
Abstract

Richard L. Sites

Applied Physics and Information Science Dept. C-014
University of California, San Diego

La Jolla, California 92093

2 CP.

The Cray-i is an extremely high-speed computer, in-
tended to be used for large floating-point scientific
computations. However, it is a well-balanced machine
that can gracefully be used on a wide class of problems.
The machine has two major architectual innovations: (1)
128 backup registers which represent a new layer in the
memory hierarchy, essentially a programmer or compiler-
managed cache, and (2) 8 vector registers holding up to
64 words each, and operated on by vector instructions.
In this paper, we will describe the entire machine, dis-
cuss efficient ways to use the 656+ programmer-access-
ible registers, and discuss some of the design short-
comings.

i. Introduction

The Cray-i is an extremely high-speed computer
build by Cray Research Inc., a company formed by Seymour
Cray in the early 70's. Before that, Cray was respons-
ible for the design of the CDC 1604, CDC 6600 and CDC
7600. In many ways, the Cray-i follows the evolution
of the 6600-7600. Briefly, the CPU has a 12.5 nano-
second clock, and executes scalar instructions in i to
14 clock pulses (CP), with many instructions taking 3
or fewer CP. It is possible to execute 80 million in-
structions per second. The CPU and memory are physi-
cally housed in a cylinder 6.5 feet tall and 4.5 feet
in diameter (2.0m x 1.4m), with the power supplies in
a 9-feet (2.7m) diameter skirt around the base. With
a full-size memory, this compact package weights over
5 tons and consumes about 150,000 watts of electricity.
There are no flashing lights or buttons to push on the
machine. Instead, it is connected to an Eclipse mini-
computer which can display the instruction counter and
other registers/memory words on a crt screen.

The main memory can be up to 1 million (220) 64-
bit words of 50 nsec cycle-time bipolar memory. The
memory occupies 2/3 of the mainframe and the CPU occu-
pies the middle 1/3. The memory is 16-way interleaved,
so the CPU can easily achieve a data transfer bandwidth
of one word per clock cycle (over five billion bits per
second) with three fourths of the available memory cycles
left over for I/O transfers. For sequential CPU accesses
and no I/O at all, 4-way interleaving would De suffi-
cient to achieve a bandwidth of one word per clock cycle,
but the extra interleaving is cheap and allows for ran-
dom access intermixed with I/O. Using Amdahl's rule of
thumb of one bit of main memory per instruction per sec-
ond executed [i], the one megaword memory (64 megabits)
is in good balance with the 80 megahertz instruction rate.

The I/0 system consists exclusively of channel con-
nections to other computers and channel connections to
high-speed permanently-mounted disks. The disks rotate
at 3600 rpm, and have 18 sectors of 512 words each on a
track, with i0 tracks per cylinder. The sustained trans-
fer rate for one disk is about one word every 1.8 usec,
or about 4.5 megabytes per second. Using Amdahl's rule
of thumb of one bit of I/O per instruction executed [i],
80 million instructions per second, and 35 million bits
per second per disk, the machine will need to have some-
what more than two disks actively transferring data all
the time, in order to be well balanced. This is easily

achievable by the hardware, but for the operating system
it may be harder, as detailed in Section 4.

2. Memory Hierarchy

The Cray-i contains four major elements in its mem-
ory hierarchy. The fastest level consists of 8 S-regis-
ters, 8 A-registers, and 8 V-registers. The S-regis-
ters are 64 bits wide, and are used primarily for full-
word fixed and floating-point arithmetic. The A-regis-
ters are 24 bits wide and are used primarily for address
calculations. The V-registers each contain 64 words,
and are further discussed in the next section on vector
instructions. The second-fastest level of the memory
hierarchy consists of 64 T- and 64 B-registers. The T-
registers are 64 bits wide and are used essentially as
a programmed cache or backup for the S-registers. The
B-registers are 24 bits wide and are used the same way
for the A-registers. There are no backup registers for
the V-registers. The third level of the memory hier-
archy consists of the main memory, up to 1048576 (IM)
words. The fourth level consists of the high-speed
disks.

