

I 

I 
'INPUT FROM 
jcpu MEMORY CHANNEL 
I(HIA,HIB,HIC •.. ) 

I 

OUTPUT TO 
CPU MEMORY CHANNEL 
( HOA , HOB, HOC ••. ) 

HR-0808 

Mnemonic 

CIA 0 
CIA 1 

CIA 2 
CIA 3 
CIA 4 
CIA 6 

CIA 7 
CIA 10 
CIA 11 

COA 0 
COA 1 
COA 2 
COA 3 
COA 4 
COA 6 
COA 7 
COA 10 
COA 11 

HIA 0 
HIA 1 
HIA 2 
HIA 3 
HIA 4 

HIA 6 
HIA 7 
HIA 14 

HOA 
HOA 
HOA 
HOA 
HOA 
HOA 
HOA 
HOA 

o 
1 
2 
3 
5 
6 
7 

14 

Function 

Clear channel 
Enter I/O Memory address, start 
input 
Enter parcel count 
Clear channel parity error flags 
Clear ready waiting flag 
Clear interrupt enable flag 
Set interrupt enable flag 
Read I/O Memory address 
Read status (ready waiting, parity 
errors) 

Clear channe 1 
Enter I/O Memory address 
Enter parcel count 
Clear error flag 
Set/clear external control signals 
Clear interrupt enable flag 
Set interrupt enable flag 
Read I/O Memory address 
Read status (4-bit channel data, error) 

Clear channel busy, done flags 
Enter I/O Memory address 
Enter upper Central Memory address 
Enter lower Central Memory address 
Read Central Memory, enter block length 
Clear interrupt enable flag 
Set interrupt enable flag 
Enter diagnostic mode 

Clear channel busy, done flags 
Enter I/O Memory address 
Enter upper Central Memory address 
Enter lower Central Memory address 
Write Central Memory, enter block length 
Clear interrupt enable flag 
Set interrupt enable flag 
Enter diagnostic mode 

Part 3 
7-4 B 

I 

1 



Table 7-1. Interface functions (continued) 

Device Mnemonic 

ERROR LOGGING ERA : 0 
CHANNEL ERA : 6 
(ERA, ERB, ERC ••• ) ERA : 7 

ERA : 10 
ERA : 11 
ERA : 12 
ERA : 13 

BLOCK BMA : 0 
MULTIPLEXER BMA : 1 
CHANNEL BMA : 2 
( BMA , BMB , BMC ••• ) BMA : 3 

BMA : 4 
BMA : 5 
BMA : 6 
BMA : 7 
BMA : 10 
BMA : 11 
BMA : 12 
BMA : 13 
BMA : 14 
BMA : 15 
BMA : 16 
BMA : 17 

HR-0808 

Function 

Idle channel 
Clear interrupt enable flag 
Set interrupt enable flag 
Read error status 
Read error information (first parameter) 
Read error information (second parameter) 
Read error information (third parameter) 

Clear channel control 
Send reset functions 
Channel command 
Read request-in address 
Asynchronous I/O 
Delay counter diagnostic 
Clear channel interrupt enable flag 
Set channel interrupt enable flag 
Read I/O Memory address 
Read byte count 
Read status 
Read input tags 
Enter I/O Memory address 
Enter byte count 
Enter device address 
Enter output tags 

Part 3 
7-5 B 



I 

I 

DISK STORAGE UNIT CHANNEL 

Each Buffer I/O Processor and Disk I/O Processor may have up to 16 
channels connected to DD-29 Disk Storage Units. Each unit may operate 
independently of the other units and all may be transferring data at the 
same time. APML mnemonics DKA through DKP indicate these channels. The 
function requests for the first channel are summarized below. 

DKA Clear the channel control 

DKA Select mode or request status 

DKA Read data into I/O Memory 

DKA Write data from I/O Memory 

DKA 4 Select a new head group 

DKA 5 Select a new cylinderS 

DKA Clear the channel interrupt enable flag 

DKA Set the channel interrupt enable flag 

DKA 10 Read I/O Memory current address 

DKA 11 Read status response 

DKA 14 Enter I/O Memory beginning address 

DKA 15 Status response register diagnostic 

DISK STORAGE UNIT CHARACTERISTICS 

The DD-29 Disk Storage Unit consists of 40 rotating disk surfaces with a 
read/record head on each surface. The period of disk rotation is 16.6 
milliseconds. The heads are moved simultaneously to one of 823 disk 
cylinders by means of a servomechanism. Positioning time from one 
cylinder to another varies from 15 milliseconds to 80 milliseconds 
depending on the distance the head assembly must travel. 

§ Valid channel busy and channel 
after this function is issued. 

§§ Allow 1 CP before checking the 

HR-0808 

done flrtg~ 

interrupt 

Part 3 
7-6 

c:;::tnnnt b~ r~ad 

channel number 

u!'!til 1 CP 

(lOR 10) • 

B 



I 

Within each disk cylinder the 40 read/record heads are divided into ten 
groups. Each head group then reads or records 4 bits of data in 
parallel. The selection of a new head group requires 6 microseconds. 
The recording surface available to each head group is called a disk 
track. This is the basic storage unit reserved by the operating system. 
A flaw on the disk surface requires that a track be removed from the 
available resources in the track reservation table for the system. 

Within each disk track are 18 sectors in which data may be recorded and 
read back. The data in one sector is called a data block and consists of 
2048 parcels of I/O Processor data plus verification and error correction 
data. Data may be transferred between the I/O Memory and the disk 
surface only in blocks of this fixed size. 

DSU DATA SEQUENCE PATTERN 

The data recorded in a sector of a disk track consists of a number of 
parts as shown in figure 7-1. The numbers below each segment in the 
figure are the total bits of all four heads, for the segment. 

PREAMBLE 512 WORDS POSTAMBLE 

912 8 32,768 128 24 

Figure 7-1. DSU data sequence pattern 

The total number of bits in the above figure is 35,808. This is the 
portion of a disk track assigned to a sector. An additional gap after 
the last sector has 576 bits. The total number of bits in a disk track 
is 645,120. 

The bit positions assigned to the angular locations on the disk surface 
are determined by an index mark and a servo clock. The index mark is a 
unique mechanical mark on the rotating mechanism which provides a pulse 
once per disk revolution. This pulse clears a counter which then counts 
servo clock pulses to define the remainder of the disk timing. Servo 
pulses are also derived mechanically from the rotating mechanism. These 
pulses occur every 12 bit positions. The clock used for recording data 
on the disk surface is obtained by a frequency multiplier. The index 
mark begins the data sequence pattern listed above for sector O. The 
beginning location for the other sectors is determined by the servo 
counter. These begin every 746 servo pulses or 8952 bit positions. 

HR-0808 
Part 3 

7-7 B 

BITS 



I 

I 

The data sequence pattern for a sector, as listed above, is recorded in 
two separate processes. The sector identification (10) word, which 
appears as 6 bits under each recording head, is recorded on each new set 
of disk surfaces and is not modified in normal use of the disk storage 
unit. The data block and cyclic checkword are recorded with each disk 
write function in a normal operation. Associated with each of these 
recordings is a preamble, sync, and postamble which are a necessary part 
of the recording and reading process. 

The write heads are turned on for a normal disk block write function 
during the intersector gap. The writing begins with the second group of 
preamble and sync bits which are sequenced by the disk control circuits. 
The data from the I/O Memory is then recorded in a block of 32,768 bits. 
~his is followed by a 128-bit cyclic redundancy checkword which was 
generated from the data by a Fire code generator. The write heads are 
turned off after the 24-bit postamble. 

SECTOR IDENTIFICATION WORD 

The sector identification (10) word for each sector is 24 bits. It is 
composed of a cylinder number, a head-group number, a sector number and 
four parity bits. The 10 format is shown in figure 7-2. 

223 222 213 212 29 28 24 23 

I 0 I 
CYLINDER HEAD SECTOR PARITY 

C9 C8 C7 C6 Cs C4 C3 C2 Cl Co H3 H2 HI HO S4 S3 S2 Sl So P3 P2 PI 

Figure 7-2. Sector 10 format 

The parity bits in the sector identification word each protect a 
cross-section of the other 20 bits of the 10. The assignment of parity 
bits to groups of 10 bits is shown in table 7-2. 

I/O MEMORY ADDRESS REGISTER 

The I/O Memory address register is both an interface input register and 
an interface output register for the channel. The beginning address for 
a block of disk data is entered in the register by the processor before 
issuing a read or write function. This address is restricted to values 
which are a multiple of four because of the burst mode used in moving 
data into and out of the 1/0 Memory. The low-order 2 bits of the address 
are forced to 0 in the register. If the processor enters bit values 
other than 0 in these positions, these values are discarded. 

HR-0808 
Part 3 

7-8 B 

20 

Po 



I 

I 

Table 7-2. Sector ID parity bit assignments 

Parity Bits pO /20 pl/2l p2/22 p3/23 

C7/2
2O 

C
8
/2

2l 
C

2
/2

22 
0/2

23 

C
3
/2

l6 C4/2l7 C
5
/2

l8 C6/2l9 

Data Bits H
3
/2

l2 CO/2l3 Cl /214 C2/2l5 

s4/28 HO/29 H
I
/2

1O H2/2ll 

sO /24 sl/25 s2/226 s3/227 

C Cylinder, H Head, S Sector, P = Parity 

The address in the I/O Memory address register is increased by a count of 
four as each burst of four words is transferred to or from the I/O 
Memory. This address may be monitored by the I/O Processor using the DKA 
: 10 function. The address may be used without a new entry from the 
processor after completion of a data transfer. In this case the 
beginning address for the next block of disk data will be the next 
sequential storage address. For a disk write the I/O Memory address will 
be left pointing four parcels beyond the last address of the buffer. 

STATUS RESPONSE REGISTER 

The status response register is used for the specific response requested 
by a function 1 request and also for the implied response of function 5. 
Details of these functions are listed under the appropriate headings. 

DKA : ° - CLEAR CHANNEL 

Clear the channel busy and channel done flags. No parameters are 
required for this function. This function is not interlocked with any 
disk sequence which may be in process. 

DKA : 1 - SELECT MODE 

This function request allows the processor to select a mode for the disk 
storage unit or to request status information from the interface. The 
content of the accumulator at the time of the function request is used as 
a selecting parameter. The categories of parameter values are summarized 
in table 7-3. 

HR-0808 
Part 3 
7-9 B 



Table 7-3. OKA 1 parameters 

Value 

I 

Meaning 

OOOxxx I Release Unit 

OOlxxx Reserve Unit 

002xxx Clear fault flags 

003xxx Return to zero cylinder 

004xxx Select margin conditionsl 

005xxx Read sector number I 
I 

006xxx Read error flags 

007xxx Read disk status 

Parameter OOOxxx - Release Unit 

This function request sets the channel busy flag and clears the channel 
done flag. No other flag request can be made on a particular OSU until a 
OKA : I request has been issued for that unit. After a few microseconds, 
the interface clears the channel busy flag and sets the channel done 
flag. The disk storage unit is released from the reservation on that 
port and is free for reservation on the other port. 

Parameter OOlxxx - Reserve Unit 

This function request sets the channel busy flag and clears the channel 
done flag. A few microseconds later, the interface clears the channel 
busy flag and sets the channel done flag. The OSU is reserved for the 
requesting I/O Processor if it is not currently reserved by another 
device using the OSU access port. The function does not automatically 
return a status response. The I/O Processor must issue a separate 
function 1 status request to determine whether the reservation was 
accepted. The reserve unit function automatically selects head group O. 
The unit must be reserved before it will recognize a read function (OKA : 
2), a write function (ORA: 3), or a select cylinder function (OKA : 5). 
All other functions may be issued to an unreserved unit, unless the OSU 
is reserved on another access port. 

HR-0808 
Part 3 

7-10 B 



Parameter 002xxx - Clear Fault Flags 

This function 1 request with an 002xxx parameter sets the channel busy 
flag and clears the channel done flag. A few microseconds later the 
interface clears the channel busy flag and sets the channel done flag. 
The fault conditions stored in fault registers in the interface and in 
the DSU are all cleared. 

Parameter 003xxx - Return to Zero Cylinder 

This function request sets the channel busy flag and clears the channel 
done flag. The read/write heads are positioned to cylinder 000 as if the 
DSU were just powered up. The time for positioning the heads depends 
upon the distance to be traveled, and may extend to 500 milliseconds for 
an 822-cylinder move. When the positioning is completed, the interface 
clears the channel busy flag and sets the channel done flag. 

Parameter 004xxx - Select Cylinder Margin 

This function request sets the channel busy flag and clears the channel 
done flag. A few microseconds later the disk interface clears the 
channel busy flag and sets the channel done flag. The read/write heads 
are moved slightly away from the normal cylinder center to attempt 
reading data which cannot be recovered using normal head positioning. 
The amount to be offset is determined by the low-order 5 bits in the 
function parameter. Each unit of the 5-bit value offsets the heads 25 
microinches (0.64 micrometers). Bit 2 5 of the parameter defines the 
direction of the offset: a 1 indicates an offset toward the center of 
the disk and a 0 specifies a move away from the center of the disk. The 
nominal cylinder width is 2200 microinches (5600 micrometers), and a 
nominal center-to-center cylinder spacing spacing is 2600 microinches 
(6600 micrometers). The offset position is maintained until the next 
positioning function is received, either another margin select, or a new 
cylinder select. A following cylinder select automatically cancels the 
margin select and centers the heads over the new cylinder~ The direction 
and amount of offset active is contained in the DSU offset register, and 
can be inspected by a DKA : 1, parameter 007002 command. 

Parameter 005xxx - Read Sector Number 

This function request sets the channel busy flag and clears the channel 
done flag. About 10 I/O Processor CPs later the interface clears the 
channel busy flag and sets the channel done flag. At this time the 
sector number of the sector currently under the read/write heads is 
loaded into the status response register in the interface. A following 
function 11 to the interface will read the status response register to 
the I/O Processor accumulator. 

HR-0808 
Part 3 

7-11 B 



The sector number is not read from the disk. Instead, an interface 
counter operates from the DSU servo clock, tracking the sector number. 
The counter is updated at the start of the l80-frame intersector gap, and 
it is cleared by the index mark. 

Parameter 006xxx - Read Error Flags 

Issuing this function request sets the channel busy flag and clears the 
channel done flag. A few microseconds later the interface clears the 
channel busy flag and sets the channel done flag. At this time the 
status response register on the interface receives data from the fault 
registers in the DSU and in the interface. This data remains in the 
status response register until it is replaced by data from another 
function request. Figure 7-3 shows the bit assignments for the error 
flags, and table 7-4 explains each error condition. 

HR-0808 
Part 3 
7-12 B 



STATUS BITS 

FLAGS 

Read/Write 
Off Cylinder 

Read and write 
Conflict 

Multiple Head Select 

write Fault Channel 0 

write Fault Channell 

write Fault Channel 2 

write Fault Channel 3 

Seek Error 

Address Error 

Data Error Channel 0 

Data Error Channel 1 

Data Error Channel 2 

Data Error Channel 3 

I I LLost Data 

Lost Function 

Angular position Counter Error 

A-0141 

HR-0808 

Figure 7-3. Status response error flags 

Part 3 
7-13 B 



Table 7-4. Parameter 006 error flags 

I Bit Name Meaning 

r-2~==~=-R=e=a=d=/=w=r==i=t=e==0=f=f====~A=n==a=t==t=em==p=t==w=a=s==m=a=d=e==t=o==r==e=a=d==o=r==w=r=i=t~e==========~ 
I cylinder data when the read/write heads were still in 

motion on a change of cylinder. 

HR-OSOS 

Read and write 
conflict 

Multiple head 
select 

Write fault 
channel 0 

Write fault 
channel 1 

write fault 
channel 2 

write fault 
channel 3 

Seek error 

Address error 

Data error 
channel 0 

Data error 
channel 1 

Data error 
channel 2 

An attempt was made to strobe data 
simultaneously early and late, or an attempt 
was made to write data with the cylinder 
margin offset, or the unit attempted to read 
and write at the same time. 

More than 4 heads were selected 
simultaneously. 

A failure occurred associated with the 
recording head for channel O. 

A failure occurred associated with the 
recording head for channell. 

A failure occurred associated with the 
recording head for channel 2. 

A failure occurred associated with the 
recording head for channel 3. 

A failure occurred in moving the read/write 
heads to a new cylinder number. 

The disk storage unit received a head group 
select for a group number greater than lIS' 
or a cylinder select for a cylinder number 
greater than 1466 octal, or a margin 
selection when the disk was not on cylinder, 
or a cylinder select when the disk was not on 
cylinder. 

An error occurred in the channel 0 data 
during the last read operation. 

An error occurred in the channel 1 data 
during the last read operation. 

An error occurred in the channel 2 data 
durinq the last read operaton. 

Part 3 
7-14 B 



Table 7-4. Parameter 006 error flags (continued) 

Bit Name Meaning 

2TI Data error An error occurred in the channel 3 data during 
channel 3 the last read operation. 

213 Lost data The data transfer between the I/O Memory and 
the deskewing buffers did not keep up with 
the disk read/write transfer in a read or 
write operation. 

214 Lost function A function was received before a previous 
function completed. 

215 Angular position I The index mark from the disk storage unit 
counter error was received in the middle of a sector. 

Parameter 007000 - Read Cylinder Register 

This function request sets the channel busy flag and clears the channel 
done flag. A few microseconds later the interface clears the channel 
busy flag and sets the channel done flag. At this time the interface 
status register receives from the DSU the currently selected cylinder 
number. The cylinder number occupies the 10 low-order bits of the status 
register. This data remains in the status register until replaced by 
another function request. 

Parameter 007001 - Read Head Register 

This function request sets the channel busy flag and clears the channel 
done flag. A few microseconds later the interface clears the channel 
busy flag and sets the channel done flag. At this time the interface 
status register receives from the DSU the currently selected head group 
number, if the DSU is reserved to the processor. The head number goes in 
the 4 low-order register bits, and bit 25 is a 1 to show reservation to 
the requesting processor. Bit 26 indicates the DSU capacity is 600 
Mbytes. The register value has a range of 40 S-51 S for the 10 head 
groups. A zero word returned indicates the DSU is not reserved to the 
requesting processor. Status data remains in the register until another 
function request. 

HR-OSOS 
Part 3 

7-15 B 

I 



Parameter 007002 - Read Margin/Difference Register 

This function request sets the channel busy flag and clears the channel 
done flag. A few microseconds later the interface clears the channel 
busy flag and sets the channel done flag. At this time the interface 
status response register receives from the DSU either the currently 
selected offset margin or the difference between the present position of 
the heads and the final cylinder position during a seek. If the last 
function request was an offset margin selection, the status is the ones 
complement of the offset number selected by that function. The 5 
low-order bits on the status register hold the offset number, and bit 
25 shows the offset direction. Bit 25 is set to 1 if the offset is 
toward the center of the disk. See figure 7-4. 

STATUS BITS 

MARGIN BITS 

OFFSET MAGNITUDE 

A-O/43 OFFSET DIRECTION (1 = TOWARD CENTER) 

Figure 7-4. Offset margin status word 

If the previous function request was a select cylinder, the interface 
status register receives the ones complement of the number of cylinder 
positions yet to be crossed before reaching the desired cylinder. The 
register contains 17778 when the heads are positioned at the desired 
cylinder. The difference number goes into the least significant 10 bits 
of the status register. See figure 7-5. 

STATUS BITS 

Example: 294 

HR-0808 

0100100110 tracks to go 
1011011001 one's complement to register 

Fig~re 7-5. Diffcrc!'1c~ 

Part 3 
7-16 

DIFF. BITS 

B 



Parameter 007003 - Read Interlock Register 

This function request sets the channel busy flag and clears the channel 
done flag. A few microseconds later the interface clears the channel 
busy flag and sets the channel done flag. At this time the interface 
status response register receives from the DSU the contents of the 
interlock register. Eight interlock flags are placed in the low-order 
bit positions of the status response register. The interlock flags are 
shown in figure 7-6. Ones indicate fault conditionse Table 7-5 explains 
each flag. 

A -0/42 

Timing Notes 

STATUS BITS 

FLAGS 

Disk Not Up To Speed 

Heads Not Loaded 

Brush Cycle In Process 

Start Switch Turned Off 

Zero if operation done correctly 

Low Negative Supply Voltage 

Low positive Supply Voltage 

Figure 7-6. Interlock register status bits 

A function 4 select head group request can be followed immediately by 
another function to be done as soon as the new head group is active. For 
example, a read disk data function may be stacked behind the select head 
group function. If a function 1 status request is sent to the interface 
before the read disk data function begins, the function 1 command takes 
the place of the read disk data function, and the read disk data function 
is lost. In this case, the Lost Function error flag sets in the 
interface and will be available for the Read Error flags status request. 

It is possible to issue a function 1 status request after a select 
cylinder function and before the select cylinder function has finished. 
But the status request should be issued immediately after the select 
cylinder function, to give plenty of time separation between the done 
flag of the status request and the done flag of the cylinder select. If 
the two done flags occur close together, the program may not be able to 
distinguish between them and handle the conditions incorrectly. It is 
best to avoid status request functions near the end of a head positioning 
sequence. 

HR-0808 
Part 3 
7-17 B 



I 

Bit 

Table 7-5. Interlock status bits 

Meaning 

This bit is set to indicate that the disk drive cabinet is 
over the normal temperature range. 

This bit is set to indicate that the disk surfaces are not 
up to speed. 

This bit is set to indicate that the disk heads are not 
loaded on the disk surface. 

The bit is set to indicate that the disk drive brush cycle 
is in process. 

This bit is set to indicate that the disk drive start 
switch is turned off. 

This bit is always zero. 

This bit is set to indicate that the negative voltage 
supply for the disk drive is below normal voltage. 

This bit is set to indicate that the positive voltage 
supply for the disk drive is below normal voltage. 

DKA : 2 - READ DISK DATA 

A function 2 request to the disk channel interface begins the process of 
reading a block of disk data into the I/O Memory at the beginning address 
specified by the interface A register. The disk sector number is 
specified by the accumulator content at the time of the function 
request. The head group number and cylinder number are the values which 
were last selected by the appropriate functions for that purpose. 

The reading process begins by a hardware test for proper angular position 
of the disk surface. The sector number requested by the processor is 
compared with the sector number currently under the reading heads. If 
the disk is not in the proper position, the execution of the read 
function is delayed until the disk surface is properly positioned. 

The interface anticipates the processor request for reading data when 
other function requests have been satisfied. This anticipation takes the 
form of reading each sector as the data appears under the readiny heads 
with the expect~tian that the read request fnr th~t data will be 
forthcoming~ 

HR-0808 
Part 3 
7-18 B 

] 



Data read from the disk surface is routed to the I/O Memory through two 
buffers, labeled A and B. Each buffer holds 512 words of I/O Processor 
data. Buffer A receives the first 512 words of disk data. Buffer B 
receives the second 512 words. The use of the two buffers alternates 
until the entire block of data has been processed. 

The function 2 request clears the channel done flag and sets the channel 
busy flag. The sector number is captured from the accumulator and 
compared with the sector count. The currently anticipated reading 
process will be accepted if buffer A has not yet filled with the first 
sector of data from the disk surface. If the read process has proceeded 
beyond this point, or if the sector number is wrong, the current read 
process is aborted and the function request waits up to one disk 
revolution for sector coincidence. 

The data in buffer A begins moving to the processor I/O Memory as the 
disk read circuits begin filling buffer B. The data moves to the I/O 
Memory in bursts of four words and normally empties buffer A before the 
disk read circuits have filled buffer B. The roles of the two buffers 
then reverse and data continues moving from the disk surface to the I/O 
Memory until the entire block has been processed. 

The eight words of error correction data which follow the data block are 
read into a buffer as the last section of the data block is moving from 
the other buffer to the I/O Memory. Reading stops at this point for a 
check of the Fire code generators which have been summing the data as it 
was read from the disk surface. If all four generators are clear, the 
data read from the disk is correct. The channel done flag is set and the 
channel busy flag is cleared as the last word of data is entered in the 
I/O Memory. 

DKA : 2 - Abnormal Conditions 

An abnormal condition in the disk storage unit or in the reading or 
processing of the data is indicated to the I/O Processor by a terminating 
sequence which sets the channel done flag and leaves the channel busy 
flag set as well. The processor program can then analyze the error by 
appropriate function 1 requests for status information. Three types of 
error conditions cause this termination, as described below. 

Recorded data error - While the recorded data is transferring from the 
DSU to the interface, the Fire code generators operate on the data as 
explained in "Fire Code Generator" later in this section. The 32-bit 
error correction code from each read head also passes through the Fire 
code generator for that head. The four new error correction codes 
generated should each be 32 zeros, if the data was stored and read 
correctly. 

