
c:
RESEARCH J INC.

Any shipment to a country outside of the
United States requires a U.S. Government
export license.

CRAY COMPUTER SYSTEMS

CRAY X-MP SERIES
MODELS 22 & 24

MAINFRAME REFERENCE MANUAL

HR-0032

Copyright© 1982, 1984 by CRAY RESEARCH, INC. This manual
or parts thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

E i
RECORD OF REVISION ~ESEA~CHJ INC. PUBLICATION NUMBER HR-0032

Each time thil manuel il revised and reprinted, all chan~ issued against the previous version in the form of change packets are
incorporated into the new version and the new version IS .. Igned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of ch.ange peckets. Each change packet is assigned 8 numeric designator, starting with
Ol for the first change packet of each revillon level.

Every P9 changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. Changes to part of 8 P8SlI are noted bY a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in ttle same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Crav Research, Inc. publications and comments about these publications should be directed to:
CRAY RESEARCH, INC.,
1440 Northland Drive,
Mendota Heights, Minnesota 55120

Revision

A

BR-0032

Description
November, 1982 - Original printing.

July, 1984 - Reprint with revision. Instructions were added
for hardware performance monitoring and SECDED maintenance
functions. Information was also added to explain how the
Second Vector Logical functional unit is used although this
functional unit is not available on all systems. Numerous
technical and editorial changes and correccions were also
made. This revision obsoletes all previous printings.

ii A

PREFACE

This publication describes the functions of CRAY X-MP Series
dual-processor computer systems, models 22 and 24. It is written to
assist programmers and engineers and assumes a familiarity with digital
computers.

The manual describes the overall computer system, its configurations, and
equipment. It also describes the operation of the Central Processing
Units that execute instructions, provide memory protection, report
hardware exceptions, and provide interprocessor communications within the
computer systems.

Details of the I/O Subsystem, the disk storage units, and the Solid-state
Storage Device are given in the following publications:

HR-0030
HR-0630
HR-003l

I/O Subsystem Hardware Reference Manual
Mass Storage Subsystem Hardware Reference Manual
Solid-state Storage Device (SSO@) Reference Manual

HR-0032

///

WARNING

This equipment generates, uses, and can radiate radio
frequency energy and if not installed and used in
accordance with the instructions manual, may cause
interference to radio communications. It has been
tested and found to comply with the limits for a Class
A computing device pursuant to Subpart J of Part 15 of
FCC Rules, which are designed to provide reasonable
protection against such interference when operated in a
commercial environment. Operation of this equipment in
a residential area is likely to cause interference in
which case the user at his own expense will be required
to take whatever measures may be required to correct
the interference.

///

iii A

CONTENTS,

PREFACE

1.

2.

SYSTEM DESCRIPTION •

INTRODUCTION •
CONVENTIONS

Italics •
Register conventions
Number conventions
Clock per iod

SYSTEM COMPONENTS
Central Processing Units
Interfaces
I/O Subsystem •
Disk storage units.
Solid-state Storage Device
Condensing units
Power distribution units
Motor-generator units •

SYSTEM CONFIGURATION •

CPU SHARED RESOURCES •

INTRODUCTION •
CENTRAL MEMORY •

Memory organization •
Memory addressing •

Memory addressing for 6-co1umn mainframe •
Memory addressing for 12-co1umn mainframe

Memory access •
Conflict resolution

Bank Busy conflict
Simultaneous Bank conflict
Section Access conflict •

Memory access priorities •
16-bank phasing •
Memory error correction •

INTER-CPU COMMUNICATION SECTION
Real-time clock •
Inter-CPU communication and control •

Shared Address and Shared Scalar registers •
Semaphore registers

HR-0032 v A

iii

1-1

1-1
1-4
1-4
1-4
1-4
1-4
1-5
1-5
1-7
1-9
1-11
1-12
1-13
1-14
1-15
1-16

2-1

2-1
2-1
2-2
2-3
2-3
2-4
2-4
2-7
2-7
2-7
2-7
2-7
2-8
2-8
2-10
2-10
2-11
2-12
2-12

2. CPU SHARED RESOURCES (continued)

3.

CPU INPUT/OUTPUT SECTION • • • • • • • • • • • • • •
Data transfer for Solid-state Storage Device
Data transfer for I/O Subsystem • • • • • •
6 Mbyte per second channels • • • • •
Multi-CPU programming • • • • • • ~

6 Mbyte per second channel operation •••• •
Input channel programming • • • • • •
Input channel error conditions ••••••
Output channel programming ••••
Programmed master clear to external device
Memory access • • • • •
I/O lockout • • • • • • • • • •
Memory bank conflicts • • •
I/O memory conflicts

.

.

. . . .
· · . . ·

· . · .
· . .

I/O memory request conditions •
I/O memory addressing • • • • •

.

CPU CONTROL SECTION .
INTRODUCTION • • • • • • • • •
INSTRUCTION ISSUE AND CONTROL

Program Address register
Next Instruction Parcel register
Current Instruction Parcel register
Lower Instruction Parcel register •
Instruction buffers ., .

EXCHANGE MECHANISM • • • • • • • • •
Exchange package

Processor number
vector not used (VNU)

. .

Enable second vector logical (ESVL)
Memory error data ••••

Exchange registers
Exchange Address register
Mode register ••••••
Flag register ••••••
Cluster Number register
Program State register
A registers •• • • •
S registers •••••

. . . .

· . . .
· . ·

· . .
· .

· .
Program Address register •
Memory field registers

·
Active Exchange Package • • • •
Exchange sequence • • • • • • •

Exchange initiated by deadstart sequence •
Exchange initiated by Interrupt flag set •
Exchange initiated by program exit • •
Exchange sequence issue conditions

Exchange Package management • • · . .

. .

. . .

HR-0032 vi A

2-14
2-15
2-16
2-16
2-17
2-18
2-19
2-20
2-20
2-21
2-21
2-24
2-24
2-24
2-25
2-25

3-1

3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-5
3-5
3-7
3-7
3-8
3-8
3-9
3-9
3-9
3-11
3-12
3-12
3-12
3-12
3-13
3-13
3-13
3-13
3-14
3-14
3-14
3-15
3-15

3. CPU CONTROL SECTION (continued)

MEMORY FIELD PROTECTION
Instruction Base Address register •
Instruction Limit Address register
Data Base Address register
Data Limit Address register •
Program range error •
Operand range error • •

PROGRAMMABLE CLOCK •
Instructions
Interrupt Interval register •
Interrupt Countdown counter •
Clear programmable clock interrupt request

PERFOBMANCE MONITOR
DEADSTART SEQUENCE • • • • •

4. CPU COMPUTATION SECTION

INTRODUCTION •
OPERATING REGISTERS
ADDRESS REGISTERS

A registers
B registers

SCALAR REGISTERS
S registers
T registers •

VECTOR REGISTERS •
V registers

V register reservations and chaining •
Vector control registers

Vector Length register •
Vector Mask register •

FUNCTIONAL UNITS • • • • • •

HR-0032

Address functional units
Address Add functional unit
Address Multiply functional unit • •

Scalar functional units •
Scalar Add functional unit •
Scalar Shift functional unit
Scalar Logical functional unit •
Scalar Population/Parity/Leading Zero
functional unit

Vector functional units •
Vector functional unit reservation •
Vector Add functional unit •
Vector Shift functional unit •
Full Vector Logical functional unit
Second Vector Logical functional unit
Vector Population/parity functional unit

vii

3-16
3-17
3-17 . . 3-18
3-18
3-18
3-19
3-19
3-19
3-19
3-20
3-20
3-20
3-21

4-1

4-1
4-3
4-3
4-3
4-5
4-6
4-6
4-8
4-9
4-9
4-12
4-13
4-13
4-13
4-14
4-14
4-15
4-15
4-15
4-15
4-16
4-16

4-16
4-16
4-17
4-17
4-17
4-18
4-18
4-19

A

5.

FONC'lIONAL UNITS (continued)

· . . Floating-point functional units • • • •
Floating-point Add functional unit •• • • • • •
Floating-point Multiply functional unit
Reciprocal Approximation functional unit •

· . .
ARITHMETIC OPERATIONS • • • • • • • • • • • • • • • • •

. . . .
Integer arithmetic ••••••••••• . . .
Floating-point arithmetic • • • • • • • • • • •

Normalized floating-point numbers •••••
Floating-point range errors • • •

Floating-point Add functional unit • • • • •
Floating-point Multiply functional unit • • •
Floating-point Reciprocal Approximation
functional unit • • • • • • • • • • •

Double-precision numbers • • • • • • • • • •
Addition algorithm • • • • • • • • • • • • •
Multiplication algorithm • • • •
Division algorithm • • •

Newton's method •••
.

Derivation of the division algorithm • • · .
LOGICAL OPERATIONS • • • • • • • • •

CPU INSTRUCTIONS •• · . .
INSTRUCTION FORMAT • . . · .

I-parcel instruction format with discrete j
and k fields •• • • • • • • • • • • • • • • • •
I-parcel instruction format with combined j
and k fields ••• • • • • • • • • • • •
2-parcel instruction format with combined j, k,
and m fields • • • • • • • • • • • • • • • • •
2-parcel instruction format with combined i, j, k,
and m fields • • • • • • • • •

SPECIAL REGISTER VALUES • • • •
INSTRUCTION ISSUE • • •
INSTRUCTION DESCRIPTIONS • •

APPENDIX SECTION

4-20
4-20
4-20
4-21
4-21
4-21
4-22
4-23
4-24
4-24
4-25

4-27
4-27
4-27
4-28
4-30
4-30
4-31
4-35

5-1

5-1

5-1

5-2

5-2

5-3
5-4
5-5
5-6

A. INSTRUCTION SUMMARY FOR CRAY X-MP MODELS 22 AND 24 • • • • • • • A-I

B. 6 MBYTE PER SEOOND CHANNEL DESCRIPTIONS
INTRODUCTION • • • • • • • • • •
6 MBYTE PER SEOOND INPUT CHANNEL SIGNAL SEQUENCE.

Data bits 20 through 215 • • • • • • • • • •
parity bits 0 through 3 • • • • • • • • • • •

HR-0032 viii

. . .
. . . .

. .
B-1

B-1
8-1
B-1
B-2

A

C.

D.

6 MBYTE PER SEOOND INPUT CHANNEL SIGNAL SEQUENCE (continued)
Ready signal • • • • • • • • • • • • • • •
Resume signal • • • • • • • • • • • • • • • •
Disconnect signal • • • • • • • • • •

6 MBYTE PER SECOND OUTPUT CHANNEL SIGNAL SEQUENCE
Data bits 20 through 215 •• • • • • • • • •
Parity bits 0 through 3 •
Ready signal • • • •
Resume signal • • • • •
Disconnect signal • • • •

.

PERFORMANCE MONITOR .
INTRODUCTION • • • • • • • • •
SELECTING PERFORMANCE EVENTS
READING PERFORMANCE RESULTS
TESTING PERFORMANCE COUNTERS •

.
.

SECDED MAINTENANCE FUNCTIONS
INTRODUCTION • • • • • • • • • • • • •
VERIFICATION OF CHECK BIT STORAGE
VERIFICATION OF CHECK BIT GENERATION •
VERIFICATION OF ERROR DETECTION AND CORRECTION •
CLEARING MAINTENANCE MODE FUNCTIONS ••••••

. . .

FIGURES

1-1 CRAY X-MP Model 22 or 24 l2-column mainframe with a

1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12

1-13

2-1
2-2
2-3
2-4

Cray I/O Subsystem and an SSD •••••• • • • • • • • •
Basic organization of the dual-processor system
Control and data paths for a single CPU
CRAY X-MP Models 22 or 24 6-column mainframe chassis • • • • •
TYPical interface cabinet • • • •
I/O Subsystem chassis ••• • • • • . . .
DD-29 Disk Storage Unit • • • • • • •
Solid-state Storage Device chassis • • • • • • • • • • • • • •
Condensing unit •••••••••• • • •
Power distribution units • • • • • • • • •
Motor-generator equipment • • •
Block diagram of CRAY X-MP dual-processor system
with full disk capacity ••••••••• • • • • • • • • • •
Block diagram of CRAY X~ dual-processor system
with block multiplexer channels ••••• • • • • • • •
Central Memory organization for a dual-processor system
6-column memory address (32 banks) • •
6-column memory address (16 banks) • • • •
12-co1umn memory address (32 banks) •••

HR-0032 ix

B-3
B-3
B-3
B-3
B-4
B-5
B-5
B-5
B-5

C-l

C-1
C-l
C-3
C-3

D-l

D-l
D-1
D-2
D-2
D-3

1-2
1-5
1-6
1-7
1-8
1-10
1-11
1-12
1-13
1-14
1-15

1-16

1-17
2-2
2-3
2-3
2-4

A

FIGURES (continued)

2-5
2-6
2-7
2-8
2-9
2-10
2-11
3-1
3-2
3-3
4-1
4-2
4-3
4-4
4-5
4-6
4-7

4-8
4-9
4-10
5-1
5-2
5-3

5-4

5-5

5-6

5-7
5-8
5-9
5-10
5-11

5-12

l2-column memory address (16 banks) • • • • • • • • • • •
Memory data path with SECDED • • • • • • • • •
Error correction matrix • • • • • • • • •
Shared registers and real-time clock • • • • • • • • •
Basic I/O program flowchart ••••••••• • •
Channel I/O control (shown for one processor)
Input/output data paths ••••••••
Instruction issue and control elements • • • • • • • • • • • •
Instruction buffers •••••••••••••
Exchange package for a dual-processor system •
Address registers and functional units •
Scalar registers and functional units ••••
vector registers and functional units ••••
Integer data formats • • • • • ". • • • •

. . .
Floating-point data format • • • • • • • • • • • • • • • •
Exponent matrix for Floating-point Multiply unit • • • • •
Integer multiply in Floating-point Multiply
functional unit •••• • • • • • • • • • • • •
49-bit floating-point addition • • • • • • • • • •
Floating-point multiply partial-product sums pyramid • •
Newton's method •••••••••••••••••••••••
General form for instructions •••••••••••
I-parcel instruction format with discrete j and k fields •
I-parcel instruction format with combined j and
k fields •
2-parcel instruction format with combined j, k, and
m fields •
2-parcel instruction format for a branch with
combined i, j, k, and m fields •••••••••
2-parcel instruction format for a 24-bit immediate constant
with combined i, j, k, and m fields •••••••••••
vector left double shift, first element, VL greater than 1 • •
vector left double shift, second element, VL greater than 2
vector left double shift, last element • • • • • • • •
vector right double shift, first element •
vector right double shift, second element,
VL greater than 1 •••••• • • • • • •
vector right double shift, last operation •••• • • • • • •

TABLES

1-1
2-1

2-2
3-1

CRAY x~p dual-processor system characteristics
Access conflicts to shared registers
in a dual-processor computer • • • •
Channel word assembly/disassembly
Exchange Package assignments • • • •

HR-0032 x A

2-4
2-8
2-9
2-11
2-19
2-22
2-23
3-1
3-3
3-6
4-4
4-7
4-10
4-22
4-23
4-25

4-27
4-28
4-29
4-31
5-1
5-2

5-2

5-3

5-4

5-4
5-71
5-71
5-71
5-72

5-73
5-73

1-3

2-13
2-18
3-7

TABLES (continued)

B-1
B-2
C-l

INDEX

Input channel signal exchange • • • • • • • • • • •
Output channel signal exchange • • • • • • • • • • • • • •
Performance counter group descriptions • • • • • •

HR-0032 xi A

B-2
B-4
C-2

SYSTEM DESCRIPTION

INTRODUCTION

The CRAY X-MP/22 and CRAY X-MP/24 are powerful, general purpose computer
systems that contain two central processing units (CPUs). The systems
can achieve extremely high multiprocessing rates by efficiently using the
scalar and vector processing capabilities of both CPUs combined with the
systems' random-access, solid-state memory (RAM) and shared registers.

Vector processing is the performance of iterative operations on sets of
ordered data. When two or more vector operations are chained together,
two or more operations can be executing each 9.5-nanosecond clock period,
greatly exceeding the computational rates of conventional scalar
processing. Scalar operations complement the vector capability by
providing solutions to problems not readily adaptable to vector
techniques.

Equipment options allow the systems to be configured for a particular use
(see table 1-1). Central Memory of a dual-processor system can be either
2 million (model 22) or 4 million (model 24) 64-bit words. The systems
are compatible with all existing models of the Cray I/O Subsystem, which
matches the mainframe's processing rates with high input/output transfer
rates for communication with mass storage units, other peripheral
devices, and a wide variety of host computers.

In addition to the mainframe and I/O Subsystem, a Cray Research, Inc.,
Solid-state Storage Device can be configured with the system. An SSD
provides significantly improved throughput of programs that access large
data files repetitively. Figure 1-1 illustrates the mainframe configured
with a Cray I/O Subsystem and an SSD®.

This section describes system components and configurations. Table 1-1
provides overall system characteristics.

HR-0032 1-1 A

1

HR-0032

Figure 1-1. CRAY X-MP Model 22 or 24 12-column mainframe
with a Cray I/O Subsystem and an SSD

1-2 A

I

I

I

I

Table 1-1. CRAY X~ dual-processor system characteristics

Configuration - Mainframe with 2 Central Processing Units (CPUs)
- I/O Subsystem with 2, 3, or 4 I/O Processors

CPU speed

- Optional Solid-state Storage Device (SSD)

- 9.5 ns CPU clock period
- 105 million floating-point additions per second per CPU
- 105 million floating-point multiplications per second

per CPU
- 105 million half-precision floating-point divisions per

second per CPU
- 33 million full-precision floating-point divisions per

second per CPU
- Simultaneous floating-point addition, multiplication,

and reciprocal approximation within each CPU

Memories - Mainframe has 2 million (model 22) or 4 million
(model 24) 64-bit words in Central Memory

Input/Output - One 1250 Mbyte per second Solid-state Storage Device
(SSD) channel pair

- Two 100 Mbyte per second channel pairs for interface to
I/O Subsystem

- Four 6 Mbyte per second channel pairs

Physical - 64 sq ft floor space for l2-column mainframe; 32 sq ft
floor space for 6-column mainframe.

- 15 sq ft floor space for I/O Subsystem
- 15 sq ft floor space for SSD
- 5.25 tons, l2-column mainframe weight; 2.95 tons,

6-column mainframe weight.
- 1.5 tons, I/O Subsystem weight
- 1.5 tons, SSD weight
- Liquid refrigeration of each chassis
- 400 Hz power from motor-generators

HR-0032 1-3 A

CONVENTIONS

The following conventions are used in this manual.

ITALICS

Italicized lowercase letters, such as jk, indicate variable information.

REGISTER CONVENTIONS

Parenthesized register names are used frequently in this manual as a form
of shorthand notation for the expression "the contents of register ___ .ft

For example, "Branch to (P)" means "Branch to the address indicated by the
contents of register P."

Designations for the A, B, S, T, and V registers are used extensively.
For example, "Transmit (Tjk) to sin means "Transmit the contents of
the T register specified by the jk designators to the S register
specified by the i designator."

Register bits are numbered right to left as powers of 2, starting with
2°. Bit 263 of an S, VL or T register value represents the most
significant bit. Bit 2~3 of an A or B register value represents the
most significant bit. (A and B registers are 24 bits.) The numbering
conventions for the Exchange Package and the Vector Mask register are
exceptions. Bits in the Exchange Package are numbered from left to right
and are not numbered as powers of 2 but as bits ° through 63 with ° as the
most significant and 63 as the least significant. The Vector Mask
register has 64 bits, each corresponding to a word element in a vector
register. Bit 263 corresponds to element 0, bit 2° corresponds to
element 63.

NUMBER CONVENTIONS

Unless otherwise indicated, numbers in this manual are decimal numbers.
Octal numbers are indicated with an 8 subscript. Exceptions are register
numbers, channel numbers, instruction parcels in instruction buffers, and
instruction forms which are given in octal without the subscript.

CLOCK PERIOD

The basic unit of CPU computation time is 9.5 nanoseconds (ns) and is
referred to as a clock period (CP). Instruction issue, memory references,
and other timing considerations are often measured in CPs.

HR-0032 1-4 A

I

SYSTEM CDIPONEN'l'S

The system is composed of a mainframe and an I/O Subsystem. Mass storage
devices, front-end interfaces, and optional tape devices are also integral
parts of a system. Optionally, a Cray Solid-state Storage Device (SSD)
can be part of the system. Supporting this equipment are condensing units
for refrigeration, motor-generators to provide system power, and power
distribution units for the mainframe, I/O Subsystem, and the SSD. System
components are described on the following pages.

CENTRAL PROCESSING UNITS

Each CPU has independent control and computation sections. Both CPOs
share Central Memory and the inter-CPO communication and I/O sections.
(CPO sections are described in later sections.) Figure 1-2 illustrates
the basic organization of the computer, figure 1-3 illustrates the
components and control and data paths of a single CPU in the system.
Figure 1-4 shows mainframe chassis.

CONTROL SECTION

• Instruction - •
buffers

• • Control
registers

• Exchange
mechanism

• Interrupt

• Programmable
clock

• Status
register

HR-0032

COMPUTATION CPU COMMUNICATION COMPUTATION
SECTION SECTION SECTION

Registers • Shared registers - • Registers

Functional • Semaphore • Functional
units registers units

• Real-time Clock
register

MEMORY SECTION

2 million or 4 million
64-bit words

,

I/O SECTION

• Four 6 Mbyte per second channel pairs

• One 1250 Mbyte per second channel pair

• Two 100 Mbyte per second channel pairs

Figure 1-2. Basic organization of the
dual-processor system

1-5

CONTROL SECTION

• Instruction
buffers

• Control
registers

• Exchange
mechanism

• Interrupt

• Programmable
clock

• Status
register

A

77

Si t jSj

Si t lSi

Si t lSi

Ait IAi

Ai
AI:

Figure 1-3.

liD

Ak

\....-,ij----.:..;.:.....----I-4--+-~_..j Functional
c::..(.;'ooo----___ A-'-i ____ --...... ----1 Units

-I ReaI-Ti.eClod

SM

0--

I ST

0'-

I S8

lOa

I"
Sjl

Sil

s;!

Ail

tSi

tSi

tSi

tAi

*The Vector Pop/Parity shares its
input path with the Reciprocal
Approximation unit.

The Second Vector logical s"ares
its input and output path with the
Floating-point Multiply unit.

Issue

Control and data paths for a single CPU

t Second Vector Logical unit not available on all machines.

