
© 1982 ACM 0-89791-074-5/82/006/0245 $00.75

CRAY PASCAL

by

N. H. MadhavJi and I. R. Wilson

Department of Computer Science

University of Manchester

M13 9PL U.K.

Abstract

This paper presents an investigation of the design decisions taken in the implementation of a compiler for

Pascal on the CRAY-I computer. The structured nature of Pascal statements and data structures is contrasted

with the 'powerful computing engine' nature of the CRAY-I hardware. The accepted views of Pascal as a

simple one-pass language and the CRAY-I as a vector processor are laid aside in favour of a multi-pass

approach, taking account of the machine's scalar capabilities. The project as a whole, aims to produce

highly efficient run-time code for applications likely to be programmed in Pascal. Some statistics are

given to indicate the nature of such applications.

KEY WORDS: Compilation, Pascal, code optimisation, vector processors, CRAY-I

1. Introduction

CRAY Pascal - a multipass language on a scalar

machine! This expletive is not intended to deny

the simplicity of the design of Pascal or the

vector processing capabilities of the CRAY-I. The

power of this computer is often related to its

performance improvement over earlier powerful

scalar machines such as the CDC7600, for example

Baskett and Keller[I] give a brief description of

Permission to copy without &e all or part of ~is ma~na l is granted
prov~ed that the copies a n not made or distributed ~ r direct
comme~ial advantage, the ACM copyright notice and the titk of the
publication and i~ da~ appear, and not re is given that copying is by
permission of the Association ~ r Compming Machinery. To copy
otherwi~, or to republish, ~qu i ~s a &e and/or specific permi~ion.

© 1982 ACM 0-89791-074-5/82/006/0001 $00.75

the machine and quote a ratio of a factor of two

to three for scalar processes and two to ten for

vector processes. However, as these authors state,

viewing this machine purely as a vector processor

does not do Justice to its general purpose

capabilities. Further, the extension of the use of

vector processors into more general purpose

environments, such as universities, shows

benchmark results which resist improvement due to

a base load of non-vectorisible work [2]. This

becomes relatively more significant as the

vectorisible component is more efficiently

processed.

1

Pascal compilers are commonly based on one of the

three compilers [3,4,5] originally implemented at

Zurich, each for a different level of language

provision. These compilers are single pass, with a

recursive-descent recognition directly producing

code for an interpretive or real machine. This

reflects the simple LL(1) nature of the syntax and

semantics of the language. However, a high degree

of code optimisation necessitates knowledge of the

complete program being compiled, which in turn

implies a multipass compilation technique, see

Wulf et. al. [6]. This is also recognised by

Faiman and Kortesoja [7] who describe a Pascal

compiler for the DECI0, which is among the notable

exceptions to the simple Pascal compilers

described above.

2. CRAY-I Features Concernin~ Pascal

A summary description of the CRAY-I hardware is

given in the Appendix, but some specific features

concerning Pascal are of interest here. With high

memory-to-register and register-to-register

transfer rates, a Pascal program on the CRAY-I is

expected to achieve high execution speeds.

However, the ratio of memory-to-reglster to

register-to-register transfer speeds is 1:11.

Therefore, it is important to minimise the number

of store/loads, in a procedure, by devising a

suitable register allocation scheme and by

interleaving instructions so as to minimise 'hold'

conditions arising from store accesses. This

interleaving carried out by the compiler is called

'scheduling'.

A statistical investigation of the nature of

Pascal programs was carried out at an early stage

of the CRAY Pascal project. This highlights the

scalar nature of some Pascal programs, see Brookes

[8]. Traditionally, most use of Pascal has been

for non-numeric applications, such as system

programming. Thus, gathering a significant

representative sample of non-numeric programs

involved little effort - whereas a corresponding

sample of numeric applications was more difficult

to obtain. A discussion of the results appears

later, but it is interesting to note thab there is

statistical support for an intuitive feeling that

the two application areas are different. This

suggests that the vectorlsible content of Pascal

programs may be smaller than typical CRAY FORTRAN

programs and that an examination of the relevance

of other CRAY-I features may be productive in this

context.

