
OPTIMAL PIPELINING IN SUPERCOMPUTERS

Steven R. Kunkel and James E. Smith

Department of Electrical and Computer Engineering
University of Wisconsin-Madison

Madison, Wisconsin 53706

Abstract

This paper examines the relationship between the degree of cen-
tral processor pipelining and performance. This relationship is studied
in the context of modem supercomputers. Limitations due to instruc-
tion dependencies are studied via simulations of the CRAY-1S. Both
scalar and vector code are studied. This study shows that instruction
dependencies severely limit performance for scalsx code as well as
overall performance.

The effects of latch overhead are then considered. The primary
cause of latch overhead is the difference between maximum and
minimum gate propagation delays. This causes both the skewing of
data as it passes along the data path, and unintentional clock skewing
due to clock fanout logic. Latch overhead is studied analytically in
order to lower bound the clock period that may be used in a pipelined
system. This analysis also touches on other points related to latch
clocking. This analysis shows that for short pipeline segments both the
Earle latch and polarity hold latch give the same clock period bound
for both single-phase and multi-phase clocks. Overhead due to data
skew and unintentional clock skew are each added to the CRAY-1S
simulation model. Simulation results with realistic assumptions show
that eight to ten gate levels per pipeline segment lead to optimal
overall performance. The results also show that for short pipeline seg-
meats data skew and clock skew contribute about equally to the degra-
dation in performance.

1. Introduction

Pipelining is an essential element of modem supercomputer
design. Each new supercomputer generation has used a higher degree
of pipelining than its predecessor. Furthermore, pipelining is becoming
important in other, lower performance computer systems. Pipelining is
a very appealing design technique because it offers a theoretical
speedup of N when N pipeline stages are used. There are, however,
practical constraints that limit the performance increases that are possi-
ble. These are:

(1) Instruction dependencies that cause the pipeline to be less than
100 percent utilized;

(2) Latch overhead that tends to aggravate the effects of instruction
dependencies, as well as placing some fundamental limitations on
the clock frequency (and the degree of pipelining) that can be
used;

(3) Control path limitations that force a minimum amount of logic
to be placed between pipeline segments.

In this paper, we study the relationship between the theoretical
linear speedup that pipelining offers and the practical limitations. One
goal is to determine the ultimate performance improvements that are
possible through pipelirdng. Another goal is to study optimal latching
and clocking methods in pipelined computers. In order to increase its
usefulness, this study is made in the context of current supercomputer
technology, design techniques, architectures, and compilers.

1.1. Instruction Dependencies

Instruction dependencies, involving both data and control infor-
marion, limit performance because they reduce the amount of the
potential parallelism that is actually realized. Such dependencies are a
very important practical limitation, and me a property of the algo-
rithms, programs, and compilers. Hence, in order to arrive at meaning-
fill results we study them using simulation of a state-of-the-art pipe-
lined computer system, the CRAY-1S. i

1.2. Latch Overhead

There are three main components to latch overhead.

(1) Propagation delay through storage elements can cause extra
pipeline latency. Careful latch design can significantly reduce
this component of latch overhead, and we discuss such latch
designs in Section 3.

(2) Data skew is the difference between the maximum and minimum
signal propagation times through combinational logic between
pipeline stages, and in the latches that separate the stages. This
skew occurs even if the clock signal to the latch is perfectly con-
trolled, and it forces constraints on the clock period in order to
ensure reliable latching of data.

O) Clock skew, due primarily to differences between maximum and
minimum delays in clock fanout logic, causes an unintentional
variation in the miva l time of the clock at succeeding latches in
a pipeline. This unintentional skew increases the clock period
necessary to ensure reliable latching of data.

1.3. Control Path Limitations

Control information must pass down the stages of a pipelined
computer, just as the data does. It is often more difficult to sub-divide
control operations than data operations, however. For example, control
logic is required to interlock pipeline stages. These interlocking opera-
tions can not be sub-divided while maintaining an execution rate of one
insU~tion per clock period.

Consider the instruction issue logic in the CRAY-1S. At the
time an instruction is issued to the execution units, any register that the
instruction uses must not be reserved for a result by an earlier instruc-
lion. If the operand registers are all available for use, the current
instruction reserves its result register as it issues. In orde~ to issue an
instruction every clock period, however, checking the register reserva-
tions and reserving the result register must both be performed in the
same clock period. Because of the indivisibility of this operation, there
is a minimum logic delay that limits the clock period that can be used.

Control path limitations are a very important design considera-
tion. The best solution is a clean architecture; those designed by S.
(:ray are excellent examples. Because a study of control path limita-
tions would involve architectural and detailed logic design alternatives
that are beyond the scope of this paper, we will not consider them.

IAlthough the CRAY-IS is older than the CRAY X-MP and CRAY-2, the major
diffm'eacee between a CRAY-IS cpu and the newer models are in the gate and packaging
technology, not the cpu architecalre and logic design techniques.

404
0 8 8 4 - 7 4 9 5 / 8 6 / 0 0 0 0 / 0 4 0 4 5 0 1 . 0 0 © 1986 IEEE

1.4. Previous Research

The problem of detecting and utilizing independent instructions
in a single instruction stream has been studied previously [RIS72,
r'OS72, TJA70, SHA77, NIC84]. In most of these studies, however,
pipelining was not specifically studied, and an infinite hardware
machine was assumed so an upper limit on the available parallelism
could be determined. Hence, these studies are more theoretical than
o u r s .

In the area of latch timing, Cottan [COT65] developed some
basic timing constraints, and looked at maximum clocking rates in
1965. Hallin and Flynn [HAL72] developed timing constraints for the
Earle latch (to be described later) without considering clock skew or
data skew. Later Fawcett [FAW75] expanded these timing constraints
to account for these skews. A summary of Fawcett's work is given
later along with additional analysis.

