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ABSTRACT 

An analysis of the Cray-iS architecture 
based on dataflow graphs is presented. 
The approach consists of representing the 
components of a Cray-lS system as the 
nodes of a dataflow graph and the inter- 
connections between the components as the 
arcs of the dataflow graph. The elapsed 
time and the resources used in a component 
are represented by the attributes of the 
node corresponding to the component. The 
resulting dataflow graph model is simulat- 
ed to obtain timing statistics using as 
input a control stream that represents the 
instruction and data stream of the real 
computer system. 

The Cray-iS architecture is analyzed by 
conducting several experiments with the 
model. It is observed that the architec- 
ture is a well balanced one and perfor- 
mance improvements are hard to achieve 
without major changes. Significant im- 
provement in performance is shown when 
parallel instruction issue is allowed with 
multiple CIP/LIPs in the architecture. 

i. INTRODUCTION 

Computer systems such as the CRAY-iS 
[1,2], CYBER 205 [3], and the Flow Model 
Processor (FMP) [4] are highly concurrent 
systems using several advanced architec- 
ture principles. In the design of these 
and other future computer systems, it is 
important to understand how the system 
parameters and the work load variations 
interact. Developing an easily modifiable 
prototype of a complex computer system and 
running benchmark programs on it to under- 
stand the interaction of parameters is ex- 
pensive. Analytical models using queuing 
theory techniques or Markov models, such 
as the ones presented in [5,6], cannot ac- 
curately model state of the art techniques 
such as conditional issue of instructions, 
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references to interleaved memory, and 
chaining of vector instructions [1,3]. 
Monte Carlo simulation models [7] make 
simplifying and sometimes inaccurate pro- 
babilistic assumptions and cannot be used 
effectively to model complex computer sys- 
tems. 

Dataflow graphs [8,9] are presented as 
an approach for designing and modeling 
computer systems with a high degree of 
concurrency and pipelining. There are two 
main objectives in using such an approach. 
The first objective is to analyze the ar- 
chitecture and to detect potential 
bottlenecks. The second objective is to 
improve the performance of the system by 
introducing several changes to the model 
based on the clues obtained from the 
analysis. The dataflow approach is 
motivated by the observation that several 
of the functional units in CRAY-iS, CYBER 
205, and earlier computers such as IBM 
360/91 [i0,ii] and CDC 6600 [10,12] per- 
form in a data driven manner although the 
whole system is not a dataflow computer 
system. 

The CRAY-iS computer employs many state 
of the art techniques such as the follow- 
ing: 

a. instruction look-ahead, 
b. concurrent execution of instruc- 

tions, 
c. pipelining in functional units, 
d. interleaved memory, 
e. vectorizing and chaining. 

The features in each of these areas are 
accurately modeled using dataflow graphs. 
Making changes to the model and running 
experiments on the model can be readily 
carried out. In our analysis of CRAY-IS, 
various experiments are performed aimed at 
improving system performance. These exper- 
iments are in the following areas: 

a. change the size and number of in- 
struction buffers, 

b. eliminate single access path res- 
triction to scalar registers, 

c. increase memory bandwidth for vec- 
tor memory transfers, 
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d. reduce cycle time of memory banks, 
e. extend the period during which 

chaining of vector operations is 
allowed to occur, and 

f. provide two current instruction 
parcel registers (CIPs). 

To determine the accuracy of the model, 
and to obtain timing and resource usage 
statistics necessary to analyze the archi- 
tecture, the model is simulated using a 
discrete event simulator such as GPSS 
[13,14]. Another approach to dataflow 
simulation is described in [15]. 

The rest of the paper is divided into 
three sections. An overview of dataflow 
graphs is in Section 2. A dataflow graph 
model of Cray-iS is described in Section 
3. Experiments that have been done on the 
model to analyze the architecture are in 
Section 4. The complete model of Cray-iS 
and the control streams used in the exper- 
iments are in [16]. 

~ GRAPH 

The dataflow graph used in this work is 
an undirected or partially directed graph 
specified as a 4-tuple (A,N,S,K), where 

A is a set of arcs with attributes 
representing the data paths or the 
interconnection between the com- 
ponents of a computer system, 

N is a set of nodes with attributes 
representing the components of a 
computer system including the lo- 
cal controllers and the global 
controller (score board), 

S is a set of special arcs called 
snoop arcs for gathering the state 
information from nodes and commun- 
icating values to the attributes 
of arcs and nodes, and 

K is a scheme for tagging the tokens 
on arcs so that several distinct 
calculations can be processed in 
the proper order without interfer- 
ence between distinct calcula- 
tions. 

A configuration is an assignment of values 
to the attributes of arcs and nodes. Ini- 
tially the graph is in a configuration, I. 
Changing the configuration of the graph 
from time to time is called reconfigura- 
tion. Although the model has the neces- 
sary mechanisms to do dynamic reconfigura- 
tion, it will not be emphasized in this 
work. The interested reader is referred 
to [9]. 

As a result of node firing, tokens flow 
between the nodes in a dataflow graph. 
Tokens represent the instruction, data, 
and state information in the real computer 
system. The number of tokens on the arcs 

change and the number of nodes firing also 
change. So, a dataflow graph is a dynamic 
entity and can model the dynamic aspects 
of computer systems. 

For each arc, several attributes are 
defined so that some of the parameters of 
computer systems can be readily represent- 
ed. The arc attributes are: 

< arc label, 
node label of one end, 
node label of the other end, 
arc type ("directed" or "undirect- 
ed"), 
type of token the arc is allowed to 
carry, 
current number of tokens on the 
arc, 
arc capacity, 
and arc latency time (the minimum 
time required for any token to 
traverse the arc) >. 

