
I m p l e m e n t i n g T C P / I P on a C r a y c o m p u t e r .

David A. Bormant

Cray Research, Inc.

ABSTRACT

Cray Research has been supplying TCP/IP networking code with its UNICOS~
operating system since February 1986. In the last three years, this code has been
improved and optimized, yielding up to two orders of magnitude improvement in per-
formance. This paper addresses some of the issues that were addressed to achieve
these changes, and some of the other changes that have been made to fit the TCP/IP
code into a Cray environment.

A Brief History

In 1985, Cray Research entered into a contract with The Wollongong Group, for Wollongong to
provide TCP/IP support for Cray Research's 1.0 release of the UNICOS operating system. For the ori-
ginal port to the Cray computer, Wollongong used their port of the 4.2BSD TCPBP code to System V.
After Wollongong had delivered a working product, Cray Research took over the support and further
development of the TCP/IP package. Originally there were two source trees for the TCP/IP code, one
for the CRAY-2 implementation of the UNICOS operating system, and one for the CRAY X-MP imple-
mentation of the UNICOS operating system. With the 3.0 release of the UNICOS operating system,
these two source trees were merged into a single source tree. With the 5.0 release of the UNICOS
operating system, the TCP/IP code has been upgraded to be compatible with the 4.3 BSD Tahoe
release.

Cray Research's view of TCP/IP

A Cray computer is not cheap. Prices for Crray computers range between 2.5 million and 20 mil-
lion dollars. When someone invests this kind of money, they want their Cray computer to be accessible
to a large numbers of users. By having the TCP/IP protocol suite available on the Cray computer, it is
possible to easily add the Cray system to an established TCP/IP network, providing instant access to the
Cray system from any of the machines in the network. The corporate mission statement of Cray
Research states that "Cray Research designs, manufactures, markets, and supports the most powerful
computer systems available." With this in mind, it makes sense that Cray Research should also strive to
have the most powerful implementation of TCP]IP available.

The initial implementation of TCP/IP on the Cray computer had some serious performance prob-
lems. Running a memory to memory copy over a TCP/IP connection between two processes on the

t David A. Borman, Cray Research, Inc, Networking and Cc.araunications, 1440 Northland Drive, Mendota
Heights, MN 55120. Mr, Borman has worked at Cray Research since December of 1985, and is the project leader for
the TCP/tP networking code that Cray Research releases with its UNICOS operating system. Prior to working at Cray
Research, he worked for two years at Digital Equipment Corporation in Merrimack, NH, as a kernel developer for
DEC's ULTRIXdl prroducL He received his BA in Mathematics, with a concentration in Computer Science, from St.

Olaf College, in May of 1983.
.~ qihe UNICOS operating system is derived frrc.mn the AT&T UNIX operating system. UNICOS is also based in part

on tile Fourth Berkeley Software Distribution under license form The Regents of the University of California. CRAY
and UNICOS are registered trademarks and CRAY-2, CRAY X-MP, CRAY X-MP EA, CRAY Y-MP and ttSX are
trademarks of Cray Research, Inc. UNIX is a registered trademark of AT&T. DEC and ULTRIK-I l are trademarks of

Digital Equipment Corporation~

-11-

same Cray computer mn around six to seven megabits per second. When runairxg betweer~ two
machines, the performance was even mc~rc ~fismal, on the order of one to two megabits per second.
Yock~y, with the 5.0 release of the UNICOS operating system, when doing a memory to memory copy
between two processes on the same Cray corr~puter, it is possible to obtain TCP/~P mms%r speeds m
excess of a half a gigabit I~r second. The speed of a memory to memory copy between two Cray com~
puters has been demonstrated close to two hun&cA megabits per second. This change of two orders of
magnitude is due to many things. ImprovemenLs to the TCP/IP code, improvements to the base
UNICOS operating system, improvements to Ne C compiler, and new hardware have nil contributed to
this increase in pert2~nn~mce.

TCP/IP code changes

The TCP/tP code in the UN2COS operafmg system has undergone many changes in its 3 year hi>
tory. There have been numerous bug fixes and minor mcvJifications, and it is not really worth going
into great detail about them. However, there z~e a %w arenas that are worth talking about.

