INSTRUCTION ISSUE LOGIC FOR PIPELINED SUPERCOMPUTERS

Shlomo Weiss
Computer Sciences Department
University of Wisconsin-Madison

Madison, WI 53706

James E. Smith
Department of Electrical and Computer Engineering
University of Wisconsin-Madison
Madison, WI 53706

Abstract

Basic principles and design tradeofls for control of
pipelined processors are first discussed. We concentrate
on register-register architectures like the CRAY-1 where
pipeline control logic is localized to one or two pipeline
stages and is referred to as "instruction issue logic".
Design tradeoffs are explored by giving designs for a
variety of instruction issue methods that represent a
range of complexity and sophistication. These vary from
the original CRAY-1 issue logic to a version of Tomasulo's
algorithm, first used in the IBM 360/91 floating point
unit. Also studied are Thornton’s "scoreboard” algo-
rithm used on the CDC 8600 and an algorithm we have
devised. To provide a standard for comparison, all the
issue methods are used to implement the CRAY-1 scalar
architecture. Then, using a simulation model and the
Lawrence Livermore Loops compiled with the CRAY FOR-
TRAN compiler, performance results for the various issue
methods are given and discussed.

1. Introduction

Although modern supercomputers are closely asso-
ciated with high speed vector operation, it is widely
recognized that scalar operation is at least of equal
importance, and pipelining [KOGGB1] is the predominant
technique for achieving high scalar performance. In a
pipelined computer, instruction processing is broken
into segments and processing proceeds in an assembly
line fashion with the execution of several instructions
being overlapped. Because of data and control dependen-
cies in a scalar instruction stream, interlock logic is
placed between critical pipeline segments to control
instruction flow through the pipe. In an register-register
architecture like the CDC 8600 [THOR70], the CDC 7600
[BONS69], and the CRAY-1 [CRAY77, CRAY79,RUSS78],
most of the interlock logic is localized to one segment
early in the pipeline and is referred to as "instruction
issue" logic.

It is the purpose of this paper to highlight some of
the tradeoffs that affect pipeline control, with particular
emphasis on instruction issue logic. The primary vehicle
for this discussion is a simulation study of different
instruction issue methods with varying degrees of com-
plexity. These range from the simple and straightfor-
ward as in the CRAY-1 to the complex and sophisticated
as in the CDC 6600 and the IBM 380,/91 floating point unit
[TOMAB7]. Each is used to implement the CRAY-1 scalar
architecture, and each implementation is simulated
using the 14 Lawrence Livermore Loops [MCMA72] as
compiled by the Cray Research FORTRAN compiler (CFT).

0194-7111/84/0000/0110$01.00©1984 IEEE

110

1.1. Tradeoffs

We begin with a discussion of design tradeoffs that
centers on four principle issues:

(1) clock period,

(2) instruction scheduling,

(3) issue logic complexity, and

(4) hardware cost, debugging, and maintenance.
Each of these issues will be discussed in turn.

Clock Period. In a pipelined computer, there are a
number of segments containing combinational logic with
latches separating successive segments. All the latches
are synchronized by the same clock, and the pipeline is
capable of initiating a new instruction every clock
period. Hence, under ideal conditions, i.e. no dependen-
cies or resource conflicts, pipeline performance is
directly related to the period of the clock used to syn-
chronize the pipe. Even with data dependencies and
resource conflicts, there is a high correlation between
performance and clock period.

Historically, pipelined supercomputers have had
shorter clock periods than other computers. This is in
part due to the use of the fastest available logic techno-
logies, but it is also due to designs that minimize logic
levels between successive latches.

Scheduling of Instructions. Performance of a pipe-
lined processor depends greatly on the order of the
instructions in the instruction stream. If consecutive
instructions have data and conirol dependencies and
contend for resources, then “holes” in the pipeline will
develop and performance will suffer. To improve perfor-
mance, it is often possible to arrange the code, or
schedule it, so that dependencies and resource conflicts
are minimized. Registers can also be allocated so that
register conflicts are reduced {register conflicts caused
by data dependencies can not be eliminated in this way,
however). Because of their close relationship, in the
remainder of the paper we will group code scheduling
and register allocation together and refer to them col-
lectively as "code scheduling’.

There are two different ways that code scheduling
can be done. First, it can be done at compile time by the
software. We refer to this as "static” scheduling because
it does not change as the program runs. Second, it can
be done by the hardware at run time. We refer to this as
"dynamic’ scheduling. These two methods are not mutu-
ally exclusive.

Most compilers for pipelined processors do some
form of static scheduling to avoid dependencies. This
adds a new dimension to the optimization problems
faced by a compiler, and occasionally a programmer will
hand code inner loops in assembly language to arrive at
a better schedule than a compiler can provide.

Issue Logic Complexity. By using complex issue
logic, dynamic scheduling of instructions can be
achieved. This allows instructions to begin execution
"out-of-order" with respect to the compiled code
sequence. This has two advantages. First, it relieves
some the burden on the compiler to generate a good
schedule. That is, performance is not as dependent on
the quality of the compiled code. Second, dynamic
scheduling at issue time can take advantage of depen-
dency information that is not available to the compiler
when it does static scheduling. Complex issue logic does
require longer control paths, however, which can lead to
a longer clock period.

Hardware Cost, Debugging. and Maintenance. Com-
plex issue methods lead to additional hardware cost.
More logic is needed, and design time is increased. Com-
plex control logic is also more expensive to debug and
maintain. These problems are aggravated by issue
methods that dynamically schedule code because it may
be difficult to reproduce exact issue sequences.

