
ANALYSIS OF CRAY-iS ARCHITECTURE

VASON P. SRINI
Computer Science Department

University of Alabama
Birmingham, AL 35294

JORGE F. ASENJO
City Bank

Puerto Rico

ABSTRACT

An analysis of the Cray-iS architecture
based on dataflow graphs is presented.
The approach consists of representing the
components of a Cray-lS system as the
nodes of a dataflow graph and the inter-
connections between the components as the
arcs of the dataflow graph. The elapsed
time and the resources used in a component
are represented by the attributes of the
node corresponding to the component. The
resulting dataflow graph model is simulat-
ed to obtain timing statistics using as
input a control stream that represents the
instruction and data stream of the real
computer system.

The Cray-iS architecture is analyzed by
conducting several experiments with the
model. It is observed that the architec-
ture is a well balanced one and perfor-
mance improvements are hard to achieve
without major changes. Significant im-
provement in performance is shown when
parallel instruction issue is allowed with
multiple CIP/LIPs in the architecture.

i. INTRODUCTION

Computer systems such as the CRAY-iS
[1,2], CYBER 205 [3], and the Flow Model
Processor (FMP) [4] are highly concurrent
systems using several advanced architec-
ture principles. In the design of these
and other future computer systems, it is
important to understand how the system
parameters and the work load variations
interact. Developing an easily modifiable
prototype of a complex computer system and
running benchmark programs on it to under-
stand the interaction of parameters is ex-
pensive. Analytical models using queuing
theory techniques or Markov models, such
as the ones presented in [5,6], cannot ac-
curately model state of the art techniques
such as conditional issue of instructions,

~rmission to copy without ~ e all or part of th~ ma~rai is grant~
provided t ~ t the copies am not made or distributed ~ r direct
commemial advant~e, t ~ ACM copyright nof i~ and t ~ title of the
publi~tion a ~ i~ date appear, and notme is given that copying is by
~rm~sion of the Assocmtion ~ r Compming Machine~. To copy
otherwise, or to republish, requires a fee and/or s p e c i e permission.

references to interleaved memory, and
chaining of vector instructions [1,3].
Monte Carlo simulation models [7] make
simplifying and sometimes inaccurate pro-
babilistic assumptions and cannot be used
effectively to model complex computer sys-
tems.

Dataflow graphs [8,9] are presented as
an approach for designing and modeling
computer systems with a high degree of
concurrency and pipelining. There are two
main objectives in using such an approach.
The first objective is to analyze the ar-
chitecture and to detect potential
bottlenecks. The second objective is to
improve the performance of the system by
introducing several changes to the model
based on the clues obtained from the
analysis. The dataflow approach is
motivated by the observation that several
of the functional units in CRAY-iS, CYBER
205, and earlier computers such as IBM
360/91 [i0,ii] and CDC 6600 [10,12] per-
form in a data driven manner although the
whole system is not a dataflow computer
system.

The CRAY-iS computer employs many state
of the art techniques such as the follow-
ing:

a. instruction look-ahead,
b. concurrent execution of instruc-

tions,
c. pipelining in functional units,
d. interleaved memory,
e. vectorizing and chaining.

The features in each of these areas are
accurately modeled using dataflow graphs.
Making changes to the model and running
experiments on the model can be readily
carried out. In our analysis of CRAY-IS,
various experiments are performed aimed at
improving system performance. These exper-
iments are in the following areas:

a. change the size and number of in-
struction buffers,

b. eliminate single access path res-
triction to scalar registers,

c. increase memory bandwidth for vec-
tor memory transfers,

© 1 9 8 3 A C M 0 1 4 9 - 7 1 1 1 / 8 3 / 0 6 0 0 / 0 1 9 4 5 0 1 . 0 0 194

d. reduce cycle time of memory banks,
e. extend the period during which

chaining of vector operations is
allowed to occur, and

f. provide two current instruction
parcel registers (CIPs).

To determine the accuracy of the model,
and to obtain timing and resource usage
statistics necessary to analyze the archi-
tecture, the model is simulated using a
discrete event simulator such as GPSS
[13,14]. Another approach to dataflow
simulation is described in [15].

The rest of the paper is divided into
three sections. An overview of dataflow
graphs is in Section 2. A dataflow graph
model of Cray-iS is described in Section
3. Experiments that have been done on the
model to analyze the architecture are in
Section 4. The complete model of Cray-iS
and the control streams used in the exper-
iments are in [16].

~ GRAPH

The dataflow graph used in this work is
an undirected or partially directed graph
specified as a 4-tuple (A,N,S,K), where

A is a set of arcs with attributes
representing the data paths or the
interconnection between the com-
ponents of a computer system,

N is a set of nodes with attributes
representing the components of a
computer system including the lo-
cal controllers and the global
controller (score board),

S is a set of special arcs called
snoop arcs for gathering the state
information from nodes and commun-
icating values to the attributes
of arcs and nodes, and

K is a scheme for tagging the tokens
on arcs so that several distinct
calculations can be processed in
the proper order without interfer-
ence between distinct calcula-
tions.

A configuration is an assignment of values
to the attributes of arcs and nodes. Ini-
tially the graph is in a configuration, I.
Changing the configuration of the graph
from time to time is called reconfigura-
tion. Although the model has the neces-
sary mechanisms to do dynamic reconfigura-
tion, it will not be emphasized in this
work. The interested reader is referred
to [9].

As a result of node firing, tokens flow
between the nodes in a dataflow graph.
Tokens represent the instruction, data,
and state information in the real computer
system. The number of tokens on the arcs

change and the number of nodes firing also
change. So, a dataflow graph is a dynamic
entity and can model the dynamic aspects
of computer systems.

For each arc, several attributes are
defined so that some of the parameters of
computer systems can be readily represent-
ed. The arc attributes are:

< arc label,
node label of one end,
node label of the other end,
arc type ("directed" or "undirect-
ed"),
type of token the arc is allowed to
carry,
current number of tokens on the
arc,
arc capacity,
and arc latency time (the minimum
time required for any token to
traverse the arc) >.

