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Abstract 

This paper examines the relationship between the degree of cen- 
tral processor pipelining and performance. This relationship is studied 
in the context of  modem supercomputers. Limitations due to instruc- 
tion dependencies are studied via simulations of the CRAY-1S. Both 
scalar and vector code are studied. This study shows that instruction 
dependencies severely limit performance for scalsx code as well as 
overall performance. 

The effects of  latch overhead are then considered. The primary 
cause of latch overhead is the difference between maximum and 
minimum gate propagation delays. This causes both the skewing of 
data as it passes along the data path, and unintentional clock skewing 
due to clock fanout logic. Latch overhead is studied analytically in 
order to lower bound the clock period that may be used in a pipelined 
system. This analysis also touches on other points related to latch 
clocking. This analysis shows that for short pipeline segments both the 
Earle latch and polarity hold latch give the same clock period bound 
for both single-phase and multi-phase clocks. Overhead due to data 
skew and unintentional clock skew are each added to the CRAY-1S 
simulation model. Simulation results with realistic assumptions show 
that eight to ten gate levels per pipeline segment lead to optimal 
overall performance. The results also show that for short pipeline seg- 
meats data skew and clock skew contribute about equally to the degra- 
dation in performance. 

1. Introduction 

Pipelining is an essential element of modem supercomputer 
design. Each new supercomputer generation has used a higher degree 
of pipelining than its predecessor. Furthermore, pipelining is becoming 
important in other, lower performance computer systems. Pipelining is 
a very appealing design technique because it offers a theoretical 
speedup of N when N pipeline stages are used. There are, however, 
practical constraints that limit the performance increases that are possi- 
ble. These are: 

(1) Instruction dependencies that cause the pipeline to be less than 
100 percent utilized; 

(2) Latch overhead that tends to aggravate the effects of  instruction 
dependencies, as well as placing some fundamental limitations on 
the clock frequency (and the degree of pipelining) that can be 
used; 

(3) Control path limitations that force a minimum amount of logic 
to be placed between pipeline segments. 

In this paper, we study the relationship between the theoretical 
linear speedup that pipelining offers and the practical limitations. One 
goal is to determine the ultimate performance improvements that are 
possible through pipelirdng. Another goal is to study optimal latching 
and clocking methods in pipelined computers. In order to increase its 
usefulness, this study is made in the context of current supercomputer 
technology, design techniques, architectures, and compilers. 

1.1. Instruction Dependencies 

Instruction dependencies, involving both data and control infor- 
marion, limit performance because they reduce the amount of the 
potential parallelism that is actually realized. Such dependencies are a 
very important practical limitation, and me a property of the algo- 
rithms, programs, and compilers. Hence, in order to arrive at meaning- 
fill results we study them using simulation of a state-of-the-art pipe- 
lined computer system, the CRAY-1S. i 

1.2. Latch Overhead 

There are three main components to latch overhead. 

(1) Propagation delay through storage elements can cause extra 
pipeline latency. Careful latch design can significantly reduce 
this component of  latch overhead, and we discuss such latch 
designs in Section 3. 

(2) Data skew is the difference between the maximum and minimum 
signal propagation times through combinational logic between 
pipeline stages, and in the latches that separate the stages. This 
skew occurs even if the clock signal to the latch is perfectly con- 
trolled, and it forces constraints on the clock period in order to 
ensure reliable latching of data. 

O) Clock skew, due primarily to differences between maximum and 
minimum delays in clock fanout logic, causes an unintentional 
variation in the miva l  time of the clock at succeeding latches in 
a pipeline. This unintentional skew increases the clock period 
necessary to ensure reliable latching of data. 

1.3. Control Path Limitations 

Control information must pass down the stages of a pipelined 
computer, just as the data does. It is often more difficult to sub-divide 
control operations than data operations, however. For example, control 
logic is required to interlock pipeline stages. These interlocking opera- 
tions can not be sub-divided while maintaining an execution rate of  one 
insU~tion per clock period. 

Consider the instruction issue logic in the CRAY-1S. At the 
time an instruction is issued to the execution units, any register that the 
instruction uses must not be reserved for a result by an earlier instruc- 
lion. If the operand registers are all available for use, the current 
instruction reserves its result register as it issues. In orde~ to issue an 
instruction every clock period, however, checking the register reserva- 
tions and reserving the result register must both be performed in the 
same clock period. Because of the indivisibility of  this operation, there 
is a minimum logic delay that limits the clock period that can be used. 

Control path limitations are a very important design considera- 
tion. The best solution is a clean architecture; those designed by S. 
(:ray are excellent examples. Because a study of control path limita- 
tions would involve architectural and detailed logic design alternatives 
that are beyond the scope of this paper, we will not consider them. 

IAlthough the CRAY-IS is older than the CRAY X-MP and CRAY-2, the major 
diffm'eacee between a CRAY-IS cpu and the newer models are in the gate and packaging 
technology, not the cpu architecalre and logic design techniques. 
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1.4. Previous Research 

The problem of detecting and utilizing independent instructions 
in a single instruction stream has been studied previously [RIS72, 
r'OS72, TJA70, SHA77, NIC84]. In most of these studies, however, 
pipelining was not specifically studied, and an infinite hardware 
machine was assumed so an upper limit on the available parallelism 
could be determined. Hence, these studies are more theoretical than 
o u r s .  