It is the introduction of the B- and T-registers
that sets off the Cray-i memory architecture from that
of other machines. These registers contribute directly
to the .balance, versatility, and speed of the machine.
Figure i shows the major interconnections between the
various registers. Note that the transfers between
(A,B) and (S,T) pairs are all one-cycle instructions,
so access to the B- and T-register backup level is ex-
tremely fast. The backup registers can also be trans-
ferred to and from main memory, but only via block
transfers which move from i to 64 words. These trans-
fers have start-up times that are the same as the time
for a single scalar load/store, but after that they
transfer a new word every clock cycle, so that loading
all 64 T-registers takes only 80 CP, or i usec. The A-
and S-registers also have direct paths to/from main mem-
ory, but the scalar instructions which use these paths
take two CP to issue, so the maximum scalar data rate
is half that of the block transfers, or one word every

5/3 1/2 ~C

1/]

11/2 <

14/6~+L 1416

[11/2 0

AN ANALYSIS OF THE CRAY-I COMPUTER

+ VL

I INM MoRY J
Figure i. Interconnections of registers in the Cray-l,
with transfer times in units of clock pulses (CP, 12.5
nsec each). Times are given as load/store, where load
refers to changing the contents of the higher or left-
most register. Double lines indicate block transfers,
which take the given startup time plus one CP per word.

101

Arithmetic can only be done in the A- and S-regis-
ters, and there are no memor~-to-regSster a~ithmetic in-
structions. To use the registers efficiently, some
variation on the following scheme is needed. First,
keep all scalar local variables for any procedure in the
B- and T-registers, in order to have fast access. Sec-
ond, keep all local arrays, records, and long strings
in main memory, since there are no instructions which
can index into the B- or T-registers, and there gener-
ally isn't enough room in these registers anyway. Third,
do all expression evaluation hy loading the operands in-
to A- or S-registers, doing the appropriate operation,
and finally storing the result back into B- or T-regis-
ters or main memory. To do a subroutine call, hlock
store the caller's B- and T-registers to main memory, so
the empty registers will be available for the called
routine to use. To do a subroutine return, hlock load
the caller's old values. It is awkward to try to pre-
serve the A- and S-registers across subroutine calls,
because all the saving/restoring of these must be done
with separate instructions for each register, for a
worst case of 16 stores and 16 loads. This element of
the architecture strongly discourages compilers from
trying to keep common subexpressions or local variables
in the A- and S-registers; instead, the fast-access B-
and T-registers are used. This is somewhat counter to
the usual optimizing compiler goal of heavily using the
fastest registers. We shall return to this point in the
discussion of instruction scheduling in Section 6.

The register architecture is designed so that op-
erands and instructions (see Section 7) never come
directly from main memory, and so that when access to
main memory is necessary, efficient block loads and
stores can often be used.

3. Vector Instructions

The second architectural innovation in the Cray-1
is the vector facility. The 8 V-registers can each hold
a vector of I to 64 words, and there are vector instruc-
tions of the form "add elements of VI to elements of V2
and put the results in V3." A single 16-bit instruction
can do up to 64 additions, and after a small start-up
time of 8 CP these additions are done at the rate of one
per clock cycle. Thus, 64 floating-point adds can be
done in 72 CP, or 900 nsec, or about 70 million addi-
tions per second. As we shall see below, this figure
can be improved by another factor of 2-3. The intended
use of the vector registers and instructions is to block
load vector operands (or 64-word pieces of longer vec-
tors) from memory, operate, then block store the results
back into memory. The vector registers provide exactly
the same advantages that scalar registers provide: (i)
instruction formats are compact compared to formats
which contain many memory addresses, (2) common subex-
pressions can be retained in registers and reused quickly,
and (3) the computation is insulated from the slow speed
of the main memory, since operand loads can be started
early, and both loads and stores can be overlapped with
other computation. The re-use of common subexpressions
in registers gives the Cray-l an advantage over memory-
to-memory vector architectures, such as the Texas In-
struments ASC or the Burroughs BSP. The very low start-
up times give the Cray-i an advantage over the long
start-up times of the CDC STAR-100. Vector instructions
can be faster than scalar arithmetic for vectors as
short as 3 words, and do noticeably better on vectors of
length 5 or more. The fact that the vector instructions
are fast even for short vectors, combined with the fact
that the scalar instructions are also quite fast makes
the Cray-i an extremely well-balanced machine which can
efficiently run programs that have very little to do
with floating-point matrix computations.

