

sun = 0
DO 1 I 0 l,N

IF (R(I).EQ.O)COTO I
SUE3 = SUM + A (T)

1 CONTENUE

FIGURE 1. Non-Vector Summation.

DO 1 I = 2,N
A (1) = A (1 - 1)

2 CONTINUE

-- ~~

FIGURE 2. Nan-Vector Dependency Case.

FIGURE 3. Register S1 Added to VO.

Plucking out the IF statement allows ClT to compile vector
hardware instructions. Addition of zero elements may be su-
perfluous, but should be done anyway. The idea is that each
AN must be treated exactly like every other. Conditional
statements IF and computed GOTO imply that some data are
very different from others and are treated accordingly.
Branching, which includes IF, GOTO, and CALL statements,
inhibitsthe use of the CRAY-1 vector hardware.

Furthermore, CFT considers an array to be a vector only if
it is clear that no element of that array depends upon the
previous computation of another. For example, in Figure 2,
the natural order of I = 2,3 ,4 , . . . requires that A(I - 1) be
replaced by A(I - 2) for A(I) to be properly set. Thus, the
A(I)s in Figure 2 must be set one at a time rather than by
segments.

Indexing arrays so that CFT compiles vector machine in-
structions is generally straightforward, but there are subtleties.
Section 3 of this document, the CFT reference manual [Z, Part
3, Section 21, and the paper of Higbie [3] deal with indexing
in some detail.

2. CRAY-1 VEeTOR HARDWARE
Only about one-fourth of the CRAY-1 machine instructions
use vector registers. The following notation will be USBd to

describe machine instructions [4]:

Here, the content of scalar register S1 is added element by
element to the contents of vector register VO and the results
stored in vector register V1.

Figure 3 is a pictorial representation of this instruction.
Paths to each register are represented by arrows. The end of
each path is a pointer indicating only one element at a time.
Once this instruction is issued and addition begins, the
pointer in Vo is incremented each clock period (12.5 x 1a"J
seconds), until the operands are exhausted. A similar pointer
in result V1 is incremented when results begin to emerge
from the adder, three clock periods later in this case.

The integer adder, which may contain three separate pairs
of operands concurrently in distinct stages of processing, is
called a pipelined functional unit. It has some analogy to a
short piece of pipe into which marbles are being pushed; until
the pipe is full, no marbles emerge from the other end. Even
though the first result does not emerge from the pipe until
several clock periods later, successive results arrive one clock
period apart. One @-bit integer addition takes three clock
cycles, but pushing a segment of 64 additions through only
takes 67 cycles. Effectively, this is only slightly more than one
cycle per addition-a factor of three faster than one at a time.
Longer pipelines show even greater improvements-typically
six- or seven-fold for floating point operations. Further, with
chaining and overlap, described in the next section, several
operations may run concurrently.

rized Do-loop control the segmentation (Section 1.1), and in-
volve some of eight vector registers VO, VI, . . . , V7 of 64
words each. Scalar registers So, 9,. . . , S7 may
as operands in some vector operations, as in Figure

v1 6- s1 + vo

Machine instructions generated by CFT to execute a vecto-

each of seven functional units may run independently to
perform the operations shown in Table I.

'Division uses a 30-bit reciprocal approximation and one Newton iteration
[5. pp. 5-53].

TABLE 1. Vector Functional Units

unit operations hm
memory load load register from memoty

store store to nlemy from register
'F f.p. (truncated) multiply
'R f.p. (rounded) multiply
'I f.p. (iative) multiplyg

-F f.p. subtract

I IH redprocal appximatlong
+ +F f.p. add

&
!
\

VM
merge + +

integer -
shift >

log&

<

bgKA .and.
logical .or.
exdusive .or.
formvectormask
vectormerge
integer add
integer Subtract
rigM shii
left shift

Communications of the ACM 1W

3 U s ~ d l y , sequential i/O using READ and WRITE state-
monk works best bemuse it's very simple and lets the

~ i t h g system take care of all the concurrency head-
d i e s I t 1s best to use long fixed-length records--some-
where around 500 words. Every dataset transfer involves
at least one sector of 512 words, which includes some
block and record control words. It is also advisable to try to
avoid array references having multiple-of-eight increments
which cause memory bank conflicts.