In the area of latch timing, Cottan [COT65] developed some 
basic timing constraints, and looked at maximum clocking rates in 
1965. Hallin and Flynn [HAL72] developed timing constraints for the 
Earle latch (to be described later) without considering clock skew or 
data skew. Later Fawcett [FAW75] expanded these timing constraints 
to account for these skews. A summary of Fawcett's work is given 
later along with additional analysis. 

Some of the pracU'cal limitations on pipelining caused by control 
paths are discussed in lAND67]. There is also some interesting discus- 
sion about design of highly-overlapped computer systems in [THO70]. 

1.5. Paper Overview 

Section 2 describes the simulation method and pertinent assump- 
tions. Section 3 is a simulation study of the importance of instruction 
dependencies; latch overhead is neglected. Section 4 discusses latch 
overhead due to propagation delays in latches. Latch designs that 
minimize latch propagation delays are discussed. Section 5 discusses 
latch overhead due to data skew; the clock is assumed to he perfectly 
controlled. Unintentional clock skew is studied in Section 6, and there 
is a further simulation study with clock skew included. Section 7 con- 
tains a summary and conclusions. 

2. Simulation Method 

We use the CRAY-IS, CFr  FORTRAN Compiler (version 111g) 
and the first 14 Lawrence Livermore Loops [MCM72]. The CF]" com- 
piler is a mature compiler that accurately represents the state-of-the-art, 
at least for the specific workload we are using. The Lawrence 
Livermore Loops are chosen because they are small enough to be 
simulated for a l~ge number of cases, me representative of a class of 
real programs, and are widely used for comparing the performance .of 
pipelined computer systems. Furthermore, by using a set of standard 
benchmarks with a well-documented computer, our experiments are 
repeatable by other researchers. The simulator used is described in 
[PANS3]. 

In the initial part of our study, we neglect latch overhead. We 
first calculate the total lengths of the various pipelines in the CRAY- 
1S, measured in gate levels• These base numbers are derived using the 
fact that there are eight levels of gates between latches in the CRAY- 
1S. The pipeline lengths in clock periods are given in the CRAY-1S 
hardware reference manual [CRA79]. 

If a pipelined operation requires n clock periods, we estimate 
that between 8n and 8(n - 1 ) +  1 = 8 n -  7 gate levels are needed. 
The minimum number comes about because if one fewer gate level is 
used, i.e. 8(n - 1), then one fewer pipeline segment can he used. For 
example, the floating point adder in the CRAY-1S is six clock periods 
long and the number of gates per clock period is eight. Therefore the 
maximum number of gate levels possible is 48 and a reasonable 
minimum is 41. Because there is an uncertainty in the number of gate 
levels, it is possible to calculate a range of performance levels. Con- 
tinuing with the example of the floating point adder, suppose the clock 
frequency is changed so that there are four gate levels in each segment. 
Using the maximum number of gate levels, 48, the new adder has 12 
segments. But, using the minimum number of gates levels, 41, the 
~_dder_ has only I1 segments. In our study, we simulated both endpoints 
of the range to yield a maximum and minimum performance. 

We simulated pipeline segments varying in length from two gate 
levels to 16 gate levels at even numbered intervals and 32 gate levels. 
In all the simulations, we used code exactly as it is scheduled for the 
CRAY-1S. Because the ratios of the pipeline lengths remain the same, 
the code schedule is of the same quality in virtually all the cases. The 
only exceptions occur because of scheduling conflicts involving the 
result buses that feed into the register files. In these very few cases, 

some of the code runs sHghtiy faster when a larger number of gate lev- 
els is used (giving a slightly longer pipeline) than when a smaller 
number of gate levels is used. 

Seven of the 14 Lawrence Livermore loops are vectorized by the 
CFT compiler. Because the operations that flow down a vecter pipeline 
m-e by definition independent, one would expect significantly better 
perfo~'mance on vector code than on scalar code. For this reason we 
give separate performance numbers for the vectorizable loops, the 
scalar loops, and the combination• 

To measure performance, first the computation rate in Millions of 
Floating Point Operations per Second (MFLOPS) was generated for 
each loop. These numbers were used to compute the harmonic mean 
MFLOPS• The harmonic mean was chosen because it is a much more 
meaningful measure than the more common arithmetic mean [WOR84]. 

Informally, to compute the harmonic mean one should first com- 
pute the time, Ti, it takes to execute exactly F (F can be arbitrarily 
chosen) floating point operations in each of the loops L i. Then the har- 

mF monic mean performance for m loops is ---~---. If the MFI..OPS rate 
ZT~ 
iffil 

for loop i is Mi, it can be shown that the harmonic mean also equals 
m 

m 1 

3. Instruction Dependencies 

An instruction may be dependent on an earlier instruction for 
either data or control. A data dependency occurs, for example, ff one 
instruction computes a result that is used as an input operand by 
another. A control dependency occurs in the case of a conditional 
branch where the execution of an instruction following the branch is 
dependent on the branch outcome. More complete discussions of the 
types of instruction dependencies that can occur are given in [KUC78]. 

Instruction dependencies limit the efficiency of a pipelined sys- 
tem. For example, in a straightforward pipeline design if two consecu- 
tive instructions passing down the pipeline are dependent, then the 
second must wait for the first to complete before the second can begin. 
Pipelining is wasted because instruction execution is not overlapped 
and pipeline segments sit idle. 