HR-0032 1-6 A

Figure 1-4. CRAY X~P Model 22 or 24 6-column mainframe chassis

INTERFACES

The Cray mainframe is designed for use with front-end computers in a
computer network. A front-end computer system is self contained and
executes under the control of its own operating system.

Standard interfaces connect the Cray mainframe's I/O channels to channels
of front-end computers, providing input data to the Cray and receiving
output from it for distribution to peripheral equipment. Interfaces
compensate for differences tn channel widths, machine word size,
electrical logic levels, and control signals. The Master I/O Processor
of the I/O Subsystem communicates with a front-end computer system
through a 6 Mbyte per second channel pair to a channel adapter module in
the Cray mainframe. Communication continues through a front-end
interface, to the front-end computer typically through a front-end
computer I/O channel.

HR-0032 1-7 A

The front-end interface is housed in a stand-alone cabinet (figure 1-5)
located near the host computer. Its operation is invisible to both the
front-end computer user and the Cray user.

A primary goal of the interface is to maximize the use of the front-end
channel connected to the Cray system. Since the MIOP channel connected
to the interface is faster than any front-end channel connected to the
interface, the burst rate of the interface is limited by the maximum rate
of the front-end channel.

Interfaces to front-end computers allow the front-end computers to
service the Cray mainframe in the following ways:

• As a master operator station

• As a local operator station

• As a local batch entry station

• As a data concentrator for multiplexing several other stations
into a Single Cray channel

• As a remote batch entry station

• As an interactive communication station

Peripheral equipment attached to the front-end computer varies depending
on the use of the Cray system.

Figure 1-5. Typical interface cabinet

HR-0032 1-8 A

I/O SUBSYSTEM

The I/O Subsystem, shown in figure 1-6, is standard on all models of CRAY
X-MP Computer Systems and has two, three, or four I/O Processors (lOPs),
a Buffer Memory, and required interfaces. It is designed for fast data
transfer between front-end computers, peripheral devices, storage
devices, and the I/O Subsystem's Buffer Memory or between its Buffer
Memory and the Central Memory of a Cray mainframe.

Four types of I/O Processors may be configured in an I/O Subsystem: a
Master lOP (MIOP), a Buffer lOP (BIOP), a Disk lOP (DIOP) and an
Auxiliary lOP (XIOP). All I/O Subsystems must have at least one MIOP and
one BIOP. The number of DIOPs and XIOPs is site dependent.

Each lOP of the I/O Subsystem has a memory section, a control section, a
computation section, and an input/output section. Input/output sections
are independent and handle some portion of the I/O requirements for the
Subsystem. Each lOP also has six direct memory access ports to its local
Memory.

The Master I/O Processor (MIOP) controls the front-end interfaces and the
standard group of stationt peripherals. The Peripheral Expander
interfaces the station peripherals to one direct memory access (DMA) port
of the MIOP. The MIOP also connects to Buffer Memory and to the
mainframe over a 6 Mbyte per second channel pair. The MIOP communicates
with the Cray Operating System (COS) to coordinate the activities of the
entire I/O Subsystem.

The Buffer I/O Processor (BIOP) is the main link between the mainframe's
Central Memory and the mass storage devices. Data from mass storage is
transferred through the BIOP's Local Memory to the mainframe's Central
Memory through a 100 Mbyte per second channel pair.

The Disk I/O Processor (DIOP) is used for additional disk storage units.
This processor can handle up to four disk controller units with up to 16
disk storage units. The DIOP uses one DMA port for each controller, one
DMA port to connect to Buffer Memory, and another DMA port to connect a
100 Mbyte per second channel pair to the mainframe Central Memory.

The Auxiliary I/O Processor (XIOP) is used for block multiplexer channels
and interfaces to a maximum of four BMC-4 Block Multiplexer Controllers.
Each controller can handle up to four block multiplexer channels. The
XIOP uses one DNA port for each controller and another DMA port to
connect with Buffer Memory.

t The term station means both hardware and software. Station is the
link to the front end or can act as a limited front end (as the MIOP).

HR-0032 1-9 A

I/O Subsystem hardware allows for simultaneous data transfers between the
BIOP and DIOP or XIOP of the I/O Subsystem and the mainframe's Central
Memory.t

The CPU input/output section for Cray dual-processor systems is described
in section 2 of this manual. Refer to the I/O Subsystem Reference
Manual, CRI publication HR-0030, for a complete description of the I/O
Subsystem.

Figure 1-6. I/O Subsystem chassis

t Software to support the 100 Mbyte per second channel pair to the
XIOP is currently not available.

HR-0032 1-10 A

DISK STORAGE UNITS

For mass storage, the system uses Cray Research, Inc., disk storage unit
(DSUs). A disk controller unit (DCU) interfaces the disk storage units
with an I/O Processor of an I/O Subsystem through one direct memory
access (DNA) port. Up to four disk storage units can be connected to a
single DCU.

The I/O Processor and the disk controller unit can transfer data between
the DMA port and four DSUs with all DSUs operating at full speed without
missing data or skipping revolutions. A minimum of 2 and a maximum of 48
DSUs can be configured on an I/O Subsystem. Figure 1-7 shows a Cray
DD-29 Disk Storage Unit. The disk controller unit is housed in the I/O
Subsystem chassis.

Each DSU has two accesses for connecting it to controllers. The second
independent data path to each DSU exists through another Cray Research,
Inc., controller. Reservation logic provides controlled access to each
DSU. Dynamic sharing of devices is not supported by the Cray Operating
System (COS) software. Further information about the mass storage
subsystem is included in the I/O Subsystem Reference Manual, CRI
publication HR-0030, and the Mass Storage Subsystem Hardware Reference
Manual, CRI publication HR-0630.

Figure 1-7. DD-29 Disk Storage Unit

HR-0032 1-11 A

SOLID-STATE STORAGE DEVICE

The Solid-state Storage Device (SSD) shown in figure 1-8 is an optional,
high-performance device used for temporary data storage. It transfers
data between the mainframe's Central Memory and the SSD through a special

I Cray interface cable set at a maximum speed of 1250 Mbytes per second.
The actual speed of these transfers is dependent on the SSD memory size
and system configuration as described in the Solid-state Storage Device
(SSD) Reference Manual, CRI publication HR-003l.

Figure 1-8. Solid-state Storage Device chassis

HR-0032 1-12 A

CONDENSING UNITS

Condensing units (figure 1-9) contain the major components of the
refrigeration system used to cool the computer chassis and consist of two
25-ton condensers. Heat is removed from the condensing unit by a second
level cooling system that is not part of the computer system. Freon,
which cools the computer, picks up heat and transfers it to water in the
condensing unit.

Figure 1-9. Condensing unit

HR-0032 1-13 A

I

POWER DISTRIBUTION UNITS

The Cray mainframe, I/O Subsystem, and SSD all operate from 400 Hz
3-phase power. The mainframe, I/O Subsystem, and SSD have independent
power distribution units. The power distribution unit for the mainframe
contains adjustable transformers for regulating the voltage to each
column of the mainframe. The power distribution unit also contains
temperature and voltage monitoring equipment that checks temperatures at
strategic locations on the mainframe chassis. Automatic warning and
shutdown circuitry protects the mainframe in case of overheating or
excessive cooling. control switches for the motor-generators and the
condensing unit are also mounted on the mainframe's power distribution
unit.

A smaller power distribution unit performs similar functions for the I/O
Subsystem chassis or the SSD chassis.

Figure 1-10 shows the power distribution units for the mainframe (left)
and for the I/O Subsystem or SSD (right).

Figure 1-10. Power distribution units

HR-0032 1-14 A

MOTOR-GENERATOR UNITS

Motor-generator units convert primary power from the commercial power
mains to the 400 Hz power used by the system. These units isolate the
system from transients and fluctuations on the commercial power mains.
The equipment consists of two or three motor-generator units and a
control cabinet. Figure 1-11 shows a typical motor-generator and its
control cabinet.

Figure 1-11. Motor-generator equipment

HR-0032 1-15 A

SYSTEM CONFIGURATION

Figures 1-12 and 1-13 illustrate two configurations for models 22 or 24
of the CRAY x~p Computer System.

MIOP

SlOP

DIOP

DIOP

_Cray 6 Mbyte channel

• Cray 100 Mbyte channel

• Cray 1250 Mbyte channel

FRONT-END

COMPUTERS

FRONT-END

INTERFACES

CRAY X· MP MAINFRAME
2 OR 4 MILLION

64·BIT WORDS

Figure 1-12. Block diagram of CRAY X-MP dual-processor system
with full disk capacity

HR-0032 1-16 A

SSD

I

_Cray 6 Mbyte channel
• Cray 100 Mbyte channel

.Cray 1250 t4byte channel

MIOP

BIOP

DIOP

XIOP

1 TO 2

FRONT-END

COMPUTERS

FRONT-END

INTERFACES

BLOCK MULTIPLEXER - - - 1 TO 8 CHANNELS
CONTROLLERS

CRAY X - MP MAINFRAME
2 OR 4 MILLION

64-BIT WORDS

Figure 1-13. Block diagram of CRAY X-MP dual-processor system
with block multiplexer channels

HR-0032 1-17

SSD

A

I

CPU SHARED RESOURCES

INTRODUCTION

Both Central Processing Units (CPUs) of a system share the mainframe's
Central Memory, the inter-CPU communication section, and the
input/output section. These areas common to the CPUs are described in
the following pages.

CENTRAL MEMORY

Central Memory consists of a number of banks of solid-state, random
access memory (RAM) and is shared by the CPUs and the I/O section.
Standard Central Memory sizes are: 2 million words with 16 banks and 4
million words with 32 banks. Banks are independent of each other;
sequentially addressed words reside in sequential banks. Each word is
72 bits with 64 data bits and 8 check bits.

Central Memory cycle time is 4 clock periods (CPs) or 38 nanoseconds
(ns). Access time, the time required to fetch an operand from Central
Memory to an operating register, is 14 CPs (133 ns) for A (address) and
S (scalar) registers. Access time is 17 CPs + vector length for a V
(vector) register and 16 CPs + block length for a block transfer to a B
(intermediate address) or T (intermediate scalar) register.

The maximum transfer rate per CPU for B, T, and V registers is three
words per CP; for A and S registers per CPU, it is one word every 2
CPs. Transfer of instructions to instruction buffers occurs at a rate
of 32 parcels (8 words) per CP. For the I/O section, the transfer rate
is 2 words per CP.

Central Memory features are summarized below and are described in detail
in the following paragraphs.

• Shared access from both CPUs
• 2 million or 4 million words of integrated circuit memory
• 64 data bits and 8 error correction bits per word
• 16 or 32 interleaved banks
• 4-CP bank cycle time
• Single error correction/double error detection (SECDED)
• 3 words per CP transfer rate to B, T, and V registers per CPU

HR-0032 2-1 A

2

I

• 1 word per 2 CP transfer rate to A and S registers per CPU
• 8 words per CP transfer rate to instruction buffers
• 2 words per CP transfer rate to I/O concurrent with all memory

activity except instruction fetch and exchange

MEMORY ORGANIZATION

Memory is organized to provide fast, efficient access for all CPUs.
Data transfers to and from memory are corrected with single error
correction, double error detection (SECDED). Central Memory is
organized into four sections with 4 or 8 banks in each section. The
16-bank phasing is standard for a 2-million word system (model 22), and
32-bank phasing is standard for a 4-million word system (model 24).

As shown in figure 2-1, each CPU is connected to an independent access
path into each of the four sections. This configuration allows up to
eight memory references per clock period.

SECTION 0
Banks 0,4,10,14,t "'-_+1

20,24,30,34

SECTION 1
Banks 1,5,11,15,t

21,25,31,35

CPU
ports

ABC

CPU

CPU
path

selection

ABC

CPU
ports

SECTION 2
t4----+I Banks 2,6,12,16,t

22,26,32,36

SECTION 3
Banks 3,7,13,17,t

23,27,33,37

Figure 2-1. Central Memory organization for
a dual-processor system

t Low-numbered 4 banks in each section are in a 16-bank system.

HR-0032 2-2 A

MEMORY ADDRESSING

Memory addressing is dependent on system memory architecture (chip size
and number of banks) and memory size. Memory addressing for 6-column and
l2-column dual-processor systems is described in the following paragraphs.

Memory addressing for 6-column mainframe

A word in a 32-bank memory is addressed in a maximum of 22 bits as shown
in figure 2-2. The low-order 5 bits specify one of the 32 banks. The
next l4-bit field specifies an address within the chip. The high-order 3
bits specify one chip on the module.

Chip Internal bit 5-bit
address address in bank
select chip

Figure 2-2. 6-column memory address (32 banks)

A word in a l6-bank memory is addressed in a maximum of 21 bits as shown
in figure 2-3. In this case, the low-order 4 bits specify one of the 16
banks. The next l4-bit field specifies an address within the chip. The
high-order 3 bits specify one chip on the module. t

Chip Internal bit 4-bit
address address in bank
select chip

Figure 2-3. 6-column memory address (16 banks)

t Hardware assembles the address using a 4-bit bank field. The
software, when assembling the address for memory error correction,
will receive 5 significant bits from the Exchange Package. The
high-order bit (bit 4 counting right to left from 0) must be discarded
by the software when assembling the address for memory error
correction.

HR-0032 2-3 A

I Memory addressing for l2-column mainframe

I

A word in a 32-bank memory is addressed in a maximum of 22 bits as shown
in figure 2-4. The low-order 5 bits specify one of the 32 banks. The
next l2-bit field specifies an address within the chip. The high-order 5
bits specify one chip on the module.

Chip Internal bit 5-bit
address address in bank
select chip

Figure 2-4. 12-column memory address (32 banks)

A word in a l6-bank memory is addressed in a maximum of 21 bits as shown
in figure 2-5. In this case, the low-order 4 bits specify one of the 16
banks. The next l2-bit field specifies an address within the chip. The
high-order 5 bits specify one chip on the module. t

Chip Internal bit 4-bit
address address in bank
select chip

Figure 2-5. l2-column memory address (16 banks)

MEMORY ACCESS

Both CPUs have four memory access ports, referred to as Port A, Port B,
Port C, and I/O. Each port is capable of making one reference per CP.
Ports A, B, and C are used for CPU register transfers.

t Hardware assembles the address using a 4-bit bank field. The
software, when assembling the address for memory error correction,
will receive 5 significant bits from the Exchange Package. The
high-order bit (bit 4 counting right to left from 0) must be discarded
by the software when assembling the address for memory error
correction.

HR-0032 2-4 A

B, T, and vector memory instructions issue to a particu1ar memory port:

• Vector read (block reads only), B read instructions (176, 034)
use Port A.

• Vector read (block reads only), T read instructions (176, 036)
use Port B.

• Vector store, B, or T store instructions (177, 035, and 037)
and scalar instructions (100-137) use Port C.

Once an instruction issues to a port, that port is reserved until all
references are made for that instruction.

The references for each element of a block transfer (V,B,T) are made and
completed in sequence through a port. However, since each reference is
examined individually for possible conflicts, the data flow for a
transfer may not be continuous. If an instruction requires a port that
is busy, issue is blocked. Total execution time of the transfer depends
on the number and type of conflicts encountered during the transfer.

CAUTION

Because concurrent block reads and writes are not
examined for read before write or write before read
(memory overlap hazard conditions), the software must
detect where this condition occurs and ensure
sequential operation.

The bidirectional memory mode enable (0025), bidirectional memory mode
disable (0026), and the complete memory reference (0027) instructions
are provided to resolve these cases and assure sequential operation. If
the bidirectional memory mode is clear, block reads and writes are not
allowed to operate concurrently within that CPU. Instruction 0027
allows the program to wait until the last references of all preceding
block transfers are past the conflict resolution stage within the CPU
issuing it and the transferred data is being transmitted to the
designated memory or register locations. Instruction 0027 provides
software a mechanism, wherever necessary in the program, to guarantee
sequential memory operation within a CPU or between CPUs.

Issue of scalar memory references requires Ports A, B, and C to be
available, ensuring sequential operation between block transfers and
scalar references within a CPU.

HR-0032 2-5 A

A scalar reference conflict is detected in CP 3 of execution. If a
conflict occurs, one more scalar reference is allowed to issue. A third
scalar reference holds issue if the conflict condition still exists for
the preceding scalar reference.

Scalar references always execute in the order they are issued within a
cpu. Instruction 0027 detects when all scalar references are past the
conflict resolution stage within the CPU issuing it.

One-half of the cpu I/O channels reference memory through each CPU's I/O
port. The I/O port can be active regardless of the activities on Ports
A, B, or C.

When an instruction fetch request occurs, all referencing from the eight
memory ports is inhibited. When memory is quiet (0 to 3 CPs), the fetch
proceeds and references 32 banks in the next 4 CPs (6 CPs if 16 banks).
Then the referencing of the eight ports is enabled.

NOTE

A fetch sequence that follows a scalar store can, under
certain conditions, complete before the store. For
this to happen, however, an out-of-buffer condition
must arise before the scalar store is in CP 2 of
execution. The out-of-buffer condition can occur
before the scalar store is in CP 2 of execution if a
buffer boundary is crossed without doing a branch.
This presents a problem only if the fetch and store are
to the same area in memory. Therefore, software that
utilizes dynamic coding should ensure that the code
generated is actually in memory before that area of
memory is fetched into the instruction buffers.

An exchange requires all activities within a cpu to complete before the
exchange request is made.

When the exchange request is made, all referencing from the four memory
ports of the other cpu is inhibited. When memory is quiet (0 to 3 CPs) ,
the exchange proceeds and references 16 banks in the next 21 CPs. Each
bank is referenced twice during this time, once for a read and once for
a write. A fetch request follows immediately after the exchange
reference is complete and then referencing from the four memory ports of
the other CPU is enabled.

HR-0032 2-6 A

Conflict resolution

During each clock period, references to the memory ports in the system
are examined for memory access conflicts. If a conflict occurs for a
reference, the reference is held and no further referencing from that
port is allowed until the conflict is resolved.

Three types of memory access conflicts can occur: Bank Busy,
I Simultaneous Bank, and Section Access.

I

I

I

Bank Busy conflict - The Bank Busy conflict is caused by any port within
or between CPUs requesting a bank currently in a reference cycle.
Resolution of this conflict occurs when the bank cycle is complete. All
ports in the CPU are held 1, 2, or 3 CPs because of a Bank Busy conflict.

Simultaneous Bank conflict - The Simultaneous Bank conflict is caused by
two or more ports in different CPUs requesting the same bank. Resolution
of this conflict is based on a priority (see SUbsection below on Memory
access priorities). All ports in a CPU are held I CP because of a
Simultaneous Bank conflict. A Bank Busy conflict always follows a
Simultaneous Bank conflict.

Section Access conflict - The Section Access conflict is caused by two or
more ports in the same CPU requesting any bank in the same section.
Resolution of this conflict is based on priority. The highest priority
port is allowed to proceed, all other ports involved in this conflict
hold (see subsection below on Memory access priorities). The port is
held 1 CP because of a Section Access conflict.

Memory access priorities

The following priorities are used to resolve memory access conflicts.

• Intra-CPU priority: the priority between Ports A, B, and C is
determined by the following conditions:

Any port with an odd increment always has a higher priority
than a port with an even increment, regardless of their issued
sequence.

Among all ports with the same type of increment (odd or even),
the relative time of issue determines the priority, with the
first issued having the highest priority.

• Inter-CPU priority: every 4 CPs the priority between CPUs changes.

• I/O priority: the I/O ports are always lowest priority, within
CPUs.

HR-0032 2-7 A

l6-BANK PHASING

The effect of l6-bank phasing on instruction fetches is a predictable
increase of 2 CPs for filling instruction buffers. Otherwise, the amount
of performance degradation for 16 banks instead of 32 banks is not readily
predictable since it largely results from an increased number of memory
conflicts.

For maintenance purposes, a 32-bank system can be modified to operate with
only 16 banks and use either the lower or upper half of memory.
Maintenance is accomplished by setting the bank select switch to the lower
or upper banks.

MEMORY ERROR CORRECTION

A single error correction/double error detection (SECDED) network is used
between a CPU and memory. SECDED assures that data written into memory
can be returned to the CPU with consistent precision (figure 2-6).

If a single bit of a data word is altered, the single error alteration is
automatically corrected before passing the data word to the computer. If
2 bits of the same data word are altered, the error is detected but not
corrected. In either case, the CPU can be interrupted, depending on
interrupt options selected to allow processing of the error. For 3 or
more bits in error, results are ambiguous.

o

... Data Fanin Error - -
Correct

Data Memory
Bits

63 ~
64 Error

Check Detect
Bits 71

Figure 2-6. Memory data path with SECDED

The SECDED error processing scheme is based on error detection and
correction codes devised by R. W. Hamming. t An 8-bit check byte is

t Hamming, R.W., "Error Detection and Correcting Codes," Bell System
Technical Journal, 29, No.2, pp. 147-160 (April, 1950).

HR-0032 2-8

CPU

A

appended to the 64-bit data word before the data is written in memory.
The 8 check bits are generated as even parity bits for a specific group
of data bits. Figure 2-7 shows the bits of the data word used to
determine the state of each check bit. An X in the horizontal row
indicates that data bit contributes to the generation of that check bit.
Thus, check bit 0 is the bit that makes group parity even for the group
of bits 21, 23, 25, 27, 29, 211, 213 , 215, 217, 219 , 221, 223, 225,
227, 229, and 231 through 255.

The 8 check bits and the data word are stored in memory at the same
location. When read from memory, the same 64-bit matrix of figure 2-7 is
used to generate a new set of check bits, which are compared with the old
check bits. The resulting 8 comparison bits are called syndromet

bits (S bits). The states of these S bits are all symptoms of any error
that occurred (l=No compare). If all syndrome bits are 0, no memory
error is assumed.

check bit 0

check bit 1

check bit 2

check bit 3

check bit 4

check bit 5

check bit 6

check bit 7 x

CHECK BYTE

x

2 .. 7 2 .. 6 2 .. 5 2 2 .. 3 2 .. 2 2 .. 1 2'+0

x

x

x x x

x x

x

x x

x

2 23 222 221 220 219 218 217 216

x

x x

x

2 39 2 38 2 37 2 36 2 35 234 233 232

x x

x

x x

x

2 15 214 2 13 212 211 2 10 29 2 8

x x

x x

x x x

x

x

x

x

2 31 2 30 2 29 2 28 227 2 26 2 25 224

x

x

x

x x

x x x x x x

x

27 2 6 2 5 2" 2 3 22 21 2°

x

x x

x x x x

x x x x

x x x

x x x x

Figure 2-7. Error correction matrix

t Syndrome: any set of characteristics regarded as identifying a
certain type, condition, etc. Websters New World Dictionary.