Some of the pracU'cal limitations on pipelining caused by control
paths are discussed in lAND67]. There is also some interesting discus-
sion about design of highly-overlapped computer systems in [THO70].

1.5. Paper Overview

Section 2 describes the simulation method and pertinent assump-
tions. Section 3 is a simulation study of the importance of instruction
dependencies; latch overhead is neglected. Section 4 discusses latch
overhead due to propagation delays in latches. Latch designs that
minimize latch propagation delays are discussed. Section 5 discusses
latch overhead due to data skew; the clock is assumed to he perfectly
controlled. Unintentional clock skew is studied in Section 6, and there
is a further simulation study with clock skew included. Section 7 con-
tains a summary and conclusions.

2. Simulation Method

We use the CRAY-IS, CFr FORTRAN Compiler (version 111g)
and the first 14 Lawrence Livermore Loops [MCM72]. The CF]" com-
piler is a mature compiler that accurately represents the state-of-the-art,
at least for the specific workload we are using. The Lawrence
Livermore Loops are chosen because they are small enough to be
simulated for a l~ge number of cases, me representative of a class of
real programs, and are widely used for comparing the performance .of
pipelined computer systems. Furthermore, by using a set of standard
benchmarks with a well-documented computer, our experiments are
repeatable by other researchers. The simulator used is described in
[PANS3].

In the initial part of our study, we neglect latch overhead. We
first calculate the total lengths of the various pipelines in the CRAY-
1S, measured in gate levels• These base numbers are derived using the
fact that there are eight levels of gates between latches in the CRAY-
1S. The pipeline lengths in clock periods are given in the CRAY-1S
hardware reference manual [CRA79].

If a pipelined operation requires n clock periods, we estimate
that between 8n and 8(n - 1) + 1 = 8 n - 7 gate levels are needed.
The minimum number comes about because if one fewer gate level is
used, i.e. 8(n - 1), then one fewer pipeline segment can he used. For
example, the floating point adder in the CRAY-1S is six clock periods
long and the number of gates per clock period is eight. Therefore the
maximum number of gate levels possible is 48 and a reasonable
minimum is 41. Because there is an uncertainty in the number of gate
levels, it is possible to calculate a range of performance levels. Con-
tinuing with the example of the floating point adder, suppose the clock
frequency is changed so that there are four gate levels in each segment.
Using the maximum number of gate levels, 48, the new adder has 12
segments. But, using the minimum number of gates levels, 41, the
~_dder_ has only I1 segments. In our study, we simulated both endpoints
of the range to yield a maximum and minimum performance.

We simulated pipeline segments varying in length from two gate
levels to 16 gate levels at even numbered intervals and 32 gate levels.
In all the simulations, we used code exactly as it is scheduled for the
CRAY-1S. Because the ratios of the pipeline lengths remain the same,
the code schedule is of the same quality in virtually all the cases. The
only exceptions occur because of scheduling conflicts involving the
result buses that feed into the register files. In these very few cases,

some of the code runs sHghtiy faster when a larger number of gate lev-
els is used (giving a slightly longer pipeline) than when a smaller
number of gate levels is used.

Seven of the 14 Lawrence Livermore loops are vectorized by the
CFT compiler. Because the operations that flow down a vecter pipeline
m-e by definition independent, one would expect significantly better
perfo~'mance on vector code than on scalar code. For this reason we
give separate performance numbers for the vectorizable loops, the
scalar loops, and the combination•

To measure performance, first the computation rate in Millions of
Floating Point Operations per Second (MFLOPS) was generated for
each loop. These numbers were used to compute the harmonic mean
MFLOPS• The harmonic mean was chosen because it is a much more
meaningful measure than the more common arithmetic mean [WOR84].

Informally, to compute the harmonic mean one should first com-
pute the time, Ti, it takes to execute exactly F (F can be arbitrarily
chosen) floating point operations in each of the loops L i. Then the har-

mF monic mean performance for m loops is ---~---. If the MFI..OPS rate
ZT~
iffil

for loop i is Mi, it can be shown that the harmonic mean also equals
m

m 1

3. Instruction Dependencies

An instruction may be dependent on an earlier instruction for
either data or control. A data dependency occurs, for example, ff one
instruction computes a result that is used as an input operand by
another. A control dependency occurs in the case of a conditional
branch where the execution of an instruction following the branch is
dependent on the branch outcome. More complete discussions of the
types of instruction dependencies that can occur are given in [KUC78].

Instruction dependencies limit the efficiency of a pipelined sys-
tem. For example, in a straightforward pipeline design if two consecu-
tive instructions passing down the pipeline are dependent, then the
second must wait for the first to complete before the second can begin.
Pipelining is wasted because instruction execution is not overlapped
and pipeline segments sit idle.

The effects of dependencies can be handled to some extent by
the compiler, and/or clever pipeline design. For example, the compiler
can schedule the instructions so that consecutive instructions tend to be
independent. There are limits, however, to the number of independent
instructions that can be found. Conditional branches pose a particular
problem because the possibilities for scheduling them are much more
limited than for other instructions.

For a high degree of pipelining, the theoretical peak throughput
is increased, but the pipeline may be used inefficiently because there
are not enough independent instructions to keep it full. Conversely, ff
there is a low degree of pipefining, it is relatively easy to keep the
pipeline full, but its peak throughput is reduced. This tradeoff is of
course dependent on the problem, algorithm, program, and even the
programming language. Hence, we study instruction dependencies
through simulation with realistic computers and programs.

3 .1 . S i m u l a t i o n Results

The results of the first set of simulations which neglect latch
overhead am shown in Table I. The results are all normalized to the
performance for the combined loops when eight gate levels are used
(the same as in the CRAY-IS). In the tables and graphs that follow
there is a minimum and maximum performance given that bounds the
range of possible performances. This arises because of uncertainty in
the number of pipeline segments as described in section 2. Obviously,
the maximum performance is achieved when the minimum number of
pipeline segments is used for a given number of gate levels per seg-
ment.