HR-0808 
Part 3 

7-19 B 



If any error correction code is non-zero, the recorded data error flag 
for that head is set in the fault register. There are four such flags 
for the four read channels. The I/O processor may use a special read 
mode to obtain the error correction code necessary to proceed with the 
correction software algorithm. The special read mode is described in the 
following "DKA : 2 - Special Modes" section. 

Lost data error - The lost data flag is set in the fault register if the 
transfer of data from the buffers did not keep up with the reading of 
data from the disk surface. The processor must reread the sector in this 
case. 

Lost Function - The lost function flag in the error status response is 
set if a function is received at the interface before a previous function 
has finished. The new function is lost, and should be requested again. 

DRA : 2 - Special Modes 

Special modes for the reading of disk data are requested by the processor 
through sector numbers larger than 40 octal. The low-order 5 bits of the 
requested sector number are translated for sector coincidence. The 
high-order bits are interpreted for special mode. 

Format mode - Sectors 40S through 6lS request that the reading 
process begin with the verification word and continue for a total of 1000 
octal words. The following eight words are then interpreted as the error 
correction code. This read mode is used for maintenance only. In this 
case the error correction code was not generated by the Fire code 
generators because the data length during the write sequence was much 
longer than the requested length for this mode. This combination of long 
write and short read allows the maintenance routine to test for various 
failure modes in the Fire code generators. 

Read correction code - Sectors 100S through l2lS request that the 
reading process begin with the error correction code and continue for the 
eight words of that code. This mode is used when the data in the 
associated sector has been read incorrectly and the processor program 
wishes to do error correction. 

Read early - Sectors 200S through 22lS cause the reading heads to 
sample the data from the disk surface somewhat earlier than normal. This 
mode is used to recover data that cannot be read in a normal mode. 

Read late - Sectors 400S through 42lS cause the reading heads to 
sample the data from the disk surface somewhat later than normal. This 
mode is used to recover data that cannot be read in a normal code. 

HR-OSOS 
Part 3 
7-20 B 



Mixed modes - The read early and read late selections described above may 
be used together with the other special modes by combining the high-order 
bit values in a logical sum. 

Buffer Echo Mode 

A special diagnostic feature allows writing a test data block into the A 
and B buffers and then reading out the test data. This can only be done 
after a master clear and before a OKA : 1 function. The master clear 
could be from a power on sequence or from a deadstart sequence. A OKA : 
14 function to enter the starting address for the read to I/O Memory must 
precede the OMA : 2 read function. Refer to the buffer echo mode 
explanation given with the following OKA : 3 write function discussion. 

DKA : 3 - WRITE DISK DATA 

A function 3 request to the disk channel interface begins the process of 
writing a block of data from the I/O Memory onto the disk surface. The 
I/O Memory address for beginning the block of data is specified by the 
content of the interface A register. The disk sector number is specified 
by the accumulator content at the time of the function request. The head 
group number and cylinder number are the values which were last selected 
by the appropriate functions for that purpose. The function request sets 
the channel busy flag and clears the channel done flag. 

The writing process begins by filling buffer A with data from the I/O 
Memory. When this buffer is full, the interface monitors the angular 
position of the disk surface for the proper position to begin writing 
data. This position is slightly past the prerecorded verification word 
for the requested sector. The write circuits are turned on when the disk 
is in the proper position and the data in buffer A is transmitted to the 
disk surface. At this time the interface begins filling buffer B with 
data from the I/O Memory. Buffer B should be filled before the disk 
writing circuits have emptied buffer Aa The lost data flag in the fault 
register is set if this should not be the case. The disk writing 
circuits begin transmitting data from buffer B to the disk surface as 
soon as buffer A has been emptied. This process continues with the roles 
of buffers A and B alternating until the last of the data in the block 
has been loaded into buffer B. No further data is read from the I/O 
Memory and the interface waits for completion of the data transfer from 
buffer A to the disk surface. 

The interface sets the channel done flag as soon as buffer A is emptied 
for the last portion of the disk data. The channel busy flag is cleared 
if no error has occurred in the writing process. The interface then 
continues transmitting data from buffer B to the disk surface. The I/O 
Processor is free at this point to issue another write function request 
and begin loading buffer A with data for another sector on this track. 

HR-0808 
Part 3 
7-21 B 



The disk write circuits follow the last data from buffer B with eight 
words of error correction code. This data comes directly from the Fire 
code generators. The writing circuits are turned off at this time and 
the interface prepares to write data in the following sector if the I/O 
Processor has requested this function. 

The busy flag is left set at the time the done flag is cleared if an 
error has occurred during the writing process. There are two possible 
error conditions, which are described in the following paragraphs. 

Fire Code Generation 

As data is transferred from the I/O Processor into the interface buffer, 
the interface generates the Fire code, or cyclic redundancy checkword 
(CRC). The Fire code generator uses the polynomial x 32 +x 23 +x21 
+xll +x2 + 1 to create one 32-bit checkword for each of the four DSU 
write heads. This polynomial allows for the correcting of data in a 
single error burst of 11 bits or less; and detects errors if there are 
two bursts, or bursts of more than 11 bits in error. 

The checkword is generated by a 32-bit shifting register; the register is 
cleared before a data transfer is begun. The data bit going to the 
buffer is compared to bit 231 of the shifting register. If the two 
bits are alike, bit 20 of the register is cleared and the register is 
shifted left one position. If the bits are not alike, register bits 
21, 210, 220, and 222 are complemented, the register contents are 
then shifted left one position, and bit 20 of the register is set to 
1. Then, the next data bit is compared with register bit 231 and the 
register contents are altered as previously. 

Data bit 263 is the first data bit to be used in generating the 
checkword for DSU head 3; 262 is the first data bit used for DSU head 
2, 261 for head 1, and 260 for head 0. Bits 247, 231 , and 215 
are the other bits used first of their 16-bit channel words destined for 
DSU head 3. 

The checkword forms continuously while the interface transfers data to 
the DSU. The 32-bit error correction code is appended to the data block. 

Lost Data Error 

The lost data flag is set if the data transfer from the I/O Memory has 
not kept up with the data transfer to the disk surface. 

Lost Function Error 

The status response lost function error flag is set if a function is 
received at the Intertace betore the previous tunction is tinished. The 
new function is lost. To recover, issue the new function again. 

HR-0808 
Part 3 

7-22 B 



I 

Format Mode 

A special mode of operation is provided in the disk channel interface to 
prerecord the cylinder verification data on the disk surface. This mode 
is selected by a function 3 request with a sector number value of 40 
through 61 octal. The disk control circuits translate the low-order 4 
bits of the sector number in the normal way to select the sector for 
recording. The high-order bit causes the writing process to begin 
process to begin earlier than normal. This selection records a 40008 
word block of data on the disk surface in an otherwise normal manner in 
such a way that the first word of this data block is properly positioned 
for the cylinder verification word. The remainder of the recording in 
this format mode is used for maintenance functions and is then erased by 
the recording of the normal sector data. Figure 7-7 shows the pattern 
written in each sector under format mode. 

I 
N 
D GAP PREAMBLE POSTAMBLE 
E 
X 720 912 8 24 32,744 128 24 1,248 BITS 

Figure 7-7. Format mode sector pattern 

Buffer Echo Mode 

A special diagnostic feature allows writing a test data block into 
buffers A and B and then reading out the test data. This can only be 
done after a master clear (from a power on sequence or a deadstart) and 
before a DKA : 1 function. The sequence is as follows: 

1. Master clear 

2. OKA 

3. OKA 

4. OKA 

5. OKA 

14 enter I/O Memory starting address 

3 write data to buffers A and B 

14 enter I/O Memory starting address 

2 read data from buffers 

6. Verify data 

7. OKA: 1 function places controller in normal operation mode 

HR-0808 
Part 3 

7-23 B 



DKA : 4 - SELECT HEAD GROUP 

A function 4 request to the disk channel interface reserves the DSU and 
causes the head group selection circuits to select a head group. The new 
head group number is specified by the low-order 4 bits of the accumulator 
content at the time of the function request. This function may be 
requested at any time with respect to the execution of other disk channel 
functions. The 4-bit code for selection of the head group is captured in 
a special register in the disk channel interface. The action of 
switching the head group circuits requires about 5 microseconds and is 
delayed until the completion of any other function currently in process. 
It is possible, therefore, to select a new head group during a read or 
write sequence and continue the reading or writing from the last sector 
of one track to the first sector of a different track in the same disk 
cylinder, without missing a disk revolution. 

If this function is used to reserve the DSU, anyone of the DKA 1 
functions must still be issued before this DKA : 4 function. 

This function request does not alter the condition of the channel busy or 
done flags. There is no channel interface response to this function. 

DKA : 5 - SELECT CYLINDER 

A function 5 request to the disk channel interface causes the disk 
read/record head assembly to move to a cylinder position. The cylinder 
number is specified by the 10 low-order bits of the accumulator content 
at the time of the function request. 

The channel busy flag is set and the channel done flag is cleared by the 
function request. The servomechanism for positioning the head assembly 
then begins moving to the new cylinder position. This process takes from 
15 milliseconds for adjacent cylinders to 80 milliseconds for maximum 
travel. A cylinder selection for the current cylinder requires a few 
microseconds for the process. 

The interface monitors the cylinder positioning and when the read/record 
heads are on the newly requested cylinder, the data recorded on the 
selected track is read for verification of the cylinder. The data in the 
first verification word to pass under the read heads is captured and 
entered in the status response register. The channel busy flag is 
cleared to indicate completion of the requested function and the channel 
done flag is set. If the function cannot be completed because of an 
abnormal condition in the disk storage unit the channel done flag is set 
and the channel busy flag is left set. 

HR-0808 
Part 3 

7-24 B 



It is possible to program the disk channel interface in such a way that 
the progress of the cylinder positioning can be monitored. This is done 
by aborting the normal sequence described above with a function 1 status 
request. This resets the busy flag and clears the done flag and begins 
the status response sequence. The cylinder positioning will continue but 
the verification process will not occur. The progress of the cylinder 
positioning can then be monitored by reading the difference register 
content from the disk storage unit. A verification can be programmed by 
repeating the cylinder selection. 

DKA : 6 - CLEAR INTERRUPT ENABLE 

A function 6 request to the disk channel interface clears the channel 
interrupt enable flag. This prevents interruption of the I/O Processor 
program and requires program monitoring of the channel done flag for 
proper sequencing of disk control functions. 

DKA : 7 - SET INTERRUPT ENABLE 

A function 7 request to the disk channel interface sets the channel 
interrupt enable flag. This causes an I/O interrupt request for this 
channel whenever the channel done flag is set. The interrupt enable flag 
function for the I/O Processor system. 

DKA : 10 - READ LOCAL MEMORY ADDRESS 

This function request reads the current value in the channel interface 
I/O Memory address register and enters this value in the accumulator. 
This function may be performed at any time with respect to a disk storage 
unit sequence. 

DKA : 11 - READ STATUS RESPONSE 

This function request reads the current content of the disk storage unit 
status response register and enters this value in the accumulator. This 
function request may be performed at any time with respect to the disk 
storage unit sequence. The value read will be the response from the last 
function which entered the status response register. 

HR-0808 
Part 3 

7-25 B 



I 

I 

DKA : 14 - ENTER LOCAL MEMORY ADDRESS 

This function enters the current accumulator content in the channel 
interface I/O Memory address register. The channel busy and channel done 
flags are not altered in this process. 

DKA : 15 - STATUS RESPONSE REGISTER DIAGNOSTIC 

This function can be used to verify the operation of the status response 
register. The function transfers a test value from the accumulator to 
the status response register, overwriting the current status. A DKA : 11 
read status response function immediately following this diagnostic 
function will return the test value to the accumulator for verification. 
The channel busy and done flags are not affected by the DKA : 15 function. 

CONSOLE DISPLAY CHANNEL 

The I/O Processor has provision for a number of I/O channels connecting 
to operator display consoles. Each display is assigned to a separate 
channel and all may operate independently. Data is transmitted serially 
from a channel interface register to the display device. 

This channel has a 7-bit interface register which receives data from the 
I/O Processor accumulator and transmits this data serially to the display 
device. Function requests for this channell are described below. 

TOA 

TOA 

TOA 

TOA 

Clear the channel busy and channel done flags. 

Clear the channel interrupt enable flag. The channel 
busy and channel done flags are not altered in this 
process. 

Set the channel interrupt enable flag. The channel 
busy and channel done flags are not altered in this 
process. 

Enter the low-order 7 bits of the accumulator content 
in the channel interface register. It sets the 
channel busy flag and clear the channel done flag. 
It begins the transmission of the data from the 
interface register to the display device and clears 
the channel busy flag and set the channel done flag 
when the transmission has been completed. 

§ Valid channel busy and channel done flags cannot be read until 1 CP 
after this function is issued. 

§§ Allow 1 CP before checking the interrupt channel number (lOR: 10) 

HR-0808 
Part 3 

7-26 B 



I 

CONSOLE KEYBOARD CHANNEL 

The I/O Processor has provision for a number of I/O channels connecting 
to operator console keyboards. Each keyboard is assigned to a separate 
channel and all may operate independently. Data is transmitted serially 
from the keyboard to a channel interface register. The channel busy flag 
is set by the channel hardware at the beginning of the transmission. The 
channel busy flag is cleared and the channel done flag is set when the 
data has been assembled in the interface register. 

This channel has a 7-bit interface register which assembles the data for 
a character associated with a key depression. This data may then be read 
into the I/O Processor accumulator. 

TIA 

TIA 

TIA 

TIA 

Clear the channel done flag. 

Clear the channel interrupt enable flag. The channel 
busy and channel done flags are not altered in this 
process. 

Set the channel interrupt enable flag. The channel 
busy and channel done flags are not altered in this 
process. 

Read the contents of the channel interface register 
into the low-order 7-bit positions in the accumulator 
and clear the high-order bits. It sets the channel 
busy flag and clears the channel done flag. It 
transfers the data to the accumulator, then clears 
the channel busy flag and sets the channel done flag. 

§ Valid channel busy and channel done flags cannot be read until 1 CP 
after this function is issued. 

§§ Allow 1 CP before checking the interrupt channel number (lOR : 10) 

HR-0808 
Part 3 

7-27 B 



I 

I 

PERIPHERAL EXPANDER CHANNEL 

Depending on its function, an I/O Processor may have a channel connected 
to a peripheral expander. The peripheral expander can contain 16 
controllers for peripheral devices. Only one controller can be active at 
one time, but that controller may be servicing more than one peripheral 
device. Each peripheral unit is assigned a device address and is 
individually selectable. The functions for the peripheral expander are 
listed below. 

EXB O§ Idle channel 

EXB l§ DIA data input from A register 

EXB 2§ DIB data input from B register 

EXB 3§ DIC data input from C register 

EXB 4§ Read busy/done, interrupt number 

EXB S Load device address 

EXB 6§§ MSKO mask out 

EXB 7§§ Set interrupt mode 

EXB 10 Read data bus status 

EXB 11 Read status 1 

EXB 13 Read status 2 

EXB l4§ DOA data output to A register 

EXB lS§ DOB data output to B register 

EXB l6§ DOC data output to C register 

EXB l7§ Send control 

INTERFACE REGISTERS 

Each peripheral controller has three interface registers: A, B, and C. 
These registers are used for control and data communication between the 
peripheral device and the I/O Processor. The specific uses of the 
registers are defined by the peripheral device controller. 

§ Allow I c~ before checKing busy or done. 
§§ Allow 1 CP before checking the interrupt channel number {lOR 

HR-0808 
Part 3 
7-28 

IO} • 

B 



CHANNEL ASSIGNMENTS 

All peripheral devices handled by the peripheral expander share the same 
channel number. Device addresses select among the peripheral units. 

EXB : 0 - IDLE CHANNEL 

This instruction clears the peripheral expander channel busy and done 
flags, clears the peripheral expander interrupt enable flag, and clears 
the interface DMA (direct memory access) enable flag. The peripheral 
expander channel is then inactive and DMA references via the data channel 
will not be allowed. 

EXB : 1 - DIA 

This instruction requests the A input register contents from the selected 
peripheral controller in the peripheral expander. Peripheral expander 
channel busy sets and done clears, both in the clock period following 
issue. Since this command requires the use of the data bus, it is 
delayed by the function delay time (minimum 1 microsecond). When it 
completes, the peripheral expander channel done flag sets and the busy 
flag clears. At this time, the I/O Processor may follow this instruction 
with an EXB : 10 to load the A input register information into the I/O 
Processor accumulator. 

EXB : 2 - DIB 

This instruction performs exactly as the EXB : 1 instruction, except that 
the peripheral controller B input register is sampled. 

EXB : 3 - DIC 

This instruction performs exactly the same as the EXB : 1 instruction, 
except that the peripheral controller C input register is sampled. 

EXB : 4 - READ BUSY/DONE, INTERRUPT NUMBER 

This instruction serves two purposes. The first purpose is to return the 
specified peripheral controller busy and done flags to the interface. 
The second is to determine which peripheral controller has the highest 
priority interrupt, its done flag set, and its interrupts enabled. 

HR-0808 
Part 3 

7-29 B 



This is a delayed function because it uses the bus data lines from the 
peripheral expander. The peripheral expander channel busy flag sets and 
done flag clears 1 CP after instruction issue. Upon completion, the 
peripheral expander channel busy flag is cleared and the done flag is 
set. At this time, an EXB : 11 instruction may be issued to load the 
peripheral controller busy flags, done flags, and the present interrupt 
device address. 

EXB : 5 - LOAD DEVICE ADDRESS 

This instruction loads the bits 20 - 2 5 of the I/O Processor 
accumulator into the interface device address register. The interface 
device address register is used to hold the device address of a 
peripheral controller to which a delayed function is being sent. A 
delayed function is any function which requires the use of the bus data 
lines in the expander, thus requiring time to complete. Functions that 
are considered delayed functions are the EXB : 1, 2, 3, 4, 6, 14, 15, 16, 
and 17 functions. The address in the interface device address register 
must not be changed at any time during the execution of a delayed 
function. This instruction does not change the peripheral expander 
channel done and busy flags. The device address is loaded into the 
interface register in the I/O Processor clock period following 
instruction issue. 

EXB : 6 MSKO MASK OUT 

This instruction sends the present contents of the I/O Processor 
accumulator to the peripheral expander where the 16-bit word acts as a 
mask to disable interrupts from specific peripheral controllers. Every 
device controller in the peripheral expander has a mask bit. The 
specific mask bits for some probable peripheral devices are given in 
table 7-6. The mask bits are subject to change, so the latest 
documentation for the peripheral interface should be consulted. Three 
Cray Research assignments are shown on the table. If the mask bit is 
set, interrupts from the corresponding peripheral controller are 
disabled. The peripheral expander channel busy flag is set and the done 
flag is cleared upon initiation of this instructon. Because the mask 
must be sent throughout the peripheral expander via the bus data lines, 
this instruction is a delayed instruction. When it does complete, the 
peripheral expander channel busy flag clears and the done flag sets. 

Issuing this instruction clears the interrupt flag. If an interrupt 
condition is still present 400 nanoseconds after completion, the 
interrupt flag will set again. 

HR-0808 
Part 3 

7-30 B 



Table 7-6. Peripheral device mask bits for interrupt disabling 

Octal 
Device Code 

11/5l§ 

11/50§ 
30/70§ 
70 

14/54§ 
3l,32/7l,72§ 

06/46§ 
07/47§ 
15/55§ 
17/57§ 

I 44 

34,35/74,75§ 

l6/56§ 
22/62§ 
34/74§ 

20/60§ 

2l/61§ 
40 
41 
40§§ 
41§§§ 

33/73 
42 

43 

64,65,66/74 
76,76§ 

Mask bit Device 

Teletype output 

Teletype input 
Asynchronous hardware multiplexer 
Synchronous Line Adapter 

Real-time clock option 
IBM 360/370 interface 

Multiprocessor adapter transmitter 
Multiprocessor adapter receiver 
Incremental plotter 
Card Reader CRO (CRI modification) 
Modem control for multiline asynchronous 

controller 

24 Multiline asynchronous controller 

25 Magnetic tape MTO (CRI) 
Cassette tape 

26 Fixed head disk 

27 Analog/Digital converter 
Interprocessor bus full-duplex unit 
Interprocessor bus full-duplex unit 
Synchronous communication receiver 
Synchronous communication transmitter 

28 Moving head disk 
Digital I/O 

29 Line Printer PRO (CRI modification) 

210 Floating-point (NOVA only) 

211 Unassigned 

212 Unassigned 

213 Unassigned 

214 Unassigned 

215 Data communications multiplexer 

§ First device code/second device code 
§§ May be set up with any unused even device code greater than 40a 
§§§ May be set up with any unused odd device code greater than 4la 

HR-oaoa 
Part 3 

7-31 B 



EXB : 7 - SET INTERRUPT MODE 

This instruction is used to enable or disable interrupts for the 
peripheral expander I/O channel and for the peripheral controllers. The 
accumulator value present when this instruction issues determines what 
types of interrupts are honored. If a bit is set, the interrupts will be 
enabled as follows: 

Accumulator bit 20 -

Accumulator bit 21 -

Enables interrupts from the I/O channel to 
the I/O Processor 
Enables interrupts from the I/O controllers 
to the I/O Processor 

The I/O channel busy and done flags are not affected by this 
instruction. 

EXB : 10 - READ DATA BUS STATUS 

This instruction reads the data on the data bus into the I/O Processor 
accumulator. This is normally used to bring back the data received 
from the bus by the EXB : 1, 2, or 3 input instructions. The 
peripheral expander I/O channel busy and done flags are not effected 
by this instruction. The data will stay valid until another EXB : 1, 
2, or 3 function is issued. 

EXB : 11 - READ STATUS 1 

This instruction returns to the I/O Processor the status of the 
peripheral expander I/O channel and of the peripheral controller. 
Channel busy and done flags are not affected by this instruction. The 
status bits are assigned as shown in table 7-7. 

HR-0808 
Part 3 

7-32 B 



Table 7-7. Read status 1 bit assignments 

Bit Meaning 

Interrupting device code bit 2 0 

Interrupting device code bit 21 

Interrupting device code bit 22 

Interrupting device code bit 2 3 

Interrupting device code bit 24 

Interrupting device code bit 2 5 

Unassigned 

27 Direct memory access enabled 

28 Expander I/O channel interrupts enabled 

29 Controller interrupts enabled 

210 Function active - delayed function executing 

211 Expander I/O channel busy flag 

212 Expander I/O channel done flag 

213 INTR - interrupt request from peripheral interface 

214 SELB - select busy flag of addressed device 

215 SELD - select done flag of addressed device 

EXB : 13 - READ STATUS 2 

This instruction returns to the I/O Processor the status of the 
peripheral expander I/O channel and of the peripheral controller. 
Channel busy and done flags are not affected by this instruction. The 
instruction is similar to EXB : 11, except that the contents of the 
device address register in the interface is returned instead of the 
interrupt device code number. Status bit assignments are shown in table 
7-8. 

HR-0808 
Part 3 

7-33 B 



Table 7-8. Read status 2 bit assignments 

Bit Meaning 

Device address bit ~O , 

Device address bit 21 

Device address bit 22 

Device address bit 23 

Device address bit 24 

Device address bit 25 

Unassigned 

27 Direct memory access enabled 

28 Expander I/O channel interrupts enabled 

29 Controller interrupts enabled 

210 Function active - delayed function executing 

211 Expander I/O channel busy flag 

212 Expander I/O channel done flag 

213 INTR - interrupt request from peripheral interface 

214 SELB - select busy flag of addressed device 

215 SELD - select done flag of addressed device 

EXB : 14 - DOA (DATA OUT A) 

This instruction sends the contents of the I/O Processor accumulator to 
the selected peripheral controller in the peripheral expander. The data 
goes into the A register of the peripheral controller whose device 
address is currently in the device address register. This command causes 
the peripheral expander I/O channel busy flag to set and the done flag to 
clear. This ccrr~and which r~quires the use of the 0~t~ bus in the 
peripheral expander and is a delayed function. When it does complete, 
the peripheral expander I/O channel done flag sets and busy clears. 

HR-0808 
Part 3 
7-34 B 



EXB : 15 - DOB (DATA OUT B) 

This instruction sends the contents of the I/O Processor accumulator to 
the selected peripheral controller in the peripheral expander. The data 
goes into the B register of the addressed device controller. The 
instruction operation is otherwise the same as the EXB : 14 DIA 
instruction. 

EXB : 16 - DOC (DATA OUT C) 

This instruction sends the I/O Processor accumulator contents to the C 
register of the selected peripheral controller in the peripheral 
expander. Otherwise, the operation is the same as the EXB : 14 DOA 
instruction operation. 