HR-0032 2-9 A

I

Any change of state of a single bit in memory causes an odd number of
syndrome bits to be set to 1. A double error (an error in 2 bits) appears
as an even number of syndrome bits set to 1.

The matrix is designed so that:

• If all syndrome bits are 0, no error is assumed.

• If only 1 syndrome bit is 1, the associated check bit is in error.

• If more than 1 syndrome bit is 1 and the parity of syndrome bits
SO through S7 is even, then a double error (or an even number of
bit errors) occurred within the data bits or check bits.

• If more than 1 syndrome bit is 1 and the parity of all syndrome
bits is odd, then a single and correctable error is assumed to
have occurred. The syndrome bits can be decoded to identify the
bit in error.

• If 3 or more memory bits are in error, the parity of all syndrome
bits is odd and results are ambiguous.

Modules involved with generating and interpreting the 8-bit check byte
used for SECDED include logic that can be used for verifying check bit
storage, check bit generation, and error detection and correction. Refer
to Appendix D for information on SECDED maintenance functions.

INTER-CPU COMMUNICATION SECTION

The inter-CPU communication section of the mainframe contains special
hardware for communication between the two CPUs, for control, and for a
real-time clock. The Real-time Clock (RTC), Shared Address (SB), Shared
Scalar (ST), and Semaphore (SM) registers are shared by the CPUs. These
registers, with their sources and destinations, are shown in figure 2-8
and described in the following paragraphs.

REAL-TIME CLOCK

The mainframe contains one Real-time Clock (RTC) register which is shared
by both CPUs. Programs can be timed precisely by using the clock period
(CP) counter. This counter is 64 bits wide and advances one count each
9.5 nanosecond clock period. Since the clock advances synchronously with
program execution, it can be used to time the program to an exact number
of CPs. However, in such an application, the counting can contain counts
from other tasks if an interrupt occurs before the end time is read.

HR-0032 2-10 A

Instructions used with the RTC register are:

0014jO
072ioO

RT sj
si RT

Enter the RTC register with (Sj)
Transmit (RTC) to si

A program reads the CP counter using instruction 072 and resets it with
instruction 0014jO. Loading or reading the CP counter can occur from
all CPOs at the same time. If more than one CPU is in monitor mode, the
software should ensure that only one CPU enters a value into this
register.