The data in Table 1 shows that the performance for scalar and
combined code is significantly less than the performance that would be

405

7 scalar loops 7 vector loops
gate levels

per segment max min max min
2 0.78 0.67 11.90 11.20
4 0.70 0.65 7.03 6.90
6 0.65 0.59 5.04 4.94
8 0.57 0.57 3.88 3.88

10 0.55 0.52 3.18 3.15
12 0.50 0.47 2.68 2.66
14 0.45 0.43 2.33 2.30
16 0.40 0.40 2.04 2.04
32 0.23 0.23 0.94 0.94

Table 1. Normalized performance with no

14 combined loops

max min
1.47 1.27
1.28 1.18
1.15 1.05
1.00 1.00
0.93 0.89
0.84 0.80
0.76 0.73
0.66 0.66
0.37 0.37

latch overhead.

theoretically predicted if there were no data dependencies. For exam-
ple, the performance with two gate levels should theoretically be four
times the performance with eight gate levels. However, the results
show a maximum increase in performance of 23% over this interval.
This deviation from the theoretical peak becomes larger as the number
of gate level becomes smaller. The gain achieved in going from eight
to four gates per segments is only about two thirds of that achieved in
going from sixteen to eight gates per segment. Performance for the
seven loops that vectorize does not deviate as significantly from the
theoretical as it does for the scalar loops.

For vector code, the performance increases almost linearly with
the increasing clock frequency. When the scalar loops and vector
loops are combined the curve more closely resembles that of scalar
loops by themselves because of the well-known dominance of the
slower code [WOR81].

4. Latch Propagation Delay

This section is the first of three that study latch overhead. We
separate the three components of latch overhead in order to measure
the contribution of each to performance degradation. Our discussion
concentrates on latch designs that minimize the effects of latch propa-
gation delay.

4.1. The Earle Latch

Latch propagation delay occurs in gates used to construct latches.
A distinguishing characteristic of propagation delay is that it would be
present even with skewless gates, i.e. all gates have exactly the same
propagation delay. A latch typically has a propagation delay from
clock to output of at least two gate delays. While this may be
insignificant in some systems, it is a major concern in pipelined sys-
tems when the clock period becomes very short. To reduce its
significance, J. G. Earle introduced a latch that was used in carry-save
adders for the IBM360/91 [EAR65]. The so-called Earle latch can be
used for any combinational logic function, however, not just carry-save
addition.

Fig. la is a simple Earle latch; the NAND gate equivalent is, of
course, more commonly used in practice. This latch performs two lev-
els of useful logic as well as the latching function. There is no added
propagation delay beyond that needed to perform the useful function.
This enables the overhead due to propagation delay through latches to
be essentially eliminated. As an example of the way a combinational
function can be built into an Earle latch, Fig. lb is a 2-to-1
muitiplexer/latch.

4.2. The Polarity Hold Latch

The polarity hold latch is a simplified form of the Earle latch
(see Fig. 2). It does not use the center AND gate that protects against
a logic hazard. This logic hazard can be avoided by intentionally
skewing the C and C" signals properly. In practice, this reduction in
gate usage is attractive not only because it is cheaper but also because
it reduces fan-in at the output gate. Polarity hold latches are used in

CLOCK

DAT~

CLOCK

a) Basic Earle latch

D ~ T A A IT_ I ~ SELR'CT

DATA B |_

b) Earle latch with built-in multiplexer

Fig. 1. Earle latches

pipelined CPUs designed at CDC, Cray Research, and the Amdehl Cor-
poration. As we shall see, however, clock skew constraints are tighter
for polarity hold latches than for Earle latches in order to avoid logic
hazards.

Because Earle and polarity hold latches can eliminate propaga-
tion delay, we assume their use throughout the r e s t of t h i s paper. Other
causes of latch overhead are examined in the context of Earle and
polarity hold latches.

$. Data Skew

Data skew occurs because gates used to implement latches and
combinational logic between latches have different propagation delays.
In order to isolate the effects of data skew, we assume the logic used
for clock fanout has no unintentional skew due to gate delay
differences. That is, clock signals reaching the latches are perfectly
controlled.

The distinction we are making between intentional skew and
unintentional skew should be carefully noted. It is often necessary to
intentionally skew clock signals. This is done in the case of muiti-
phase clocks, and in controlling the C and C- signals to avoid hazards.
Unintentional skew is due to imperfections in the clock distribution
network and fanout logic. While unintentional clock skew is ignored
in this section, it is the primary topic of the next section.

DATA - -

CLOCK _ _

C L O C K - -

Fig. 2. Pola~ty hold latch

406

A basis for the analysis given here for the Earle latch is
presented in [FAW75]. As shown in Fig. 1, the Earle Latch actually
has two clock signals, one is the complement of the other. Our
analysis assumes that the width of the C~s ~ pulse is the same as the
width of the C'to~ pulse.

We now introduce Fawcett's terminology.

tml ~ -

tmi n

Chl,h
Crow

Pm~

ena in

S(X,Y) -

AS(X,Y) -

Ux

maximum propagation delay time for a logic gate (blAND
gate)

minimum propagation delay time for a logic gate (blAND
gate)

the duration of C ffi 1 (clock high)

the duration of C ffi 0 (clock low)

maximum delay time on the maximum delay path from the
output of a latch to input of next latch. This does not
include any delay for the latch itself.

minimum delay time on the minimum delay path from the
output of a latch to input of next latch.

This quantity is the skew between the edges X and Y and
is always positive. It is the difference between the arrival
of edge X and edge Y. If Y arrives before X, the quantity
is zero.

This quantity is the algebraic skew between the edges X
and Y and can be positive or negative. It is the difference
between the arrival of edge X and edge Y. If Y arrives
before X, the quantity is negative.