EXB : 17 - SEND CONTROL 

The peripheral controllers use four control signals in the peripheral 
expander: I/O Reset, Pulse, Clear, and Start. Each controller may have 
different uses for these signals. This instruction sends the control 
signal selected by the bits in the accumulator at instruction issue. The 
control signals are delayed instructions. The peripheral expander I/O 
channel busy flag sets at issue time and the done flag clears. Then when 
the command has completed, the channel done flag sets and the busy flag 
clears. The accumulator bits set control signals as shown in table 7-9. 

HR-0808 

Table 7-9. Accumulator bit control signals 

Bit 

20 

21 

22 
I 
I 

23 I 
I 

Function 

Start 

Clear 

Pulse 

I/O reset 

Part 3 
7-35 

(S) 

(C) 

(P) 

(IORST) 

B 



DELAYED FUNCTIONS 

Several functions require the data bus in the peripheral expander. These 
need extra time to complete, and may have to wait for the data bus to be 
free. The completion of a delayed function is shown by setting the 
peripheral expander I/O channel done flag. The done flag for the 
preceding delayed function must be received at the I/O Processor before 
sending another delayed function. 

Those functions that are considered delayed functions are: 

EXB 1 DIA 

EXB 2 DIB 

EXB 3 DIC 

EXB 4 Read busy/done, interrupt number 

EXB 6 MSKO 

EXB 14 DOA 

EXB 15 DOB 

EXB 16 DOC 

EXB 17 Send control 

TRANSFER SPEEDS 

The peripheral expander interface is capable of sustaining a transfer 
rate of 16 megabits per second from the I/O Processor to the expander 
chassis. In the reverse direction, it can sustain a speed of 
approximately 14.5 megabits per second. This is achieved by using the 
data channel mode which transfers a l6-bit parcel every microsecond. The 
programmed I/O mode can also reach these speeds. 

HR-0808 
Part 3 

7-36 B 



I 

I 

I 

CHANNEL FOR INPUT FROM CRAY-l CHANNEL 

The I/O Processor may have one or more channels dedicated to receiving 
data from a CRAY-l I/O channel. Data is transferred in block mode 
directly into I/O Processor I/O Memory. The functions are listed below. 

CIA O§ Clear channel 

CIA l§ Enter I/O Memory address, start transfer 

CIA 2 Enter parcel count 

CIA 3 Clear channel parity error flags 

CIA 4 Clear ready waiting flag 

CIA 6§§ Clear interrupt enable flag 

CIA 7§§ Set interrupt enable flag 

CIA 10 Read I/O Memory address 

CIA 11 Read ready waiting/error flags 

I/O MEMORY ADDRESS REGISTER 

The I/O Memory address register contains the I/O Memory address for the 
next I/O Memory reference. It is loaded with the I/O Memory starting 
address at the initiation of the input transfer. The low-order 2 bits of 
starting address are forced to 0 when loaded into the register. This is 
done because the memory references are done in bursts of four parcels, 
and upon completion of a reference, the register address is increased by 
4. If, for some reason, the input transfer stops on some boundary other 
than four, the final memory reference stores undefined parcels. The 
number of defined parcels can be determined by reading the final memory 
address, which is equal to the address of the last defined parcel, plus 1. 

CIA : 0 - CLEAR CHANNEL 

This function clears the interface channel busy and done flags and aborts 
any transfer in progress. The new states of busy and done are not valid 
until the second clock period following this function. Wait one clock 
period after issuing this function before sampling these flags. 

§ Allow 1 CP before checking busy or done. 
§§ Allow 1 CP before checking the interrupt channel number (lOR 

HR-0808 
Part 3 
7-37 

10) • 

B 



I 

CIA : 1 - ENTER I/O MEMORY ADDRESS 

This function enters the accumulator content into the l6-bit I/O Memory 
address register (forcing the 2 low-order bits to 0) and starts an input 
transfer from the Central Processing Unit. The busy flag is set and the 
done flag is cleared. Upon receipt of four parcels, a memory reference 
is made. Then another four parcels are received and stored. This 
continues until the parcel count is 0 or until a disconnect is received 
from the CRAY-l I/O channel. At that time, the done flag is set and the 
busy flag is cleared. 

CIA : 2 - ENTER PARCEL COUNT 

This function stores the accumulator content into the interface parcel 
count register. This value is a positive count of the number of parcels 
to be transferred. The status of the busy and done flags are not 
affected. 

CIA : 3 - CLEAR CHANNEL PARITY ERROR FLAGS 

Four parity bits protect the 16-bit parcels on the CPU channel. A parity 
error in a 4-bit group causes one parity error flag to set. This funtion 
clears all four parity error flags. A parity error does not affect the 
states of the channel busy and done flags. Similarly, issuing this 
function does not affect the states of the channel busy and done flags. 

CIA : 4 - CLEAR READY WAITING 

If the I/O Processor input channel is inactive and a ready pulse is 
received from the CPU, the channel sets a ready waiting flag. If, in 
order to resynchronize the transfer, this ready must be discarded, this 
function will clear the ready waiting flag. If the ready signal is not 
discarded and the input channel is started, the data on the lines will be 
sampled as the first parcel of the transfer. The channel busy and done 
flags are not affected. 

CIA : 6 - CLEAR INTERRUPT ENABLE FLAG 

This function disables the interface from interrupting the I/O 
Processor. The channel may still be monitored via the busy and done flag 
status. The ~h~nnpl hllRy And done flags are not affected by this 
function. 

HR-0808 
Part 3 
7-38 B 



CIA : 7 - SET INTERRUPT ENABLE FLAG 

This enables interrupts on the interface. The channel will then 
interrupt whenever the done flag sets. The channel busy and done flags 
are unaffected by this function. 

CIA : 10 - READ MEMORY ADDRESS 

This function transfers the content of the interface I/O Memory address 
register into the accumulator. The address is one greater than the 
address of the last parcel stored. Since a memory reference is four 
parcels of data, there will be undefined parcels of data written into 
memory if the transfer length is not a multiple of four. The channel 
busy and done flags are unaffected by this function. 

CIA : 11 - READ READY WAITING/ERROR FLAGS 

This function reads into the accumulator the content of the interface 
status register. The status bit assignment is listed in table 7-10. 

HR-0808 

Table 7-10. Ready waiting/error flags 

Bit 

20 

21 

22 

23 

I 

215 

Meaning 

Channel parity error flag 
for bits 20-23 

Channel parity error flag 
for bits 24_27 

Channel parity error 
for bits 28-211 

Channel parity error 
for bits 212_215 

Ready waiting flag 

Part 3 
7-39 

flag 

flag 

I 

I 

B 



I 

I 

I 

CHANNEL FOR OUTPUT TO CRAY-l CHANNEL 

The I/O Processor may have one or more channels for sending data to a 
CRAY-l input channel. Data is transferred in block mode directly from 
I/O Memory. The functions are listed below. 

COA O§ Clear channel 

COA l§ Enter I/O Memory address, start transfer 

COA 2 Enter parcel count 

COA 3 Clear error flag 

COA 4 Set/clear external control signals 

COA 6§§ Clear interrupt enable flag 

COA 7§§ Set interrupt enable flag 

COA 10 Read I/O Memory address 

COA 11 Read error flags 

I/O MEMORY ADDRESS REGISTER 

The I/O Memory address register contains the I/O Memory address for the 
next I/O Memory reference. It is loaded with the I/O Memory starting 
address at the initiation of the output transfer. The 2 low-order bits 
of the starting address are forced to 0 when entered in the register. 
This is done because the memory references are in bursts of four parcels, 
and upon completion of a memory reference, the register address is 
increased by 4. Upon completion of the output, the I/O Memory address in 
the register is one greater than the address of the first parcel sent. 

COA : 0 - CLEAR CHANNEL 

This function clears the channel busy and done flags and aborts any 
transfer. The busy and done flags are not valid for sampling until the 
second clock period following completion of this function. 

§ Allow 1 CP before checking busy and done. 
§§ Allow 1 CP betore checking the interrupt channel number (lOR 

HR-0808 
Part 3 

7-40 

10) • 

B 



eOA : 1 - ENTER I/O MEMORY ADDRESS 

This function loads the current contents of the accumulator into the 
16-bit I/O Memory address register (forcing the 2 low-order bits to 0) 
and starts the transfer to the cpu. The busy flag sets and the done flag 
clears. The interface makes a memory reference starting at the address 
contained in the I/O Memory address register, and outputs four parcels of 
data. Then another reference reads out another burst of four parcels. 
When the parcel count stored in the interface register has been reached, 
the transfer stops. The done flag sets and the busy flag clears. 

COA : 2 - ENTER PARCEL COUNT 

This enters the accumulator content into the interface parcel count 
register. This value is a positive count of the number of parcels to be 
transferred. The channel busy and done flags are not affected by this 
function. 

COA : 3 - CLEAR ERROR FLAG 

This command is used to clear the sequence error flag. The sequence 
error flag sets when there is a resume signal received from the CPU and 
the interface is not busy or there is an I/O Memory reference in 
progress. If the interface interrupt enable flag is set, the sequence 
error flag will cause an interrupt. The sequence error has no affect on 
the channel busy and done flags. The channel busy and done flags are not 
affected by this function. 

COA : 4 - SET/CLEAR EXTERNAL CONTROL SIGNALS 

This function sends control signals to the CPUQ The signal selection is 
governed by set bits in the accumulator as shown in table 7-11. 

Hold disconnect is used to stop the automatic disconnect that is sent at 
the end of a transfer. 

Write disconnect sends a disconnect to the CPU with no data transferred. 

Error channel resume is reserved for maintenance use with configurations 
without an error logging channel. RTC interrupt is reserved for use on 
systems where a programmable clock is not present. 

The accumulator signal select bits are held in an interface register 
until they are altered by another COA : 4 function. The channel busy and 
done flags are not affected by this command. 

HR-0808 
Part 3 
7-41 B 



eOA : 6 - eLEAR INTERRUPT ENABLE FLAG 

This function clears the channel interrupt enable flag to prevent the 
interface from interrupting the I/O Processor. The channel may be 
monitored via the busy and done flags and via the status information 
returned by the eOA : 11 command. 

eOA : 7 - SET INTERRUPT ENABLE FLAG 

This function sets the interrupt enable flag to allow interrupting the 
I/O Processor. With interrupts enabled, the interface will interrupt 
whenever the done flag sets or whenever a sequence error occurs. This 
function does not affect the busy and done flags. 

eOA : 10 - READ I/O MEMORY ADDRESS 

This command enters the content of the I/O Memory address register into 
the accumulator. The address entered will be one greater than the 
address of the last parcel transferred from I/O Memory. The channel busy 
and done flags are not affected by this command. 

HR-0808 
Part 3 
7-42 B-Ol 



I 

I 

eOA : 11 - READ ERROR FLAGS 

This function reads into the accumulator the status of the interface. 
The bit significances are listed in table 7-12. 

Table 7-12. Error flags 

Bit Meaning 

20 4-bit channel data bit 20 

21 4-bit channel data bit 21 

22 4-bit channel data bit 22 

23 4-bit channel data bit 23 

215 Sequence error 

The channel busy and done flags are not affected by this command. The 
4-bit channel is reserved for maintenance use with configurations without 
an error logging channel. 

MEMORY CHANNEL 

A Memory Channel (1 standard and 1 optional) is used for transferring 
data between the CPU Central Memory and an lOP I/O Memory. A Memory 
Channel consists of an input channel that carries data from Central 
Memory to I/O Memory, and an output channel that passes data from the I/O 
Memory to the Central Memorye Each channel carries 64 bits of data in 
parallel, along with 8 check bits. A separate l2-bit channel is provided 
for both the input channel and the output channel for carrying address 
information. A data rate of approximately 800 million bits per second is 
possible on either the input channel or the output channel. 

The input channel and the output channel are more complex than the normal 
CRAY-l channels. There are more control signals provided, and more data 
protection information. The signals and their timing are described in 
this section, followed by an explanation of the lOP instructions that 
control a Memory Channel. 

HR-0808 
Part 3 

7-43 B 



SIGNAL DESCRIPTIONS 

Figure 7-8 shows the Memory Channel signals and the directions of the 
signals. First the input channel signals are described, then the output 
channel signals are described. 

DATA 20 - 263 
641., 

CHECK BYTE 20 - 27 
81'" 

DATA READY 
LAST WORD rLAG -

UNRECOVERABLE ERROR -
ADDRESS ERROR -

TRANSMIT ADDRESS 
INPUT 

GO 8 BANKS - CHANNEL 

TRANSMIT DATA 
CLEAR CHANNEL 
ADDRESS READY 

- ADDRESS 20 - 211 

~ ADDRESS PARITY 

CPU lOP 
~@ 

DATA 20 _ 263 

~ 
CHECK BYTE 20 - 27 

DATA READY 
U\ST WORD FLAG 

- CLEAR CHANNEL 
ADDRESS READY 

~2: 
ADDRE SS 20 - 211 

OUTPUT 

.-cD ADDRESS PARITY C"~~~E, 

DISABLE ERROR CORRECTIO~ 

TRANSMIT DATA 
UNRECOVERABLE ERROR 

ADDRESS ERROR 
TRANSMIT ADDRESS 

Figure 7-8. Memory Channel signals 

Central Processing Unit to I/O Processor Input Channel 

Data (to lOP) - The data is passed in 64-bit words over 64 lines. Data 
is valid 2 CPs after the leading edge of Data Ready, and stays valid for 
6 CPs. 

HR-0808 
Part 3 

7-44 B 



Check Byte (to lOP) - The Check Byte is the 8 error check bits read out 
of the CPU memory. It is passed to the r/o Processor to verify the 
accuracy of the received Data. The Check Byte has the same timing and 
valid points as the Data Signal. 

Data Ready (to rOP) - This signal indicates data is valid on the cable. 
The leading edge of Data Ready preceded the Data signals by 2 CPs and is 
true for 1 CP. The minimum period for Data Ready signals is 6 CPs. 

Last Word Flag (to rOP) - This signal indicates the last data word of the 
complete transfer is on the Data lines. This also means the CPU word 
count is O. This signal has the same timing and duration as the Data 
signals. 

Unrecoverable Error (to rOP) - This signal indicates an unrecoverable 
error occurred in the transfer at the CPU. The channel will go inactive 
and remain so until a Clear Channel signal is sent to the CPU from the 
rOPe Unrecoverable error conditions include: 

1. Address parity error, 

2. Transmit Data signal received at the CPU and less than 3 Address 
Ready signals were received, 

3. More than 3 Address Ready signals received at the CPU, 

4. Uncorrectable data error from Central Memory. 

The unrecoverable error signal continues until a Clear Channel is sent. 

Address Error (to rOP) - The Address Error signal indicates the 
unrecoverable error was an address error, from conditions 1, 2 or 3 of 
the error conditions listed previously in "Unrecoverable Error". The 
Address Error signal should be sampled when the leading edge of the 
Unrecoverable Error Signal appears. 

Transmit Address (to rOP) - This signal indicates the CPU side is 
inactive and that a transfer can be initiated by sending an address on 
the Address line. Transmit Address returns to the cleared state after 
three Address Ready signals, and will not set again until after the last 
data word has been transferred to the rop Processor. This signal also 
clears if there is an error condition on the CPU side of the channel and 
will not set again until a Clear Channel is sent. 

Go 8 Banks (to rOP) - This signal indicates the Central Memory is 
operating in the 8-bank mode. All transmitted block sizes should be 
reduced to eight words. 

HR-0808 
Part 3 
7-45 B 



Transmit Data (to CPU) - This signal indicates the I/O Processor can 
accept a block of data from the CPU. This signal remains set until the 
first Data Ready signal is received for that data block. Transmit Data 
is sampled at the CPU at the beginning of each data block. If Transmit 
Data is set, the l6-word data block will be transmitted. If this signal 
is cleared at that time, no data will be transmitted until the Transmit 
Data signal sets. The Transmit Data signal is clear when the channel is 
inactive and will not set until at least 100 nanoseconds after the third 
Address Ready signal trailing edge. 

The number of 64-bit data words sent in the first 
block equals 16 minus the number specified by bits 
20 and 21 of the CPU starting address. This 
adjusts the blocks to l6-bank boundaries so that 
the next block begins with section O. If the Go 8 
Bank signal is set, the number of data words in the 
first block is 8 minus the address 20 value. 

Clear Channel (to CPU) - This signal clears all error conditions in the 
channel. It remains set a minimum of 100 nanoseconds or until the 
Unrecoverable Error signal goes false. An Address Ready signal must lag 
the trailing edge of the Clear Channel signal by at least 100 nanoseconds. 

Address Ready (to CPU) - This signal indicates the Address lines will 
soon have valid address data. The leading edge of this signal leads the 
address information by 25 nanoseconds and stays set for 12.5 
nanoseconds. The minimum period for Address Ready signals is 75 
nanoseconds, leading edge to leading edge. Three Address Ready signals 
are used to initiate a transfer. The first accompanies bits 210 

through 221 of the beginning central memory address on the Address 
lines. The second Address Ready accompanies bits 20 - 29 of the 
beginning Central Memory address and bits 213 - 212 of the transfer 
word count. The third address Ready accompanies bits 20 - 211 of the 
transfer word count. See figure 7-9. 

HR-0808 
Part 3 

7-46 B 



211 2° ADDRESS LINE BITS 
1~-22-1------------------S-TA-R-T-IN-G--AD-D-R-ES-S-------------------2-10-'1 

211 22 21 2° ADDRESS LINE BITS 

2 29 STARTING ADDRESS 2° 1 2
13 212 

TRANSFER 
WORD 

COUNT 

211 2° ADDRESS LINE BITS 

3 I 211 TRANSFER WORD COUNT 2° 

Figure 7-9. Address and word count formats 

Address (to CPU) - The 12 Address lines carry the Central Memory starting 
address and the transfer word count. The information carried on the 
Address lines for each of the three address transfers is shown in figure 
7-9. The information is valid for 75 nanoseconds. The Address signals 
lag the leading edge of Address Ready by 25 nanoseconds. 

Address Parity (to CPU) - These signals provide odd parity for each group 
of 4 address bits as follows: 

Address Parity Bit 

HR-0808 

Address Information Bits 

Part 3 
7-47 B 



The Address Parity signals have the same timing as Address signals. They 
are valid for 75 nanoseconds. 

I/O Processor to Central Processing Unit Output Channel 

Data (to CPU) - Data passes in 64-bit words over 64 lines. Data is valid 
25 nanoseconds after the Data Ready signal leading edge and Data stays 
valid for 75 nanoseconds. 

Check Byte (to CPU) - Check Byte is the 8 error check bits generated by 
the output side of the channel. The error code generation methods used 
are the same on each side of the channel. The Check Byte is passed to 
the CPU with the same timing and valid points as the Data signals. 

Data Ready (to CPU) - This signal indicates data is valid on the cable. 
The leading edge of Data Ready precedes the Data signals by 25 
nanoseconds and Data Ready is set for 12.5 nanoseconds. The minimum 
period for Data Ready signals is 75 nanoseconds. 

Last Word Flag (to CPU) - This signal 
complete transfer on the Data lines. 
word count is O. This signal has the 
Data signals. 

indicates the last data word of the 
This also means the I/O Processor 
same timing and duration as the 

Clear Channel (to CPU) - This signal clears all error conditions in the 
channel. It remains set a minimum of 100 nanoseconds or until the 
Unrecoverable Error signal clears. An Address Ready signal must lag the 
trailing edge of the Clear Channel signal by at least 100 nanoseconds. 

Address Ready (to CPU) - This signal indicates information will soon be 
valid on the Address lines. The leading edge of Address Ready leads the 
valid address information by 25 nanoseconds and is set for 12.5 
nanoseconds. The minimum period for sequential Address Ready signals is 
75 nanoseconds. The Address Ready signal is only sent when the Transmit 
Address signal is set. Three Address Ready signals are used to initiate 
a data block transfer. The first Address Ready signal accompanies 
Address information which is bits 210 - 221 of the starting address 
in Central Memory. The second Address Ready indicates the Address lines 
will soon contain bits 20 - 29 of the Central Memory starting address 
and bits 212 - 213 of the transfer word count. The third address 
information transmission preceded by an Address Ready, contains the 20 

- 211 bits of the transfer word count. See preceding figure 7-9. 

Address (to CPU) - The 12 Address lines carry the Central Memory starting 
address and the transfer word count. The Address signals lag the leading 
edge of Address Ready by 25 nanoseconds, and then stay set for 75 
nanoseconds. The formats of the information carried in each of three 
address information transfers are shown in the preceding figure 7-9. 

HR-0808 
Part 3 
7-48 B 



Address Parity (to CPU) - These signals provide odd parity for each group 
of four Address signals as follows: 

Address Parity Bit Address Information Bits 

2° 2° - 23 

I 21 24 - 27 

I 
22 28 _ 211 

The Address Parity signals have the same timing as Address Signals. They 
are valid for 75 nanoseconds. 

Disable Error Correction (to CPU) - This signal is used for diagnostic 
purposes only. It disables the Single Error Correction, Double Error 
Detection (SECDED) circuitry used on the data channel. 

Transmit Data (to lOP) - This signal indicates the CPU can accept a block 
of data from the I/O Processor. This signal remains set until the first 
data ready signal is received for that data block. Transmit data is 
sampled at the beginning of each data block. If Transmit Data is set, 
the l6-word data block will be transmitted. If this signal is cleared 
when sampled, no data will be sent until Transmit Data does go set. 

NOTE 

The number of 64-bit words sent in the first block of a 
transfer equals the number of banks (16 or 8), minus 
the number specified by bits 2° and 21 (16 banks) 
or by bit 2° (8 banks) of the Central Memory starting 
address. This adjusts the blocks to 16-bank or 8-bank 
boundaries so that the next block begins with bank 0. 

Unrecoverable Error (to lOP) - This signal indicates an 
unrecoverable error occurred in the transfer at the CPU side. 
The channel will go inactive and remain so until a Clear Channel 
is sent to the CP. Unrecoverable Error conditions include: 

HR-0808 
Part 3 

7-49 B 



I 

I 

1. Address Parity Error, 

2. Data Ready received and less than three Address Ready signals, 

3. More than three Address Readies received, 

4. Uncorrectable data error on channel, 

5. Transfer word count = 0 and no Last Word Flag, 

6. Transfer word count ~ 0 and Last Word Flag. 

The Unrecoverable Error signal remains set until a Clear Channel signal 
is sent. 

Address Error (to lOP) - The Address Error signal indicates the 
Unrecoverable Error was an address error, from conditions 1, 2, or 3 of 
the preceding Unrecoverable Error list. The Address Error signal should 
be sampled when the leading edge of Unrecoverable Error appears. 

Transmit Address (to CPU) - This signal indicates the CPU side is 
inactive and a transfer can be initiated by sending data over the Address 
lines. This signal will clear after three Address Ready signals and will 
not set again until the last word of the complete channel transfer has 
been stored in Central Memory. Transmit Address will clear if there is 
an error condition on the CP side and in that case Transmit Address will 
not set again until Clear Channel is sent. 

MEMORY CHANNEL FUNCTIONS FOR INPUT FROM CPU 

The following describes the input operation functions for the Memory 
Channel. The functions are listed below. 

HIA Clear channel busy, done flags 

HIA 1 Enter I/O Memory address 

HIA 2 Enter upper Central Memory address 

HIA 3 Enter lower Central Memory address 

HIA Read Central Memory, enter block length 

HIA Clear interrupt enable flag 

HIA Set interrupt enable flag 

HIA 14 Enter diagnostic mode 

§ Allow 1 CP before checking busy or done. 
§§ Allow 1 CP before checking the interrupt channel number (lOR 

HR-0808 
Part 3 
7-50 

10) 

B 



Interface Registers 

Three interface registers are used to control the transfer. The Central 
Memory starting address is held in a 22-bit register. Two separate 
commands, HIA : 2 and HIA : 3 load the 22-bit address. The I/O Processor 
I/O Memory starting address is held in a 16-bit register that is loaded 
by an HIA : 1 command. The third register holds 14 bits of the transfer 
word count, or block length, entered by the HIA : 4 function. 

HIA : ° - Clear Channel Busy, Done Flags 

This function clears the channel busy and done flags. It will cause an 
error condition if issued while this channel is active. HIA: ° must be 
used to clear an error condition on the channel. 

HIA : 1 - Enter I/O Memory Starting Address 

This function enters the content of the I/O Processor accumulator into 
the I/O Memory address register. The 2°, 21 bits of the address are 
forced to 0. This command does not alter the state of the channel busy 
or done flags. If this function is given while this channel is active, 
an error conditiion occurs. 

HIA : 2 - Enter Upper Central Memory Address 

This function enters the 2° - 212 bits of the I/O Processor 
accumulator into the 29 - 221 positions of the Central Memory 
starting address register. The states of the channel busy and done flags 
are unaltered. This command will cause an error condition if issued 
while this channel is active. 