In addition to the expected vector operations

(+,-,*,/,and,or,xor), the Cray-1 has similar operations
which combine the elements of a vector with a single
scalar from an S-register. There are also vector
shifts which effectively shift an entire vector register

(4096 hits) right or left.

The four vector comparison instructions compare up
to 64 elements of a V-register to zero and set corre-
sponding bits inthe Vector Mask Register (VM) to indi-
cate whether each element matches the comparison (zero,
nonzero,positive, or negative). The VM can then be used
in a Vector Merge instruction to selectively merge two
input vectors into a single output vector.

Example i. Vector absolute value. Each line is one
instruction. No branch instructions.

a. Load 64 elements of vector ABC into Vl.

b. V2 + 0-Vl Zero is in an S-register.
Negates each element.

e. VM÷ VI< 0 Form mask of 64 O's and l's.
i if element is negative.

d. V3 ÷ V2 Pick element from V2 (-ABC i)
merse VI if corresponding VM bitois

one, else from VI (ABC i)

e. Store 64 elements from V3 back into
vector ABC.

The vector merge can be used to do 64 interchanges as
the inner loop of a sorting routine by (a) loading up
two sets of elements to be compared, (b) subtracting
them, (c) comparing the differences to zero and setting
the VM appropriately, (d) doing a vector merge to put
all the larger elements in one register (pair-wise MAX),
(e) doing a vector merge with the operand registers re-
versed to put all the smaller elements in another regis-
ter, and (f) storing the 64 sorted pairs. Again, no
branch instructions are used.

The vector load and store instructions are block
transfers, j~st like the B- and T-register transfers,
except that the vector instructions include the extra
flexibility to specify an increment other than +i for
generating the sequence of memory addresses. Any 24-
bit increment (positive or negative) can be used. This
makes it quite easy to pick up columns of arrays stored
in row-major order, or diagonals, or whatever, so long
as the addresses form an arithmetic progression. The
transfers will run at full speed of one word per clock
cycle unless the increment is a multiple of 8, in which
case all the data words are in only 1 or 2 memory banks
and the banks have a 4 CP cycle time. This is the one
instance in the entire machine where the interleaving
may not be sufficient. The problem is mitigated by
three factors: First, the worst slow-down is only a fac-
tor of four, not the factor of 16 expected on some 16-
way interleaved machines (or the 17-way BSP); second,
once an operand is loaded into a V-register, it can be
used many times without going back to memory; and third,
the transfers can be completely overlapped with other
vector and scalar computation (but not other memory
references).

There is one remaining feature of the Cray-i vector
facility which is not strictly part of the machine archi-
tecture seen by the programmer, but rather is part of
the particular implementation built by Cray Research.
Nonetheless, the feature is important enough to be dis-
cussed, considered, and copied in other machines. The
feature is called chainin$, and it simply allows a vec-
tor instruction which uses the result of a previous
vector instruction (including load) to start as soon as
the first word of the previous result is available, in-
stead of waiting until the entire previous vector is
formed. In evaluating an expression such as A*B+C,

102

chaining allows the add to start 9 CP after the multiply,
instead of waiting 73 (9+64) CP. Thus, the 64 results

of the entire expression are ready 64 cycles sooner than
without chaining. In doing this, the machine actually
generates two results in one clock cycle -- after the
start-up time for the add, the floating adder starts de-
livering one sum per clock cycle, while the floating-
point multiplier is still delivering products for the
remaining 56 intermediates A*B. With two vector units
operating at once, it is possible for the Cray-i to de-
liver 160 million floating-point results per second;
with three units running, 240 million results. This ef-
fect is in fact independent of chaining, but crops up
most often in that context. With most vector instruc-
tions requiring two operand registers and one result re-
gister (all usually distinct), it is clear that with
just 8 V-registers available, three results at once is
unlikely, and four is out of the question. Two results
at once, sustained over quite some time is practical,
though. (Some of the hand-written matrix routines at
Los Alamos achieve 140 million floating-point operations
per second in production programs.)