Squential array elements are stored in sequential bunks of
memory. 'There are 16 banks, each with a cycle time of four
clock periods [I, Section 6-21]. Fetching or storing by multi-
ple-of-eight increments mnflicts with this cycle. Memory
bank conflicts also break chaining with independent opera-
tions. These are important considerations for FFTs and Cyclic
Reduction (which are discussed in Sections 4.4 and 4.5.3).

2.3 Reduction Operations
Operations with a result vector having the same number of
elements as the operands are usually more efficient than, say,
dot-products-which reduce dimensionality. Consider a DO-
loop that computes the product of N elements of array A
Result PROD is of dimension unity, but A is an N-dimen-
sional operand, (Figure 6) Through CFT version 1.09, the re-
ductions used a curious property of the vector hardware.
After version 1.10, a somewhat slower procedure is used,
which is compatible with the CRAY X-MP. In what follows
the pre-1.10 method is discussed.

To do reductions like this, three steps are necessary. For
simplicity, let N = 64q, and divide A into q segments, each of
length 64. In the first step, the following accumulation h a p
pens. Segments 1 and 2 are multiplied together, element-by-
element, to yield a @-element result. That result is now
multiplied by the 3rd segment-still a @-element result, then
the 4th segment, and so on until all q segments are used.

A second step reduces this @-element partial result by a
recursive hardware operation [I, pp. 3-14] similar to the fol-
lowing, if VO contains the 64-element partial result,

V1 c V1*RVO

where the first element of V1 is set to 1.0. Result register V1 is
also an operand. In this case, the pointer in V1 cannot ad-
vance until functional unit time + 2 clock periods (7 + 2 = 9)
later, when the first result is ready. When completed, the last
nine elements of V1 are the product of the first element of VO
and every ninth element of VO, Use of identical registers for
operands and results is deliberate and recursive, producing a
useful reduction of the 64 products. An example of this recur-
sive mechanism is shown in [I), but is too involved to repro-
duce here.

Finally, in the last of three steps, f.u. time i- 2 elements in
V1 must be pulled out and the reduction completed. This
remaining step, which uses the S-registers, can be scheduled
to take about 45 clock periods, somewhat less than a vector
segment operation on 64 elements. Such a macro is invoked

PROD - 1.0
DO 1 I=1,N

PROD * RROD*A(X)
1 CONTINUE

A -.-
FIGURE 6. Product of Vector Elements.

by CFT to do reductions of sums and products only. If N is
large, two additional steps after the initial accumulation add
little extra time, since each is executed only once. Compared
to the q accumulation operations in the first step, the last two
become unimportant. However, for moderate-length vectors
(less than loo), reductions are less efficient than vector -+
vector operations. Sections 4.1 and 4.2 give examples that
illustrate the point.

3. PROGRAMMING THE
The appearance of

VECTOR BLOCK BEGINS AT SEQ. NO. n, P = addr
at the end of a listing of a compiled subprogram means that
CFT has generated a vector DO-loop in a particular block of
code. A block is a basic unit of code which is locally optim-
ized by CFT and is demarcated by register usage. Subroutine
or user-defined function calls, GOT0 statements, and inner
DO-loops force blocking. CFT only vedorizes inner loops!
Since blocking does not usually start exactly at the DO state-
ment, to identify the vectorized loops in a compiled listing
look for the first inner loop following the sequence number
beginning the vector block. This will be the vectorized loop.

Many CFT intrinsic functions, SIN, EXP, SQRT for exam-
ple, are vector mode (computation done in vector registers)
and are used in DO-loops. Others, like ATAN, may be used in
vector loops but are not really vector mode. These pseudo-
vector functions pass segments of arguments in-register (VI, or
V1 and VZ), but process them element-by-element in scalar
registers. These pseudo-vector (see [Z , Appendix B]) routines
exist because nobody has rewritten them. They do permit
CFT to vectorize the rest of a loop, however. Table II summa-
rizes the intrinsic CFT operations and functions that are vec-
tor-mode.

putations are done in vector registers. The CRAY-1 has no
double precision hardware. Data transfer and 1/0 for double
precision does use vector register memory access, however.

Neither DOUBLE PRECISION nor CHARACTER data corn-

~

'Positive difference function DIM gives X = DIM(Y. Z) = Y. Z if Y > 2, X = 0
otherwise.