The effects of dependencies can be handled to some extent by 
the compiler, and/or clever pipeline design. For example, the compiler 
can schedule the instructions so that consecutive instructions tend to be 
independent. There are limits, however, to the number of independent 
instructions that can be found. Conditional branches pose a particular 
problem because the possibilities for scheduling them are much more 
limited than for other instructions. 

For a high degree of pipelining, the theoretical peak throughput 
is increased, but the pipeline may be used inefficiently because there 
are not enough independent instructions to keep it full. Conversely, ff 
there is a low degree of pipefining, it is relatively easy to keep the 
pipeline full, but its peak throughput is reduced. This tradeoff is of 
course dependent on the problem, algorithm, program, and even the 
programming language. Hence, we study instruction dependencies 
through simulation with realistic computers and programs. 

3 .1 .  S i m u l a t i o n  Results 

The results of the first set of simulations which neglect latch 
overhead am shown in Table I. The results are all normalized to the 
performance for the combined loops when eight gate levels are used 
(the same as in the CRAY-IS). In the tables and graphs that follow 
there is a minimum and maximum performance given that bounds the 
range of possible performances. This arises because of uncertainty in 
the number of pipeline segments as described in section 2. Obviously, 
the maximum performance is achieved when the minimum number of 
pipeline segments is used for a given number of gate levels per seg- 
ment. 

The data in Table 1 shows that the performance for scalar and 
combined code is significantly less than the performance that would be 
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7 scalar loops 7 vector loops 
gate levels 

per segment max min max min 
2 0.78 0.67 11.90 11.20 
4 0.70 0.65 7.03 6.90 
6 0.65 0.59 5.04 4.94 
8 0.57 0.57 3.88 3.88 

10 0.55 0.52 3.18 3.15 
12 0.50 0.47 2.68 2.66 
14 0.45 0.43 2.33 2.30 
16 0.40 0.40 2.04 2.04 
32 0.23 0.23 0.94 0.94 

Table 1. Normalized performance with no 

14 combined loops 

max min 
1.47 1.27 
1.28 1.18 
1.15 1.05 
1.00 1.00 
0.93 0.89 
0.84 0.80 
0.76 0.73 
0.66 0.66 
0.37 0.37 

latch overhead. 

theoretically predicted if there were no data dependencies. For exam- 
ple, the performance with two gate levels should theoretically be four 
times the performance with eight gate levels. However, the results 
show a maximum increase in performance of 23% over this interval. 
This deviation from the theoretical peak becomes larger as the number 
of gate level becomes smaller. The gain achieved in going from eight 
to four gates per segments is only about two thirds of that achieved in 
going from sixteen to eight gates per segment. Performance for the 
seven loops that vectorize does not deviate as significantly from the 
theoretical as it does for the scalar loops. 

For vector code, the performance increases almost linearly with 
the increasing clock frequency. When the scalar loops and vector 
loops are combined the curve more closely resembles that of scalar 
loops by themselves because of the well-known dominance of the 
slower code [WOR81]. 

4. Latch Propagation Delay 

This section is the first of three that study latch overhead. We 
separate the three components of  latch overhead in order to measure 
the contribution of each to performance degradation. Our discussion 
concentrates on latch designs that minimize the effects of  latch propa- 
gation delay. 

4.1. The Earle Latch 

Latch propagation delay occurs in gates used to construct latches. 
A distinguishing characteristic of propagation delay is that it would be 
present even with skewless gates, i.e. all gates have exactly the same 
propagation delay. A latch typically has a propagation delay from 
clock to output of at least two gate delays. While this may be 
insignificant in some systems, it is a major concern in pipelined sys- 
tems when the clock period becomes very short. To reduce its 
significance, J. G. Earle introduced a latch that was used in carry-save 
adders for the IBM360/91 [EAR65]. The so-called Earle latch can be 
used for any combinational logic function, however, not just carry-save 
addition. 

Fig. la  is a simple Earle latch; the NAND gate equivalent is, of  
course, more commonly used in practice. This latch performs two lev- 
els of  useful logic as well as the latching function. There is no added 
propagation delay beyond that needed to perform the useful function. 
This enables the overhead due to propagation delay through latches to 
be essentially eliminated. As an example of the way a combinational 
function can be built into an Earle latch, Fig. lb is a 2-to-1 
muitiplexer/latch. 

4.2. The Polarity Hold Latch 

The polarity hold latch is a simplified form of the Earle latch 
(see Fig. 2). It does not use the center AND gate that protects against 
a logic hazard. This logic hazard can be avoided by intentionally 
skewing the C and C" signals properly. In practice, this reduction in 
gate usage is attractive not only because it is cheaper but also because 
it reduces fan-in at the output gate. Polarity hold latches are used in 

CLOCK 

DAT~ 

CLOCK 

a) Basic Earle latch 

D ~ T A A  IT_ I ~  SELR'CT 

DATA B |_ 

b) Earle latch with built-in multiplexer 

Fig. 1. Earle latches 

pipelined CPUs designed at CDC, Cray Research, and the Amdehl Cor- 
poration. As we shall see, however, clock skew constraints are tighter 
for polarity hold latches than for Earle latches in order to avoid logic 
hazards. 

Because Earle and polarity hold latches can eliminate propaga- 
tion delay, we assume their use throughout the r e s t  of t h i s  paper. Other 
causes of latch overhead are examined in the context of Earle and 
polarity hold latches. 

$. Data Skew 

Data skew occurs because gates used to implement latches and 
combinational logic between latches have different propagation delays. 
In order to isolate the effects of data skew, we assume the logic used 
for clock fanout has no unintentional skew due to gate delay 
differences. That is, clock signals reaching the latches are perfectly 
controlled. 