4. Interrupts and I/O System

Like the CDC 6600 and 7600, the interrupt system on
the Uray-i is based on Exchange Packages, containing 16
words of processor-state information. To change tasks,
it is necessary to save the current processor state,
and to load up a new processor state. The Cray-1 does
pa~t of this job automatically when an interrupt occurs,
or when a program executes either a normal or error exit
instruction. When such an event happens, the Cray-I
saves the 8 S-, the 8 A-registers, and a few more pieces
of information, including the program counter and the
Monitor Mode bit. These are packed into 16 words and
swapped with 16 words at the address specified by a hard-
ware Exchange Address register. This entire process
takes 48 CP, or 600 nsec. The exchange is quick partly
because the exchange packages are constrained to have ex-
actly one word per memory bank, starting at bank zero,
so the 16 fetches and 16 stores can go at full speed.

partial task switches. For example, the operating sys-
tem supplied by Gray Research does not save the V-regis-
ters on an I/O interrupt, and no part of the interrupt
handler uses vector instructions (and hence V-registers).
So long as control returns to the original user task,
this scheme is logically sound, and certainly faster
than a full save. It costs something, though. The I/O
interrupt handler, and potentially a large part of the
operating system, must run using only a subset of the
machine's architecture. There is a wide-open chance for
errors, if not this year, then maybe two years hence as
software is modified by people other than the original
coders. If sometimes an I/O interrupt occurring at a
random time changes a value in, say, BOO upon return,
then some very mysterious bugs will occur. There is al-
so a potential for security violations -- if a notice-
able portion of the operating system runs with some
other task's live data in 640 registers, it becomes likely
that someone can find a way to read those registers and
"steal" the data in them. The issue is basically that
of trusting a part of the operating system to run with
access to more data than it needs, but hoping that it
doesn't peek! This is not a situation one usually de-
signs into an operating system which must strictly en-
force access privileges in a security installation such
as Los Alamos, but it is a situation encouraged by the
hardware architecture.

Unfortunately, the slowness and tempting shortcut
problems of full task switches are exacerbated by the
I/O structure on the Cray-l. The entire I/O structure
in the CPU consists of one privileged instruction which
sets limit and start addresses for one of the 24 chan-
nels (12 in, 12 out). When the start address is set,
the channel transfers words (in or out, depending on
what kind of channel it is) until the limit address is
reached. Then the channel stops and generates an I/O
interrupt. What is actually transferred, or its meaning,
is of no concern to either the CPU or the channel. Un-
fortunately, the disk controller is concerned, and must
go through a rather awkward sequence in order to read a
512-word record from disk.

When an I/O interrupt occurs, there often will be
more than one instruction in the middle of execution.
In order to save a consistent set of register contents
and program counter, it is necessary to wait until all
instructions complete before doing the exchange. Unless
a long vector instruction or a scalar divide was just
started, this wait will usually be just a few CP, per-
haps another i00 nsec.

When a running program generates an interrupt, such
as floating point error or bad memory address, the same
process of waiting for currently issued instructions to
complete must happen. Thus, in general, the program
counter (interrupt address) for a program fault will be
a few instructions past the one actually causing the
error. This is the well-known imprecise interrupt, and
causes the same debugging problems on the Cray-i as on
other such machines (IBM 360/91, CDC 6600).

The exchange package does not contain all of the
hardware state information, so software interrupt hand-
lers must save the rest of the state. "The rest" in-
cludes the 512 words of V-registers, the 128 words of B-
and T-registers, the Vector Mask, and the Real Time
Clock. Saving the V- and T-registers alone takes over
640 CP, or 8.0 usec. Loading up those registers for a
new task takes another 8.0 usec. So complete task
switching takes on the order of 20 usec, which is enough
time to execute over 1500 instructions. The Cray-i is
not a machine which will run efficiently if full task
switches are done very frequently.