The first attribute is intended for
identification and the next three attri-
butes are for specifying the interconnec-
tion characteristics. The fifth attribute
is intended for representing the width of
data paths or the width of buffers. The
sixth attribute is intended to show how
many data items are waiting to be pro-
cessed by the components of a computer
system. The arc capacity attribute is in-
tended for specifying the maximum number
of data items that can be waiting for a
component or the maximum number of
buffers. The last attribute is intended
for specifying the time required to
transfer buffer contents or the memory cy-
cle time. This can be zero or any posi-
tive value.

For each node the following attributes
are defined:

< node label,
enabling condition (firing
set (FSS)),
operation, and
node latency time >

semantics

The node label attribute is intended for
identification. Sometimes the node label
might reflect the operation associated
with the node. The FSS is intended for
specifying the data items and resources
such as buffer space that must be avail-
able before the beginning of an activity.
The operation attribute is intended for
representing the resources used and their
state change in performing the transforma-
tions on the supplied data. An operation
can be a primitive [8] or specified as a
dataflow graph. This facilitates a high
level or a detailed low level representa-
tion for the components in a computer sys-
tem. The node latency time is provided
for specifying the time required to do the
transformations on the supplied data. The
time can be zero or any positive value.

195

Using the arc latency time and node laten-
cy time the timing statistics for dif-
ferent programs can be calculated provided
the instructions of the programs and the
data flow generated by the instructions
can be supplied as tokens to the dataflow
graph. This is done using the control
stream approach discussed in [17].

~QDZL ~ ~-iS

A Cray-iS computer [1,2] consists of 13
pipelined functional units divided into
four groups: scalar, floating point, vec-
tor, and address. Several functional un-
its can be concurrently executing instruc-
tions depending on the application program
and the way in which the instructions are
issued.

In this section, a dataflow graph model
of Cray-iS is shown. The model is
presented at various levels of detail.
The high level model comprises five da-
tallow graphs that represent the follow-
ing:

a. Fetching and the issuing of in-
structions,

b. Functional units performing ad-
dress calculations,

c. Functional units performing opera-
tions on scalars,

d. Functional units performing opera-
tions on floating point numbers,

e. Functional units performing opera-
tions on vectors.

The dataflow graphs are shown in Figures 1
through 5. Some of the key parts of
Cray-iS are the instruction fetch and the
instruction issue mechanisms. The details
of the mechanisms are shown by refining
the nodes in Figure i.

To analyze the architecture of Cray-iS
for improving performance and to determine

if
, t

I

T . • I

[NSTRUCTIOH ~FFEKS

~STItUCTIO~..IS S UZ_CaF, C~R

r .o ...1

I ~'°~-~'-'L'~' ' I ', L___~ ' , l i] ,
• @' L ~

, l . | u re I IN,~IUI~ION_ISSUI~/IIZT

the accuracy of the model, timing statis-
tics and resource usage statistics are
needed. The required statistics can be
readily obtained if the model is simulated
using a deterministic discrete event simu-
lator such as GPSS [13,14] or a dataflow
simulator [15]. We decided on GPSS be-
cause of its widespread use in simulation
and its availability. Furthermore, the
primitive nodes In dataflow graphs can be
readily represented using the GPSS V func-
tion blocks. The attributes of nodes and
arcs can be specified as transaction
parameters. The nodes in the dataflow
graph are realized using GPSS V blocks or
PL/i HELP blocks. The control stream
representing the flow of instructions and
data in the real computer system are
presented as transactions. The details of
the dataflow graph model of Cray-iS are
now shown.

INSTRUCTION ISSUE J/~ii2

This unit identifies the next instruc-
tion to be processed, checks the issue
conditions against the available
resources, and communicates with the glo-
bal control unit (SCORE_BOARD) to reserve
functional units, registers, and data
paths. Figure 1 is a dataflow graph of
the unit. Each node in Figure 1 is now
explained.

The INSTRUCTION_FETCH represents the
following:

a. Program counter (P register),
b. Mechanisms to determine whether

the next instruction parcel is in
the current buffer, another
buffer, or in memory (out of
buffer), and

c. Mechanisms to initiate instruction
fetch from memory on encountering
an out of buffer condition.

Figure l.a shows a dataflow graph of the
INSTRUCTION_FETCH. The mnemonics and the
notations used in the dataflow graphs are
explained in Table i. Whenever the node P
receives a token, it outputs the address
of an instruction parcel that may or may
not be in the current buffer. The
FETCH_MONITOR node determines whether the
address received on its second input arc
corresponds to the address of an instruc-
tion in the current buffer, another
buffer, or out of buffer using the token
on the first input arc. If the received
address is in the range of addresses of
the current buffer then the FETCH_MONITOR
outputs a token containing the address on
the first output arc that eventually
reaches the input arc of
INSTRUCTION_BUFFER without any time delay.
If the received address is in the range of
addresses of another buffer, then the
FETCH_MONITOR outputs a token on the
second output arc. The four buffers are
searched in a circular fashion and a time

1 9 6

delay of 2 clock periods (CPs) is intro-
duced by the SWITCH_DELAY node. The nodes
BSW_SET and BSW_RESET are provided to com-
municate the buffer switch (BSW) state in-
formation with the SCORE_BOARD. This is
done so that for two parcel instructions
with the lower parcel in another buffer,
the upper parcel is held in the NIP until
the lower parcel is brought into LIP be-
fore issuing the instruction. The third
output arc of FETCH_MONITOR receives a to-
ken if the address of the instruction is
not in the range of addresses of the four
buffers. The path emanating from the
third output arc represents the fetch se-
quence from memory. The nodes FRQ_SET,
FRQ_RESET, FOP_SET, and FOP_RESET are in-
cluded to communicate the fetch request
(FRQ) and the fetch operation (FOP) state
information with the SCORE_BOARD. An in-
struction fetch sequence from memory can-
not proceed in Cray-iS if one of the fol-
lowing is in progress: a scalar memory
transfer, B-register or T-register
transfer, or a vector block transfer. The
above three situations are represented by
the nodes SCALAR_DELAY, BTT_DELAY, and
VBT DELAY respectively. The time delay
involved in initiating the instruction
fetch sequence depends on the type of
transfer in program and this is known to
the SCORE_BOARD. Hence, snoop arcs are
drawn from the SCORE_BOARD to the above
three nodes to communicate the time delay.
Once an instruction fetch sequence is ini-
tiated, there is a time delay of ii CPs
before the instructions are moved into the
buffer pointed by the next buffer pointer.
This is represented by the
FETCH_SEQUENCE_DELAY node.