The distinction we are making between intentional skew and 
unintentional skew should be carefully noted. It is often necessary to 
intentionally skew clock signals. This is done in the case of muiti- 
phase clocks, and in controlling the C and C- signals to avoid hazards. 
Unintentional skew is due to imperfections in the clock distribution 
network and fanout logic. While unintentional clock skew is ignored 
in this section, it is the primary topic of the next section. 

DATA - -  

CLOCK _ _  

C L O C K  - -  

Fig. 2. Pola~ty hold latch 
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A basis for the analysis given here for the Earle latch is 
presented in [FAW75]. As shown in Fig. 1, the Earle Latch actually 
has two clock signals, one is the complement of  the other. Our 
analysis assumes that the width of the C~s ~ pulse is the same as the 
width of the C'to~ pulse. 

We now introduce Fawcett's terminology. 

tml  ~ - 

tmi  n 

Chl,h 
Crow 

Pm~  

ena in  

S(X,Y) - 

AS(X,Y) - 

Ux 

maximum propagation delay time for a logic gate (blAND 
gate) 

minimum propagation delay time for a logic gate (blAND 
gate) 

the duration of C ffi 1 (clock high) 

the duration of C ffi 0 (clock low) 

maximum delay time on the maximum delay path from the 
output of a latch to input of next latch. This does not 
include any delay for the latch itself. 

minimum delay time on the minimum delay path from the 
output of  a latch to input of  next latch. 

This quantity is the skew between the edges X and Y and 
is always positive. It is the difference between the arrival 
of edge X and edge Y. If Y arrives before X, the quantity 
is zero. 

This quantity is the algebraic skew between the edges X 
and Y and can be positive or negative. It is the difference 
between the arrival of edge X and edge Y. If Y arrives 
before X, the quantity is negative. 

This quantity is the uncertainty of X. It represents the 
quantity such that X lies in the interval (X - [Ix, X + [Ix). 

5.1. Timing Constraints on Earle Latches 

Repeating the work of Fawcett, we give four timing constraints 
on the clock signal. These constraints are discussed only briefly; we 
regret that space does not permit a more complete explanation of 
Fawcett's work. The first constraint is on the minimum width of the 
clock pulse Crash. The pulse has to be wide enough to ensure that 
valid data is stored in the latch. That is, it must be wide enough to 
allow data to propagate from the D input to the latch output, then to 
feed back around to be latched. This gives 

C~sh > 3tmu - train + S(C,~.~, flail). (1) 

The second timing constraint is on the maximum width of the 
clock pulse Crash. Obviously, the clock width must be shorter than the 
minimum propagation delay from the input of one latch to the input of  
the next, assuming no intentional clock skew. Two other terms must 
be added to allow for skewed clocks. The precise constraint is 

C~,h + A S ( C i _ I ~ ,  C i ~ , )  < 2.tnfm + P ~ - S(Cfau, Cry,) 

- max[0, trau - tmia + AS(C,~.,,, Cl~t)]. (2) 

Fawcett's third constraint is on the minimum clock period, 
Ctagh + C~,~. This constraint arises because the latch can not be 
clocked until the data from the previous latch has arrived. Thus the 
minimum clock period must be longer than the maximum propagation 
delay from the input of  one latch to the input of the following latch. 
The complete expression derived by Fawcett is 

Crash + Ck, w + AS (Ci_l.a,,, Ci.r~.,,) > 2tra, x + Pra, x + S(C,~j,, Cfau) (3) 

Fawcett combined the three constraints to arrive at an alternative lower 
bound on the clock period: 

Crass + C/ow > Pmax - Pmin + 5tra~x - 3train 

+ 2S (C,.~,, ~,.,~) + S (C'.t',.'t, C,./.) (4) 
+ max[0, t n a x -  t r ~  + AS(Cfau,  C-,~.u)]. 

This concludes our initial summary of Fawcett's work. What 
follows in this subsection and in succeeding subsections are extensions 
and further analysis of  the timing constraints. 

Fawcett's work allows for the possibility of multi-phase clocks. 
We will consider both single and multi-phase clocks. The pipelined 
computers produced by Cray Research, CIX~, and Amdahl all use sin- 
gle phase clocks. We do not consider C and C- going to a single latch 
as a multi-phase clock. In a typical supercomputer system, a single 
clock waveform is generated and distributed to the logic chips 
(modules in the case of the CRAY-IS). On each chip, there is a 
"clock shaper" circuit that, among other things, produces both the C 
and C signals. 

If we restrict ourselves to an ideal, single phase-clock then 
Ci-l,,~, = C i ~ , .  Also, (3) gives a minimum clock period if the clock 
signals can be controlled so that Cfat precedes C,i~e, making the last 
term zero. Thus for an ideal, single phase clock we can derive a lower 
bound on the clock period using (3). 

Clock Period Bound: Earle Latch, Single Phase Clock 

Chlsh + Crow > 2tmax + Pma~, provided AS(CrI, , ,  ~ a t )  < O. (5) 

For a multi-phase clock, we can derive a lower bound on the 
clock period using (4). 