The hugh number of words in the machine state en-
courages a software approach which often does only

First, the actual disk might be shared by two con-
trollers, perhaps on different computers. There are
"reserve" and "release" command sequences which can be
sent to the controller, but to shorten the example, we
will assume no such sharing. We will, however, assume
that the disk is not positioned at the cylinder we want
to read from. The CPU constructs a one-word Seek com-
mand at, say, location 5300. The limit register for the
disk controller output channel, say 2, is set to 5300.
Then the start register is set to 5300 and one word is
transferred by the channel to the disk controller, i.e.
the Seek command is sent. The amount of time this trans-
fer takes is not guaranteed, but is often in the range
of i00 nsec to 1 usec. If the disk controller is dead
or busy, it might take much longer. Thus the CPU pro-
gram which activates the channel cannot afford to just
go into a "busy waiting" loop until the single word is
transferred. Instead, it must do an exchange jump back
to a user (or another system) task, with the I/O inter-
rupts enabled. This takes at least 600 nsec, and usu-
ally the channel is ready to interrupt as soon as the
exchange is complete, thus immediately triggering a sec-
ond exchange. If the channel or controller is dead, the
interrupt might never come. But in the usual case, we
are back where we were 1.2 usec before, having just
transmitted a one-word command to the disk controller
and having received confirmation that the cormnand arriv-
ed. The command has not yet executed. There is nothing
more for the CPU I/O task to do until the Seek is com-
plete, so it immediately triggers a third exchange, back
to another task. Unfortunately, the Cray Research disk
controllers have no way to generate an interrupt when
the Seek is completed. So some kludge must be invented,
such as "whenever an exchange to the operating system

103

occurs, check to see if an outstanding Seek is com-
pleted." (The following Read command can be sent,
but this ties up the controller during the Seek.)
In whatever way, we eventually end up back in the I/O
task with the disk at the right cylinder. The I/0 task
must then send a one-word "Read" cormnand to the disk
controller. This also is accomplished via a one-word
output sequence and two exchange jumps. As soon as the
read command itself is sent and accepted, the proper
input channel (number 3 in this case) must have its
limit and start registers set to specify the 512-word
data buffer in memory. When the I/0 interrupt for this
transfer arrives, we have finally read one record, and
have done at least i0 exchange jumps, or 6 usec of CPU
time. If all those exchange jumps also involve saving
and restoring user and I/O task B-registers, T-registers.,
and V-registers, the CPU time can jump to 200 use~. All
this for reading a "s~ngle disk record with no error sit-
uations. The next record will come spinning around 900
usec after the first, so 200 usec of dedicated CPU time
can be quite noticeable. Clearly, shortcuts must be
used.

The above analysis is for the case of Seek, then
read/write. For transfer of consecutive sectors on the
track, the process is much faster, as successive Read/
Write commands can be sent with no further overhead.
Each disk controller contains two sector buffers (512
words each), and if the CPU program reads sector 5, that
sector is actually read into buffer A, then transferred
to main memory from the buffer. The buffer-to-memory
transfer is done about six times faster than the disk-
to-buffer transfer. In addition, the disk controlier
automatically copies sector 6 into buffer B as that sec-
tor ~passes the read head. Normally, this overlaps with
the transmission of buffer A to memory. Buffer B can
then be transferred to memory while sector 7 is read
into buffer A. The effect of this design is that there
is no critical between-sector time of Just a few micro-
seconds in which the CPU must start the read of the next
sector. Instead, nearly 5/6 of a sector time (about 750
usec) is available for the CPU to respond to the "sector
5 read" interrupt and initiate the "read sector 6" se-
quence. This makes it much easier for a loaded operat-
ing system to keep the disks busy. A similar process
occurs on output, in which sectors are written on disk
without missing a revolution so long as the CPU keeps
filling buffers with new data. The entire buffering
process also allows wide margins on how quickly a given
I/0 word is accessed in memory, so the channel does not
lose data if there are occasional bank conflicts with
CPU requests.