The first attribute is intended for 
identification and the next three attri- 
butes are for specifying the interconnec- 
tion characteristics. The fifth attribute 
is intended for representing the width of 
data paths or the width of buffers. The 
sixth attribute is intended to show how 
many data items are waiting to be pro- 
cessed by the components of a computer 
system. The arc capacity attribute is in- 
tended for specifying the maximum number 
of data items that can be waiting for a 
component or the maximum number of 
buffers. The last attribute is intended 
for specifying the time required to 
transfer buffer contents or the memory cy- 
cle time. This can be zero or any posi- 
tive value. 

For each node the following attributes 
are defined: 

< node label, 
enabling condition (firing 
set (FSS)), 
operation, and 
node latency time > 

semantics 

The node label attribute is intended for 
identification. Sometimes the node label 
might reflect the operation associated 
with the node. The FSS is intended for 
specifying the data items and resources 
such as buffer space that must be avail- 
able before the beginning of an activity. 
The operation attribute is intended for 
representing the resources used and their 
state change in performing the transforma- 
tions on the supplied data. An operation 
can be a primitive [8] or specified as a 
dataflow graph. This facilitates a high 
level or a detailed low level representa- 
tion for the components in a computer sys- 
tem. The node latency time is provided 
for specifying the time required to do the 
transformations on the supplied data. The 
time can be zero or any positive value. 
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Using the arc latency time and node laten- 
cy time the timing statistics for dif- 
ferent programs can be calculated provided 
the instructions of the programs and the 
data flow generated by the instructions 
can be supplied as tokens to the dataflow 
graph. This is done using the control 
stream approach discussed in [17]. 

~QDZL ~ ~-iS 

A Cray-iS computer [1,2] consists of 13 
pipelined functional units divided into 
four groups: scalar, floating point, vec- 
tor, and address. Several functional un- 
its can be concurrently executing instruc- 
tions depending on the application program 
and the way in which the instructions are 
issued. 

In this section, a dataflow graph model 
of Cray-iS is shown. The model is 
presented at various levels of detail. 
The high level model comprises five da- 
tallow graphs that represent the follow- 
ing: 

a. Fetching and the issuing of in- 
structions, 

b. Functional units performing ad- 
dress calculations, 

c. Functional units performing opera- 
tions on scalars, 

d. Functional units performing opera- 
tions on floating point numbers, 

e. Functional units performing opera- 
tions on vectors. 

The dataflow graphs are shown in Figures 1 
through 5. Some of the key parts of 
Cray-iS are the instruction fetch and the 
instruction issue mechanisms. The details 
of the mechanisms are shown by refining 
the nodes in Figure i. 

To analyze the architecture of Cray-iS 
for improving performance and to determine 
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the accuracy of the model, timing statis- 
tics and resource usage statistics are 
needed. The required statistics can be 
readily obtained if the model is simulated 
using a deterministic discrete event simu- 
lator such as GPSS [13,14] or a dataflow 
simulator [15]. We decided on GPSS be- 
cause of its widespread use in simulation 
and its availability. Furthermore, the 
primitive nodes In dataflow graphs can be 
readily represented using the GPSS V func- 
tion blocks. The attributes of nodes and 
arcs can be specified as transaction 
parameters. The nodes in the dataflow 
graph are realized using GPSS V blocks or 
PL/i HELP blocks. The control stream 
representing the flow of instructions and 
data in the real computer system are 
presented as transactions. The details of 
the dataflow graph model of Cray-iS are 
now shown. 

INSTRUCTION ISSUE J/~ii2 

This unit identifies the next instruc- 
tion to be processed, checks the issue 
conditions against the available 
resources, and communicates with the glo- 
bal control unit (SCORE_BOARD) to reserve 
functional units, registers, and data 
paths. Figure 1 is a dataflow graph of 
the unit. Each node in Figure 1 is now 
explained. 

The INSTRUCTION_FETCH represents the 
following: 

a. Program counter (P register), 
b. Mechanisms to determine whether 

the next instruction parcel is in 
the current buffer, another 
buffer, or in memory (out of 
buffer), and 

c. Mechanisms to initiate instruction 
fetch from memory on encountering 
an out of buffer condition. 

Figure l.a shows a dataflow graph of the 
INSTRUCTION_FETCH. The mnemonics and the 
notations used in the dataflow graphs are 
explained in Table i. Whenever the node P 
receives a token, it outputs the address 
of an instruction parcel that may or may 
not be in the current buffer. The 
FETCH_MONITOR node determines whether the 
address received on its second input arc 
corresponds to the address of an instruc- 
tion in the current buffer, another 
buffer, or out of buffer using the token 
on the first input arc. If the received 
address is in the range of addresses of 
the current buffer then the FETCH_MONITOR 
outputs a token containing the address on 
the first output arc that eventually 
reaches the input arc of 
INSTRUCTION_BUFFER without any time delay. 
If the received address is in the range of 
addresses of another buffer, then the 
FETCH_MONITOR outputs a token on the 
second output arc. The four buffers are 
searched in a circular fashion and a time 
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delay of 2 clock periods (CPs) is intro- 
duced by the SWITCH_DELAY node. The nodes 
BSW_SET and BSW_RESET are provided to com- 
municate the buffer switch (BSW) state in- 
formation with the SCORE_BOARD. This is 
done so that for two parcel instructions 
with the lower parcel in another buffer, 
the upper parcel is held in the NIP until 
the lower parcel is brought into LIP be- 
fore issuing the instruction. The third 
output arc of FETCH_MONITOR receives a to- 
ken if the address of the instruction is 
not in the range of addresses of the four 
buffers. The path emanating from the 
third output arc represents the fetch se- 
quence from memory. The nodes FRQ_SET, 
FRQ_RESET, FOP_SET, and FOP_RESET are in- 
cluded to communicate the fetch request 
(FRQ) and the fetch operation (FOP) state 
information with the SCORE_BOARD. An in- 
struction fetch sequence from memory can- 
not proceed in Cray-iS if one of the fol- 
lowing is in progress: a scalar memory 
transfer, B-register or T-register 
transfer, or a vector block transfer. The 
above three situations are represented by 
the nodes SCALAR_DELAY, BTT_DELAY, and 
VBT DELAY respectively. The time delay 
involved in initiating the instruction 
fetch sequence depends on the type of 
transfer in program and this is known to 
the SCORE_BOARD. Hence, snoop arcs are 
drawn from the SCORE_BOARD to the above 
three nodes to communicate the time delay. 
Once an instruction fetch sequence is ini- 
tiated, there is a time delay of ii CPs 
before the instructions are moved into the 
buffer pointed by the next buffer pointer. 
This is represented by the 
FETCH_SEQUENCE_DELAY node. 