This quantity is the uncertainty of X. It represents the
quantity such that X lies in the interval (X - [Ix, X + [Ix).

5.1. Timing Constraints on Earle Latches

Repeating the work of Fawcett, we give four timing constraints
on the clock signal. These constraints are discussed only briefly; we
regret that space does not permit a more complete explanation of
Fawcett's work. The first constraint is on the minimum width of the
clock pulse Crash. The pulse has to be wide enough to ensure that
valid data is stored in the latch. That is, it must be wide enough to
allow data to propagate from the D input to the latch output, then to
feed back around to be latched. This gives

C~sh > 3tmu - train + S(C,~.~, flail). (1)

The second timing constraint is on the maximum width of the
clock pulse Crash. Obviously, the clock width must be shorter than the
minimum propagation delay from the input of one latch to the input of
the next, assuming no intentional clock skew. Two other terms must
be added to allow for skewed clocks. The precise constraint is

C~,h + A S (C i _ I ~ , C i ~ ,) < 2.tnfm + P ~ - S(Cfau, Cry,)

- max[0, trau - tmia + AS(C,~.,,, Cl~t)]. (2)

Fawcett's third constraint is on the minimum clock period,
Ctagh + C~,~. This constraint arises because the latch can not be
clocked until the data from the previous latch has arrived. Thus the
minimum clock period must be longer than the maximum propagation
delay from the input of one latch to the input of the following latch.
The complete expression derived by Fawcett is

Crash + Ck, w + AS (Ci_l.a,,, Ci.r~.,,) > 2tra, x + Pra, x + S(C,~j,, Cfau) (3)

Fawcett combined the three constraints to arrive at an alternative lower
bound on the clock period:

Crass + C/ow > Pmax - Pmin + 5tra~x - 3train

+ 2S (C,.~,, ~,.,~) + S (C'.t',.'t, C,./.) (4)
+ max[0, t n a x - t r ~ + AS(Cfau, C-,~.u)].

This concludes our initial summary of Fawcett's work. What
follows in this subsection and in succeeding subsections are extensions
and further analysis of the timing constraints.

Fawcett's work allows for the possibility of multi-phase clocks.
We will consider both single and multi-phase clocks. The pipelined
computers produced by Cray Research, CIX~, and Amdahl all use sin-
gle phase clocks. We do not consider C and C- going to a single latch
as a multi-phase clock. In a typical supercomputer system, a single
clock waveform is generated and distributed to the logic chips
(modules in the case of the CRAY-IS). On each chip, there is a
"clock shaper" circuit that, among other things, produces both the C
and C signals.

If we restrict ourselves to an ideal, single phase-clock then
Ci-l,,~, = C i ~ , . Also, (3) gives a minimum clock period if the clock
signals can be controlled so that Cfat precedes C,i~e, making the last
term zero. Thus for an ideal, single phase clock we can derive a lower
bound on the clock period using (3).

Clock Period Bound: Earle Latch, Single Phase Clock

Chlsh + Crow > 2tmax + Pma~, provided AS(CrI, , , ~ a t) < O. (5)

For a multi-phase clock, we can derive a lower bound on the
clock period using (4).

Clock Period Bound: Earle Latch, Multi-Phase Clock

Chlsh + C~,~ > Pmax - Prran + 6tmax -- 4 t~ . , (6)

provided -(trr~x - train) < AS (C.fan,C~e) < 0

5.2. Timing Constraints on Polarity Hold Latches

Becanse the polarity hold latch is an Earle latch with the hazard
gate removed, the clock signals must be intentionally skewed to ensure
proper operation of the latch. This additional constraint can be
expressed as

AS (C,.is,, ~at t) < - (tmax - train). (7)

Applying (7) makes some of the terms in (1), (2), and (3) zero, simpli-
fying them to (8), (9), and (10) given below.

Crash > 3tmax - t,,/,. (8)

C~&h + AS (Ci-l.,~,, Ci,i~,) < 2train + P rain - S (~ * u , C,is,). (9)

C~,h +Crow + AS(Ci-l~.i~, Ci,,i~,) > 2.tmax + Pnax (10)

For an ideal, single phase clock C i - l ~ , = C i ~ , , which reduces
(10) to the following lower bound on the clock period.

Clock Period Bound: Polarity Hold Latch, Single Phase Clock

Ctagh + Ct~ > 2:mu + Pm~, (11)

provided AS (C,~,, Cf,at) < - (t ~ x - t~n).

For the ease in which a multi-phase clock is used, the same
optimization technique that Fawcett used can be performed on (8), (9),
and (10) yielding,

C~'sh + Clow ~Pmffit - P~i, + 5trr~ - 3tn~n + S(C/,u, Ca,,). (12)

Considering (7), (12) can be reduced to a lower bound clock
period for multi-phase clocks.

Clock Period Bound: Polarity ltold Latch, Multi-Phase Clock

C&'sh + Ct,,~ > Pn~x - P ~ , + 6tmax - 4t,,~. (13)

provided AS (C,~,, C.f,at) < - (tmu - train).

We have shown that the Earle latch and the polarity hold latch
have the same lower bound on the clock period for both single and
multiple phase clock. The difference is that the constraint on the inten-
tional clock skew is more restrictive for the polarity hold latch if the
bound is to be met. This implies that more careful control over the
clock signals is required.

407

$.3. Latch Overhead

We ~ now ready to analyze the latch overhead due to data
skew. We emphasize single phase clocks with polarity hold latches
because they axe commonly used in practice. Some discussion of
multi-phuse clocks sad Earle latches is also included, however.

Let n be the numbex of gate levels between latches (this does not
include the two gate levels in the latch, itself). Considering that useful
logic can be performed in the latches, there are a total of n+2 useful
gate levels in each pipeline segment. We assume an equal number of
gate levels on all paths. The generalization to different length paths is
straightforward. Equal length paths tend to allow shorter clock periods,
however. For example, note the importance of P u r e - P~dn in (4).