With reference to the scalar capabilities of the

CRAY-I, there are sixty-four intermediate B/T

registers each. Hence, there is a possibility of

utilising these registers as cache memory.

Surprisingly, it will be shown that this number is

more than the average number of variables declared

in a procedure and comparable to the total number

of variables declared in a program. Consequently,

use of B/T registers to hold variable values is a

major factor in reducing the number of store/loads

required in a program.

With reference to the vector capabilities, there

are eight vector registers, each of which has

slxty-four 64-bit elements. While these are

obviously utillsed for vector processing, it is

conceivable to utillse them as an 8 * 64 scalar

cache memory. A closer investigation suggests that

the benefits thus gained, compared to store/loads,

may not be significant, especially when the

selection of a particular vector register is

difficult and an A-register load is required.

Also, a store/load may not result in a significant

delay if data transfer overlaps with concurrent

processing. This is a scheduling problem.

In small memory sized computers, generally there

has to be a trade-off between run-time efficiency

and compiler size/speed. Run-time efficiency

generally induces complexity, which in turn

increases compiler size and representation data

size. In contrast, the 8 mbyte typical memory size

of the CRAY-I enables an optimising multi-pass

Pascal compiler to be feasible. In general, this

should assist in run-time efficiency of Pascal

programs on the CRAY-I.

In addition to the parallelism implied in vector

operations and autonomous store accesses, the

CRAY-I has independent pipelined functional units

which may carry out several arithmetic and logical

operations concurrently. The pipelining also

permits each unit individually to accept

functional requests at 12.5 nsec clock intervals

even if the functional operation occupies several

clocks. To take advantage of this. the compiler

must further interleave the instructions by

choosing registers and scheduling appropriately.

The high proportion of control transfers inherent

in Pascal programs discussed later, suggests

careful examination of the instruction buffering

mechanism on the hardware. This is significant in

size, the 256 instruction units being

approximately five times that on a CDC7600. It

also has a minimal structure consisting of four

separately loaded buffers, but has no intelligence

regarding choice of release, look-ahead filling or

heuristics and each buffer must be treated as a

contiguous unit. Clearly, loops which fit in total

into these buffers and cover no more than four

disjoint address spaces, will benefit from a lack

of hold conditions arising from instruction store

fetches. However, any deviation from these rules

pays the penalty of apparently increased time to

process a control transfer from a minimum in the

case of a no-transfer conditional of 2 clocks to a

worst case buffer 'thrashing' of 25 clocks.

3. Pascal Features Concernin~ the CRAY-I

3.1. Procedure Abstraction

With the provision of procedural abstraction

facility in Pascal and a wide acceptance of

structured programming principles, a large usage

of procedures is expected in Pascal programs to be

run on the CRAY-I, and indeed is later

demonstrated. Hence, it is important to have an

efficient procedure calling sequence. Also, in

some cases it may be possible to perform

macro-substitution. This could be a textual

substitution at an early stage, or code

substitution at a later stage. The principle

advantages of the substitution would be a

continuity in the usage of the scratch B/T

registers and the elimination of the procedure

entry/exit code sequence. On the other hand, a

main disadvantage could be that there is no

localisation of variables on which B/T cache

register allocation is dependent. Thus, some

registers could be artificially locked out.

Further, an increased size of the compiled code

due to multiple substitution may cause a

frequently obeyed sequence to overflow the

instruction buffers.

In the CRAY-I Pascal compiler (CP), the

substitution of suitable procedures is neither

performed by a preprocessor nor by the code

generator. Instead, it is performed at the

internal representation level, where there is a

knowledge of the properties of the procedure

concerned, and the cache register allocation

scheme has already been applied.