The four buffers of the Cray-iS are 
represented by the INSTRUCTION_BUFFERS 
node. On receiving a token on the first 
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input arc containing the address of an in- 
struction, the contents of the address are 
supplied on one of the four output arcs. 

CIP/LZP CZP/LZP 

- Snoop erc l  to SCOU~SO.~ 
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The INSTRUCTION_ISSUE_CHECKER is shown 
in Figure l.b. It represents the instruc- 
tion registers NIP, LIP, CIP, the instruc- 
tion decoding logic, and the necessary 
logic to check the issue conditions of in- 
structions against the status of the 
resources. To check the issue conditions, 
the instructions of the Cray-iS, except 
the monitor instructions and I/O instruc- 
tions, are classified into one of the fol- 
lowing types: 

a. Branch 
b. Arithmetic and logical 
c. Scalar memory reference 
d. Block transfer 
e. Register transfer 

For each type, a node is provided in the 
INSTRUCTION_ISSUE_CHECKER to check the is- 
sue conditions. These five nodes communi- 
cate with the SCORE_BOARD to obtain the 
status of the resources. The node latency 
time of INSTRUCTION_ISSUE_CHECKER varies 
depending on the instruction type pro- 
cessed and the resources available. The 
node latency time is provided by the 
SCORE_BOARD. 

To reserve registers, memory access 
network and a functional unit, the 
INSTRUCTION_ISSUE_CHECKER outputs tokens 
on one of the first four sets of output 
arcs. The four sets of output arcs go 
into RESULT_OPERAND_RESERVATIONS, MEMORY- 
ACCESS_NETWORK, BLOCK_TRANSFER_ISSUE, 
and BRANCH INSTRUCTION_ISSUE nodes 
respectively. Two or more instructions 
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using an A-register (S-register) as a 
result register cannot complete their exe- 
cution at the same time. This is due to a 
single access path to A-register (S- 
register) group. So during a clock period 
at the most one A-register (S-register) 
can receive data. The A_S_ACCESS 
PATH_RESERVATION node detects A-register 
or S-register access path conflicts by 
communicating with the SCORE_BOARD and de- 
lays the issue of instructions that have 
conflicts. 

Instructions in Cray-iS can be two par- 
cels long. The upper parcel is sent to 
NIP, the lower parcel is sent to LIP, and 
a blank parcel is sent to the NIP 
corresponding to the lower parcel. This 
situation is accurately modeled in Figure 
l.b. 

The RESULT OPERAND_RESERVATIONS unit is 
shown in Figure l.c. It models the 
mechanisms in Cray-iS that reserves result 
registers and operand registers for vector 
instructions, and destination register for 
register transfer and scalar memory refer- 
ence (read) instructions. There is a high 
degree of concurrency in the Cray-iS 
mechanisms performing the register reser- 
vations. This is modeled by the various 
parallel paths in Figure l.c. 
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Instructions of the arithmetic and log- 
ical, scalar memory reference, and regis- 
ter transfer types use registers. If an 
instruction of the above type is issued, 
the mechanisms in Cray-iS that reserve re- 
gisters are notified. This situation is 
represented by the arrival of a token on 

one of the first three input arcs in Fig- 
ure i.C. Reserving result registers in 
the A-register, S-register, VL-register, 
or vector register group is carried out by 
the first path emanating from the 
BT_VM_DETECT node. Reserving the vector 
mask (VM) register as a result register is 
carried out by the second path emanating 
from the BT_V~_DETECT node. Transferring 
the contents of registers is carried out 
by the third path emanating from the 
BT_VM_DETECT node. 

The mechanism for setting and synchron- 
izing the A0-register busy (AOB) and S0- 
register busy (SOB) whenever one of these 
registers is used as a result register, is 
represented by the A0_S0_RESULTCHECK 
node. The mechanism for reserving the 
result register of an instruction for the 
duration of the instruction execution time 
is represented by the RESULTRESERVATION 
node. For register transfer and scalar 
memory reference instructions, the result 
register reservation time is supplied by 
the nodes REGISTER_TRANSFER and 
SCALAR_MEMORY_REFERENCE respectively. For 
arithmetic and logical instructions, the 
register reservation time is supplied by 
the FUNCTIONAL_UNIT_SEL/RES node (c.f. 
Figure l.g). 

In Cray-lS, operand registers and func- 
tional units of scalar arithmetic instruc- 
tions are not reserved. But, operand re- 
gisters and the functional units used by 
the vector instructions have to be 
reserved. The mechanism for detecting 
vector arithmetic and logical instructions 
is represented by the VECTOR_bIODE_DETECT 
node. A vector instruction can use S- 
registers or vector registers as source 
operands. 

