1. INTRODUCTION

Cosnpratations in vector mode on CHAYSY can be an order of
magnitude faster than in whe. “f?rm paper deals with
the basics vector hardware wes aned how the CFT

opETal

{Cray Fortran) compiler makes use of them. A little under- ABSTRACT: This is a proctical
standing of the vector hardware is useful because some opera.  guide fo vector Fortran for
tions on CRAY-1 are more efficlent than others e the progrognming menerical problems

hardware molivatio tor on CHAY-1. The ivderdt bs b

L computation” methord uspally works very wel y large illustrate those constructions which
computer. effectively use the hardware
through familiar and useful
1.1 Segmentalion and Unrolling Loops examples.

To CRAY-L, weciors sre regolatly speced arays of deata et
can be provessed by segments. Regularly spaced data means
that each slement s the same number of memory locations
from its predecessor. For examgple. the slements JAIN ~ 1),
AN ~ 33, AN~ 5L AN ~ 7L . are regularly speced, while
IALT), AJZL AL ABL ) are ol

In CFT, the privgiple engines of vecior cperations are DO
loops. §f there are n repetitions of the loop, executing as many
as 64 8t 2 time’ gves

n o= rsl 4 Bag

where rsl € 54 s the number in the residual segment, which
is processed first, and g & the number of additional segments
of length 64, Machine instructions generated by CFT for vec
wor DO loops calculate g and sl to "unroll” the loop into
segments of length £ B4, A vector length register VL [1] is st
to the pumber per segrment. Al uoroliing of loogs Is transpaer-
ent 1o the user, with UFT doing #ll segmenting wd approprt-
ale addressing

1.2 Wentical and 3 t Oyperathons
In writing vectoried codes, 1t s Important 1o uml

ments really must be indeperdent of or
bt st be treated identically,
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sun = ¢

DO 1 1 = I,N
IF {A{I).EQ.0)}GOTO {
SUM = SUM + A(T)

1 CONTENUE

FIGURE L  Non-Vector Summation.

.
FIGURE2 Nan-Vector Dependency Case.

o

Bl

FIGURE3 Register $1 Added 1\O

Plucking out the IF statement allows CFT to compile vector
hardware instructions. Addition of zero elements may be su-
perfluous, but should be done anyway. The idea is that each
A{l) must be treated exactly like every other. Conditional
statements IF and computed GOTO imply that some data are
very different from others and are treated accordingly.
Branching, which includes IF, GOTO, and CALL statements,
inhibits.the use o the CRAY-1 vector hardware.

Furthermore, CFT considers an array to be a vector only if
it is clear that no element of that array depends upon the
previous computation of another. For example, in Figure 2,
the natural order of 1 =2, 3, 4, ... requires that A(l — 1)be
replaced by A(l — 2) for A(l) to be properly set. Thus, the
A(D}s in Figure 2 must be set one at a time rather than by
segments.

Indexing arrays o that CFT compiles vector machine in-
structionsis generally straightforward, but there are subtleties.
Section 3 of this document, the CFT reference manual {2, Part
3, Section 2], and the paper of Higbie [3] deal with indexing
in some detail.

2. CRAY-1 VECTOR HARDWARE
Only about one-fourth of the CRAY-1 machine instructions
use vector registers. The followingnotation will be used to
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describe machine instructions{4}:
V1« S1 Vo

Here, the content of scalar register S1 is added element by
element to the contents of vector register Vo and the results
stored in vector register V1.

Figure 3 is a pictorial representation of this instruction.
Paths to each register are represented by arrows. The end of
each path is a pointer indicatingonly one element at a time.
Once this instruction is issued and addition begins, the
pointer in Vo is incremented each clock period (12.5x 10~
seconds),until the operands are exhausted. A similar pointer
in result V1 is incrementedwhen results begin to emerge
from the adder, three clock periods later in this case.

