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Abstract 

This paper presents an investigation of the design decisions taken in the implementation of a compiler for 

Pascal on the CRAY-I computer. The structured nature of Pascal statements and data structures is contrasted 

with the 'powerful computing engine' nature of the CRAY-I hardware. The accepted views of Pascal as a 

simple one-pass language and the CRAY-I as a vector processor are laid aside in favour of a multi-pass 

approach, taking account of the machine's scalar capabilities. The project as a whole, aims to produce 

highly efficient run-time code for applications likely to be programmed in Pascal. Some statistics are 

given to indicate the nature of such applications. 
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1. Introduction 

CRAY Pascal - a multipass language on a scalar 

machine! This expletive is not intended to deny 

the simplicity of the design of Pascal or the 

vector processing capabilities of the CRAY-I. The 

power of this computer is often related to its 

performance improvement over earlier powerful 

scalar machines such as the CDC7600, for example 

Baskett and Keller[I] give a brief description of 
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the machine and quote a ratio of a factor of two 

to three for scalar processes and two to ten for 

vector processes. However, as these authors state, 

viewing this machine purely as a vector processor 

does not do Justice to its general purpose 

capabilities. Further, the extension of the use of 

vector processors into more general purpose 

environments, such as universities, shows 

benchmark results which resist improvement due to 

a base load of non-vectorisible work [2]. This 

becomes relatively more significant as the 

vectorisible component is more efficiently 

processed. 
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Pascal compilers are commonly based on one of the 

three compilers [3,4,5] originally implemented at 

Zurich, each for a different level of language 

provision. These compilers are single pass, with a 

recursive-descent recognition directly producing 

code for an interpretive or real machine. This 

reflects the simple LL(1) nature of the syntax and 

semantics of the language. However, a high degree 

of code optimisation necessitates knowledge of the 

complete program being compiled, which in turn 

implies a multipass compilation technique, see 

Wulf et. al. [6]. This is also recognised by 

Faiman and Kortesoja [7] who describe a Pascal 

compiler for the DECI0, which is among the notable 

exceptions to the simple Pascal compilers 

described above. 

2. CRAY-I Features Concernin~ Pascal 

A summary description of the CRAY-I hardware is 

given in the Appendix, but some specific features 

concerning Pascal are of interest here. With high 

memory-to-register and register-to-register 

transfer rates, a Pascal program on the CRAY-I is 

expected to achieve high execution speeds. 

However, the ratio of memory-to-reglster to 

register-to-register transfer speeds is 1:11. 

Therefore, it is important to minimise the number 

of store/loads, in a procedure, by devising a 

suitable register allocation scheme and by 

interleaving instructions so as to minimise 'hold' 

conditions arising from store accesses. This 

interleaving carried out by the compiler is called 

'scheduling'. 

A statistical investigation of the nature of 

Pascal programs was carried out at an early stage 

of the CRAY Pascal project. This highlights the 

scalar nature of some Pascal programs, see Brookes 

[8]. Traditionally, most use of Pascal has been 

for non-numeric applications, such as system 

programming. Thus, gathering a significant 

representative sample of non-numeric programs 

involved little effort - whereas a corresponding 

sample of numeric applications was more difficult 

to obtain. A discussion of the results appears 

later, but it is interesting to note thab there is 

statistical support for an intuitive feeling that 

the two application areas are different. This 

suggests that the vectorlsible content of Pascal 

programs may be smaller than typical CRAY FORTRAN 

programs and that an examination of the relevance 

of other CRAY-I features may be productive in this 

context. 

With reference to the scalar capabilities of the 

CRAY-I, there are sixty-four intermediate B/T 

registers each. Hence, there is a possibility of 

utilising these registers as cache memory. 

Surprisingly, it will be shown that this number is 

more than the average number of variables declared 

in a procedure and comparable to the total number 

of variables declared in a program. Consequently, 

use of B/T registers to hold variable values is a 

major factor in reducing the number of store/loads 

required in a program. 

With reference to the vector capabilities, there 

are eight vector registers, each of which has 

slxty-four 64-bit elements. While these are 

obviously utillsed for vector processing, it is 

conceivable to utillse them as an 8 * 64 scalar 

cache memory. A closer investigation suggests that 

the benefits thus gained, compared to store/loads, 



may not be significant, especially when the 

selection of a particular vector register is 

difficult and an A-register load is required. 