5. Arithmetic

The Cray-i arithmetic follows the style of the CDC-
6600-7600 series. A floating-point number consists of
a sign bit, 15-bit exponent, and 4g-bit binary fraction
(sign-magnitude). The large exponent is used to repre-
sent numbers in the approximate range 10 -2500 through
10 +2500, plus an overflow range and an underflow range.
The iowest 1/4 of the exponent range (octal leading
digit 0 to l) represents underflowed values, the middle
half (octal leading digit 2-5) represents normal values,
and the highest i/4 (octal leading digit 6 or 7) repre-
sents overflowed values. An operand or a result in one
of the extreme ranges will generate an interrupt if the
machine is not in monitor mode, the floating-point in-
terrupts are not masked off, and the operation is a
scalar instruction. No interrupt occurs for vector in-
structions, which instead run to completion, leaving re-
suits with large exponents (for overflow), or zeros (for

underfiow).

One implication of this scheme is that range errors
are sometimes not detected when a result is formed, but
only much later when a subsequent instruction detects

an out-of-range operand. For the current implementation
of the architecture, even detected out-of-range results
do not generate an interrupt until 2 to ii more instruc-
tions are executed, so all floating point interrupts
(and in fact all others) are imprecise. The current im-
plementation also detects range errors before post-nor-
malizing, so some in-range results generate interrupts,
and some out-of-range results don't. All of this contri-
butes to the kinds of numerical processing difficulties
that Kahan has documented so well [2].

There are other anomolies in the floating-point
arithmetic. Addition is done ~ith one guard bit and the
result is truncated after normalization, ,wi~h no Tounding.
Multiplication is not co=~utative, because part of the
partial sum pyramid is not implemented. Thus, instead
of forming a full 96-bit product fraction from two 48-
bit operands, the Cray-i forms an approximate 56-bit pro-
duct with a constant rounding factor added in to somewhat
compensate for the missing bits. The overall effect of
this is that A*B and B*A may differ in the last bit, and
that products in general may differ from the mathemati-
cally correct result by one in the lowest bit.

There is no divide instruction on the Cray-1. In-
stead, there is a unary reciprocal approximation instruc-
tion which produces a result accurate to 31 bits. This
accuracy ean be improved to 47 bits (not 48) by a recip-
rocal iteration instruction, which takes A and I/A (31-
bit approx.) and calculates 2 - (A*I/A), which is a num-
ber slightly larger than 1.0 if the reciprocal is slight-
ly small, and a number slightly smaller than 1.0 if it
is large. Multipiying the 31-bit approximation by this
correction factor results in a 47-bit approximation
(Newton's iteration). One further multiply by B gives
the quotient B/A.

The advantage of this scheme is that the reciprocal
approximation unit can be built out of strictly combin-
atorial logic, so the entire unit can be pipelined, with
the ability to start a new reciprocal every single clock
cycle. This, plus chaining the reciprocal results into
one of the subsequent multiplies, allows complete vector
divides to be done at the rate of one result every 3 CP,
or almost 27 million divisions per second. This con-
trasts sharply with earlier machines, which are hard
pressed to achieve even i million divisions per second.

The disadvantage of this scheme is that the results
are not quite right, so some of the speed advantage may
be lost in further correction steps. For example, the
integer A mod B routine must use the floating-point di-
vide sequence, truncate the quotient, then back-multiply
and subtract to find the mod. Sometimes, the floating
quotient is just larger than an integer, when in fact it
should be Just smaller. This forces the mo__~d routine to
make an extra check for a negative final result, then
add B if this occurs. It is also possible that the re-
sult is too large by B.

Integer arithmetic in the Cray-i is done on either
24-bit or 64-bit two's complement numbers. There are
add/subtract instructions for both formats, and there is
a multiply instruction for the 24-bit (address) format.
Long multiply and divides of either kind must be done by
converting to floating-point and back. The effect of
needing to convert is that the full range of operations
can only be done on integers up to 46 bits long. There
are no overflow detection mechanisms for any of these
three lengths.

6. Compiler Optimization

The major goal of any optimizing compiler for the
Cray-i must be effective use of the hundreds of fast re-
gisters. This use falls into four categories: storage
of variables, expression evaluation, temporary storage

104

of common subexpressions, and addressing/subroutine
linkage overhead. The last tends to take a handful of

dedicated registers, and the compiler cannot change this
number, so we won't discuss addressing/subroutine linkage
further. As discussed in Section 2, small local vari-
ables should be kept in the B- or T-registers, expres-
sion evaluation should be carried out in the A-, S-, or
V-reglsters, and common subexpresslons should normally
be stored in the B- or T-registers. Within this general
framework, let us look at the register allocation prob-
lem in more detail.