Clock Period Bound: Earle Latch, Multi-Phase Clock 

Chlsh + C~,~ > Pmax - Prran + 6tmax -- 4 t~ . ,  (6) 

provided -(trr~x - train) < AS (C.fan,C~e) < 0 

5.2. Timing Constraints on Polarity Hold Latches 

Becanse the polarity hold latch is an Earle latch with the hazard 
gate removed, the clock signals must be intentionally skewed to ensure 
proper operation of the latch. This additional constraint can be 
expressed as 

AS (C,.is,, ~at t  ) < - (tmax - train). (7) 

Applying (7) makes some of the terms in (1), (2), and (3) zero, simpli- 
fying them to (8), (9), and (10) given below. 

Crash > 3tmax - t,,/,. (8) 

C~&h + AS (Ci-l.,~,, Ci,i~, ) < 2train + P rain - S ( ~ * u ,  C,is,). (9) 

C~,h +Crow + AS(Ci-l~.i~, Ci,,i~,) > 2.tmax + Pnax (10) 

For an ideal, single phase clock C i - l ~ ,  = C i ~ , ,  which reduces 
(10) to the following lower bound on the clock period. 

Clock Period Bound: Polarity Hold Latch, Single Phase Clock 

Ctagh + Ct~ > 2:mu + Pm~, (11) 

provided AS (C,~,,  Cf,at) < - ( t ~ x -  t~n). 

For the ease in which a multi-phase clock is used, the same 
optimization technique that Fawcett used can be performed on (8), (9), 
and (10) yielding, 

C~'sh + Clow ~Pmffit - P~i,  + 5trr~ - 3tn~n + S(C/,u, Ca,,). (12) 

Considering (7), (12) can be reduced to a lower bound clock 
period for multi-phase clocks. 

Clock Period Bound: Polarity ltold Latch, Multi-Phase Clock 

C&'sh + Ct,,~ > Pn~x - P ~ ,  + 6tmax - 4t,,~. (13) 

provided AS (C,~,,  C.f,at) < - (tmu - train). 

We have shown that the Earle latch and the polarity hold latch 
have the same lower bound on the clock period for both single and 
multiple phase clock. The difference is that the constraint on the inten- 
tional clock skew is more restrictive for the polarity hold latch if the 
bound is to be met. This implies that more careful control over the 
clock signals is required. 

407 



$.3. Latch Overhead 

We ~ now ready to analyze the latch overhead due to data 
skew. We emphasize single phase clocks with polarity hold latches 
because they axe commonly used in practice. Some discussion of 
multi-phuse clocks sad Earle latches is also included, however. 

Let n be the numbex of gate levels between latches (this does not 
include the two gate levels in the latch, itself). Considering that useful 
logic can be performed in the latches, there are a total of n+2 useful 
gate levels in each pipeline segment. We assume an equal number of 
gate levels on all paths. The generalization to different length paths is 
straightforward. Equal length paths tend to allow shorter clock periods, 
however. For example, note the importance of P u r e -  P~dn in (4). 

Let • be the ratio of the minimum gate delay to the maximum. 
Then t ~  = rt 1 .  For simplicity, we begin by assuming all delays are 
concentrated in gates, not in wires between gates. In practice, one can 
add wire delay following a gate to the gate, itself. Later, when we need 
to intentionally add extra delay to paths, we do consider separate wire 
delays. 

Because delays are assumed to be in the gates, Pnm = ntma, and 
Pin ta  = ntmin -'- tWtmax. 

$.3.1. Polarity Hold Latch; Single Phase Clock 

For a single phase clock, (11 ) becomes 

C~th + Cbw > (n + 2)tmaK (14) 

For a single phase clock, however, any clock period lower bound is 
subject to a lower bound on Pmi~ that comes from combining (8) and 
(9) to eliminate C~sh. The resulting inequality can be rearranged to 
yield Pn~n > 3tnm - 3 t~ ,  + S ( ~ a u ,  C,~,). Further restricting the con- 
dition that gives the lower bound clock period as determined in (11) to 
AS(C/,u, C,i,,) = t m ,  x - train, yields 

Pmi, > 4(tra~ - tn~,). (15) 

Substituting rtnua fox train sad nrtmax for Pmin and rearranging yields 

n > _4 _ 4 (16) 

That is, for a single phase clock there must be at least n > _4 - 4 gate 
r 

levels for proper operation. If the number of gate levels is fewer, then 
some extra intentional delay pad must be added. This can either be in 
the form of gates or wires. 

5.3.2. Delay Padding 

If intentional delay is added with gates, then 4 _ 4 -  n gate 

delays must be added to the path so that (16) is satisfied. This yields: 

C~u'sh + Cto~ > (n + 2)tm,x + ( 4  - 4 - n)tmax 
• (17) A 

> "* tmax - 2tm, x 

In the first line of  (17), the (n + 2)tnmx term accounts for the 
delay for performing useful logic; two levels in the latch and n levels 

between latches. The ( 4 _  4 -  n)tm, x term is overhead. Also note 
r 

that the final form of (17) is independent of  n.  Thus, if gates are used 

for delay p~alng ,  there is no advantage to using fewer than 4 _ 4 

gates between latches. 

We now consider using wire delays for padding. First consider 
that without padding P n~ is nrtm~. P r~  must be at least 
4(tnax - rtm~), however. Hence, an additional pad of 
4(tma~ - rtmax) - n r t ~  must be added. This yields 

C~th + Ck,w > (n + 2)tmwt + 4(t~a~ - rtmu) - nrtnm 
(18) 

> (n + 2)tm~ + (4 - (n + 4)r)tnua 

In (18) the wire delay overhead is (4 - (n + 4)r)tmax. We now 
compare this overhead with that in (17). The gate pad overhead is 

easily shown to be 1 times the wire pad overhead. By detinition 
r 

I > 1. Hence, a wire delay pad potentially leads to a shorter clock 

period than a gate pad. 