Also, a store/load may not result in a significant 

delay if data transfer overlaps with concurrent 

processing. This is a scheduling problem. 

In small memory sized computers, generally there 

has to be a trade-off between run-time efficiency 

and compiler size/speed. Run-time efficiency 

generally induces complexity, which in turn 

increases compiler size and representation data 

size. In contrast, the 8 mbyte typical memory size 

of the CRAY-I enables an optimising multi-pass 

Pascal compiler to be feasible. In general, this 

should assist in run-time efficiency of Pascal 

programs on the CRAY-I. 

In addition to the parallelism implied in vector 

operations and autonomous store accesses, the 

CRAY-I has independent pipelined functional units 

which may carry out several arithmetic and logical 

operations concurrently. The pipelining also 

permits each unit individually to accept 

functional requests at 12.5 nsec clock intervals 

even if the functional operation occupies several 

clocks. To take advantage of this. the compiler 

must further interleave the instructions by 

choosing registers and scheduling appropriately. 

The high proportion of control transfers inherent 

in Pascal programs discussed later, suggests 

careful examination of the instruction buffering 

mechanism on the hardware. This is significant in 

size, the 256 instruction units being 

approximately five times that on a CDC7600. It 

also has a minimal structure consisting of four 

separately loaded buffers, but has no intelligence 

regarding choice of release, look-ahead filling or 

heuristics and each buffer must be treated as a 

contiguous unit. Clearly, loops which fit in total 

into these buffers and cover no more than four 

disjoint address spaces, will benefit from a lack 

of hold conditions arising from instruction store 

fetches. However, any deviation from these rules 

pays the penalty of apparently increased time to 

process a control transfer from a minimum in the 

case of a no-transfer conditional of 2 clocks to a 

worst case buffer 'thrashing' of 25 clocks. 

3. Pascal Features Concernin~ the CRAY-I 

3.1. Procedure Abstraction 

With the provision of procedural abstraction 

facility in Pascal and a wide acceptance of 

structured programming principles, a large usage 

of procedures is expected in Pascal programs to be 

run on the CRAY-I, and indeed is later 

demonstrated. Hence, it is important to have an 

efficient procedure calling sequence. Also, in 

some cases it may be possible to perform 

macro-substitution. This could be a textual 

substitution at an early stage, or code 

substitution at a later stage. The principle 

advantages of the substitution would be a 

continuity in the usage of the scratch B/T 

registers and the elimination of the procedure 

entry/exit code sequence. On the other hand, a 

main disadvantage could be that there is no 

localisation of variables on which B/T cache 

register allocation is dependent. Thus, some 

registers could be artificially locked out. 



Further, an increased size of the compiled code 

due to multiple substitution may cause a 

frequently obeyed sequence to overflow the 

instruction buffers. 

In the CRAY-I Pascal compiler (CP), the 

substitution of suitable procedures is neither 

performed by a preprocessor nor by the code 

generator. Instead, it is performed at the 

internal representation level, where there is a 

knowledge of the properties of the procedure 

concerned, and the cache register allocation 

scheme has already been applied. 

3.2. Strongly Tvned 

Pascal is a strongly typed language. This enables 

compile-time selection of a suitable type of 

register for an operand, since conversion, 

sub-range information, etc. is known at 

compile-time. Consider the following declarations 

as an example: 

Yar I : I..10; (* index variable *) 

B : boolean; 

A 24-bit A-register is more suitable than a 

64-bit S-register, given the bounds of variable I; 

whereas, an S-register is more suitable for 

variable B, since logical operations on the CRAY-I 

are performed in these registers. This contrasts 

with the lack of such information in FORTRAN. 

3.3. Reeursion 

While recursive procedures entail a stack 

mechanism, it will be shown in later discussion 

that recurslve procedures are a small percentage 

of all procedures. For recursion, a structured 

machine, Morris and Ibbett [9], with a hardware 

stack is more suitable. However, the B/T register 

allocation scheme designed for the compiler 

emulates a structured machine. This scheme is 

based on processing a table of information on each 

procedure. After reserving some registers to 

reduce recursive call overheads and scratch 

registers to prolong the life of loaded operands, 

an appropriate number of B/T's are allocated to 

the main program and noted in the 

procedure/function table entry. The sub-procedure 

call tree is analysed to allocate registers at 

each node, with the last allocated to its parent 

node as a base. As a recursive procedure may call 

a static one, all the non-static procedures are 

examined for the calls of static ones, and a list 

of calls formed. Each element in the list is now 

processed as an independent tree. 