3.2. Strongly Tvned

Pascal is a strongly typed language. This enables

compile-time selection of a suitable type of

register for an operand, since conversion,

sub-range information, etc. is known at

compile-time. Consider the following declarations

as an example:

Yar I : I..10; (* index variable *)

B : boolean;

A 24-bit A-register is more suitable than a

64-bit S-register, given the bounds of variable I;

whereas, an S-register is more suitable for

variable B, since logical operations on the CRAY-I

are performed in these registers. This contrasts

with the lack of such information in FORTRAN.

3.3. Reeursion

While recursive procedures entail a stack

mechanism, it will be shown in later discussion

that recurslve procedures are a small percentage

of all procedures. For recursion, a structured

machine, Morris and Ibbett [9], with a hardware

stack is more suitable. However, the B/T register

allocation scheme designed for the compiler

emulates a structured machine. This scheme is

based on processing a table of information on each

procedure. After reserving some registers to

reduce recursive call overheads and scratch

registers to prolong the life of loaded operands,

an appropriate number of B/T's are allocated to

the main program and noted in the

procedure/function table entry. The sub-procedure

call tree is analysed to allocate registers at

each node, with the last allocated to its parent

node as a base. As a recursive procedure may call

a static one, all the non-static procedures are

examined for the calls of static ones, and a list

of calls formed. Each element in the list is now

processed as an independent tree.

3.4. Structured Oblects

The ability to manipulate complete structures as

comparisons and assignments suggests the

possibility of vector operations, though not

veetorisation in the sense of parallel arithmetic

calculations.

4. The Nature of Pascal Programs

The analysis of the static nature of Pascal

programs mentioned in the introduction, was

carried out by modifying the Belfast ICL1900

Pascal compiler, described by Welsh and Qulnn

[10]. By replacing the code generation with

frequency counting statements, a file of

statistics on various programs could be built up.

Brookes [8] describes this process in detail, but

Table I shows some relevant measures.

% assignment

% call

% loops

% global variables 38.0

av. leading spaces 14.2

count of j~i~s 13.1

for : while&reoea$ 0.9

Min. % assignments 22.5

Max. % calls

INTEGERs : REALs

Max. av. leading

spaces

Pascal non-numeric

I Pascal numeric

1 1

36.9 39.3

30.1 24.3

12.6 10.9

3.8 10.0

26.0

11.3

39.3

10.1

31.8

55.4 32.3

42.5 1.1

29.9 12.8

Table I - Summary of Static Analysis Results

With reference to Table I, it may be argued that

the sample was not representative and that

anything may be proved from an analysis of such

measures. However, it may be reasonable to

conclude that the more common non-numeric

applications have fewer declared REALs, use fewer

arrays, are more heavily procedured, use testing

rather than counting loops and, by virtue of a

greater level of indentation, would appear to be

more logically complex. Such tentative conclusions

would only be fully confirmed by a dynamic

analysis of running applications on a CRAY-I,

which the authors may not yet perform, though a

similar analysis on compilers only, by Shimasaki

et. al. [11], gives some support.

Taking the suggested nature of applications as a

starting point, it is worth noting that the total

number of scalars, for all procedures and the main

program but excluding parameters, was 87.83 per

program. The number of single word object

parameters per procedure, was appproximately 4 and

there were less than two declared scalars per

procedure. Further, only approximately twelve

percent of procedures appeared to be recursive and

the ratio of all structured accesses to variable

accesses was approximately 0.8.

It is suggested that the application profile

emerging from this discussion, is one with a heavy

use of procedures, which are largely

non-recursive, with a significant proportion of

control constructs and of structure accessing.

Further, the number of variables is significantly

fewer than one might expect in a language which is

not block-structured and whose declarations are

not mandatory, for example FORTRAN.

The need for careful optimisation of procedures is

discussed elsewhere. The control construct nature

of programs (gotos were non-existent) is

beneficial in demonstrating control-flow, but

emphasises the need for optimisation of jumps at

co-incident construct boundaries. This is

particularly true, in view of the control transfer

times mentioned in Section 2.