The four buffers of the Cray-iS are
represented by the INSTRUCTION_BUFFERS
node. On receiving a token on the first

t
I

L

I' k-

7
I

t
1
I
I
f
I

I
i

"-I

t
L.. .r- Snoop srcs to SCO~E~0AR.D

FLgure 1.a I~STRUCTZON_FETCH

input arc containing the address of an in-
struction, the contents of the address are
supplied on one of the four output arcs.

CIP/LZP CZP/LZP

- Snoop erc l to SCOU~SO.~

, lZ~re l . b ZNSTItUCTIOH ISSUK.CRECKEi

The INSTRUCTION_ISSUE_CHECKER is shown
in Figure l.b. It represents the instruc-
tion registers NIP, LIP, CIP, the instruc-
tion decoding logic, and the necessary
logic to check the issue conditions of in-
structions against the status of the
resources. To check the issue conditions,
the instructions of the Cray-iS, except
the monitor instructions and I/O instruc-
tions, are classified into one of the fol-
lowing types:

a. Branch
b. Arithmetic and logical
c. Scalar memory reference
d. Block transfer
e. Register transfer

For each type, a node is provided in the
INSTRUCTION_ISSUE_CHECKER to check the is-
sue conditions. These five nodes communi-
cate with the SCORE_BOARD to obtain the
status of the resources. The node latency
time of INSTRUCTION_ISSUE_CHECKER varies
depending on the instruction type pro-
cessed and the resources available. The
node latency time is provided by the
SCORE_BOARD.

To reserve registers, memory access
network and a functional unit, the
INSTRUCTION_ISSUE_CHECKER outputs tokens
on one of the first four sets of output
arcs. The four sets of output arcs go
into RESULT_OPERAND_RESERVATIONS, MEMORY-
ACCESS_NETWORK, BLOCK_TRANSFER_ISSUE,
and BRANCH INSTRUCTION_ISSUE nodes
respectively. Two or more instructions

197

using an A-register (S-register) as a
result register cannot complete their exe-
cution at the same time. This is due to a
single access path to A-register (S-
register) group. So during a clock period
at the most one A-register (S-register)
can receive data. The A_S_ACCESS
PATH_RESERVATION node detects A-register
or S-register access path conflicts by
communicating with the SCORE_BOARD and de-
lays the issue of instructions that have
conflicts.

Instructions in Cray-iS can be two par-
cels long. The upper parcel is sent to
NIP, the lower parcel is sent to LIP, and
a blank parcel is sent to the NIP
corresponding to the lower parcel. This
situation is accurately modeled in Figure
l.b.

The RESULT OPERAND_RESERVATIONS unit is
shown in Figure l.c. It models the
mechanisms in Cray-iS that reserves result
registers and operand registers for vector
instructions, and destination register for
register transfer and scalar memory refer-
ence (read) instructions. There is a high
degree of concurrency in the Cray-iS
mechanisms performing the register reser-
vations. This is modeled by the various
parallel paths in Figure l.c.

i

I ~ - ~ 1 - -

] ~_ ~ _

Snc~p . r c l to $COla..E~OA,q/)

Flgurm l . c KESULTOPERJOID_R/~SERVATION$

Instructions of the arithmetic and log-
ical, scalar memory reference, and regis-
ter transfer types use registers. If an
instruction of the above type is issued,
the mechanisms in Cray-iS that reserve re-
gisters are notified. This situation is
represented by the arrival of a token on

one of the first three input arcs in Fig-
ure i.C. Reserving result registers in
the A-register, S-register, VL-register,
or vector register group is carried out by
the first path emanating from the
BT_VM_DETECT node. Reserving the vector
mask (VM) register as a result register is
carried out by the second path emanating
from the BT_V~_DETECT node. Transferring
the contents of registers is carried out
by the third path emanating from the
BT_VM_DETECT node.

The mechanism for setting and synchron-
izing the A0-register busy (AOB) and S0-
register busy (SOB) whenever one of these
registers is used as a result register, is
represented by the A0_S0_RESULTCHECK
node. The mechanism for reserving the
result register of an instruction for the
duration of the instruction execution time
is represented by the RESULTRESERVATION
node. For register transfer and scalar
memory reference instructions, the result
register reservation time is supplied by
the nodes REGISTER_TRANSFER and
SCALAR_MEMORY_REFERENCE respectively. For
arithmetic and logical instructions, the
register reservation time is supplied by
the FUNCTIONAL_UNIT_SEL/RES node (c.f.
Figure l.g).

In Cray-lS, operand registers and func-
tional units of scalar arithmetic instruc-
tions are not reserved. But, operand re-
gisters and the functional units used by
the vector instructions have to be
reserved. The mechanism for detecting
vector arithmetic and logical instructions
is represented by the VECTOR_bIODE_DETECT
node. A vector instruction can use S-
registers or vector registers as source
operands.

If the first operand is a S-register or
a vector register which is the same as the
result vector register, then no register
reservation is required. If the first
operand is a distinct vector register,
then the register is reserved. These two
situations are represented by the two
paths emanating from the
VECTOR_OPERi_DETECT node. In a similar
way, the second operand is checked and a
vector register is reserved if necessary.
The second operand checking and reserva-
tion is represented by the
VECTOR_OPER2_DETECT node.

The MEMORY_ACCESS_NE~qORK, shown in
Figure l.d, represents the mechanisms in
Cray-IS to write from S-registers or A-
registers to memory. Since scalar memory
references can be issued every 2 CPs,
memory bank conflicts can arise if the
references are to the same bank. The rank
register mechanisms to detect and resolve
bank conflicts are also represented in
Figure l.d.