1.2. Historical Perspective

It is interesting to review the way the above
tradeoffs have been dealt with historically. In the late
1950's and early 1960's there was rapid movement
toward increasingly complex issue methods. Important
milestones were achieved by STRETCH [BUCHB2] in 1961
and the CDC 6600 in 1964. Probably the most sophisti-
cated issue logic used to date is in the IBM 360/91
[ANDE87], shipped in 1967. After this first rush toward
more and more complex methods, there was a retreat
toward simpler instruction issue methods that are still in
use today. At CDC, the 7600 was designed to issue
instructions in strict program sequence with no dynamic
scheduling. The clock period, however, was very fast,
even by today's standards. The more recent CRAY-1 and
CRAY-XMP [CRAY82] differ very little from the CDC7600 in
the way they handle scalar instructions. The CDC
CYBER205 [CDC81] scalar unit is also very similar. At
IBM, and later at Amdahi Corp., pipelined implementa-
tions of the 360/370 architecture following the 360/91
have issued instructions strictly in order.

As for the future, both the debug/maintenance
problem and the hardware cost problem may be
significantly alleviated by using VLSI where logic is much
less expensive and where replaceable parts are such that
fault isolation does not need to be as precise as with SSI.
In addition, there is a trend toward moving software
problems into hardware, and code scheduling seems to
be a candidate. Consequently, tradeoffs are shifting and
instruction issue logic that dynamically schedules code
deserves renewed study.

1.3. Paper Overview

The tradeoffs just discussed lead to a spectrum of
instruction issue algorithms. Through simulation we can
look at the performance gains that are made possible by
dynamic code scheduling. Other issues like clock period
and hardware cost and maintenance are more difficult
and require detailed design and construction to make
quantitative assessments. In this paper, we do discuss
the control functions that need to be implemented to
facilitate qualitative judgements. Section 2 examines
one endpoint of the spectrum: the CRAY-1. The CRAY-1
uses simple issue logic with a fast clock and static code
scheduling only. Section 3 examines the other endpoint
of the spectrum: Tomasulo's algorithm. Tomasulo's algo-
rithm is capable of considerable dynamic code schedul-
ing via a complex issue mechanism. Sections 4 and 5
then discuss two intermediate points. The first is a vari-
ation of Thornton’s "scoreboard” algorithm used in the
CDC 6600. Thornton's algorithm is also used to imple-
ment the CRAY-1 scalar architecture. The second is an

1t

algorithm we have devised to allow dynamic scheduling
while doing away with some of the associative compares
required by the other methods that perform dynamic
scheduling. Each of the four CRAY-1 implementations is
simulated over the same set of benchmarks to allow per-
formance comparisons. Section 6 contains a further dis-
cussion on the relationship between software and
hardware code scheduling in pipelined processors, and
Section 7 contains conclusions.

2. The CRAY-1 Architecture and Instruction Issue Algo-
rithm

2.1. Overview of the CRAY-1

The CRAY-1 architecture and organization are used
throughout this paper as a basis for comparison. The
CRAY-1 scalar architecture is shown in Figure 1. It con-
sists of two sets of registers and functional units for (1)
address processing and (2) scalar processing. The
address registers are partitioned into two levels: eight A
registers and sixty four B registers. The integer add and
muitiply functional units are dedicated to address pro-
cessing. Similarly, the scalar registers are partitioned
into two levels: eight S registers and sixty four T regis-
ters. The B and T register files may be used as a
programmer-manipulated data cache, although this
feature is largely unused by the CFT compiler. Four
functional units are used exclusively for scalar process-
ing. In addition, three floating point functional units are
shared with the vector processing section (vector regis-
ters are not shown in Fig. 1).

B T
REGISTER REGISTER
FILE FILE
Y Y
~ A
A s
REGISTER REGISTER
FILE FILE
Y
A ‘——_—3
SCALAR FLOATING
FUNCTIONAL POINT
MEMORY UNITS FUNCTIONAL
wITS
ADD ADD
{Logica [wLTiPLY

Figure 1 -- The CRAY-1 Scalar Architecture

The instruction set is designed for efficient pipeline
processing. Being a register-register architecture, only
load and store instructions can access memory. The rest
of instructions use operands from registers. Instructions
for the B and T registers are restricted to memory
access and copies to and from register files A and S,
respectively.

The information flow is frormn memory to registers A
(8), or to the intermediate registers B (T). From file A (S)
data is send to the functional units, from which it
returns to file A (S). Then data can be further processed
by functional units, stored into memory or saved in file B
(T). Block transfers of operands between memory and
registers B and T are also available, thus reducing the
number of memory access instructions.

2.2. CRAY-1 Issue Logic

Instructions are fetched from instruction buffers at
the rate of one parcel (18 bits) per clock period.
Individual instructions are either one or two parcels
long. After a clock period is spent for instruction decod-
ing, the issue logic checks interlocks. If there is any
conflict, issue is blocked until the conflict condition goes
away.

For scalar instructions, the following are the pri-
mary interlock checks made at the time of instruction
issue:

(1) registers; both the source and destination registers
must not be reserved;

{2) result bus; the A and S register files have one bus
each over which data can be written into the files.
Based on the completion time of the particular
instruction, a check is made to determine if the bus
will be available at the clock period when the
instruction completes.

(8) functional unit; due to vector instructions, a func-
tional unit may be busy when a scalar instruction
wishes to use it. Since we are considering scalar
performance only, this type of conflict will not
occur. The memory system can also be viewed as a
functional unit; it can occasionally become busy due
to a memory bank conflict, but for scalar code this
is a very infrequent occurrence and does not affect
performance in any appreciable way.

If all its interlocks pass, an instruction issues and
causes the following to take place.

(1) The destination register is reserved; this reservation
is removed only when the instruction completes.

(2) The result bus is reserved for the clock period when
the instruction completes.