If the first operand is a S-register or 
a vector register which is the same as the 
result vector register, then no register 
reservation is required. If the first 
operand is a distinct vector register, 
then the register is reserved. These two 
situations are represented by the two 
paths emanating from the 
VECTOR_OPERi_DETECT node. In a similar 
way, the second operand is checked and a 
vector register is reserved if necessary. 
The second operand checking and reserva- 
tion is represented by the 
VECTOR_OPER2_DETECT node. 

The MEMORY_ACCESS_NE~qORK, shown in 
Figure l.d, represents the mechanisms in 
Cray-IS to write from S-registers or A- 
registers to memory. Since scalar memory 
references can be issued every 2 CPs, 
memory bank conflicts can arise if the 
references are to the same bank. The rank 
register mechanisms to detect and resolve 
bank conflicts are also represented in 
Figure l.d. 

Each scalar memory reference in Cray-IS 
contains the memory bank number for the 
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reference. The bank number is checked 
against the contents of rank registers B 
and C and if it is the same, then a bank 
conflict is present. The above action is 
represented by the BANK_CONFLICT_DETECT 
node. The rank registers are represented 
by RANK_A, RANK_ B, and RANK_C nodes with 
a node latency time of one. A conflict in 
rank B holds the memory reference from 
entering rank A register by two CPs while 
a rank C conflict causes a one CP delay. 
The above situation is represented by the 
nodes RB_CONFLICT_DELAY and 
RC_CONFLICT_DELAY with node latency time 
of two and one respectively. 
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The activities associated with the data 
transfers between memory and the B- 
registers, T-registers, or the vector re- 
gisters are represented in Figures l.e and 
l.e.l. The data transfer activity is 
called block transfer. Figure l.e shows 
the vector register read activity. Figure 
l.e.l shows the vector register write, B- 
register read (write) and T-register read 
(write) activities. 

• ] ' - -  Snoop a r c s  to BCOUBOAF.D 

Figure  l . e  llLOCI~_TItANSFFEI~ZSSUE (Rud) 

change to the SCOREBOARD. This is done 
to prevent the issue of another block 
transfer instruction while this transfer 
is in progress. The third activity com- 
putes the memory hold time and the time 
for which the result register has to be 
reserved (register reserve time). The 
fourth activity reserves the result regis- 
ter for the specified time. 

I 
] 
T 
I 

The VREAD_DETECT node detects block 
transfer to one of the vector registers 
and initiates four concurrent activities. 
The four activities are represented by 
four parallel paths. The first activity 
resets VREAD. The second activity sets 
the VBT flag and communicates the state 

l 
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I 
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Figure l . e . l  B ~ K T ~ B F E ,  I~[SSUE ( w r i t e )  

The memory hold time and register 
reserve time depend on the vector length 
and the use of speed control. The details 
involved in the time calculations are 
shown in Figure l.e. 
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The VWRITEDETECT node determines 
whether the block transfer is a write into 
memory from vector registers or block 
transfers between memory and B_registers 
(T-registers). For a write into memory 
from vector registers, four concurrent ac- 
tivities are initiated. Each activity is 
represented by a path emanating from the 
VWRITE_DETECT node. The first activity 
resets W#RITE. The second activity sets 
VBT and communicates the state change to 
the SCORE_BOARD. The third activity com- 
putes the memory hold time and the time 
for which the first operand register is 
reserved. The fourth activity reserves 
the first operand register. 

The block transfer between memory and 
B-registers (T-registers) involves making 
state change to BTT, communicating the 
state change to SCORE_BOARD, and computing 
the memory hold time. This is represented 
by the two paths emanating from the 
BT_READ_WRITE_DETECT node. 

The BRANCH INSTRUCTION_ISSUE node, 
shown in Figure l.f, represents the 
mechanism in Cray-iS to handle both condi- 
tional and unconditional jumps. The 
branch address of a jump instruction can 
be supplied in a B-register or as an im- 
mediate operand using two parcel instruc- 
tions. For a jump instruction using a B- 
register, if the parcel following the jump 
instruction is not in the current buffer, 
but is in another buffer then the jump in- 
struction execution time is increased by 
2 CPs. Otherwise the execution time is 
increased by ii CPs. This is represented 
by the B_JUMP_DELAY node where the node 
latency time is either two or eleven. 

OUT 5OL~D~W ITCH 

I 
I _ _ 3  
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The FUNCTIONAL_UNIT_SEL/RESERVE unit, 
shown in Figure l.g, represents the selec- 
tion of a functional unit for address and 
scalar instructions. It also represents 
the selection and reservation of a func- 
tional unit for vector instructions. 

The system resources in Cray-iS are ac- 
quired, used, and released by the various 
components of Cray-iS. The status of the 
resources are kept in the system and it is 
available to all the components of the 

system. The state information of the 
resources in Cray-iS is represented using 
the dataflow graph SCORE_BOARD, shown in 
Figure l.h. For each class of resource in 
Cray-iS, there is a node in SCORE_BOARD 
containing the state information. Snoop 
arcs are used in sending state information 
to the nodes in the INSTRUCTION_ISSUE UNIT 
and receiving state change information 
from these nodes. The mnemonics used in 
Figure l.h are explained in Table i. 
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Figure I.h SCOBZBOAKD 

Table 1 
............................................................ 

Mnemonic I Description 
............................................................ 

A0B Register AO busy 
ARA A-register access path 
AREG A-registers 
BSW Buffer switch 
BIT B-register or T-register transfer 
CIP Current instruction parcel ,' 
FOP Fetch Operation 
FPFU Floating point functional units 
FRQ Fetch request 
LIP Lower instruction parcel 
M Memory 

NIP Next instruction parcel 
P Program counter 

S0B Register $0 busy 
SRA S-register access path 
SREG S-registers 
STH Storage hold 
VBT Vector block transfer 
VECM Vector mode flag 
VFU Vector functional units 
VLEN Vector length 
VZIB Vector mask busy 
VMRI Vector mask read inhibit 
VREG V-registers 

............................................................ 