Each scalar memory reference in Cray-IS
contains the memory bank number for the

198

reference. The bank number is checked
against the contents of rank registers B
and C and if it is the same, then a bank
conflict is present. The above action is
represented by the BANK_CONFLICT_DETECT
node. The rank registers are represented
by RANK_A, RANK_ B, and RANK_C nodes with
a node latency time of one. A conflict in
rank B holds the memory reference from
entering rank A register by two CPs while
a rank C conflict causes a one CP delay.
The above situation is represented by the
nodes RB_CONFLICT_DELAY and
RC_CONFLICT_DELAY with node latency time
of two and one respectively.

or_c ~_s'rp.LJc_~$oNF.~rr [

BANK ~CONFLZCT DETECT

BAN]~SKLECT

L
~ M a r y Banks

- Snoop s r c . t o SCOm.' soxan

Y/.BUrS l . d I'flLqORY ACCESS_.NZTWOItg

I l I

[

I BT~ I
[t
I I B*-~*~B~ I

i I

The activities associated with the data
transfers between memory and the B-
registers, T-registers, or the vector re-
gisters are represented in Figures l.e and
l.e.l. The data transfer activity is
called block transfer. Figure l.e shows
the vector register read activity. Figure
l.e.l shows the vector register write, B-
register read (write) and T-register read
(write) activities.

•] ' - - Snoop a r c s to BCOUBOAF.D

Figure l . e llLOCI~_TItANSFFEI~ZSSUE (Rud)

change to the SCOREBOARD. This is done
to prevent the issue of another block
transfer instruction while this transfer
is in progress. The third activity com-
putes the memory hold time and the time
for which the result register has to be
reserved (register reserve time). The
fourth activity reserves the result regis-
ter for the specified time.

I
]
T
I

The VREAD_DETECT node detects block
transfer to one of the vector registers
and initiates four concurrent activities.
The four activities are represented by
four parallel paths. The first activity
resets VREAD. The second activity sets
the VBT flag and communicates the state

l

I
I
b

t
k--

Figure l . e . l B ~ K T ~ B F E , I~[SSUE (w r i t e)

The memory hold time and register
reserve time depend on the vector length
and the use of speed control. The details
involved in the time calculations are
shown in Figure l.e.

199

The VWRITEDETECT node determines
whether the block transfer is a write into
memory from vector registers or block
transfers between memory and B_registers
(T-registers). For a write into memory
from vector registers, four concurrent ac-
tivities are initiated. Each activity is
represented by a path emanating from the
VWRITE_DETECT node. The first activity
resets W#RITE. The second activity sets
VBT and communicates the state change to
the SCORE_BOARD. The third activity com-
putes the memory hold time and the time
for which the first operand register is
reserved. The fourth activity reserves
the first operand register.

The block transfer between memory and
B-registers (T-registers) involves making
state change to BTT, communicating the
state change to SCORE_BOARD, and computing
the memory hold time. This is represented
by the two paths emanating from the
BT_READ_WRITE_DETECT node.

The BRANCH INSTRUCTION_ISSUE node,
shown in Figure l.f, represents the
mechanism in Cray-iS to handle both condi-
tional and unconditional jumps. The
branch address of a jump instruction can
be supplied in a B-register or as an im-
mediate operand using two parcel instruc-
tions. For a jump instruction using a B-
register, if the parcel following the jump
instruction is not in the current buffer,
but is in another buffer then the jump in-
struction execution time is increased by
2 CPs. Otherwise the execution time is
increased by ii CPs. This is represented
by the B_JUMP_DELAY node where the node
latency time is either two or eleven.

OUT 5OL~D~W ITCH

I
I _ _ 3

Figure I. f BRANCH INSTRUCTIO~ I s s u g to ~ PA~C~ ~ R I ~ R

The FUNCTIONAL_UNIT_SEL/RESERVE unit,
shown in Figure l.g, represents the selec-
tion of a functional unit for address and
scalar instructions. It also represents
the selection and reservation of a func-
tional unit for vector instructions.

The system resources in Cray-iS are ac-
quired, used, and released by the various
components of Cray-iS. The status of the
resources are kept in the system and it is
available to all the components of the

system. The state information of the
resources in Cray-iS is represented using
the dataflow graph SCORE_BOARD, shown in
Figure l.h. For each class of resource in
Cray-iS, there is a node in SCORE_BOARD
containing the state information. Snoop
arcs are used in sending state information
to the nodes in the INSTRUCTION_ISSUE UNIT
and receiving state change information
from these nodes. The mnemonics used in
Figure l.h are explained in Table i.

- I
i
I
I

I

t

I

- -- IIIIII

3

VECTOR FLOAT ADDRESS SCALAR ~. SnoOp arcs to
- scoR~2.o.~e,.~

F i g u r e 1 . $ F U H C T I O ~ UNIT SEL/RES

r

I
I "

J

I i

Figure I.h SCOBZBOAKD

Table 1
..

Mnemonic I Description
..

A0B Register AO busy
ARA A-register access path
AREG A-registers
BSW Buffer switch
BIT B-register or T-register transfer
CIP Current instruction parcel ,'
FOP Fetch Operation
FPFU Floating point functional units
FRQ Fetch request
LIP Lower instruction parcel
M Memory

NIP Next instruction parcel
P Program counter

S0B Register $0 busy
SRA S-register access path
SREG S-registers
STH Storage hold
VBT Vector block transfer
VECM Vector mode flag
VFU Vector functional units
VLEN Vector length
VZIB Vector mask busy
VMRI Vector mask read inhibit
VREG V-registers

..

K~D2~S 9~LLT

This unit represents 8 A-registers, 64
B-registers, two functional units for ad-
dress calculations, and a controller that

200

controls among other things the A-register
input path so that one A-register is load-
ed at a time. A dataflow graph of the
unit is shown in Figure 2.