3.4. Structured Oblects 

The ability to manipulate complete structures as 

comparisons and assignments suggests the 

possibility of vector operations, though not 

veetorisation in the sense of parallel arithmetic 

calculations. 

4. The Nature of Pascal Programs 

The analysis of the static nature of Pascal 

programs mentioned in the introduction, was 

carried out by modifying the Belfast ICL1900 

Pascal compiler, described by Welsh and Qulnn 

[10]. By replacing the code generation with 

frequency counting statements, a file of 

statistics on various programs could be built up. 

Brookes [8] describes this process in detail, but 

Table I shows some relevant measures. 



% assignment 

% call 

% loops 

% global variables 38.0 

av. leading spaces 14.2 

count of j~i~s 13.1 

for : while&reoea$ 0.9 

Min. % assignments 22.5 

Max. % calls 

INTEGERs : REALs 

Max. av. leading 

spaces 

Pascal non-numeric 

I Pascal numeric 

1 1 

36.9 39.3 

30.1 24.3 

12.6 10.9 

3.8 10.0 

26.0 

11.3 

39.3 

10.1 

31.8 

55.4 32.3 

42.5 1.1 

29.9 12.8 

Table I - Summary of Static Analysis Results 

With reference to Table I, it may be argued that 

the sample was not representative and that 

anything may be proved from an analysis of such 

measures. However, it may be reasonable to 

conclude that the more common non-numeric 

applications have fewer declared REALs, use fewer 

arrays, are more heavily procedured, use testing 

rather than counting loops and, by virtue of a 

greater level of indentation, would appear to be 

more logically complex. Such tentative conclusions 

would only be fully confirmed by a dynamic 

analysis of running applications on a CRAY-I, 

which the authors may not yet perform, though a 

similar analysis on compilers only, by Shimasaki 

et. al. [11], gives some support. 

Taking the suggested nature of applications as a 

starting point, it is worth noting that the total 

number of scalars, for all procedures and the main 

program but excluding parameters, was 87.83 per 

program. The number of single word object 

parameters per procedure, was appproximately 4 and 

there were less than two declared scalars per 

procedure. Further, only approximately twelve 

percent of procedures appeared to be recursive and 

the ratio of all structured accesses to variable 

accesses was approximately 0.8. 

It is suggested that the application profile 

emerging from this discussion, is one with a heavy 

use of procedures, which are largely 

non-recursive, with a significant proportion of 

control constructs and of structure accessing. 

Further, the number of variables is significantly 

fewer than one might expect in a language which is 

not block-structured and whose declarations are 

not mandatory, for example FORTRAN. 

The need for careful optimisation of procedures is 

discussed elsewhere. The control construct nature 

of programs (gotos were non-existent) is 

beneficial in demonstrating control-flow, but 

emphasises the need for optimisation of jumps at 

co-incident construct boundaries. This is 

particularly true, in view of the control transfer 

times mentioned in Section 2. 

The significant use of structure accesses suggests 

close attention be paid to common sub-expression 

analysis, as avoiding re-evaluation of recurring 

address calculations and indirections would be as 

or more critical than avoiding explicit arithmetic 

re-evaluations. Particularly as store access times 



for indirection are significantly greater than 

functional arithmetic times. This type of 

optimisation is sometimes ignored on machines with 

sophisticated operand buffer mechanisms and 

hardware controlled cache stores, for example the 

local Manchester machine MU5 [9]. 

One other feature of Pascal programs which is of 

interest, is the distribution of literal sizes. 

The scalar enumeration types and subranges of 

Pascal encourage the implicit and explicit use of 

small positive constants, and a separate 

investigation by Wilson [12] suggests a 

distribution as shown in Figure I. 

30 

percentage 20 

occurences 10 

0 1 2 3 4 5 6 7 8 > 8  

no. of bits to represent 

Figure 1 - Distribution of literal sizes 

This distribution corresponds to the provision in 

the CRAY-I hardware of a load 6-bit literal 

instruction. 

limited nature of the vector operations available 

on current machines, do not appear to make 

practical use of this technique directly viable. 