5.3.3. Polarity Hold Latch; Multi-phase Clock 

For a multi-phase clock, (13) easily reduces to (18). For multi- 

phase clocks, (18) holds for all values of n .  When n < 4 _ 4 the 

"overhead" term in (18) is positive, and the minimum clock period is 
the same for both a single and multi-phase clock. Hence, for very 
short clock periods, there is no performance advantage to using a 
multi-phase clock. 

4 
On the other hand, when n > - -  - 4 the "overhead" term in (18) 

is negative, sad the multiphase clock period can be less than the single 
phase clock period. Note that for the case of a multi-phased clock 
there is no limit on Pmin because the phase of the clocks can be shifted 
using (2) and (9) to accommodate any value of Pmin. 

5.3.4. Earle Latches 

A similar line of reasoning to the above can be used to calculate 
a minimum for P~n  in the Earle latch using (1) and (2). This also 
yields (14) through (18), provided -(tnu~ - tn~n) <-AS(C/at, C,~,) < 0 
which is slightly more restricting than the minimum condition for (3). 

5.4. Simulation Results 

We now use simulation to evaluate the performance of a single 
phase clock and polarity hold latches under some realistic assumptions. 
A survey of the currently available, high performance TTL and ECL 
parts [MOT82, FAI84] indicates values of r in the range of .3 to .4. It 
is quite possible that • could be increased by screening of the chips, 
however. Also wire delays added to gate outputs tend to increase the 
effective value of r. A survey of ECL gate arrays, [FAI85, APP85] 
indicates larger values of r, up to .6. Hence a realistic value for our 
simulations is • =.5. 

The simulation results with data skew overhead added are given 
in Table 2. The performance results are again normalized with respect 
the combined loop performance with eight useful gate levels. These 
results show the best scalar mad combined performance occu~ at about 
six useful gates levels per pipeline segment. A substantial performance 
improvement cam be achieved by increasing the clock frequency on 
vectors. No peak appears as the performance seems to continue to 
increase as the clock frequency increases. 

6. Unintentional Clock Skew 

The results in the previous section are based on an assumption of 
a perfectly controlled clock. When designing real processors, however, 
there is always some uncertainty in the clock. To model this, it is 
necessary to add uncertainty terms to the clocking constraints. 

As done by Faw_cett, we assume there can be unintentional skew 
between the C and C signals (denoted as Uc, ~ ) and between clock 
signals reaching different latches (Uq_l,q). Expressions with 

useful 7 scalar loops 7 vector loops 14 combined loops 
gates levels 
per segment max rain max rain max rain 

2 0.39 0.34 5.95 5.60 0.74 0.64 
4 0.56 0.52 5.62 5.52 1.02 0.95 
6 0.65 0.59 5.04 4.94 1.15 1.05 
8 0.57 0.57 3.88 3.88 1.00 1.00 

10 0.55 0.52 3.18 3.15 0.93 0.89 
12 0.50 0A7 2.68 2.66 0.84 0.80 
14 0A5 0A3 2.33 2.30 0.76 0.73 
16 0.40 0A0 2.04 2.04 0.66 0.66 
32 0.23 0.23 0.94 0.94 0.37 0.37 

Table 2. Normalized performance with data skew overhead. 

408 



uncertainty terms added are derived in a manner very similar to (1) 
through (18). For brevity, we give only the most signiticant ones. A 
complete set of expressions is given in the appendix. 

6.1. Basic Clocking Constraints 

The uncertainties not only affect the clock inequalities, but they 
affect the intentional clock skew constraints that give minimum clock 
periods. The four lower bound expressions follow. 

Clock Period Bound: Earle Latch, Single Phase Clock 

Chi,h + Czow > 2tm~ + e ~  + Uc,_t.c I (5*) 

provided AS ( C,t~ , ~an  ) < - U c , c  • 

Clock Period Bound: Earle Latch, Multi-Phase Clock 

C~ah + C ~  > P ~  - P)~da + 6tmjx -- 4tram + 2UCt_l.Cl + 2UC~ , 
(6*) 

provided -(tmjx - t~n) - Uc. c < AS (C,i~ , ~ u )  < -Uc~. 

Clock Period Bound: Polarity Hold Latch, Single Phase Clock 

Chlsh + C~,  > 2tr~, x + Pm~ + Uc~_1.c l , (11") 

provided AS (C,m, ~ t t )  ~ - ( t m ~ -  train) - UcT. 

Clock Period Bound: Polarity Hold Latch, Multi-Phase Clock 

C~sh + C ~  > P ~  - Pm~ + 6 t ~  - 4train + 2Uc,_1.c t + 2Uc. ~ , 
(13") 

provided AS ( C ,~  , ~att  ) = -(trim - t ~ )  - Uc , c 

As before, the Earle latch and the polarity hold latch have the 
same lower bound on the clock period for both single and multiple 
phase clock. The only difference is in the required constraint on the 
intentional clock skew. 

6.1.1. Latch Overhead due to Unintentional Clock Skew 

Once again, we assume n gates between latches, and a ratio tmi~ 
to tmax of r.  This gives Pnm = ntm~x, and Pr~n = ntrma = nrt:vax. We 
begin with a single phase clock and polarity hold latch. 