The significant use of structure accesses suggests

close attention be paid to common sub-expression

analysis, as avoiding re-evaluation of recurring

address calculations and indirections would be as

or more critical than avoiding explicit arithmetic

re-evaluations. Particularly as store access times

for indirection are significantly greater than

functional arithmetic times. This type of

optimisation is sometimes ignored on machines with

sophisticated operand buffer mechanisms and

hardware controlled cache stores, for example the

local Manchester machine MU5 [9].

One other feature of Pascal programs which is of

interest, is the distribution of literal sizes.

The scalar enumeration types and subranges of

Pascal encourage the implicit and explicit use of

small positive constants, and a separate

investigation by Wilson [12] suggests a

distribution as shown in Figure I.

30

percentage 20

occurences 10

0 1 2 3 4 5 6 7 8 > 8

no. of bits to represent

Figure 1 - Distribution of literal sizes

This distribution corresponds to the provision in

the CRAY-I hardware of a load 6-bit literal

instruction.

limited nature of the vector operations available

on current machines, do not appear to make

practical use of this technique directly viable.

This does not mean that the vector hardware is

eschewed - three categories of use are apparent,

viz. search operations, as an additional cache and

for structured comparisons and assignments.

These techniques make it desirable to use operand

manipulation in preference to control flow logic,

where possible. Particularly in view of the Jump

times given above and the expected benefits of

scheduling store/load waits. The recursive-descent

technique, employed by most Pascal compilers,

might appear to be critical in this respect.

However, an analysis of the time spent in the

recognition phase of the simplest of Pascal

compilers by Oliviera [14] (see Table 2), shows

this to be much less important than name look-up,

for example. It should be noted that the measures

in this table are, in fact, distorted by

inefficient symbol table manipulation and the

simplistic code generation required by the

interpretive system which was analysed.

percentage of

compilation time

5. Compilation Processes

It has been suggested by Fischer [13], that

compilation itself is a vectorisible task, as a

vector of text is matched with internal vectors

(syntax, property lists, code skeletons etc.) to

produce a vector of instructions. However, the

complexities involved in optimisation and the

scanning 26

itemisation 9

symbol table 51

syntax recognition 2

error recovery 3

code generation 9

Table 2 - Performance of a simple compiler

Because of the necessity to open and close the

scope of identifiers frequently (as record fields

are selected and with statements applied), most

Pascal compilers use a tree-structured

symbol-table. This has the benefit of a

logarithmic look-up time, but may involve

significant control flow logic and typically five

levels of tree-node (i.e. five store accesses and

indirections). An analysis of hash table

techniques given in Table 3, shows that the use of

vector registers as hash tables, with any

reasonable hash formula, would reduce the store

accesses by a factor of four (to approximately

one), while simplifying the control logic in the

look-up process. Note the importance of this

improvement 'due to the 1:11 ratio of register

speed to memory speed mentioned earlier. In

practice, record-field identifiers do not take

advantage of this hashing, to reduce the overhead

of scope open/close operations.

hash formula av. no. of store accesses

a+b+c . . .

((a*2 + b)*2 + z)*2 + n

(...((a*2 + b)*2) . . .+ z)*2

1.26 - 1.50

1.11 - 1.61

1.73 - 2.16

T~ble ~ - Store AQcesses Per Symbol Table Search

(here the name is abcd..z, length n and

the hash value is taken modulo 64)

6. The Internal Representation

sourceltext

I recognition[

internal~representation

expression and operand analysis I

directed~representation

I scalar and vector optimisations I
enhanced and optimised~representation

low-level optimisations and code generation[

Figure 2 - Overall ODeration of the Compiler

The internal representation referred to in Figure

2 is produced during recognition and is in five

parts:

Procedure Table, Constant Pool, Property Lists,

Statement Tree and Triple Vector.

The procedure table indicates whether a procedure

is recursive, performs I/O, accesses non-locals

(side effects), how many local variables of

different types are present, etc.. The recursive

nature is determined by a set of rules which

guarantee that a recursive procedure is so

marked. At the end of recognition, the register

allocation algorithm described earlier is applied

to associate the intermediate B/T registers to the

procedures.