This does not mean that the vector hardware is 

eschewed - three categories of use are apparent, 

viz. search operations, as an additional cache and 

for structured comparisons and assignments. 

These techniques make it desirable to use operand 

manipulation in preference to control flow logic, 

where possible. Particularly in view of the Jump 

times given above and the expected benefits of 

scheduling store/load waits. The recursive-descent 

technique, employed by most Pascal compilers, 

might appear to be critical in this respect. 

However, an analysis of the time spent in the 

recognition phase of the simplest of Pascal 

compilers by Oliviera [14] (see Table 2), shows 

this to be much less important than name look-up, 

for example. It should be noted that the measures 

in this table are, in fact, distorted by 

inefficient symbol table manipulation and the 

simplistic code generation required by the 

interpretive system which was analysed. 

percentage of 

compilation time 

5. Compilation Processes 

It has been suggested by Fischer [13], that 

compilation itself is a vectorisible task, as a 

vector of text is matched with internal vectors 

(syntax, property lists, code skeletons etc.) to 

produce a vector of instructions. However, the 

complexities involved in optimisation and the 

scanning 26 

itemisation 9 

symbol table 51 

syntax recognition 2 

error recovery 3 

code generation 9 

Table 2 - Performance of a simple compiler 



Because of the necessity to open and close the 

scope of identifiers frequently (as record fields 

are selected and with statements applied), most 

Pascal compilers use a tree-structured 

symbol-table. This has the benefit of a 

logarithmic look-up time, but may involve 

significant control flow logic and typically five 

levels of tree-node (i.e. five store accesses and 

indirections). An analysis of hash table 

techniques given in Table 3, shows that the use of 

vector registers as hash tables, with any 

reasonable hash formula, would reduce the store 

accesses by a factor of four (to approximately 

one), while simplifying the control logic in the 

look-up process. Note the importance of this 

improvement 'due to the 1:11 ratio of register 

speed to memory speed mentioned earlier. In 

practice, record-field identifiers do not take 

advantage of this hashing, to reduce the overhead 

of scope open/close operations. 

hash formula av. no. of store accesses 

a+b+c . . . 

((a*2 + b)*2 + z)*2 + n 

(...((a*2 + b)*2) . . .+ z)*2 

1.26 - 1.50 

1.11 - 1.61 

1.73 - 2.16 

T~ble ~ - Store AQcesses Per Symbol Table Search 

(here the name is abcd..z, length n and 

the hash value is taken modulo 64) 

6. The Internal Representation 

sourceltext 

I recognition[ 

internal~representation 

expression and operand analysis I 

directed~representation 

I scalar and vector optimisations I 
enhanced and optimised~representation 

low-level optimisations and code generation[ 

Figure 2 - Overall ODeration of the Compiler 

The internal representation referred to in Figure 

2 is produced during recognition and is in five 

parts: 

Procedure Table, Constant Pool, Property Lists, 

Statement Tree and Triple Vector. 

The procedure table indicates whether a procedure 

is recursive, performs I/O, accesses non-locals 

(side effects), how many local variables of 

different types are present, etc.. The recursive 

nature is determined by a set of rules which 

guarantee that a recursive procedure is so 

marked. At the end of recognition, the register 

allocation algorithm described earlier is applied 

to associate the intermediate B/T registers to the 

procedures. 

Some usage count information is retained in the 

procedure table. However, the structured nature of 

Pascal programs is used to avoid the necessity of 

GOTO analysis and determining areas of usage of 

variables as required in FORTRAN subprograms, 

which are textually larger. 



It is hoped that the discrimination of different 

kinds of procedures (e.g. recursive, non-local 

accessing, etc.) will permit call overheads 

comparable with machine coding standards. This may 

not obviate the need for macro-substitutlon, where 

possible. 

The control construct nature of a program is 

represented in a bracketted form within the 

expression triples, to assist low-level 

optimisations. However, the separate existence of 

the statement tree mitigates the disadvantages of 

the often quoted fixed nature of triples, Aho and 

Ullman [15], while maintaining the advantages of 

compactness. The level of operand representation 

is chosen such that two references to the same 

object (e.g. two matching variant fields or two 

named constants with the same value) are 

identical. This implies the use of actual offsets 

rather than property list addresses - though these 

are retained where a global analysis is required 

(e.g. vectorisation). This approach also contrasts 

with the register rather than operand 

representation used in CRAY-I FORTRAN (CFT). 