~ --E-----------41 RTC It----------...i_- ~~

Ai ----__ ~~~=='==: Ai

SBj
~------:~=r=L., I--~....L"o"---------,l- SBj

STj ~--~:Z;===L-,
~~~~------------~-

Si 

STj 

Si Si 

S~_.---~~r=~_. 
~+_~~----------~ __ S~ 

Figure 2-8. Shared registers and real-time clock 

INTER-CPU COMMUNICATION AND CONTROL 

Three identical sets of shared registers are used for communication and 
control between CPUs. Each set contains eight 24-bit Shared Address (SB) 
registers, eight 64-bit Shared Scalar (ST) registers and 32 I-bit 
Semaphore (SM) registers. 

Each CPU's Cluster Number (CLN) register determines which set of shared 
registers is accessed by a CPU (clustering). The CLN register is loaded 

HR-0032 2-11 A 



I 

from the Exchange Package or if the CPU is in monitor mode, through 
instruction 0014j3. 

The CLN register can contain one of four different values. Values 1, 2, 
or 3 allow the CPU to access one of the three sets of shared registers. 
Value 0 prevents any access to shared registers by the CPU. If the value 
is 0, instructions regarding the shared registers become no-ops, except 
for the instructions returning values to Ai or si, which return a 0 
value. If the CLN registers in both CPUs are set to the same value (1, 
2, or 3), then the two CPUs share a common set of SB, ST, and SM 
registers. 

Shared Address and Shared Scalar registers 

The Shared Address (SB) and Shared Scalar (ST) registers are used for 
passing address and scalar information from one CPU to another. No 
hardware reservations are made on these registers. Any necessary 
reservations to restrict access to these registers must be handled in the 
software through use of the Semaphore (SM) registers or by shared memory 
design. The single hardware restriction on access to the SB and ST 
registers is that only one read or one write operation can occur in a CP. 

The instructions used with the SB and ST registers are: 

026ij7 
027ij7 
072ij3 
073ij3 

Ai SBj 
SBj Ai 
si STj 
STj si 

Transmit (SBj) to Ai 
Transmit (Ai) to SBj 
Transmit (STj) to Si 
Transmit (Si) to STj 

Access conflicts to Shared Address (SB) and Shared Scalar (ST) registers 
occur under the conditions shown in table 2-1 regardless of clustering. 
For example, if a read instruction for CPU 0 and a read instruction for 
CPU 1 enter CIP simultaneously, a conflict occurs and CPU 1 holds issue 
for one CP. 

Semaphore registers 

The Semaphore (SM) registers are used for control between the CPUs. No 
hardware reservations are made on these registers. Loading or reading 
the SM registers or setting or clearing a particular SM register can 
occur at any time from either or both CPUs. 

The test and set instruction (0034JK) is the only operation on the SM 
registers including a hardware interlock. This interlock prevents a 
simultaneous test and set operation on the same SM reg~ster from both 
CPUs. The test and set instruction first tests the value of the selected 
SM register. If the value is 0, the instruction issues and sets that SM 
register to a 1. If the value is 1, the instruction holds issue until 
the value is o. 

HR-0032 2-12 A 



When all CPUs in a cluster are holding issue on a test and set 
instruction, a deadlock interrupt can occur. If the CLN registers in 
both CPUs are equal and not 0, both CPUs belong to the same cluster and 
both CPUs must be holding issue on a test and set instruction to cause a 
deadlock interrupt. When that happens, both CPUs in the cluster receive 
deadlock interrupts. If the CLN registers in both CPUs are not equal, 
the two CPUs are in different clusters. If one CPU holds issue on a test 
and set instruction, that CPU receives a deadlock interrupt. No deadlock 
interrupt can occur in cluster 0 (CLN=O). 

READ 

READ 

READ 

READ 

WRITE 

WRITE 

WRITE 

WRITE 

READ 

READ 

Table 2-1. Access conflicts to shared registers 
in a dual-proceesQr computer 

SB or ST register operation 

CPU 0 CPU 1 

(first CP in CIP) READ (first CP in CIP) 

(not first CP in CIP) READ (first CP in CIP) 

(first CP in CIP) READ (not first CP in CIP) 

(not first CP in CIP) READ (not first CP in CIP) 

(first CP in CIP) WRITE (first CP in CIP) 

(not first CP in CIP) WRITE (first CP in CIP) 

(first CP in CIP) WRITE (not first CP in CIP) 

(not first CP in CIP) WRITE (not first CP in CIP) 

(Write issued 3 CPs 
before) 

(Write issued 3 CPs before) 

READ (Write issued 3 CPs 
before) 

(Write issued 3 CPs before) READ 

HR-0032 2-13 

Hold 
issue 
1 CP 

CPU 1 

CPU 1 

CPU 0 

CPU 0 

CPU 1 

CPU 1 

CPU 0 

CPU 0 

CPU 0 

CPU 0 

CPU 1 

CPU 1 

A 



I 

When an interrupt occurs, normally the instructions already in the NIP 
and CIP registers are allowed to issue before the exchange sequence 
starts. If a test and set instruction is holding in the CIP register and 
an interrupt occurs, a special exchange start-up sequence is initiated. 
In this case the instruction in the NIP register and the test and set 
instruction in the CIP register are discarded and the Program Counter {P} 
register is adjusted to point to the discarded test and set instruction. 
The Waiting on Semaphore {WS} flag in the Exchange Package sets, 
indicating a test and set instruction was holding in the CIP register 
when the interrupt occurred. The exchange sequence is then started. 

Instructions used with the SM registers are: 

0034jk SM,jk 1,TS Test and set, SMJ7<. 
0036jk SMjk 0 Clear SMjk 
0037jk SMjk 1 Set SM:jk 
072i02 si SM Transmit {8M} to si 
073i02 SM si Transmit {Si} to SM 

CPU INPUT/OUTPUT SECTION 

The Input/Output section of the mainframe is shared by both Central 
Processing Units {CPUs}. The mainframe supports three channel types 
identified by their maximum transfer rates of 1250 Mbytes per second, 100 
Mbytes per second, and 6 Mbytes per second. 

One 1250 Mbyte per second channel pair is used to transfer data between 
the Central Memory and the Solid-state Storage Device {SSD}. These 
channels are 128 bits wide and use 16 check bits in each direction. A 
maximum transfer rate of over 10 gigabits per second is possible on a 
1250 Mbyte per second channel. The channel is two parallel 64-bit 
channels each with SECDED; therefore, under certain circumstances the 
full-width channel can correct double errors. 

Two 100 Mbyte per second channel pairs transfer data between Central 
Memory and an I/O Subsystem. A 100 Mbyte per second channel is 64 bits 
wide and uses 8 check bits in each direction. Data words are transferred 
in blocks of 16 under control of Data Ready and Data Transmit control 
signals. Each 100 Mbyte per second channel has a maximum transfer rate 
of approximately 850 Mbits per second. 

I/O Subsystem communication with the CPUs is over four pairs of control 
channels, each with a maximum transfer rate of 6 Mbytes per second. Each 
6 Mbyte per second channel is 16 bits wide. 

There is one I/O port from each CPU. The channels are hardwired into a 
port with two 6 Mbyte per second channel pairs, one 100 Mbyte per second 
channel pair, and one-half of the 1250 Mbyte per second channel per 

HR-0032 2-14 A 



I 
I 

I 

I 

I 

port. Each port can transfer data at a rate of one word per CP. For the 
100 Mbyte per second channel and 1250 Mbyte per second channel, each time 
a buffer makes a reference, it holds the port until complete, usually 16 
words. 

All I/O (including 100 Mbyte and 1250 Mbyte per second channels) uses the 
I/O ports to memory. Access to these ports is controlled by a scanner. 
All CPU memory ports (Ports A, B, and C) have higher priority than the 
I/O ports. 

Channel features of the input/output section are summarized below and 
described in the remainder of this section. 

• One channel pair with 1250 Mbytes per second maximum transfer 
rate per channel 

128 data bits and 16 check bits in each direction 

• Two channel pairs with ~OO Mbytes per second maximum transfer 
rate per channel 

64 data bits, 3 control bits, and 8 check bits in each 
direction 

• Four I/O channel pairs, 6 Mbytes per second maximum transfer 
rate per channel 

Shared control from the CPUs 

16 data bits, 3 control bits, and 4 parity bits in each 
direction 

Lost data detection 

• Channels are divided into four groups, each group contains 
either input or output channels 

• Channel groups are served equally by memory (each group is 
scanned every 4 CPs) 

• Channel priority resolved within channel groups 

DATA TRANSFER FOR SOLID-STATE STORAGE DEVICE 

Data is transferred directly between the Solid-state Storage Device (SSD) 
and the mainframe using 1250 Mbyte per second channels. A 1250 Mbyte per 
second channel is 128 bits wide and is programmed through software. Port 
3 of the SSD connects with the CRAY X-MP system. Programming details for 
the SSD are described in the Solid-state Storage Device (SSD) Reference 
Manual, CRI publication HR-003l. 

HR-0032 2-15 A 



DATA TRANSFER FOR I/O SUBSYSTEM 

A 100 Mbyte per second channel pair transfers data between Central Memory 
of the mainframe and the Buffer I/O Processor (BIOP) of the I/O 
Subsystem. A second 100 Mbyte per second channel pair can transfer data 
between Central Memory and a Disk I/O Processor (DIOP) or Auxiliary I/O 
Processor (XIOP).t Each channel is 64 bits wide and handles data at 
approximately 100 Mbytes per second. Each channel uses 
an additional 8 check bits for single error correction/double error 
detection (SECOED), as is used in Central Memory. 

The CPU side of a 100 Mbyte per second channel pair uses a pair of 
l6-word buffers to stream the data out of Central Memory and another pair 
to stream data into Central Memory. On output, as one buffer block is 
being sent to the I/O Processor (lOP), the other buffer is filling from 
Central Memory. Similarly, on input, one buffer block is filling from an 
lOP while the other is transmitting to Central Memory. 

At the lOP side of a 100 Mbyte per second channel pair, data passing into 
Local Memory (an I/O Processor's memory) is double-buffered and 
disassembled into 16-bit parcels. The channel side passing data from 
Local Memory simply assembles l6-bit parcels into 64-bit words for 
transmission to a CPU. 

An I/O Processor controls a 100 Mbyte per second channel pair linking it 
with Central Memory. The lOP initiates all data transfers on the channel 
and performs all error processing required for the channel. There are no 
CPU instructions for the 100 Mbyte per second channel pair. Programming 
details for the 100 Mbyte per second channel pair are contained in the 
I/O Subsystem Reference Manual, CRI publication HR-0030. 

6 MBYTE PER SECOND CHANNELS 

Standard control channels for the system are 6 Mbyte per second 
channels. Each 6 Mbyte per second channel has l6-bit asynchronous 
control logic used for front-end interfaces. The instructions used with 
6 Mbyte per second channels follow. 

OOlOjk CA,Aj Ak 

OOl1jk CL,Aj Ak 

Set the Current Address (CA) register for 
the channel indicated by (Aj) to (Ak) 
and activate the channel 

Set the Limit Address (CL) register for the 
channel indicated by (Aj) to (Ak) 

t Software does not currently support data transfer using the 100 Mbyte 
per second channel pair to an XIOP. 

HR-0032 2-16 A 



OOl2jk CI,Aj Clear the Interrupt flag and Error flag for 
the channel indicated by (Aj): 

033iOO Ai CI 

033ijo Ai CA,Aj 

Output channel k=O; clear MC, k=l; set 
MC. 
Input channel k=O; no operation, k=l; 
clear held ready. 

Transmit channel number to Ai 

Transmit address of channel (Aj) to Ai 

033ijl Ai CE,Aj Transmit Error flag of channel (Aj) to Ai 

MULTI-CPU PROGRAMMING 

I The 6 Mbyte per second I/O channels can operate from either CPU, and 
either CPU can issue instructions to any of the channels. No hardware 
interlock exists between the CPUs; therefore, software must ensure that 
only one CPU is servicing I/O at a time, while in monitor mode. 
Instruction 033 is independent in nature and can be issued without an 
interlock. 

The following conditions must be met for an I/O interrupt to occur. 

• Neither CPU is waiting for an exchange. 

• Neither CPU is in monitor mode. 

• An interrupt is present. 

Normally, the interrupt from a 6 Mbyte per second channel is directed 
toward the CPU that last issued a clear interrupt instruction (0012) to 
that channel. However, because an I/O interrupt occurs in only one CPU 
at a time, the following conditions (in priority order) determine the CPU 
toward which the interrupt is directed. Once in monitor mode, a CPU 
should service all I/O interrupts. 

1. All I/O interrupts are directed toward a CPU that has the Select 
External Interrupt Mode set. 

2. If neither CPU has selected external interrupts, then interrupts 
are directed toward a CPU holding issue on a test and set 
instruction. 

3. If neither conditions 1 nor 2 exist or if they exist in both 
CPUs, the interrupt is directed to the CPU that last issued a 
clear interrupt instruction to that channel. 

HR-0032 2-17 A 



6 MBYTE PER SECOND CHANNEL OPERATION 

Each input or each output channel directly accesses Central Memory. 
Input channels store external data in memory and output channels read 
data from memory. A primary task of a channel is to convert 64-bit 
Central Memory words into l6-bit parcels or l6-bit parcels into 64-bit 
Central Memory words. Four parcels make up one Central Memory word with 
bits of the parcels assigned to memory bit positions as shown in table 
2-2. In both input and output operations, parcel 0 is always transferred 
first. 

Each input or output channel has' a data channel (4 parity bits, 16 data 
bits, and 3 control lines), a 64-bit assembly or disassembly register, a 
channel Current Address (CA) register, and a channel Limit Address (CL) 
register. 

Three control signals (Ready, Resume, and Disconnect) coordinate the 
transfer of parcels over the channels. In addition to the three control 
signals, the output channel of a pair has a Master Clear line. Appendix 
B describes the signal sequence of a 6 Mbyte per second channel. 

Table 2-2. Channel word assembly/disassembly 

Characteristic Bit position Number Comment 
of bits 

Channel data bits 215_20 16 Four 4-bit groups 
Channel parity bits 4 One per 4-bit group 
CRAY X-MP word 263_20 64 

Parcel 0 263_248 16 First in or out 
Parcel 1 247_232 16 Second in or out 
Parcel 2 231-216 16 Third in or out 
Parcel 3 215_20 16 Fourth in or out 

I/O interrupts can be caused by the following: 

• On all output channels, if (CA) becomes equal to (CL), then the 
resume for the last parcel transmitted sets interrupt. 

• External device disconnect is received on any input channel and 
channel is active. 

• Channel error condition occurs (described later in this 
section). 

HR-0032 2-18 A 



The number of the channel causing an interrupt can be determined by using 
instruction 033, which reads into Ai the highest priority channel 
number requesting an interrupt. The lowest numbered channel has the 
highest priority. The interrupt request continues until cleared by the 
monitor program when an interrupt from the next highest priority channel, 
if present, is sensed. All interrupts are available through instruction 
033 to either CPU. Channel numbers for 6 Mbyte per second channels are 
108 through 178 (10/11, 12/13, 14/15, and 16/17 - even for input, odd 
for output). 

INPUT CHANNEL PROGRAMMING 

To start an input operation, the CPU program (see figure 2-9): 

1. Sets the channel limit address to the last word address + 1 
(LWA+l). 

2. Sets the channel current address to the first word address (FWA). 

Setting the current address causes the Channel Active flag to set. The 
channel is then ready to receive data. When a 4-parcel word is 
assembled, the word is stored in memory at the address contained in the 
CA register. When the word is accepted by memory, the current address is 
advanced by 1. 

Figure 2-9. Basic I/O program flowchart 

HR-0032 2-19 A 



I 

An external transmitting device sends a Disconnect signal to indicate end 
of a transfer. When the Disconnect signal is received, the Channel 
Interrupt flag sets and a test is performed to check for a partially 
assembled word. If the partial word is found, the valid portion of the 
word is stored in memory and the unreceived, low-order parcels are stored 
as zeros. 

The Interrupt flag sets when a Disconnect signal is received or when the 
channel Error flag is set. 

INPUT CHANNEL ERROR CONDITIONS 

Input channel error conditions can occur at a parcel level (parity error) 
or channel level (unexpected Ready signal). When a parcel in error 
occurs, the Parity Fault flag sets immediately. The Parity Fault flag 
does not generate an interrupt, it is saved and sets the Error flag when 
a disconnect occurs. Therefore, the program should check the state of 
the Error flag when an interrupt is honored. All parcels stored after 
the error are zeroed. 

If a Ready signal is received when the channel is not active (unexpected 
Ready signal), the Ready condition is held until the channel is 
activated. At this time a Resume signal is sent. No Error flag is set 
and no interrupt request is generated. Since the Ready condition is held 
when the channel is inactive, it is sometimes advantageous to be able to 
clear this Ready signal before setting up the channel, especially on a 
deadstart or a resynchronization of the channel after an error. The 
Ready signal can be cleared by using instruction 0012jl to input 
channel (Ai), clearing any Ready signal being held before issue of 
instruction 0012jl. 

OUTPUT CHANNEL PROGRAMMING 

To start an output operation, the CPU program: 

1. Sets the channel limit address to the last word address + 1 
(LWA+l). 

2. Sets the channel current address to the first word address (FWA). 

Setting the current address causes the Channel Active flag to be set. 
The channel reads the first word from memory addressed by the contents of 
the CA register. When the word is received from memory, the channel 
advances the current address by 1 and starts the data transfer. 

HR-0032 2-20 A 



After each word is read from memory and the current address is advanced, 
the limit test is made, comparing the contents of the CA register and the 
CL register. If they are equal, the operation is complete as soon as the 
last parcel transfer is finished. 

The Interrupt flag also sets if an error is detected. The only error 
that an output channel detects is a Resume signal received when the 
channel is inactive. No external response is generated. 

PROGRAMMED MASTER CLEAR TO EXTERNAL DEVICE 

The system can send a Master Clear signal to an external device through 
the output channel. The external Master Clear sequence is as follows. 

1. 0012jk 

2. 0012jl 

3. Delay 1 

4. 0012jO 

5. Delay 2 

Clears input channel to ensure external activity on the 
channel pair has stopped 

Clears output channel to ensure CPU activity on the channel 
pair has stopped. Set Master Clear. 

Device dependent; determines the duration of the Master 
Clear signal. 

Clears the output channel. This turns off the Master Clear 
signal. 

Device dependent; allows time for initialization activities 
in the attached device to complete. 

For Cray Research, Inc., front-end interfaces, delays 1 and 2 should each 
be a minimum of 80 CPs. 

MEMORY ACCESS 

Each of the four channel groups shown below is assigned a time slot 
(figure 2-10) that is scanned once every 4 CPs for a memory request. The 
lowest numbered channel in the group has the highest priority. During 
the next 3 CPs, the scanner allows requests from the other three channel 
groups. Therefore, an I/O memory request can occur every CP. The 
scanner stops for all memory conflicts caused by an I/O reference and 
also stops for a block (100 Mbyte per second channel) reference while a 
buffer is referencing, maximum 16 words (figure 2-11). 

HR-0032 2-21 A 



RES 

I 
READY 

I 
READY 

I 

CPU 

CPU 

ADDR CHANNEL 

ADDR CHANNEL 

I 1/2 SSD 

CHANNEL 

Figure 2-10. 

BR-0032 

PRIORITY 

GR. 0 

PRIORITY 

GR. 1 

GR. 2 

GR. 3 

REFERENCE CONTROL 

ADDRESS 

4 TO 3 

MUX 

4 TO 1 

MUX 

ADDRESS TO CPU 0 
ADDRESS TO CPU 1 

ADDR 

TO 

HEM 

G 

ADDRESS 
TO 

MEMORY 

Channel I/O control (shown for one processor) 

2-22 A 



INPtJ'l' DATA PATH 

ASSEMBLY REG 

16 BITS I CHANNEL 10 
I 4 PARITY 

16 BITS I CHANNEL 12 
I 

6 TO 1 ERROR 
4 PARITY CORRECT 

AND 
MUX ClIECK MEMORY DATA 

64 DATA 8 CHECK ~ GENERATE 
64 + 8 CHECK 

HSP 0 BUFFER A BUFFER B -----16 x 72 i...-- 16 x 72 -----
64 DATA 8 CHECK 

I HSP 2 BUFFER A BUFFER B --+ 
16 x 72 - 16 x 72 ~ 

OUTPtJ'l' DATA PATH 

16 BITS 
CHANNEL 11 LATCH 

4 PARITY 

16 BITS 
CHANNEL 13 FANOtJ'l' 

4 PARITY 

I HSP 1 

~ ~ 
64 BITS 

2TO 1 ~ BUFFER A BUFFER B 64 + 8 CHECK 
8 CHECK MUX ---- 16 x 72 ---- 16x72 

MEMORY 

I HSP 3 
~. T 

64 BITS 
2TO 1 ---- BUFFER A BUFFER B 72 BITS 

8 CHECK MUX ~ 16 x 72 I-- 16 x 72 

Figure 2-11. Input/output data paths 

HR-0032 2-23 A 



I 
The 6 Mbyte per second channels are numbered lOa through 178. The 
100 Mbyte per second channels are numbered 0 to 3 in both CPUs (an SSD 
channel uses channels 2 and 3 of both CPUs). The channels are grouped 
as follows: 

CPU 0 CPU I 

Group 0 input channels 0,10 0,14 

Group I output channels I,ll 1,15 

Group 2 input channels 2,12 2,16 

Group 3 output channels 3,13 3,17 

I/O LOCKOUT 

An I/O memory request can be locked out by an exchange sequence or 
instruction fetch sequence. 

MEMORY BANK CONFLICTS 

Memory bank conflicts are tested for CPU scalar, vector, and I/O memory 
references. When an exchange sequence or instruction fetch sequence is 
in progress, all other memory references are locked out. 

Each memory bank can accept a new request every 4 CPs. To test for a 
memory bank conflict, the 5 low-order bitst of the memory address are 
checked against Bank Busy conflicts and other memory references. The 
bank is busy for 4 CPs on a reference. 

I/O MEMORY CONFLICTS 

Before testing for a memory bank conflict, a check is made to ensure no 
exchange sequence or instruction fetch sequence is in progress. If 
either of these conditions exists, the I/O request is held. The 5 
low-order address bitst of an I/O reference are tested against Bank 
Busy conflicts and other memory references. If a bank being referenced 
is busy, the reference is held and the scanner is stopped. 

t 4 bits for l6-bank phasing; refer to SUbsection on Central Memory. 

BR-0032 2-24 A 



I/O MEMORY REQUEST CONDITIONS 

The following conditions must be present for an I/O memory request to be 
processed: 

• I/O request 

• Bank not busy 

• No simultaneous conflicts with other memory ports 

• No fetch request 

• No exchange sequence 

I/O MEMORY ADDRESSING 

All I/O Memory references are absolute. The CA and CL registers are 
22 bits, allowing I/O access to all of memory. Setting of the CA and 
CL registers is limite4 to monitor mode. I/O Memory reference 
addresses are not checked for range errors. 

HR-0032 2-25 A 





00 

37 

CP.u CONTROL SECTION 3 

INTRODUCTION 

Both CPUs have identical, independent control sections containing 
registers and instruction buffers for instruction issue and control. A 
control section uses an exchange mechanism for switching instruction 
execution from program to program. These registers and buffers and the 
exchange mechanism are described in this section. Memory field 
protection, programmable clock, and deadstart sequence are also described. 

INSTRUCTION ISSUE AND CONTROL 

The registers and instruction buffers involved with instruction issue and 
control are described in the following paragraphs. Figure 3-1 
illustrates the general flow of instruction parcels through the registers 
and buffers. 

P 

3 L+l 

I 2 

I 1 

a 

r ",I I ... J CIP -1 NIP I "I 
~ 

~ .. I LIP - I --. 

Instruction Buffers 

Figure 3-1. Instruction issue and control elements 

HR-0032 3-1 A 

Issue 



PROGRAM ADDRESS REGISTER 

The 24-bit Program Address (P) register indicates the next parcel of 
program code to enter the Next Instruction Parcel (NIP) register. The 
high-order 22 bits of the P register indicate the word address for the 
program word in memory. The low-order 2 bits indicate the parcel within 
the word. Except on a branch instruction when the branch is taken or on 
an exchange, the contents of the P register are advanced I when an 
instruction parcel enters the NIP register. 

New data enters the P register on an instruction branch or on an exchange 
sequence. (The exchange sequence is described under Exchange Mechanism 
later in this section.) The contents of P are then advanced sequentially 
until the next branch or exchange sequence. The value in the P register 
is stored directly into the terminating Exchange Package during an 
exchange sequence. 

The P register is not master cleared. The value stored in P might not be 
accurate during the deadstart sequence. 

NEXT INSTRUCTION PARCEL REGISTER 

The 16-bit Next Instruction Parcel (NIP) register holds a parcel of 
program code before it enters the Current Instruction Parcel (CIP) 
register. 

The NIP register is not master cleared. An undetermined instruction can 
issue during the master clear interval before the interrupt condition 
blocks data entry into the NIP register. 

CURRENT INSTRUCTION PARCEL REGISTER 

The 16-bit Current Instruction Parcel (CIP) register holds the 
instruction waiting to issue. The term issue indicates the transition 
of an instruction in CIP to its execution phase. If an instruction is a 
2-parcel instruction, the CIP register holds the first parcel of the 
instruction and the Lower Instruction Parcel (LIP) register holds the 
second parcel. Issue of an instruction in CIP can be delayed until 
conflicting operations have been completed. Data arrives at the CIP 
register from the NIP register. Indicators making up the instruction are 
distributed to all modules having mode selection requirements when the 
instruction issues. 

The control flags associated with the CIP register are master cleared; 
the register itself is not. An undetermined instruction can issue during 
the master clear sequence. 

HR-0032 3-2 A 



LOWER INSTRUCTION PARCEL REGISTER 

The l6-bit Lower Instruction Parcel (LIP) register holds the second 
parcel of a 2-parcel instruction at the time the first parcel of the 
2-parcel instruction is in the CIP register. 

INSTRUCTION BUFFERS 

A CPU has four instruction buffers, each can hold 128 consecutive l6-bit 
instruction parcels (figure 3-2). Instruction parcels are held in the 
buffers before being delivered to the NIP or LIP registers. 

1 I I I 
, , r , 

_~J~J~~I~~~I~--
_.J __ _ ..1 ____ 2 ____ , ____ • 

__ 4 ____ 5 ____ ~ ___ !.. _ 
_ ..!Q. ___ IL ___ I~ ___ ll _ 
__ I~ ___ I!. ___ I! ___ 11 _ __ 

20 21 22 25 

_..!-~ ___ 2~ ___ 2..! ___ 2~ _ ••• 

__ 5~ ___ 5.1. ___ 5~ ___ 'S~_. _ 

__ 5~ ___ ~ __ J! ___ t! __ .. 
__ 4.E _ __ ~ ___ 4:! ___ ~3_ _. 

44 45 41 47 ---- ------------__ 5_0 ___ 5~ ___ 5~ ___ !.3 _ 

__ ~4 ___ ~ ___ t! ___ !..7 _ 

__ '2 ___ !1 ___ I.l ___ .!3_ __ 
14 15 16 IT ---------------- --
70 TI 12 T' 

1---- ---- -- -- --- - - .. 
74 TS 71 77 1---------------- - --

100 101 102 103 
~ -- - -- -- - - - - - - - - ... . . ~ . . 
~ : ~ : ' : ~ : ?"--"--~ 

~ ;f{ ~=:~:==3~:~ =j~:= 110 171 172 173 --- -- --- ----
174 175 171 177 

IU"U 'S 

Figure 3-2. Instruction buffers 

The beginning instruction parcel in a buffer always has a word address 
that is a multiple of 408 (a parcel address that is a multiple of 
2008) allowing the entire range of addresses for instructions in a 
buffer to be defined by the high-order 17 bits of the parcel address. 
Each buffer has a l7-bit beginning address register containing this value. 

The Beginning Address registers are scanned each CP. If the high-order 
17 bits of the P register match one of the beginning addresses, an 

HR-0032 3-3 A 



in-buffer condition exists and the proper instruction parcel is se1ected 
from that instruction buffer. An instruction parcel to be executed 
normally is sent to the NIP. However, the second parcel of a 2-parcel 
instruction is blocked from entering the NIP register and is sent to the 
LIP register instead. The second parcel of the 2-parcel instruction 
becomes available when the first parcel issues from the CIP register. At 
the same time, an all-zero parcel is entered into the NIP register. 

On an in-buffer condition, if the instruction is in a different buffer 
than the previous instruction, a change of buffers occurs requiring a 
2-CP delay of the instruction reaching the NIP register. 

An out-of-buffer condition exists when the high-order 17 bits of the P 
register do not match any instruction buffer beginning address. When 
this condition occurs, instructions must be loaded from memory into one 
of the instruction buffers before execution can continue. A 2-bit 
counter determines the instruction buffer receiving the instructions. 
Each out-of-buffer condition causes the counter to be incremented by 1 so 
that the buffers are selected in rotation. 

Buffers are loaded from memory at the rate of eight words per CP, fully 
occupying memory. The first group of 32 parcels delivered to the buffer 
always contains the next instruction required for execution. For this 
reason, the branch out-of-buffer time is 16 CPs for 32-bank memories and 
18 CPs for l6-bank memories, providing memory is not busy (if busy, the 
branch fetch is delayed until the busy is resolved). Once the fetch 
proceeds, the remaining groups arrive at a rate of 32 parcels per CP and 
circularly fill the buffer. 

An instruction buffer is loaded with one word of instructions from each 
of the 32 memory banks or two words from each of the 16 banks. The first 
four instruction parcels residing in an instruction buffer are always 
from bank O. An exchange'sequence voids the instruction buffers, 
preventing a match with the P register and causing the buffers to be 
loaded as needed. 

Forward and backward branching is possible within buffers. Branching 
does not cause reloading of an instruction buffer if the address of the 
instruction being branched to is within one of the buffers. Multiple 
copies of instruction parcels cannot occur in the instruction buffers. 
Because instructions are held in instruction buffers before issue and 
after (until the buffer is reloaded), self-modifying code should not be 
used. Also, because of independent data and instruction memory 
protection, self-modifying code may be impossible. As long as the 
address of the unmodified instruction is in an instruction buffer, the 
modified instruction in memory is not loadeQ into an instruction buffer. 

Although optimizing code segment lengths for instruction buffers is not a 
prime consideration when programming a CPU, the number and size of the 
buffers and the capability for forward and backward branching can be used 
to good advantage. Large loops containing up to 512 consecutive 

HR-0032 3-4 A 



instruction parcels can be maintained in the four buffers. An 
alternative is for a main program sequence in one or two of the buffers 
to make repeated calls to short subroutines maintained in the other 
buffers. The program and subroutines remain undisturbed in the buffers 
as long as no out-of-buffer condition or exchange causes reloading of a 
buffer. 

EXCHANGE MECHANISM 

A CPU uses an exchange mechanism for switching instruction execution from 
program to program. This exchange mechanism involves the use of blocks 
of program parameters known as Exchange Packages and a CPU operation 
referred to as an exchange sequence. For the convenience of Cray 
Assembly Language (CAL) programmers, an alternate bit position 
representation is used when discussing the Exchange Package. The bits 
are numbered from left to right with bit 0 assigned to the 263 bit 
position. 

EXCHANGE PACKAGE 

The Exchange Package (figure 3-3) is a l6-word block of data in memory 
associated with a particular computer program. The Exchange Package 
contains the basic parameters necessary to provide continuity from one 
execution interval for the program to the next. 

The Exchange Package contents are arranged in a l6-word block. The 
exchange sequence swaps data from memory to the operating registers and 
back to memory. This sequence exchanges data in an active Exchange 
Package residing in the operating registers with an inactive Exchange 
Package in memory. The Exchange Address (XA) register address of the 
active Exchange Package specifies the memory address to be used for the 
swap. Data is exchanged and a new program execution interval is 
initiated by the exchange sequence. 

The contents of the B, T, V, VM, SB, ST, and SM registers are not swapped 
in the exchange sequence. Data in these registers must be stored and 
replaced as required by specific coding in the program supervising the 
object program execution or by any program that needs this data. (See 
section 4 for descriptions of the operating registers and the VL 
register.) 

HR-0032 3-5 A 



BIT 
POSITION 

24 31 35 3840 63 

P AO 

IBA M AI 

M A2 

I ESVL 
A3 

A4 

A5 

A6 

A7 

8 SO 

9 SI 

10 S2 

II S3 

12 S4 

13 55 

14 S6 

15 57 

Figure 3-3. Exchange Package for a dual-processor system 

HR-0032 3-6 A 



Table 3-1. Exchange Package assignments 

Field 

Processor number (PN) 
Error type (E) 
Syndrome bits (S) 
Program Address register (P) 