TABLE II. CFT Vector O~erations and Functions by Data Type
~~

SINGLE COMPLEX INTEGER DOUBLE BOOLEAN

+-
I

logical
SQRT
EXP,"

COS/SlN
ALOG/ALOGl 0

ABS
DIM
INT

AMOD
SIGN
RANF

MAX1]AMAX1
MINl/AMINI

IFIX
COMPLX/DBLE

SIGN

+- +-
I

IOgiil
I

CSIN/CCOS

CABS IABS
IDld
AlNT

SIGN

MAXOIAMAXO
MINO/AMINO

CONJG
FLOAT

REAL/AIMAG
ISlGN

.AND.
.OR.
.XOR.

DABS

DINT

DSiGN

DMAX1
DMlNl

SNGL

DSIGN

Communications of the ACM 1011

FIGURE 14. Solution to Symmetric Toeplitz System.

Novernkr 1983 Volume 26 Number 11

In Figure 14 the bulk of computation is in dot-product
operations computing local variables ClN, ClD, and XN, XD.
In subroutines CSOLV and XSOLV, relabeling variables C(1)
as CI and -X(M + 2) as SX eliminates apparent dependen-
cies. The vector length of each loop increases each iteration
1 5 m c: n. Segment overhead (see Section 2.2) is constant,
and for short segments becomes appreciable. In this example
there is no known way to avoid functional unit overhead for
short segments. In the example of an FFT in Section 4.4, an
increasing or decreasing vector length can be dealt with effec-
tively, but not in the present case. Nevertheless, this O(nz)
algorithm is very efficient because every loop is in vector
mode. It inverts a 256 dimensional system in 17 milliseconds,
but requires 77 milliseconds in scalar mode [i.e., OFF = V
option of CFT [Z, p. (3)l-11).

4.3 Floyd’s Algorithm-Removing the IF Statements
The following shortest path through a network algorithm is
due to Floyd [Ill. In Figure 15, the inner-loop IF and CVMG
statements are “commented out” to give alternate calculations
of m,.k shown by the “C---” lines. Initially, mr.k is the length of a

FIGURE 15. Minimum Path.

direct link from point j of a network to point k. If no direct
link exists, m,.k is assumed to be initially co = 10’”. On exit,
m,.kcontains the length of the shortest path from j to k. In
Figure 15 the array M is of positive integers, but this is not
essential-substituting AMINl for MINO deals with positive
reals. It turns out that the introduction of the integer variable
T is necessary. If M(J, I) were used instead of T, the compiler
would flag the inner loop as a dependency situation; M(J, I)
might be overwritten when K = I in the Jth column and the
new M(J, I) would be used for K > I. This will happen as a
result of the semantics, not the syntax: namely, the positive
array element M(J, I) will not be overwritten by M(] . I) +
M(I ,]) = 2*M(J, I). The CVMGM function is equivalent to
MINO, and vectorizes. Use of the IF-test replacement in lieu of
CVMGM or MINO for N > 10 gives a nonvectorizing subrou-
tine that takes five times longer,