In a traditional optimizing compiler for a register
machine, one goal is to minimize the number of registers
used to evaluate a group of arithmetic expressions, so
that more fast registers can be left over for holding
common subexpressions. This is usually done by evaluat-
ing the more complicated operand of a binary operator
first, in effect minimizing the "stack height" of the
set of intermediate temporaries. For example, the ex-
pression

A - B*C

can be evaluated using only two registers by doing the
multiply first:

S1 ÷ B
$2 ÷ C
S1 ÷ SI~$2 (arithmetic is register-to
$2 ÷ A register only)
$2 ÷ $2-SI.

Loading A first (strict left-to-right) would require
three registers. Note that the evaluation order can be
changed without assuming that any of the operators are
commutative (and in fact floating multiply is not, as
mentioned in Section 5). Although it is not clear in
the above example, the Cray-i is in fact a three-ad-
dress machine; we will use this flexibility below.

The above sequence of 5 instructions would take 31
CP to execute on the Cray-l, with a timing chart that
looks like this:

S1 ÷ B llxxxxxxxxx

$2 ÷ C IIxxxxxxxxx

Sl ÷ SI*S2 Ixxxxxx

$2 ÷ A IIxxxxxxxxx

S2 ÷ $2-SI Ixxxxxx

0 i0 20 30---

Time in CP

Where "I" means the instruction is issuing, "x" means it
is executing, and "." means it is delayed, waiting for a
previous instruction to finish. Note that the multiply
waits for the second load, and the subtract waits for the
third load. Note also that the execution (but never the
issuing) of the various instructions is overlapped,
through the use of 12 different functional units.

We can speed up this sequence by doing the load of A
sooner:

SI ÷ B llxxxxxxxxx

$2 ÷ C llxxxxxxxxx

$3 ÷ A llxxxxxxxxx

SI ÷ SI*$2 Ixxxxxx

S2 ÷ $3-SI Ixxxxx

0 i0 20 30---

Time in CP

The new sequence takes only 26 CP because the load of A
is better overlapped, but we have used three registers
instead of two. Not only is this the best strategy on

the Cray-l, it is the best strategy even if a third
register is not available , since it only takes one CP to
save an S-register in a T-register, and one more CP to
restore it. Spending these two CP saves us 5 CP, a net
gain of 3.

The essential timing problem that we ran into with
the two-register sequence is that we tried to re-use $2
for loading A before the previous value of $2 had had
time to be used. In general, an optimizing compiler
will need to simulate the instruction timing, and keep
assigning intermediate results to new registers until
the timing simulation shows that a previously-used re-
gister is available again. In the absence of a careful
timing simulation, the best strategy that a compiler
can adopt is the one which uses the most registers:
round-robin allocation!

A more complete solution to the register allocation
problem is to generate code for a group of arithmetic
expressions (i.e. all those in a basic block that has
no branches or labels) using an arbitrarily large number
of pseudo-registers, then schedule the resulting code to
minimize issue delays, then map the pseudo-registers in-
to a minimum number of real registers. This process has
the danger that it may require more than 8 real regis-
ters, in which case some spilling must be done. It also
has the problem that moving instructions around to mini-
mize issue delays also moves around the definition and
use points of common subexpressions~ which can sometimes
result in a worse overall allocation. This issue is
worthy of further study.

It is almost always an advantage to store local
scalar variables in the B- and T-registers, instead of
main memory, but the need to save and reload these values
across a subroutine call cuts into the effectiveness of
using these registers. Also, modular programs with large
numbers of small subroutines tend to have only about 5-
i0 local variables which could possibly be kept in these
fast registers, leaving the other 50-odd wasted and un-
used. If an optimizing compiler is allowed to compile
a group of subroutines all at once (as in Pascal), then
it is possible for the compiler to merge the activation
records (local variables) of many subroutines until al-
most all 64 B- or T-registers are used. If this is done,
it is not necessary to save and restore these registers
across all subroutine calls, but only those which call
routines whose local variables won't fit in the used
registers. For i0 local variables per routine and 64 T-
registers, this means spilling only at about every sixth
subroutine call. This activation record merging results
in quite efficient use of a large but finite number of
registers, and might well be a technique to be adopted
in generating code for microprocessors which have from
20 to 200 words of storage right on the microprocessor
chip, and the rest of storage off-chip.