Read mode (R) 
Read address (CSB) 

Instruction Base Address (IBA) 
Instruction Limit Address (ILA) 
Mode register (M) 
Vector not used (VNU) 

I Enable Second Vector Logical (ESVL)t 
Flag register (F) 

Exchange Address register (XA) 
Vector Length register (VL) 
Data Base Address (DBA) 
Program State (PS) 
Cluster Number (CLN) 
Data Limit Address (DLA) 
Eight A register contents 
Eight S register contents 

Processor Number 

Word 

0 
0 
0 
0 
1 
1 
1 
1 
2 
1-2 
2 
3 
3 
3 
3 
3 
4 
4 
4 
5 
0-7 
8-15 

Bits 

1 
2-3 
4-11 
16-39 
0-1 
2-6 (CS); 
7-11 (B) 
18-34 
18-34 
35-39 
0 
0 
14-15; 
31-39 
16-23 
24-30 
18-34 
35 
38-39 
18-34 
40-63 
0-63 

The content of the processor number (PN) position in the Exchange Package 
indicates in which CPU the Exchange Package executed. This value is not 
read into the CPU; it is a constant inserted only into a package bein~ 
stored. 

Vector not used (VNU) 

The content of the vector not used (VNU) position in the Exchange Package 
indicates whether or not instructions 076, 077 or 140 through 177 where 
issued during the execution intervals. If none of the instructions were 
issued, the bit is set. If one or more of the instructions issued, the 
bit is not set. 

I t Not available on all dual-processor systems 

HR-0032 3-7 A 



Enable Second Vector Logical (ESVL)t 

The content of the enable second vector logical (ESVL) position in the 
Exchange Package indicates whether or not the Second Vector Logical unit 
can be used. If set, instructions 140 through 145 may select the Second 
Vector Logical unit. If clear, the Second Vector Logical unit cannot be 
used; only the Full Vector Logical unit may be used. 

Memory error data 

Bit 36 (interrupt on correctable memory error bit) and bit 38 (interrupt 
on uncorrectable memory error bit) in the M (mode) register determine if 
memory error data is included in the Exchange Package. Error data, 
consisting of four fields of information, appears in the Exchange Package 
if bit 36 is set and correctable memory error is encountered or if bit 38 

I is set and an uncorrectable memory error is detected. tt 

I 

Memory error data fields are described below. 

E (Error type) 

S (Syndrome) 

R (Read mode) 

CSB (Read address) 

The type of memory error encountered, 
uncorrectable or correctable, is indicated in word 
0, bits 2 and 3 of the Exchange Package. Bit 2 is 
set for an uncorrectable memory error; bit 3 is 
set for a correctable memory error. 

The 8 syndrome bits used in detecting a memory 
data error are returned in word 0, bits 4 through 
11 of the Exchange Package. See section 2 for 
additional information. 

This field indicates the read mode in progress 
when a memory data error occurred and is in word 
1, bits 0 and 1 of the Exchange Package. These 
bits assume the following values: 

00 I/O 
01 Scalar (memory references with A or S) 
10 Vector, B, or T 
11 Instruction fetch or exchange 

The 10-bit CSS field contains the address where a 
memory data error occurred. Word 1, bits 7 
through 11 (B) of the Exchange Package contain 
bits 24 through 20 of the address and can be 

t Not available on all dual-processor systems 
tt For multiple bit memory errors, the hardware always sets the 

Correctable Memory Error flag in the interrupted Exchange Package. 

HR-0032 3-8 A 



CSB (Read address) 
(continued) 

EXCHANGE REGISTERS 

considered as the bank address. Word 1, bits 2 
through 6 of the Exchange Package contain bits 
221 through 217 of the address. For the 
l2-column mainframe, these bits represent the chip 
select (CS) of the address; for the 6-column 
mainframe, only the high order 3 bits of this 
field can be considered as the chip select (CS). 

Three special registers are instrumental in the exchange mechanism: the 
Exchange Address (XA) register, the Mode (M) register, and the Flag (F) 
register. These three registers are described below. 

Exchange Address register 

The a-bit Exchange Address (XA) register specifies the first word address 
of a l6-word Exchange Package loaded by an exchange operation. The 
register contains the high-order a bits of a l2-bit field specifying the 
address. The low-order bits of the field are always 0; an Exchange 
Package must begin on a l6-word boundary. The l2-bit limit requires that 
the absolute address be in the lower 4096 (lO,OOOa) words of memory. 

When an execution interval terminates, the exchange sequence exchanges 
the contents of the registers with the contents of the Exchange Package 
at the beginning address (XA) in memory. 

Mode register 

The lO-bit Mode (M) register contains part of the Exchange Package for a 
currently active program. The M register bits are assigned in words 1 
and 2 of the Exchange Package as follows. 

Word 1 

Bit Description 

35 Waiting for Semaphore (WS) flag; when set, the CPU 
exchanged when a test and set instruction was holding in 
the ClP register. 

36 Floating-point Error Status (FPS) flag; when set, a 
floating-point error has occurred regardless of the state 
of the Floating-point Error Mode flag. 

37 Bidirectional Memory Mode (BDM) flag; when set, block reads 
and writes can operate concurrently. 

HR-0032 3-9 A 



Word 1 (continued) 

Bit Description 

38 Selected for External Interrupts (SEI) flag, when set, this 
CPU is preferred for I/O interrupts. 

39 Interrupt Monitor Mode (EMM) flag, when set, enables all 
interrupts in monitor mode except PC, MCU, I/O, and normal 
exit. 

Word 2 

Bit Description 

35 Operand Range Error Mode (lOR) flag, when set, enables 
interrupts on operand range errors. 

36 Correctable Memory Error Mode (IeM) flag, when set, enables 
interrupts on correctable memory data errors. 

37 Floating-point Error Mode (IFP) flag; when set, enables 
interrupts on floating-point errors. 

38 Uncorrectable Memory Error Mode (IUM) flag, when set, 
enables interrupts on uncorrectable memory data errors. 

39 Monitor Mode (MM) flag, when set, inhibits all interrupts 
except memory errors. 

The 10 bits are set selectively during an exchange sequence. 

Word 1, bit 37 (Bidirectional Memory Mode flag) can be set or cleared 
by using instructions 002600 (enable bidirectional Memory transfers) 
and 002500 (disable bidirectional Memory transfers). 

Word 2, bit 35 (Operand Range Error Mode flag) can be set or cleared 
during the execution interval of a program by using instructions 
002300 (enable interrupt on operand range error) and 002400 (disable 
interrupt on operand range error). 

Word 2, bit 37 (Floating-point Error Mode flag), can be set or cleared 
during the execution interval for a program by using instructions 
002100 (enable interrupt on floating-point error) and 002200 (disable 
interrupt on floating-point error). 

Word 1, bits 36 and 37 and word 2, bits 35 and 37 can be read with 
instruction 073iol. Word 1, bits 35 and 36 indicate the state of 
the CPU at the time of the exchange. The remaining bits are not 
altered during the execution interval for the Exchange Package and can 
be altered only when the Exchange Package is inactive in storage. 

HR-0032 3-10 A 



Flag register 

The II-bit Flag (F) register contains part of the Exchange Package for 
the currently active program. This register is located in word 3 and 
contains 11 flags individually identified within the Exchange 
Package. Setting any of these flags interrupts program execution. 
When one or more flags are set, a Request Interrupt signal is sent to 
initiate an exchange sequence. The contents of the F register are 
stored along with the rest of the Exchange Package. The monitor 
program can analyze the 11 flags for the cause of the interruption. 
Before the monitor program exchanges back to the package, it must 
clear the flags in the F register area of the package. If any bit 
remains set, another exchange occurs immediately. 

The F register bits are assigned in word 3 of the Exchange Package as 
follows. 

Word 3 

Bit Description 

14 Interrupt From Internal CPU (Iep) flag; set when the other CPU 
issues instruction 001401. 

15 Deadlock (DL) flag; set when all CPUs in a cluster are holding 
issue on a test and set instruction. 

31 Programmable Clock Interrupt (PCI) flag; set when the 
interrupt countdown counter in the programmable clock equals 
O. The programmable clock is explained later in this section. 

32 MCU Interrupt (MCU) flag; set when the MIOP sends this signal. 

33 Floating-point Error (FPE) flag; set when a floating-point 
range error occurs in any of the floating-point functional 
units and the Enable Floating-point Interrupt flag is set. 
Floating-point functional units are explained in section 4, 
computation. 

_____________________________________________ ______ r _____________ _ 

34 Operand Range Error (ORE) flag; set when a data reference is 
made outside the boundaries of the Data Base Address (DBA) and 
Data Limit Address (OLA) registers and the Enable Operand 
Range Interrupt flag is set. Operand range error is explained 
later in this section. 

35 Program Range Error (PRE) flag; set when an instruction fetch 
is made outside the boundaries of the Instruction Base Address 
(IBA) and Instruction Limit Address (ILA) registers. Program 
range error is explained later in this section. 

HR-0032 3-11 A 



I 

Bit Description 

36 Memory Error (ME) flag: set when a correctable or 
uncorrectable memory error occurs and the corresponding enable 
memory error mode bit is set in the M register. 

37 I/O Interrupt (101) flag: set when a 6 Mbyte channel or the 
1250 Mbyte channel completes a transfer. 

38 Error Exit (EEX) flag: set by an error exit instruction (000). 

39 Normal Exit (NEX) flag: set by a normal exit instruction (004). 

Any flag (except the Memory Error flag) can be set in the F register only 
if the active Exchange Package is not in monitor mode. Such flags are 
set only if word 2, bit 39 of the M register is O. Except for the Memory 
Error flag, if the program is in monitor mode and the conditions for 
setting an F register are present, the flag remains cleared and no 
exchange sequence is initiated. 

Cluster Number register 

The Cluster Number (CLN) register determines the CPU's cluster. The 
contents of the CLN register are used to determine which set of SB, ST, 
and SM registers the CPU can access. If the CLN register is 0, then the 
CPU does not have access to any SB, ST, or 8M register. The contents of 
the CLN registers in both CPUs are also used to determine the condition 
necessary for a deadlock interrupt. 

Program State register 

The content of the I-bit Program State (PS) register is manipulated by 
the operating system to represent different program states in the CPUs 
concurrently processing a single program. 

A registers 

The current contents of all A registers are stored in bits 40 through 63 
of ' word 0 through 7 during exchange. 

S registers 

The current contents of all S registers are stored in bits 0 through 63 
of words 8 through 15 during exchange. 

HR-0032 3-12 A 



Program Address register 

The contents of the Program Address (P) register (address of first 
program instruction not yet issued) are stored in bits 16 through 39 of 
word O. The instruction at this location is the first instruction to be 
issued when this program begins again. 

Memory field registers 

Each object program has a designated field of memory for instructions and 
data that is specified by the monitor program when the object program is 
loaded and initiated. All memory addresses contained in the object 
program code are relative to one of two base addresses specifying the 
beginning of the appropriate field, and limited in size. Each object 
program reference to memory is checked against the limit and base 
addresses to determine if the address is within the bounds assigned. 
These field limits are contained in four registers that are saved in the 
Exchange Package. The four registers are: the Instruction Base Address 
(IBA) register, the Instruction Limit Address (ILA) register, the Data 
Base Address (DBA) register, and the Data Limit Address (DLA) register. 
Refer to the sUbsection on Memory Field Protection later in this section 
for an explanation of the registers. 

ACTIVE EXCHANGE PACKAGE 

An active Exchange Package resides in the operating registers. The 
interval of time when the Exchange Package and the program associated 
with it are active is called the execution interval. An execution 
interval begins with an exchange sequence where the subject Exchange 
Package moves from memory to the operating registers. An execution 
interval ends as the Exchange Package moves back to memory in a 
subsequent exchange sequence. 

EXCHANGE SEQUENCE 

The exchange sequence is the vehicle for moving an inactive Exchange 
Package from memory into the operating registers. At the same time, the 
exchange sequence moves the currently active Exchange Package from the 
operating registers back into memory. This swapping operation is done in 
a fixed sequence when all computational activity associated with the 
currently active Exchange Package has stopped. The same 16-word block of 
memory is used as the source of the inactive Exchange Package and the 
destination of the currently active Exchange Package. Location of this 
block is specified by the content of the XA register and is a part of the 
currently active Exchange Package. The exchange sequence can be 
initiated by deadstart sequence, Interrupt flag set, or program exit. 

HR-0032 3-13 A 



I 

Exchange initiated by deadstart sequence 

The deadstart sequence forces the XA register content to 0 for both CPUs 
and also forces an interrupt in one cpu. These two actions cause an 
exchange using memory address 0 as the location of the Exchange Package. 
The inactive Exchange Package at address 0 then moves into the operating 
registers and initiates a program using these parameters. The Exchange 
Package swapped to address 0 is largely indeterminate because of the 
deadstart operation. New data entered at these storage addresses then 
discards the old Exchange Package in preparation for starting subsequent 
CPUs with an interprocessor interrupt. 

When instruction 001401 (IP) is issued in the first CPU, the second CPU 
exchanges to address 0 in memory. (A switch on the mainframe's control 
panel selects which CPU is deadstarted first.) 

Exchange initiated by Interrupt flag set 

An exchange sequence can be initiated by setting anyone of the Interrupt 
flags in the F register. Setting of one or more flags causes a Request 
Interrupt signal to initiate an exchange sequence. 

Exchange initiated by program exit 

Two program exit instructions initiate an exchange sequence. Timing of 
the instruction execution is the same in either case; the difference is 
determined by which of the two flags is set in the F register. The two 
instructions are: 

000 E~ Error exit 

004 EX Normal exit 

The two exits enable a program to request its own termination. A 
non-monitor (object) program usually uses the normal exit instruction to 
exchange back to the monitor program. The error exit allows for abnormal 
termination of an object program. The exchange address selected is the 
same as for a normal exit. 

Each instruction has a flag in the F register. The appropriate flag is 
set if the currently active Exchange Package is not in monitor mode. The 
inactive Exchange Package called in this case is normally one that 
executes in monitor mode. Flags are checked for evaluation of the 
program termination cause. 

The monitor program selects an inactive Exchange Package for activation 
by setting the address of the inactive Exchange Package in the XA 
register and then executing a normal exit instruction. 

HR-0032 3-14 A 



Exchange sequence issue conditions 

The following are hold issue conditions, execution time, and special 
cases for an exchange sequence. 

Hold conditions: 

• NIP register contains a valid instruction 
• S, V, or A registers busy 

Execution time: 

For 32 banks, 40 CPs; consists of an exchange sequence (24 CPs) and a 
fetch operation (16 CPs). 

For 16 banks, 42 CPs; consists of an exchange sequence (24 CPs) and a 
fetch operation (18 CPs). 

Special cases: 

If a test and set instruction is holding in the CIP register, both 
CIP and NIP registers are cleared and the exchange occurs with the WS 
(Waiting for Semaphore) flag set and the P register pointing to the 
test and set instruction. 

EXCHANGE PACKAGE MANAGEMENT 

Each l6-word Exchange Package resides in an area defined during system 
deadstart. The defined area must lie within the lower 4096 (10,0008) 
words of memory. The package at address 0 is the deadstart monitor 
program's Exchange Package. Other packages provide for object programs 
and monitor tasks. Non-monitor packages lie outside of the field lengths 
for the programs they represent as determined by the base and limit 
addresses for the programs. Only the monitor program has a field defined 
so that it can access all of memory, including Exchange Package areas. 
The defined field allows the monitor program to define or alter all 
Exchange Packages other than its own when it is the currently active 
Exchange Package. Since no interlock exists between an exchange sequence 
in a CPU and memory transfers in another CPU, modification of Exchange 
Packages which can be used by another CPU should be avoided, except under 
software controlled situations. 

Proper management of Exchange Packages dictates that a non-monitor 
program always exchanges back to the monitor program that exchanged to 
it. The exchange ensures that the program information is always 
exchanged into its proper Exchange Package. 

HR-0032 3-15 A 



For example, the monitor program (A) begins an execution interval 
following deadstart. No interrupts (except memory) can terminate its 
execution interval since it is in monitor mode. Program A voluntarily 
exits by issuing a normal exit instruction (004). However, before doing 
so, program A sets the contents of the XA register to point to the user 
program (B) Exchange Package so that program B is the next program to 
execute. Program A sets the exchange address in program B's Exchange 
Package to point back to program A. 

The exchange sequence to program B causes the exchange address from 
program B's Exchange Package to be entered in the XA register. At the 
same time, the exchange address in the XA register goes to program B's 
Exchange Package area with all other program parameters for program A. 
When the exchange is complete, program B begins its execution interval. 

To illustrate the exchange sequence, assume that while program B is 
executing, an Interrupt flag sets initiating an exchange sequence. Since 
program B cannot alter the XA register, the exit is back to program A. 
Program B's parameters exchange back into its Exchange Package area; 
program A's parameters held in program B's package area during the 
execution interval exchange back into the operating registers. 

Program A, upon resuming execution, determines an interrupt has caused 
the exchange and sets the XA register to call the proper interrupt 
processor into execution. To do this, program A sets XA to point to the 
Exchange Package for the interrupt processing program (C). Program A 
clears the interrupt and initiates execution of program C by executing a 
normal exit instruction (004). Depending on the operating task, program 
C can execute in monitor mode or in user mode. 

Further information on Exchange Package management is contained in the 
COS EXEC/STP/CSP Internal Reference Manual, publication SM-0040. 

MEMORY FIELD PROTECTION 

At execution time each object program has a designated field of memory 
for instructions and data. The field limits are specified by the monitor 
program when the object program is loaded and initiated. The fields can 
begin at any word address that is a multiple of 32 (that is, 408) and 
can continue to another address that is one less than a multiple of 32. 
The fields can overlap. 

All memory addresses contained in the object program code are relative to 
one of the two base addresses specifying the beginning of the appropriate 
field. An object program cannot read or alter any memory location with 
an absolute address lower than that base address. Each object program 
reference to memory is checked against the limit and base addresses to 
determine if the address is within the bounds assigned. A memory read 

HR-0032 3-16 A 



reference beyond the assigned field limits issues and completes, but a 
zero value is transferred from memory. A memory write reference beyond 
the assigned field limits is allowed to issue, but no write occurs. 

Field limits are contained in four registers: the Instruction Base 
Address (IBA) register, the Instruction Limit Address (ILA) register, the 
Data Base Address (DBA) register, and the Data Limit Address (DLA) 
register. These four registers and flags associated with the field 
limits are described in the following paragraphs. 

INSTRUCTION BASE ADDRESS REGISTER 

The Instruction Base Address (IBA) register holds the base address of the 
userls instruction field. An instruction can only be executed by the CPU 
if the absolute address at which the instruction is located is greater 
than or equal to the contents of the current Exchange Package IBA 
register of the program executing. This determination is made at 
instruction buffer fetch time by the CPU. 

The contents of the IBA register are interpreted as the high-order 17 
bits of a 22-bit memory address. The low-order 5 bits of the address are 
assumed to be 0 because of the number of banks, 32 (decimal) banks. 
Absolute memory addresses for an instruction fetch are formed by adding 
the lBA register to the P register (high-order 22 bits) modulo two to the 
twenty-second power. 

A reference to an absolute address less than the address defined by IBA 
can only occur through a jump or branch instruction to an address beyond 
the memory capacity of the machine. 

INSTRUCTION LDMIT ADDRESS REGISTER 

The Instruction Limit Address (ILA) register holds the limit address of 
the userls field. An instruction can only be executed by the CPU if the 
absolute address where it is located is less than the contents of the 
current Exchange Package lLA register of the program executing. This 
determination is made at instruction buffer fetch time by the CPU. 

The contents of the lLA register are interpreted as the high-order 17 
bits of a 22-bit memory address. The low-order 5 bits of the address are 
assumed to be 0 because of the number of banks, 32 (decimal) banks. The 
largest absolute address that can be executed by a program is defined by 
[(ILA) x 25] - 1. 

If the final absolute address of the instruction buffer fetch as computed 
by the CPU does not fall between the range of addresses contained within 
the currently executing Exchange Package IBA and lLA registers, the CPU 
generates a program range error interrupt. 

HR-0032 3-17 A 



DATA BASE ADDRESS REGISTER 

The Data Base Address (DBA) register holds the base address of the user's 
data field. An operand can only be fetched or stored by the CPU if the 
absolute address where the operand is located is greater than or equal to 
the contents of the current Exchange Package DBA register of the program 
executing. This determination is made each time an operand is fetched or 
stored by the CPU. 

The contents of the DBA register are interpreted as the high-order 17 
bits of a 22-bit memory address. The low-order 5 bits of the DBA 
register are assumed to be O. Absolute memory addresses for operands are 
formed by adding the DBA register to the modified operand address modulo 
two to the twenty-second power. 

DATA LLMIT ADDRESS REGISTER 

The Data Limit Address (DLA) register holds the (upper) limit address of 
the user's data field. An operand can only be fetched or stored by the 
CPU if the absolute address where the operand is located is less than the 
contents of the current Exchange Package DLA register of the program 
executing. This determination is made each time an operand is fetched or 
stored by the CPU. 

The contents of the DLA register are interpreted as the high-order 17 
bits of a 22-bit memory address. The low-order 5 bits of the DLA 
register are assumed to be O. The largest absolute address that can be 
referenced for data by a program is defined by [(DLA) x 25] - 1. 

If the final absolute address of the operand as computed by the CPU does 
not fall between the range of addresses contained within the currently 
executing Exchange Package DBA and DLA registers, the CPU generates an 
operand (address) range error interrupt. 

PROGRAM RANGE ERROR 

The Program Range Error flag sets if a memory reference outside the 
boundaries of the IBA and ILA registers is for an instruction fetch. An 
out-of-range memory reference can occur in a non-monitor mode program on 
a branch or jump instruction calling for a program address above or below 
the limits. The Program Range Error flag causes an error condition that 
terminates program execution. The monitor program checks the state of 
the Program Range Error flag and takes appropriate action, perhaps 
aborting the user program. 

HR-0032 3-18 A 



OPERAND RANGE ERROR 

The Operand Range Error flag sets if the Operand Range Error Mode flag is 
set and a memory reference outside the boundaries of the DBA and DLA 
registers is called to read or write an operand for an A, B, S, T, or V 
register and the Operand Range Interrupt Error flag is set. The Operand 
Range Error flag causes an error condition that terminates the user 
program execution. The monitor program checks the state of the Operand 
Range Error flag and takes appropriate action, perhaps aborting the user 
program. 

PROGRAMMABLE CLOCK 

The programmable clock can be used to accurately measure the duration of 
intervals. Intervals selected under monitor program control generate a 
periodic interrupt. The clock frequency is 105 Mhz. Intervals from 9.5 
nanoseconds to approximately 40.8 seconds are possible. Intervals 
shorter than 100 microseconds are not practical due to the monitor 
overhead involved in processing the interrupt. Supporting the 
programmable clock are the Interrupt Interval (II) register, the 
Interrupt Countdown (ICD) counter, and four monitor mode instructions. 

INSTRUCTIONS 

Four monitor mode instructions support the programmable clock: 

0014j4 PCI Sj 

001405 CCI 

001406 ECI 

001407 DCI 

INTERRUPT INTERVAL REGISTER 

Enter Interrupt Interval (II) register with 
(sj) 

Clear the programmable clock interrupt 
request 

Enable the programmable clock interrupt 
request 

Disable the programmable clock interrupt 
request 

The 32-bit Interrupt Interval (II) register can be loaded with a binary 
value equal to the number of CPs that are to elapse between programmable 
clock interrupt requests. The interrupt interval is transferred from the 
low-order 32 bits of the Sj register into the II register and the ICD 
counter when instruction 0014j4 is executed. 

HR-0032 3-19 A 



This value is held in the II register and is transferred to the ICD 
counter each time the counter reaches 0 and generates an interrupt 
request. The content of the II register is changed only by another 
instruction 0014j4. 

INTERRUPT COUNTDOWN COUNTER 

The 32-bit Interrupt Countdown (ICD) counter is preset to the contents of 
the II register when instruction 0014j4 is executed. This counter runs 
continuously but counts down, decrementing by 1 each CP until the content 
of the counter is o. The ICD sets the programmable clock interrupt 
request and samples the interval value held in the II register. The ICD 
repeats the countdown to zero cycle, setting the programmable clock 
interrupt request at regular intervals determined by the interval value. 

When the programmable clock interrupt request is set, it remains set 
until a clear programmable clock interrupt request is executed. A 
programmable clock interrupt request can be set only after the enable 
programmable clock interrupt request is executed. A programmable clock 
interrupt request causes an interrupt only when not in monitor mode. A 
request set in monitor mode is held until the system switches to user 
mode. 

CLEAR PROGRAMMABLE CLOCK INTERRUPT REQUEST 

Following a program interrupt interval, an active programmable clock 
interrupt request can be cleared by executing instruction 001405. 

Following any deadstart, the monitor program should ensure the state of 
the programmable clock interrupt by issuing instructions 001405 and 
001407. 

PERFORMANCE MONITOR 

The system contains a set of eight performance counters to track certain 
hardware related events that can be used to indicate relative 
performance. The events that can be tracked are the number of specific 
instructions issued, hold issue conditions, the number of fetches, 
references, etc. and are selected through instruction 0015jO. Refer to 
Appendix C for complete information on performance monitoring. 

HR-0032 3-20 A 



I 

DEADSTART SEQUENCE 

The deadstart sequence of operations starts a program running in the 
mainframe after power has been turned off and then turned on again or 
whenever the operating system is to be reinitialized in the mainframe. 
All registers in the machine, all control latches, and all words in 
memory should be considered invalid after power has been turned on. The 
following sequence of operations to begin the program is initiated by the 
I/O Subsystem. 

1. Turn on Master Clear signal. 

2. Turn on I/O Clear signal. 

3. Turn off I/O Clear signal. 

4. Load memory via I/O Subsystem. 

5. Turn off Master Clear signal. 

The Master Clear signal halts all internal computation and forces 
critical control latches to predetermined states. The I/O Clear signal 
clears the input Channel Address register of the MCU channel and 
activates the MCU input channel. All other input channels remain 
inactive. The I/O Subsystem then loads an initial Exchange Package and 
monitor program. The Exchange Package must be located at address 0 in 
memory. Turning off the Master Clear signal initiates the exchange 
sequence to read this package and to begin execution of the monitor 
program in CPU 0 (PN=O). 

CPU 1 (PN=l) remains in a master-cleared state until instruction 001401 
(IP) is issued in CPU O. Then CPU 1 exchanges to address 0 in memory_ 

Because the exchange of CPU 0 overwrites the contents of the inactive 
Exchange Package at address 0, CPU 0 must reinitialize the Exchange 
Package at address 0 before allowing other CPUs to start. (Either CPU 
can be started first by using a switch on the mainframe's control 
panel.) Subsequent actions are dictated by the design of the operating 
system. 

HR-0032 3-21 A 





CPU C·OMP.UT ATION SECTION 

INTRODUCTION 

Each CPU contains an identical, independent computation section. A 
computation section consists of operating registers and functional units 
associated with three types of processing: address, scalar, and vector. 
Address processing operates on internal control information such as 
addresses and indexes and has two levels of 24-bit registers and two 
integer arithmetic functional units. Scalar and vector processing are 
performed on data. 

4 

A vector is an ordered set of elements. A vector instruction operates on 
a series of elements repeating the same function and producing a series 
of results. Scalar processing starts an instruction, handles one operand 
or operand pair, and produces a single result. 

The main advantage of vector over scalar processing is eliminating 
instruction start-up time for all but the first operand. Scalar 
processing has two levels of 64-bit scalar registers, four functional 
units dedicated solely to scalar processing, and three floating-point 
functional units shared with vector operations. vector processing has a 

I set of 64-element registers of 64 bits each, four t functional units 
dedicated solely to vector applications, and three floating-point 
functional units supporting both scalar and vector operations. 

I 

Address information flows from Central Memory or from control registers 
to address registers. Information in the address registers is 
distributed to various parts of the control network for use in 
controlling the scalar, vector, and I/O operations. The address 
registers can also supply operands to two integer functional units. The 
units generate address and index information and return the result to the 
address registers. Address information can also be transmitted to 
Central Memory from the address registers. 

Data flow in a computation section is from Central Memory to registers 
and from registers to functional units. Results flow from functional 
units to registers and from registers to Central Memory or back to 
functional units. Data flows along either the scalar or vector path 
depending on the processing mode. An exception is that scalar registers 
can provide one required operand for vector operations performed in the 
vector functional units. 

t Five vector functional units are available on systems with a Second 
Vector Logical unit. 

HR-0032 4-1 A 



Integer or floating-point arithmetic operations are performed in the 
computation section. Integer arithmetic is performed in twos complement 