The integer adder, which may contain three separate pairs
of operands concurrently in distinct stagesdf processing, is
called a pipelined functional unit. It has some analogy to a
short piece of pipe into which marbles are being pushed; until
the pipe is full, no marbles emerge from the other end. Even
though the first result does not emerge from the pipe until
several clock periods later, successive results arrive one clock
period apart. One 84-bit integer addition takes three clock
cycles, but pushing a segment of 64 additions through only
takes 67 cycles. Effectively, this is only slightly more than one
cycle per addition—a factor of three faster than one at a time.
Longer pipelines show even greater improvements —typically
six- or seven-fold for floatingpoint operations. Further, with
chaining and overlap, described in the next section, several
operations may run concurrently.

Machine instructionsgenerated by CFT to execute a vecto-
rized Do-loop control the segmentation (Section1.1), and in-
volve some o eight vector registers VO, V1, ..., V7 of 64
words each. Scalar registersSo, S1, . ..,S7 may also be used
as operands in some vector operations, as in Figure 3 for
example. Vector merging, that is, selecting vector elements
word-by-word is implemented by a correspondence between
the 64 bits of the S and VM registers and the 64 words of the
V registers (see Section 3.2). Operations may run concurrently
if certain independence criteria are satisfied. In partictlar,
each of seven functionalunits may run independentlyto
perform the operations shown in Table I.

‘Division uses a 30-bit reciprocal approximation and one Newton iteration
{5. pp. 5-53].

TABLE!, Vector Functional Units

Unit operations Purpose
memory load load register from memory
store store to memory from register
F £p. (truncated) muitiply
R f.p. (rounded)multiply
I f p. {iterative) multiply®
I M reciprocal approximation®
+ +F fp. add
-F f.p. subtract
logical & logical .and.
! logical .or.
\ exclusive .or.
W form vector mask
merge vector merge
ot + integer ack]
Integer - integer Subtract
shift > right shift
< left shift
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3 Usually, sequential I/0 using READ} and WRITE state-
ments works best bemuse it's very simple and lets the
operating system take care of all the concurrency head-
aches |t 1s best to use long fixed-length records—some-
where around 560 words. Every dataset transfer involves
at least one sector of 512 words, which includes some
block and record control words. It is also advisable to try to
avoid array references having multiple-of-eightincrements
which cause memory bank conflicts.

Sequential array elements are stored in sequential bunks of
memory. There are 16 banks, each with a cycle time of four
clock periods {1, Section6-21}. Fetching or storing by multi-
ple-of-eight increments conflicts with this cycle. Memory
bank conflicts also break chainingwith independent opera-
tions. These are important considerations for F¥Ts and Cyclic
Reduction (whichare discussed in Sections4.4 and 4.5.3}.

2.3 Reduction Operations

Operationswith a result vector having the same number of
elements as the operands are usually more efficient than, say,
dot-products—which reduce dimensionality. Consider a DO-
loop that computes the product o N elements of array A
Result PROD is of dimension unity, but A is an N-dimen-
sional operand, (Figure 6) Through CFT version 1.09, the re-
ductions used a curious property of the vector hardware.
After version 1.10, a somewhat slower procedure is used,
which is compatible with the CRAY X-MP. In what follows
the pre-1.10 method is discussed.

To do reductions like this, three steps are necessary. For
simplicity,let N = 64¢q, and divide A into q segments, each of
length 64. In the first step, the followingaccumulation hap-
pens. Segments1 and 2 are multiplied together, element-by-
element, to yield a 64-element result. That result is now
multiplied by the 3rd segment—still a 64-element result, then
the 4th segment, and so on until all g segments are used.

A second step reduces this 64-element partial result by a
recursive hardware operation [1, pp. 3-14] similar to the fol-
lowing, if VO contains the 64-element partial result,

V1 « V1*RV0O

where the first element of V1 is set to 1.0. Result register V1 is
also an operand. In this case, the pointer in V1 cannot ad-
vance until functional unit time +2 clock periods (7 +2 = 9)
later, when the firstresult is ready. When completed, the last
nine elements 0f V1 are the product of the first element of VO
and every ninth element of V0. Use of identical registers for
operands and results is deliberate and recursive, producing a
useful reduction of the 64 products. An example o this recur-
sive mechanism is shown in [1),but is too involved to repro-
duce here.