HIA : 3 - Enter Lower Central Memory Address 

This function enters the 2° - 28 bits of the I/O Processor 
accumulator into the 2° - 28 bits of the Central Memory starting 
address register. The states of the channel busy and done flags are 
unaltered. This command will cause an error condition if issued when the 
input channel is active. 

HR-0808 
Part 3 
7-51 B 



BIA : 4 - Read Central Memory, Enter Block Length 

This command enters the lowest 20 - 213 bits of the I/O Processor 
accumulator into the block length register. (This value is treated as a 
count of 64-bit words with a zero value indicating the maximum 16,384 
words.) The busy flag is set and the done flag is cleared and the 
transfer is initiated. Upon completion, the done flag will set and the 
busy flag will clear. If during the transfer an unrecoverable error 
occurs, the transfer will terminate and the done flag will set and the 
busy flag will remain set. This command will cause an error condition if 
issued while the input channel is active. 

HIA : 6 - Clear Interrupt Enable 

This function clears the interrupt enable flag for the channel. The 
states of the busy and done flags remain unaltered. 

HIA : 7 - Set Interrupt Enable 

This function sets the interrupt enable flag for the channel. The states 
of the busy and done flags remain unaltered. 

HIA : 14 - Enter Diagnostic Mode 

This function enters the 20 - 22 bits of the I/O Processor 
accumulator into the diagnostic mode register. The modes are summarized 
in table 7-13. Only one mode is valid at a time. All diagnostic modes 
are cleared with a master clear, or alternately, by doing HIA : 0, 
followed by BIA : 14 with the accumulator = O. Mode 0 is active until 
any other mode is selected. This function is for maintenance purposes 
only. 

HR-0808 
Part 3 

7-52 B 



Mode 
Designator 

o 

1 

2 

3 

4 

5 

6 

7 

Table 7-13. Input channel diagnostic modes 

Function 

Set Last Word flag (only if channel is active) 

Disable Last Word flag from CPU 

Force constant Address Ready 

Disable third Address Ready 

Transfer first address with a "0" parity bit, third 
address with a "1" parity bit, and disable Data Ready 
from CPU 

Force Clear Channel without inactivating lOP 

Disable Block Length = 0 

Disable lOP data error correction and detection 

Memory Channel Input Error Processing 

If an irrecoverable error occurs in an input transfer from the Central 
Memory, the busy and done flags will both set. An error code is 
generated and sent to an error log. The error codes are summarized in 
table 7-14. 

Memory Channel Input Sequence 

Figure 7-10 shows the sequence of signals for transferring data from 
Central Memory to I/O Memory. 

The only recoverable error is correctable data error. This type of error 
is ignored by the channel because the data is corrected automatically; 
the syndrome information is sent to an error log. 

HR-0808 
Part 3 

7-53 B 



Error Code 

1 

2 

3 

4 

5 

6 

7 

HR-0808 

Table 7-14. Input channel error codes 

Name 

Function Error 

Active Error 

Transmit Address Timeout 

CPU Address Error 

CPU lOP Data Error 

Block Length Error 

Data Ready Timeout 

Part 3 
7-54 

Condition 

Indicates a function 0, 1, 2, 
3 or 4 was issued while the 
channel was active. 

Indicates the CPU side went 
inactive while the lOP side 
was still active. 

Indicates an lOP input was 
initiated but the CPU did not 
send a transmit address within 
2 milliseconds. 

Indicates the CPU side 
received greater or less than 
three address readies or there 
was a parity error in one of 
the address channel transfers. 

Indicates the CPU side has a 
multiple data error from 
memory or the lOP side 
received data with a multiple 
error. 

Indicates the lOP received the 
last word and the block length 
count was not 0 or the last 
word was not received and the 
block length count was equal 
to O. 

Indicates the lOP did not 
receive data within 2 
milliseconds. 

B 



lOP CPU 

l. .. Transmit Address 

2. Activate channel 

Upper address, Address Ready. ~ 

Lower address, upper block 6CP 
length, Address Ready. ~ 

Lower block length, 6CP 
Address Ready ~ 

3. Drop Transmit Address, 
activate CPU side. 

4. Read first block from 
Central Memory to buffer. 

5. Transmit Data ~ 

6. T 
.. 

6CP 
Data word and Data Ready 

store words in .. 
6CP 

Data word and Data Ready 
First 

I/O Memory .. Data word and Data Ready 
Block 

~ .. Data word and Data Ready 

7. Transmit Data • 
8. + • Data word and Data Ready 

Second 
Bl.Ck .. Data word and Data Ready 

9. Transmit Data • • .. Data word and Data Ready 

Last 
Block 

t .. Data word and Data Ready 
and Last Word Flag. 

10. Done flag sets 

Figure 7-10. Memory Channel sequence, input to I/O Processor 

HR-0808 
Part 3 
7-55 B 



I 

I 

I 

MEMORY CHANNEL FUNCTIONS FOR OUTPUT TO CPU 

The I/O Processor may have a channel for sending data to the CPU at over 
to 800 megabits per second. Transfers are done in blocks of 64-bit words 
under I/O Processor control. Error detection and correction are used to 
protect data quality. The functions are listed below. 

HOA O§ Clear channel busy, done flags 

HOA 1 Enter I/O Memory address 

HOA 2 Enter upper Central Memory address 

HOA 3 Enter lower Central Memory address 

HOA 5§ Write Central Memory, enter block length 

HOA 6§§ Clear interrupt enable flag 

HOA 7§§ Set interrupt enable flag 

HOA 14 Enter diagnostic mode 

Interface Re9isters 

The interface has three registers used to control the output transfers. 
One 22-bit register holds the Central Memory starting address. The 
22-bit address is loaded by the HOA : 2 and HOA : 3 functions. The I/O 
Processor I/O Memory starting address is held in a l6-bit register which 
is entered by the HOA : 1 function. A l4-bit register holds the transfer 
word count, or block length in 64-bit words, that is loaded by the HOA : 
5 command. 

HOA : 0 - Clear Channel Busy, Done Fla9s 

This function idles the channel by clearing the busy and done flags. 
This function causes an error condition if issued while the output 
channel is active. This command must be used to clear an error condition 
in the channel. 

HOA : 1 - Enter I/O Memory Address 

This function enters the value of the I/O Processor accumulator into the 
I/O Memory address register. The 20 - 21 bits are forced to a zero 
value. The states of the busy and done flags are unaltered. This 
command causes an error condition if issued when the output channel is 
active. 

§ Allow 1 CP before checking busy or done. 
§§ Allow 1 CP before checking the interrupt channel number (lOR 

HR-0808 
Part 3 
7-56 

10) . 

B 



HOA : 2 - Enter Upper Central Memory Address 

This function enters the 20 - .212 bits of the I/O Processor 
accumulator into the 23 - 215 bits of Central Memory starting address 
register. The states of the busy and done flag are unaltered. This 
function causes an error condition if issued when the output channel is 
active. 

HOA : 3 - Enter Lower Central Memory Address 

This function enters the 2° - 28 of the I/O Processor accumulator 
into the 2° - 28 bits of the Central Memory starting address 
register. The states of the busy and done flags are unaltered. This 
command causes an error condition if issued when the output channel is 
active. 

HOA : 5 - Write Central Memory, Enter Block Length 

This function enters the 2° - 213 bits of the I/O Processor 
accumulator into the block length register. (This value is treated as a 
count of 64-bit words with a zero value indicating the maximum 16,384 
words.) The busy flag is set and the done flag is cleared and the 
transfer is initiated. Upon completion, the done flag will set and the 
busy flag will clear. If during the transfer an irrecoverable error 
occurs, the transfer will terminate and the done flag will set and the 
busy flag will be left set. This command will cause an error condition 
if issued while the output channel is active. 

HOA : 6 - Clear Interrupt Enable 

This function clears the interrupt enable flag. The states of the busy 
and done flags are unaltered. 

HOA : 7 - Set Interrupt Enable 

This function sets the interrupt enable flag. The states of the busy and 
done flags are unaltered. 

HOA : 14 - Enter Diagnostic Mode 

This function enters the 2° - 27 bits of the I/O Processor 
accumulator into the diagnostic mode register. The modes are summarized 
in table 7-15. This is only for maintenance purposes. 

HR-0808 
Part 3 
7-57 B 



I 
With the exception of mode 6, only one mode is valid at a time. Mode 6 
is a special case. It is held if it has been set and cannot be cleared 
by entering another mode. All diagnostic modes clear with master clear, 
or alternately by doing HOA : 0, followed by HOA : 14 with the 
accumulator = O. Mode 0 is active until any other mode is selected. 

Mode 
Designator 

o 

1 

2 

3 

4 

5 

6 

7 

Table 7-15. Output channel diagnostic modes 

Function 

Set Last Word flag (only if channel is active) 

Disable Last Word flag from CPU 

Force constant Address Ready 

Disable third Address Ready 

Transfer first address with a "0" parity, third 
address with a "1" parity bit, and disable Data Ready 
to CPU 

Force Clear Channel without inactivating lOP 

First word 256 - 263 bits used as second word 
check byte, third word 256 - 264 bits as fourth 
word check byte, etc. 

Disable error correction and detection as CPU 

Central Memory Output Error Processing 

If an irrecoverable error occurs in an output transfer to the Central 
Memory, the busy and done flags both set. An error code is generated and 
sent to an error log. The error codes are summarized in table 7-16. 

The only recoverable error is a correctable data error. This type of 
error is ignored by the channel interface because it is corrected 
automatically. The syndrome information is sent to an error log. 

HR-0808 
Part 3 
7-58 B 

I 



Error Code 

1 

2 

3 

4 

5 

6 

7 

HR-0808 

Table 7-16. Output channel error codes 

Name 

Function Error 

Active Error 

Transmit Address Timeout 

CPU Address Error 

CPU Data Length Error 

Last Word Timeout 

Transmit Data Timeout 

Part 3 
7-59 

Condition 

Indicates a function 0, 1, 2, 
3 or 5 was issued while the 
channel was active. 

Indicates the CPU side went 
inactive while the lOP side 
was still active. 

Indicates an lOP input was 
initiated but the CPU did not 
send a transmit address within 
2 milliseconds. 

Indicates the CPU side 
received greater or less than 
three address readies or there 
was a parity error in one of 
the address channel transfers. 

Indicates the CPU received 
data with a multiple error or 
the last word was received and 
the block length count was not 
a or the last word was not 
received and the block length 
count was equal to O. 

Indicates the last word was 
sent but the CPU did not go 
inactive within 2 milliseconds. 

Indicates a transmit data was 
not received within 2 
milliseconds. 

B 



Memory Channel Output Sequence 

Figure 7-11 shows the sequence of signals for transferring data from I/O 
Memory to Central Memory. 

rop 

l. 

2. Activate channel 

Upper address, Address Ready. 

Lower address, upper block 6CP 
length, Address Ready. 

Lower block length, 6CP 
Address Ready. 

3. Data word, Data Ready 

Data word, Data Ready 6CP 

Data word, Data Ready 6CP 

Data word, Data Ready 

4. 

5. Data word, Data Ready 

Data word, Data Ready 

6. 

7. Data word, Data Ready 

Data word, Data Ready, 
Last word Flag. 

8. 

9. 

10. Done flag sets 

CPU 

4-----------------Transmit Address 4 

~ 

• 
• 
• 
~ 

• 
~ 

~ 

~ 

• 

~ 

.-----------------Transmit Data 4 
Drop Transmit Address 

T store words in 
First 

buffer 
Block 

~ 
4-----------------Transmit Data • 
T 

Second 
Block 

t 

store first block 
in Central Memory 

store words in 
buffer 

4-----------------Transmit Data III 

Jst 
Block 

* 
store last block 
in Central Memory 

4-----------------Transmit Address • 

Figure 7-11. Memory Channel sequence, output from I/O Processor 

HR-0808 
Part 3 

7-60 B 



I 

ERROR LOGGING CHANNEL 

The I/O Processor may have an error logging channel connected. This 
channel reports errors from the I/O Memories of three other I/O 
Processors, from the Buffer Memory, from the Central Memory, and from the 
Memory Channels to the Central Memory. If any error condition occurs in 
any of the reporting devices, the channel done flag sets. The functions 
are listed below. 

ERA O§ Idle channel 

ERA 6§§ Clear interrupt enable flag 

ERA 7§§ Set interrupt enable flag 

ERA 10 Read error status 

ERA 11 Read error information (first parameter) 

ERA 12 Read error information (second parameter) 

ERA 13 Read error information (third parameter) 

IN'l'ERFACE REGISTERS 

The error log interface has four interface registers. The error status 
register is a 9-bit register that holds set bits for the device causing 
the error. This register is accessed by the ERA : 10 command. 

The first parameter word register has 16 bits, and stores I/O Memory 
failing locations, or Buffer Memory error data, or Memory Channel error 
data. 

The second parameter word register has 16 bits, and stores the lower 
address for the Buffer Memory or Central Memory failing locations. 

The third parameter word register has 8 bits, and stores the upper 
address for either the Buffer Memory or the Central Memory. 

ERA : 0 - IDLE CHANNEL 

This function clears all error flags stored in the interface registers. 
The done flag is cleared. 

§ Allow 1 CP before checking busy or done. 
§§ Allow 1 CP before checking the interrupt channel number (lOR 

HR-0808 
Part 3 
7-61 

10) . 

B 



I 

I 

ERA : 6 - CLEAR INTERRUPT ENABLE FLAG 

This function clears the interrupt enable flag for this channel. 

ERA : 7 - SET INTERRUPT ENABLE FLAG 

This function enables the interface to interrupt the I/O Processor. 

ERA : 10 - READ ERROR STATUS 

This function returns the contents of the interface error status register 
to the accumulator. The interpretation of the set bits is given in table 
7-17. 

Table 7-17. Error status register bits 

Bit Control Signal 

20 I/O Processor 1 I/O Memory error 

21 I/O Processor 2 I/O Memory error 

22 I/O Processor 3 I/O Memory error 

23 Buffer Memory error 

24 Central Memory error 

25 Memory Channel input A error 

26 Memory Channel output B error 

27 Memory Channel input C error 

28 Memory Channel output D error 

The selection of physical devices such as I/O Processors and Memory 
Channels as A, B, C, etc. is part of the overall system definition. 
Appendix F has a typical system definition. 

HR-0808 
Part 3 
7-62 B 



Errors occurring in the I/O Processor having the error logging channel 
are reported to that I/O Processor via its own I/O Memory error channel 
(LME). 

ERA : 11 - READ ERROR INFORMATION (FIRST PARAMETER) 

This function returns an error parameter word to the accumulator, 
selected by a bit set in the accumulator when the function issues. Only 
one bit among the 20 - 28 positions may be set at one time. The 
accumulator bits select parameters as listed in table 7-18. 

When an I/O Processor I/O Memory address is read, or when a Memory 
Channel error data word is read, the device bit is cleared in the status 
register. 

The address invalid flag (215 ) in the Buffer Memory error data is set 
when the address that will be given in the second and third parameter 
words is not the correct address for the error being reported in the 
first parameter word. This can happen when a later read reference 
follows closely after a read reference that detects an error in its 
data. The address for the later read reference is incorrectly reported 
in the second and third parameter words, and should be disregarded. 

This function must be immediately preceded by a logical product 
instruction as follows: 

011777 A=A&d d=777 

171xxx ERA 11 

or 

015xxx A=A&k 

xxx777 k=xxx777 

171xxx ERA: 11 

ERA : 12 - READ ERROR INFORMATION (SECOND PARAMETER) 

This function returns the content of the second parameter word register 
to the accumulator. The second parameter word is selected by bits 23 

or 24 in the accumulator when the function is sent. Only one bit may 
be set in the accumulator 23 and 24 bit positions at a time. 
Selection is as follows. 

HR-0808 

23 Buffer Memory lower address (address bits 20 - 215) 

24 Central Memory lower address (address bits 20 - 215) 

Part 3 
7-63 B 



I 
I 

Table 7-18. First error parameter selection 

Error Status 
Register Bit 

HR-0808 

First Parameter Information Returned 

I/O Processor A I/O Memory failing address: 
20 - 21 Bank number 
22 - 23 Section number 
24 Byte: 

OBits 2°-2 7 

1 Bits 28-215 

I/O Processor B I/O Memory failing address, same 
format as for 20. 

I/O Processor C I/O Memory failing address, same 
format as for 2°. 

Buffer Memory error data: 
20 - 27 Syndrome bits 
29 Correctable error if 1 
210 Noncorrectable error if 1 
212 - 213 Port number 
215 Address invalid if 1 

Central Memory error data: 
20 - 27 Syndrome bits 
29 Correctable error 
210 Noncorrectable error 
212 - 213 Read mode: 

° Scalar 
1 I/O 
2 Vector 
3 Fetch 

Input Memory Channel A error data: 
20 - 27 Syndrome bits 
28 - 210 Error code (refer to Central Memory 

input error processing, this section) 

Output Memory Channel B error data, same as for 
25. Refer to Central Memory output error 
processing, this section, for error codes. 

Input Memory Channel C error data, same format as 
for 25. 

! Output Memory Channel D error data~ sarnp fnrm~r ~~ 
I for 25. Ref~r to Central Memory output error 
I processing, this section, for error codes. 
I 
I 

Part 3 
7-64 B 



This function must be immediately preceded by a logical product 
instruction as follows: 

011777 A=A&d d=777 

172xxx ERA 12 

or 

015xxx A=A&k 

xxx777 k=xxx777 

172xxx ERA: 12 

ERA : 13 - READ ERROR INFORMATION (THIRD PARAMETER) 

This function returns the content of the third parameter word register to 
the accumulator. The third parameter word is selected by bits 23 or 
24 in the accumulator when the function issues. Only one bit may be 
set in the field at a time. Selection is as follows. 

23 Buffer Memory upper address (address bits 216 - 222 
going into accumulator positions 20 - 26) 

24 Central Memory upper address (address bits 216 - 221 
going into accumulator positions 20 - 25) 

The reading of the third parameter word clears the error bits in the 
status register for the Central Memory or for the Buffer Memory. 

This function must be immediately preceded by a logical product 
instruction as follows: 

HR-0808 

011777 A=A&d d=777 

l73xxx ERA 13 

or 

015xxx A=A&k 

xxx777 k=xxx777 

l73xxx ERA: 13 

Part 3 
7-65 B 



I 

BLOCK MULTIPLEXER CHANNEL 

The I/O Subsystem communicates with IBM-compatible equipment over the 
block multiplexer channels. The following functions are used. 

BMA 0 Clear channel control 

SMA 1 Send reset function 

BMA 2 Channel command 

BMA 3 Read REQUEST- IN address 

BMA 4 Asynchronous I/O 

BMA 5 Delay counter diagnostic 

BMA 6§§ Clear channel interrupt enable flag 

BMA 7§§ Set channel interrupt enable flag 

BMA 10 Read I/O Memory address 

BMA 11 Read byte coun ter sta tus 

SMA 12 Read status/address 

BMA 13 Read input tags 

SMA 14 Enter I/O Memory address 

BMA 15 Enter byte count 

BMA 16 Enter device address/mode 

BMA 17 Enter output tags 

GENERAL CHARACTERISTICS 

Block multiplexer channels are grouped into sets of four channels, which 
share one Cray Research BMC-4 Block Multiplexer Controller. The 
controller interfaces to the Auxiliary I/O Processor (XIOP) via one DMA 
port. The speed capacity of the DMA port is shared among the four 
channels of the controller. The four channels operate asynchronously and 
compete only for I/O Memory references. 

§§ Allow 1 CP before checking the interrupt channel number (lOR 

HR-0808 
Part 3 
7-66 

,"', 
.J..V J • 

B-Ol 



A block multiplexer channel operates in either selector channel mode, 
byte multiplexer mode or block multiplexer mode. All IBM commands are 
possible. The channel features command and data chaining, and detection 
of RETRY STATUS, as well as the I/O ERROR ALERT and the HIGH SPEED option. 

The channel drives one or more IBM-compatible control units, which in 
turn drive peripheral devices. 

This manual does not explain or document the IBM communications protocol, 
the signals used, nor their sequencing. Refer to the appropriate IBM 
publications for detailed information and definitions of IBM terminology. 

TRANSFER RATES 

The block multiplexer channel data rate is determined by cable length and 
signal turn-around time within the control unit. For each byte of data 
or control information that is sent, an appropriate response signal or 
signals must be received. This results in a data rate limit of about 6.4 
million bits a second, or 800 kilobytes a second. IBM-compatible 
peripheral controllers that use the high speed option (requiring an 
additional pair of control lines) may achieve about 12.8 million bits a 
second, or 1.6 million bytes a second. 

DATA HANDLING 

One important feature of the channel is the assembly and disassembly of 
data between the 8-bit channel and the 16-bit memory parcels. Figure 
7-12 shows the data changes. 

The BMC-4 reads four 16-bit parcels from the I/O Memory and sends out 
eight 8-bit bytes to the block multiplexer channel. Four more 16-bit 
parcels are read into buffers in the controller while the channel is 
transmitting the first group. 

The BMC-4 reads eight 8-bit bytes from the channel and writes four 16-bit 
parcels into I/O Memory. If a read operation from the channel terminates 
with a byte length that does not evenly comprise four parcels, the last 
I/O Memory write will include unpredictable data in the last parcels. 

RECORD SIZE 

Data records may be any non-zero integer number of bytes in length. 
However, the data chaining feature must be used for lengths greater than 
65,535 bytes. 

HR-0808 
Part 3 
7-67 B 



In cases such as IBM tape records, an odd length header field can be read 
and stored at one memory area and the following data record can be stored 
at a different memory area beginning at a Buffer Memory word boundary. 
The data chaining feature permits a single large record to be broken into 
any size convenient for storage in Buffer Memory. This is under program 
control by means of I/O functions to the block multiplexer channel. 

2
63 

2 56255 1f8247 to239 ~I 2
24

2
23 

2
1625 

2
8

2
7 2° 

I I I I I I I I I CRAY I a IBM 

° 78 15 116 2324 31 132 394O 47148 5556 63 
I I I I I 
1 I I I I 
1 

2'0 I 1 
2,5 I I 

I I I 
PARCEL 0 2 15 2° I 1 

° 15 PARCEL I 2 15 2° 
I 

I 1 

1 
15 PARCEL 2 2 15 2° 

I 15 PARCEL 3 lOP 
I 
27 2° 

IBM CHANNEL 
~----.I 

Figure 7-12. BMC-4 data assembly/disassembly 

PARITY 

Odd parity is checked on all address, status, and data inputs to the I/O 
Processor. Odd parity is generated for all address, control, or data 
outputs from the I/O Processor. 

INTERRUPTS 

All interrupts can be enabled or disabled for any block multiplexer 
channel. If interrupts are enabled, and a function in the range BMA 1 
through BMA : 5 completes, then an interrupt request is set. If an 
interrupt is selected for an input tag line such as REQUEST-IN, the 
interrupt request sets when the REQUEST-IN line goes to a logical 1. 

When uaLd chcliiling is enabled, an interrupt request is set each time the 
byte counter decrements to 0 and memory references are complete through 
that particular block of data. 

HR-0808 
Part 3 
7-68 B 



BMA : 0 - CLEAR CHANNEL BUSY AND DONE FLAGS 

This function clears the channel busy and done flags and all output 
tags except OP-OUT and SUP-OUT. No parameters are required for this 
action. It also clears interrupt conditions, provided interrupts are 
disabled by a BMA : 6 function. Since this function cannot be 
interlocked using the channel done flag, allow a l2-CP delay before 
issuing the next function to that particular channel. 

BMA : 1 - SEND RESET FUNCTION 

Several reset functions (table 7-l9) perform various functions required 
by the equipment. Bits 21 and 20 of the accumulator content are used 
as a parameter that selects the specific function. 

Table 7-19. Send reset function parameters 

Parameter Function 
21 - 20 

0 0 Clear all output tag lines 
0 1 INTERFACE DISCONNECT 
1 0 SELECTIVE RESET 
1 1 SYSTEM RESET 

Parameter xxxxxO - Clear Output Tag Lines 

This function clears all output tag lines and clears BUS 0 Out lines. 
The channel initially clears the channel done flag and sets the channel 
busy flag. Upon completion the channel done flag sets and the channel 
busy flag clears. 

Parameter xxxxxl - INTERFACE DISCONNECT 

This function performs the INTERFACE DISCONNECT function to the currently 
selected control unit. The function clears the channel done flag and 
sets the channel busy flag. The control unit removes all signals from 
the Cray I/O Subsystem channel. When the control unit reaches the normal 
ending point in its sequence, it attempts to obtain selection in order to 
present any generated status to the Cray channel. The control unit does 
not generate any status as a result of the INTERFACE DISCONNECT. 

HR-0808 
Part 3 
7-69 B 



• 

The device path for the peripheral remains busy after it receives an 
INTERFACE DISCONNECT during an operation until the device-end status is 
accepted by the Cray block multiplexer channel. 