7. Ontimisation of Structured/Dynamic Objects 

Scalar optimisations are performed on the internal 

representation of a program (discussed in the 

previous section). In general, a program is 

optimised one procedure at a time. Within a given 

procedure, the flow of control information is 

appropriately represented in the triple vector. 

This drives the optimiser according to the 

properties of a control construct, and according 

to nested and sequential constructs. 

On recognition of a control construct, a local 

table is initiated. This table holds the 

information about the operands in the construct, 

while the construct is being processed. Hence the 

table is referred to as the <operand,reference> 

(or <opd,ref>) table. Clearly, the <opd,ref> table 

behaves like a stack, as constructs are opened and 

closed. 

An <opd,ref> table entry generally consists of an 

operand and its properties. The properties include 

the class of the operand; the class of register 

use; the reference of the operand in the triple 

vector; the availability, category, dependency, 

state and the usageorder of the operand and the 

dynamic linkages of the operand. This information, 

which is gathered while processing a construct, is 

also useful during the later phases of the 

compilation process (e.g. register allocation). 

Associated with each triple is a row of entries in 

the usage-chain column for the left operand, the 

right operand and the complete triple. As each 

operand position can be distinguished within a 

row, the operand entries in the <opd,ref> table 

enable different operand-value usage-chains to be 

constructed. These chains are invaluable for 

detecting common sub-expressions, and are also 

useful during the later phases of compilation. 

While a wide range of scalar optimisations are 

performed with these internal mechanisms, of 

particular interest are those which are performed 

as a result of the idiosyncrasies of Pascal: 

structured objects, dynamic objects, record 



variants, pointers, VARiable parameters, functions 

and procedures with side-effects. 

Unlike simple operands, complex operands (such as 

array elements, fields of records, complete 

structured objects, etc.) form separate triples. 

In order to detect common sub-expressions using 

such complex variables, the variables themselves 

participate in the detection process. For this 

purpose, structured objects maintain additional 

information in the <opd,ref> table. 

7.1. Records and Dynamic Data Structures 

For dynamic data structures, not only the 

references of individual elements but also the 

structural relationships have to be considered. 

The propagation and common sub-expression 

detection for these objects involve accessing the 

appropriate structures via static pointers. 

Consider the following dynamic variable access: 

P~.KT.A 

The internal representation of the relationships, 

emanating from the <opd,ref> table is as shown 

below: 

1<opd,ref> table 

Z 

g< ..... I .... <P,ref> 

I 

<K,ref>< ..... 0 <P~> 

g 

I 

<A,ref>< ..... 0 <F~.KT> 

Figure ~ - <ond.ref> Table Dynamic Linkages 

In the dynamic representation in Figure 3, <P,ref>. 

is the entry for the static pointer P; g 

designates a GATE, to enable aliasing pointers to 

refer to a same dynamic object; O designates a 

dynamic record and <A,ref> is the field 

representation of object PT.K~. 

Static record representation, unlike the dynamic 

one, is held directly in the <opd,ref> table. 

However, the representations for fields of a 

static record are held as dynamic linkages. 
p 

Moreover, as there is no aliasing involved in this 

case, GATEs are not necessary. 

7.1.1. Availability of Objects 

On an assignment to a field, it obtains a 

rlght-hand-side reference. Further, the complete 

reference of the containing record is disabled, so 

that a next use of the record object is not 

detected as common to its previous definition. In 

essence, the record enters a new state. Consider 

the following example: 

DOPRINT (P~); (* value parameter *) 

P~.NAME := NEWNAME; 

TEST := PT = Q~; 

As there is an intervening assignment to P~.NAME, 

the detection of the second occurrence of object 

PT is inhibited. Instead, object P~ obtains a new 

reference which can be propagated further. For an 

assigned field which is multiple levels within a 

structure, all the higher level containing 

structured objects are disabled. This higher level 

inhibition process is terminated on encountering a 

pointer. On the other hand, an assignment to a 



complete record object implies copying of the 

knowledge of assigned-object fields. This 

technique enables the detection of the assigned-to 

object fields as common. 