Finally, in the last of three steps, f.u. time + 2 elementsin
V1 must be pulled out and the reduction completed. This
remaining step, which uses the S-registers,can be scheduled
to take about 45 clock periods, somewhat less than a vector
segment operation on 64 elements. Such a macro is invoked

FIGURE6. Product of Vector Elements.
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by CFT to do reductions of sums and products only. If N is
large, two additional steps after the initial accumulation add
little extra time, since each is executed only once. Compared
to the g accumulation operationsin the first step, the last two
become unimportant. However, for moderate-length vectors
(less than 100), reductions are less efficient than vector —»
vector operations. Sections 4.1 and 4.2 give examples that
illustrate the point.

3. PROGRAMMING THE LOOPS
The appearanceof

VECTOR BLOCK BEGINS AT SEQ. NO. n, P = addr

at the end of a listing of a compiled subprogram means that
CFT has generated a vector DO-loop in a particular block of
code. A block is a basic unit of code which is locally optim-
ized by CFT and is demarcated by register usage. Subroutine
or user-defined function calls, GOTO statements,and inner
DO-loops force blocking. CFT only vectorizes inner loops!
Since blocking does not usually start exactly at the DO state-
ment, to identify the vectorized loops in a compiled listing
look for the first inner loop followingthe sequence number
beginning the vector block. This will be the vectorized loop.

Many CFT intrinsic functions, SIN, EXP, SQRT for exam-
ple, are vector mode (computation done in vector registers)
and are used in DO-loops. Others, like ATAN, may be used in
vector loops but are not really vector mode. These pseudo-
vector functions pass segments of arguments in-register (V1, or
V1 and V2j, but process them element-by-element in scalar
registers. These pseudo-vector (see[2, Appendix B]) routines
exist because nobody has rewritten them. They do permit
CFT to vectorize the rest of a loop, however. Table If summa-
rizes the intrinsic CFT operations and functions that are vec-
tor-mode.

Neither DOUBLE PRECISION nor CHARACTER data com-
putations are done in vector registers. The CRAY-1 has no
double precision hardware. Data transferand 1/0 for double
precision does use vector register memory access, however.

7‘Positive differencefunction DIM gives X = DIM({Y. Z) = Y. Zif Y >Z. X =0
otherwise.

TABLEl. CFT Vector Operations and Functions by Data Type

SINGLE COMPLEX INTEGER ~ DOUBLE BOOLEAN
. : AND.
+- +- +- .OR.
| | | XOR.
logical logical
SORT
EXP,”
COS/SIN CSIN/CCOS
ALOGJALOG10
ABS CABS IABS DABS
DIM DIM*
INT AINT IDINT
AMOD
SIGN ISIGN DSIGN
RANF
MAX1/AMAX1 MAX0/AMAX0  DMAX1
MINT/AMINA MINO/AMINO DMINT
CONJG
JFIX FLOAT SNGL
COMPLX/DBLE  REALJAIMAG
SIGN ISIGN DSIGN
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FIGURE 12. Dot-Product Method,
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FIGURE 14. Solutionto Symmetric Toeplitz System.

November 1983  Volume 26 Number 11

In Figure 14 the bulk of computationis in dot-product
operations computing local variables CtN, C1D, and XN, XD.
In subroutinesCSOLV and XSOLV, relabeling variables C(1]
asC1 and ~X(M * 2} as SX eliminates apparent dependen-
cies. The vector length of each loop increases each iteration
1= m =< n. Segment overhead (see Section 2.2) is constant,
and for short segments becomes appreciable. In this example
there is no known way to avoid functional unit overhead for
short segments. In the example of an FFT in Section4.4, an
increasingor decreasing vector length can be dealt with effec-
tively, but not in the present case. Nevertheless, this G(n?)
algorithm is very efficient because every loop is in vector
mode. It inverts a 256 dimensional system in 17 milliseconds,
but requires 77 milliseconds in scalar mode {i.e., OFF =V
optiond CFT [2, p. (3)1-1]).