The function should complete in about 7 microseconds. At that time the 
Cray channel done flag sets and the busy flag clears. 

If the OPERATIONAL-IN signal from the equipment does not clear within 6 
microseconds from the function issue, the Cray channel done flag sets and 
the busy flag remains set to indicate the error condition. 

Parameter xxxxx2 - SELECTIVE RESET 

This performs the SELECTIVE RESET function. The channel done flag clears 
and the channel busy flag sets. The function causes the OPERATIONAL-IN 
signal to clear and resets the currently selected peripheral device, 
along with its status. The current operation proceeds to a normal 
stopping point, and no data is transferred after the stop. 

Only the peripheral device currently operating is affected. The 
device-end status is retained for transfer to the Cray channel after the 
reset. 

The ready or not ready state of the control unit is generally not changed 
by the SELECTIVE RESET function. 

The function should complete in about 7 microseconds, at which time the 
Cray channel busy flag clears and the done flag sets. 

Parameter xxxxx3 - SYSTEM RESET 

The SYSTEM RESET function clears the OPERATIONAL-IN signal and resets all 
control units along with their attached peripheral devices. The 
peripheral device statuses are also reset. The channel done flag clears 
and the channel busy flag sets at the beginning of execution. 

The function should complete in about 6 microseconds at which time the 
Cray channel done flag sets and the busy flag clears. Input tag lines 
that are not reset by the SYSTEM RESET function cause the channel busy 
flag to remain set when the channel done flag sets. 

HR-0808 
Part 3 
7-70 B-OI 



I 
BMA : 2 - CHANNEL COMMAND 

This function sends commands to the control units. The specific command 
is selected by the accumulator bits at the time the function issues. 
Many of the commands require prior functions to set up interface 
registers, such as the I/O Memory address register, the byte count 
register, and the device address register. The command parameter bits 
are shown in table 7-20. The channel done flag clears and the channel 
busy flag sets at the beginning of execution. At completion of the 
function, the channel busy flag clears and the channel done flag sets. 

Table 7-20. Channel command function parameter bits 

Parameter 
Bit Purpose 

20 IBM-type control unit command bit 20 
21 IBM-type control unit command bit 21 
22 IBM-type control unit command bit 22 
23 IBM-type control unit command bit 23 
24 IBM-type control unit command bit 24 
25 IBM-type control unit command bit 25 
26 IBM-type control unit command bit 26 
27 IBM-type control unit command bit 27 
28 Unused 
29 Unused 
210 Unused 
211 Unused 
212 Unused 
213 Unused 
214 Unused 
215 Unused 

Parameter Command Bits 

Bits 20 - 27 are the command bits for the BMA : 2 parameter. The 
command is for an IBM-type control unit. The parameter bits are shown in 
table 7-21. 

HR-0808 
Part 3 
7-71 B-01 



• 

Table 7-21. Channel command bit assignments 

TEST I/O 
SENSE 
READ BACKWARD 
WRITE 
READ 
CONTROL 

M = Modifier bit 
P = Parity bit 

P 

1 
P 
P 
P 
P 
P 

27 26 25 24 23 22 21 20 

0 0 0 0 0 0 0 0 
M M M M 0 1 0 0 
M M M M I 1 0 0 
M M M M M M 0 1 
M M M M M M 1 0 
M M M M M M 1 1 

The specific modifier codes and the particular mode set is dependent on 
the particular IBM-type control unit and the peripheral device used. The 
command byte is sent only during the initial selection sequence. All 
commands except TEST I/O may require a data transfer to satisfy the 
function. 

All commands begin with an initial selection sequence which ends with 
either an ending status (channel-end or channel-end with device-end), a 
zero status, or an error status. To a command calling for transfer of 
status, control or data bytes, a zero status signifies that the transfer 
may begin. 

A data-type transfer ends when the byte count decrements to 0 and no data 
chaining condition exists. The data-type transfer also ends when 
STATUS-IN is received in response to SERVICE-OUT or DATA-OUT. 

The channel done flag is not set until processing of the control sequence 
is completed and data is transferred to or from I/O Memory. 

Figure 7-13 shows a typical channel sequence for a read to the I/O 
Processor. 

HR-0808 
Part 3 
7-72 B-01 



I 

I 

I 

OPERATIONAL OUT 

HOLD OUT 

SELECT OUT 

ADDRESS OUT 

BUS OUT (9 LINES) 

OPERATIONAL IN 

ADDRESS IN 

BUS IN (9 LINES) 

COMMAND OUT 

STATUS IN 

SERVICE OUT 

SERVICE IN 

DATA OUT • 

DATA IN· 

J+---INmAL SELECTION J ~ ~TA TRANSMI$ION ~ 

I, 

I ENDING 

hEQUENCE 

~----- READ OPERATION (SELECTOR CHANNEL INTERFACE SEQUENCES) ------+-1 

• HIGH SPEED TRANSFER ONLY 

Figure 7-13. Channel read sequence 

SMA : 3"- READ REQUEST-IN ADDRESS 

A-O/97A 

This function first clears the channel done flag and sets the channel 
busy flag. If REQUEST-IN is detected, the channel accepts the requesting 
address. The address is checked for valid parity, the channel done flag 
is set, and the channel busy flag is cleared. 

If REQUEST-IN is not detected, the channel done flag is set and the 
channel busy flag stays set. The address miscompare status is to be 
ignored if undetermined addresses are expected. 

Figure 7-14 illustrates a typical REQUEST-IN channel sequence. 

HR-oaoa 
Part 3 
7-73 B-Ol 



BMA : 4 - ASYNCHRONOUS I/O 

Issuing the BMA : 4 function clears the channel done flag and sets the 
channel busy flag. If STATUS-IN is present, status is saved in the 
status register. If the STACK flag has been presented, COMMANO-DUT is 
returned in place of SERVICE-DUT to indicate STOP to the channel. When 
the sequence completes, the channel done flag sets and the channel busy 
flag clears. Refer to figure 7-14 for the typical REQUEST-IN channel 
sequence. See figure 7-15 for the asynchronous data and status 

I processing. See table 7-26 for accumulator parameter bits. 

HR-0808 

OP-OUT ~ 

REQ-IN \ ~ 
I 
I 

1\ 1 

HOLD-OUT \ 

ll\ 
\ 

SEL-OUT \ 
\ \ 

\ \ 
SEL -I N I 

j 
/ 

ADDR-OUT 

OP-IN 

ADDR-IN 

CMD-OUT (PROCEED) 

STATUS -IN _______ +---:-----! 

SERV-IN 

SERV-OUT _______ +-+-_~ 

BUS-! N 

BUS-OUT _____________ _ 

A-0129 

Figure 7-14. Channel ASYNCHRONOUS I/O sequence 

Part 3 
7-74 B-Ol 



I 

HR-0808 

BMA: 12 

INPUT STATUS 

or YES 
DATA 

'REQUEST IN' 

PROCESSING 

SAMPLE 
DEVICE 

ADDRESS 

NO 

BMA: 16 .--...... _-...... 
SET 

MODE BITS 

BMA:4 ...--------.. 
FNX SINGLE 

BYTE 1/0 

NO 

A-008.JC 

Figure 7-15. Asynchronous data and status processing 

Part 3 
7-75 B-01 



I 

BMA : 5 - DELAY COUNTER DIAGNOSTIC 

This function is for maintenance purposes only. It clears the channel 
done flag and sets the channel busy flag. Then the channel performs a 10 
microsecond delay. After the delay times out, the channel done flag sets 
and the channel busy flag clears. 

BMA : 6 - CLEAR CHANNEL INTERRUPT ENABLE FLAG 

The BMA 6 function clears the channel interrupt enable flag. This 
prevents the channel from interrupting the I/O Processor. The I/O 
Processor would in this case monitor the channel done flag to determine 
function completion. The channel busy and done flags are not affected by 
this function. 

BMA : 7 - SET CHANNEL INTERRUPT ENABLE FLAG 

This function sets the channel interrupt enable flag. This causes an I/O 
Processor interrupt for this channel whenever any of the following 
conditions occur: 

• The channel done flag sets, 

• The interrupt mode select, via a BMA : 16 function, has enabled an 
interrupt for an active input tag line, or 

• During data chaining the byte counter has decremented to 0 and the 
last I/O Memory reference is complete for that segment of data. 

BMA : 10 - READ I/O MEMORY ADDRESS 

This function reads the current value in the I/O Memory address register 
and enters the value in the accumulator. The channel logic includes two 
I/O Memory address registers to support data chaining. The state of 
accumulator bit 20 when the function is issued determines which I/O 
Memory address register is to be read. Bit 20 of the value returned to 
the accumulator identifies from which register the I/O Memory address 
came. 

Bit 21 in the value returned to the accumulator is set if data chaining 
is being used. Table 7-22 lists the accumulator content resulting from 
this function. 

This function may be performed at any time relative to control functions. 

HR-0808 
Part 3 
7-76 B-01 



I 

During data chaining, interrupts occur after each buffer of data is 
transferred. This function clears the interrupt after a data transfer. 

The BMA : 10 function has a programming restriction due to timing in the 
adder and shifter. The restriction applies if the instruction preceding 
a BMA : 10 function is any of the following: 4-7,12, 13, 16,17, 22, 23, 
32, 33, 44-47, 52, 53, 62, or 63. In these cases an 011 or 015 logical 
product instruction, with the d or k fields set to all ones, should be 
inserted between the above instruction and the BMA : 10 function. 

Table 7-22. Read I/O Memory address response bits 

Accumula tor 
Bit Meaning 

20 Register select status 
21 Data chaining flag status (l=da ta 

chaining) 
22 I/O Memory address 22 
23 I/O Memory address 23 
24 I/O Memory address 24 
25 I/O Memory address 2 5 
26 I/O Memory address 2 6 
27 I/O Memory address 27 
28 I/O Memory address 2 8 

2 9 I/O Memory address 2 9 
210 I/O Memory address 210 
211 I/O Memory address 211 
212 I/O Memory address 212 
213 I/O Memory address 213 
214 I/O Memory address 214 

215 I/O Memory address 215 

BMA : 11 - READ BYTE COUNTER 

The byte counter records the number of bytes rema1n1ng in a data 
transfer. This counter is initially loaded with a value by a BMA : 15 
load byte counter function. When the counter decrements byte-by-byte to 
0, the channel interrupts the lOP and terminates the transfer. A 
transfer terminated by the control unit and not by decrementing to zero 
may result in a nonzero value in the counter. If data chaining is 
requested the byte counter is reloaded after decrementing to zero. 

HR-0808 
Part 3 
7-77 B-Ol 



I 

I 

Due to the fixed timing in the lOP, this function must be executed twice 
in immediate succession to get a current value byte counter status to the 
lOP accumulator. The first execution moves the current byte counter 
status to the block multiplexer controller. The second execution moves 
the status to the lOP accumulator. 

This function can be used to verify the accumulator fanout, the 
intermediate byte count status register in the block multiplexer 
controller, and the status path back to the lOP accumulator. Issuing a 
BMA : 15 function (explained later) loads the byte count into the byte 
counter status register in the block multiplexer controller. The next 
BMA : 11 function reads the byte count back from the status register to 
the lOP accumulator. The second BMA : 11 function performs as described 
above. 

The channel busy and done flags are not affected by thLs function. 

BMA : 12 - READ STATUS/ADDRESS 

The status register holds the address and status mode bits read from the 
block multiplexer channel. 

Due to the fixed timing in the lOP, this function must be executed twice 
in immediate succession to get valid current status/address information 
to the lOP accumulator. The first execution moves the current 
status/address to the block multiplexer controller. The second execution 
moves the status/address to the lOP accumulator. 

This function can be used to verify the accumulator fanout, the 
intermediate status register in the block multiplexer controller, and the 
status path back to the lOP accumulator. Issuing a BMA : 16 function 
(explained later) loads address and mode bits into the block multiplexer 
controller status register. The next BMA : 12 function reads the status 
back to the lOP accumulator. The second BMA : 12 function performs as 
described above. 

The channel busy and done flags are not affected by this function. 

The status/address returned is the status/address information from the 
channel, and is entered in the lOP accumulator as shown in table 7-23. 

HR-0808 
Part 3 
7-78 B-Ol 



I 

Table 7-23. Status register bits 

Accumulator 
Bits Meaning 

20 Status 2 0 
21 Status 21 
22 Status 22 
2 3 Status 2 3 
24 Status 24 
2 5 Status 2 5 

26 Status 2 6 
27 Status 27 
28 Address 2 0 
29 Address 21 
210 Address 22 
211 Address 23 
212 Address 24 
213 Address 2 5 
214 Address 26 

215 Address 27 

BMA : 13 - READ INPUT TAGS 

This function reads the input tags from the channel to the I/O Processor 
accumulator. 

Due to the fixed timing in the lOP, this function must be executed twice 
in immediate succession to get valid current input tags to the lOP 
accumulator. The first execution moves the current input tags to the 
block multiplexer controller. The second execution moves the input tags 
to the lOP accumulator. 

This function can be used to verify the accumulator fanout, the 
intermediate output tags register, and the path back to the accumulator. 
Issuing a BMA : 17 function (explained later) loads the output tags into 
the output tags register. The next BMA : 13 function reads the stored 
output tags back to the rop accumulator. The second BMA : 13 function 
brings the current input tags to the .10P accumulator. 

The channel busy and done flags are not affected by this function. 

The input tags status bits are shown in table 7-24. 

HR-0808 
Part 3 
7-79 B-01 



I 
Table 7-24. Input tags status bits 

Accumula tor 
Bi ts Meaning 

20 OPERATIONAL-IN 
21 ADDRESS-IN 
22 DISCONNEcr-IN 
23 SELECT-IN 
24 REQUEST-IN 
25 SERVICE-IN 
26 DATA-IN 
27 STATUS-IN 
28 METERING-IN 
29 MARK 0 IN 
210 Unused - "0" 
211 Data Buffer Pointer 
212 Address Miscompare 
213 Byte Count Zero 
214 P-ROM Parity Error 
215 BUS-IN Parity Error 

BMA : 14 - ENTER I/O MEMORY ADDRESS 

This function enters the current accumulator content into the I/O Memory 
address (IOMA) register. This address is the starting address in I/O 
Memory for the data transfer. The channel busy and done flags are not 
altered in the process. Two I/O Memory address registers are maintained 
for data chaining purposes, and are addressed by the 20 bit of the 
accumulator content. Data chaining must begin with register 0 and 
alternate between the 0 and 1 registers. Bit 21 of the accumulator 
content is the data chaining select flag for the chosen register and, if 
set, selects data chaining for that register/address. 

Table 7-25 lists the accumulator bits for this function. 

HR-0808 
Part 3 
7-80 B-Ol 



I 

I 

Table 7-25. I/O Memory address register bits 

Accumula tor 
Bits Meaning 

20 I/O Memory address register file 
select 

21 Data chaining flag 
22 I/O Memory address 22 
23 I/O Memory address 23 
24 I/O Memory address 24 
25 I/O Memory address 25 
26 I/O Memory address 26 
27 I/O Memory address 27 
28 I/O Memory address 28 
29 I/O Memory address 29 
210 I/O Memory address 210 
211 I/O Memory address 211 
212 I/O Memory address 212 
213 I/O Memory address 213 
214 I/O Memory address 214 
215 I/O Memory address 215 

BMA : 15 - ENTER BYTE COUNT 

This function enters the accumulator content into the byte counter or 
into the next byte count register. The first BMA : 15 function following 
a BMA : 14 enters the accumulator content into the byte counter. 
Immediately following the first BMA : 15 function with a second BMA : 15 
function enters the accumulator data into the next byte counter 
register. The transfer from the next byte count register to byte counter 
is done automatically between data segments in data chaining. Channel 
commands requiring no data, parameters, or status must establish a byte 
count of O. The maximum count is 65,535 bytes. The channel busy and 
done flags are not altered in this process. 

BMA : 16 - ENTER DEVICE ADDRESS/MODE 

This function enters the accumulator content into the device address 
register. The device address register contains mode select bits and 
device address bits. The device address may be some combination of 
controller address bits and peripheral device address bits. The channel 
busy and done flags are not altered by this function. Table 7-26 shows 
the device address register bits. 

HR-0808 
Part 3 
7-81 B-Ol 



I 

Table 7-26. Device address register bits 

Accumulator 
Bits Meaning 

20 Address/da ta out 20 
21 Address/data out 21 
22 Address/da ta out 22 
23 Address/da ta out 23 
24 Addr ess/ da ta out 24 
25 Address/da ta out 25 
26 Address/data out 26 
27 Address/da ta out 27 
28 Skip flag 
29 Sta ck s ta tus flag 
210 Command chaining mode select 20 
211 Command chaining mode select 21 
212 Interrupt mode select 20 
213 Interrupt mode select 21 
214 Channel mode select 20 
215 Channel mode select 21 

Parameter Mode Bits 

Bits 28 - 215 of the parameter are called mode bits. They are 
re-established during each BMA : 16 function. They operate as follows. 

Skip flag - Bit 28 is the mode bit for the Skip flag. When set, it 
prohibits storing data into I/O Memory during read data transfers. 

Stack status flag - Bit 29 is the mode bit for the stack status flag. 

Command chaining mode select - Bits 210 and 211 select the mode in 
which command chaining will be used. Table 7-27 shows the translation of 
these mode bits. 

HR-0808 
Part 3 
7-82 B-Ol 



• 

Table 7-27. Command chaining mode selection 

Parameter Bits 
211_210 Selection 

0 0 No chaining 
0 1 Chain if channel-end status is 

detected 
1 0 Chain if device-end status is 

detected 
1 1 Chain if either channel-end 

status or device-end status is 
detected 

Interrupt mode select - Parameter bits 212 - 213 select the mode in 
which interrupts are generated. Table 7-28 shows the translation of the 
interrupt mode bits. 

Table 7-28. Interrupt mode selection 

Parameter Bits 
213_212 Selection 

0 0 No interrupt mode selected, 
interrupts disabled 

0 1 Interrupt on REQUEST-IN 
1 0 Interrupt on STATUS-IN 
1 1 Interrupt on DISCONNECT-IN 

Channel type mode select - Parameter bits 214 - 215 are the mode bits 
that select which type of channel operation is to be used. The selection 
is shown in table 7-29. 

HR-0808 

Table 7-29. Channel type mode selection 

Parameter Bits 
215_214 

0 0 
0 1 
1 0 
1 1 

Selection 

Selector channel 
Byte multiplexer channel 
Block multiplexer channel 
Reserved for future use 

Part 3 
7-83 B-01 



• 

BMA : 17 - ENTER OUTPUT TAGS 

This function enters the accumulator content into the output tags 
register, allowing direct program control of the output tags for special 
control sequences such as diagnostics. The channel busy and done flags 
are not altered by this function. Table 7-30 shows the accumulator bits 
for each output tag. 

Table 7-30. Output tags register bits 

Accumulator 
Bits Meaning 

20 OPERATIONAL-OUT 
21 ADDRESS-OUT 
22 HOLD-OUT 
23 SELECT-OUT 
24 COMMAND-QUT 
25 SERVICE-OUT 
26 DATA-OUT 
27 SUPPRESS-OUT 
28 METERING-OUT 
29 MARK 0 OUT 
210 Unused 
211 Unused 
212 CLOCK-OUT 
--13 Inhibit Parity Error 
214 Force BUS-OUT Parity 
215 Unused 

PROGRAMMING EXAMPLES 

The following examples illustrate two programming sequences for the block 
multiplexer channel. Example 1 shows the function sequence used to read 
a tape record of unknown length. Example 2 shows how to rewind the tape. 

HR-0808 
Part 3 
7-84 B-Ol 



Example 1: 

Accumulators 

000000 

000000 

000025 

000323 

BUFA+2 

BUFB+3 

000005 

001000 

000002 

BUFA+2 

001000 

BUFB+3 

001000 

BUFA+2 

001000 

1000-X 

• HR-OSOS 

Function 

BMA : 14 

BMA : 15 

BMA : 16 

BMA : 2 

wait for "Done" 

BMA : 14 

BMA : 14 

BMA : 15 

BMA : 15 

BMA : 2 

Wait for interrupt 

BMA : 14 

BMA : 15 

Wait for interrupt 

BMA : 14 

BMA : 15 

Wait for interrupt 

BMA : 14 

BMA : 15 

Wait for interrupt 

"Done" set 

BMA : 

BMA : 

11 

11 

Part 3 
7-S5 

Description 

Set rOMA = 0 (arbi trary) 

Set byte count = 0 

Set device address ( 0-255) 

Select GCR tape mode 

Set rOMA, chaining flag 
Buffer A 

Set rOMA, chaining flag 
Buffer B 
Set byte count Buffer A 
(header) 

Set byte count Buffer B 
(1-65535) 

Function read forward command 

Set rOMA, chaining flag, 
Buffer A 

Se t byte coun t Buffer A 
(1-65535) 

Process header 

Set rOMA, chaining flag 
Buffer B 

Set byte count Buffer B 

Transfer Buffer B to Buffer 
Memory 

Set rOMA, chaining flag 
Buffer A 

Set byte count Buffer A 
(1-65535) 

Transfer Buffer A to Buffer 
Memory 

Read byte counter for residue 
transfer X bytes, Buffer B to 
Buffer Memory 

B-01 



I 

I 

Example 1 (continued): 

Accumulat0::--r Function 

BMA 12 

BMA 12 

BMA 13 

Description 

Verify device status 

~ ____________ ~_B_M_A ____ l_3 ____________ ~ __ C_h_e_c_k __ i_n_p_u_t __ P_._E_e __ e __ t_c_e ________ --J 

Example 2: 

Accumulators 

000000 

000000 

000025 

000007 

HR-0808 

Function 

BMA : 14 

SMA : 15 

BMA : 16 

BMA : 2 

Wait for 

Check for 

BMA : 12 

BMA : 12 

BMA : 13 

BMA : 13 

"Done" 

"Busy" 

Part 3 
7-86 

Descr iption 

Set IOMA = 0 (arbi trary) 

Set byte count = 0 

Set device address (0-255) 

REWIND function I 
! 

"Busy" set indicates error I 
I 
I 
I 

Verify device address and 
I status 
I 

Check for other errors 

I 

B-Ol 



I 
I 

I 

BUFFER MEMORY 

INTRODUCTION 

The Buffer Memory assists data transfer between peripheral devices and 
Central Memory. It is implemented as NMOS (negative channel metal oxide 
semiconductor) LSI storage circuits. Buffer Memory capacity ranges from 
1 million to 8 million words of 64 bits each. The Buffer Memory is 
housed in the same chassis as the I/O Processors, in order to keep the 
intercabling delays small. Modules are of the same construction as the 
I/O Processor modules -- four printed circuit boards to each module. 
This section describes the speeds, organization, access, and addressing 
of the Buffer Memory. 

MEMORY SPEEDS 

8 

The memory is a dynamic random access memory that refreshes its data once 
every 2 milliseconds. Refreshing is transparent and does not affect the 
random access capability. Access time is 200 nanoseconds. Memory cycle 
time is defined as the waiting time required after referencing a storage 
location before that location may be referred to again. The Buffer 
Memory cycle time is 40 CPs. 

MEMORY ORGANIZATION 

Two options are available for memory organization. The Buffer Memories 
with 1 to 4 million words use an 8-bank organization, and the 8-million 
word size uses the 16-bank phasing. The advantages of the 16-bank 
organization are that the number of bank conflicts (more than one 
reference to the same bank at the same time, causing one reference to 
wait) are greatly reduced and the memory bandwidth is doubled. 

Each address in Buffer Memory contains 64 data bits and 8 bits of error 
correction information. Data is transferred to and from Buffer Memory in 
16-bit parcels. Four parcels are stored in one 64-bit word. Parcels are 
received and sent in a 0,1,2,3 sequence. The packing arrangement is 
shown in figure 8-1. 

HR-0808 
Part 3 
8-1 B 



I 

PARCEL BITS 

[ PARCEL 0 PARCEL 1 PARCEL 2 PARCEL 3 

Figure 8-1. Parcel packing in memory word 

MEMORY ACCESS 

Buffer Memory has four ports, each of which can be connected to an I/O 
Processor, as shown in figure 8-2. An interface adapts one I/O Processor 
I/O Memory DlwlA port to one Buffer Memory port. Communication speed 
depends upon the number of banks in the Buffer Memory, the activity 
competing for the I/O Memory, and the number of other I/O Processors 
attempting to use the Buffer Memory. Each of the four Buffer Memory 
ports has access to all banks through a time-sharing scanner. If one 
port requests a reference to a bank that is busy, a reservation is made 
for the new port to gain access to the bank as soon as the bank becomes 
available. A similar scanning arrangement is used at the I/O Memory to 
share the six DMA ports. 