K~D2~S 9~LLT 

This unit represents 8 A-registers, 64 
B-registers, two functional units for ad- 
dress calculations, and a controller that 
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controls among other things the A-register 
input path so that one A-register is load- 
ed at a time. A dataflow graph of the 
unit is shown in Figure 2. 

M M CIP LIP 

rl];;L. ---  
' 

- r - u j  
I 
I 

] 
Figure 2 ADDRESS UNIT 

The node INTERCONNECTIONI represents 
the A-register input path and output path. 
Input to A-registers can come from B- 
registers, memory, functional units ADD 
and MULTIPLY, CIP/LIP, and from S- 
registers. These inputs are represented 
by the various input arcs and the un- 
directed arcs to INTERCONNECTIONi. The 
undirected arcs represent paths that can 
be used either for input or output. At 
the most one A-register can be receiving 
an input from one of the above mentioned 
sources during a clock period (CP). The 
contents of A-registers are available 
simultaneously to the above mentioned 
sources. The node AUNIT_MONITOR 
represents the local controller for the 
ADDRESS_UNIT. The A_UNIT_MONITOR speci- 
fies the control information to INTERCON- 
NECTIONi, INTERCONNECTION3 in Figure 3, 
and INTERCONNECTION8 in Figure 5 so that 
data transfer can take place between the 
A-registers and the various functional un- 
its. It also provides the operation that 
a functional unit has to do and facili- 
tates the release of result A-registers 
when address computations are completed. 

The ADD node represents the pipelined 
add functional unit and has a node latency 
time of 2 CPs. The MULTIPLY node 
represents the pipelined multiply func- 
tional unit and has a node latency time of 
6 CPs. 

m~B_URLT 

This unit represents 8 S-registers, 64 
T-registers, four functional units capable 
of performing arithmetic and logical 
operations on scalars, and the local con- 
troller of the functional units and the 
registers. A dataflow graph of the unit 
is shown in Figure 3. 
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The node INTERCONNECTION2 represents 
the S-register input path and output path. 
Input to S-registers come from T- 
registers, memory, one element of a vector 
register, the four scalar functional un- 
its, or CIP/LIP. These inputs are 
represented by the various input arcs and 
the undirected arcs to INTERCONNECTION2. 
At the most one S-register can receive an 
input from the above sources during any 
CP. The node INTERCONNECTION3 represents 
the input path from A-registers to the 
shift unit. INTERCONNECTION2 gets the 
control information from the local con- 
troller, S_UNIT_MONITOR. The controller 
provides the operation that a functional 
unit has to do, maintains the S-registers, 
obtains the status of the functional un- 
its, and facilitates the release of result 
S-registers when instructions have com- 
pleted their executions. 

The scalar functional units are pipe- 
lined. Each stage of a pipelined func- 
tional unit is represented by a node in 
Figure 3 and the node latency time of each 
of these nodes is one CP. The last stages 
of the pipelines put the results in the 
S-registers and communicate to the 
S_UNIT_MONITOR the successful transfer of 
results to the S_registers. 

ELOA~/LL~ 

This unit represents three pipelined 
floating point functional units, intercon- 
nection networks for making connections 
between the functional units and S- 
registers and vector registers, and the 
local controller of the functional units 
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and the interconnection networks. A da- 
taflow graph of the unit is shown in Fig- 
ure 4. The node INTERCONNECTION4 
represents the interconnection network 
between the S-registers and the floating 
point functional units. The control infor- 
mation for the interconnection network is 
supplied by the S_UNIT_MONITOR in Figure 
3. The node INTERCONNECTIOH5 represents 
the interconnection network between the 
V-registers and the floating point func- 
tional units. The control information for 
the interconnection network is supplied by 
the V_UNIT_MONITOR in Figure 5. 
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The pipelined floating point multiplier 
with seven stages is represented by seven 
nodes, FMP_STi through FMP_ST7. Each of 
the seven nodes has a latency time of one 
CP. The last stage of the pipeline, 
FMP_ST7, puts the result in a S-register 
(vector register) and communicates to the 
FP_UNIT_MONITOR the successful transfer of 
results. The pipelined floating point 
adder with six stages is represented by 
six nodes, FAD_ST1 through FAD_ST6. Each 
of the six nodes has a latency time of one 
CP. The last stage of the pipeline, 
FAD ST6, puts the result in a S-register 
(vector register) and communicates to the 
FP_UNIT_MONITOR the successful transfer of 
results. The pipelined floating point di- 
vider using reciprocal approximation is 
represented by 14 nodes, RCP_STI through 
RCP_STI4. Each of the 14 nodes has a la- 
tency time of one CP. 

The node FP_UNIT_MONITOR provides the 
operation that a functional unit must do, 
and facilitates the release of registers 
after the completion of operations. 

~/22~QK_HgL~ 

This unit represents 8 vector regis- 
ters, four functional units capable of 

performing fixed point arithmetic, logi- 
cal, shift, and population count opera- 
tions, interconnection networks between 
the functional units and vector registers, 
S-registers and A-registers, and the local 
controller of the functional units and the 
interconnection networks. A dataflow 
graph of the unit is shown in Figure 5. 
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The node INTERCONNECTION6 represents 
the interconnection network between the 
S-registers and the vector functional un- 
its. The control information for the in- 
terconnection network is supplied by the 
S_UNIT_MONITOR in Figure 3. The node IN- 
TERCONNECTION7 represents the interconnec- 
tion network between the vector registers 
and the vector functional units. The con- 
trol information for the interconnection 
network is supplied by the V_UNIT MONITOR. 
The interconnection between A-registers 
and the vector shift unit is represented 
by INTERCONNECTIONS. The four pipelined 
vector functional units are represented by 
the nodes VADD, VLOGICAL, VSHIFT, and 
VPPC. They have the functional unit node 
latency times of 3, 2, 4, and 4 respec- 
tively. The node V_UNIT_MONITOR provides 
the operation that a functional unit has 
to do, communicates the control informa- 
tion to interconnection networks, and fa- 
cilitates the release of registers after 
the completion of instruction executions. 