M M CIP LIP

rl];;L. ---
'

- r - u j
I
I

]
Figure 2 ADDRESS UNIT

The node INTERCONNECTIONI represents
the A-register input path and output path.
Input to A-registers can come from B-
registers, memory, functional units ADD
and MULTIPLY, CIP/LIP, and from S-
registers. These inputs are represented
by the various input arcs and the un-
directed arcs to INTERCONNECTIONi. The
undirected arcs represent paths that can
be used either for input or output. At
the most one A-register can be receiving
an input from one of the above mentioned
sources during a clock period (CP). The
contents of A-registers are available
simultaneously to the above mentioned
sources. The node AUNIT_MONITOR
represents the local controller for the
ADDRESS_UNIT. The A_UNIT_MONITOR speci-
fies the control information to INTERCON-
NECTIONi, INTERCONNECTION3 in Figure 3,
and INTERCONNECTION8 in Figure 5 so that
data transfer can take place between the
A-registers and the various functional un-
its. It also provides the operation that
a functional unit has to do and facili-
tates the release of result A-registers
when address computations are completed.

The ADD node represents the pipelined
add functional unit and has a node latency
time of 2 CPs. The MULTIPLY node
represents the pipelined multiply func-
tional unit and has a node latency time of
6 CPs.

m~B_URLT

This unit represents 8 S-registers, 64
T-registers, four functional units capable
of performing arithmetic and logical
operations on scalars, and the local con-
troller of the functional units and the
registers. A dataflow graph of the unit
is shown in Figure 3.

CZP/LIP

- - F :--

2, :t_J

n-n-lr--nTnTn- LL-kCC-_-- :-.71
7J IIII 11111111 1,,

I t . , " " z ~ l i t I I I li~i'mma:il
/

,, I I I i i i

i i i : , l i
_..! i II I I I

i I I1

I I I I 1 ~ ~l=___~ , i , - ~ ; r - , i l l ~ - - : v - J i

L LL
~ ~ F~Luze 3 I ~ UIlT H - M i r y

I

I
i
I

i

I

_J

The node INTERCONNECTION2 represents
the S-register input path and output path.
Input to S-registers come from T-
registers, memory, one element of a vector
register, the four scalar functional un-
its, or CIP/LIP. These inputs are
represented by the various input arcs and
the undirected arcs to INTERCONNECTION2.
At the most one S-register can receive an
input from the above sources during any
CP. The node INTERCONNECTION3 represents
the input path from A-registers to the
shift unit. INTERCONNECTION2 gets the
control information from the local con-
troller, S_UNIT_MONITOR. The controller
provides the operation that a functional
unit has to do, maintains the S-registers,
obtains the status of the functional un-
its, and facilitates the release of result
S-registers when instructions have com-
pleted their executions.

The scalar functional units are pipe-
lined. Each stage of a pipelined func-
tional unit is represented by a node in
Figure 3 and the node latency time of each
of these nodes is one CP. The last stages
of the pipelines put the results in the
S-registers and communicate to the
S_UNIT_MONITOR the successful transfer of
results to the S_registers.

ELOA~/LL~

This unit represents three pipelined
floating point functional units, intercon-
nection networks for making connections
between the functional units and S-
registers and vector registers, and the
local controller of the functional units

201

and the interconnection networks. A da-
taflow graph of the unit is shown in Fig-
ure 4. The node INTERCONNECTION4
represents the interconnection network
between the S-registers and the floating
point functional units. The control infor-
mation for the interconnection network is
supplied by the S_UNIT_MONITOR in Figure
3. The node INTERCONNECTIOH5 represents
the interconnection network between the
V-registers and the floating point func-
tional units. The control information for
the interconnection network is supplied by
the V_UNIT_MONITOR in Figure 5.

.I b + /

,

• I

- ii I
- l

~._ J

Figure A PLO.~ ~ T

The pipelined floating point multiplier
with seven stages is represented by seven
nodes, FMP_STi through FMP_ST7. Each of
the seven nodes has a latency time of one
CP. The last stage of the pipeline,
FMP_ST7, puts the result in a S-register
(vector register) and communicates to the
FP_UNIT_MONITOR the successful transfer of
results. The pipelined floating point
adder with six stages is represented by
six nodes, FAD_ST1 through FAD_ST6. Each
of the six nodes has a latency time of one
CP. The last stage of the pipeline,
FAD ST6, puts the result in a S-register
(vector register) and communicates to the
FP_UNIT_MONITOR the successful transfer of
results. The pipelined floating point di-
vider using reciprocal approximation is
represented by 14 nodes, RCP_STI through
RCP_STI4. Each of the 14 nodes has a la-
tency time of one CP.

The node FP_UNIT_MONITOR provides the
operation that a functional unit must do,
and facilitates the release of registers
after the completion of operations.

~/22~QK_HgL~

This unit represents 8 vector regis-
ters, four functional units capable of

performing fixed point arithmetic, logi-
cal, shift, and population count opera-
tions, interconnection networks between
the functional units and vector registers,
S-registers and A-registers, and the local
controller of the functional units and the
interconnection networks. A dataflow
graph of the unit is shown in Figure 5.

r _ _ _

t! ++ +I

F i g u r e V~TOR~,~I"P

..... snap arc b~/e

Arc

- - Ar~male tB a~]

The node INTERCONNECTION6 represents
the interconnection network between the
S-registers and the vector functional un-
its. The control information for the in-
terconnection network is supplied by the
S_UNIT_MONITOR in Figure 3. The node IN-
TERCONNECTION7 represents the interconnec-
tion network between the vector registers
and the vector functional units. The con-
trol information for the interconnection
network is supplied by the V_UNIT MONITOR.
The interconnection between A-registers
and the vector shift unit is represented
by INTERCONNECTIONS. The four pipelined
vector functional units are represented by
the nodes VADD, VLOGICAL, VSHIFT, and
VPPC. They have the functional unit node
latency times of 3, 2, 4, and 4 respec-
tively. The node V_UNIT_MONITOR provides
the operation that a functional unit has
to do, communicates the control informa-
tion to interconnection networks, and fa-
cilitates the release of registers after
the completion of instruction executions.

A complete description of the nodes in
the dataflow graph model of Cray-iS as
well as the GPSS blocks used to implement
the nodes are in [16].