Memory accesses have one further interlock to be
checked: memory bank busy. This must be delayed until
the indexing register is read and the effective address is
computed. Hence, the bank busy check is performed two
clock periods after a load or store instruction issues. If
the bank happens to be busy, the memory "functional
unit” is busied, and no further loads or stores can be
issued. Because all loads and stores are two parcels
long, they can issue at a maximum rate of one every two
clock periods. This means that a bank busy blockage
catches a subsequent load or store before it is issued.
After a load instruction passes the bank busy check, it
places its reservation for the appropriate result bus. A
load can only conflict for the bus with a previously issued
reciprocal approximation instruction, so the additional
interlocking done at that point is minimal.

2.3. CRAY-1 Performance

In this paper performance is measured by simulat-
ing the first 14 Lawrence Livermore Loops. These are
excerpts from large FORTRAN programs that have been
judged to provide a good measure of large scale com-
puter performance. The loops were compiled using the
CFT compiler, and instruction trace tapes were gen-
erated. These were then simulated with a performance
simulator written in C, running on a VAX11/780. With
bank busies and instruction buffer misses modeled, the
simulator agrees exactly with actual CRAY-1 timings,
except when there is a difference in the way a loop fits
into the instruction buffers. This particular difference is
a function of where the loader chooses to place a pro-
gram in memory, and for practical use has to be viewed
as a nondeterminism.

Since we are interested in scalar performance, the
CFT compiler was run with the "vectorizer" turned off so
that no vector instructions were produced. When the
vectorizer is on, half of the 14 loops contain a substantial

112

instructions # clock

executed cycles
1 7217 18046
2 8448 18918
3 14015 38039
4 9783 22198
5 8347 21707
6 9350 23045
7 4573 10361
8 4031 7841
9 4918 10146
10 4412 10230
11 12002 30011
12 11999 29999
13 8846 18858
14 9915 22391

Table 1 - CRAY-1 Execution times for the 14 Lawrence
Livermore Loops - 1 parcel instructions are issued in
1 cycle, 2 parcel instructions in 2 cycles.

amount of vector code, and half remain scalar.

For the simulations reported here, we have made
the following simplifications:

(1) There are no memory bank conflicts.
(2) All loops fit in the instruction buffers.

One reason for this simplification was to simplify the
simulator design for the alternative CRAY-1 issue
methods to be given later; as mentioned earlier our ori-
ginal CRAY-1 simulator is capable of modeling bank
conflicts and instruction buffers. Also, this allows us to
concentrate on the performance differences caused by
issue logic and to filter the "noise" introduced by other
factors (e.g. instruction buffer crossings). Table 1 shows
the scalar performance of the CRAY-1 for the first 14
Lawrence Livermore Loops.

3. Tomasulo's Algorithm

The CRAY-1 forces instructions to issue strictly in
program order. If an instruction is blocked from issuing
due to a conflict, all instructions following it in the
instruction stream are also blocked, even if they have no
conflicts. In contrast, the scheme in this section allows
instructions to begin execution out of program order. It
is a variation of the instruction issue algorithm first
presented in [TOMAB7]. Although the original algorithm
was devised for the floating point unit of the IBM 380/91,
we show how it can be adapted and extended to control
the entire pipeline structure of a CRAY-1 implementa-
tion.

Figure 2 illustrates the essential elements of a tag-
based mechanism for issue of instructions out-of-order.
Fig. 3 illustrates the full CRAY-1 implementation.

Each register in the A and S register files is aug-
mented by a ready bit (R) and a tag fleld. Associated with
each functional unit is a small number of reservation
stations. Each reservation station can store a pair of
operands; each operand has its own tag field and ready
bit. A reservation station also holds a destination tag
(DTG). When an instruction is issued, a new tag is stored
into DTG (see Fig. 2).

New destination tags are assigned from a "tag pool"
that consists of some finite set of tags. These are associ-
ated with an instruction from the time the instruction is
issued to a reservation station until the time it produces
a result and completes. The tag is returned to the pool
when an instruction finishes. In the original Tomasulo’'s
algorithm, the tags were in 1-to-1 correspondence with
the reservation stations. This particular way of assigning
tags is not essential, however. Any method will work as
long as tags are assigned and released to the pool as
described above.

R [746 | oPErAND
REGISTER
FItE
MEMORY UNIT
CONFLICT QUELE
R]TAG [A0OR | R] TAG Jom0 | D16
LoD STORE l
it uNIT R[1aG] oo | R[Tac [oPro | OTG
AOR DTG A00R_| A TAG] oPD
’—l—_l FUNCTIONAL UNIT 1
FUNCTIONAL UNIT 2
L oo]

FUNCTIONAL UNIT n

Figure 2 -- Tag based mechanism to issue out-of-order.

We treat the register files B and T as a unit, with one
busy bit per file, since it is not practical to assign tags to
so many registers. When one of these registers awaits an
operand, the whole file is set to busy.

To facilitate transfer of operands between the regis-
ter files, special copy units (AS, SA, AB, and ST) are
introduced. These are treated as functional units, with
reservation stations and execution time of one clock
cycle. These reservation stations (and some others, e.g.
reciprocal approximation) have only one operand.

The memory unit appears to the issue logic as a
(somewhat more complex) functional unit. Instead of
one set of reservation stations, the memory unit has
three: load reservation stations, Store reservation sta-
tions, and a Conflict Gueue. When a new memory
instruction I; is issued, its effective address (if available)
is checked against addresses in the Load and Store
reservation stations. If there is a conflict with instruction
I, I; is issued and queued in the Conflict Queue. When |; is
eventually processed and the conflict disappears,]; is
transferred from the Conflict Queue to a Load or Store
reservation station. If I; uses an index register that is
not ready, the effective address is unknown and there is
no way to check for conflicts. In this case,]; is stored in
the Conflict Queue, where it waits for its index register to
become ready.