Communications of the ACM 1015

concept, that is, of using the inner imp b run over the inde-

~~~~0~ of X and Y is a r n ~ l t ~ ~ ~ e  of 8. 
~ ~ t ~ o u ~  we have only discussed radix 2 t ~ ~ ~ f ~ ~  

power of 2), i t  turns out that other radix t r ~ ~ f ~ ~  have 





mrne advantages. In part because of memory bank conflicts, 
binary radix tramforms are less efficient than those of radix 3 
or 5 (set: 1 lo]), which in some cases have nearly twice the 

rray is required for the 
subsequent calculation of an element in the same array, the 
elements may not be treated independently. In CRAY-1 docu- 
mentation (21, this situation i s  regarded as a “dependency.” In 
fact, bccause of the register architecture, two types ofdepend- 
encies exist. In Figure 22 both types are illustrated. 

In the top example, if I0 > 0, then A(I) requires the previous 
value A(I - 10) to have been reset, as in Figure 2. Hence, there 
is a sequential ordering, and A cannot be regarded as a vector 
with independent elements. At compile time CFT cannot de- 
termine whether 10 is negative and inhibits generation of 
vector hardware instructions. 

Storage of B in the second part of Figure 22 may overlap if 
I1 < 12. This kind of dependency is somewhat more subtle, a 
result of the register architecture of CRAY-1. For example, try 
setting 11 = 0, I2 = I, IL = 1, IU = 3. The storage of a segment 
{B(2), B(3), B(4)) = {2., 2., 2.) over the segment {B(l), B(2), B(3)) 
= {I., I., I.) would give B = {I., 2., 2., 2.1, which is not the 
same as the desired B = {I., I., I., 2.j. At compile time, if I1 
and I2 are not known, CFT flags this as a dependency case. In 
the following, examples are given that illustrate some ways to 
sidestep these nonvectorizing dependencies. 

r 

DO 1 I = IL,IU 
C DEPENDENCE ON A PREVIOUS ELEMENT 

C OVBRLAPPING STORAGE DEPENDENCY 
A ( 1 )  = A ( 1  - 1 0 )  

&?(It + I) 1 .  
B ( r 2  + x i  - 2. 

1 CONTINUE 

4.5.2 G’auss-Seidel Relaxation. It is sometimes possible to 
find directions or subsets of multiply dimensioned arrays in 
which all the elements along those rays may be treated as 
independent. For example, all the elements in one column 
can be regarded as independent of elements in other columns. 
A simple relaxation step on the interior points of a rectangu- 
lar grid is shown in Figure 23. 

In this figure, computation of the Jth element in row I 
depends on the updated value of the (J - 1) element, inhibit- 
ing vectorization. Just drawing a picture of the grid of I, J 
elements shows that diagonals depend only on the updated 
elements of previous (lower) diagonals. Each of these diago- 
nals may be treated as independent, as in Figure 24. 

Scanning by diagonals has the disadvantage that the vector 
length in the inner loop keeps changing. For very small itera- 
tion counts (1 or 2), the overhead to fill the functional unit 
pipelines is appreciable. Nevertheless, Figure 24 runs five 
times faster than Figure 23 if N, M > 100. 

4.5.2 A red-black ordering. A method asymptotically 
equivalent to the above is a red-black ordering [19]. Figure 25 
illustrates a simple red-black relaxation step, which has two 
additional features: use of the MDEP directive, and parsing to 
minimize memory fetches. Within the DO 2 and DO 4 inner 
loops, the last pair of points in each equation is shared, elimi- 
nating two additional fetches. This example runs at 70 million 
floating point operations/second. A relatively easy modifica- 
tion of Figure 25 for Poisson’s equation (not Laplace’s equa- 
tion, as above) performs floating point operations faster than 
the 80 megaHertz clock. This modification requires a relaxa- 
tion parameter w # 1 and a “source” term. Because of the 
additional computations, the operation rate actually goes up. 

4.5.3 Tridiqgonal systems. In both the forward elimination 
and back-substitution steps in the solution of a tridiawnal 
linear system, each element depends on its predecessors. TO 