The Checksum Routine

Perhaps the one area that has provided the most visible improvement in ~:erformance from revi-
sion to revision is the checksum routine, used by both IP and TCP. The original checksum routine, as
delivered by Wollongong, was written in C, and was character oriented, meaning that the routine read
the data to be checksummed from memory one byte at a time. The Cray computer is a sixty-four bit
word addressable machine. Each word witI hold eight bytes. A character pointer is stored as a word
address, and a byte offset into the word for the character. The C compiler automatically takes care of
this, but it means that walking through an array of characters a byte at a time will cause each word to
be read from memory, shifted and masked eight times to extract the eight individual bytes. Needless to
say, this is not optimal.

The first revision to the checksum routine was to rewrite it, still all in C, so that it would calcu-
late the checksum a word at a time. This change alone caused the memory to memory copy rest to go
from 6 megabits per second to 20 to 30 megabits per second.

A second revision was to hand code in CAL (Cray Assembly Language) the section of it that
added up the checksum a word at a time. This was done using scatar insL~uctions. Hand coding it in
CAL allowed memory wait states to be eliminated.

The last revision that was done was to take the CAL code, and rewrite it to a vecmfized loop.
Tbas vectorized version is not used all the time, because of startup costs involved with using vectors in
the kernel. For short segments of dam, the scalar version is used, and for longer dam segments, the
vectorized version is used. On a C'RAY Y-MP, with our latest version of TCP/IP, using the scalar ver-
sion of the checksum routine provided a transfer rate of over 250 megabits per segond. When the vexc-
torized version of the checksum routine was enabled, the throughput shot up to over 550 megabits per
second.

Obviously, the conclusion that can be drawn is that the checksum routine should be highly optim-
ized for any implementation, because it can have a very profound effect on overall TC~SqP throughput.

Mbufs

Mbufs are the basic data structures used by the networking code for holding data and control
structures. The original Berkeley implementation bad mbufs that were 128 bytes long~ with the Ix~ssb
bility of pointing the mbuf to an extemat piece of memory 1024 bytes tong, The~se were designed for
use on a virtual memory machine, to facilitate page mapping. On a Cray computer, there is no virtual
memory hardware. "rhere are two registers that de:¢¢fibe a process; one poims to where the No,tess
s~"ts, and the other contains how king the process is in words. :The mbuf code has had several mNor
modifications made to it to make it efficient on a Cmy computer~ Cu~endy, there is an array of mbuf
headers, each eight words lorES, and an army N data segments, each 1K bytes long. There is a one m
one mat.ping tzetween the headers and the data segmen~s~ In addition, sevemI contiguous mbufs may be
aIlocated together, to provide larger than 1Kbyu~ data areas. When mbufs are not in t~se~ they are

-12-

returned to the tYee pool, which is an ordered linked list of all the partial mbufs. If an mbuf is freed
adjacent to an already free mbuf, it is merged with it. Allocating a 32Kbyte mbuf can get expensive,
because the free pool has to be searched for 32 mbufs that are contiguous, and then all 32 mbuf headers
have to be linked together. To eliminate this overhead, a cache has been added to keep free lists of
various commonly used sizes of mbufs. If a 32Kbyte mbuf is in this cache, it is no more expensive to
allocate it than it is to allocate a 1Kbyte mbuf.

Variable MTU

The term MTU (Maximum Transmission Unit) is used to describe how much data can be sent in
one piece over the networking hardware. The networking hardware used to connect to a Cray computer
does not impose any limit on the size of an IP datagram, of which the maximum length allowed by the
IP protocol is 65535 bytes. Practical lengths are imposed by the software. In a heterogeneous environ-
ment, different vendors may have different limits on sizes of data that they can send and receive. Cray
Research has introduced the idea of a variable MTU, where the MTU of a given interface specifies how
large of a packet the Cray computer is willing to receive on that interface, and the IP to hardware
address mapping table for the interface has an MTU associated with each entry, to limit how large of a
packet the Cray computer can send to each machine. With this scheme, the Cray computer is able to
use large packets when connected to a machine that accepts large packets, and small packets when talk-
ing to smaller machines that can only handle smaller packets.

The changes in the mbuf code facilitate using large (more than 16Kbytes) MTUs to achieve per-
formance improvement. Prior to adding the mbuf cache, using MTUs greater than 16Kbytes actually
degraded performance, due to the overhead of allocating large mbufs. With the mbuf cache, using a
32K byte MTU improves throughput, as it should.