mode. Floating-point quantities have signed magnitude representation. 

Floating-point instructions provide for addition, subtraction, 
multiplication, and reciprocal approximation. The reciprocal 
approximation instructions provide for a floating-point divide operation 
using a multiple instruction sequence. These instructions produce 64-bit 
results (I-bit sign, IS-bit exponent, and 48-bit normalized coefficient). 

Integer or fixed-point operations are integer addition, integer 
subtraction, and integer multiplication. Integer addition and 
subtraction operations produce either 24-bit or 64-bit results. An 
integer multiply operation produces a 24-bit result. A 64-bit integer 
multiply operation is done through a software algorithm using the 
floating-point multiply functional unit to generate multiple partial 
products. These partial products are then shifted and merged to form the 
full 64-bit product. No integer divide instruction is providedl the 
operation is accomplished through a software algorithm using 
floating-point hardware. 

The instruction set includes Boolean operations for OR, AND, equivalence, 
and exclusive OR and for a mask-controlled merge operation. Shift 
operations allow the manipulation of either 64-bit or 128-bit operands to 
produce 64-bit results. With the exception of 24-bit integer arithmetic, 
most operations are implemented in vector and scalar instructions. The 
integer product is a scalar instruction designed for index calculation. 
Full indexing capability allows the programmer to index throughout memory 
in either scalar or vector modes. The index can be positive or negative 
in either mode. Indexing allows matrix operations in vector mode to be 
performed on rows or the diagonal as well as conventional column-oriented 
operations. 

Population and parity counts are provided for both vector and scalar 
operations. An additional scalar operation is the leading zero count. 

Characteristics of a CPU computation section are summarized below. 

• Integer and floating-point arithmetic 
• Twos complement integer arithmetic 
• Signed magnitude floating-point arithmetic 
• Address, scalar, and vector processing modes 
• Thirteen functional units 
• Eight 24-bit address (A) registers 
• Sixty-four 24-bit intermediate address (B) registers 
• Eight 64-bit scalar (S) registers 
• Sixty-four 64-bit intermediate scalar (T) registers 
• Eight 64-element vector (V) registers, 64 bits per element 

HR-0032 4-2 A 



OPERATING REGISTERS 

Operating registers, a primary programmable resource of a CPU, enhance 
the speed of the system by satisfying heavy demands for data made by the 
functional units. A single functional unit can require one to three 
operands per clock period (CP) to perform the necessary functions and can 
deliver results at a rate of one per CP. Multiple functional units can 
be used concurrently. 

A CPU has three primary and two intermediate sets of registers. The 
primary sets of registers are address, scalar, and vector, designated in 
this manual as A, S, and V, respectively. These registers are considered 
primary because functional units can access them directly. 

For the A and S registers, an intermediate level of registers exists 
which is not accessible to the functional units but acts as a buffer for 
the primary registers. Block transfers are possible between these 
registers and Central Memory so that the number of memory reference 
instructions required for scalar and address operands is greatly 
reduced. The intermediate registers that support the A registers are 
referred to as B registers. The intermediate registers that support S 
registers are referred to as T registers. 

ADDRESS REGISTERS 

Figure 4-1 illustrates registers and functional units used for address 
processing. The two types of address registers are designated A 
registers and B registers and are described in the following paragraphs. 

A REGISTERS 

Eight 24-bit A registers serve a variety of applications but are 
primarily used as address registers for memory references and as index 
registers. They provide values for shift counts, loop control, and 
channel I/O operations and receive values of population count and leading 
zeros count. In address applications, A registers index the base address 
for scalar memory references and provide both a base address and an 
address increment for vector memory references. 

The address functional units support address and index generation by 
performing 24-bit integer arithmetic on operands obtained from A 
registers and by delivering the results to A registers. 

Data is moved directly between Central Memory and A registers or is 
placed in B registers. Placing data in B registers allows buffering of 

HR-0032 4-3 A 



Ai 

SBj 

Exchange 
control 

Shifts 

Multiply 

Add 

r----=--~--++-+_-t__-... Address 

r------~--~-+___<~~-.. functional 

L--UI4p--------+-+----1I...--.... -+-----I units 

Ai Ak 

Ai.~----------, ~+=======~~=========-J 
Ak~-----------4~~~----~ 

Figure 4-1. Address registers and functional units 

the data between A registers and Central Memory. Data can also be 
transferred between A and S registers and between A and Shared Address 
(SB) registers. 

The Vector Length (VL) register and Exchange Address (XA) register are 
set by transmitting a value to them from an A register. The VL register 
can also be transmitted to an A register. (The VL register is described 
under Vector Control Registers later in this section.) 

When an issued instruction delivers new data to an A register, a 
reservation is set for that register. The reservation prevents issue of 
instructions that use the register until the new data is delivered. 

HR-0032 4-4 A 



I 

In this manual, the A registers are individually referred to by the 
letter A followed by a number ranging from 0 through 7. Instructions 
reference A registers by specifying the register number as the h, i, 
j, or k designator as described in section 5. 

The only register implicitly referenced is the AO register as illustrated 
in the following instructions: 

OlOiikm JAZ exp 

Ollijkm JAN exp 

012iikm JAP exp 

013iJKm JAM exp 

034ijk Bjk,Ai ,AO 

035ijk ,AO Bjk,Ai 

036ijk TJK,Ai ,AO 

037ijk ,AO Tjk,Ai 

l76iok vi ,AO,Ak 

l770jk ,AO,Ak Vj 

Branch to iJKm if (AO)=O 

Branch to iJKm if (AO)~O 

Branch to iJKm if (AO) is positive, 
includes (AO)=O 

Branch to iJKm if (AO) is negative 

Read (Ai) words to B register jk 
from (AO) 

Store (Ai) words at B register 
jk to (AO) 

Read (Ai) words to T register jk from 
(AO) 

Store (Ai) words at T register 
jk to (AO) 

Read (VL) words to Vi from (AO) 
incremented by (Ak) 

Store (VL) words from Vj to (AO) 
incremented by (Ak) 

Section 5 of this manual contains additional information on the use of A 
registers by instructions. 

B REGISTERS 

A computation section contains sixty-four 24-bit B registers used as 
intermediate storage for the A registers. Typically, B registers contain 
data to be referenced repeatedly over a sufficiently long span, making it 
unnecessary to retain the data in either A registers or in Central 
Memory. Examples of uses are loop counts, variable array base addresses, 
and dimensions. 

HR-0032 4-5 A 



Transfer of a value between an A register and a B register requires only 
1 CP. A block of B registers can be transferred to or from Central 
Memory at the maximum rate of one 24-bit value per CP. A reservation is 
made on all B registers during block transfers to and from B registers. 

N~E 

Other instructions can issue on the CRAY X-MP while a 
block of B registers is being transferred to or from 
Central Memory. 

In this manual, B registers are individually referred to by the letter B 
followed by a 2-digit octal number ranging from 00 through 77. 
Instructions reference B registers by specifying the B register number in 
the JK designator as described in section 5. 

The only B register implicitly referenced is the BOO register. On 
execution of the return jump instruction, 007ijkm, register BOO is set 
to the next instruction parcel address (P) and a branch to an address 
specified by ijkm occurs. Upon receiving control, the called routine 
conventionally saves (BOO) so that the BOO register is available for the 
called routine to initiate return jumps of its own. When a called 
routine wishes to return to its caller, it restores the saved address and 
executes instruction 0050JK. Conventionally, this instruction, which 
is a branch to (Bjk), causes the address saved in Bjk to be entered 
into the P register as the address of the next instruction parcel to be 
executed. 

SCALAR REGISTERS 

Figure 4-2 illustrates registers and functional units used for scalar 
processing. The two types of scalar registers are designated S registers 
and T registers and are described in the following paragraphs. 

S REGISTERS 

Eight 64-bit S registers are the principal scalar registers for a CPU 
serving as the source and destination for operands executing scalar 
arithmetic and logical instructions. Scalar functional units perform 
both integer and floating-point arithmetic operations. 

HR-0032 4-6 A 



Memory 

Scalar 

V registers 
Floating-paint functional units 
VM 

PCl. Status 

Add 

r--------f-+--+--+--~~ Scalar 

... _____ J--L. ..... -------1H+-+--...---I funct iona 1 
units 

Ai Ak 

Figure 4-2. Scalar registers and functional units 

S registers can furnish one operand in vector instructions. Single-word 
transmissions of data between an S register and an element of a V 
register are also possible. 

Data is moved directly between Central Memory and S registers or is 
placed in T registers. This intermediate step allows buffering of scalar 
operands between S registers and Central Memory. Data is also 
transferred between A and S registers, between S and Shared Scalar (ST) 
registers, and between S and Semaphore (SM) registers. 

Other uses of the S registers are the setting or reading of the Vector 
Mask (VM) register or the Real-time Clock (RTC) register or setting the 
Interrupt Interval (II) register. 

HR-0032 4-7 A 



When an issuing instruction delivers new data to an S register, a 
reservation is set for that register preventing issue of instructions 
that read the register until the new data is delivered. 

In this manual, the S registers are individually referred to by the 
letter S followed by a number ranging from 0 through 7. Instructions 
reference S registers by specifying the register number as the i, j, 
or k designator as described in section 5. 

The only register implicitly referenced is the SO register as illustrated 
in the following instructions. 

Ol4iJKm JSZ exp 

Ol5ijkm JSN exp 

Ol6iJKm JSP exp 

Ol7iJKm JSM exp 

052ijk SO si<exp 

053ijk SO Si>e~p 

Branch to iJKm if (SO)=O 

Branch to ijkm if (SO)~O 

Branch to iJKm if (SO) is positive, 
includes (SO)=O 

Branch to iJKm if (SO) is negative 

Shift (Si) left jk places to SO 

Shift (Si) right jk places to SO 

The 8-bit Status register provides the status of the following flags: 

• Processor Number (PN) 
• Program State (PS) 
• Cluster Number (CN) 
• Floating-point Interrupts Enabled (IFP) 
• Floating-point Error (FPE) 
• Bidirectional Memory Enabled (BDM) 
• Operand Range Interrupts Enabled (lOR) 

Instruction 073 sends the contents of the Status register to an S 
register. 

Section 5 of this manual has additional information on the use of S 
registers by instructions. 

T REGISTERS 

The computation section has sixty-four 64-bit T registers used as 
intermediate storage for the S registers. Data is transferred between T 
and S registers and between T registers and Central Memory. Transfer of 
a value between a T register and an S register requires only 1 CP. 

HR-0032 4-8 A 



T registers reference Central Memory through block read and block write 
instructions. Block transfers occur at a maximum rate of one word per 
CP. A reservation is made on all T registers during block transfers to 
and from T registers. 

NOTE 

Other instructions can issue on the CRAY X-MP while a 
block of T registers is being transferred to or from 
Central Memory. 

In this manual, T registers are referred to by the letter T and a 2-digit 
octal number ranging from 00 through 77. Instructions reference T 
registers by specifying the octal number as the jk designator as 
described in section 5. 

VECTOR REGISTERS 

Figure 4-3 illustrates the registers and functional units used for vector 
operations. Vector registers and Vector Control registers are described 
in the following paragraphs. 

V REGISTERS 

The major computational registers of a CPU are eight V registers, each 
with 64 elements. Each V register element has 64 bits. When associated 
data is grouped into successive elements of a V register, the register 
quantity can be treated as a vector. Examples of vector quantities are 
rows or columns of a matrix or elements of a table. Computational 
efficiency is achieved by identically processing each element of a 
vector. Vector instructions provide for the iterative processing of 
successive V register elements. A vector operation always begins when 
operands are obtained from the first element of the operand V registers 
and the result is delivered to the first element of a V register. 
Successive elements are provided each CP and as each operation is 
performed, the result is delivered to successive elements of the result 
V register. The vector operation continues until the number of 
operations performed by the instruction equals a count specified by the 
content of the VL register. 

HR-0032 4-9 A 



I 

I 

MMory 

(AO)+(Ak) ) 

V2 
VI 

VO 

77 

V4 
V3 

Vector registers 
V7 

V6 

V5 

Vector 
control 

Vj 
Vk 
Vi 

Vector Vector Mask 
Control 

Ai Ak 

*POD/Par1ty 
Ak Shfft 

Add 

Vector 
Sj ·Functional r------..... Uni ts 

Sj Vi 

Si Sj Sk 

Vj Red p. Appr. 

* Multfply 
Second 

Vector 
Logica 

Floating-
Si Point 

Sj Functional 
Units 

Sk 

*The Vector Pop/Parity shares its 
input path with the Reciprocal 
Approximation unit. 

The Second Vector logical shares 
its input and output path with the 
Floating-point Multiply unit. 

Figure 4-3. Vector registers and functional units 

Contents of a V register are transferred to or from Central Memory in a 
block mode by specifying a first word address in Central Memory, an 
increment or decrement for the Central Memory address, and a vector 
length. The transfer then proceeds beginning with the first element of 
the V register at a maximum rate of one word per CP, depending upon bank 
conflicts. Discontinuities in the vector data stream can occur as a 
result of memory conflicts. These discontinuities, although not 
inhibiting chained operations, can appear in the chained operation data 
stream. Any discontinuity in the data stream adds proportionally to the 
total execution time of the vector operation. 

Single-word data transfers are possible between an S register and an 
element of a V register. 

I t On systems equipped with a Second Vector Logical functional unit 

HR-0032 4-10 A 



Since many vectors exceed 64 elements, a long vector is processed as one 
or more 64-element segments and a possible remainder of less than 64 
elements. Generally, it is convenient to compute the remainder and 
process this short segment before processing the remaining number of 
64-element segments. However, a programmer can choose to construct the 
vector loop code in a number of ways. The processing of long vectors in 
FORTRAN is handled by the compiler and is transparent to the programmer. 

A V register receiving results can also supply operands to a subsequent 
operation. Using a register as both a result and operand register in two 
different operations allows for the chaining together of two or more 
vector operations and two or more results can be produced per CP. 
Chained operations are detected automatically by a CPU and are not 
explicitly specified by the programmer. A programmer can reorder certain 
code segments to gain as much concurrency as possible in chained 
operations. 

A conflict can occur between vector and scalar operations involving 
floating-point operations and memory access. with the exception of these 
operations, the functional units are always available for scalar 
operations. A vector operation occupies the selected functional unit 
until the vector is processed. 

Parallel vector operations can be processed in two ways: 

• Using different functional units and all different V registers 

• Using the result stream from one V register simultaneously as the 
operand to another operation using a different functional unit 
(chain mode) 

Parallel operations on vectors allow the generation of two or more 
results per CP. Most vector operations use two V registers as operands 
or one S and one V register as operands. Exceptions are vector shifts, 

I vector logicals, vector reciprocals, and the load or store instructions. 

In this manual, the V registers are individually referred to by the 
letter V followed by a number ranging from 0 through 7. Vector 
instructions reference V registers by specifying the register number as 
the i, j, or k designator as described in section 5. 

Individual elements of a V register are designated in this manual by 
decimal numbers ranging from 00 through 63. These appear as subscripts 
to vector register references. For example, V629 refers to element 29 
of V register 6. 

HR-0032 4-11 A 



N~E 

Parallel loading and storing of V registers is 
possible; two load operations and one store operation 
can occur simultaneously. 

V register reservations and chaining 

Reservation describes the condition of a register in use; that is, the 
register is not available for another operation as a result or as an 
operand register. Each register has two reservation conditions, one 
reserving it as a operand register and one reserving it as a result 
register. During execution of a vector instruction, reservations are 
placed on the operand V registers and on the result V register. These 
reservations are placed on the registers themselves, not on individual 
elements of the V register. 

If a V register is reserved as a result and not as an operand, it can be 
used at any time as an operand and chaining occurs. This flexible 
chaining mechanism allows chaining to begin at any point in the result 
vector data stream. Full chaining occurs if the instruction causing 
chaining is issued before or at the time element 0 of the result arrives 
at the V register. Partial chaining occurs if the instruction issues 
after the arrival of element O. Thus, the amount of concurrency in a 
chained operation depends upon the relationship between the issue time of 
the chaining instruction and the result vector data stream. 

If a V register is reserved as an operand, it cannot be used as a result 
or operand register until the operand reservation clears. However, a V 
register can be used as both an operand and result in the same vector 
operation. A V register can serve only one vector operation as the 
source of one or both operands. A V register can serve only one vector 
operation as a result. 

No reservation is placed on the VL register during vector processing. If 
a vector instruction employs an S register, no reservation is placed on 
the S register. The S register can be modified in the next instruction 
after vector issue without affecting the vector operation. The length 
and scalar operand (if appropriate) of each vector operation is 
maintained apart from the VL register and S register. Vector operations 
employing different lengths can proceed concurrently. 

HR-0032 4-12 A 



The AO and Ak registers in a vector memory reference are treated 
similarly and are available for modification immediately after use. 

******************************************************* 

CAUTION 

Cray Research, Inc., cautions against using a vector 
register as both a result and an operand if 
compatibility between a CRAY-l and a CRAY X-MP system 
is necessary because vector recursion is not available 
on all Cray Research, Inc., computers. 

******************************************************* 

VECTOR CONTROL REGISTERS 

The Vector Length (VL) register and Vector Mask (VM) register provide 
control information needed in the performance of vector operations and 
are described below. 

Vector Length register 

The 7-bit Vector Length (VL) register is set to 1 through 100S (VL = 0 
gives VL = 100S) specifying the length of all vector operations 
performed by vector instructions and the length of the vectors he1d by 
the V registers. The VL register controls the number of operations 
performed for instructions 140 through 177 and is set to an A register 
value using instruction 0020 or read using instruction 023iOI. 

Vector Mask register 

The Vector Mask (VM) register has 64 bits, each corresponding to a word 
element in a V register. Bit 263 corresponds to element 0, bit 20 to 
element 63. The mask is used with vector merge and test instructions to 
allow operations to be performed on individual vector elements. 

The VM register can be set from an S register through instruction 003 or 
can be created by testing a V register for a condition using instruction 
175. The mask controls element selection in the vector merge 
instructions (146 and 147). Instruction 073 sends the contents of the VM 
register to an S register. 

HR-0032 4-13 A 



I 

FUNCTIONAL UNITS 

Instructions other than simple transmits or control operations are 
performed by specialized hardware known as functional units. Each unit 
implements an algorithm or a portion of the instruction set. Functional 
units have independent logic except for the Reciprocal Approximation, and 
Vector Population Count units (described later in this section), which 
share some logic. (On systems equipped with a Second Vector Logical 
functional unit, the Floating-point Multiply and Second Vector Logical 
units share input and output paths.) All functional units can be in 
operation at the same time. 

A functional unit receives operands from registers and delivers the 
result to a register when the function has been performed. Functional 
units operate essentially in 3-address mode with source and destination 
addressing limited to register designators. 

All functional units perform algorithms in a fixed amount of time, delays 
are impossible once the operands have been delivered to the unit. Time 
required from delivery of the operands to the functional unit until 
completion of the calculation is called the fun~tional unit time and is 
measured in 9.5-nanosecond CPs. 

Functional units are fully segmented. This means a new set of operands 
for unrelated computation can enter a functional unit each CP even though 
the functional unit time can be more than I CP. This segmentation is 
possible when information arrives at the functional unit and is held in 
the functional unit or moves within the functional unit at the end of 
every CP. 

The functional units identified in this manual are arbitrarily described 
in four groups: address, scalar, vector, and floating-point. Each of 
the first three groups functions with one of the primary register types 
(A, S, and V) to support the address, scalar, and vector modes of 
processing available in the mainframe. The fourth group, floating-point, 
supports either scalar or vector operations and accepts operands from or 
delivers results to S or V registers. In addition, Central Memory can 
also act as a functional unit for vector operations. 

ADDRESS FUNCTIONAL UNITS 

Address functional units perform 24-bit integer arithmetic on operands 
obtained from A registers and deliver the results to an A register. The 
arithmetic is twos complement. 

HR-0032 4-14 A 



Address Add functional unit 

The Address Add functional unit performs 24-bit integer addition and 
subtraction. The unit executes instructions 030 and 031. Addition and 
subtraction are performed in a similar manner. The twos complement 
subtraction for instruction 031 occurs when the ones complement of the 
Ak operand is added to the Aj operand. Then a 1 is added in the 
low-order bit position of the result. No overflow is detected in the 
Address Add functional unit. 

The Address Add functional unit time is 2 CPs. 

Address Multiply functional unit 

The Address Multiply functional unit executes instruction 032 forming a 
24-bit integer product from two 24-bit operands. No rounding is 
performed. The result consists of the least significant 24 bits of the 
product. 

This functional unit is designed to handle address manipulations not 
exceeding its data capabilities. The programmer must be careful when 
multiplying integers in the functional unit because the unit does not 
detect overflow of the product and significant portions of the product 
could be lost. 

The Address Multiply functional unit time is 4 CPs. 

SCALAR FUNCTIONAL UNITS 

Scalar functional units perform operations on 64-bit operands obtained 
from S registers and, in most cases, deliver the 64-bit results to an S 
register. The exception is the Population/Leading Zero Count functional 
unit which delivers its 7-bit result to an A register. 

Four functional units are exclusively associated with scalar operations 
and are described below. Three functional units are used for both scalar 
and vector operations and are described in the section on Floating-point 
Functional Units. 

Scalar Add functional unit 

The Scalar Add functional unit performs 64-bit integer addition and 
subtraction and executes instructions 060 and 061. Addition and 
subtraction are performed in a similar manner. The twos complement 
subtraction for instruction 061 occurs when the ones complement of the 
Sk operand is added to the Sj operand. Then a 1 is added in the 

HR-0032 4-15 A 



low-order bit position of the result. No overflow is detected in the 
Scalar Add functional unit. 

The Scalar Add functional unit time is 3 CPs. 

Scalar Shift functional unit 

The Scalar Shift functional unit shifts the entire 64-bit contents of an 
S register or shifts the double l28-bit contents of two concatenated S 
registers. Shift counts are obtained from an A register or from the jk 
portion of the instruction. Shifts are end off with zero fill. For a 
double shift, a circular shift is effected if the shift count does not 
exceed 64 and the i and j designators are equal and nonzero. 

The Scalar Shift functional unit executes instructions 052 through 057. 
Single-shift instructions (052 through 055) have a functional unit time 
of 2 CPs. Double-shift instructions (056 and 057) have a functional unit 
time of 3 CPs. 

Scalar Logical functional unit 

The Scalar Logical functional unit performs bit-by-bit manipulation of 
64-bit quantities obtained from S registers. It executes instructions 
042 through 051, the mask, and Boolean instructions. Instructions 042 
through 051 have a functional unit time of 1 CP. 

Scalar Population/Parity/Leading Zero functional unit 

This functional unit executes instructions 026 and 027. Instruction 
026ijO counts the number of bits in an S register having a value of 1 
in the operand and has a functional unit time of 4 CPs. Instruction 
026ijl returns a I-bit population parity count (even parity) of the 
sj register's contents. Instruction 027 counts the number of bits of 0 
preceding a 1 bit in the operand and has a functional unit time of 3 
CPs. For these instructions, the 64-bit operand is obtained from an S 
register and the 7-bit result is delivered to an A register. 

VECTOR FUNCTIONAL UNITS 

Most vector functional units perform operations on operands obtained from 
one or two V registers or from a V register and an S register. The 
Reciprocal, Shift, and Population/Parity functional units, which require 
only one operand, are exceptions. Results from a vector functional unit 
are delivered to a V register. 

HR-0032 4-16 A 



I 

Successive operand pairs are transmitted each CP to a functional unit. 
The corresponding result emerges from the functional unit n CPs later, 
where n is the functional unit time and is constant for a given 
functional unit. The VL register determines the number of operand pairs 
to be processed by a functional unit. 

The functional units described in this section are exclusively associated 
with vector operations. Three functional units are associated with both 
vector operations and scalar operations and are described in the 
sUbsection entitled Floating-point Functional Units. When a 
floating-point functional unit is used for a vector operation, the 
general description of vector functional units given in the sUbsection 
applies. 

Vector functional unit reservation 

A functional unit engaged in a vector operation remains busy during each 
CP and cannot participate in other operations. In this state, the 
functional unit is reserved. Other instructions requiring the same 
functional unit will not issue until the previous operation is 
completed. Only one functional unit of each type is available to the 
vector instruction hardware (with the exception of systems equipped with 
a Second Vector Logical unit where instructions 140 to 145 may use either 
of the vector logical units). When the vector operation completes, the 
reservation is dropped and the functional unit is then available for 
another operation. A vector functional unit is reserved for (VL) + 4 CPs. 

Vector Add functional unit 

The Vector Add functional unit performs 64-bit integer addition and 
subtraction for a vector operation and delivers the results to elements 
of a V register. The unit executes instructions 154 through 157. 
Addition and subtraction are performed in a similar manner. For 
subtraction operations (156 and 157), the Vk operand is complemented 
before addition and a 1 is added into the low-order bit position of the 
result. No overflow is detected by the unit. 

The Vector Add functional unit time is 3 CPs. 

Vector Shift functional unit 

The Vector Shift functional unit shifts the entire 64-bit contents of a V 
register element or the l28-bit value formed from two consecutive 
elements of a V register. Shift counts are obtained from an A register 
and are end off with zero fill. 

HR-0032 4-17 A 



I 

All shift counts are considered positive unsigned integers. If any bit 
higher than 26 is set, the shifted result is all zeros. 

The Vector Shift functional unit executes instructions 150 through 153. 
The functional unit time is 4 CPs for instruction 152, and the functional 
unit time is 3 CPs for instructions 150, 151, and 153. 

Full Vector Logical functional unit 

The Full Vector Logical functional unit performs a bit-by-bit 
manipulation of the 64-bit quantities for instructions 140 through 147. 
The Full Vector Logical functional unit also performs the logical 
operations associated with the vector mask instruction 175. Because 
instruction 175 uses the same functional unit as instructions 140 through 
147, it cannot be chained with these instructions. 

NOTE 

If the system is equipped with a Second Vector Logical 
unit and the unit is enabled, it is possible for 
instruction 175 to be chained with instructions 140 
through 145. In order for this to happen however, the 
140 through 145 instructions must use the Second Vector 
Logical functional unit and not the Full Vector Logical 
unit. 

The Full Vector Logical functional unit time is 2 CPs. 

Second Vector Logical functional unitt 

The Second Vector Logical functional unit performs a bit-by-bit 
manipulation of the 64 bit quantities for instructions 140 through 145. 
At the time of CIP for a 140 through 145 instruction, a selection is made 
as to which of the two vector logical functional units to use: the Full 
Vector Logical functional unit or the Second Vector Logical functional 
unit. If the Second Vector Logical unit is enabled (through the Exchange 
Package), instructions 140 through 145 attempt to issue there first. If 
the unit is busy, issue is attempted to the Full Vector Logical unit. 
When both units are busy, the first unit to clear is selected for issue. 
Instructions will issue to the Full Vector Logical unit first, even 
though the Second Vector Logical unit is not busy, if another conflict is 
present for the Second Vector Logical unit (for example, a register 
reservation). 

t Not available on all dual-processor systems 

HR-0032 4-18 A 



NOTE 
~ 

Since the Second Vector Logical functional unit and the 
Floating-point Multiply functional units share input and 
output data paths, they cannot be used simultaneously. 
When the Second Vector Logical unit is enabled, the two 
units share the same functional unit Busy signal. Also, 
because using the Second Vector Logical functional unit 
also ties up the Floating-point Multiply functional unit, 
some codes that rely on floating-point products may run 
slower if the Second Vector Logical functional unit is 
enabled. 

The Second Vector Logical functional unit can be disabled through 
software by clearing bit 0 of word 3 in the Exchange Package of a user 
program. When the Second Vector Logical unit is disabled (by clearing 
the Enable Second Vector Logical bit in the Exchange Package), the 
functional unit Busy signal for the the unit always appears to be set and 
causes all 140 through 145 instructions to use the Full Vector Logical 
unit. 