Therefore, instructions from the Load and Store
units can be processed asynchronously, since they never
conflict with each other (no two instructions in these
units have the same effective address). On the other
hand, instructions from the Conflict Queue are processed
in the order of arrival. This guarantees that two instruc-
tions with the same effective address are processed in
the right order. The above mechanism takes care of any
read after write, write after read or write after write
hazards. The Conflict Queue is the only unit in the sys-
tem in which instructions are strictly processed in the
order of their arrival. This is a simpler mechanism that
the one employed by the IBM 360/91 Storage System
[BOLAB7]. The latter has a similar queue for resolving
memory conflicts, but instructions stored in this queue
can be processed out of order; only two or more requests
for a particular address are kept in sequence.

The tag mechanism described above allows decoded
instructions to issue to functional units with little regard
for dependencies. There are three conditions that must
be checked before an instruction can be sent to a func-
tional unit, however.

113

{1) The requested functional unit must have an avail-
able reservation station

(2) There must be an available tag from the tag pool. In
Tomasulo’'s implementation, conditions 1 and 2 are
equivalent.

(3) A source register being used by the instruction
must not be loaded with a just-completed result
during the same clock period as the instruction
issues to a reservation station. This hazard
condition is often neglected when discussing
Tomasulo's algorithm. If it is not handled properly,
the source register contents and the instruction
that uses the source register will both be
transferred during the same clock period. Because
the instruction is not in the reservation station at
the time of the register transfer, the register’'s con-
tents will not be correctly sent to the reservation
station. When this hazard condition is detected,
instruction issue is held for one clock period.

In our simulations, each functional unit had 8 reser-
vation stations. The reason we had a relatively large
number of reservation stations was to monitor their
usage; in fact most of them were not required. Few func-
tional units need more than one or two reservation sta-
tions. Those that need more, usually because they wait
for instructions with long latency, such as load or float-
ing point multiply and add, would do very well with 4
reservation stations. Although in our scheme reservation
stations are statically allocated to each functional unit,
it is possible to reduce their number and optimize their
usage by clustering them in a common pool and then
allocating as needed.

When an instruction is issued, the following actions
take place.

(1) The instruction’s source register(s) contents are
copied into the requested functional unit’s reserva-
tion station.

(2) The instruction’s source register(s) ready bits are
copied into the reservation station.

(3) The instruction's source register(s) tag flelds are
copied into the reservation station.

(4) A tag allocated from the tag pool is placed in the
result register's tag field (if there is a result), the
register's ready bit is cleared, and the tag is written
into the DTG field of the reservation station.

B T
REGISTER s REGISTER
o FILE
A8 [II” st
copPY m]] coPY
A A 15
coeY
REGISTER REGISTER
FILE FILE
L vemoRY uniT L v
CONFLICT]
QUELE
WORESS | 104D STORE SCAUR] FLOATING [
FUNCTIONAL FUNCTIONAL POINT
wNITS UNITS FUNCTIONAL
UNITS
A0) D0
TMoLTiPLY MEMORY [Locicac
SHIFT
POP/LZ

Figure 3 -- A modified CRAY-1 scalar
architecture to issue instructions out-of-order.

Thus, if a source register’s ready bit is set, the reserva-
tion station will hold a valid operand. Otherwise, it will
hold a tag that identifies the expected operand.

In order for an instruction waiting in a reservation
station to begin execution, the following must be
satisfied.

(1) All its operands must be ready.

{2) It must gain access to the required functional unit;
this may involve contention with other reservation
stations belonging to the same functional unit that
also have all operands ready.

(3) It must gain aceess to the result bus for the clock
period when its result will be ready; again, this may
involve contention with other instructions issuing to
the same or any other functional unit that will
complete at the same time.

When an instruction begins execution, it does the follow-
ing.
(1) It releases its reservation station.

{2) It reserves the result bus for the clock period when
it will complete. Reserving the bus in advance
avoids the implementation problems of stopping the
pipeline if the bus is busy. An alternative is to
request the bus a short time before the end of exe-
cution and to provide buffering at the output of the
functional unit [TOMA67].

(3) It copies its destination tag into the functional unit
control pipeline because the destination tag must
be attached to the result when the instruction com-
pletes.

When an either a load or functional unit instruction
completes, its result and corresponding destination tag
appear on the result bus. (In a practical implementa-
tion, the tag will probably precede the data by one clock
period.) The data is stored in all the reservation stations
and registers that have the ready bit clear and a tag that
matches the tag of the result. Then the ready bit is set
to signal a valid operand.

Because instruction issue takes place in two phases
(the first moves an instruction to a reservation station
and the second moves it on to the functional unit for
execution) we assume that each phase takes a full clock
period. In the CRAY-1 there is only a one clock period
delay in moving an instruction to a functional unit. We
recognize the one clock period difference in our simula-
tion model, so that the minimum time for an instruction
to complete is one clock period greater than in the
CRAY-1. This takes into account some of the lost time

clock cycles # clock cycles

Loop on CRAY-1 for Tomasulo's speedup
algorithm

1 18046 10838 1.67
2 18918 14102 1.34
3 38039 30017 1.27
4 22198 16534 1.34
5 21707 16925 1.28
6 23045 15042 1.53
7 10361 8513 1.59
8 7841 6780 1.18
9 10146 8238 1.23
10 10230 7421 1.38
11 30011 20008 1.50
12 29999 20000 1.50
13 18858 12314 1.563
14 22391 12780 1.75
total 281790 197510 1.43

Table 2 - Performance with Tomasulo’s Algorithm;
One Parcel Issued per Clock Period

114

due to the more complex control decisions that are
required. The primary factor that may lead to longer
control paths is the contention that takes place among
the reservation stations for functional units and busses
when more than one are simultaneously ready to initiate
an instruction.