Some usage count information is retained in the

procedure table. However, the structured nature of

Pascal programs is used to avoid the necessity of

GOTO analysis and determining areas of usage of

variables as required in FORTRAN subprograms,

which are textually larger.

It is hoped that the discrimination of different

kinds of procedures (e.g. recursive, non-local

accessing, etc.) will permit call overheads

comparable with machine coding standards. This may

not obviate the need for macro-substitutlon, where

possible.

The control construct nature of a program is

represented in a bracketted form within the

expression triples, to assist low-level

optimisations. However, the separate existence of

the statement tree mitigates the disadvantages of

the often quoted fixed nature of triples, Aho and

Ullman [15], while maintaining the advantages of

compactness. The level of operand representation

is chosen such that two references to the same

object (e.g. two matching variant fields or two

named constants with the same value) are

identical. This implies the use of actual offsets

rather than property list addresses - though these

are retained where a global analysis is required

(e.g. vectorisation). This approach also contrasts

with the register rather than operand

representation used in CRAY-I FORTRAN (CFT).

7. Ontimisation of Structured/Dynamic Objects

Scalar optimisations are performed on the internal

representation of a program (discussed in the

previous section). In general, a program is

optimised one procedure at a time. Within a given

procedure, the flow of control information is

appropriately represented in the triple vector.

This drives the optimiser according to the

properties of a control construct, and according

to nested and sequential constructs.

On recognition of a control construct, a local

table is initiated. This table holds the

information about the operands in the construct,

while the construct is being processed. Hence the

table is referred to as the <operand,reference>

(or <opd,ref>) table. Clearly, the <opd,ref> table

behaves like a stack, as constructs are opened and

closed.

An <opd,ref> table entry generally consists of an

operand and its properties. The properties include

the class of the operand; the class of register

use; the reference of the operand in the triple

vector; the availability, category, dependency,

state and the usageorder of the operand and the

dynamic linkages of the operand. This information,

which is gathered while processing a construct, is

also useful during the later phases of the

compilation process (e.g. register allocation).

Associated with each triple is a row of entries in

the usage-chain column for the left operand, the

right operand and the complete triple. As each

operand position can be distinguished within a

row, the operand entries in the <opd,ref> table

enable different operand-value usage-chains to be

constructed. These chains are invaluable for

detecting common sub-expressions, and are also

useful during the later phases of compilation.

While a wide range of scalar optimisations are

performed with these internal mechanisms, of

particular interest are those which are performed

as a result of the idiosyncrasies of Pascal:

structured objects, dynamic objects, record

variants, pointers, VARiable parameters, functions

and procedures with side-effects.

Unlike simple operands, complex operands (such as

array elements, fields of records, complete

structured objects, etc.) form separate triples.

In order to detect common sub-expressions using

such complex variables, the variables themselves

participate in the detection process. For this

purpose, structured objects maintain additional

information in the <opd,ref> table.

7.1. Records and Dynamic Data Structures

For dynamic data structures, not only the

references of individual elements but also the

structural relationships have to be considered.

The propagation and common sub-expression

detection for these objects involve accessing the

appropriate structures via static pointers.

Consider the following dynamic variable access:

P~.KT.A

The internal representation of the relationships,

emanating from the <opd,ref> table is as shown

below:

1<opd,ref> table

Z

g< I <P,ref>

I

<K,ref>< 0 <P~>

g

I

<A,ref>< 0 <F~.KT>

Figure ~ - <ond.ref> Table Dynamic Linkages

In the dynamic representation in Figure 3, <P,ref>.

is the entry for the static pointer P; g

designates a GATE, to enable aliasing pointers to

refer to a same dynamic object; O designates a

dynamic record and <A,ref> is the field

representation of object PT.K~.

Static record representation, unlike the dynamic

one, is held directly in the <opd,ref> table.