I BUFFER MEMORY 

PORT PORT PORT PORT 
0 I 2 3 

A-OI07' 

I 

DIOP 
DIOP/ 

MIOP BIOP XIOP 

Figure 8-2. Buffer Memory port assignments 

MEMORY ADDRESSING 

The Buffer Memory capacity is either 1,048,576 or 4,194,304 or 8,388,608 
words, reqlJiring aD address '''lidth of 23 bits. The 23-bit address is 
provided from an I/O Processor accumulator in two functions to the 
interface as shown in figure 8-3. The Buffer Memory does not address to 
the parcel level. The address represents a physical location in Buffer 
Memory. 

HR-0808 
Part 3 
8-2 B 



MOS:2 MOS:3 FUNCTION 

22 29 28 2° ADDRESS BITS 

UPPER ADDRESS LOWER ADDRESS 

213 2° 28 2° ACCUMULATOR BITS 

Figure 8-3. Buffer Memory address formation 

ERROR PROTECTION 

The Buffer Memory uses single error correction/double error detection 
(SECDED) logic to determine if the data has been altered by the storage 
cycle. When the data is written into memory, a checkword is generated 
for the word and stored with that word. The checkword is an 8-bit 
Hamming code. When the word is read from memory, the checkword and data 
word are processed to determine if any bits were altered. If no errors 
occurred, the word is passed to the I/O Processor. 

If an error did occur, the 8 bits of the checkword are analyzed by the 
logic to find out if only 1 bit has been altered, or if more than 1 bit 
has changed. If it is only a single-bit error, the correction logic 
resets the bit in error to the correct state and passes the corrected 
word out to the I/O Processor. 

If more than 1 bit of the stored word has been altered, the logic cannot 
correct the word. The interface signals the error condition by leaving 
the channel busy signal set after the block transfer. This interrupts 
the I/O Processor for an error handling routine. The error handling 
routine can include a call to the Master I/O Processor to have that 
processor retrieve the error information. This is explained in more 
detail in Channel for Error Logging in the Interfaces section. 

The Buffer Memory uses the same SECDED logic design as used in the 
Central Memory. Refer to the Central Memory section for more details on 
error protection. 

HR-0808 
Part 3 
8-3 B 





PART 4 

APPENDIX SECTION 



SUMMARY OF CPU TIMING INFORMATION A 

When issue conditions are satisfied, an instruction completes in a fixed 
amount of time (memory references are exceptions). Instruction issue may 
cause reservations to be placed on a functional unit or registers. 
Knowledge of the issue conditions, instruction execution times and 
reservations permit accurate timing of code sequences. Memory bank 
conflicts due to I/O activity are the only element of unpredictability. 

SCALAR INSTRUCTIONS 

Four conditions must be satisfied for issue of a scalar instruction: 

1. The functional unit must be free. No conflicts can arise with 
other scalar instructions; however, vector floating-point 
instructions reserve the floating-point units. Memory 
references may be delayed due to conflicts. 

2. The result register must be free. 

3. The operand register must be free. 

4. One input path exists for each group of the four register groups 
(A, B, S, and T). The result register group input path must be 
free at the time the results would be stored. A previous 
instruction with a longer execution time could still be 
occupying the input path. 

Scalar instructions place reservations only on result registers. A 
result register is reserved for the execution time of the instruction. 
No reservations are placed on the functional unit or operand registers. 

HR-0808 
Part 4 

A-I B 



Scalar instruction execution times in clock periods are given below. 

where: A 
B 

C 
f 
I 
lzc 
M 
pop 
RTC 
ra 
S 
V 
VM 

24-bit results: 

A~M 

M~A 

A-+- B 

B~A 

A~S 

A~I 

64-bit results: 

S+-M 

M.-S 
S-+- T 
T-+- S 
S -+- I 

= 

= 
= 

= 

= 
= 
= 
= 
= 
= 

S ~ S(log.)S 
S -+- S (shift) I 
S ~ S (shift) A 
S -+- S (mask) I 

RTC -+- S 

A register 
B register 
Channel 
Floating-point 
Immediate 
Leading zero count 
Memory 
Population count or population count parity 
Real-time clock 
Reciprocal approximation 
S registers 
V registers 
Vector mask 

lIS A~C 4 
IS A~A+A 2 
I A~AxA 6 
I A~ popeS) 4 
I A ~ lzc(S) 3 
1 VL~A 1 

lIS S.-. S+S 3 
IS S~ S (f .add) S 6S 
1 S~ S(f.mult)S 7S 
1 S~ S(r.a.) l4S 
1 S~V 5 
1 V~S 3 
2 S~VM 1 
3 S~ RTC 1 
1 S~A 2 

I VM+- S 3 

The following is an example of the use of this chart of execution times 
to optimize timing. 

§ Issue ~ay be delayed because af a f~ncticnal ~nit reservatio~ by a 
vector instruction. Memory may be considered a functional unit for 
timing considerations. 

HR-0808 
Part 4 

A-2 B 



Execution 
CAL Code Time Reservations 

1 Sl S2+S3 3 Sl 
2 A2 0 (irnrned.) 1 Sl A2 
3 S5 A2 2 Sl S5 
4 S4 Sl+S3 3 S5 S4 
5 S6 S5&Sl 1 S4 S6 
6 S4 
7 

VECTOR INSTRUCTIONS 

Four conditions must be satisfied for issue of a vector instruction: 

1. The functional unit must be free. (Conflicts may occur with 
vector operations.) 

2. The result register must be free. (Conflicts may occur with 
vector operations.) 

3. The operand registers must be free or at chain slot time. 

4. Memory must be quiet if the instruction references memory. 

Vector instructions place reservations on functional units and registers 
for the duration of execution. 

1. Functional units are reserved for (VL)+4 CPs. Memory is reserved 
for (VL)+5 CPs on a write operation, (VL)+4 CPs on a read 
operation. 

2. The result register is reserved for the functional unit time 
+(VL) +2 CPs. The result register is reserved for the functional 
unit time +7 CPs if the vector length is less than 5. At 
functional unit time +2 (chain slot time) a subsequent vector 
instruction, which has met all other issue conditions, may 
issue. This process is called chaining. Several vector 
instructions using different functional units may be chained in 
this manner to attain a significant enhancement of processing 
speed. 

3. Vector operand registers are reserved for (VL) CPs. Vector 
operand registers are reserved for 5 CPs if the vector length is 
less than 5. The vector register used in a block store to memory 
(177 instruction) is reserved for (VL) clock periods. Scalar 
operand registers are not reserved. 

HR-0808 
Part 4 

A-3 B 



Vector instructions produce one result per clock period. The functional 
unit times are given below. The vector read and write instructions 
(176,177) produce results more slowly if bank conflicts arise due to the 
increment value (Ak) being a multiple of a§. Chaining cannot occur for 
the vector read operation in this case. 

If (Ak) is an odd multiple of S§; results are produced every 2 CPs. 

If (Ak) is an even multiple of a§, results are produced every 4 CPs. 

Functional unit Time (CP) 

Vector logical 2 
Vector shift 4 
Vector integer add 3 
Floating-point add 6 
Floating-point multiply 7 
Reciprocal approximation 14 
Memory 7 
Vector population count 6 

A transmit vector mask to Si (073) instruction is delayed by (VL) +6 CPs 
from the issue of a previous vector mask (175) instruction and is delayed 
by 6 CPs from the issue of preceding transmit (Sj) to VM (003) 
instruction. 

HOLD ISSUE 

A delay of issue results if a 100 - 137 instruction is the NIP register 
and a hold memory condition exists. The delay depends on the hold memory 
delay. 

A delay of issue results if a 100 - 137 instruction is the NIP register 
and a 100 - 137 instruction in process senses a conflict with rank A, B, 
or C. 

An additional 1 CP delay is added to a hold memory condition if a 070 
instruction destination register conflict is sensed. 

§ Multiple of 4 for a-bank phasing; refer to part 2 section 2. 

HR-oa08 
Part 4 

A-4 B 



I 

I 

I 

Memory must be quiet before issue of the Band T register block copy 
instructions (034-037). The low-order 7 bits (Ai) affect the timing. 
Subsequent instructions may not issue for 14+(Ai) CPs if (Ai)~O and 5 
CPs if (Ai)=O when reading data to the Band T registers (034,036). They 
may not issue for 6+(Ai) CPs when storing data (035,037). 

The Band T register block read (034,036) instructions require that there 
be no register reservation on the A and S registers, respectively, before 
issue. 

Conditional branch instructions cannot issue until an AO or SO operand 
register has been free for 2 CPs. Fall-through in buffer requires 2 
CPs. Branch-in-buffer requires 5 CPs. When an "out of buffer" condition 
occurs the execution time for a branch instruction is 14 CPs§. 

A 2-parcel instruction takes 2 CPs to issue. 

Instruction issue is delayed 2 CPs when the next instruction parcel is in 
a different instruction parcel buffer. Instruction issue is delayed 12 
CPs§§ if the next instruction parcel is not in an instruction parcel 
buffer. 

HOLD MEMORY 

A delay of 1, 2, or 3 CPs will be added to an A, B, S or T register 
memory read if a bank conflict occurs with rank C, B, or A, respectively, 
of the memory access network. A conflict occurs if the address is in the 
same bank as the address in rank C, B, or A. Conflicts can occur only 
with scalar or I/O references. The scalar instruction senses the 
conflict condition at issue time + 1 CP. The scalar instruction address 
enters rank A of the memory access network at issue time + 1 CP. The 
scalar instruction address enters rank B at issue + 2 CPs. The scalar 
instruction address enters rank C at issue + 3 CPs. 

§ 18 CPs for 8-bank phasing 
§§ 16 CPs for 8-bank phasing 

HR-0808 
Part 4 
A-5 B 



Scalar memory instruction timing (no conflict): 

CP n 
CP n+l 
CP n+2 
CP n+3 

CP n+IO 
CP n+ll 

INTERRUPT TIMING 

Issue, reserve Ai or Si register 
Address rank A, sense conflict 
Address rank B 
Address rank C 

Clear register reservation 
Complete 

After a sensed interrupt condition, a mlnlmum of 3 CPs + 2 parcel issues 
must occur before the interrupt is generated. During the first 3 CPs, if 
no hold issue conditions exist, instruction parcels may issue. At the 
end of the 3 CPs, the NIP register parcel is examined. If the NIP 
instruction is a 2-parcel instruction, 3 parcel issues occur before the 
interrupt. If the NIP instruction is a I-parcel instruction, only 2 
parcel issues occur before the interrupt. 

HR-0808 
Part 4 

A-6 B 



PHYSICAL ORGANIZATION OF CPU 

MAINFRAME 

The CPU mainframe is one of two sizes as shown in figure B-1. The 
logic chassis are arranged two in each column in an arc that is about 
2.5 feet in radius. The larger mainframe with 12 columns extends 
270

0 
around the arc, while the 8-column version subtends 180

0 
of 

the arc. The columns are about 6 1/2 feet tall. At the base of the 
columns, 1 1/2 feet high and extending outward about 2 1/2 feet, are 
cabinets for power supplies and cooling distribution systems. 

Viewing the mainframe from the top, the upper chassis are labeled A 
through L (A through H in the 8-column version) proceeding 
counterclockwise. In the same manner, the lower chassis are named M 
through X (M through T in the 8-column version). The general chassis 
layout is shown in figure B-2. In the 8-column version, the 
I,J,K,L,U,V,W and X logic chassis are omitted. 

MODULES 

The CRAY-l computer system uses a basic module construction throughout 
the entire machine. The module consists of two 6 x 8 inch printed 
circuit boards mounted on opposite sides of a heavy copper heat 
transfer plate. Each printed circuit board has capacity for a maximum 
of 144 integrated circuit (IC) packages and approximately 300 resistor 
packages. 

A 2- to 4-million word CPU has 1684 modules. Modules are arranged 72 
per chassis as illustrated in figure B-2. There are over 131 module 
types. Usage varies from 1 to 568 modules per type. Each module type 
is identified by two letters. The first indicates the module series 
(A, D, F, G, H, J, M, R, S, T, V, and Z). The second letter 
identifies types of modules within a series. 

The computation and I/O modules are on the eight chassis forming the 
center four columns. Each of the eight chassis on either side of the 
four center columns contains one of the memory banks. 

Two supply voltages are used for each module: -5.2 volts for IC 
power; -2.0 volts for line termination. 

HR-0808 
Part 4 

B-1 

B 

B 



~~FM ill il iI! --" "='i 
I, II ii II'i Ii II 
1 Ii II I I' II 

1I11 1\1\ 1\1 !I

i
, 

Ii ii 1111 II!, 

11II n III II 

iti!'I' 1I11 I1III 
,:: II iii 11 

'11 11 I II II I 
Ii Ii 1111 Iii 
I11I I ~ ____ _ 

- Dimensions 

Base - approximately 9 ft diameter by 1 1/2 ft high 

Columns - approximately 5 ft diameter by 6 1/2 ft high including 
height of base 

- 24 chassis arranged two per column in 12 columns, or 16 chassis in 8 
columns 

- Approximately 1700 modules (12 column), 1100 for 8 column 

- Approximately 130 standard module types 

- Up to 288 IC packages per module 

- Power consumption approximately 118 kW input for maximum memory size 

- Refrigerant-22 cooled with refrigerant/water heat exchange 

- Five memory options 

- Weight 10,500 lbs (maximum memory size) 

HR-0808 

Figure B-1. Physical organization of CPU 

Part 4 
B-2 B 



HR-0808 

71 

STORAGE 

I 
CLOCK AND 

ADDRESS 

FANOUT 

CHECK BITS 

o ~I _+----4-11 --I 
I 1 I 

CHECK BITS 

STORAGE 

I 
CLOCK AND 

ADDRESS 

FANOUT 

71 '--........ _'--........ ~ 

M N 0 P 

E F G H 
ClK OSC 

V pop 

CLOCK 
FANOUT 

FLOATING FLOATING 

MULTIPLY ADD 

SCALAR RECI£!. 

ADD APPROX. 

SCALAR 

REGISTERS 

SECDED ADDRESS 
SECDED 

REG. 
CONTROL 

ADDRESS 
SCALAR LOGIC 

ADDER MULT. 
SHIFTS 

ADDERS S PUP 

~ 

VECTOR VECTOR 

SHIFT LOGICAL 

CONTROL NIP INSTR. 
CONTROL 

CONTROL BUFFERS 

SECDED VECTOR SECDED 
ADD XP DATA 

Vj TO IVECTOR 
VECTOR SH I FT 

STOR. 

Vj & IVk TO FUNCTIONAL JNITS 

I J 1 
OATl TO VECT~R REGISJERS 

VECTOR 

REGISTERS 

ADDR FANOUT ADDR 
5~ 

I/O 

I I 

Q R s T 

J K L 

STORAGE 

I 
CLOCK AND 

ADDRESS 

FANOUT 

CHECK BITS 

1 I I 
I I I 
CHECK BITS 

STORAGE 

I 
CLOCK AND 

ADDRESS 

FANOUT 

u V W X 

Figure B-2. General chassis layout 

Part 4 
B-3 

71 

o 

8-0140 

71 

B 



Each module has 96 pin pairs for interconnecting to other modules. 
All interconnections are via twisted pair wire. The average 
utilization of pins is approximately 60 percent. 

Each module has 144 available test points used for trouble shooting. 
Test points are driven by circuits that do not drive other loads. 

CLOCK 

All timing within the CPU is controlled by a single-phase synchronous 
clock network. This clock has a period of 12.5 nanoseconds. All of 
the lines that carry the clock signal from the central clock source to 
the individual modules of the CPU are of uniform length so that the 
leading edge of a clock signal arrives at all parts of the CPU cabinet 
at the same time. A 3-nanosecond pulse (figure B-3) is formed on each 
module. 

r-- 12.5 ns ·1 
----,I ,---I __ ~ ~I L...........---__ 

~3ns~ A-O/~.3 

Figure B-3. Clock pulse waveform 

References to clock periods in this manual are often given in the form 
CPn where n indicates the number of the clock period during which an 
event occurs. Clock periods are numbered beginning with CP O. Thus, 
the third clock period would be referred to as CP 2. 

POWER SUPPLIES 

Thirty-six power supplies are used for the l2-column mainframe, or 24 
for the 8-column models. There are twenty -5.2 volt supplies and 
sixteen -2.0 volt supplies (in the 12 column version). There are 12 
of each voltage in the 8-column version. The supplies are divided 
into 12 groups (or 8) of 3, each group suppling one column. A logic 
column uses one -5.2 volt supply and two -2.0 volt supplies. A memory 
coluwp Dses two -5.2 volt supplies and one -2.0 volt supply. The 
power supply design assumes a constant load. The power supplies do 

HR-0808 
Part 4 
B-4 B 



not have internal regulation but depend on the motor-generator to 
isolate and regulate incoming power. The power supplies use a 
l2-phase transformer, silicon diodes, balancing coil, and a filter 
choke to supply low ripple DC voltages. The entire supply is mounted 
on a refrigerant-22 cooled heat sink. Power is distributed via bus 
bars to the load. 

COOLING 

Modules in the CPU are cooled by the exchange of heat from the module 
heat sink to the refrigerated cold bars. The module heat sink is 
wedged along both 8-inch edges to the cold bars. Cold bars are 
arranged in vertical columns, with each column having capacity for 144 
modules. The cold bar is cast aluminum and contains a stainless steel 
refrigerant tube. 

HR-0808 
Part 4 

B-5 B 





SOFTWARE CONSIDERATIONS 

References to software in this publication are limited to those features 
of the CPU that provide for software or take it into consideration. 

SYSTEM MONITOR 

A monitor program is loaded at system deadstart and remains in Central 
Memory for as long as the system is used. Only the monitor program 
executes in CPU monitor mode and can execute monitor instructions. A 
program executing in monitor mode cannot be interrupted. A monitor 
program is designed to reference all of memory. 

USER PROGRAM 

C 

A user program or object program, as referred to in this publication, 
means any program other than the monitor program. Generally, the term 
describes a job-oriented program but may also describe an operating 
system task that does not execute in monitor mode. A user program may be 
a machine language program such as a FORTRAN compiler or it may be a 
program resulting from compilation of FORTRAN statements by the compiler. 

OPERATING SYSTEM 

The operating system consists of a monitor program, object programs that 
perform system-related functions, compilers, assemblers, and various 
utility programs. The operating system is loaded into Central Memory and 
possibly onto mass storage during system deadstart. Features of the 
operating system and organization of storage, which is a function of the 
operating system, is described in CRAY-OS Version I Reference Manual, CRI 
publication SR-OOII. 

HR-0808 
Part 4 
C-I B 



SYSTEM OPERATION 

System operation begins at CPU deadstart. Deadstart is that sequence of 
operations required to start a program running in the computer after 
power has been turned off and then turned on again. 

The deadstart sequence is initiated from the I/O Subsystem or the 
Maintenance Control Unit (MCU) depending on the model of the CRAY-l. The 
sequence is described in detail in part 2 section 3. During the 
deadstart sequence, a program containing an exchange package is loaded at 
absolute address 0 in the Central Memory. A signal from the MCU or I/O 
Subsystem causes the CRAY-l to begin execution of the program pointed to 
by the exchange package. 

FLOATING-POINT RANGE ERRORS 

Detection of the floating-point range error initiates an interrupt if the 
floating-point mode flag is set in the mode register and monitor mode is 
not in effect. The programmer has the capability via the 0022 
instruction to clear the floating-point mode flag so that results going 
out of range are prevented from interrupting. This is especially useful 
for the vector merge instruction usage in subroutines such as TANGENT, 
where some results may be known to go out-of-range. At the end of the 
code sequence, the programmer normally resets the floating-point mode via 
a 0021 instruction. 

HR-0808 
Part 4 
C-2 B 



CPU INSTRUCTION SUMMARY D 

CRA Y - 1 

OOOxxx ERR 

tOOOijk ERR 

CAL 

ttOlJI0jk CA,Aj 

ttOOlljk CL,Aj 

tt0012jx CI,Aj 

tt0013jx XA 

tt0014 J 0 RT 

t~§ 0014j4 PCl 

tt§0014jS CCl 

tt§ 0014j6 ECl 

tt § 001 4 j 7 DC I 

0020xk VL 

t0020xO VL 

002lxx EFI 

0022 xx OF! 

003xjx VM 

t003xOx V}.1 

004xxx EX 

t004ijk EX 

005xjk J 

006ijkm J 

007ijkm R 
OIOijkm JAZ 

Ollijkm JAN 

012ijkm JAP 

013ijkm JAM 

·Ol4ijkm JSZ 

OISijkm JSN 

Ol6ijkm JSP 

Ol7ijkm JSM 

020ij km 1 
02lijkm Ai 

022ijk 

023ijx Ai 

024ijk Ai 

02Sijk Bjk 

026ijO 

026ijl 

027ijx 

030ijk 

t030iOk 

t030ijO 

03lijk 

Ai 

Ai 

Ai 

Ai 

Ai 

Ai 

Ai 

exp 

Ak 

Ak 

Aj 

Sj 

Sj 

Ak 

Sj 

o 

exp 

Bj k 

exp 

exp 

exp 

exp 

exp 

exp 

exp 

exp 

exp 

exp 

exp 

Sj 

Bjk 

Ai 

PSj 

QSj 

ZSj 

Aj+Ak 

Ak 

Aj+l 

Aj-Ak 

PAGE 

6-7 

6-7 

6-8 

6-8 

6-8 

6-8 

6-10 

6-10 

6-10 

6-10 

6-10 

6-12 

6-12 

6-13 

6-13 

6-14 

6-14 

6-15 

6-15 

6 - 16 

6-17 

6-18 

6-19 

6-19 

6-19 

6-19 

6-21 

6-21 

6-21 

6- 21 

6-23 

6-23 

6-24 

6-25 

6-26 

6-26 

6-27 

6- 27 

6-28 

6-29 

6-29 

6-29 

6-29 

t Special syntax form 
tt Priviledged to monitor mode 

Pop/LZ 

Pop/LZ 

Pop/LZ 
A Int Add 

A Int Add 

A Int Add 

A Int Add 

§ Programmable Clock Option only 

HR-0808 
Part 4 
D-l 

DESCRIPTION 

Error exit 

Error exit 

Set the channel (Aj) current address to 
(Ax) and begin the II) sequence 

Set the channel (Aj) limit address to (Ax) 

Clear channel (Aj) in~errupt flag 

Enter XA register with (Aj) 

Enter RTC register with (Sj) 

Enter interval regist~r with (Sj) 

Clear PCl request 

Enable PCI request 

Disable PCI request 

Transmit (Ak) to VL r~gister 

Transmit 1 to VL register 

Enable interrupt on floating point error 

Disable interrupt on floating point error 

Transmit (Sj) to VM register 

Clear VM register 

Normal exit 

Normal exit 

Jump to (Bjk) 