4.3 Floyd’s Algorithm—Removing the IF Statements

The following shortest path through a network algorithm is
due to Floyd {11]. In Figure 15, the inner-loop IF and CVMG
statementsare “commented out” to give alternate calculations
of my; shown by the “C---"lines. Initially, my, is the length of a

FIGURE 15. Minimum Path.

direct link from point j of a network to point k. If no direct
link exists, m;, is assumed to be initially e = 16. On exit,
m;x contains the length of the shortest path from j to k. In
Figure 15the array M is of positive integers, but this is not
essential —substituting AMIN1 for MINO deals with positive
reals. It turns out that the introduction df the integer variable
T is necessary. If M(], 1) were used instead of T, the compiler
would flag the inner loop as a dependency situation; M(J, 1)
might be overwrittenwhen K =1 in the Jth column and the
new M(J, ) would be used for K > I. This will happen as a
result of the semantics, not the syntax: namely, the positive
array element M(}, 1) will not be overwrittenby M(J. 1) +
M(1, ]} =2«M(J, I). The CVMGM function is equivalent to
MINO, and vectorizes. Use of the IF-test replacement in lieu of
CVMGM or MINo for N = 10 gives a nonvectorizing subrou-
tine that takes five times longer,
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To conclude this section, several rernarks are appropriate concept, that is, of using the inner loop to run over the inde-

concerning multiple FFTs and general radix transforms. Fre- pendent cases, cannot be overstated for vector computing.
quently one is interested in multiple transforms of the same In Figure 21, the subscripts ranged by L treat the rows of
length. For example, solving Polsson’s equation on a square K(NT, NJ as independent. Similarly, to transform the columns
might involve calculating 128 independent transforms of independently, the (L, s must everywhere be turned into
length 128. This is easier 1o vectorize than the single trans- {}, L}s. Padding the leading dimensions of X and Y by one
form case. Indeed, in Figure 21 a variant of STEP computes row will avoid memory bank conflicts when the leading di-
NT repetitions of step 1 + 1 for NT transforms of length N. mension of X and Y is a multiple of 8.

The important thing 1o notice is that the inner loop has a Although we have only discussed radix 2 transforms (N is a
fixed repetition count, namely NT. The importance of this power of 2), it turns out that other radix transforms have

FIGURE 18. FFT using Eqs. 5 and 6.
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sorne advantages. In part because of memory bank conflicts,
binary radix transforms are less efficient than those of radix 3
or 5 {see | 18]), which in some cases have nearly twice the
processing rates,

4.5 Getting Around Dependencies

When an updated element of an array is required for the
subsequent calculation of an element in the same array, the
elements may not be treated independently. In CRAY-1 docu-
mentation {2], this situationis regarded as a “dependency.”In
fact, because of the register architecture, two types of depend-
encies exist. In Figure 22 both types are illustrated.

In the top example, if [0 > 0, then A{I) requires the previous
value A{l — [0} to have been reset, as in Figure 2. Hence, there
is a sequential ordering, and A cannot be regarded as a vector
with independent elements. At compile time CFT cannot de-
termine whether 10 is negative and inhibits generation of
vector hardware instructions.

Storage of B in the second part of Figure 22 may overlap if
[1 <12, This kind of dependency is somewhat more subtle, a
result of the register architecture of CRAY-1. For example, try
setting{t =0, I2=1,IL =1, U = 3. The storage of a segment
{B(2), B(3), B4)} =12., 2., 2.} over the segment {B(1), B(2), B(3)}
={1., 1, 1.} would give B ={1., 2,, 2., 2.}, which is not the
same as the desired B ={1., 1., 1., 2.}. At compile time, if I1
and 12 are not known, CFT flags this as a dependency case. In
the following, examplesare given that illustrate some ways to
sidestep these nonvectorizing dependencies.

4.5.1 Guauss~Seidel Relaxation. It is sometimes possible to
find directions or subsets of multiply dimensioned arrays in
which all the elements along those rays may be treated as
independent. For example, all the elements in one column
can be regarded as independent of elements in other columns.
A simple relaxation step on the interior points of a rectangu-
lar grid is shown in Figure 23.

In this figure,computation of the Jthelementin row |
depends on the updated value of the (j — 1) element, inhibit-
ing vectorization. Justdrawinga picture of the grid of I,
elements shows that diagonals depend only on the updated
elements of previous (lower) diagonals. Each of these diago-
nals may be treated as independent, as in Figure 24.