A complete description of the nodes in 
the dataflow graph model of Cray-iS as 
well as the GPSS blocks used to implement 
the nodes are in [16]. 

~ ~  WITH THE CRAY-~.~/Q.p.~ 

In this section, the results obtained 
from running several benchmark programs on 
the CRAY-iS model are presented. The 
simulated execution times of some of these 
programs are compared with the actual exe- 
cution times on a CRAY-iS computer. In 
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addition, the results of some experiments 
performed on the model are included. 
These experiments are aimed at studying 
the effect of removing some of the 
bottlenecks in the CRAY-iS architecture. 
With each experiment, the simulated execu- 
tion time and the rate at which instruc- 
tions are issued are presented. Both these 
statistics are given in simulated clock 
periods (12.5 nanoseconds). Finally, some 
areas of future work are discussed includ- 
ing some additional enhancements to the 
architecture. 

Used ~i/l the 

Control streams for four sample pro- 
grams are generated and used as input in 
the simulation runs. The first program is 
a full scalar matrix multiplication called 
FSMTRXM. This program performs matrix 
multiplication by using scalar instruc- 
tions exclusively (i.e., there are no vec- 
tor operations involved). The second pro- 
gram, called FVMTRXM, uses mostly vector 
instructions to perform the matrix multi- 
plication. Both matrix multiplication 
programs along with the execution times on 
CRAY-iS were supplied by Cray Research, 
Inc. The other programs used, called 
CSPLIN and TRIMAT, are portions of subrou- 
tines employed in the feasibility study of 
FMP [4,18]. 

Table 2 shows the distribution of in- 
struction types for each of the four pro- 
grams. Note that the arithmetic-logical 
type has been broken down into scalar and 
vector instructions. The time taken to 
complete the simulation for each program 
on the model without changes is shown in 
Table 3. For FSMTRXM and FVMTRXM the ac- 
tual execution times on CRAY-IS for one 
iteration (multiplication of two scalar 
values) and five iterations (multiplica- 
tion of two 5 x 5 matrices) are also 
shown. In each case, the simulated execu- 
tion time is within acceptable bounds of 
the actual execution time. For the purpose 
of the experiments, the five iteration 
versions of FSMTRXM and FVMTRXM are used. 
Also shown on this table is the average 
time in CPs an instruction parcel spent in 
CIP waiting to issue. This is an important 
statistic in measuring performance since 
it represents the rate at which instruc- 
tions are issued. Under ideal conditions, 
this time should be 1 CP. The average 
time per parcel in NIP is also shown. 

In addition to the four programs 
described above, a number of small pro- 
grams have been used to determine the ac- 
curacy of the model. These programs test- 
ed operations such as branches and buffer 
fetch sequences. In all these cases, the 
simulated times agreed with the time taken 
to run the programs on CRAY-iS. 

The dataflow model of Cray-lS is 
analyzed to detect potential bottlenecks 
in the CRAY-iS architecture. Several clues 

Table 2 Introduction Type Distribution In Programs 
............................................................ 

Type of Instruction FSMTRXM FVMTRXM CSPLIN TRIMAT 
............................................................ 

Branch 7.63 5.01 2.68 3.44 
Arithmetic-logical 

Scalar 41.47 33.64 28.76 47.13 
Vector 0.00 2.84 12.04 0.00 

Scalar Memory 
Reference 38.48 19.59 7.02 21.31 

Block Memory 
Transfer 0.10 4.34 13.71 0.16 

Register Transfer 12.32 34.57 35.79 27.95 
............................................................ 

Table 3 Statistics For Model Without Changes 
............................................................ 

Average Average 
CRAY-iS Time Per Time Per 

Execution Simulated Parcel Parcel 
Program Time Time In NIP In CIP 
........................................................... 

FSMTRXM 
(i iteration) 269 269 1.88 1.79 

FSMTRXM 
(5 iterations) 10665 10625 1.62 1.58 

FVMTRXM 
(i iteration) 364 361 1.89 1.92 

FVMTRXM 
(5 iterations) 4824 4681 1.84 1.85 

CSPLIN -- 3061 8.92 8.92 
TRIMAT -- 3426 2.15 2.12 
........................................................... 

for improving the performance have been 
found. Based on these clues, a list of 
changes that can be readily implemented on 
the model is found. In the following sec- 
tions, these changes and the results ob- 
tained when they are simulated on the 
model are presented. 

~Z~edLi/K~II~ i: Chanaina the Number and 
~I~ Instruction Buffers 

This experiment consists of reducing 
the number of instruction buffers in the 
model from four to two while increasing 
the size of each buffer from 16 words to 
32 words. This means that the look-ahead 
capability remains the same (256 parcels). 
The change is simulated for transfer rates 
of four words per CP (as in the model 
without changes) as well as eight words 
per CP. 

The results in Table 4 show a slight 
decrease in simulated execution time for 
the programs. The decrease is not very 
significant due to the relatively small 
size of the programs. This allows the pro- 
cessor to operate in loop-mode once the 
buffers are loaded. 

Table 4 Results from Experiment 1 
........................................................... 

4 words per CP 
........................................................... 