Jump to exp 

Return jump to exp; set BOO to P 

Branch to exp if (AD) : 0 

Branch to exp if (AD) , 0 

Branch to exp if (AO) positive 

Branch to exp if (AD) negative 

Branch to exp if (SO) : 0 

Branch to exp if (SO) , 0 

Branch to exp if (SO) positive 

Branch to exp if (SO) negative 

Transmit exp jkm to Ai 

Transmit exp • l's complement 
of jkm to Ai 
Transmit exp • jk to Ai 

Transmi t (Sj) to Ai 

Transmi t (Bj x) to Ai 

Transmi t (Ai) to Bj k 

Population count of (5J) to Ai 

Population count parity of (5j) to Ai 

Leading zero count of (Sj) to Ai 

Integer sum of (Aj) and (Ax) to Ai 

Transmit (Ak) to Ai 

Integer sum of (Aj) and 1 to Ai 

Integer difference of (Aj) less (Ak) to Ai 

B 



~ CAL 
H3liOO Ai -1 
t03liOk 

t03lijO 

032ijk 
033i Ox 

033ijO 

OBijl 

034ijk 

t034ijk 

03Sijk 

t03Sijk 

036ijk 

t036ijk 

037ijk 

t037ijk 

Ai 

Ai 

Ai 
Ai 

Ai 

Ai 

Bjk,Ai 

Bjk,Ai 

,AO 

O,AO 

Tjk,Ai 

Tjk,Ai 

,AO 

O,AO 

040i j km} 
5i 

041ijkm 

042ijk 

t042i77 

t042iOO 

043ijk 

t043iOO 

044ijk 

t044ijO 

t044 ij 0 

045 i j k 

t04SijO 

046ijk 

t046ijO 

t046ijO 

047ijk 

t047iOk 

t047ijO 

t047ijO 

t047iOO 

OSOijk 

tOSOijO 

OSlijk 

tOS1iOk 

to!ilijO 

tOS1ijO 

tOSliOO 

OS2ijk 

OS3ijk 

OS4ijk 

OSSij k 

tJ56ijK 

tOS6ijO 

tOS6iOk 

5i 
5i 

5i 

5i 

5i 
5i 

5i 

5i 

5i 

5i 

5i 

5i 

5i 

5i 

5i 

5i 

5i 

5i 

5i 

5i 

5i 

5i 

5i 

5i 

5i 

5i 

5i 

50 

50 

Si 

Si 

5i 

Si 

Si 

-Ak 

Aj-1 

Aj-Ak 
CI 

CA,Aj 

CE,Aj 

,AO 

O,AO 

Bj k ,Ai 

Bjk,Ai 

,AD 

O,AO 

Tjk,Ai 

Tjk,Ai 

exp 

<exp 
'>exp 

- 1 

>exp 
'<exp 

o 
Sj&5k 

5j&5B 

5B&5j 

'5k&5j 

'5B&5j 

5j\5k 

5j\5B 
5B\5j 

, 5j\Sk 

'5k 
'5j\SB 

'SB\5j 

'S8 

5j!5i&5k 

5j ~5i&SB 

5j ~ 5k 

5k 

5j ~5B 

58 ~ Sj 

S8 

5i<exp 

Si>exp 

Si<exp 

Si>exp 

Si,Sj<AK 

Si.Si<l 

Si<Ak 

t Special syntax form 

HR-0808 

PAGE 

6-29 

6-29 

6-29 

6-31 

6-32 

6-32 

6-32 

6-34 

6-34 

6-34 

6-34 

6-34 

6-34 

6-34 

6-34 

6-37 

6-37 

6--:~8 

6-38 

6-38 

6-38 

6-38 

6-38 

6-39 

6-39 

6-39 

6-39 

6-39 

6-39 

6-39 

6-39 

6-39 

6-39 

6-39 

6-39 

6-39 

6-39 

6-39 

6-39 

6-39 

6-39 

6-39 

6-39 

6-43 

6-43 

6-43 

6-43 

0-44 

6-44 

6-44 

~ DESCRIPTION 

A Int Add T:ansmit -1 to Ai 
A Int Add Transmit the negative of (Ak) to Ai 

A Int Add ILteger difference of (Aj) ~ess 1 to Ai 

A Int Mult Integer product of (Aj) and (Ak) to Ai 
Channel number to Ai (j-O) 

Address of channel (Aj) to Ai (j~0; k-O) 

Error flag of channel (Aj) to Ai (j~O; k-1) 

Memory Read (Ai) words to B register jk from (AO) 

Memory Read (Ai) words to B register jk from (AO) 

Memory Store (Ai) words at B register jk to (AO) 

Memory 5tore (Ai) words at B register jk to (AD) 

Memory 

Memory 

Memory 

Memory 

Read (Ai) words to T registel jk from (AD) 

Read (Ai) words to T register jk from (AO) 

Store (Ai) words at T register jk to (AO) 

Store (Ai) words at T register jk to (AD) 

Transmit jkm to 5i 

Transmit exp c l's complement of jkm to Si 

S Logical Form l's mask exp = 64-jk bits in 5i from 
the right 

5 Logical Enter 1 into 5i 

S Logical Enter -] into Si 

5 Logical Form l's mask exp jk bits in 5i from 

5 Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

SLog i cal 

S Logical 

S Logical 

5 Logical 

5 Logical 

S Logical 

S Logical 

5 Logical 

5 Logical 

S Logical 

S Logical 

S Logical 

S 5hift 

S Shift 

S Shift 

S Shift 

~ ::';111t 

S Shift 

S Shift 

the left 
Clear Si 

Logical product of (Sj) and (5k) to Si 

Sign bit of (5j) to 5i 

Sign bi t of (5j) to 5i (j !"O) 

Logical product of (5j) and l's 
complement of (5k) to Si 

(5j) with sign bit cleared to 5i 

Logical difference of (Sj) and (5k) to 5i 

Toggle sign bit of 5j, then enter into 5i 

Toggle sign bit of Sj, then enter into 5i (jfO) 

Logical equivalence of (5k) and (5j) to 5i 

Transmit l's complement of (Sk) to Si 

Logical equivalence of (Sj) and sign 
bit to Si 
Logical equivalence of (5j) and sign 
bit to Si (jlO) 
Enter l's complement of sign bit into Si 

Logical product of (5i) and (Sk) complement 
ORed with logical product of (Sj) and (Sk) to Si 

Scalar merge of (Si) and sign bit of (5j) 
to 5i 

Logical sum of (5j) and (Sk) to 5i 

Transmit (Sk) to 5i 

Logical sum of (Sj) and sign bit to Si 

Logical sum of (Sj) and sign bit to Si (jIO) 
Enter sigr. bit into ~i 

5hift (5i) left exr = jk places to SO 

5hift (5i) right exp - 64-jk places to 50 

Shift (Si) left exp c jk plJces 

5hift (Si) right exp • 64-jk places 
ShItt lSl and Sj) left (Ak) rlares to 5i 
5hift (Si and ~j) lpft ~np rl~rp tn Si 

Shift (Sj) left (Ak) places to Si 

Part 4 
D-2 B 



~ 
057ijk 

t057 i j 0 

to 5 7 i Ok 

060ijk 

06lij k 

t06li Ok 

06Zijk 

t062iOk 

063ijk 

t06 3 i Ok 

064ijk 

065ijk 

066ijk 

067ijk 

070ijx 

07liOk 

Si 

Si 

Si 

5i 

5i 

5i 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

5i 

071ilk Si 

071i21c Si 

07li3x Si 

071i4x Si 

071i5x Si 

07li6x Si 

071i7x 5i 

07Zixx 5i 

073i xx 5i 

074ijk 5i 

075ijk Tjk 

076ijk 5i 

077ijk Vi,Ale 

t077iOk Vi ,Ak 

10hijkm Ai 

tlOOijkm Ai 

tlOOij km Ai 

tlOhiOOO Ai 

llhijkm exp,Ah 

tllOijkm exp,O 

tllOijkm exp, 

tllhiOOO ,Ah 

l~hijkm 5i 

tl20ijkm 5i 

tIZ 0 ij km 5i 

tlZhiOOO Si 

Uhi j km exp, Ah 

t130ij km exp, 0 
tI30ijkm exp, 

t13hi 000 ,Ah 

140ijk Vi 
l4lijk Vi 
142ijk Vi 

tl42iOk Vi 

Sj,Si;,Ak 

Sj ,Si>1 
Si>Ak 

5j+5k 

Sj-5k 

-Sk 

Sj+FSk 

+FSk 

5j-FSk 

-FSk 

Sj*FSk 

Sj*HSk 

Sj*RSk 

Sj*ISk 

/H5j 

Ale 

+Ak 

+FAk 

0.6 

0.4 
1. 

Z. 

4. 

RT 

\'tol 

Tjlc 

Si 

Vj,Ale 

Sj 

o 
exp,Ah 

exp,O 

exp, 

,Ah 

Ai 

Ai 

Ai 

Ai 

exp,Ah 

exp.O 

exp, 

,Ah 

Si 

Si 

Si 

Si 

Sj&Vk 
Vj&Vk 
Sj ! Vic 
Vk 

t Special syntax form 

HR-0808 

PAGE 

6-44 

6-44 

6-44 

6-46 

6-46 

6-46 

6-47 

6-47 

6-47 

6-47 

6-49 

6-49 

6-49 

6-49 

6-51 

6-52 

6-52 

6-52 

6-52 

6-52 

6-52 

6-52 

6-52 

6-55 

6-55 

6-55 

6-55 

6-56 

6-56 

6-56 

6-57 

6-57 

6-57 

6-57 

6-57 

6-57 

6-57 

6-57 

6-57 

6-57 

6-57 

6-57 

6-57 

6-57 

6-57 

6-57 

6-59 

6-59 

6-59 

6-59 

UNIT 

S Shift 

S Shift 

S Shift 

S Int Add 

S Int Add 

S Int Add 

F.P. Add 

F.P. Add 

F.P. Add 

F. P., Add 

F.P. Mult 

F. P. Mult 

F. P. Mult 

F. P. Mult 

F.P. Rcpl 

Memory 

Memory 

Memory 

Memory 

Memory 

Memory 
Memory 

Memory 

Memory 

t-lemory 

t-lemory 

I-Iemory 

Memory 

t-lemory 
Memory 

Memory 

V Logical 
V Logical 
V Logical 

V Logical 

DESCRIPTION 

Shift (Sj and Si) Tight (Ak) places to 6i 

Shift (Sj and Si) right one place to Si 

Shift (Si) right (Ak) places to Si 

IntegeT sum of (Sj) and (Sk) to Si 

Integer difference of (Sj) and (Sic) to Si 

Transmit negative of (Sic) to Si 

Floating sum of (Sj) and (Sic) to 5i 

Normalize (Sle) to Si 

Floating difference of (Sj) and (Sk) to Si 

Transmit normalized negative of (Sk) to Si 

Floating product of (Sj) and (Sic) to Si 

Half precision rounded floating product 
of (Sj) and (Sic) to 5i 

Full precision rounded floating product 
of (5j) and (Sle) to Si 

Z - Floating product of (5j) and (Sle) to 5i 

Floating reciprocal approximation of 
(5j) to Si 

Transmit (Ale) to 5i with no sign extension 

Transmit (Ak) to 5i with sign extension 

Transmit (Alc) to 5i as unnormalized 
floating point number 

Transmit constant 0.75*Z*·48 to Si 

Transmit constant 0.5 to 5i 

Transmit constant 1.0 to 5i 

Transmit constant Z.O to 5i 

Transmit constant 4.0 to 5i 

Transmit (RTC) to Si 

Transmit (VM) to Si 

Transmi t (Tj lc) to Si 

Transmit (5i) to Tjlc 

Transmit (Vj, element (Alc)) to 5i 

Transmit (5j) to Vi element (Ak) 

Clear Vi element (Ale) 

Read from ((Ah) + exp) to Ai (AO-O) 

Read from (exp) to Ai 

Read from (exp) to Ai 

Read from (Ah) to Ai 

Store (Ai) to (Ah) + exp (AO=O) 

Store (Ai) to exp 

Store (Ai) to exp 

Store (Ai) to (Ah) 

Read from ((Ah) + exp) to Si (AOcO) 

Read from (c)"l1) to Si 

Read from (c)"l1) to Si 

Read from (Ah) to Si 

Store (Si) to (Ah) + exp (AO=O) 

Store (Si) to exp 
Store (5i) to exp 

Store (5i) to (Ah) 

Logical products of (Sj) and (Vk) to Vi 
Logical products of (Vj) and (Vic) to Vi 
Logical sums of (Sj) and (Vic) to Vi 

Transmit (Vic) to Vi 

Part 4 
D-3 B 



CRAY-1 

14 lij k 

144ij k 

145ijk 

t14Siii 

146ij k 

tl46iOk 

147ijk 

150ijk 

tl50ij 0 

lSlijk 

tlSlijO 

15Zijk 

tlS2ijO 

lS3ijk 

tI 53ij 0 

lSoIijk 

l5Sijk 

1 56ij k 

t156iOk 

l57ijk 

160ijk 

16lijk 
162ijk 

163ijk 

164ijk 

165ijk 

166ijk 

167ijk 

170ijk 

tl70iOk 

17lijk 

172ijk 

tl72iOk 

173ijk 

174ijO 

174ijl 

174iP 
17SxjO 

175xjl 

175xj2 
17Sxj3 
176iAk 

tl76ixO 

177xj k 

tl77xjO 

Vi 

Vi 

Vi 

Vi 

Vi 

Vi 

Vi 

Vi 

Vi 

Vi 

Vi 

Vi 

Vi 

Vi 

Vi 

\' i 

Vi 

Vi 

Vi 

Vi 

Vi 

Vi 
Vi 

Vi 

Vi 

Vi 

Vi 

Vi 

Vi 

Vi 

\'i 

Vi 

Vi 

Vi 

Vi 

Vi 

Vi 

\'1-' 

V1-I 

VM 
V1-I 

Vi 

Vi 

,AO,Ak 

.AO,I 

Vj:Vk 

Sj\Vk 

Vj\ Vk 

o 
Sj:Vk~VM 

'VM~Vk 

Vj:Vk~VM 

Vj<Ak 

Vj<l 

Vj>Ak 

Vj >1 

Vj,Vj<Ak 

Vj, Vj <1 

Vj,Vj>Ak 

Vj ,Vj>I 

Sj+Vk 
Vj+Vk 

Sj-Vk 

-Vk 
Vj-Vk 

Sj*FVk 

Yj*FVk 

Sj*HVk 

Vj*HVk 

Sj*RVk 

Vj*RVk 

Sj*IVk 

Vj*IVk 

Sj+FVk 

+FVk 

Vj+FVk 

Sj-FVk 

-FVk 

Vj-FVk 

/HVj 

PVj 

QVj 
Vj ,Z 

Vj,N 

Vj ,P 

Vj,M 

,AO,Ak 

,AO,I 

Vj 

Vj 

f Special syntax form 

HR-0808 

PAGE 
6-59 

6-59 

6-59 

6-59 

6-59 

6-59 

6-59 

6-63 

6-63 

6-63 

6-63 

6-65 

6-65 

6-65 

6-65 

6 - 70 

6-70 

6-70 

6 - 70 

6-70 

6-72 

6-72 

6-72 

6 - 72 

6 -72 

(J-72 

6-75 

6-75 

6-75 

6-75 

6-75 

6-75 

6-78 

6-78 

6-79 

6 - 79 

6-79 

6-79 

6-81 

6-81 

6-81 

6-81 

UNIT 

V Logical 

V Logical 

V Logical 

V Logical 

V Logical 

V Logical 

V Logical 

V Shift 

V Shift 

V Shift 

V Shift 

V Shift 

V Shift 

V Shift 

V Shift 

V Int Add 
V Int Add 

V Int AJd 

V Int Add 

V lnt Add 

F.P. Mult 

F.P. Mult 

F.P. Mult 

F.P. Mult 

F.P. Mult 

F.P. Mult 

F.P. Mult 

F.P. Mult 

F.P. Add 

F.P. Add 

F.P. Add 

F.P. Add 

F.P. Add 

F.P. Add 

F.P. Repl 

F.P. Repl 

F.P. Repl 

V Logical 

V Logical 

V Logical 
V Logical 

"'emory 

Memory 

Memory 

Memory 

DESCRIPTJON 
Logical sums of (Vj) and (Vk) to Vi 

Logical differences of (Sj) and (Vk) to Vi 

Logical differences of (Vj) and (Vk) to Vi 

Clear Vi 

Transmit (Sj) if VM bi t • 1; (Vk) if 
VM bit • 0 to Vi 
Vector merge of (Vk) and 0 to Vi 

Transmi t (Vj) if VM bi t • 1; (Vk) if 
VM bit· 0 to Vi 

Shift (Vj) left (Ak) places to Vi 

Shift (Vi) left one place to Vi 

Shift (Vj) right (Ak) places to Vi 

Shift (Vj) right one place to Vi 

Double shift (Vj) left (Ak) places to Vi 

Double shift (Vj) left one place to Vi 

Double shift (Vj) right (Ak) places to Vi 

Double shift (Vj) right one place to Vi 

Integer sums of (Sj) and (Vk) to Vi 
Integer sums of (Vj) and (Vk) to Vi 

Integer differences of (Sj) and (Vk) to Vi 

Transmit negative of (Vk) to Vi 

Integer differences of (Vj) and (Vk) to Vi 

Floating products of (Sj) and (Vk) to Vi 

Floating products of (Vj) and (Vk) to Vi 

Half precision rounded floating products 
of (Sj) and (Vk) to Vi 
Half precision rounded floating products 
of (Vj) and (Vk) to Vi 

Rounded floating products of (Si) and 
(Vk) to Vi 

Rounded floating products of (Vj) and 
(Vk) to Vi 

2 - floating products of (Sj) and 
(Vk) to Vi 

2 - floating products of (Vj) and 
(Vk) to Vi 

Floating sums of (Sj) and (Vk) to Vi 

Normalize (Vk) to Vi 

Floating sums of (Vj) and (Vk) to Vi 

Floating differences of (Sj) and (Vk) to Vi 

Transmit r.ormalized negatives of (Vk) to Vi 

Floating differences of (Vj) and (Vk) to Vi 

Floating reciprocal approximations of 
(Vj) to Vi 

Population counts of (Vj) to Vi 

Population count parities of (Vj) to Vi 

\~El where (Vj) • 0 

VM-l where (Vj) ~ 0 
\'MEl where (Vj) positive 

VJ.f"'l where (Vj) negative 

Read (VL) words to Vi from (AO) 
incremented by (Ak) 

Read (VL) words to Vi from (AO) 
incremented by 1 

Store (VL) words from Vj to (AO) 
incremented by (Ak) 
Store rVLl words from Vj to CAQ) 
incremented by 1 

Part 4 
D-4 B 



I/O PROCESSOR INSTRUCTION SUMMARY E 

lOP 

000 
001 
002 
003 

004 
005 
006 
007 

010 
011 
012 
013 

014 
015 
016 
017 

020 
021 
022 
023 

024 
025 

026 

027 

030 

031 

032 

033 

APML 

PASS 
EXIT 
I 0 
I 1 

A A > d 

A A < d 
A A» d 

A A« d 

A d 
A = A & d 
A A + d 
A A - d 

A = k 
A A & k 

A A + k 
A A - k 

A dd 
A A & dd 
A = A + dd 

A = A - dd 

dd = A 
dd A + dd 

dd dd + 1 

dd dd - 1 

A = (dd) 

A A & (dd) 

A A + (dd) 

A A - (dd) 

HR-0808 

Description 

No operation 
Exit from subroutine 
Disable system interrupts 
Enable system interrupts 

Right shift C and A by d places, end off 
Left shift C and A by d places, end off 
Right shift C and A by d places, circular 
Left shift C and A by d places, circular 

Transmit d to A 
Logical product of A and d to A 
Add d to A 
Subtract d from A 

Transmit k to A 
Logical product of A and k to A 
Add k to A 
Subtract k from A 

Transmit operand register d to A 
Logical product of A and operand register d to A 
Add operand register d to A 
Subtract operand register d from A 

Transmit A to register d 
Add operand register d to A, result to operand 
register d 
Transmit register d to A, add 1, result to 
operand register d 
Transmit register d to A, subtract 1, result to 
operand register d 

Transmit contents of memory addressed by 
register d to A 
Logical product of A and contents of memory 
addressed by register d, result to A 
Add contents of memory addressed by register d 
to A, result to A 
Subtract contents of memory addressed by 
register d from A, result to A 

Part 4 
E-l B 



lOP APML 

034 (dd) = A 
035 (dd) = A + (dd) 

036 (dd) = (dd) + 1 

037 (dd) (dd) - 1 

040 
041 
042 
043 

044 
045 
046 
047 

050 
051 
052 
053 

054 
055 
056 
057 

060 
061 
062 
063 

064 
065 

066 

067 

070 
071 
072 
073 

074 
075 
076 
077 

c = 1, iod 
C = 1, iod 
C = 1, lOB 
C = 1, lOB 

A A > B 
A = A < B 
A = A » B 
A A« B 

A B 
A = A & B 
A = A + B 
A A - B 

B 

B 

B 
B 

A 

A + B 
B + 1 
B-1 

A (B) 
A = A & (B) 
A A + (B) 

A A - (B) 

(B) A 
(B) A + (B) 

ON 
BZ 
ON 
BZ 

(B) = (B) + 1 

(B) = (B) - 1 

P = P + d 
P P - d 
P P + d 
P = P - d 

P = dd 
P dd + k 
R = dd 
R = dd + k 

HR-0808 

Description 

Transmit A to memory addressed by register d 
Add memory addressed by register d to A, result 
to same memory location 
Transmit memory addressed by register d to A, 
add 1, result to same memory location 
Transmit memory addressed by register d to A, 
subtract 1, result to same memory location 

Set carry equal to channel d done 
Set carry equal to channel d busy 
Set carry equal to channel B done 
Set carry equal to channel B busy 

Right shift C and A by B places, end off 
Left shift C and A by B places, end off 
Right shift C and A by B places, circular 
Left shift C and A by B places, circular 

Transmit B to A 
Logical product of A and B to A 
Add B to A, result to A 
Subtract B from A, result to A 

Transmit A to B 

Add B to A, result to B 
Transmit B to A, add 1, result to B 
Transmit B to A, subtract 1, result to B 

Transmit operand register B to A 
Logical product of A and operand register B to A 
Add operand register B to A, result to A 
Subtract operand register B from A, result to A 

Transmit A to operand register B 
Add operand register B to A, result to operand 
register B 
Transmit operand register B to A, add 1, r'esult 
to operand register B 
Transmit operand register B to A, subtract 1, 
result to operand register B 

Jump to P + d 
Jump to P - d 
Return jump to P + d 
Return jump to P - d 

Jump to address in operand register d 
Jump to sum of k and operand register d 
Return jump to address in operand register d 
Return jump to sum of k and operand register d 

Part 4 
E-2 B 



rop 

100 
101 
102 
103 

104 
105 
106 
107 

110 
III 
112 
113 

114 
115 
116 
117 

120 

121 

122 
123 

124 

125 

126 

127 

130 

131 

132 

133 

APML 

p = P + d, C 0 
P = P + d, C # 0 
p = p + d, A 0 
P = P + d, A # 0 

P P d, C 0 
P P - d, C # 0 
P P - d, A = 0 
P = P - d, A # 0 

R = P + d, C 0 
R P + d, C # 0 
R P + d, A 0 
R P + d, A # 0 

R = P - d, C 0 
R = P - d, C # 0 
R = P - d, A 0 
R = P - d, A # 0 

P = dd, C o 

P = dd, C # 0 

P = dd, A 0 
P dd, A # 0 

P = dd + k, C = 0 

P dd + k, C # 0 

Description 

Jump to P + d if carry - 0 
Jump to P + d if carry ~ 0 
Jump to P + d if A = 0 
Jump to P + d if A ~ 0 

Jump to P d if carry 0 
Jump to P - d if carry ~ 0 
Jump to P d if A 0 
Jump to P - d if A ~ 0 

Return jump to P + d if carry = 0 
Return jump to P + d if carry ~ 0 
Return jump to P + d if A = 0 
Return jump to P + d if A ~ 0 

Return jump to P d if carry = 0 
Return jump to P - d if carry ~ 0 
Return jump to P d if A = 0 
Return jump to P - d if A ~ 0 

Jump to address in operand register d if carry = 
o 
Jump to address in operand register d if carry 
~ 0 
Jump to address in operand register d if A = 0 
Jump to address in operand register d if A ~ 0 

Jump to address in operand register d + k if 
carry = 0 
Jump to address in operand register d + k if 
carry ~ 0 

P = dd + k, A o Jump to address in operand register d + k if 
A = 0 

P dd + k, A # 0 Jump to address in operand register d + k if 

R = dd, C 0 

R = ddt C # 0 

R dd, A = 0 

R = dd, A # 0 

A ~ 0 

Return jump to address in operand register d if 
carry = 0 
Return jump to address in operand register d if 
carry ~ 0 
Return jump to address in operand register d if 
A = 0 
Return jump to address in operand register d if 
A ~ 0 

HR-0808 
Part 4 

E-3 B 



lOP APML 

134 R dd + k, C = 0 

135 R dd + k, C # 0 

136 R = dd + k, A 0 

137 R = dd + k, A # 0 

140 iod 0 
141 iod 1 
142 iod 2 
143 iod 3 

144 iod 4 
145 iod 5 
146 iod 6 
147 iod 7 

150 iod 10 
151 iod 11 
152 iod 12 
153 iod 13 

154 iod 14 
155 iod 15 
156 iod 16 
157 iod 17 

160 lOB 0 
161 lOB 1 
162 lOB 2 
163 lOB 3 

164 lOB 4 
165 lOB 5 
166 lOB 6 
167 lOB 7 

170 lOB 10 
171 lOB 11 
172 lOB 12 
173 lOB 13 

174 lOB 14 
175 lOB 15 
176 lOB 16 
177 lOB 17 

HR-0808 

DescriEtion 

Return jump to address 
if carry = 0 
Return jump to address 
if carry 'f 0 
Return jump to address 
if A = 0 
Return jump to address 
if A 'f 0 

Channel d 
Channel d 
Channel d 
Channel d 

Channel d 
Channel d 
Channel d 
Channel d 

Channel d 
Channel d 
Channel d 
Channel d 

Channel d 
Channel d 
Channel d 
Channel d 

Channel B 
Channel B 
Channel B 
Channel B 

Channel B 
Channel B 
Channel B 
Channel B 

Channel B 
Channel B 
Channel B 
Channel B 

Channel B 
Channel B 
Channel B 
Channel B 

function 
function 
function 
function 

function 
function 
function 
function 

function 
function 
function 
function 

function 
function 
function 
function 

function 
function 
function 
function 

function 
function 
function 
function 

function 
function 
function 
function 

function 
function 
function 
function 

Part 4 
E-4 

0 
1 
2 
3 

4 
5 
6 
7 

10 
11 
12 
13 

14 
15 
16 
17 

0 
1 
2 
3 

4 
5 
6 
7 

10 
11 
12 
13 

14 
15 
16 
17 

in operand register d + k 

in operand register d + k 

in operand register d + k 

in operand register d + k 

B 



SYSTEM CHANNEL ASSIGNMENTS 

The channel assignments for a typical Model 4400 system are shown in 
table F-l. 