~ ~ WITH THE CRAY-~.~/Q.p.~

In this section, the results obtained
from running several benchmark programs on
the CRAY-iS model are presented. The
simulated execution times of some of these
programs are compared with the actual exe-
cution times on a CRAY-iS computer. In

202

addition, the results of some experiments
performed on the model are included.
These experiments are aimed at studying
the effect of removing some of the
bottlenecks in the CRAY-iS architecture.
With each experiment, the simulated execu-
tion time and the rate at which instruc-
tions are issued are presented. Both these
statistics are given in simulated clock
periods (12.5 nanoseconds). Finally, some
areas of future work are discussed includ-
ing some additional enhancements to the
architecture.

Used ~i/l the

Control streams for four sample pro-
grams are generated and used as input in
the simulation runs. The first program is
a full scalar matrix multiplication called
FSMTRXM. This program performs matrix
multiplication by using scalar instruc-
tions exclusively (i.e., there are no vec-
tor operations involved). The second pro-
gram, called FVMTRXM, uses mostly vector
instructions to perform the matrix multi-
plication. Both matrix multiplication
programs along with the execution times on
CRAY-iS were supplied by Cray Research,
Inc. The other programs used, called
CSPLIN and TRIMAT, are portions of subrou-
tines employed in the feasibility study of
FMP [4,18].

Table 2 shows the distribution of in-
struction types for each of the four pro-
grams. Note that the arithmetic-logical
type has been broken down into scalar and
vector instructions. The time taken to
complete the simulation for each program
on the model without changes is shown in
Table 3. For FSMTRXM and FVMTRXM the ac-
tual execution times on CRAY-IS for one
iteration (multiplication of two scalar
values) and five iterations (multiplica-
tion of two 5 x 5 matrices) are also
shown. In each case, the simulated execu-
tion time is within acceptable bounds of
the actual execution time. For the purpose
of the experiments, the five iteration
versions of FSMTRXM and FVMTRXM are used.
Also shown on this table is the average
time in CPs an instruction parcel spent in
CIP waiting to issue. This is an important
statistic in measuring performance since
it represents the rate at which instruc-
tions are issued. Under ideal conditions,
this time should be 1 CP. The average
time per parcel in NIP is also shown.

In addition to the four programs
described above, a number of small pro-
grams have been used to determine the ac-
curacy of the model. These programs test-
ed operations such as branches and buffer
fetch sequences. In all these cases, the
simulated times agreed with the time taken
to run the programs on CRAY-iS.

The dataflow model of Cray-lS is
analyzed to detect potential bottlenecks
in the CRAY-iS architecture. Several clues

Table 2 Introduction Type Distribution In Programs
..

Type of Instruction FSMTRXM FVMTRXM CSPLIN TRIMAT
..

Branch 7.63 5.01 2.68 3.44
Arithmetic-logical

Scalar 41.47 33.64 28.76 47.13
Vector 0.00 2.84 12.04 0.00

Scalar Memory
Reference 38.48 19.59 7.02 21.31

Block Memory
Transfer 0.10 4.34 13.71 0.16

Register Transfer 12.32 34.57 35.79 27.95
..

Table 3 Statistics For Model Without Changes
..

Average Average
CRAY-iS Time Per Time Per

Execution Simulated Parcel Parcel
Program Time Time In NIP In CIP
...

FSMTRXM
(i iteration) 269 269 1.88 1.79

FSMTRXM
(5 iterations) 10665 10625 1.62 1.58

FVMTRXM
(i iteration) 364 361 1.89 1.92

FVMTRXM
(5 iterations) 4824 4681 1.84 1.85

CSPLIN -- 3061 8.92 8.92
TRIMAT -- 3426 2.15 2.12
...

for improving the performance have been
found. Based on these clues, a list of
changes that can be readily implemented on
the model is found. In the following sec-
tions, these changes and the results ob-
tained when they are simulated on the
model are presented.

~Z~edLi/K~II~ i: Chanaina the Number and
~I~ Instruction Buffers

This experiment consists of reducing
the number of instruction buffers in the
model from four to two while increasing
the size of each buffer from 16 words to
32 words. This means that the look-ahead
capability remains the same (256 parcels).
The change is simulated for transfer rates
of four words per CP (as in the model
without changes) as well as eight words
per CP.

The results in Table 4 show a slight
decrease in simulated execution time for
the programs. The decrease is not very
significant due to the relatively small
size of the programs. This allows the pro-
cessor to operate in loop-mode once the
buffers are loaded.

Table 4 Results from Experiment 1
...

4 words per CP
...

Average
Time per

Simulated Percent Parcel Percent
Program Time Improvement In CIP Improvement

FSMTRXM 10609 0.15 1.58 --
FVMTRXM 4625 1.20 1.85 --
CSPLIN 2991 2.29 8.78 1.61
TRIMAT 3422 0.12 2.12 --

8 words per CP
..

Average
Time per

Simulated Percent Parcel Percent
Time Improvement In CIP Improvement

..

10605 0.19 1.58 --
4621 1.28 1.85 --
2983 2.55 8.78 1.61
3414 0.35 2.12 --

..

203

Fd~_~xdmaag l: ~/d~ia~.~taa ~ ~Suasla
~-~ Access P.a~.Ja

This experiment is designed to study
the effect of removing the constraint of a
single access path to A registers and S
registers. This corresponds to removing
the A_S_ACCESS_PATH_RESERVATION node from
the dataflow model. In this way, any
number of A registers and S registers can
be entered with information at a given
clock period.

The results of this experiment are
shown in Table 5. A slight decrease in
the simulated execution time is obtained
for all four programs. The average time
spent by an instruction in CIP decreases
in proportion to the simulated execution
time. These results tend to indicate that
the single access path to A registers (S
registers) is not a significant bottleneck
in the CRAY-iS architecture. This is true
even for programs which use scalar in-
structions almost exclusively like FSMTRXM
and TRIMAT.

Table 5 Results From Experiment 2
..

Average Time
Simulated Percent Per Parcel Percent

Program Time Improvement In CIP Improvement
..

FSMTRXM 10600 0.24 1.57 0.25
FVMTRXM 4646 0.75 1.83 0.76
CSPLIN 3057 0.13 8.91 0.13
TRIMAT 3405 0.61 2.10 0.66

..