Average 
Time per 

Simulated Percent Parcel Percent 
Program Time Improvement In CIP Improvement 

FSMTRXM 10609 0.15 1.58 -- 
FVMTRXM 4625 1.20 1.85 -- 
CSPLIN 2991 2.29 8.78 1.61 
TRIMAT 3422 0.12 2.12 -- 

8 words per CP 
.............................................. 

Average 
Time per 

Simulated Percent Parcel Percent 
Time Improvement In CIP Improvement 

.............................................. 

10605 0.19 1.58 -- 
4621 1.28 1.85 -- 
2983 2.55 8.78 1.61 
3414 0.35 2.12 -- 

.............................................. 
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Fd~_~xdmaag l: ~/d~ia~.~taa ~ ~Suasla 
~-~ Access P.a~.Ja 

This experiment is designed to study 
the effect of removing the constraint of a 
single access path to A registers and S 
registers. This corresponds to removing 
the A_S_ACCESS_PATH_RESERVATION node from 
the dataflow model. In this way, any 
number of A registers and S registers can 
be entered with information at a given 
clock period. 

The results of this experiment are 
shown in Table 5. A slight decrease in 
the simulated execution time is obtained 
for all four programs. The average time 
spent by an instruction in CIP decreases 
in proportion to the simulated execution 
time. These results tend to indicate that 
the single access path to A registers (S 
registers) is not a significant bottleneck 
in the CRAY-iS architecture. This is true 
even for programs which use scalar in- 
structions almost exclusively like FSMTRXM 
and TRIMAT. 

Table 5 Results From Experiment 2 
............................................................ 

Average Time 
Simulated Percent Per Parcel Percent 

Program Time Improvement In CIP Improvement 
............................................................ 

FSMTRXM 10600 0.24 1.57 0.25 
FVMTRXM 4646 0.75 1.83 0.76 
CSPLIN 3057 0.13 8.91 0.13 
TRIMAT 3405 0.61 2.10 0.66 

............................................................ 

~: Reduced Memory 
~ Time 

The next experiment consists of reduc- 
ing the memory bank cycle time in half 
(from 4 CPs to 2 CPs). This reduction has 
the effect of eliminating the possibility 
of bank conflicts for scalar memory refer- 
ences. This is due to the fact that 
scalar references take 2 CPs to issue. In 
addition, the reduced bank cycle time de- 
creases the possibility of bank conflicts 
in vector block transfers. Speed control 
[2] is now required only when the starting 
memory address is incremented by a multi- 
ple of 16. In this case, the transfer 
rate is one word every 2 CPs. 

The results in Table 6 indicate that 
programs like FSMTRXM, FVMTRXM, and TRIMAT 
which have a large number of scalar memory 
references, benefit significantly from 
this change. The decrease in execution 
time for CSPLIN was very slight. This is 
as expected since this program has a large 
number of vector block transfers and the 
vector lengths are relatively long (around 
150 elements). A reduction in bank cycle 
time only speeds up the setup time for 
vector block transfer operations. 

Table 6 Results From Experiment 3 
............................................................ 

Average time 
Simulated Percent Per Parcel Percent 

Program Time Improvement In CIP Improvement 
............................................................ 

FSHTRXM 10017 5.72 1.48 6.22 
FVMTRXM 4389 6.24 1.73 6.34 
CSPLIN 3036 0.82 8.88 0.44 
TRIMAT 3225 5.87 1.99 6.00 

............................................................ 

~Z~_~dK~i~ ~: ~ Memory~lli~W_i~.~h 
for Vector 

The results of experiment 3 indicat~ 
that a faster bank cycle time has no sig- 
nificant effect on vector block transfers. 
In the next experiment, the memory 
bandwidth for vector block transfers is 
increased so that up to four memory banks 
can be accessed simultaneously. This al- 
lows a transfer rate of up to four words 
per CP when successive references to a 
particular bank are at least 4 CPs apart. 

The results in Table 7 show a 30.97% 
decrease in the simulated execution time 
for CSPLIN and a 31.45% decrease in the 
average time an instruction spends in the 
CIP register. The decrease is larger than 
expected even for a program with a high 
number of vector block transfers. This is 
probably due to the comparatively large 
size of the vectors in this program. This 
change had no effect on the other pro- 
grams. For FSMTRXM and TRIMAT this is to 
be expected since no vector block 
transfers are involved. In the case of 
FVMTRXM, the vector lengths are of only 
five elements. This means that any in- 
crease in the transfer rate is going to be 
offset by the vector startup time. 

Table 7 Results From Experiment 4 
............................................................ 

Average time 
Simulated Percent Per Parcel Percent 

Program Time Improvement In CIP Improvement 
........................................................... . 

FSMTRXM 10625 1.58 - 
FVbITRXM 4681 - 1.85 
CSPLIN 2113 30.97 6 .Ii 31745 
TRIMAT 3426 - 2.12 

- - - 6 2 -  . . . . . . . . . . . . .  

Time 

Chaining of two vector operations [1,2] 
can take place only at chain slot time 
(i.e., functional unit time plus 2 CPs). 
If the second operation is not ready to 
issue at this time, then it has to wait 
for the completion of the first instruc- 
tion. The performance of the system can 
be further improved by allowing chaining 
to take place at any time between func- 
tional unit time plus 2 CPs and the end of 
a vector operation. This experiment con- 
sists of implementing such a change in the 
model. The results of this experiment are 
shown in Table 8. The execution time of 
CSPLIN decreased by 8.92% while the aver- 
age time per parcel in CIP decreased by 
9.19%. This is as expected since there 
are several successive vector instructions 
in this program, each processing relative- 
ly long vectors. Extending the chain slot 
time should benefit these operations since 
missing the opportunity to chain means a 
considerable wait for the release of a 
result register. This wait in turn holds 
the entire instruction pipeline. Surpris- 
ingly, the change had no effect on 
FVMTRXM. This is probably due to the 
shorter vector lengths in this program and 
to the distribution of the vector instruc- 
tions (i.e., they are not clustered to- 
gether). 
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Table 8 Results From Experiment 5 
............................................................ 