When branches are taken, issue is held for at least 5
clock cycles. Since branches test the contents of regis-
ter AO for the condition specified in the branch instruc-
tion, AQ should not be busy in the previous 2 cycles.
These assumptions are in accord with the CRAY-1 imple-
mentation and the assumptions made to produce Table
1

3.1. Performance Results

Table 2 shows the results of simulating the CRAY-1
implemented with Tomasulo’s algorithm. The total
speedup achieved was 1.43. We recognize that these are
in a sense, "theoretical maximurn speedups'; any
lengthening of the clock period due to longer control
paths will diminish this speedup.

clock cycles # clock cycles

Loop 1 parcel/cp 1 instr/cp speedup
1 18046 17244 1.05
2 18918 17717 1.07
3 38039 37037 1.03
4 22198 21163 1.05
5 21707 20709 1.05
8 23045 22045 1.05
7 10361 10241 1.01
8 7841 6874 1.14
9 10146 9744 1.04
10 10230 9430 1.08
11 30011 28013 1.07
12 29999 28001 1.07
13 18858 17957 1.05
14 22391 22087 1.01
total 281790 268262 1.05

Table 3 -- Comparison of the 14 Lawrence livermore
Loops on CRAY-1: one instruction per clock period
vs one parcel per clock period.

We noticed while doing the simulations that limiting
instruction fetches to the maximum rate of one parcel
per clock period appeared to be restricting perfor-
mance. Hence, we modified the implementation so that
a full instruction could be fetched and issued to a reser-
vation station each clock period. This would be slightly
more expensive to implement, but for Tomasulo's algo-
rithm it gives a significant performance improvement
over one parcel per clock period.

To keep comparisons fair, we went back and
modified the original CRAY-1 simulation model so that it,
too, could issue instructions at the higher rate. Table 3
gives the results of these simulations, and compares
them with the one parcel per clock period results given
earlier. Here, the performance improvement is small.
This is an interesting result in itself, and shows the wis-
dom of opting for simpler instruction fetch logic in the
original CRAY-1.

Because the higher instruction fetch rate does
appear to alleviate a bottleneck that reduces the
efficiency of Tomasulo’s algorithm, we incorporated it
into the model for the studies to follow, and use the
CRAY-1 results of Table 3 (1 instruction per clock period)
as a basis for further comparisons.

Table 4 shows simulation results for Tomasulo’s
algorithm with one instruction issued per clock period.
The speedup achieved is in the range 1.23 - 2.02 (total
1.58). In three out of the four loops whose speedup was

clock cycles # clock cycles

Loop _ for Tomasulo’'s speedup
on CRAY-1 algorithm

1 17244 8832 1.95
2 17717 11082 1.60
3 37037 28012 1.32
4 21163 15418 1.37
5 20709 16898 1.23
6 22045 12956 1.70
7 10241 5069 2.02
8 6874 5195 1.32
9 9744 6332 1.54
10 9430 5318 1.77
11 28013 17871 1.57
12 28001 16001 1.75
13 17957 9364 1.92
14 22087 11713 1.89
total 268262 170041 1.58

Table 4 — Performance of Tomasulo's Algorithm;
One Instruction Issued per Clock Period

less than 1.5 {i.e. loops 3, 4 and 8) issue was halted due
to a busy T file. With an architecture that doesn’t have
the large number of registers the CRAY-1 has, it would be
possible to use tags for all the registers, thus increasing
the speedup of the above loops.

3.2. Fxample

Figure 4 shows a timing diagram of Tomasulo’s algo-
rithm compared with that of CRAY-1, both executing loop
12. On the left appear the instructions as generated by
the CFT compiler . The timing for two consecutive loop
iterations are shown next to each other. Each "|-|"
represents one clock period. From the standpoint of
issue logic, when store instructions are initiated they go
to memory and are no longer considered. Therefore,
stores are shown to execute only for the clock period
they are initiated. Solid lines indicate that the respec-
tive instruction is in execution. For Tomasulo's algo-
rithm, a dotted line shows that an instruction has been
issued to a reservation station, and is waiting for
operand(s).

With the original CRAY-1 issue algorithm, all instruc-
tions in a loop must begin execution and a loop-
terminating conditional branch instruction must com-
plete before the next loop iteration can begin. With
Tomasulo's algorithm, loop iterations can be "tele-
scoped”; a second loop iteration can begin after all
instructions have been sent to reservation stations and
the conditional branch is completed. The instructions
belonging to the first loop iteration do not necessarily
need to begin execution. One could also view this as
dynamic rescheduling of the branch instruction. Obvi-
ously, the branch instruction is one instruction that can
not be moved earlier in the loop as would have to be the
case with static rescheduling. The significant speedup of
Tomasulo’s algorithm for this loop (1.75, see Table 4) is
due mainly to the overlap of the loading of registers S8
and S1 with the floating point difference {(-F) which uses
S6 and S1 as operands. Although -F cannot be executed
until the operands return from memory, it can be issued
to a reservation station; this allows following instructions
to proceed. On the other hand, the CRAY-1 executes the
load of S1 and the floating point difference strictly in
order.

115

1: S5« T00 .COPY T00 TO S5
Al «- S5 .COPY S5 TO A1
S6 € otf1,A1 .LOAD S6 (ADDRESS INDEXED BY A1)
S1< off2,A1 .LOAD S1 (ADDRESS INDEXED BY A1)
S4e 86 —F S1 JFLOATING DIFFERENCE OF S6 AND S1 TO S4
S3«S5 + S7 LINTEGER SUM OF S5 AND S7 TO S3
A2 «B02 .COPY BO2 TO A2
A€ A2 + 1 JNTEGER SUM OF A2 AND 1 TO A0
Q3, Ale S4 .STORE S4 (ADDRESS INDEXED BY A1)
TO0 < S3 .COPY S3 10 T00
B02 < A0 .COPY AO TO BO2
JAM 1 LBRANCH TO LOOP ENTRY

{a) LLL 12 in CRAY Assembly Language;
arrows inserted for readability.