~: Reduced Memory
~ Time

The next experiment consists of reduc-
ing the memory bank cycle time in half
(from 4 CPs to 2 CPs). This reduction has
the effect of eliminating the possibility
of bank conflicts for scalar memory refer-
ences. This is due to the fact that
scalar references take 2 CPs to issue. In
addition, the reduced bank cycle time de-
creases the possibility of bank conflicts
in vector block transfers. Speed control
[2] is now required only when the starting
memory address is incremented by a multi-
ple of 16. In this case, the transfer
rate is one word every 2 CPs.

The results in Table 6 indicate that
programs like FSMTRXM, FVMTRXM, and TRIMAT
which have a large number of scalar memory
references, benefit significantly from
this change. The decrease in execution
time for CSPLIN was very slight. This is
as expected since this program has a large
number of vector block transfers and the
vector lengths are relatively long (around
150 elements). A reduction in bank cycle
time only speeds up the setup time for
vector block transfer operations.

Table 6 Results From Experiment 3
..

Average time
Simulated Percent Per Parcel Percent

Program Time Improvement In CIP Improvement
..

FSHTRXM 10017 5.72 1.48 6.22
FVMTRXM 4389 6.24 1.73 6.34
CSPLIN 3036 0.82 8.88 0.44
TRIMAT 3225 5.87 1.99 6.00

..

~Z~_~dK~i~ ~: ~ Memory~lli~W_i~.~h
for Vector

The results of experiment 3 indicat~
that a faster bank cycle time has no sig-
nificant effect on vector block transfers.
In the next experiment, the memory
bandwidth for vector block transfers is
increased so that up to four memory banks
can be accessed simultaneously. This al-
lows a transfer rate of up to four words
per CP when successive references to a
particular bank are at least 4 CPs apart.

The results in Table 7 show a 30.97%
decrease in the simulated execution time
for CSPLIN and a 31.45% decrease in the
average time an instruction spends in the
CIP register. The decrease is larger than
expected even for a program with a high
number of vector block transfers. This is
probably due to the comparatively large
size of the vectors in this program. This
change had no effect on the other pro-
grams. For FSMTRXM and TRIMAT this is to
be expected since no vector block
transfers are involved. In the case of
FVMTRXM, the vector lengths are of only
five elements. This means that any in-
crease in the transfer rate is going to be
offset by the vector startup time.

Table 7 Results From Experiment 4
..

Average time
Simulated Percent Per Parcel Percent

Program Time Improvement In CIP Improvement
... .

FSMTRXM 10625 1.58 -
FVbITRXM 4681 - 1.85
CSPLIN 2113 30.97 6 .Ii 31745
TRIMAT 3426 - 2.12

- - - 6 2 -

Time

Chaining of two vector operations [1,2]
can take place only at chain slot time
(i.e., functional unit time plus 2 CPs).
If the second operation is not ready to
issue at this time, then it has to wait
for the completion of the first instruc-
tion. The performance of the system can
be further improved by allowing chaining
to take place at any time between func-
tional unit time plus 2 CPs and the end of
a vector operation. This experiment con-
sists of implementing such a change in the
model. The results of this experiment are
shown in Table 8. The execution time of
CSPLIN decreased by 8.92% while the aver-
age time per parcel in CIP decreased by
9.19%. This is as expected since there
are several successive vector instructions
in this program, each processing relative-
ly long vectors. Extending the chain slot
time should benefit these operations since
missing the opportunity to chain means a
considerable wait for the release of a
result register. This wait in turn holds
the entire instruction pipeline. Surpris-
ingly, the change had no effect on
FVMTRXM. This is probably due to the
shorter vector lengths in this program and
to the distribution of the vector instruc-
tions (i.e., they are not clustered to-
gether).

204

Table 8 Results From Experiment 5
..

Average time
Simulated Percent Per Parcel Percent

Program Time Improvement In CIP Improvement
..

FSMTRXM 10625 -- 1.58 --
FVMTRXM 4681 -- 1.85 --
CSPLIN 2788 8.92 8.10 9.19
TRIMAT 3426 -- 2.12 --

..

ExDeriment ~: ~ InstructiQn Issue

The purpose of the experiments
described so far has been to speed up the
execution of certain operations such as
memory transfers and to increase the rate
at which instructions are issued by elim-
inating certain issue conditions such as
the single access path to scalar regis-
ters. The fact still remains that the
INSTRUCTION_ISSUECHECKER services in-
structions on a first-in-first-out basis.
This means that when an instruction cannot
be issued because some condition is not
satisfied, subsequent instructions cannot
be issued either. In many cases, these
instructions are ready to issue and can
potentially even complete their execution
before the one in CIP issues. This is not
possible under the present system because
only one CIP/LIP register pair is avail-
able. In this experiment, the model is
modified to include two CIP/LIP register
pairs. This increases the bandwidth of
the INSTRUCTION_ISSUE_CHECKER by allowing
up to two instructions to issue at every
clock period. In addition, instead of
servicing instructions on a strictly
first-in-first-out basis, an instruction
can be issued ahead of its predecessor in
the pipeline, provided no procedural con-
flicts [i0] exist between the instruc-
tions. When an instruction is in one CIP
and a second instruction is ready to move
to another CIP, the following conditions
are checked:

a. The results and operand registers
of the second instruction must be
different from the result register
of the first instruction.

b. The result register of the second
instruction must be different from
the operand(s) of the first in-
struction.

c. If the second instruction is a
vector instruction, its operand(s)
must be different from the
operand(s) of the first instruc-
tion.

d. If the first instruction is a vec-
tor instruction, the second in-
struction cannot load the VL re-
gister.

e. If the first instruction refer-
ences memory, the second instruc-
tion cannot.

f. The functional units required by
the instructions must be dif-
ferent.

If any of these conditions are not satis-
fied, the second instruction is kept in
NIP until the first instruction is issued.

Some of these conditions are strictly pro-
cedural and cannot be avoided. However,
there are some which are included to sim-
plify the changes to the model. This means
that whatever results are obtained can be
further improved if some additional
changes are made.