However, the representations for fields of a

static record are held as dynamic linkages.
p

Moreover, as there is no aliasing involved in this

case, GATEs are not necessary.

7.1.1. Availability of Objects

On an assignment to a field, it obtains a

rlght-hand-side reference. Further, the complete

reference of the containing record is disabled, so

that a next use of the record object is not

detected as common to its previous definition. In

essence, the record enters a new state. Consider

the following example:

DOPRINT (P~); (* value parameter *)

P~.NAME := NEWNAME;

TEST := PT = Q~;

As there is an intervening assignment to P~.NAME,

the detection of the second occurrence of object

PT is inhibited. Instead, object P~ obtains a new

reference which can be propagated further. For an

assigned field which is multiple levels within a

structure, all the higher level containing

structured objects are disabled. This higher level

inhibition process is terminated on encountering a

pointer. On the other hand, an assignment to a

complete record object implies copying of the

knowledge of assigned-object fields. This

technique enables the detection of the assigned-to

object fields as common.

For pointer assignments, not only the

right-hand-side reference is allocated, but

structural changes also take place. For instance,

new linkages are formed such that a common dynamic

object is accessible via a common GATE. The

implication of this is that, the usages of the

same object referenced by allasing pointers are

detected as common.

Upon recognition of a triple for dynamic data

structure, an appropriate structure is created,

and if the structure is used (as opposed to

assigned-to) then its reference is enabled.

Subsequent use of this structure is detected as

common to its first occurrence. The linkages of

the structure exist in the local table for the

duration of the current control construct. In

theory, knowledge of suitable structures could be

propagated into the outer loops, but this may

introduce excessive compiler complexity.

Where side-effects are present, the precise nature

of the affected pointers must be determined. For

instance, assigning to a field could cause

aliasing problems if another, apparently

unrelated, pointer also has access to the field

(e.g. non-local pointers). This is the case in the

following example:

if <boolean-expression> then

be~in

write(PT.A);

QT.A := maxint;

Q :: QT.NEXT;

write(PT.A)

end(*if*);

Here, it may not be safe to detect the second

occurrence of P~.A as common, unless it is known

that P and Q are not aliasing pointers. The

dynamic linkages are of some assistance here.

In general, there are pointers whose access-right

information is available, and these are termed

'GREEN pointers'; others are termed 'RED

pointers'. The colour of a pointer can be deduced

from the pointer entry in the local table. A GREEN

pointer is allocated the highest dependency number

(infinity); whereas a RED pointer is allocated a

dependency number equivalent to its creation point

in the triple vector.

Separate uses of RED pointers to an unknown alias

structure, have no slde-effects, but they may not

be identified as common. As a result of an

assignment to an object requiring an indirection

through a RED pointer, all other RED objects are

deleted. Thus, no affected RED object is wrongly

detected as common. This is achieved by using the

dependency values to limit the search region to

the offending assignment point forward. In theory,

this can be further optimised by utilising the

type information gathered in the first pass. In

addition, the assigned-to structure obtains the

right-hand-side object colour.

i0

7.1.2 Record Variants

An assignment to, or creation of a variant field

may overwrite one or more existing variant fields,

whose space ranges overlap the former field. With

the knowledge of field displacement and size,

overlapping fields can be deduced and erased.

Since at a given time, only unique fields exist in

the field representations, different variant

fields of the same size and displacement are not

distinguished internally. The effect of this

technique may be compared to that of the

optimising DECI0 Pascal compiler [7] by

considering the following example text:

tvDe R = record

A : integer;

ease B : boolean of

true : (CI : integer);

false: (C2 : integer)

end;

V~r P, O : TR;

p := Q;

P~.C1 := 10;

QT.C2 := 20 ;

i f P~ .C l = 10 t h e n . . .

Whereas in the DECIO compiler, in the last

statement, P~.CI is equal to 10; in CP, P~.CI is

equal to 20. Thus, CP enables the optimisation of

record structures even in the presence of 'free

unions'. This is particularly useful in some

machine=dependent applications, where it may be

necessary to map a value onto another one of a

different type.