For a single phase clock, 

C ~  + C~,~ > (n + 2)tm~ + Uc~_~,c~ (14") 

When AS(Clan, C,i~) = - (  tm~, - t ~ )  - Uc ~ " , a lower bound on P ~  
is 

P ~  > 4(tm)x - tm~) + Uc~_~.c~ + 2Uc, ~ . (15") 

Substituting rt~,a for t ~  and nrtm~ for P ~  and rearranging yields 

uc,_:, + 2Uc,c 
n > 4 - 4 +  (16") 

P r t m a x  

Equation (16") bounds the number of gate levels necessary for proper 
operation with a single phase clock. As before, if the number of gate 
levels is fewer, then some extra intentional delay pad in the form of 
either gates or wires must be added. 

If intentional delay is added with gates, then 

C~,~ + C ~  > 4 t m ~  - 2tmax + (r + 1) Uc~ ~ c~ + 2Uc'c (17") 
r - '  r 

Equation (17") is Independent of n.  Thus, if gates me used for delay 
padding, there is no advantage to using fewer than indicated by (16"), 

If wire delays are used for padding, then 

C~,t, + C~,~ > (n + 2)tmax + (4 - (n + 4)r)tn~ 
(18") 

+ 2Uci_~.c~ + 2Uc. c 

As we did earlier, it can be shown that a wire delay pad leads to a 
shorter clock period than a gate pad. 

To determine the overhead due to unintentional clock skew, we 
compare the above results with those in the previous section. When 

Uc~_l~c i + 2 U c ~  " 
n ~ 4 - 4 +  , (14") indicates that unintentional 

r rtmu 
clock skew adds additional overhead of UcL_~,c i. When 

4 uc,_,.c, + 2uc.c 
n < - - - 4 +  , (18") indicates that unintentional 

r rtw~x 
clock skew adds an additional overhead of 2Uc~_l.c ~ + 2Uc, ~. 

For a multi-phase clock, the clock period bound is the same as in 
(18"). This means that the minimum clock period is the same for both 
a single and multi-phase clock when 

Uc~_~:i + 2Uc~ 
n <  4 - - 4 +  

r rt~,  x 

Otherwise, the multi-phase clock may be faster. 

For the Earle latch, the same results as above can be derived. As 
has typically been the case, however, the intentional clock skew con- 
straints are reduced. In particular, minimum clock periods are achieved 
when - ( tm~ - t ~ )  - Uc, c < AS (C:~#, C,~,) < - t l c ,  c .  

6.2. Simulation Results 

We continue our simulations to determine the effect of uninten- 
tional clock skew under realistic conditions. To do this, we must esti- 
mate values of unintentional skews. We first observe that U c.c  is rela- 
tively easy to control, because both signals feeding a particular latch 
arc formed on the same printed circuit module (CRAY-1S) or on the 
same chip (CYBER205) from a single master clock signal. 

If one gate is used to generate ~ ,  then 

1 
Uc ~ = -~(tm~ - ,~). 

When r = .5, UcL~ = .25tm~. 

If two logic levels are used to fanout the clock, then 

U¢i_~.c I = 2tm~ - 2t in .  

When r = .5, the uncertainty becomes Ucr_l~: I = tm~. If  the fanout 
logic is extended to four levels, the uncertainty doubles and 
~]c,_,.c~ ffi 2t in, .  

The performance when clock uncertainty is added to the latch 
overhead is shown in Tables 3 and 4. Comparing these results with 
those obtained without unintentional clock skew shows that peak per- 
formance moves to a larger number of gate levels per segment. Also 
vectors alone now have a peak; they do not continue to incsease as the 
number of gate levels decreases. As expected, for a larger a ~ t y ,  
a larger number of gate levels per segmant is needed to achieve peak 
perfcxrnance. This can be seen by comparing the two-level fanout 
results to the four-level fallout results. FOr the two-level clock fanout, 
scalar code has the best performance at eight to ten gate levels per seg- 
ment while vectors peak at four gate levels pet segment. Scalars dom- 
inate when the two are combined to give a peak at eight to ten gate 

useful 7 scalar loops I 7 vector loops 14 combined loops 
gate levels ] 

pet segment max i rain I m a x ,  rain max rain 
2 0.29 i 0.25 ] 4.35 4.09 0.54 0.46 
4 0.45 ] 0.41 4.45 4.37 0.81 0.75 
6 0.55 0.49 [ 4 . 2 2  4.14 0.97 0.88 
8 0.57 0.57 3.88 3.88 1.00 1.00 

10 0.59 0.56 3A3 3A0 1.01 0.96 
12 0.55 0.51 2.93 2.92 0.92 0.87 
14 ~ 0.50 0.48 2.58 2.55 0.84 0.81 
16 I 0.44 0.44 2.28 2.28 0.74 0.74 
32 ~ 0.27 0.27 1.08 1.08 0.43 0A3 

Table 3. Normalized performance with data skew and unintentional 
clock skew; two-level clock fanout. 
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useful 7 scalar loops 7 vector loops 114 combined loops 
gate levels 
~er segmenl max rain max rain max rain 

2 0.27 0.23 4.03 3.79 0.50 0.43 
4 0.43 0.39 4.25 4.18 0.78 0.72 
6 0.53 0.48 4.14 4.06 0.95 0.86 
8 0.57 0.57 3.88 3.88 1.00 1.00 

1 0.63 0.60 3.65 3.62 1.07 1.02 
12 0.62 0.58 3.30 3.28 1.04 0.98 
14 0.57 0.54 2.93 2.90 0.95 0.92 
16 0.50 [ 0.50 2.61 2.61 0.85 0.85 
32 0.31 I 0.31 1.27 1.27 0.50 0.50 

Table 4. Performance with data skew and unintentional clock skew; 
four-level clock fanout. 

levels per segment. The same is true for a four-level clock fanout 
which peaks at ten gate levels per segment for both scalars and scalars 
combined with vectors. 