Let • be the ratio of the minimum gate delay to the maximum.
Then t ~ = rt 1 . For simplicity, we begin by assuming all delays are
concentrated in gates, not in wires between gates. In practice, one can
add wire delay following a gate to the gate, itself. Later, when we need
to intentionally add extra delay to paths, we do consider separate wire
delays.

Because delays are assumed to be in the gates, Pnm = ntma, and
Pin ta = ntmin -'- tWtmax.

$.3.1. Polarity Hold Latch; Single Phase Clock

For a single phase clock, (11) becomes

C~th + Cbw > (n + 2)tmaK (14)

For a single phase clock, however, any clock period lower bound is
subject to a lower bound on Pmi~ that comes from combining (8) and
(9) to eliminate C~sh. The resulting inequality can be rearranged to
yield Pn~n > 3tnm - 3 t~ , + S (~ a u , C,~,). Further restricting the con-
dition that gives the lower bound clock period as determined in (11) to
AS(C/,u, C,i,,) = t m , x - train, yields

Pmi, > 4(tra~ - tn~,). (15)

Substituting rtnua fox train sad nrtmax for Pmin and rearranging yields

n > _4 _ 4 (16)

That is, for a single phase clock there must be at least n > _4 - 4 gate
r

levels for proper operation. If the number of gate levels is fewer, then
some extra intentional delay pad must be added. This can either be in
the form of gates or wires.

5.3.2. Delay Padding

If intentional delay is added with gates, then 4 _ 4 - n gate

delays must be added to the path so that (16) is satisfied. This yields:

C~u'sh + Cto~ > (n + 2)tm,x + (4 - 4 - n)tmax
• (17) A

> "* tmax - 2tm, x

In the first line of (17), the (n + 2)tnmx term accounts for the
delay for performing useful logic; two levels in the latch and n levels

between latches. The (4 _ 4 - n)tm, x term is overhead. Also note
r

that the final form of (17) is independent of n. Thus, if gates are used

for delay p~alng , there is no advantage to using fewer than 4 _ 4

gates between latches.

We now consider using wire delays for padding. First consider
that without padding P n~ is nrtm~. P r~ must be at least
4(tnax - rtm~), however. Hence, an additional pad of
4(tma~ - rtmax) - n r t ~ must be added. This yields

C~th + Ck,w > (n + 2)tmwt + 4(t~a~ - rtmu) - nrtnm
(18)

> (n + 2)tm~ + (4 - (n + 4)r)tnua

In (18) the wire delay overhead is (4 - (n + 4)r)tmax. We now
compare this overhead with that in (17). The gate pad overhead is

easily shown to be 1 times the wire pad overhead. By detinition
r

I > 1. Hence, a wire delay pad potentially leads to a shorter clock

period than a gate pad.

5.3.3. Polarity Hold Latch; Multi-phase Clock

For a multi-phase clock, (13) easily reduces to (18). For multi-

phase clocks, (18) holds for all values of n . When n < 4 _ 4 the

"overhead" term in (18) is positive, and the minimum clock period is
the same for both a single and multi-phase clock. Hence, for very
short clock periods, there is no performance advantage to using a
multi-phase clock.

4
On the other hand, when n > - - - 4 the "overhead" term in (18)

is negative, sad the multiphase clock period can be less than the single
phase clock period. Note that for the case of a multi-phased clock
there is no limit on Pmin because the phase of the clocks can be shifted
using (2) and (9) to accommodate any value of Pmin.

5.3.4. Earle Latches

A similar line of reasoning to the above can be used to calculate
a minimum for P~n in the Earle latch using (1) and (2). This also
yields (14) through (18), provided -(tnu~ - tn~n) <-AS(C/at, C,~,) < 0
which is slightly more restricting than the minimum condition for (3).

5.4. Simulation Results

We now use simulation to evaluate the performance of a single
phase clock and polarity hold latches under some realistic assumptions.
A survey of the currently available, high performance TTL and ECL
parts [MOT82, FAI84] indicates values of r in the range of .3 to .4. It
is quite possible that • could be increased by screening of the chips,
however. Also wire delays added to gate outputs tend to increase the
effective value of r. A survey of ECL gate arrays, [FAI85, APP85]
indicates larger values of r, up to .6. Hence a realistic value for our
simulations is • =.5.

The simulation results with data skew overhead added are given
in Table 2. The performance results are again normalized with respect
the combined loop performance with eight useful gate levels. These
results show the best scalar mad combined performance occu~ at about
six useful gates levels per pipeline segment. A substantial performance
improvement cam be achieved by increasing the clock frequency on
vectors. No peak appears as the performance seems to continue to
increase as the clock frequency increases.

6. Unintentional Clock Skew

The results in the previous section are based on an assumption of
a perfectly controlled clock. When designing real processors, however,
there is always some uncertainty in the clock. To model this, it is
necessary to add uncertainty terms to the clocking constraints.

As done by Faw_cett, we assume there can be unintentional skew
between the C and C signals (denoted as Uc, ~) and between clock
signals reaching different latches (Uq_l,q). Expressions with

useful 7 scalar loops 7 vector loops 14 combined loops
gates levels
per segment max rain max rain max rain

2 0.39 0.34 5.95 5.60 0.74 0.64
4 0.56 0.52 5.62 5.52 1.02 0.95
6 0.65 0.59 5.04 4.94 1.15 1.05
8 0.57 0.57 3.88 3.88 1.00 1.00

10 0.55 0.52 3.18 3.15 0.93 0.89
12 0.50 0A7 2.68 2.66 0.84 0.80
14 0A5 0A3 2.33 2.30 0.76 0.73
16 0.40 0A0 2.04 2.04 0.66 0.66
32 0.23 0.23 0.94 0.94 0.37 0.37

Table 2. Normalized performance with data skew overhead.