As the dynamic linkages (see Figure 3) simulate

the run-time behaviour of dynamic data structures,

it is possible to detect some run-time faults at

compile-time, in a similar manner to assignments

of variables with disjoint defined ranges. An

example of the kind of dynamic data-structure

fault detected, is accessing through a DISPOSEd

structure.

7.2 Arrays

While fields of a record are represented in the

dynamic linkages, it is not feasible to maintain

linkages for array elements. The primary reason

for this is that the subscripts themselves are

variables, expressions, etc., making it not always

possible to distinguish different elements. Thus,

an element forms a separate entry in the local

table.

On an assignment to an array element, its

subscript expression may form an entry in the

table and, if suitable, be detected as a common

sub-expression. Nevertheless, an entry for the

element is inserted in the local table. In order

to prevent the detection of the complete array as

common, the higher level structures are inhibited.

Also, apparently different array elements are

inhibited, since subscript expression values

cannot always be determined at compile-time. This

is achieved by giving a new reference to the array

variable. This action is also taken when the

complete array structure is assigned to. Thus, new

array elements are not wrongly detected as

common.

ii

7.3 Variable Parameters and Function Assignments

Variable parameters are treated like assignments,

since in general, they will be assigned to. The

new reference of the affected variable can usually

be determined after analysing the called

procedure. This analysis induces significant

complexity in the compiler mechanisms. A simpler

alternative for processing the affected objects is

to disable their references.

A similar complexity arises in disabling the

non-local references made by a procedure after the

point of call. The possibility of performing the

necessary analysis is envisaged, and suitable

information is collected for this purpose in the

procedure table.

Clearly, for structured objects, this implies that

both complete structure reference and element

reference are inhibited. Thus the next use of the

complete object or its element introduces the

relevant new reference in the local table entry.

In the case of a function asssignment to an

element of a structured object, the element

reference is inhibited. As in other element

assignments, the hlgher-level structures are also

inhibited.

8. Code Generation

The enhanced and optimised representations

mentioned in Section 6, are used in the final

stages of compilation to perform code generation.

This contains several areas with conflicting

requirements. In particular, the optimal

allocation of registers, interleaving of

instruction sequences (to minlmise waiting on the

arrival of operands) and peephole optimisation of

Juxtaposed instructions, all conflict.

Optimlsation of register usage may clearly only be

performed with real functional registers and the

ordering of instructions is one factor in the

choice of operand for register release.

Contrarily, the allocation of real registers is an

inhibiting factor on the scheduling process. Note

the example below with operands from store, where

fewer registers is a slower schema, but the cost

of the use of an additional register is dependent

on the surrounding code.

two register start time finish time

$I = a 0 11

$2 : b 2 13

$I = $I*$2 13 - wait for b 20

$2 = c 14 25

$I = $I+$2 25 - wait for c 31

three register start time finish time

$I = a 0 11

$2 = b 2 13

$3 = c 4 15

$I = $I*$2 13 - wait for b 20

$I = $I+$3 20 - wait for * 26

Figure 4 - 2/q Register coding Qf a*b + c

CFT gives priority to scheduling by performing

this with virtual registers, whereas CP allocates

registers on the basis of a tree walk of the

expression, leaving maximium freedom for later

scheduling. Which technique is more beneficial is

not immediately apparent and, no doubt, an

12

experimental analysis will lead to more

interaction of the two requirements.

9. Conclusions and Acknowledgements

At the time of writing, the CP compiler is

half-way through the development phase and has not

been released for use. It is hoped to enhance the

initial version of the compiler, with a

vectorising section, for which hooks have been

left, but no effort initially dedicated. This was

a pragmatic decision, made on the basis of a lack

of requirement in the bootstrap process, the

interest in matching Pascal structuring to the

CRAY-I machine and the shortage of manpower.

Clearly, further statistical analysis of the use

of structures and of dynamic data structures would

be a desirable prerequisite to the design of

further optimisation phases such as vectorisation.