7. Summary and Conclusions 

Our first set of simulations with no latch overhead show that data 
dependencies alone place rather severe limits on pipeline performance. 
Performance always improves as pipeline segments are shortened, how- 
ever. 

When data skew is considered, our analysis shows that multi- 
phase and single phase clocks have the same lower bound clock 
periods when few gate levels are used. For longer pipeline segments, 
however, multiphase clock periods can be shorter than single phase 
clock periods. Earle and polarity hold latches give the same lower 
bound clock periods, but constraints on clock skew to achieve these 
clock periods are tighter with polarity hold latches. 

When pipeline segments are extremely short, it becomes neces- 
sary to pad with intentional delay. For this purpose, we have shown 
that wire pads lead to better performance than gate pads. 

Our simulation results with realistic data skews added to our 
simulation model show that overall performance peaks at about six gate 
levels per pipeline segment. When unintentional clock skew is added 
to the model, overall performance peaks at eight to ten gate levels per 
segment. 

To get an idea of the relative importance of the primary causes 
of latch overhead, we have combined the data in Tables 1, 2, and 3 
into graphs; one each for scalar, vector, and combined performance. 
Originally, each of the tables was normalized with respect to a 
different data point. Consequentiy, before combining the results from 
the different tables, we have first re-normalized all the data with 
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Fig. 3. Performance for seven scalar loops 

respect to eight gate level performance for the combined loops with all 
skews included (this value comes closest to a real pipelined computer). 

These graphs are Figs. 3, 4, and 5. They clearly show the points 
of optimal performance we pointed out earlier. They also show that 
for relatively long pipeline segments, adding data skew does not affect 
performance. For short pipeline segments, however, its effects become 
increasingly significant. For short pipeline segments, clock skew adds 
about the same amount of additional degradation as data skew. For 
longer segments, there is still some small degradation due to clock 
skew. 
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Appendix 
Complete set of equations with unintentional clock skew. 

C~i#~ > 3tmax -- tn~n + S(C,~.~t + Uc, e , C/*u) (1") 

Cta'~h + AS (Ci-l:.ia~, Ci¢iat) < 2t~n + Pmin 

- s ( ~ . .  + v c H ,  C.~.)-- Vc,_:, 

- max[0, t ~  - t~d, + VcH 

+ AS(C,~,, Cf..) ] 

(2*) 

Cta, s + C ~  + AS(Ci-L,~,, Ci,,~,) ~ 2tnffix + Pr~x + Uci_t,c ~ 

+ S(C.~ + V c H ,  C:-,~) 
(3*) 

C,/s,~ + C ~  > Pmax - Pmin + 5tra~ -- 3train + 2Uct_pc ~ 

+ 2.S (C~, + U c H '  C/,u ) + S (~,a~ + Uc H '  Cn~ ) (4*) 

+ max[0, tmax - t ~ ,  + AS(C,~.,,, C'sau) + Uc H ] 

Chish + Crow > 2trn~ +Pnm + Uc~_t,c ~ (5*) 

provided AS (C,~.~, Cf at ) < -Uc H 

Chlck + C~ > Prim - Pmin + 6tnm - 4train + 2UG_a,c ~ + 2UcH , 
(6*) 

provided - (  tmax - t ~ . )  - Uc H < AS ( C,~, , C/,u ) < -Uc  H 

AS (C,u,, C m )  > t ~  - t~ ,  + Uc,e (7*) 

C~&h > 3tra~x - train (8*) 

C~agh +AS(C/-t.,~.u, Ci~i~) < 2t~n + P~n  - Ucl_l.c l 

- S (c'm + VcH,  C ~ )  
(9*) 

Cm, h + C ~  + AS (Ci=l :~,t, Ci me ) >- 2t max + P r ~  + UC~_~ ~ (10") 

Ckigh + Ct,~ > 2tr~x + Pm~ + Uq_l, q , (11") 

provided AS(C-~,, Cfat) > tnua - tmjn+ UcH 

C~th + Crow > Pr~x - Pmin + 5tmax - 3t~n 
(12") 

+ S(~: . .  + Vc, e , C.~,.) + 2Vq_~,q 

Chiah + Ct~ > Pm~x - Pmia + 6tmax - 4trOd + 2UcI_I,C ~ + 2UcH, 

provided AS(Cn~,, ~ t )  = -  (tm~t- train) - UCH 
(13") 

Cmgh + C ~  > (n + 2)tmax + Uq_l,c s (14')  

Plain > 4(tmmx - than) + Ucl_pc ~ + 2UcH (15')  

n > 4 _ 4 + Uq-l"c' + 2UcH (16')  
r rtma x 

1) Uc,_:t 2UcH CJash + Ct,~ > tm,x - 2tnaax + ( r  + + (17") 
r r 

C~ish + Crow > (n + 2)tmax - ( n r  + 4 r  - 4)tm~t 

+ 2Vq_~,q + 2UcH 
(18") 
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