For pointer assignments, not only the 

right-hand-side reference is allocated, but 

structural changes also take place. For instance, 

new linkages are formed such that a common dynamic 

object is accessible via a common GATE. The 

implication of this is that, the usages of the 

same object referenced by allasing pointers are 

detected as common. 

Upon recognition of a triple for dynamic data 

structure, an appropriate structure is created, 

and if the structure is used (as opposed to 

assigned-to) then its reference is enabled. 

Subsequent use of this structure is detected as 

common to its first occurrence. The linkages of 

the structure exist in the local table for the 

duration of the current control construct. In 

theory, knowledge of suitable structures could be 

propagated into the outer loops, but this may 

introduce excessive compiler complexity. 

Where side-effects are present, the precise nature 

of the affected pointers must be determined. For 

instance, assigning to a field could cause 

aliasing problems if another, apparently 

unrelated, pointer also has access to the field 

(e.g. non-local pointers). This is the case in the 

following example: 

if <boolean-expression> then 

be~in 

write(PT.A); 

QT.A := maxint; 

Q :: QT.NEXT; 

write(PT.A) 

end(*if*); 

Here, it may not be safe to detect the second 

occurrence of P~.A as common, unless it is known 

that P and Q are not aliasing pointers. The 

dynamic linkages are of some assistance here. 

In general, there are pointers whose access-right 

information is available, and these are termed 

'GREEN pointers'; others are termed 'RED 

pointers'. The colour of a pointer can be deduced 

from the pointer entry in the local table. A GREEN 

pointer is allocated the highest dependency number 

(infinity); whereas a RED pointer is allocated a 

dependency number equivalent to its creation point 

in the triple vector. 

Separate uses of RED pointers to an unknown alias 

structure, have no slde-effects, but they may not 

be identified as common. As a result of an 

assignment to an object requiring an indirection 

through a RED pointer, all other RED objects are 

deleted. Thus, no affected RED object is wrongly 

detected as common. This is achieved by using the 

dependency values to limit the search region to 

the offending assignment point forward. In theory, 

this can be further optimised by utilising the 

type information gathered in the first pass. In 

addition, the assigned-to structure obtains the 

right-hand-side object colour. 
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7.1.2 Record Variants 

An assignment to, or creation of a variant field 

may overwrite one or more existing variant fields, 

whose space ranges overlap the former field. With 

the knowledge of field displacement and size, 

overlapping fields can be deduced and erased. 

Since at a given time, only unique fields exist in 

the field representations, different variant 

fields of the same size and displacement are not 

distinguished internally. The effect of this 

technique may be compared to that of the 

optimising DECI0 Pascal compiler [7] by 

considering the following example text: 

tvDe R = record 

A : integer; 

ease B : boolean of 

true : (CI : integer); 

false: (C2 : integer) 

end; 

V~r P, O : TR; 

p := Q; 

P~.C1 := 10; 

QT.C2 := 20 ;  

i f  P~ .C l  = 10 t h e n  . . .  

Whereas in the DECIO compiler, in the last 

statement, P~.CI is equal to 10; in CP, P~.CI is 

equal to 20. Thus, CP enables the optimisation of 

record structures even in the presence of 'free 

unions'. This is particularly useful in some 

machine=dependent applications, where it may be 

necessary to map a value onto another one of a 

different type. 

As the dynamic linkages (see Figure 3) simulate 

the run-time behaviour of dynamic data structures, 

it is possible to detect some run-time faults at 

compile-time, in a similar manner to assignments 

of variables with disjoint defined ranges. An 

example of the kind of dynamic data-structure 

fault detected, is accessing through a DISPOSEd 

structure. 

7.2 Arrays 

While fields of a record are represented in the 

dynamic linkages, it is not feasible to maintain 

linkages for array elements. The primary reason 

for this is that the subscripts themselves are 

variables, expressions, etc., making it not always 

possible to distinguish different elements. Thus, 

an element forms a separate entry in the local 

table. 

On an assignment to an array element, its 

subscript expression may form an entry in the 

table and, if suitable, be detected as a common 

sub-expression. Nevertheless, an entry for the 

element is inserted in the local table. In order 

to prevent the detection of the complete array as 

common, the higher level structures are inhibited. 