solve a single tridiagonal linear system by a parallel or vector 

b. 

SUBROUTINE G S ( U , M , N )  
REAL U ( M , N )  
DO 1 I = 2,M-1 
DO 1 J 2 , N - 1  

U ( 1 , J )  = . 2 5 * ( U ( f - l I J )  + U ( f + l , J )  + 
b U(1,J-1) + U ( 1 , J - i - 1 ) )  

1 CONTINUE 
RETURN 
END 

* 

FIGURE 22. Non-Vectorizing Dependencies. 

FIGURE 23. Gauss.Seidel Relaxation Step. 

SUBROUTINE V G S ( U , I , N )  
REAL U(M-1,1) 
DO 1 I = 4,H+N-2 

I = I - M  
DO 1 K EI MAX0(2,I-U~t)+l,M2NO(&-l,I-2)~? 

U ( L , K )  . S S * ( U 1 L - l , K )  + U(L+l,K) f 
f U(L-M,K) i U ( L + M , K I )  

1 CONTINUE 
RETURN 
END 

FIGURE 24. Vector Gauss-SeiJ Relaxation Step. 

algorithm represents a problem of some difficulty. There are 
several approaches: Buneman’s variant of cyclic reduction 
[20], Stone’s recursive doubling [21], and a parallel Cramer’s 
rule method by Swarztrauber 1221. The fastest of these meth- 
ods on CRAY-1 is cyclic reduction [23]. Unfortunately, each 
method relies on a recursive doubling of step size in memory, 
while halving the vector length of each operation, and vice 
versa. Because of overhead introduced by short vectors, and 
memory bank conflicts inherent at each stage, even cyclic 
reduction runs only twice as fast as a simpler scalar method 
[24] for very large problems. In fact, a simple scalar tridiagonal 
solver is faster than cyclic reduction for solution vectors of 
length less than 63. Since this is not a delightful result, let us 
sidestep the issue and do another problem. 

Multiple tridiagonal systems are much more tractable. 
Block tridiagonal equations, many line-relaxation met hods. 
and three dimensional problems usually need solutions to 
many totally independent (unrelated) tridiagonal systems. So. 
now the inner loops can be made to range over each unre- 
lated system in turn. 

November 1983 Volume 26 Number 11 





N 

DO 1 X = 1.N 
C SCATTER ORSRATION 

C GATRER OPERATXON 

C SRAXPY OPERATXON 

YtIblDEXfI)) - X t I )  

Y ( 1 )  = X(IIDEX(1)) 

P(XNDEX(1)) = A*X(X) + Y(INDEX(fll 

SPDOT = SPDOT + Y(LWl$XB)P(f!).*X(L) 
C SPARSE DOT-PRODUCT 

1 CONTINUE 
& 

O n ~ e  again, i t  must be emphasized that using inner loops to 
E~JIRC? ovm irlmtical operations on independent data or sys- 
tenrs is  the k e y  To successful vector processing, Indeed, using 
I ina: akwm ~ ~ ~ ~ ~ ; ~ ? ~ ~ u r ~ ~  to solve 100 tridiagonal systems of length 
~(ii'i is 1 3  h a s  Easter than solving 100 one at a time. If each 
sysiem has a ~ ~ ~ ~ E ~ ~ ~ ~ ~ t  matrix, Figure 26 is easily modified for 
(tiis puryxtsc. 

purpose sparse matrix solvers 1251 keep pointers 
to tionzero elements. Allocating storage only for nonzero ele- 
ments arid potential fill-in minimizes both memory require- 

nd the number of null operations. All six [26] forms of 
elimination require a compression and decompres- 

sion of rows or columns into indexed lists as the elimination 
proceeds. For example, the most efficient form of elimination 
[27] has the following reduction step on the working row 
(Figure 27): 

Here, Y is the working pow, X is any lower packed row 
with INDEX an array of pointers to the positions of X in its 
expanded form. For an arbitrary sparse matrix, INDEX will 
not point to regularly spaced elements. 

This is a difficult problem with no vector hardware solu- 
tion. At present, only CAL-coded modules can manage to 
approach vector-mode floating point operation rates. The op 
erations in Figure 28 are available for sparse matrices on 
CRAY-1 with the 1.11 CFT software release. Respectively, the 
calling sequences for these modules are as shown in Figure 
29. For N > 5, all these subprograms are more efficient than 
in-line FORTRAN, For large N these modules give a factor of 
3 timing improvement. 

flGURE 27. Sparse y: = ax + y Operations. 

FIGURE 28. Sparse Operations. 

CALL SCAT9ER (M Y , INDEX, X ) 
CALL GAT#ER(N,Y,X,ItJDIUC) 
CALL SPAXPYtN,A,X,Y,INDE]o 
DOT = SFDOT(N,Y,fNP1PrX,X) 
- 

FIGURE 29. CAL Sparse Operations. 