The Second Vector Logical functional unit time is 4 CPs. 

Vector Population/Parity functional unit 

The Vector Population/Parity functional unit counts the 1 bits in each 
element of the source V register. The total number of 1 bits is the 
population count. This population count can be an odd or an even number, 
as shown by its low-order bit. 

Instructions l74ijl (vector population count) and l74ij2 (vector 
population count parity) use the same operation code as the vector 
reciprocal approximation instruction. Some restrictions for the 
Reciprocal Approximation functional unit also apply for vector population 
instructions (see subsection on Reciprocal Approximation). The vector 
population count instruction delivers the total population count to 
elements of the destination V register. 

The vector population count parity instruction delivers the low-order bit 
of the count to the destination V register. The Vector Population/Parity 

I functional unit time is 5 CPs. 

HR-0032 4-19 A 



FLOATING-POINT FUNCTIONAL UNITS 

Three floating-point functional units perform floating-point arithmetic 
for scalar and vector operations. When executing a scalar instruction, 
operands are obtained from S registers and results are delivered to an S 
register. When executing most vector instructions, operands are obtained 
from pairs of V registers or from an S register and a V register. 
Results are delivered to a V register. An exception is the Reciprocal 
Approximation unit requiring only one input operand. 

Information on floating-point out-of-range conditions is contained in the 
subsection on Floating-point Arithmetic. 

Floating-point Add functional unit 

'The Floating-point Add functional unit performs addition or subtraction 
of 64-bit operands in floating-point format and executes instructions 
062, 063, and 170 through 173. A result is normalized even when operands 
are unnormalized. (Normalized floating-point numbers are described in 
the sUbsection on Floating-point Arithmetic.) Out-of-range exponents are 
detected as described in the subsection on Floating-point Arithmetic. 

Floating-point Add functional unit time is 6 CPs. 

Floating-point Multiply functional unit 

The Floating-point Multiply functional unit executes instructions 064 
through 067 and 160 through 167. These instructions provide for full
and half-precision multiplication of 64-bit operands in floating-point 
format and for computing two minus a floating-point product for 
reciprocal iterations. 

The half-precision product is rounded; the full-precision product can be 
rounded or not rounded. 

Input operands are assumed to be normalized. The Floating-point Multiply 
functional unit delivers a normalized result only if both input operands 
are normalized. 

HR-0032 

NOTE 

On systems equipped with the Second Vector Logical 
functional unit, the Floating-point Multiply and Second 
Vector Logical functional units cannot be used 
simultaneously since they share input and output data 
paths. A reservation on one is a reservation on the 
other. 

4-20 A 



Out-of-range exponents are detected as described in the subsection on 
floating-point arithmetic. However, if both operands have zero 
exponents, the result is considered as an integer product, is not 
normalized, and is not considered out-of-range. This case provides a 
fast method of computing a 48-bit integer product, although the operands 
in this case must be shifted before the multiply operation. 

The Floating-point Multiply functional unit time is 7 CPs. 

Reciprocal Approximation functional unit 

The Reciprocal Approximation functional unit finds the approximate 
reciprocal of a 64-bit operand in floating-point format. The unit 
executes instructions 070 and l74ijO. Since the Vector Population/Parity 
functional unit shares some logic with this unit, the k designator must 
be 0 for the reciprocal approximation instruction to be recognized. 

The input operand is assumed to be normalized and if so the result is 
correct. The high-order bit of the coefficient is not tested but is 
assumed to be a 1. Out-of-range exponents are detected as described 
under Floating-point Arithmetic. 

The Reciprocal Approximation functional unit time is 14 CPs. 

ARITHMETIC OPERATIONS 

Functional units in a CPU perform either twos complement integer 
arithmetic or floating-point arithmetic. 

INTEGER ARITHMETIC 

All integer arithmetic, whether 24 bits or 64 bits, is twos complement 
and is represented in the registers as illustrated in figure 4-4. The 
Address Add and Address Multiply functional units perform 24-bit 
arithmetic. The Scalar Add and the Vector Add functional units perform 
64-bit arithmetic. 

Multiplication of two scalar (64-bit) integer operands is accomplished by 
using the floating-point multiply instruction and one of the two methods 
that follows. The method used depends on the magnitude of the operands 
and the number of bits to contain the product. 

HR-0032 4-21 A 



Twos complement integer (24 bits) 

[I 
Sign 

Twos complement integer (64 bits) 

I I 
Sign 

Figure 4-4. Integer data formats 

If the operands are nonzero only in the 24 least significant bits, the 
two integer operands can be multiplied by shifting them each left 24 bits 
before the multiply operation. (The Floating-point Multiply functional 
unit recognizes the conditions where both operands have zero exponents as 
a special case.) The Floating-point Multiply functional unit returns the 
high-order 48 bits of the product of the coefficients as the coefficient 
of the result and leaves the exponent field zero. See figure 4-~. If 
the operand coefficients are generated by other than shifting so the 
low-order 24 bits would be nonzero, the low-order 48 bits of the product 
could have been.nonzero, and the high-order 48 bits (the return part) 
could be one larger than expected as a truncation compensation constant 
is always added during a multiply. 

If the operands are greater than 24 bits, multiplication is done by 
forming multiple partial products and then shifting and adding the 
partial products. 

Division is done by algorithm; the particular algorithm used depends on 
the number of bits in the quotient. The quickest and most frequently 
used method is to convert the numbers to floating-point format and then 
use the floating-point functional units. 

FLOATING-POINT ARITHMETIC 

Floating-point numbers are represented in a standard format throughout 
the cpu. This format is a packed representation of a binary coefficient 
and an exponent (power of two). The coefficient is a 48-bit signed 

HR-0032 4-22 A 



fraction. The sign of the coefficient is separated from the rest of the 
coefficient as shown in figure 4-5. Since the coefficient is signed 
magnitude, it is not complemented for negative values. 

I I 
Coeff. 
sign 

Exponent Coefficient 

Figure 4-5. Floating-point data format 

The exponent portion of the floating-~int format is represented as a 
biased integer in bits 262 through 24. The bias that is added to 
the exponents is 400008• The positive range of exponents is 400008 
through 577778. The negative range of exponents is 377778 through 
200008• Thus, the unbiased range of exponents is the following (note 
the negative range is one larger): 

2-200008 through 2+177778 

In terms of decimal values, the floating-point format of the system 
allows the accurate expression of numbers to about 15 decimal digits in 
the approximate decimal range of 10-2466 through 10+2466• 

A zero value or an underflow result is not biased and is represented as a 
word of all zeros. 

A negative zero is not generated by any floating-point functional unit, 
except in the case where a negative zero is one operand going into the 
Floating-point Multiply functional unit. 

Normalized floating-point numbers, floating-point range errors, 
double-precision numbers, and the addition, multiplication, and division 
algorithms are described in the remainder of this subsection. 

Normalized floating-point numbers 

A nonzero floating-point number is normalized if the most significant bit 
of the coefficient is nonzero. This condition implies the coefficient 
has been shifted as far left as possible and the exponent adjusted 
accordingly. Therefore, the floating-point number has no leading zeros 
in the coefficient. The exception is that a normalized floating-point 
zero is all zeros. 

HR-0032 4-23 A 



When a floating-point number is created by inserting an exponent of 
40060S into a 4S-bit integer word, the result should be normalized 
before being used in a floating-point operation. Normalization is 
accomplished by adding the unnormalized floating-point operand to o. 
Since SO provides a 64-bit zero when used in the Sj field of an 
instruction, an operand in sk is normalized using the 062iok 
instruction. si, which can be sk, contains the normalized result. 

The l70iok instruction normalizes vk into vi. 

Floating-point range errors 

Overflow of the floating-point range is indicated by an exponent value of 
600008 or greater in packed format. Detection of the overflow 
condition initiates an interrupt if the Floating-point Mode flag is set 
in the Mode register and monitor mode is not in effect. The 
Floating-point Mode flag can be set or cleared by a user mode program. 

The Cray Operating System (OOS) keeps a bit in a table to indicate the 
condition of the mode bit. System software manipulates the mode bit and 
uses the table bit to indicate how the mode should be left for the user. 
Therefore, the user usually needs to put the appropriate bit in the table 
if the user changes the mode. 

Floating-point range error conditions are detected by the floating-point 
functional units as described in the following paragraphs. 

Floating-point Add functional unit - A floating-point add range error 
condition is generated for scalar operands when the larger incoming 
exponent is greater than or equal to 600008. This condition sets the 
Floating-point Error flag with an exponent of 600008 being sent to the 
result register along with the computed coefficient, as in the following 
example: 

HR-0032 

60000.4xxxxxxxxxxxxxxx 
+57777.4xxxxxxxxxxxxxxx 

60000.6xxxxxxxxxxxxxxx 

Range error 

Result register 

NOTE 

If the result of an add or subtract operation is less 
than the machine minimum, the error is suppressed (even 
though both operands have exponents greater than or 
equal to 600008) because the machine minimum takes 
precedence in error detection. 

4-24 A 



N 

rc 
r:: 
cu .... 
CD 

Floating-point Multiply functional unit - Whether or not 
out-of-range conditions occur, and how they are handled, can be 
determined using the exponent matrix shown in figure 4-6. The 
exponent of the result, for any set of exponents, falls into one 
of seven unique zones. Each zone is described below. 

00001 

17177 
20000 
20001 

NOTE 

If either operand is less than the machine minimum, the 
error is suppressed (even though the other operand can 
be out of range) because the operand that is less than 
the machine minimum takes precedence in error detection. 

..-t 
o 
0- •••••••••••• 
o 
o 

Exponent of Operand 1 

0 ..... 
00 o 0 ••••••••••••• 
00 
NN 

® 

o..-t 
00 o 0 ••••••••••••• 
00 ..,.., 

@ 

o r--
o r-
o· •••••••••••• • _I" 
o r--
IJ;) I' 

Sl. 
0 
'W 
0 
.IJ @ r:: 40000 CD r:: 40001 
0 · 
i · 

0 

· 77777~~ ____________________________________________________ --J 

Figure 4-6. Exponent matrix for Floating-point Multiply unit 

HR-0032 4-25 A 



I 

Zone Description 

1 Indicates a simple integer multiply; no fault is possible. 

2 These exponents would result in an underflow condition. It is 
flagged as such, and the result is set to +0. (Multiply by 0 is 
in this group.) 

3 Underflow may occur on this boundary. The final exponent can be 
l7777S or 20000S depending on whether a normalized shift is 
required. If the exponent is l7777S and no normalized shift 
is required, the underflow will not be detected, and the 
coefficient and exponent will not be zeroed out. Underflow 
detection is done on the exponent used for an unshifted product 
coefficient. 

4 The use of an underflow exponent is allowed if the final result 
is within the range 20000S to 57777S. 

5 This is the normal operand range and normal results are produced. 

6 Overflow is flagged on this boundary. If a normalized shift is 
required, the value should be within bounds with a 57777S 
exponent. However, since overflow is detected using the 
exponent for the unnormalized shift condition (which is 
60000 S)' a 60000 S is inserted in the product as the final 
exponent. 

7 Within this zone, an overflow fault is flagged and the product 
exponent is set to 60000 S• 

Out-of-range conditions are tested before normalizing in the 
Floating-point Multiply functional unit. 

As shown above, if both incoming exponents are equal to 0, the operation 
is treated as an integer multiply. The result is treated normally with 
no normalization shift of the result allowed. The result is a 4S-bit 
quantity starting with bit 247. When using this feature, the operands 
should be considered as 24-bit integers in bits 247 through 224. In 
figure 4-7, if operand 1 is 4 and operand 2 is 6, a 4S-bit result of 
30S is produced. Bit 263 obeys the usual rules for multiplying signs 
and the result is a sign and magnitude integer. Note the form of 
integers (see figure 4-4) accepted by the integer add and subtract and 
expected by the software is twos complement not sign and magnitude. 
Therefore, negative products must be converted. 

If bits 20 through 223 in operands 1 and 2 of figure 4-7 have any 1 
bits, the product might be one (20) too large because a truncation 
compensation constant is added during the multiply process. (The 
following paragraphs discuss the truncation constant and its use.) The 
size of the shaded area in operands 1 and 2 (figure 4-7) does not need to 

HR-0032 4-26 A 



be the same for both operands. TO get a correct product, the only 
requirement is that the sum of the number of bits in the shaded area is 
48 bits or more. If the sum is more than 48 bits, the binary point in 
the product is the number of places to the left that the sum is in excess 
of 48 (that is, assuming the operand binary points are at the left 
boundary of the shaded areas). 

Operand 1 

Operand 2 

Result 

247 223 
0------------04 

sign 

0------------06 

sign 

0-----------------------------------030 

sign 

Figure 4-7. Integer multiply in Floating-point 
Multiply functional unit 

Floating-point Reciprocal Approximation functional unit - For the 
Floating-point Reciprocal Approximation functional unit, an incoming 
operand with an exponent less than or equal to 200018 or greater than 
or equal to 600008 causes a floating-point range error. The error flag 
is set and an exponent of 600008 and the computed coefficient are sent 
to the result register. 

Double-precision numbers 

The CPU does not provide special hardware for performing double- or 
multiple-precision operations. Double-precision computations with 95-bit 
accuracy are available through software routines provided by Cray 
Research, Inc. 

Addition algorithm 

Floating-point addition or subtraction is performed in a 49-bit register 
(figure 4-8). Trial subtraction of the exponents selects the operand to 
be shifted down for aligning the operands. The larger exponent operand 
carries the sign. The coefficient of the number with the smaller 
exponent is shifted right to align with the coefficient of the number 
with the larger exponent. Bits shifted out of the register are lost; no 

HR-0032 4-27 A 



roundup takes place. If the sum carries into the high-order bit, the 
low-order bit is discarded and an appropriate exponent adjustment is 
made. All results are normalized and if the result is less than the 
machine minimum, the error is suppressed. 

~.I~ ________ 48 __________ ~ 
discarded 

• 
Figure 4-8. 49-bit floating-point addition 

The Floating-point Add functional unit normalizes any floating-point 
number within the format of the mainframe's floating-point number 
system. The functional unit right shifts 1 or left shifts up to 48 per 
result to normalize the result. 

One zero operand and one valid operand can be sent to the Floating-point 
Add functional unit, and the valid operand is sent through the unit 
normalized. Concurrently, the functional unit checks for overflow and/or 
underflow; underflow results are not flagged as errors. 

Multiplication algorithm 

The Floating-point Multiply functional unit has the two 48-bit 
coefficients as input into a multiply pyramid (see figure 4-9). If the 
coefficients are both normalized, then a full product is either 95 bits 
or 96 bits, depending on the value of the coefficients. A 96-bit product 
is normalized as generated. A 95-bit product requires a left shift of 
one to generate the final coefficient. If the shift is done, the final 
exponent is reduced by one to reflect the shift. 

The following discussion and the power of two designators used assumes 
that the product generated is in its final form; that is, no shift was 
required. 

On the system, the pyramid truncates part of the low-order bits of the 
96-bit product. To adjust for this truncation, a constant is 
unconditionally added above the truncation. The average value of this 
truncation is 9.25 x 2-56 , which was determined by adding all carries 
produced by all possible combinations that could be truncated and 
dividing the sum by the number of possible combinations. Nine carries 
are injected at the 2-56 position to compensate for the truncated bits. 

HR-0032 4-28 A 



k 

MULTI PLI ER / 
MUL TI PLI CAND 

G)hh = 

0ff= 

t 
i 

PRODUCT 

112 for half-precision round, 002 for 
full-precision rounded or full-precision unrounded 
multiply 

112 for full-precision round, 002 for 
half-precision rounded or full-precision un rounded 
multiply 

Truncation compensation constant, 10012 used for all 
multiplies 

Figure 4-9. Floating-point multiply partial-product sums pyramid 

t Bit designations are used in the explanation of the Floating-point 
Multiply functional unit operation. 

HR-0032 4-29 A 



The effect of the truncation without compensation is at most a result 
coefficient one smaller than expected. with compensation, the results 
range from one too large to one too small in the 2-48 bit position with 
approximately 99 percent of the values having zero deviation from what 
would have been generated had a full 96-bit pyramid been present. The 
multiplication is commutative; that is, A times B equals B times A. 

Rounding is optional where truncation compensation is not. The rounding 
method used adds a constant so that it is 50 percent high (.25 x 2-48 ; 
high) 38 percent of the time and 25 percent low (.125 x 2-48 ; low) 62 
percent of the time resulting in near zero average rounding error. In a 
full-precision rounded multiply, 2 round bits are entered into the 
pyramid at bit position 2-50 and 2-51 and allowed to propagate up the 
pyramid. 

For a half-precision multiply, round bits are entered into the pyramid at 
bit positions 2-32 and 2-31 • A carry resulting from this entry is 
allowed to propagate up and the 29 most significant bits of the 
normalized result are transmitted back. 

The variation due to this truncation and rounding are in the range: 

-0.23 x 2-48 to +0.57 x 2-48 

or -8.17 x 10-16 to +20.25 x 10-16• 

With a full 96-bit pyramid and rounding equal to one-half the least 
significant bit, the variation would be expected to be: 

-0.5 x 2-48 to +0.5 x 2-48 

Division algorithm 

The sytem performs floating-point division through reciprocal 
approximation, facilitating hardware implementation of a fully segmented 
functional unit. Because of this segmentation, operands enter the 
reciprocal unit during each CP. In vector mode, results are produced at 
a l-CP rate and are used in other vector operations during chaining 
because all functional units in the system have the same result rate. 
The reciprocal approximation is based on Newton's method. 

Newton's method - The division algorithm is an application of Newton's 
method for approximating the real roots of an arbitrary equation 
F(x) = 0, for which F(x) must be twice differentiable with a continuous 
second derivative. The method requires making an initial approximation 
(guess), xo' sufficiently close to the true root, Xt' being sought 
(see figure 4-10). For a better approximation, a tangent line is drawn 
to the graph of y = F(x) at the point (xO' F(XO». The X intercept 
of this tangent line is the better approximation Xl. This can be 
repeated using Xl to find x2' etc. 

HR-0032 4-30 A 



y= F(x) 

y 

x 

Figure 4-10. Newton's method 

Derivation of the division algorithm 

A definition for the derivative F'(x) of a function F(x) at point Xt is 

F'(Xt) = limit F(x) - F(xt) 

x.Xt x - xt 
if this limit exists. If the limit does not exist, F(x) is not 
differentiable at the point t. 

For any point xi near to Xt' 

F' (xt) z F (x i) - F (xt ) where ~ means n approximately equal ton. 
xi - xt 

This approximation improves as xi approaches Xt. Let xi stand for 
an approximate solution and let Xt stand for the true answer being 
sought. The exact answer is then the value of x that makes F(x) equal 
O. This is the case when x=Xt' therefore F(Xt) in the equation above 
can be replaced by 0, giving the following approximation: 

F' (Xt) z F(xi) 
xi- x t 

HR-0032 4-31 

Approximation (1) 

A 



Notice that Xt - xi is the correction applied to an approximate answer, 
xi' to give the right answer since xi + (Xt - xi) equals Xt. 
Solving approximation (1) for (Xt - xi) gives: 

Xt - xi = correction z - F(xi) , 
F' (Xt) 

that is, - F(xi) is the approximate correction. 
F' (Xt) 

If this quantity is substituted into the approximation, then: 

Xt z (xi + approximate correction) = xi+l· 

This gives, the following equation: 

x x - F(xi) , 
i+l = i Equation (1) 

F' (xi) 

where xi+l is a better approximation than xi to the true value, Xt' 
being sought. The exact answer is generally not obtained at once because 
the correction term is not generally exact. However, the operation is 
repeated until the answer becomes sufficiently close for practical use. 

To make use of Newton's method to find the reciprocal of a number B, 
simply use F(x) = (l/x - B). 

First calculating F'(x): 

where I 
F'(x) = (--B)' x 

-1 • thus for any point xl ~ 0, = ( x 2) 

F' (xl) 

and applying equation (1), 

I =- -- 1 
Choosing for x, a value near -a-

1 - B 
X = x _ xl , 

2 I -------

x 2 = 

x 2 = 

x 2 = 

xl 

-..L 

2 
+ xl 

2 
xl 

1 (_ - B), 
xl 

xl + xl -
2 

XIB, 

2Xl 
2 = xl (2-X

l
B). - x B 

1 

On the system, xl times the quantity in parentheses is performed by a 
floating-point multiply. 2-x1B is performed by the reciprocal 

HR-0032 4-32 A 



approximation instruction. xl is the x near liB and is formed by the 
half-precision reciprocal approximation instruction. 

This approximation technique using Newton's method is implemented in the 
system. A hardware table look up provides an initial guess, xo' to 
start the process. 

xO(2 - XOB) 1st approximation, II 

I Done 
xl(2 - xlB) 2nd approximation, 12 in reciprocal 

unit 
x2(2 - x2B) 3rd approximation, 13 

x3(2 - x3B) 4th approximation Done with software 

The system's Reciprocal Approximation functional unit performs three 
iterations: II, 12 and 13. II is accurate to 8 bits and is found after 
a table look-up to choose the initial guess, xO. 12 is the second 
iteration and is accurate to 16 bits. 13 is the final (third) iteration 
answer of the Reciprocal Approximation functional unit, and its result is 
accurate to 30 bits. 

A fourth iteration uses a special instruction within the Floating-point 
Multiply functional unit to calculate the correction term. This 
iteration is used to increase accuracy of the reciprocal unit's answer to 
full precision. A fifth iteration should not be done. 

The division algorithm that computes 51/52 to full-precision requires the 
following operations: 

53 = 1/52 Performed by the Reciprocal Approximation 
functional unit 

54 = (2 - (53 * 52» Performed by the Floating-point Multiply 
functional unit in iteration mode 

55 = 54 * 53 Performed by the Floating-point Multiply 
functional unit using full-precision. 55 now 
equals 1/52 to 48-bit accuracy. 

56 = 55 * 51 Performed by the Floating-point Multiply 
functional unit using full-precision rounded 

The reciprocal approximation at step 1 is correct to 30 bits. An 
additional Newton iteration (fourth iteration) at operations 2 and 3 
increases this accuracy to 48 bits. This iteration answer is applied as 
an operand in a full-precision rounded multiply operation to obtain the 
quotient accurate to 48 bits. Additional iterations should not be 
attempted since erroneous results are possible. 

HR-0032 4-33 A 



******************************************************* 

CAUTION 

The reciprocal iteration is designed for use once with 
each half-precision reciprocal generated. If the 
fourth iteration (the programmed iteration) results in 
an exact reciprocal or if an exact reciprocal is 
generated by some other method, performing another 
iteration results in an incorrect final reciprocal. 

******************************************************* 

Where 29 bits of accuracy are sufficient, the reciprocal approximation 
instruction is used with the half-precision multiply to produce a 
half-precision quotient in only two operations. 

53 = 1/52 

56 = 51 * 53 

Performed by the Reciprocal Approximation 
functional unit 

Performed by the Floating-point Multiply 
functional unit in half-precision 

The 19 low-order bits of the half-precision results are returned as zeros 
with a rounding applied to the low-order bit of the 29-bit result. 

Another method of computing divisions is as follows: 

53 = 1/52 Performed by the Reciprocal Approximation 
functional unit 

55 = 51 * 53 Performed by the Floating-point Multiply 
functional unit 

54 = (2 - (53 * 52» Performed by the Floating-point Multiply 
functional unit 

56 = 54 * 55 Performed by the Floating-point Multiply 
functional unit 

A scalar quotient is computed in 29 CPs since operations 2 and 3 issue in 
successive CPs. With this method the correction to reach a 
full-precision reciprocal is applied after the numerator is multiplied 
times the half-precision reciprocal rather than before. 

A vector quotient using this procedure requires less than four vector 
times since operations 1 and 2 are chained together. This overlaps one 
of the multiply operations. (A vector time is I CP for each element in 
the vector.) 

HR-0032 4-34 A 



******************************************************* 

CAUTION 

The coefficient of the reciprocal produced by the 
alternate method can be as much as 2 x 2-48 different 
from the first method described for generating 
full-precision reciprocals. This difference can occur 
because one method can round up as much as twice while 
the other method may not round at all. One round can 
occur while the correction is generated and the second 
round can occur when producing the final quotient. 

Therefore, if the reciprocals are to be compared, the 
same method should be used each time the reciprocals 
are generated. Cray FORTRAN (CFT) uses a consistent 
method and ensures the reciprocals of numbers are 
always the same. 

******************************************************* 

For example, two 64-element vectors are divided in 3 * 64 CPs plus 
overhead. (The overhead associated with the functional units for this 
case is 38 CPs). 

LOGICAL OPERATIONS 

Scalar and vector logical units perform bit-by-bit manipulation of 64-bit 
quantities. Operations provide for forming logical products, 
differences, sums, and merges. 

A logical product is the AND function: 

Operand I 
Operand 2 
Result 

I 0 I 0 
I I 0 0 
I 000 

An operation similar to the AND function produces the following results: 

Operand I 
Operand 2 
Result 

I 0 I 0 
I I 0 0 
o I 0 0 

The logical product (AND) operation is used for masking operations where 
the ones specify the bits to be saved. In this variant of the AND 
function, the zeros specify the bits to be saved (Operand I is the mask). 

HR-0032 4-35 A 



A logical sum is the inclusive OR function: 

Operand 1 
Operand 2 
Result 

1 0 1 0 
1 1 0 0 
1 1 1 0 

A logical difference is the exclusive OR function: 

Operand 1 
Operand 2 
Result 

1 0 1 0 
1 1 0 0 
o 1 1 0 

A logical equivalence is the exclusive NOR function: 

Operand 1 
Operand 2 
Result 

1 0 1 0 
1 1 0 0 
1 0 0 1 

The merge uses two operands and a mask to produce results as follows: 

Operand 1 
Operand 2 
Mask 
Result 

1 0 1 0 1 0 1 0 
1 1 0 011 0 0 
1 1 1 1 0 0 0 0 
1 0 1 011 0 0 

The bits of operand 1 pass where the mask bit is 1. The bits of operand 
2 pass where the mask bit is o. 

HR-0032 4-36 A 



CPU INSTRUCTIONS 

INSTRUCTION FORMAT 

Each instruction used in the computer is either a I-parcel (16-bit) 
instruction or a 2-parcel (32-bit) instruction. Instructions are packed 
four parcels per word. Parcels in a word are numbered 0 through 3 from 
left to right and any parcel position can be addressed in branch 
instructions. A 2-parcel instruction begins in any parcel of a word and 
can span a word boundary. For example, a 2-parcel instruction beginning 
in the fourth parcel of a word ends in the first parcel of the next 
word. No padding to word boundaries is required. Figure 5-1 illustrates 
the general form of instructions. 

First parcel Second parcel 

g h i j k m 

4 3 3 3 3 16 Bits 

Figure 5-1. General form for instructions 

Four variations of this general format use the fields differentlYI two 
forms are I-parcel formats and two are 2-parcel formats. The formats of 
these four variations are described belpw. 

I-PARCEL INSTRUCTION FORMAT WITH DISCRETE j AND k FIELDS 

The most common of the I-parcel instruction formats uses the i, j, 
and k fields as individual designators for operand and result registers 
(see figure 5-2). The g and h fields define the operation code. The 
i field designates a result register and the j and k fields designate 
operand registers. Some instructions ignore one or more of the i, j, 
and k fields. The following types of instructions use this format. 

• Arithmetic 
• Logical 
• Double shift 
• Floating-point constant 

HR-0032 5-1 A 

5 



g h 

Operation 
code 

i k 

Register 
designators 

Figure 5-2. I-parcel instruction format 
with discrete j and k fields 

I-PARCEL INSTRUCTION FORMAT WITH COMBINED j AND k FIELDS 

Some I-parcel instructions use the j and k fields as a combined 6-bit 
field (see figure 5-3). The g and h fields contain the operation 
code, and the i field is generally a destination register identifier. 
The combined j and k fields generally contain a constant or a B or T 
register designator. The branch instruction 005 and the following types 
of instructions use the I-parcel instruction format with combined j and 
k fields. 

• Constant 
• Band T register block memory transfer 
• Band T register data transfer 
• Single shift 
• Mask 

g h i jk 

4 3 3 6 Bits 

Operation 
code i f 

Result Constant or 
register register 

designator 

Figure 5-3. I-parcel instruction format 
with combined j and k fields 

2-PARCEL INSTRUCTION FORMAT WITH COMBINED j, k, AND m FIELDS 

The instruction type for a 22-bit immediate constant uses the combined 
j, k, and m fields to hold the constant. The 7-bit gh field 
contains an operation code, and the 3-bit i field designates a result 
register. The instruction type using this format transfers the 22-bit 
jkm constant to an A or S register. 

HR-0032 5-2 A 



The instruction type used for scalar memory transfers also requires a 
22-bit JKm field for an address displacement. This instruction type 
uses the 4-bit g field for an operation code, the 3-bit h field to 
designate an address index register, and the 3-bit i field to designate 
a source or result register. (See subsection on Special Register Values.) 

Figure 5-4 shows the two general applications for the 2-parcel instruction 
format ~ith combined j, k, and m fields. 

First parcel 

g h i j 

4 3 3 

+ Operation Result 
code register 

First parcel 

g h i j 

4 3 3 • Operation 
code 1 1 

k 

Second parcel 

m 

22 

Constant 

Second parcel 

k m 

22 

Address or 
displacement 

Address 
register 
used as 
index 

Source or 
result register 

Bits 

Bits 

Figure 5-4. 2-parcel instruction format 
with combined j, k, and m fields 

2-PARCEL INSTRUCTION FORMAT WITH COMBINED i, j, k, AND m FIELDS 

The 2-parcel instruction type for a branch (figure 5-5) uses the combined 
i, j, k, and m fields to contain the 24-bit address that allows 
branching to an instruction parcel. A 7-bit operation code (gh) is 
followed by an ijkm field. The high-order bit of the i field is 
clear. 

The 2 parcel instruction type for a 24-bit immediate constant (figure 
5-6) uses the combined i, j, k, and m fields to hold the constant. 
This instruction type uses the 4-bit g field for an operation code 
and the 3-bit h field to designate the result address register. 
The high-order bit of the i field is set. 

HR-0032 5-3 A 



I 

First parcel Second parcel 

g h i j k m 

! 4 3 101 22 12 I Bits 
~~~~~~-----------~--~;========~+~ + Operation 1 Address Parcel 