1; S5« 100 H H
At <S5 H H
S6 ¢ oft1,Al H+HHH-H
S1«-ofi2, A1 A
S4« S6 ~F S1
S3«5S5 + S7
A2 «B02 H
AD—A2 + 1 HH

Q3, A1« S4 H

100 « S3 H
B02 « AO H
mweo

{b) The CRAY-1

1; S5« T00 M H
Al +S5 I-H I+
S6 ¢ off1,At - HHHHHHHH A
S14 off2,A1 A |- A
[ERRRERERERE

S4«- S6 —F S1
AL
I-++H H-H
H H

S3 4S5 + S7
A2 «B02
A= A2 + 1 I-+HH I-+H
03, A1« S4 FA LR H D B R
100 « S3 IH I-H
BO2 « AO I+ 1-4+4
W1 HHHH HH

(c) Tomasulo’s algorithm

Figure 4 -- Timing Diagrams for Lawrence Livermore Loop 12.

One can see from the timing diagrams that with
Tomasulo's algorithm only 2 reservation stations are
used for more than 1 clock period. The store instruction
needs a reservation station that is released a short
period of time before the next store is issued. Another
reservation station is used extensively by the floating
peint difference instruction.

4. Thornton's Algorithm

Tomasulo’s algorithm leads to complex issue logic
and may be quite expensive to implement. Therefore, in
this section and in the next section, we consider ways to
reduce the cost. One major cost is the associative
hardware needed to match tags. When an operand and
its attached tag appear on a bus, register files A and S
and all the reservation stations have to be searched
simultaneously. The operand is stored in any register or
reservation station with a matching tag.

In this section, we implement the CRAY-1 scalar
architecture with an issue method that is a derivative of
Thornton’s "scoreboard” algorithm used in the CDCB8600.
Here, control is more distributed (there is no global
scoreboard), and reservation stations have been added
to functional units. The primary difference between
Thornton's algorithm and Tomasulo’s is that instruction
issue is halted when the destination of an instruction is a
register that is busy. This simplifies the issue logic
hardware in the following ways.

(1) The associative compare with the register file tags is
eliminated.

(2) Tag allocation and de-allocation hardware is elim-
inated because the result register designator acts
as the tag.

R OPERAND
REGISTER
FILE
MEMORY UNIT
CONFLICT QUEUE
R sk a0rTrR TsR Joro [R
LoAD STORE l
uNIT Nt R sR[oo fr Tsr Joro [R
ADOR| DR L EOEIEED
FUNCTIONAL UNIT 3
TruncTioNaL UNIT 2
L o]
IWIWL WNIT

Figure 5 -- Thornton's issue logic.

Figure 5 illustrates the algorithm. Most reservation
stations hold two operands (although some need only
one, depending on the functional unit) and the address of
the destination register (DR). Attached to each operand
is the source register designator (SR) and a ready flag
(R). Also, attached to each register in the register file is
a ready bit (R). {These are the same as the reserved bits
used in the original CRAY-1 control.)

The following operations are performed when an
instruction is issued:

(1) A reservation station of the requested functional
unit, if available, is reserved., Otherwise, issue is
blocked.

If a source register is ready, it is copied into the
reservation station and the ready bit is set. Other-
wise, the ready bit is cleared and the source
register's designator is stored into the SR field.

The conditions for moving an instruction from a
reservation station to begin execution are the same as
given for Tomasulo's algorithm in the previous section.
When a functional unit is finished with an instruction the
result register designator is matched against all the SR
fields in the reservation stations, and the result is writ-
ten into the reservation stations where there is a match.
The corresponding operand ready bits are then set. The
result is also stored into the destination register, and it
is set ready.

(2

Although the above is derived from Thornton's origi-
nal algorithm, there are some differences. The func-
tional units of the CDC 6600 do not have reservation sta-
tions (one could say that they have reservation stations
of depth 1 that are not able to hold operands, only con-
trol information). This imposes some additional restric-
tions. An instruction to be executed on a particular
functional unit can be issued even if its source registers
are not ready, but a second instruction requiring the
same functional unit will block issue until the first one is
done. On the other hand, with reservation stations,
several instructions can wait for operands at the input of
the functional unit. For example,

S1 <- SR *F S3

S4 <- S5 *F S6
with the CDC 8600 scoreboard the second instruction will
block, while with the algorithm here it will be issued.

Another restriction of the scoreboard is the follow-
ing. In this example,

S1 <- S2*F 83
SR <- 84+1

116

we assume that S2 and S4 are ready, while S3 is not (e.g.
it awaits an operand from memory). The second instruc-
tion will be completed before the first one, but on the
CDC 6600 the result cannot be stored into S2 since it
serves as a source register for the first instruction.
Therefore, the add functional unit will remain busy until
the first instruction completes as well. On the other
hand, with the algorithm we have given, S2 has been
copied into the floating point multiply reservation sta-
tion when the first instruction was issued, and therefore
the second instruction can complete before the first one.

4.1. Performance Results

We originally planned to simulate the scoreboard as
designed by Thornton, but decided that it would lead to a
more interesting comparison if multiple reservation

clock cycles # clock cycles

Loop on CRAY-1 for Thornton’s speedup
algorithm

1 17244 12434 1.39
2 17717 13500 1.31
3 37037 28020 1.32
4 21183 19578 1.08
5 20709 17030 1.22
6 22045 18370 1.20
7 10241 8671 1.18
8 6874 6381 1.08
9 9744 8634 1.13
10 9430 7820 1.21
11 28013 18001 1.56
12 28001 16003 1.75
13 17957 14870 1.21
14 22087 20273 1.09
total 268262 209585 1.28

Table 5 -- Performance of Thornton's Algorithm;
One Instruction Issued per Clock Period

stations were allowed. The results of the simulation are
shown in Table 5. The total speedup is 1.28. We discuss
ways this can be improved by static code scheduling in
Section 6.