This analysis would preferably be of a dynamic

rather than static nature.

We commenced the project fresh from a subset

implementation for low-cost microprocessors whose

store size is of the same order as the total

CRAY-1 re~ister size and also a P-code

implementation. Thus, we are convinced that the

only interesting numbers are O, I and ~.

Our thanks are due to CRAY RESEARCH, INC as a

company, to Dick Hendrickson and his CFT team for

intellectual and technical support and to CRAY-UK

for their financial assistance.

10. References

[I] Baskett, F. and Keller, T.: An Evaluation of
the CRAY-I Computer. In: High Speed
Computer and Algorithm Organization. Ed.
by Kuck, D. J., et. al. Academic Press.
1977.

[2] Personal Communication with CDC and CRA¥
technical sales staff. 1981.

[3] Wirth, N.: Pascal-S A subset and its
Implementation. ETH Zurich Report 12.

[4] Nori, K., et. al.: The Pascal <P>
Implementation Notes. ETH Zurich. 1975.

[5] Wirth, N.: The Design of a Pascal Compiler.
Software-Practice and Experience. Vol. I,
pp. 309. 1971.

[6] Wulf, W., et. al.: The Design of an
Optimising Compiler. Elsev%er. 1975.

[7] Faiman, R. and Kortesoja, A.: An Optimlsing
Pascal Compiler. IEEE Trans. Software Eng.
Vol. SE-6, No. 6, 1980.

[8] Brookes, G.: Compilation Analysis Techniques
for Vector Processing Methods. MSc.
Thesis. University of Manchester. 1981.

[9] Morris, D. and Ibbett, R.: The MU5 Computer
System. Macmillan. 1979.

[10] Welsh, J. and Quinn, C.: A Pascal Compiler
for the 1900 Series Computers.
Software-Practice and Experience. Vol. 2,
pp. 73, 1972.

[11] Shimasaki, M., et. al.: An Analysis of Pascal
Programs in Compiler Writing.
Software-Practlce and Experience. Vol. 10,
pp. 149, 1980.

[12] Wilson, I. R.: Pascal for School and Hobby
Use. Software-Practice and Experience.
Vol. 10, pp. 659, 1980.

[13] Fischer, C.: On Parsing and Compiling
Arithmetic Expressions on Vector
Computers. ACM Trans. on Prog. Lang. Vol.
2, pp. 203, 1980.

[14] Oliviera,J.: Pascal on Small Micro Computers.
MSc. Thesis. University of Manchester.
1981.

[15] Aho, A. and Ullman, J.: Principles of
Compiler Design. Addison Wesley. 1977.

13

Appendix

CRAY-I Architecture

Figure 5 is reproduced from the CRAY-I Hardware

Reference Manual (CRAY RESEARCH INC HR0808) and

shows the main architectural units of the CPU and

the connecting data paths. The principle relevant

features of the machine are:

up to 4M 64-bit words of memory

137.5 ns memory access time

12.5 ns clock period

80 mflops instruction rate

3 address instructions referring to registers

independent pipelined arithmetic units

16 scalar/address registers

128 scalar/address cache registers

8 m 64word vector registers

vector instructions

4 t 64parcel instruction buffers

overlapped instruction execution

Vector Registers
V7

V6
v~

v~
((AO)'(Ak'

v l

Sj
,7/ ,J

vk II
vi l

77 : v e c t o r [
Control I [Y '

- sJ

~ ~ ~ S c a l a r Registers

ljk ~) - - - sj
s z ~ l ~

((Ah) + jl~) ~ SO ~ . ~ z . - " ""

6xchange
Co~t oi

vec

~ ~ - - ~ - - Ji I ~

i v con t ro l i

17~F (~ lnstructlon

Buffers

J log~ca

Add

Vector
Functional

antis Ak

1
, , , Add

F$oatlng

S Point

$: Functional

lnl~s

Ak

~Option~]

Figure 5 - Structure of the CRAY-I Processor

14