Table F-l. Typical Model 4400 system channel assignments 

PROCESSOR CHANNEL MNEMONIC 

Master 0 lOR 
I/O 1 PFR 

Processor 2 PXS 

HR-0808 

3 LME 
4 RTC 
5 MOS 
6 AlA 
7 AOA 
10 AlB 
11 AOB 
12 AIC 
13 AOC 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 
31 
32 
33 
34 

35 
36 
37 
40 

41 

ERA 
EXB 
CIA 
COA 

CIB 
COC 

CIC 
cae 

CID 
COD 

TIA 
TOA 

I 

FUNCTION 

Interrupt request 
Program fetch request 
Program exit stack 
I/O Memory error 
Real-time clock 
Buffer Memory Interface (DMA 3) 
Input from Buffer I/O Processor 
Output to Buffer I/O Processor 
Input from Disk I/O Processor 
Output to Disk I/O Processor 
Input from Auxiliary I/O Processor 
Output to Auxiliary I/O Processor 

Error log 
Peripheral Expander (DMA 0) 
Input from CRAY-l channel (DMA 1) 
Output to CRAY-l channel (DMA 1) 

Input from F.-E. Interface (DMA 2) 
Output to F.-E. Interface (DMA 2) 

Input from F.-E. Interface (DMA 4) 
Output to F.-E. Interface (DMA 4) 

Input from F.-E. Interface (DMA 5) 
Output to F.-E. Interface (DMA 5) 

Console 0 keyboard 
Console 0 display 

Part 4 
F-l 

F 

B 



Table F-l. Typical Model 4400 system channel assignments (continued) 

PROCESSOR I CHANNELl MNEMONIC FUNCTION 

Master 42 
I/O 43 

Processor·1 44 
(continued) 45 

46 
47 

Buffer 0 
I/O 1 

Processor 2 

3 
4 
5 
6 
7 
10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 
31 
32 
33 
34 
35 
36 
37 
40 

41 
42 
43 
44 
45 
46 
47 

HR-0808 

TIB 
TOB 

Console 1 keyboard 
Console display 

lOR Interrupt request 
PFR Program fetch request 
PXS Program exit stack 
LME I/O Memory error 
RTC Real-time clock 
MOS Buffer Memory Interface (DMA 3) 
AlA Input from Master I/O Processor 
AOA Output from Master I/O Processor 
AlB Input from Disk I/O Processor 
AOB Output to Disk I/O Processor 
AIC Input from Auxiliary I/O Processor 
AOC Output to Auxiliary I/O Processor 
HIA Input from Memory Channel (DMA 4) 
HOA Output to Memory Channel (DMA 4) 

DKA 
DKB 
DKC 
DKD 
DKE 
DKF 
DKG 
DKH 

Disk Storage Unit 0 (DMA 0) 
Disk Storage Unit 1 (DMA O) 
Disk Storage Unit 2 (DMA l) 
Disk Storage Unit 3 (DMA l) 
Disk Storage Unit 4 (DMA 2) 
Disk Storage Unit 5 (DMA 2) 
Disk Storage Unit 6 (DMA 5) 
Disk Storage Unit 7 (DMA 5) 

Part 4 
F-2 B 



Table F-l. Typical Model 4400 system channel assignments (continued) 

PROCESSOR CHANNEL MNEMONIC 

Disk 0 lOR 
I/O 1 PFR 

Processor 2 PXR 
3 LME 
4 RTC 
5 MOS 
6 AlA 
7 AOA 
10 AlB 
11 AOB 
12 AIC 

I 
13 AOC 
14 
15 
16 
17 
20 DKA 
21 DKB 
22 DKC 
23 DKD 
24 DKE 
25 DKF 
26 DKG 
27 DKH 
30 DKI 
31 DKJ 
32 DKK 
33 DKL 
34 DKM 
35 DKN 
36 DKO 
37 DKP 

40 
41 
42 
43 
44 
45 
46 
47 

HR-0808 

FUNCTION 

Interrupt request 
Program fetch request 
Program exit stack 
I/O Memory error 
Real-time clock 
Buffer Memory Interface (DMA 3) 
Input from Master I/O Processor 
Output to Master I/O Processor 
Input from Buffer I/O Processor 
Output to Buffer I/O Processor 
Input from Auxiliary I/O Processor 
Output to Auxiliary I/O Processor 

Disk Storage Unit 
Disk Storage Unit 
Disk Storage Unit 
Disk Storage Unit 
Disk Storage Unit 
Disk Storage Unit 
Disk Storage Unit 
Disk Storage Unit 
Disk Storage Unit 
Disk Storage Unit 
Disk Storage Unit 
Disk Storage Unit 
Disk Storage Unit 
Disk Storage Unit 
Disk Storage Unit 
Disk Storage Unit 

Part 4 
F-3 

0 (DMA 0) 
1 (DMA 0) 
2 (DMA 0) 
3 (DMA 0) 
4 (DMA 1) 
5 (DMA 1) 
6 (DMA 1) 
7 (DMA 1) 
8 (DMA 2) 
9 (DMA 2) 
10 (DMA 2) 
11 (DMA 2) 
12 (DMA 5) 
13 (DMA 5) 
14 (DMA 5) 
15 (DMA 5) 

B 



Table F-l. Typical Model 4400 system channel assignments (continued) 

PROCESSOR : CHANNEL MNEMONIC 

Auxiliary 0 lOR 
I/O 1 PFR 

Processor 2 PXS 
3 LME 
4 RTC 
5 MOS 
6 AlA 
7 AOA 
10 AlB 
11 AOB 
12 AIC 
13 AOC 
14 
15 
16 
17 
20 BMA 
21 BMB 
22 BMC 
23 BMD 
24 BME 
25 BMF 
26 BMG 
27 BMH 
30 BMI 
31 BMJ 
32 BMK 
33 BML 
34 BMM 
35 BMN 
36 BMO 
37 BMP 
40 
41 
42 
43 
44 
45 
46 
47 

HR-0808 

FUNC'rION 

Interrupt request 
Program fetch request 
Program exit stack 
I/O Memory error 
Real-time clock 
Buffer Memory Interface (DMA 3) 
Input from Master I/O Processor 
Output to Master I/O Processor 
Input from Buffer I/O Processor 
Output to Buffer I/O Processor 
Input from Disk I/O Processor 
Output to Disk I/O Processor 

Block Multiplexer 
Block Multiplexer 
Block Multiplexer 
Block Multiplexer 
Block Multiplexer 
Block Multiplexer 
Block Multiplexer 
Block Multiplexer 
Block Multiplexer 
Block Multiplexer 
Block Multiplexer 
Block Multiplexer 
Block Multiplexer 
Block Multiplexer 
Block Multiplexer 
Block Multiplexer 

Part 4 
F-4 

Channel 0 
Channel 1 
Channel 2 
Channel 3 
Channel 4 
Channel 5 
Channel 6 
Channel 7 
Channel 8 
Channel 9 
Channel 10 
Channel 11 
Channel 12 
Channel 13 
Channel 14 
Channel 15 

(DMA 0) 
(DMA 0) 
(DMA 0) 
(DMA 0) 
(DMA 1) 
(DMA 1) 
(DMA 1) 
(DMA 1) 
(DMA 2) 
(DMA 2) 
(DMA 2) 
(DMA 2) 
(DMA 5) 
(DMA 5) 
(DMA 5) 
(DMA 5) 

B 



I 

lOP PROGRAMMING CONSIDERATIONS 

Several special cases must be considered when programming the I/O 
Processor. These cases are explained below. 

EXIT STACK TIMING 

When issuing PXS : 4 or ~XS : 15, allow 4 CPs§ before enabling system 
interrupts, return jumps or exit instructions. PXS: 14 and PXS : 15 
instructions should only be used when system interrupts are disabled. 

EXIT STACK INTERRUPT HANDLING 

G 

If return jumps are used in an interrupt handler, verifiy that enough 
levels are left available in the stack. An interrupt with the exit stack 
pointer at 1310 causes the pointer to go to 1410 and leave only one 
location open. A worse case exists if a return jump which causes a 
program fetch request (PFR) interrupt is issued with the stack pointer at 
1310 • The return address goes in 1410 and the interrupt address goes 
into 1510 • This condition now leaves two interrupts present--both the 
exit stack boundary and PFR, with the PFR being the highest priority and 
no stack locations available. If the stack pointer is allowed to 
increment from 1510 , it clears to 0, and incorrect return addresses are 
used. 

SYSTEM INTERRUPT ENABLE 

When issuing an 1=1, the system interrupt enable is delayed until the 
next non-branch or non-I/O instruction is issued. The instructions that 
do not enable interrupts are the 40-43 and 70-137. 

§ The term clock periods refers to processor instruction times taken up 
by issuing pass instructions, or some other instruction or group of 
instructions whose execution time equals or exceeds the delays noted. 
Any instruction or group of instructions may be used as long as they 
are not included in any of the special cases stated in this list. 

HR-0808 
Part 4 

G-1 B 



I 

This allows the executive/monitor to get back to the interruptible 
activity before an interrupt is accepted. 

Use an 1=0 instruction at the interrupt handler entrance. If a redundant 
1=1 is executed and an interrupt occurs before a non-branch or non-I/O 
instruction is encountered, the interrupt handler is entered (with 
interrupts disnhl~o)~ Rut interrupts are re-enabled when the first 
non-branch or non-I/O instruction is issued within the interrupt handler. 

SYSTEM INTERRUPT DISABLE 

The instructions following an 1=0 instruction may be skipped if an 
interrupt occurs (while 1=0 is executing). Hence, a pass instruction 
should follow every 1=0. 

SYSTEM INTERRUPT CLEARED OR SET BY THE ENABLES FOR INDIVIDUAL CHANNELS 

After issuing a command 6 or 7 to any I/O channel, allow 3 CPs§ before 
seeing its effect on system interrupt. (Assuming system interrupts are, 
or will be, enabled.) 

I/O CHANNEL TIMING 

When issuing any command to the I/O channels, allow 1 Cp§ before 
checking busy or done status. 

Also allow 1 CP§ after any command 6 or 7 before checking for interrupt 
number (lOR : 10). 

BUFFER MEMORY ERRORS 

If a Buffer Memory multiple bit error has occurred, an MOS : 0 
instruction is required prior to the next read or write command. The 
interface operation waits indefinitely on the error if it is not cleared 
by the MOS : O. 

§ The term clock periods refers to processor instruction times taken up 
hy issuing pass instructions; or some other instruction or group of 
instructions whose execution time equals or exceeds the delays noted. 
Any instruction or group of instructions may be used as long as they 
are not included in any of the special cases stated in this list. 

HR-0808 
Part 4 

G-2 B 



I 

BUFFER MEMORY DEADSTART TIME 

Deadstarting a processor via Buffer Memory requires apporoximately 2 
ms to transfer the full 64K into I/O memory. This time assumes no 
other Buffer Memory activity other than refresh. 

ERROR LOGGING AND BLOCK MULTIPLEXER CHANNELS 

The commands : 10-13 to the error logging channel or the block 
multiplexer channel decode the present accumulator data on the 
interface. If the lOP instruction previous to the commands : 10-13 is 
any of the following: 4-7, 12, 13, 16, 17, 22, 23, 32, 33, 44-47, 52, 
53, 62, 63; then an 11 or 15 instruction (with the d or k field set to 
all ones) should be inserted between the instruction and the interface 
command. This avoids a l-CP timing restriction caused by the adder 
and shifter. 

I/O INSTRUCTIONS AFTER DEADSTART 

The first instruction executed after a deadstart cannot be an I/O 
instruction. This includes 40-43, 140-147, 154-157, 160-167, 
174-177. The accumulator must be loaded before executing any of these 
instructions. This avoids a special control sequence condition after 
deadstart. 

150-153, 170-173 instructions may be executed after 
deadstart as the instructions do load the accumulator. 

PERIPHERAL EXPANDER CHANNEL TRANSFERS 

The expander channel supports block transfers to only the first 
100,0008 parcels of I/O memory. 

HR-0808 
Part 4 
G-3 B 





LIST OF ABBREVIATIONS 

A, An 

Addr 

Adv. 

Ai ,Aj ,Ak 

APML 

B, Bn 

BA 

BIOP 

Bjk 

BM 

CA 

CAL 

Ch 

CL 

CIP 

CLK 

Contr. 

CP 

CPU 

CRI 

oeu 

Distr. 

DIOP 

DMA 

DP 

DSU 

Exch. 

F 

HR-0808 

CPU address register n, n 

Address 

Advance 

o to 7 (CPU); lOP accumulator 

Address register specified by instruction i,j,k fields 

A Programming Machine Language 

CPU intermediate address register n, n = 0 to 778; lOP B 
register 

Bank address, buffer address 

Buffer I/O Processor 

Buffer register specified by instruction j,k fields 

Buffer Memory 

Current address register 

Cray Assembly Language 

Channel 

Channel Limit register 

Current Instruction Parcel register 

Clock 

Control 

Clock period, central processor 

Central processing unit 

Cray Research, Incorporated 

Disk controller unit 

Distribution 

Disk I/O Processor 

Direct memory access 

Destination Pointer register 

Disk Storage Unit 

Exchange 

Flag register (exchange package); lOP instruction function 
field 

Part 4 
H-I B 

H 



F.E. 

F.P. 

F. U. 

FWA 

gh 

GR 

h 

Hz 

i 

II 

IC 

leD 

I/O 

lOP 

lOR 

k 

jk 

LA 

LIP 

LSI 

LWA 

M 

MBits 

Mbyte 

MCU 

MG 

MHz 

MIOP 

Mr-n 

MOS 

MSEC 

MS 

MSKO 

NIP 

HR-0808 

Front end 

Floating-point 

Functional Unit 

First word address 

g and h fields, CPU instruction operation code 

Group 

h field, CPU instruction 

Hertz, cycles per second 

i field of CPU instruction 

Interrupt Interval register (CPU); Instruction Issue 
register (lOP) 

Integrated Circuit 

Interrupt Countdown counter 

Input/Output 

I/O Processor 

I/O request 

Kilo, 1024, k field CPU instruction 

j and k fields, CPU instruction 

Limit address 

Last instruction parcel 

Large scale integration 

Last word address 

Million; mode bit field in exchange package; instruction 
field 

Megabits or million bits 

Megabyte or million bytes 

Maintenance Control Unit 

Motor-Generator 

MegaHertz, or million cycles per second 

Master I/O Processor 

Monitor Mode Interrupt 

Metal oxide semiconductor 

Millisecond 

Mass storage 

r-1ask out 

Next instruction parcel 

Part 4 
H-2 B 



nmos 

ns 

OS 

Osc 

P 

PDU 

PFR 

POP 

PCI 

R 

RA 

Recip 

Reg. 

Req. 

Resp. 

Ref. 

RP 

R'RAB 

RTC 

S 

s 

Seq. 

Sn 

S i, Sj, 

SEeDED 

Store 

T, Tn 

Tjk 

V, Vn 

Vi, Vj, 

VL 

VM 

XA 

XIOP 

HR-0808 

Sk 

Vk 

Negative channel metal oxide semiconductor 

Nanosecond 

Operating system 

Oscillator 

Program address register; Program parcel counter 

Power Distribution Unit 

Program fetch request 

Population count 

Programmable clock interrupt 

Request; response 

Read address 

Reciprocal 

Register 

Request 

Response 

Reference 

Register Pointer register 

R' = high-order bits of read address, RA = Read Address, 
B = Bank low-order bits of address in exchange package 

Real-time clock 

Scalar 

Second 

Sequence 

Scalar register, n = 0 to 7 

Scalar register specified by instruction i or j or k field 

Single error correction/double error detection 

Storage 

Intermediate scalar register n, n = 0 to 778 

Temporary register indicated by instruction j,k fields 

Vector register n, n = 0 to 7 

Vector register specified by instruction i or j or k field 

Vector Length register 

Vector Mask register 

Exchange Address register 

Auxiliary I/O Processor 

Part 4 
H-3 B 



READERS COMMENT FORM 

CRAY-l S series Hardware Reference Manual HR-080B B 

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided 
below to share with us your comments. When possible, please give specific page and paragraph references. 

NAME ______________________________________ _ 

JOBTITLE __________________________________ _ 

FIRM ______________________________________ __ 
RESEARCH. INC. 

ADDRESS __________________________________ __ 

CITY ____________ STATE ____ ZIP ___ _ 



FOLD 

Attention: 
PUBLICATIONS 

FOLD 

111111 

BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO 6184 ST PAUL. MN 

POSTAGE WILL BE f'AID BY ADDRESSEE 

RESEARCH, INC. 

Hwy 178 North 
Chippewa Falls, WI 54729 

U.S.A. 

, 
I 

------f 
NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

(") 
C 
-4 
» 
r 
o 
Z 
C) 

-4 
:I: 
en 
!: 
z 
m 

--------------, 

STAPLE 



Cray Research, Inc. 
Publications Department 
1440 Northland Drive 
Mendota Heights, MN 55120 
612-452-6650· 
TLX 298444 


	000
	001
	002
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	1_00
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_1-05
	1_1-06
	1_1-07
	1_1-08
	1_1-09
	1_1-10
	1_1-11
	1_1-12
	1_1-13
	1_1-14
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_2-09
	1_2-10
	1_2-11
	1_2-12
	1_2-13
	1_2-14
	2_00
	2_1-01
	2_1-02
	2_1-03
	2_1-04
	2_1-05
	2_1-06
	2_1-07
	2_1-08
	2_2-01
	2_2-02
	2_2-03
	2_2-04
	2_2-05
	2_2-06
	2_2-07
	2_2-08
	2_3-01
	2_3-02
	2_3-03
	2_3-04
	2_3-05
	2_3-06
	2_3-07
	2_3-08
	2_3-09
	2_3-10
	2_3-11
	2_3-12
	2_3-13
	2_3-14
	2_3-15
	2_3-16
	2_4-01
	2_4-02
	2_4-03
	2_4-04
	2_4-05
	2_4-06
	2_4-07
	2_4-08
	2_4-09
	2_4-10
	2_4-11
	2_4-12
	2_4-13
	2_4-14
	2_4-15
	2_4-16
	2_4-17
	2_4-18
	2_4-19
	2_4-20
	2_4-21
	2_4-22
	2_4-23
	2_4-24
	2_4-25
	2_4-26
	2_4-27
	2_4-28
	2_4-29
	2_4-30
	2_5-01
	2_5-02
	2_5-03
	2_5-04
	2_5-05
	2_5-06
	2_5-07
	2_5-08
	2_5-09
	2_5-10
	2_5-11
	2_5-12
	2_5-13
	2_5-14
	2_5-15
	2_5-16
	2_5-17
	2_5-18
	2_5-19
	2_5-20
	2_5-21
	2_5-22
	2_5-23
	2_5-24
	2_6-01
	2_6-02
	2_6-03
	2_6-04
	2_6-05
	2_6-06
	2_6-07
	2_6-08
	2_6-09
	2_6-10
	2_6-11
	2_6-12
	2_6-13
	2_6-14
	2_6-15
	2_6-16
	2_6-17
	2_6-18
	2_6-19
	2_6-20
	2_6-21
	2_6-22
	2_6-23
	2_6-24
	2_6-25
	2_6-26
	2_6-27
	2_6-28
	2_6-29
	2_6-30
	2_6-31
	2_6-32
	2_6-33
	2_6-34
	2_6-35
	2_6-36
	2_6-37
	2_6-38
	2_6-39
	2_6-40
	2_6-41
	2_6-42
	2_6-43
	2_6-44
	2_6-45
	2_6-46
	2_6-47
	2_6-48
	2_6-49
	2_6-50
	2_6-51
	2_6-52
	2_6-53
	2_6-54
	2_6-55
	2_6-56
	2_6-57
	2_6-58
	2_6-59
	2_6-60
	2_6-61
	2_6-62
	2_6-63
	2_6-64
	2_6-65
	2_6-66
	2_6-67
	2_6-68
	2_6-69
	2_6-70
	2_6-71
	2_6-72
	2_6-73
	2_6-74
	2_6-75
	2_6-76
	2_6-77
	2_6-78
	2_6-79
	2_6-80
	2_6-81
	2_6-82
	2_6-83
	2_6-84
	2_7-01
	2_7-02
	3_00
	3_1-01
	3_1-02
	3_1-03
	3_1-04
	3_2-01
	3_2-02
	3_2-03
	3_2-04
	3_3-01
	3_3-02
	3_3-03
	3_3-04
	3_3-05
	3_3-06
	3_3-07
	3_3-08
	3_3-09
	3_3-10
	3_3-11
	3_3-12
	3_4-01
	3_4-02
	3_4-03
	3_4-04
	3_5-01
	3_5-02
	3_5-03
	3_5-04
	3_5-05
	3_5-06
	3_5-07
	3_5-08
	3_5-09
	3_5-10
	3_5-11
	3_5-12
	3_5-13
	3_5-14
	3_5-15
	3_5-16
	3_5-17
	3_5-18
	3_5-19
	3_5-20
	3_6-01
	3_6-02
	3_6-03
	3_6-04
	3_6-05
	3_6-06
	3_6-07
	3_6-08
	3_6-09
	3_6-10
	3_6-11
	3_6-12
	3_6-13
	3_6-14
	3_6-15
	3_6-16
	3_6-17
	3_6-18
	3_6-19
	3_6-20
	3_6-21
	3_6-22
	3_6-23
	3_6-24
	3_6-25
	3_6-26
	3_6-27
	3_6-28
	3_6-29
	3_6-30
	3_6-31
	3_6-32
	3_6-33
	3_6-34
	3_6-35
	3_6-36
	3_6-37
	3_6-38
	3_6-39
	3_6-40
	3_6-41
	3_6-42
	3_6-43
	3_6-44
	3_6-45
	3_6-46
	3_6-47
	3_6-48
	3_6-49
	3_6-50
	3_6-51
	3_6-52
	3_6-53
	3_6-54
	3_6-55
	3_6-56
	3_6-57
	3_6-58
	3_6-59
	3_6-60
	3_6-61
	3_6-62
	3_6-63
	3_6-64
	3_6-65
	3_6-66
	3_6-67
	3_6-68
	3_7-01
	3_7-02
	3_7-03
	3_7-04
	3_7-05
	3_7-06
	3_7-07
	3_7-08
	3_7-09
	3_7-10
	3_7-11
	3_7-12
	3_7-13
	3_7-14
	3_7-15
	3_7-16
	3_7-17
	3_7-18
	3_7-19
	3_7-20
	3_7-21
	3_7-22
	3_7-23
	3_7-24
	3_7-25
	3_7-26
	3_7-27
	3_7-28
	3_7-29
	3_7-30
	3_7-31
	3_7-32
	3_7-33
	3_7-34
	3_7-35
	3_7-36
	3_7-37
	3_7-38
	3_7-39
	3_7-40
	3_7-41
	3_7-42
	3_7-43
	3_7-44
	3_7-45
	3_7-46
	3_7-47
	3_7-48
	3_7-49
	3_7-50
	3_7-51
	3_7-52
	3_7-53
	3_7-54
	3_7-55
	3_7-56
	3_7-57
	3_7-58
	3_7-59
	3_7-60
	3_7-61
	3_7-62
	3_7-63
	3_7-64
	3_7-65
	3_7-66
	3_7-67
	3_7-68
	3_7-69
	3_7-70
	3_7-71
	3_7-72
	3_7-73
	3_7-74
	3_7-75
	3_7-76
	3_7-77
	3_7-78
	3_7-79
	3_7-80
	3_7-81
	3_7-82
	3_7-83
	3_7-84
	3_7-85
	3_7-86
	3_8-01
	3_8-02
	3_8-03
	3_8-04
	4_00
	4_A-01
	4_A-02
	4_A-03
	4_A-04
	4_A-05
	4_A-06
	4_B-01
	4_B-02
	4_B-03
	4_B-04
	4_B-05
	4_B-06
	4_C-01
	4_C-02
	4_D-01
	4_D-02
	4_D-03
	4_D-04
	4_E-01
	4_E-02
	4_E-03
	4_E-04
	4_F-01
	4_F-02
	4_F-03
	4_F-04
	4_G-01
	4_G-02
	4_G-03
	4_G-04
	4_H-01
	4_H-02
	4_H-03
	replyA
	replyB
	xBack