REFERENCES 
1. Croy Hordwore Reference Monuol. 15 May, 1979. Cray Research Inc. 

Publ 2240004. Cray Research Inc., 1440 Northland Dr.. Mendota Hts 
Mrnn. 

2. Croy Fortron [CFT) Reference Monuol. May 1980 Cray Research Inc. 
Publ. SR-0009, Version 1.10, Revision H (ANSI1 standard). 

3. Higbie. L.C. Speeding, up FORTRAN (CFT) programs on the CRAY-1 
Cray Research Inc. Tech Note 2240207. 1978. 

4. lohnson, P.M. An introduction to vector processing. Comput. Des. 
(Feb. 1978). 000-000 

5. CAL Assembler Reference Manual. Cray Research Inc. Publ. SR-0000, 
(Cray Assembly Language). 

6. Petersen. W MXM-unit spaced fast matrix multiply. Cray Research 
Inc Tech Note SN-0213, Dee. 1980. 

7. Fong. K. and lordan. T.L. Some linear algebraic algorithms and their 
performance on CRAY-1. Los Alamos Scientific Laboratory Rep. LA- 
6774 (Univ of California Rep. No. UC-32). lune 1977. 

8. Levinson. N. I. Math. Phys. 25 ,4  (Ian. 1947). 261-278. 
9. Brent, R.P.. Gustavson. F.G.. and Yun, D.Y.Y. Fast computation of 

Pad6 approximants and the solution of Toeplitz systems of equations 
IBM Res. Rep. RC 8173 (No. 34952), IBM Research Center, Yorktown 
Heights. N. Y.. Ian. 1980. 

Toeplitz and related systems of equations. Linear Algebra Appl. 34 

11. Floyd, R.W. Shortest path, Algorithm 97. Commun. ACM 5 (19621, 

12. Cooley. 1.W.. and Tukey. I.W. An algorithm for machine calculation 

13. Temperton. C. Mixed-radix fast Fourier transforms without reorder- 

10. Bitmead. R.R. and Anderson, B.D.O. Asymptotically fast solution of 

(1980). 103-116. 

345. 

of complex Fourier series. Math. Comput. 19 (April 1965). 297-301. 

ing. European Centre for Medium Range Weather Forecasts, Tech. 
Rep No. 3, Feb. 1977. 

14. Swarztrauber, P.N. Vectorizing the FFTs. In Parollel Computations. G .  
Rodrigue, Ed., Academic Press, N. Y., 1982. 

15. Cochran, W.T.. et al. What is Fast Fourier Transform? IEEE Trans. 
Audio Electroacoustics AU-15, 2 (June 1967). 45-55. 

16. Uhrich, M.L. Fast Fourier transforms without sorting. IEEE Trans. 
Audio Electroacoustics AU-17 (1969), 170-172. 

17. Petersen. W. CFFT2-complex fast Fourier transform binary radix 
subroutine. Cray Research Inc. Tech. Note 2240203, March 1978. 

18. Temperton, C. Fast Fourier transforms on CRAY-1. European Centre 
for Medium Range Weather Forecasts, Tech. Rep. 21, fan. 1979. 

19. Young, D.M. Iterative Solutions of Large Linear SysIems. Academic 
Press. New York, 1971. 

20. Buneman. 0. A compact noniterative Poisson solver. Stanford Univ. 
Institute for Plasma Research. Rep. 294. 1969. 

21. Stone, H.S. An efficient parallel algorithm for the solution of a tridi- 
agonal system of equations. 1. ACM 20 (1973) 27-38. 

22. Swarztrauber. P.N. A parallel algorithm for solving general tridi- 
aganal equations. Math. Comput. 33, 145 (fan. 1979). 185-199. 

23. Swarztrauber, P.N. The parallel sohtion of tridiagonal systems on 
Cray-1. Infotech State of the Art Report on Supercomputers, Infotech 
Int. Ltd., Maidenhead, Berkshire. UK, 1979. 

24. Penumalli, R. Private communication. 
25. Eisenstat, S.C., Schultz, M.H.. and Sherman, A.H. Considerations in 

design of software for sparse matrix computation. In Sparse Matrix 
Computotron, 1.R. Bunch and D.1. Rose, Eds., Academic Press, N.Y., 
1976. 

26. Dembart. B., and Nevas, K. Sparse triangular factorization on vector 
computers. In Exploring Applications of Parallel Processing to Power 
System Analysis, Electric Power Res. Institute Rep. EL-566SR. Oct. 
1977. 

27. Dodson, D.S., and Petersen, W. Sparse triangular factorization on 
CRAY-1. Cray Research Inc. Tech. Note SN-0217. rune 1961. 

CR Categories and SubFt Descriptors: D.3.2 [Programming Lan- 
guages]: Language Classifications-FORTRAN D.3.3 (Programming Lan- 
guages]: Language Constructs-control structures: G.l .O. [Numerical 
Analysis]: General 

General Terms: Algorithms, Design, Languages 

Received 6/83: accepted 7/83 

November 19t)3 Volume 26 Number 11 Communications of the ACM 102% 