The results of this experiment are
shown in Table 9. As can be seen, even
this restricted scheme of parallel in-
struction issue had a significant effect
on all four programs. This confirms our
assumption that the single set of instruc-
tion registers presented a major
bottleneck. For this experiment, the
average time spent by an instruction par-
cel in NIP is given. This time is then
compared with the time obtained in the
model without changes. For all programs,
a significant increase in the rate at
which instruction parcels leave this re-
gister can be observed. The average time
each parcel spent in CIP remained the same
as in the model without changes. This is
to be expected since the extra CIP/LIP re-
gister pair has no effect on the issue
conditions of individual instructions.

Table 9 Results From Experiment 6

Average Time
Simulated Percent Per Parcel Percent

Program Time Improvement In NIP Improvement
..

FSMTRXM 9859 7.21 1.47 8.90
FVMTRXM 3886 16.98 1.50 18.45
CSPLIN 2957 3.40 8.46 5.19
TRIMAT 3182 7.12 1.99 7.35

..

~ C Q~PJk~Ig~Z

The research effort considered the ef-
fects of removing several potential
bottlenecks in the CRAY-iS on its perfor-
mance. The limited number of experiments
conducted on the model shows that there
are some areas in which the architecture
can be improved.

In terms of the main memory unit, two
significant improvements can be made. For
programs with predominantly scalar memory
references, a reduction in the bank cycle
time contributes significantly to improve
system performance. For programs with a
considerable amount of vector memory in-
structions, a higher transfer rate can
have a considerable effect.

Experiment 5 showed that for programs
with a high concentration of vector in-
structions, an extended chain slot time
contributes significantly to accelerate
the rate at which instructions are issued.

Experiment 6 showed fairly conclusively
that the INSTRUCTION_ISSUE_CHECKER is a
major bottleneck in the CRAY-iS architec-
ture. This experiment had a significant
effect on all four programs. It showed
that even with the restrictions imposed,
an extra CIP/LIP register pair can improve
system performance considerably.

205

A change that was not implemented in
the model but which can improve the per-
formance of vector operations is to treat
the V registers as FIFO queues. Under this
scheme, two pointers are maintained for
each V register: one for the front of the
queue and one for the back of the queue.
In this way, only the register elements
are reserved during the clock period in
which a result is transferred to them from
a functional unit.

An interesting area for future work is
to extend the concept presented in experi-
ment 6 to include multiple instruction un-
its, each connected to an instruction
buffer. With the present number of
buffers, four independent instruction un-
its can be implemented. These units can
potentially operate in a tightly-coupled
environment by using a single program
counter, or by using several program
counters operating in parallel.

ACKNOWLEDGEMENTS

we are thankful to Martin Storma of
Cray Research Inc. for supplying some of
the test programs and discussions on some
of the intricacies of Cray-iS.

1.

2.

3.

4.

5.

6.

7.

BZ2~B2~2~

R. M. Russell, "The Cray-i Computer
System", Communications of the ACM,
Vol. 21, No. i, Jan. 1978, pp 63-72.

Cray-iS Series Hardware Reference
Manual, HR-0808, June 1980, Cray
Research Inc., Mendota Heights, MN
55120.

E. W. Kozdrowicki, and D. J. Thesis,
"Second Generation of Vector Super-
computers", Computer Magazine, Nov.
1980, pp 71-83.

S. F. Lundstrom, and G. H. Barnes,
"A Controllable MIMD Architecture",
Proceedings of the 1980 Conference
on Parallel Processing, Michigan,
Aug. 1980, pp 49-52.

D. E. Lang, "Modeling for Parallel-
Pipeline Central Processors", Ph.D.
Dissertation, 1979, University Mi-
crofilm, Ann Arbor, MI, No. 7920153.

J. M. Mirza, "Analysis and Design of
Pipeline Processors", Ph.D. Disser-
tation, 1979, University Microfilm,
Ann Arbor, MI, No. 7920792.

J. R. Enshoff, and R. L. Sisson,
Design and Use of Computer Systems
Models, Macmillan Publishing Co.,
New York, 1970.

8.

9.

i0.

ii.

12.

13.

14.

15.

16.

17.

18.

J. B. Dennis, "First Version of a
Data Flow Procedure Language", Pro-
ject MAC Tech. Memo: 61, May 1975,
MIT, Cambridge, MA.

V. P. Srini, "An Extended Abstract
Dataflow Methodology for Designing
and Modeling Reconfigurable Sys-
tems", Ph.D. Dissertation, 1980,
University Microfilm, Ann Arbor, MI,
No. 8100289.

J. L. Baer, Computer Systems
tecture, Computer Science
Inc., Potomac, MD, 1980.

Archi-
Press

D. W. Anderson, F. J. Sparacio, and
R. M. Tomasulo, "The IBM 360 Model
91: Machine Philosophy and Instruc-
tion Handling", IBM Journal of
Research and Development, ii, Jan.
1967, pp 8-24.

J. E. Thornton, Design of a Computer
System: The Control Data 6600,
Scott, Foresman and Co., Glenview,
IL, 1970.

G. Gordon, The Application of GPSS V
to Discrete System Simulation,
Prentice-Hall Inc., Englewood
Cliffs, NJ, 19754

IBM Corp., General Purpose Simula-
tion System V Users Manual, SH20-
0851-1, Aug. 1971, IBM, White
Plains, NY 10604.

S. P. Landry, and B. D. Shriver, "A
Simulation Environment for Perform-
ing Dataflow Research", 1979 Confer-
ence on Simulation, Measurement and
Modeling of Computer Systems, Bould-
er, Colorado, Aug. 1979, pp 131-139.

J. F. Asenjo, Analysis of Cray-iS
using Dataflow Graphs, M.S. Thesis,
Computer Science Dept., Univ. of
Alabama, Birmingham, AL 35294, June
1982.

B. Kumar, and E. S. Davidson, "Per-
formance Evaluation of Highly Con-
current Computers by Deterministic
Simulation", Communications of the
ACM, Vol. 21, NO. ii, Nov. 1978, pp
904-913.

NASA Ames Research Center, "Numeri-
cal Aerodynamic Simulator Processing
System Specification - Appendix III,
Version 1.0", PC 320-02, NASA Ames
Research Center, Moffett Field, CA,
Sept. 1980.

206