5. An Issue Method Using a Direct Tag Search

In this section we propose an alternative issue algo-
rithm that is related to Tomasulo's algorithm, but which
eliminates the need for associative tag comparison
hardware in the reservation stations. This algorithm
instead uses a direct tag search (DTS), and will be
referred to as the "DTS" algorithm. The DTS algorithm
imposes the restriction that a particular tag can be
stored only in one reservation station. This is easily
implemented by associating with each tag in the tag pool
a used bit. Whenever a register that is not ready is
accessed for the first time, its tag is copied to the
respective reservation station and the used bit is set. A
second attempt to use the same tag will block issue.

RESERVATION
STATION
ADORESS

[_oPeRm0] as]

Figure 8 -- Tag Search Table for the DTS Algorithm.

The DTS algorithm allows implementation of the tag
search mechanism by a table indexed by tags (Fig. 8),
rather than associative hardware. For each tag there is
one entry in the table that stores the address of a reser-
vation station. The table is small since there are few
tags (we used 5 bits for each tag; there are 32 tags).

5.1. Performance Results

A comparison of the results for the DTS algorithm
with Tomasulo's algorithm reveals that for 9 out of the 14
loops the DTS algorithm achieves speedup similar to
Tomasulo’s algorithm. This shows that the restriction
imposed by the DTS algorithm, namely that a tag can be
in no more than one reservation station at a given time,
has only a limited effect on performance. The reason is
that the following pattern is quite cormmmon:

S1 <~ off1,A1
S2 <- off2,A1
S3 <- S1*FS2
85 <- S3+F 5S4

That is, two registers are loaded and are sent to a func-
tional unit whose result is input to another functional
unit, and so on. The DTS algorithm is able to process
such code at full speed.

On the other hand, if a register is used as an input
to a functional unit and at the same time has to be
stored (in the memory, or temporarily in the T or B file),
then the register, and its tag, have to be used twice, so
the DTS algorithm blocks issu~. Such cases account for
the lower speedup of 5 out of 14 loops.

clock cycles # clock cycles

Loop on CRAY-1 for the DTS speedup
algorithm

1 17244 8832 1.95
2 17717 11083 1.80
3 37037 28020 1.32
4 21183 20534 1.03
5 20709 17690 1.17
8 22045 17027 1.29
7 10241 5089 2.02
8 6874 5381 1.28
9 9744 6732 1.45
10 9430 8518 1.11
11 28013 17871 1.57
12 28001 18001 1.75
13 17957 14356 1.25
14 22087 17421 1.27
total 268262 194515 1.38

Table 8 - Performance of DTS Issue Logic.

8. Further Comments on Code Scheduling

For all the various issue logic simulations, we used
as input the object code generated by the CRAY-1 optim-
izing FORTRAN compiler, without any changes. There-
fore, the level of code optimization and scheduling is
realistic for the CRAY-1. Tomasulo’s algorithm is less
sensitive to the order of the instructions, since it does a
great deal of dynamic scheduling. It is also capable of
dynamic register re-allocation so it is not as susceptible
to the compiler's register allocation method. On the
other hand, static scheduling and register allocation has
a significant impact on the performance of the DTS issue
logic and Thornton's algorithm. Since we have not reor-
ganized the code for the latter two schemes, many
dependencies and rescurce conflicts that appear in the
compiled code contribute to lower performance as com-
pared with Tomasulo's algorithm.

117

Figure 7 illustrates an example, extracted from
Lawrence Livermore Loop 4. The instruction "TOZ <-
35" saves register S5 for use during the next pass
through the loop. For the DTS issue logie, this instruction
has to be blocked, since it attempts to use register S5 as
a source for the second time (register S5 is not ready
and was used for the first time by the previous instruc-
tion). However, neither S5 nor TO2 are used before the
branch instruction, so this interlock could be postponed
by moving instruction "T02 <- 85" down, just before the

do 1751=7,107,60
lw=1
do 4 j=30,870,5
x(1-1) = x(1-1) - x(1w)*y(j)
4 lw=lw+ 1
x(1-1) = y(5)*x(1-1)
175 continue

(a) Fortran code for Lawrence Livermore Loop 4
(banded linear equations).

LOOP4: S6 <- TOO
S1 <~ To1
A3 < S1
A2 <- Se
S3 <- off2,A3
S5 <- off3,A2
S4 <- S5*RS3
83 <- To2
S5 <- S3-FS4
S4 <- S1+ 832
Al <- B0O2
S3 <- 86+ 87

off4,A7 <- S5 ; x(1-1)

T02 <- 85
TOo1 <- S4
AD <- A1+1
TOO <- S3
B02 <- AD
JAM LOOP4

ool

{b) Compiled object code (the inner loop)
extracted from Lawrence Livermore Loop 4.

Figure 7 -- Example of interlock for the
DTS Issue Logic.

branch. The 4 clock cycles thus saved, multiplied by the
number of iterations through the loop, result in a 4% per-
formance improvement.

Figure 8 shows another example, extracted from
loop 1. Registers S2, S6, S1, S3 and S4 are designated as
destination registers for the first time in the upper half
of the loop, and then for the second time, almost in the
same order, in the lower half of the loop. The second
usage of 32 (S2 <- S4 *R S6) as a destination register
causes an immediate blockage for Thornton’s algorithm,
since S2 is still busy from the previous load instruction
(S2 <- off1,A1). Any independent instruction inserted
just before instruction "S2 <- 5S4 *R S6" will execute for
free. There are 3 such instructions before the branch:

A2 <- B02
A0 <- A2 + 1
BO2 <- AD

This simple rescheduling gives a performance improve-
ment of 10.7%.

q=0.0
do 1 k = 1,400
1 x(k) = q + y(k)*(r*z(k+10) + t*z(k+11))

(a) Fortran code for Lawrence Livermore Loop 1
(hydro excerpt).