Windowing
One of the first things done to the Cray networking code was to increase the TCP window. The

original 4.2 BSD code had only 2K of buffering; this was bumped up to 16K or 32K, depending on
how much memory the Cray computer had. One area where the TCP protocol is lacking is that it is
impossible to determine how much buffering the remote side has for sending data, i.e. how much data
the remote side can send before it blocks waiting for some of the data to be acknowledged. A common
strategy used in TCP is to delay ACKs to acknowledge several packets at once. The Berkeley code
assumed that the remote side had as much buffering space for sending as the local side had. The Cray
computer would get into situation where the remote side had sent 2K of data, and then would sit there
waiting for an ACK, while the Cray computer sat there thinking "Well, 2K out of a 32K window, I'll
not ACK the data just yet, because he can send a lot more data into my window." The net effect was
that sending data to the Cray computer with a small send space was very slow. To resolve this prob-
lem, the networking code keeps an estimate of how large the remote sides sending space is, by keeping
track of the largest amount of data ever sent between ACKs. Now, when the remote side has sent its 2K
of data, the Cray computer will realize that that is probably all the remote side can send, and immedi-
ately send an ACK, rather than delaying it.

Porting Base
Originally, the code that was ported to the Cray computer was based on the 4.2 BSD release. In

the summer of 1988, a re-port from the 4.3 BSD release was done, incorporating the recent work done
by Van Jacobson and Mike Karels at U.C. Berkeley, most notably the "slow-start" code, congestion
control code, and better round-trip time calculations. With the amount of excellent work being done in
protocol development, it is silly not to make use of and build upon what is available.

The UNICOS operating system
Cray Research is about to release the 5.0 version of the UNICOS operating system. When the

TCP/IP code was first implemented, it was with the 1.0 release of the UNICOS operating system.
Many bugs have been found and fixed in the last 4 releases, many new features have been added, and
many sections of code have been re-written to improve performance. Individually, these changes may

-13-

not make a large impact on TCPAP perf;ormance, but when added tap they definitely make a noticeable
differea~ce. However, since these changes have be~:n spread out over a three year period, there are n<3
hard figures on how much these changes account for the improvements in the TCP/~P performance.

Probably the first interesting bug in the ope~3sting system on the CRAY-2 comptster that affected
the TCP/IP cc~de was that there was a small window in which interrupts wotsk3 not be noticed, a~d
would not be processed until another interrupt occurred. The: networking hardware seemed to con-
sistentIy hit this window. When timings were done to measure the eff)ct of changing the data trar~:sfksr
size, an erratic, step 1Ne graph emerged. After isolating and fixing this delayed iaterrt~pt pro<essir~g,
when the same measurements were done a nice smooth curve emerged.

The C Compiler
During the last several years, the C compiIer group at Cray Research has not been sitting still.

The orighsal C compilers did not have very well developed optimized code generation, and Imd no vet..
tot processing capability. 3qte current C compiler has greatly improved code generation, and is also
able to automatically recognize and vectorize many constructs. While there am no hard numbers avaib
able for how the compiler changes have changed the performance numbers of TCP/IP, one particular
test application that did many small reads and writes to a TCP socket, had its overall execution time cut
by ovvr 40 percent when switching to a new version of the C compiIer on a CRAY X-MP computer
(both the application and the kernel were m-built with the new compiler).

Hardware Changes
Since the intro~duction of TCP/IP on the Cray computer, there have been improvements to the

Cray computers themselves, and to the networking hardware available to mtach to the Cray compmcr.
The original pert of the TCP/2P code, and the original measurements, were done on a singIe processor
CRAY-2 computer win 16 megawords of memory, one of the original prototype CRAY-2 computers~
and on a two processor C:%kY X-MP, with a 9.5 nanosecond clock and two megawords of memor;<
Cmq'ent CRAYo2 computers being built have had logic and memory improvements, so that the hardware
itself will give an overall improvement of mere than 30%. The CRAY X-MP EA computers now have
an 8.5 vanosecond clock, up to 64 megawords of memory, and the newest machine, the CRAY Y-MP,
has a 6.0 nanosecond clock, with 8 processors, and tap to 128 megawords of memory.