Average time 
Simulated Percent Per Parcel Percent 

Program Time Improvement In CIP Improvement 
............................................................ 

FSMTRXM 10625 -- 1.58 -- 
FVMTRXM 4681 -- 1.85 -- 
CSPLIN 2788 8.92 8.10 9.19 
TRIMAT 3426 -- 2.12 -- 

............................................................ 

ExDeriment ~: ~ InstructiQn Issue 

The purpose of the experiments 
described so far has been to speed up the 
execution of certain operations such as 
memory transfers and to increase the rate 
at which instructions are issued by elim- 
inating certain issue conditions such as 
the single access path to scalar regis- 
ters. The fact still remains that the 
INSTRUCTION_ISSUECHECKER services in- 
structions on a first-in-first-out basis. 
This means that when an instruction cannot 
be issued because some condition is not 
satisfied, subsequent instructions cannot 
be issued either. In many cases, these 
instructions are ready to issue and can 
potentially even complete their execution 
before the one in CIP issues. This is not 
possible under the present system because 
only one CIP/LIP register pair is avail- 
able. In this experiment, the model is 
modified to include two CIP/LIP register 
pairs. This increases the bandwidth of 
the INSTRUCTION_ISSUE_CHECKER by allowing 
up to two instructions to issue at every 
clock period. In addition, instead of 
servicing instructions on a strictly 
first-in-first-out basis, an instruction 
can be issued ahead of its predecessor in 
the pipeline, provided no procedural con- 
flicts [i0] exist between the instruc- 
tions. When an instruction is in one CIP 
and a second instruction is ready to move 
to another CIP, the following conditions 
are checked: 

a. The results and operand registers 
of the second instruction must be 
different from the result register 
of the first instruction. 

b. The result register of the second 
instruction must be different from 
the operand(s) of the first in- 
struction. 

c. If the second instruction is a 
vector instruction, its operand(s) 
must be different from the 
operand(s) of the first instruc- 
tion. 

d. If the first instruction is a vec- 
tor instruction, the second in- 
struction cannot load the VL re- 
gister. 

e. If the first instruction refer- 
ences memory, the second instruc- 
tion cannot. 

f. The functional units required by 
the instructions must be dif- 
ferent. 

If any of these conditions are not satis- 
fied, the second instruction is kept in 
NIP until the first instruction is issued. 

Some of these conditions are strictly pro- 
cedural and cannot be avoided. However, 
there are some which are included to sim- 
plify the changes to the model. This means 
that whatever results are obtained can be 
further improved if some additional 
changes are made. 

The results of this experiment are 
shown in Table 9. As can be seen, even 
this restricted scheme of parallel in- 
struction issue had a significant effect 
on all four programs. This confirms our 
assumption that the single set of instruc- 
tion registers presented a major 
bottleneck. For this experiment, the 
average time spent by an instruction par- 
cel in NIP is given. This time is then 
compared with the time obtained in the 
model without changes. For all programs, 
a significant increase in the rate at 
which instruction parcels leave this re- 
gister can be observed. The average time 
each parcel spent in CIP remained the same 
as in the model without changes. This is 
to be expected since the extra CIP/LIP re- 
gister pair has no effect on the issue 
conditions of individual instructions. 

Table 9 Results From Experiment 6 

Average Time 
Simulated Percent Per Parcel Percent 

Program Time Improvement In NIP Improvement 
............................................................ 

FSMTRXM 9859 7.21 1.47 8.90 
FVMTRXM 3886 16.98 1.50 18.45 
CSPLIN 2957 3.40 8.46 5.19 
TRIMAT 3182 7.12 1.99 7.35 

............................................................ 

~ C Q~PJk~Ig~Z 

The research effort considered the ef- 
fects of removing several potential 
bottlenecks in the CRAY-iS on its perfor- 
mance. The limited number of experiments 
conducted on the model shows that there 
are some areas in which the architecture 
can be improved. 

In terms of the main memory unit, two 
significant improvements can be made. For 
programs with predominantly scalar memory 
references, a reduction in the bank cycle 
time contributes significantly to improve 
system performance. For programs with a 
considerable amount of vector memory in- 
structions, a higher transfer rate can 
have a considerable effect. 

Experiment 5 showed that for programs 
with a high concentration of vector in- 
structions, an extended chain slot time 
contributes significantly to accelerate 
the rate at which instructions are issued. 

Experiment 6 showed fairly conclusively 
that the INSTRUCTION_ISSUE_CHECKER is a 
major bottleneck in the CRAY-iS architec- 
ture. This experiment had a significant 
effect on all four programs. It showed 
that even with the restrictions imposed, 
an extra CIP/LIP register pair can improve 
system performance considerably. 
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A change that was not implemented in 
the model but which can improve the per- 
formance of vector operations is to treat 
the V registers as FIFO queues. Under this 
scheme, two pointers are maintained for 
each V register: one for the front of the 
queue and one for the back of the queue. 
In this way, only the register elements 
are reserved during the clock period in 
which a result is transferred to them from 
a functional unit. 

An interesting area for future work is 
to extend the concept presented in experi- 
ment 6 to include multiple instruction un- 
its, each connected to an instruction 
buffer. With the present number of 
buffers, four independent instruction un- 
its can be implemented. These units can 
potentially operate in a tightly-coupled 
environment by using a single program 
counter, or by using several program 
counters operating in parallel. 
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