LOOP1: S5
Al

S2

S6

S1

S3

S4

S

S6

S1

S4

S3

A2

A0
off4,A1
TOO
BOR
JAM

TOO

S5
off1,Al
off2,Al

<-
<-
<-
<-
<-
<~
<-
<- S4 *R S6
<-
<-
<~
<-
<-
<~
<-
<-
<~

; z{k+10
s z{k+11

A0
LOOP1

(b) Assembly code extracted from
Lawrence Livermore Loop 1.

Figure 8 -- Example of interlock for Thornton’s Algorithm.

Since there is a large gap between Tomasulo’s and
Thornton’s algorithms for loop 1 (1.95 vs 1.39), we tried to
see if this gap could be closed by reallocating registers for
Thornton's algorithm. The following code does the process-
ing of loop 1, except for index and address calculations:

S1 <- off1,Al
S2 <- ofi2,Al
S4 <- 81 *F S3
S6 <- S2 *F S5
S7 <- 34 +F S6
88 <- off3,Al
S9 <- 87 *F S8
off4,A1 <- 89

Since registers are not re-used during the same pass
through the loop, Thornton's algorithm would run as fast
as Tomasulo’s. But we need 9 scalar registers, more than
available on the CRAY-1. The high speedup achieved by
Tomasulo's algorithm demonstrates the importance of its
ability to reallocate registers dynamically.

7. Summary and Conclusions

We have discussed design tradeoffs for control of pipe-
lined processors. Performance of a pipelined processor
depends greatly on its clock period and the order in which
instructions are executed. Simple control schemes allow a
short clock period and place the burden of code schedul-
ing on the compiler. Complex control schemes generally
require a longer clock period, but are less susceptible to
the order of the instructions generated by the compiler.
The latter are also able to take advantage of information
only available at run time and "dynamically” reschedule
the instructions. Additional factors to be considered are
hardware cost, debugging and maintenance.

We have presented a quantitative measure of the
speedup achievable by sophisticated issue logic schemes.
The CRAY-1 scalar architecture is used as a basis for com-
parison. Simulation results of the 14 Lawrence Livermore
Loops executed on 4 different issue logic mechanisms show
the performance gain achievable by various degrees of

118

issue logic complexity. Tomasulo’s algorithm gives a total
speedup of 1.58. The direct tag search (DTS) algorithm,
introduced in this paper, allows dynamic scheduling while
eliminating the need for associative tag comparison
hardware. The DTS issue logic achieves a total speedup of
1.38, and thus retains much of the performance gain of
Tomasulo’s algorithm. A derivative of Thornton’s algorithm
gives a total gain of 1.28.

In our model, the large intermediate register files of
the CRAY-1 (B and T) are treated as a unit, since it is not
practical to assign tags to so many registers. With
Tomasulo’s algorithm, this was the cause of a relatively low
performance improvement for three loops. With an archi-
tecture that does not have the large number of registers
the CRAY-1 has, it would be possible to use tags for all the
registers, thus increasing the speedup of the above loops.

Finally, we have discussed the impact of code schedul-
ing on the simulation results. Tomasulo’s algorithm is less
sensitive to the order of the instructions, since it does a
great deal of dynamic scheduling and register re-
allocation. On the other hand, static scheduling has a
significant impact on the performance of the DTS and
Thornton’s algorithms. We gave specific examples how the
performance of the latter two algorithms can be improved
even by simple code scheduling.

B. Acknowledgements

This is material based upon work supported by the
National Science Foundation under Grant ECS-8207277.

The authors would like to thank Nick Pang for the

CRAY-1 simulators used for generating the results in
Tables 1 and 3.

9. References

[ANDES7] D.W. Anderson, F.J. Sparacio, F.M. Tomasulo, "The IBM
" System/360 Model 91: Machine Philosophy and Instruction-
Handling", IBM Journal, V 11, Jan 1967

[BOLA67] L.J. Boland, G.D. Granito, A.U. Marcotte, B.U. Messina,
J.W. Smith, "The IBM System/380 Model 91: Storage Sys-
tem", 1BM Journal, V 11, Jan-1967.

[BONSB9] P. Bonseigneur, "Description of the 7600 Computer
System,"” Computer Group News, May 1989.

[BUCH62] W. Bucholz,ed., PFlanning a Compuler System,
McGraw-Hill, New York, 1962.

.[cDC81] "CDC CYBER 200 Model 205 Computer System

Hardware Reference Manual,"” Control Data Corp., Arden
Hills, MN, 1981.

[CRAY77] "The CRAY-1 Computing System"”, Cray Research,
Inc., Publication number 2240008 B, 1977.

[CRAY79] "CRAY-1 Computer Systems, Hardware Reference
Manual", Cray Research, Inc., Chippewa Falls, WI, 1979,

[CRAYB2] "CRAY X-MP Computer Systems Mainframe Reference
Manual”, Cray Research, Inc., Chippewa Falls, WI,1982.

[KOGG81] P. M. Kogge, The Architecture of Fipelined Comput-
ers, McGraw-Hill, 1981.

[MCMA72] F. H. McMahon, “FORTRAN CPU Performance
Analysis,” Lawrence Livermore Laboratories, 1972,

[RUSS78] R.M. Russell, "The CRAY-1 Computer System”, Cornm.
ACM, V 21, N 1, January 1978, pp. 83-72.

[THOR70] J.E. Thornton, Design of a Computer - The Control
Data 6600, Scott, Foresman and Co., Glenview, IL, 1970

[TOMAB7] R.M. Tomasulo, "An Efficient Algorithm for Exploiting
Muiltiple Arithmetic Units", IBM Journel, V 11, Jan 1967