408

uncertainty terms added are derived in a manner very similar to (1)
through (18). For brevity, we give only the most signiticant ones. A
complete set of expressions is given in the appendix.

6.1. Basic Clocking Constraints

The uncertainties not only affect the clock inequalities, but they
affect the intentional clock skew constraints that give minimum clock
periods. The four lower bound expressions follow.

Clock Period Bound: Earle Latch, Single Phase Clock

Chi,h + Czow > 2tm~ + e ~ + Uc,_t.c I (5*)

provided AS (C,t~ , ~an) < - U c , c •

Clock Period Bound: Earle Latch, Multi-Phase Clock

C~ah + C ~ > P ~ - P)~da + 6tmjx -- 4tram + 2UCt_l.Cl + 2UC~ ,
(6*)

provided -(tmjx - t~n) - Uc. c < AS (C,i~ , ~ u) < -Uc~.

Clock Period Bound: Polarity Hold Latch, Single Phase Clock

Chlsh + C~, > 2tr~, x + Pm~ + Uc~_1.c l , (11")

provided AS (C,m, ~ t t) ~ - (t m ~ - train) - UcT.

Clock Period Bound: Polarity Hold Latch, Multi-Phase Clock

C~sh + C ~ > P ~ - Pm~ + 6 t ~ - 4train + 2Uc,_1.c t + 2Uc. ~ ,
(13")

provided AS (C ,~ , ~att) = -(trim - t ~) - Uc , c

As before, the Earle latch and the polarity hold latch have the
same lower bound on the clock period for both single and multiple
phase clock. The only difference is in the required constraint on the
intentional clock skew.

6.1.1. Latch Overhead due to Unintentional Clock Skew

Once again, we assume n gates between latches, and a ratio tmi~
to tmax of r. This gives Pnm = ntm~x, and Pr~n = ntrma = nrt:vax. We
begin with a single phase clock and polarity hold latch.

For a single phase clock,

C ~ + C~,~ > (n + 2)tm~ + Uc~_~,c~ (14")

When AS(Clan, C,i~) = - (tm~, - t ~) - Uc ~ " , a lower bound on P ~
is

P ~ > 4(tm)x - tm~) + Uc~_~.c~ + 2Uc, ~ . (15")

Substituting rt~,a for t ~ and nrtm~ for P ~ and rearranging yields

uc,_:, + 2Uc,c
n > 4 - 4 + (16")

P r t m a x

Equation (16") bounds the number of gate levels necessary for proper
operation with a single phase clock. As before, if the number of gate
levels is fewer, then some extra intentional delay pad in the form of
either gates or wires must be added.

If intentional delay is added with gates, then

C~,~ + C ~ > 4 t m ~ - 2tmax + (r + 1) Uc~ ~ c~ + 2Uc'c (17")
r - ' r

Equation (17") is Independent of n. Thus, if gates me used for delay
padding, there is no advantage to using fewer than indicated by (16"),

If wire delays are used for padding, then

C~,t, + C~,~ > (n + 2)tmax + (4 - (n + 4)r)tn~
(18")

+ 2Uci_~.c~ + 2Uc. c

As we did earlier, it can be shown that a wire delay pad leads to a
shorter clock period than a gate pad.

To determine the overhead due to unintentional clock skew, we
compare the above results with those in the previous section. When

Uc~_l~c i + 2 U c ~ "
n ~ 4 - 4 + , (14") indicates that unintentional

r rtmu
clock skew adds additional overhead of UcL_~,c i. When

4 uc,_,.c, + 2uc.c
n < - - - 4 + , (18") indicates that unintentional

r rtw~x
clock skew adds an additional overhead of 2Uc~_l.c ~ + 2Uc, ~.

For a multi-phase clock, the clock period bound is the same as in
(18"). This means that the minimum clock period is the same for both
a single and multi-phase clock when

Uc~_~:i + 2Uc~
n < 4 - - 4 +

r rt~, x

Otherwise, the multi-phase clock may be faster.

For the Earle latch, the same results as above can be derived. As
has typically been the case, however, the intentional clock skew con-
straints are reduced. In particular, minimum clock periods are achieved
when - (tm~ - t ~) - Uc, c < AS (C:~#, C,~,) < - t l c , c .

6.2. Simulation Results

We continue our simulations to determine the effect of uninten-
tional clock skew under realistic conditions. To do this, we must esti-
mate values of unintentional skews. We first observe that U c.c is rela-
tively easy to control, because both signals feeding a particular latch
arc formed on the same printed circuit module (CRAY-1S) or on the
same chip (CYBER205) from a single master clock signal.

If one gate is used to generate ~ , then

1
Uc ~ = -~(tm~ - ,~).

When r = .5, UcL~ = .25tm~.

If two logic levels are used to fanout the clock, then

U¢i_~.c I = 2tm~ - 2t in .

When r = .5, the uncertainty becomes Ucr_l~: I = tm~. If the fanout
logic is extended to four levels, the uncertainty doubles and
~]c,_,.c~ ffi 2t in, .