Register allocation is one area of concern for an
optimizing compiler; a second area is that of actually
using the vector facilities of Cray-i architecture. This
is still an open area for research, but some of the tech-
niques used in compilers for previous machines, such as
the Texas Instruments ASC Fortran compiler [3], can be
easily adapted. Although this is an important area to
explore, partial solutions will be acceptable for a while
because the scalar arithmetic on the Cray-i is so fast
that only another factor of 2-4 improvement is available
by using the vector instructions. This contrasts sharply
with other machines in which the scalar version of a pro-
gram may run 20-100 times slower than the vector version.

105

7. Minor Features References

One very useful feature of the Cray-i is that it
has a 64-bit clock which counts once every 12.5 nsec,
synchronously with the rest of the machine. This clock
register can be read by a one-cycle non-privileged in-
struction. This makes it hoth easy and fast to instru-
ment code and find out precisely how many CPs it takes
to execute. Results will be identical from run to run
since the clock is synchronized with the CPU, instead of
being sampled periodically. At Los Alamos, we have an-
swered many obscure questions about the machine's timing
by reading the clock, executing a sequence of two or
three instructions, reading the clock again, then sub-
tracting. Since no Cray-i instruction times are data
dependent, and there is no I/0 interference for scalar
loads and stores (they have priority over I/O), the
clock times are quite reproducible, even when the total
time for a sequence is under i00 nsec. A synchronous
clock should be included on more machines.

The Cray-i has good facilities for generating con-
stants. Small integers in the range 0-63 can be loaded
into an A-register with a 16-bit immediate instruction.
Long constants of ±22 bits can be loaded into A-registers
or S-registers with 32-bit immediate instructions (this
is well matched to the 20-bit implemented memory address
range). Masks of left- or right-justified one-bits can
be generated in an S-register with 16-bit irmmediate in-
structions. Other patterns, including floating-point
numbers with simple fraction parts (e.g. 2.0) can be
generated by an immediate instruction followed hy a shift.
In addition, AO used as an index register or as a first
operand always supplies the value zero, SO used as a
first operand always supplies the value zero, AO used as
a second operand always supplies the value i (as in
A4÷A4- AO to decrement A4), and SO used as a second op-
erand always supplies a sign bit, 263 . These turn out

to be just the right constants to have, except SO used
as a second operand could more usefully supply the value
i.

There is no Load Address instruction with indexing,
so construction of argument lists is slightly awkward.

The Cray-i has four non-contlguous instruction
buffers of 16 words each. Instructions take 1/4 or 1/2
word each, so one buffer holds from 32 to 64 instruc-
tions. These buffers have an extremely wide four-word
data path to main store, so an entire buffer can be
loaded by saturating the 16 memory banks in 4 cycles
of 4 words each (due to routing delays and single-blt
error correction, the actual buffer load time seen by
the executing program is ii CP). So long as a loop,
including subroutine calls, branches, or whatever, fits
in the four buffers, no time at all is spent on in-
struction fetch. Even straight-line code benefits
from the block-load mechanism.

[i]

[2]

[3]

G.M. Amdahl, "Storage and I/O Parameters and
Systems Potential," IEEE Computer Group Conf.,
June 1970, Washington, DC, pp. 371-372.

W. Kahan, "A Survey of Error Analysis," Infor-
mation Processing 71, North Holland Publishing,
pp. 1214-1239.

D. Wedel, "Fortran for the Texas Instruments
ASC System," SIGPLAN Notices, March 1975
(Vol. i0, No. 3), pp. 119-132.

8. Conclusion

The Cray-i is an extremely fast and versatile com-
puter, but it will take many years of software research
and development to fully exploit the new aspects of the
Cray-i architecture.

The experience on which this paper is based was
gained while working at the Los Alamos Scientific Lab-
oratory. I gratefully acknowledge the support and en-
couragement of Forest Baskett and my other friends in
the group there.

106