Scanningby diagonals has the disadvantagethat the vector
length in the inner loop keeps changing. For very small itera-
tion counts(1 or 2), the overhead to fill the functional unit
pipelines is appreciable. Nevertheless, Figure 24 runs five
times faster than Figure 23 if N, M > 100.

452 A red-black ordering. A method asymptotically
equivalentto the above is a red-black ordering {19]. Figure 25
illustratesa simple red-black relaxation step, which has two
additional features: use of the IVDEP directive, and parsing to
minimize memory fetches. Within the DO 2 and DO 4 inner
loops, the last pair of points in each equation is shared, elimi-
nating two additional fetches. This example runs at 70 million
floating point operations /second. A relatively easy modifica-
tion of Figure 25 for Poisson’s equation (not Laplace’s equa-
tion, as above) performsfloating point operations faster than
the 80 megaHertz clock. This modification requires a relaxa-
tion parameter « # 1 and a “source”term. Because of the
additional computations, the operation rate actually goes up.

453 Tridiagonal systems. In both the forward elimination
and back-substitution steps in the solution of a tridiagonal
linear system, each element depends on its predecessors. To
solve a single tridiagonal linear system by a parallel or vector

November 1983 Volume 26 Number 11
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FIGURE 22. Non-Vectorizing Dependencies.

FIGURE 23. Gauss-Seidel Relaxation Step.

FIGURE24. Vector Gauss-Seidel Relaxation Step.

algorithm represents a problem of some difficulty. There are
several approaches: Buneman’svariant of cyclic reduction
[20], Stone’srecursive doubling [21]. and a parallel Cramer’s
rule method by Swarztrauber [22). The fastest of these meth-
0ds on CRAY-1 is cyclic reduction [23]. Unfortunately,each
method relies on a recursive doubling of step size in memory,
while halving the vector length of each operation,and vice
versa. Because of overhead introduced by short vectors,and
memory bank conflicts inherent at each stage, even cyclic
reduction runs only twice as fast as a simpler scalar method
[24] for very large problems. In fact, a simple scalar tridiagonal
solver is faster than cyclic reduction for solution vectors of
length less than 63. Since this is not a delightful result, let us
sidestepthe issue and do another problem.

Multiple tridiagonal systemsare much more tractable.
Block tridiagonal equations, many line-relaxation methods.
and three dimensional problems usually need solutions to
many totally independent (unrelated)tridiagonal systems. So.
now the inner loops can be made to range over each unre-
lated system in turn.
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FIGURE 25,




Once again, it must be emphasized that using inner loops to
range over identical operations on independent data or sys-
temns is the key 1o successful vector processing, Indeed, using
the above procedure to solve 100 tridiagonal systems of length
100 is 13 times faster than solving 100 one at a time. If each
systemn has a different matrix, Figure 26 is easily modified for
this purpose.

4.6 Sparse Matrices—Nonlinear Indexing

Most general purpose sparse matrix solvers[25] keep pointers
to nonzero elements. Allocating storage only for nonzero ele-
ments arid potential fill-in minimizes both memory require-
ments and the number of null operations. All six [26] forms of
Gaussian elimination require a compressionand decompres-
sion of rows or columns into indexed listsas the elimination
proceeds. For example, the most efficient form of elimination
[27] has the following reduction step on the working row
(Figure 27):

Here, Y is the working row, X is any lower packed row
with INDEX an array of pointers to the positions of X in its
expanded form. For an arbitrary sparse matrix, INDEX will
not point to regularly spaced elements.

This is a difficult problem with no vector hardware solu-
tion. At present, only CAL-coded modules can manage to
approach vector-mode floating point operation rates. The op-
erations in Figure 28 are available for sparse matrices on
CRAY-1 with the 1.11 CFT software release. Respectively, the
calling sequences for these modules are as shown in Figure
29. For N > 5, all these subprogramsare more efficient than
in-line FORTRAN, For large N these modulles give a factor of
3 timing improvement.

FIGURE?28. CAL Sparse Operations.
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CR Categories and Subject Descriptors: D.3.2 [Programming Lan-
guages]: Language Classifications— FORTRAN D.3.3 {Programming Lan-
guages]: Language Constructs — control structures: G.1.0. [Numerical
Analysis]: General

General Terms: Algorithms, Design, Languages
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