Also, apparently different array elements are 

inhibited, since subscript expression values 

cannot always be determined at compile-time. This 

is achieved by giving a new reference to the array 

variable. This action is also taken when the 

complete array structure is assigned to. Thus, new 

array elements are not wrongly detected as 

common. 
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7.3 Variable Parameters and Function Assignments 

Variable parameters are treated like assignments, 

since in general, they will be assigned to. The 

new reference of the affected variable can usually 

be determined after analysing the called 

procedure. This analysis induces significant 

complexity in the compiler mechanisms. A simpler 

alternative for processing the affected objects is 

to disable their references. 

A similar complexity arises in disabling the 

non-local references made by a procedure after the 

point of call. The possibility of performing the 

necessary analysis is envisaged, and suitable 

information is collected for this purpose in the 

procedure table. 

Clearly, for structured objects, this implies that 

both complete structure reference and element 

reference are inhibited. Thus the next use of the 

complete object or its element introduces the 

relevant new reference in the local table entry. 

In the case of a function asssignment to an 

element of a structured object, the element 

reference is inhibited. As in other element 

assignments, the hlgher-level structures are also 

inhibited. 

8. Code Generation 

The enhanced and optimised representations 

mentioned in Section 6, are used in the final 

stages of compilation to perform code generation. 

This contains several areas with conflicting 

requirements. In particular, the optimal 

allocation of registers, interleaving of 

instruction sequences (to minlmise waiting on the 

arrival of operands) and peephole optimisation of 

Juxtaposed instructions, all conflict. 

Optimlsation of register usage may clearly only be 

performed with real functional registers and the 

ordering of instructions is one factor in the 

choice of operand for register release. 

Contrarily, the allocation of real registers is an 

inhibiting factor on the scheduling process. Note 

the example below with operands from store, where 

fewer registers is a slower schema, but the cost 

of the use of an additional register is dependent 

on the surrounding code. 

two register start time finish time 

$I = a 0 11 

$2 : b 2 13 

$I = $I*$2 13 - wait for b 20 

$2 = c 14 25 

$I = $I+$2 25 - wait for c 31 

three register start time finish time 

$I = a 0 11 

$2 = b 2 13 

$3 = c 4 15 

$I = $I*$2 13 - wait for b 20 

$I = $I+$3 20 - wait for * 26 

Figure 4 - 2/q Register coding Qf a*b + c 

CFT gives priority to scheduling by performing 

this with virtual registers, whereas CP allocates 

registers on the basis of a tree walk of the 

expression, leaving maximium freedom for later 

scheduling. Which technique is more beneficial is 

not immediately apparent and, no doubt, an 
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experimental analysis will lead to more 

interaction of the two requirements. 

9. Conclusions and Acknowledgements 

At the time of writing, the CP compiler is 

half-way through the development phase and has not 

been released for use. It is hoped to enhance the 

initial version of the compiler, with a 

vectorising section, for which hooks have been 

left, but no effort initially dedicated. This was 

a pragmatic decision, made on the basis of a lack 

of requirement in the bootstrap process, the 

interest in matching Pascal structuring to the 

CRAY-I machine and the shortage of manpower. 

Clearly, further statistical analysis of the use 

of structures and of dynamic data structures would 

be a desirable prerequisite to the design of 

further optimisation phases such as vectorisation. 

This analysis would preferably be of a dynamic 

rather than static nature. 

We commenced the project fresh from a subset 

implementation for low-cost microprocessors whose 

store size is of the same order as the total 

CRAY-1 re~ister size and also a P-code 

implementation. Thus, we are convinced that the 

only interesting numbers are O, I and ~. 

Our thanks are due to CRAY RESEARCH, INC as a 

company, to Dick Hendrickson and his CFT team for 

intellectual and technical support and to CRAY-UK 

for their financial assistance. 
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Appendix 

CRAY-I Architecture 

Figure 5 is reproduced from the CRAY-I Hardware 

Reference Manual (CRAY RESEARCH INC HR0808) and 

shows the main architectural units of the CPU and 

the connecting data paths. The principle relevant 

features of the machine are: 

up to 4M 64-bit words of memory 

137.5 ns memory access time 

12.5 ns clock period 

80 mflops instruction rate 

3 address instructions referring to registers 

independent pipelined arithmetic units 

16 scalar/address registers 

128 scalar/address cache registers 

8 m 64word vector registers 

vector instructions 

4 t 64parcel instruction buffers 

overlapped instruction execution 
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Figure 5 - Structure of the CRAY-I Processor 
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