The performance when clock uncertainty is added to the latch
overhead is shown in Tables 3 and 4. Comparing these results with
those obtained without unintentional clock skew shows that peak per-
formance moves to a larger number of gate levels per segment. Also
vectors alone now have a peak; they do not continue to incsease as the
number of gate levels decreases. As expected, for a larger a ~ t y ,
a larger number of gate levels per segmant is needed to achieve peak
perfcxrnance. This can be seen by comparing the two-level fanout
results to the four-level fallout results. FOr the two-level clock fanout,
scalar code has the best performance at eight to ten gate levels per seg-
ment while vectors peak at four gate levels pet segment. Scalars dom-
inate when the two are combined to give a peak at eight to ten gate

useful 7 scalar loops I 7 vector loops 14 combined loops
gate levels]

pet segment max i rain I m a x , rain max rain
2 0.29 i 0.25] 4.35 4.09 0.54 0.46
4 0.45] 0.41 4.45 4.37 0.81 0.75
6 0.55 0.49 [4 . 2 2 4.14 0.97 0.88
8 0.57 0.57 3.88 3.88 1.00 1.00

10 0.59 0.56 3A3 3A0 1.01 0.96
12 0.55 0.51 2.93 2.92 0.92 0.87
14 ~ 0.50 0.48 2.58 2.55 0.84 0.81
16 I 0.44 0.44 2.28 2.28 0.74 0.74
32 ~ 0.27 0.27 1.08 1.08 0.43 0A3

Table 3. Normalized performance with data skew and unintentional
clock skew; two-level clock fanout.

409

useful 7 scalar loops 7 vector loops 114 combined loops
gate levels
~er segmenl max rain max rain max rain

2 0.27 0.23 4.03 3.79 0.50 0.43
4 0.43 0.39 4.25 4.18 0.78 0.72
6 0.53 0.48 4.14 4.06 0.95 0.86
8 0.57 0.57 3.88 3.88 1.00 1.00

1 0.63 0.60 3.65 3.62 1.07 1.02
12 0.62 0.58 3.30 3.28 1.04 0.98
14 0.57 0.54 2.93 2.90 0.95 0.92
16 0.50 [0.50 2.61 2.61 0.85 0.85
32 0.31 I 0.31 1.27 1.27 0.50 0.50

Table 4. Performance with data skew and unintentional clock skew;
four-level clock fanout.

levels per segment. The same is true for a four-level clock fanout
which peaks at ten gate levels per segment for both scalars and scalars
combined with vectors.

7. Summary and Conclusions

Our first set of simulations with no latch overhead show that data
dependencies alone place rather severe limits on pipeline performance.
Performance always improves as pipeline segments are shortened, how-
ever.

When data skew is considered, our analysis shows that multi-
phase and single phase clocks have the same lower bound clock
periods when few gate levels are used. For longer pipeline segments,
however, multiphase clock periods can be shorter than single phase
clock periods. Earle and polarity hold latches give the same lower
bound clock periods, but constraints on clock skew to achieve these
clock periods are tighter with polarity hold latches.

When pipeline segments are extremely short, it becomes neces-
sary to pad with intentional delay. For this purpose, we have shown
that wire pads lead to better performance than gate pads.

Our simulation results with realistic data skews added to our
simulation model show that overall performance peaks at about six gate
levels per pipeline segment. When unintentional clock skew is added
to the model, overall performance peaks at eight to ten gate levels per
segment.

To get an idea of the relative importance of the primary causes
of latch overhead, we have combined the data in Tables 1, 2, and 3
into graphs; one each for scalar, vector, and combined performance.
Originally, each of the tables was normalized with respect to a
different data point. Consequentiy, before combining the results from
the different tables, we have first re-normalized all the data with

1, ~ J_

,., o. Z

o. _1
~j 8 . 4 - -

~.2
O , . t~

.............. DAT~ DEPENDENCIES O,-iLY

DATA 5KID4 F'ZO=)]

" " _ 2 LEblF--L CLOCK FAN":'JJT RDDZ'3

I I ', ~ : I I : ¢ :--
e 4 s a l a t a J.4 i s 3 a

U~-FUL GRTE DELRY~ PER 5EGM-NT

Fig. 3. Performance for seven scalar loops

respect to eight gate level performance for the combined loops with all
skews included (this value comes closest to a real pipelined computer).

These graphs are Figs. 3, 4, and 5. They clearly show the points
of optimal performance we pointed out earlier. They also show that
for relatively long pipeline segments, adding data skew does not affect
performance. For short pipeline segments, however, its effects become
increasingly significant. For short pipeline segments, clock skew adds
about the same amount of additional degradation as data skew. For
longer segments, there is still some small degradation due to clock
skew.

8. Acknowledgement
This is material based upon work supported by the National Sci-

ence Foundation under Grant ECS-8207277.

9. References
lAND67] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, "The

System/360 Model 91" Machine Philosophy and Instruction
Handling," IBM Journal, Vol. 11, No. 34, pp. 8-24, January
1967.

.', 2,

2 Z - -

) . L - -

o S =o

c. i

C :

I
2Jo

I q-
0

1, 6 T

~, 2 i-

0

~,.., Z.P."F. 2Z=E>' .P-w'ZZE2; 0., : , ' . "

-~ D~TFh Z'(E~ ,~D'DED

.~. - 2 L~JJEL C'-OC~f FRNOUT A}3D-.3

- >

- F - - I- - ' , - - - : . ',- :- :- " ¢ ; - -
2 4 ~ 8 i~ 12 Z4 iS $2

USEFUL G~TE Dg_RY~ PE=; ~2GMENT

Fig. 4. Performance for seven vector loops

.............. D~Z;T~ D-3~-NDENC2ES ONLY

• . . . DRT,q 5-(EW P.,DD-D

"". 2 LELJ£L- CLOCr(F~NOUT A,ZID~D

2 4 ~ 8 l~ 12 14 LS 8~
USEFUL GRTE DELAY3 PER ~EGMENT

Fig. 5. Performance for fourteen combined loops

410

[APP85]

[COT65]

[CRA79]

lEAR65]

[~A.[84]
[Fhd85]

[FAW75]

[FLY66]

[FOS72]

[HAL72]

[KUC78]

[MCM72]

[MOT82]

[NIC84]

[PAN83]

IRIS72]

[SHA77]

[THO70]

[TJA70]

[WOR81]

[WOR84]

Applied Micro Circuits Corp., Q1500 Series Design Guide,
1985.

L. W. Cotten, "Circuit Implementation of High-Speed Pipe-
line Systems", AFIPS Fall Joint Computer Conference, pp.
489-504, 1965.