Networking hardware has also improved. When the TCP/lP code was first ported, the only net-
working hardware was NSC HYPERchannelL connected to a Cray computer's low speed charred. The
low speed channel is rated at 50 or 10(3 megabits per second. The best performance that TCP/IP l~s
gotten over HYPERcharmet is around 12 megabits per second, using a 16Kbym transfer size. NSC tms
recently introduced its FP~SPERchanneI DX, and over this new hardware, Cray computers have been able
to obtain transfer sw..eds of 23 megabits per second. Cray Research has also devdopcd a high speed
channel, HSX, which is rated at 850 megabiks per second. TCP/IP trar~sf?r speeds of around 190 mega-
bits per ~ o n d have been demonstrated between two Cmy computers connected with ttSX hardware.

Other Features
O~her features have been added m ~e networking code to mgke it more configurable and us;able.

The features listed here am some of the major fleatures added that do not exist in the smndm-d Berkeley
relea:~s,

Policy Reuting

Currently Cray Research does not supply any muting daemons to run cm the Cray computer
Routing is done through installing static mutes at boot time, and automatically adding ~tew mutes due
m receiving ICMP redirects. Becau~ of the cost of Cray computer systems, many times the machine
wil! be u~d by :~veral different departments or compamys, In ogler m k ~ p the Cmy computer f¥om
bocoming a path for people from one depaxm~ent or company uo access another department or comp~my,

? N~'~C and HY~Rcbannei are regk~tered ~radcmarkg of Netw~k Sysletng Corporation.

thee ability to restrict who can use IP routes has been implemented. When a route is installed, it may be
tagged to either exclude, or only include, certain groups. If a user is a member of an exclusive group
list, or not a member of an inclusive group list, then when the kernel looks up a route to use for a con-
nection by the user it will not allow the restricted route to be used. Additionally, individual routes can
be marked so that the IP forwarding code will skip them.

Line Mode TELNET

The TELNET protocol has been typically implemented such that all the terminal character pro-
cessing is done by the server machine, meaning that the user's data is sent across the network, and
echoed back across the network, a byte at a time. Cray computers are number crunching machines, and
were not designed to deal with lots of single character interrupts. To alleviate this problem, Cray
Reseamh has developed what is known as Line Mode TELNET. When running with Line Mode, all the
character processing and character echoing is done on the client side of the TELNET connection, and
only the completed line of text is sent to the remote machine. This is also very useful when using
TELNET over a long delay network, because the user will get what he types echoed immediately,
rather than having a many second delay between what is typed and what is echoed. The implementation
allows for the server to dynamically switch between line mode and single character mode, so that things
like visual editors will work properly.

Futures

Cray Research will continue trying to improve performance of the TCP/IP networking code.
Currently the code is using less than one thi~ of the potential bandwidth of the HSX channel, it is felt
that there is room for improvement. Many third party vendors are coming out with hardware products
that can connect directly to the Cray computer, giving Cray customers a wider choice of how to con-
nect their Cray computer into their local networks. Cray Research is actively testing and verifying
these products to make sure that they can stand up to the demands of Crray customer environments.
Cray Research is also active in standards development, such as the Internet Engineering Task Force,
helping to broaden the experience on which the standards are based. Cray Research is also actively
exploring and addressing issues such as network management and network security. Many of the les-
sons learned from implementing TCP/IP are generic to implementing networking protocols, and can be
applied to new protocols as they become available.

Conclusions

The following table summarizes some peak of the transfer rates that have been obtained during
dedicated machine time. In all these tests, there was 512K bytes of buffering space on both sides of the
connection, the TCP window was opened to a full 64K bytes, and the MTU was set to 32K bytes. The
application that generated these numbers timed a memory to memory copy over the connection, no disk
time is involved.

Machine(s) Transfer Rate

CRAY-2 to CRAY X-MP over HSX 190 Mbits
CRAY-2 software loopback 310 Mbits
CRAY X-MP EA software loopback 400 Mbits
CRAY Y-MP software loopback 550 Mbits

Over the past three years, many things have changed to improve the performance of TCP/IP on
the UNICOS operating system. The overall system performance, of the operating system, compilers,
and utilities, has an effect on how well the TCP/IP code performs, and should not be ignored when
evaluating the pertormance of any networking implementation. There are also areas of networking code
that etre specific to the machine that it is being implemented on, and these are some of the more obvi-
ous areas that should addressed when trying to improve the performance of any networking protocol.
Much time and effort can be ~aved by cooperating and sharing code and ideas with other developers

working on improving the same networking code.

-15-