CRAY-1 Computer Systems, Hardware Reference Manual,
Cray Research, Inc., Chippewa Falls, WI, 1979.

J. G. Earle, "Latched Carry-Save Adder", IBM Technical
Disclosure Bull., Vol. 7, pp. 909-910, March 1965.
Fairchild, Fast Fairchild Advanced Schottky 1TL, 1984.

Fairchild, FGE Series Design Manual, Vol. II, 1985.

B. K. Fawcett, "Maximal Clocking Rates for Pipelined Digi-
tal Systems", M.S. Thesis, Dept. Elec. Eng., University of
Illinois at Urbana-Champaign, 1975

M. J. Flynn, "Very High-Speed Computing Systems,"
Proceedings of the IEEE, Vol. 54, No. 12, pp. 1901-1909,
December 1966.

C.C. Foster and E. M. Riseman, "Percolation of Code to
Enhance Parallel Dispatching and Execution", IEEE Trans.
Computers, Vol. C-21, No. 12, pp. 1411-1415, December
1972.

T.G. Hallin and M. J. Flynn, "Pipelining of Arithmetic
Functions", IEEE Trans. Computers, Vol. C-21, No. 8, pp.
880-886, August 1972.

D. J. Kuck, The Structure of Computers and Computations,
vol. 1, John Wiley and Sons, New York, 1978.

F. H. McMahon, "FORTRAN CPU Performance Analysis",
Law,nee Livermore Laboratories, 1972.

Motorola, Inc., MECL Device Data, 1982.

A. Nicolau, and J. A. Fischer, "Measuring the Parallelism
Available for Very Long Instruction Word Architectures,"
IEEETrans. Vol. C-33, No. 11, November 1984, pp. 968-
976.
N. Pang and J. E. Smith, "CRAY-1 Simulation Tools",
Tech. Report ECE-83-11, University of Wisconsin-Madison,
Dec. 1983.

E. M. Riseman and C. C. Foster, "The inhibition of Potential
Parallelism by Conditional Jumps", IEEE Trans. Computers,
Vol. C-21, No. 12, pp. 1405-1411, December 1972.

H. D. Shapiro, "A Comparison of Various Methods for
Detecting and Utilizing Parallelism in a Single Instruction
Stream", 1977 International Conference on Parallel Pro-
cessing, pp. 67-76, Aug. 1977.

J. E. Thornton, Design of a Computer - The Control Data
6600, Scott, Foresman and Co., Glenview, IL, 1970.

G. S. Tjaden and M. J. Flynn, "Detection and Parallel Exe-
cution of Independent Instructions", IEEE Trans. Computers,
Vol. C-19, No. 10, pp. 889-895, October 1970.

J. Worlton, "The Philosophy Behind the Machines," Com-
puter World, Nov. 9. 1981.

J. Worlton, "Understanding Supercomputer Benchmarks",
Datamation, Vol. 30, No. 9, pp. 121-130, September 1,
1984.

Appendix
Complete set of equations with unintentional clock skew.

C~i#~ > 3tmax -- tn~n + S(C,~.~t + Uc, e , C/*u) (1")

Cta'~h + AS (Ci-l:.ia~, Ci¢iat) < 2t~n + Pmin

- s (~ . . + v c H , C.~.)-- Vc,_:,

- max[0, t ~ - t~d, + VcH

+ AS(C,~,, Cf..)]

(2*)

Cta, s + C ~ + AS(Ci-L,~,, Ci,,~,) ~ 2tnffix + Pr~x + Uci_t,c ~

+ S(C.~ + V c H , C:-,~)
(3*)

C,/s,~ + C ~ > Pmax - Pmin + 5tra~ -- 3train + 2Uct_pc ~

+ 2.S (C~, + U c H ' C/,u) + S (~,a~ + Uc H ' Cn~) (4*)

+ max[0, tmax - t ~ , + AS(C,~.,,, C'sau) + Uc H]

Chish + Crow > 2trn~ +Pnm + Uc~_t,c ~ (5*)

provided AS (C,~.~, Cf at) < -Uc H

Chlck + C~ > Prim - Pmin + 6tnm - 4train + 2UG_a,c ~ + 2UcH ,
(6*)

provided - (tmax - t ~ .) - Uc H < AS (C,~, , C/,u) < -Uc H

AS (C,u,, C m) > t ~ - t~ , + Uc,e (7*)

C~&h > 3tra~x - train (8*)

C~agh +AS(C/-t.,~.u, Ci~i~) < 2t~n + P~n - Ucl_l.c l

- S (c'm + VcH, C ~)
(9*)

Cm, h + C ~ + AS (Ci=l :~,t, Ci me) >- 2t max + P r ~ + UC~_~ ~ (10")

Ckigh + Ct,~ > 2tr~x + Pm~ + Uq_l, q , (11")

provided AS(C-~,, Cfat) > tnua - tmjn+ UcH

C~th + Crow > Pr~x - Pmin + 5tmax - 3t~n
(12")

+ S(~: . . + Vc, e , C.~,.) + 2Vq_~,q

Chiah + Ct~ > Pm~x - Pmia + 6tmax - 4trOd + 2UcI_I,C ~ + 2UcH,

provided AS(Cn~,, ~ t) = - (tm~t- train) - UCH
(13")

Cmgh + C ~ > (n + 2)tmax + Uq_l,c s (14')

Plain > 4(tmmx - than) + Ucl_pc ~ + 2UcH (15')

n > 4 _ 4 + Uq-l"c' + 2UcH (16')
r rtma x

1) Uc,_:t 2UcH CJash + Ct,~ > tm,x - 2tnaax + (r + + (17")
r r

C~ish + Crow > (n + 2)tmax - (n r + 4 r - 4)tm~t

+ 2Vq_~,q + 2UcH
(18")

411