code Clear select
bit

Figure 5-5. 2-parcel instruction format for a branch
with combined i, j, k, and m fields

First parcel

g h i

4 3 III

• Operation
code

Result
Register

j

Second parcel

k m

24

Constant

Figure 5-6. 2-parcel instruction format for
a 24-bit immediate constant with
combined i, j, k, and m fields

SPECIAL REGISTER VALUES

Bits

If the SO and AO registers are referenced in the j or k fields of an
instruction, the contents of the respective register are not used;
instead, a special operand is generated. The special value is available
regardless of existing AO or SO reservations (and in this case are not
checked). This use does not alter the actual value of the SO or AO
register. If SO or AO is used in the i field as the operand, the
actual value of the register is provided. The table below shows the
special register values.

HR-0032 5-4 A

Field Operand value

Ah, h=0 0

Ai, i=o (AO)

Aj, j=O 0

Ak, k=o 1

si, i=o (SO)

sj, j=O 0

sk, k=O 263

INSTRUCTION ISSUE

Instructions are read one parcel at a time from the instruction buffers
and delivered to the Next Instruction Parcel (NIP) register. The
instruction is then passed to the Current Instruction Parcel (CIP)
register when the previous instruction issues. An instruction in the CIP
register issues when conditions in the functional unit and registers are
such that functions required for execution can be performed without
conflicting with a previously issued instruction. Instruction parcels
can issue out of the CIP register at a maximum rate of one per clock
period.

Execution times (the time from issue to delivery of data to the
destination operating registers) are fixed for instructions 000 through
077, except those that reference memory (instructions 000, 004, branch
instructions 005 through 017, and block transfer instructions 034 through
037). Scalar memory instructions 100 through 137 complete in variable
lengths of time. Vector operation instructions 140 through 177 complete
in a fixed time if the instructions are not chained to memory fetches.

Execution times can be affected by instruction 0034jk, which tests and
sets the semaphore designated by jk. If the semaphore is set,
instruction issue is held until the other CPU clears that semaphore. If
the semaphore is clear, the instruction issues and sets the semaphore.
If all CPUs in a cluster are holding issue on a test and set, a flag is
set in the Exchange Package (if not in monitor mode) and an exchange
occurs. If an interrupt occurs while a test and set instruction is
holding in the CIP register; a flag is set "in the Exchange Package, CIP
and NIP registers clear, and an exchange occurs with the P register
pointing to the test and set instruction.

HR-0032 5-5 A

Entry to the NIP register is blocked for the second parcel of a 2-parcel
instruction, leaving NIP blanked. Instead, the parcel is delivered to
the Lower Instruction Parcel (LIP) register. The zeros in NIP (the
pseudo second parcel) are transferred to CIP and issued as a do-nothing
instruction.

When special register values (AO or SO) are selected by an instruction
for Ah, Aj, Ak, Sj, or Sk, the normal "hold issue until operand
ready· conditions do not apply. These values are always immediately
available.

INSTRUCTION DESCRIPTIONS

This section contains detailed information about individual instructions
or groups of related instructions. Each instruction begins with boxed
information consisting of the Cray Assembly Language (CAL) syntax format,
a brief description of each instruction, and the octal code sequence
defined by the gh fields. The appearance of an m in a format
designates an instruction consisting of two parcels.

Following the boxed information is a more detailed description of the
instruction or instructions, in9luding a list of hold issue conditions,
execution time, and special cases. Hold issue conditions refer to those
condi tions delaying issue of an ins,truction until conditions are met.

Instruction issue time assumes that if an instruction issues at clock
period n (CP n), the next instruction issues at CP n + issue timet
if its own issue conditions have been met.

The following special characters can appear in the operand field description
of symbolic machine instructions and are used by the assembler in
determining the operation to be performed.

+ Arithmetic sum of adjoining registers
Arithmetic difference of adjoining registers

* Arithmetic product of adjoining registers
/ Division or reciprocal
i Use ones complement
> Shift value or form mask from left to right
< Shift value or form mask from right to left
& Logical product of adjoining registers
! Logical sum of adjoining registers
\ Logical difference of adjoining registers

t Previous instruction issued

HR-0032 5-6 A

In some instructions, register designators are prefixed by the following
letters, which have special meaning to the assembler.

HR-0032

F Floating-point operation
H Half-precision operation
R Rounded operation
I Reciprocal iteration
P Population count
Q Population count parity
Z Leading zero count

5-7 A

INSTRUCTION 000

CAL Syntax Description Octal Code

ERR Error exit 000000

Instruction 000 is treated as an error condition and an exchange sequence
occurs. Content of the instruction buffers is voided by the exchange
sequence. Instruction 000 halts execution of an incorrectly coded
program branching into an unused area of memory (if memory was
backgrounded with zeros) or into a data area (if the data is positive
integers, right-justified ASCII, or floating-point zero). If monitor
mode is not in effect, the Error Exit flag in the F register is set. All
instructions issued before this instruction are run to completion. When
results of previously issued instructions arrive at the operating
registers, an exchange occurs to the Exchange Package designated by
contents of the XA register. The program address stored during the
exchange on the terminating exchange sequence is the contents of the P
register advanced by one count (that is, the address of the instruction
following the error exit instruction).

HOLD ISSUE CONDITIONS: Any A, S, or V register reserved

EXECUTION TLME: Instruction issue, 40 CPs; this time includes an
exchange sequence (24 CPs) and a fetch operation
(16 CPs).

SPECIAL CASES: None

HR-0032 5-8 A

I

INSTRUCTIONS 0010 - 0013

CAL Syntax Description Octal Code

CA,Aj Ak Set the Current Address (CA) register for the OOlOjk
channel indicated by (Aj) to (Ak) and activate
the channel.

CL,Aj Ak Set the Limit Address (CL) register for the OOllJK
channel indicated by (Aj) to (Ak).

CI,Aj Clear the interrupt flag and error flag for 0012jO
the channel indicated by (Aj); clear device
master-clear (output channel).

MC,Aj Clear the interrupt flag and error flag for 0012jl
the channel indicated by (Aj); set device
master-clear (output channel); clear device
ready-held (input channel).

XA Aj Enter the XA register with (Aj). 0013jO

Instructions 0010 through 0013 are privileged to monitor mode and provide
operations useful to the operating system. Functions are selected
through the i designator. Instructions are treated as pass
instructions if the monitor mode bit is not set.

When the i designator is 0, 1, or 2, the instruction controls operation
of the I/O channels. Each channel has two registers directing the
channel activity. The CA register for a channel contains the address of
the current channel word. The CL register specifies the limit address.
In programming the channel, the CL register is initialized first and then
CA sets, activating the channel. As transfer continues, CA is
incremented toward CL. When (CA) is equal to (CL), transfer is complete
for words at initial (CA) through (CL)-l. When the j designator is 0
or when the 4 low-order bits of Aj are less than 78' the functions
are executed as pass instructions. Valid channel numbers are 7-178 •
When the k designator is 0, CA or CL is set to 1.

When the i designator is 3, the instruction transmits bits 211
through 24 of (Aj) to the XA register. When the j designator is 0,
the XA register is cleared.

Instruction 0012jO is used to clear the device Master Clear. For
instruction 0012, if the k designator is 1 for an output channel, the
master clear is set; if the k designator is 1 for an input channel, the
ready flag is cleared.

HR-0032 5-9 A

INSTRUCTIONS 0010 - 0013 (continued)

HOLD ISSUE CONDITIONS: For instructions 0010 and 0011, Ai or Ak
reserved (except AO)

EXECUTION TIME:

SPECIAL CASES:

HR-0032

For instructions 0012 or 0013, Aj reserved
(except AO)

Instruction issue, 1 CP

If the program is not in monitor mode, the
instruction becomes a no-op although all hold
issue conditions remain effective.

For instructions 0010, 0011, and 0012:
If j=O, the instruction is a no-ope
If k=O, CA or CL is set to 1.
If 4 low-order bits of (Aj) are less than
lOS' the instruction is a no-op, (that is, 20
through 27 are invalid, 30 through 37 are
valid, 40 through 47 are invalid, 50 through 57
are valid, etc.).

If k=O, CA or CL is set to 1.

For instruction 0012:
The correct priority interrupting channel
number cannot be read (through instruction 033)
until 2 CPs after issue of instruction 0012.

For instruction 0013:
If j=O, XA register is cleared.

NOTE

Because there is no hardware interlock between
CPUs, it is possible to have both CPUs issuing
these instructions at the same time7 however,
undetermined results will occur.

Software must ensure only one CPU is servicing
I/O at a time while in monitor mode.

5-10 A

INSTRUCTION 0014

CAL Syntax Description Octal Code

RT Sj

IP 1

IP 0

CLN 0

CLN 1

CLN 2

CLN 3

PCI Sj

CCI

ECI

DCI

Enter the Real-time Clock register with (Sj)

Set interprocessor interrupt request of other
processor

Clear received interprocessor interrupt
request from other processors

Cluster number = 0

Cluster number = 1

Cluster number = 2

Cluster number = 3

0014jO

001401

001402

001403

001413

001423

001433

Enter Interrupt Interval (II) register with (Sj) 0014j4

Clear tpe programmable clock interrupt request 001405

Enable programmable clock interrupt request 001406

Disable programmable clock interrupt request 001407

Instruction 0014 performs specialized functions for managing the
real-time and programmable clocks and handles interprocessor interrupt
requests and cluster number operations. Instruction 0014 is privileged
to monitor mode and is treated as a pass instruction if the monitor mode
bit is not set.

When the k designator is 0, the instruction loads the contents of the
sj register into the RTC register. When the j designator is 0 or
(Sj)=O, the RTC register is cleared.

When the k designator is 1, the instruction sets the internal CPU
interrupt request in the other CPU. If the other CPU is not in monitor
mode, the Interrupt from Internal CPU (ICP) flag sets in the F register
causing an interrupt. The request remains until cleared by the
receiving CPU issuing instruction 001402.

When the k designator is 2, the instruction clears the internal CPU
interrupt request set by the other CPU.

HR-0032 5-11 A

INSTRUCTION 0014 (continued)

When the k designator is 3, the instruction sets the cluster number to
j to make the following cluster selections:

CLN = 0 No cluster1 all shared register and semaphore operations
are no-ops, (except SS, ST, or SM register reads, which
return a 0 value to Ai or Si).

CLN = 1 Cluster 1

CLN = 2 Cluster 2

CLN = 3 Cluster 3

Clusters 1, 2, and 3 each have a separate set of SM, SB, and ST
registers.

When the k designator is 4, the instruction loads the low-order 32
bits from the Sj register into both the II register and the ICD
counter. When the j designator is 0 or (Sj)=O, II and ICD are
cleared.

When the k designator is 5, the instruction clears the programmable
clock interrupt request if the request is previously set by ICD counting
down to o.

When the k designator is 6, the instruction enables repeated
programmable clock interrupt requests at a repetition rate determined by
the value stored in the II register.

When the k designator is 7, the instruction disables repeated
programmable clock interrupt requests until an instruction 001406 is
executed to enable the requests.

HOLD ISSUE CONDITIONS: Sj reserved (except SO)

EXECUTION TIME:

SPECIAL CASES:

HR-0032

For instruction 0014j3, hold issue 2 CPs

Instruction issue, 1 CP

If the program is not in monitor mode, these
instructions become no-ops but all hold issue
conditions remain effective.

For instructions 0014jO and 0014j4, if j=O,
(Sj) =0.

For instruction 0014jO, the value is entered
into the RTC register 4 CPs after instruction
0014jO issues.

5-12 A

I

INSTRUCTION 0015

CAL Syntax Description Octal Code

t Select performance monitor 0015jO

t Set maintenance read mode 001501

t Load diagnostic check byte with Sl 001511

t Set maintenance write mode 1 001521

t Set maintenance write mode 2 001531

These instructions are all privileged to monitor mode.

Instruction 0015jO selects one of four groups of hardware related
events to be monitored by the performance counters. See Appendix C for a
description of how performance monitoring is accomplished.

Instructions 001501 through 001531 are used to check the operation of the
modules concerned with SECDED and to verify error detection and
correction. The maintenance mode switch on the mainframe's control panel
must be switched on during execution of these instructions or they become
no-ops. See Appendix D for a description of SECDED maintenance mode
functions.

Instructions 001501 and 001521 are used to verify check bit memory
storage. Instruction 001501 allows the 8 check bits for SECDED to
replace certain data bit positions in any subsequent memory read for the
CPU path (including fetch and I/O). Instruction 001521 allows certain
write data bits to replace the 8 check bits for SECDED for any subsequent
CPU write to memory.

Instructions 001511 and 001531 are used to verify error detection and
correction. Instruction 001511 loads a diagnostic check byte with the
high-order 8 bits of Sl. Instruction 001531 enables a diagnostic check
byte to replace the 8 check bits for SECDED being written into memory for
any subsequent write to memory.

t Not supported at present time

BR-0032 5-13 A

INSTRUCTION 0020

CAL Syntax Description Octal Code

VL M Transmit (M) to VL register 00200k

Transmit 1 to VL register 002000

Instruction 00200k enters the VL register with a value determined by
the contents of Ak. The low-order 6 bits of (Ak) are entered into
the VL register. The 7th bit of VL is set if the 6 low-order bits of
(M) =0.

For example, if (Ak)=o or a multiple of 100S' then ~lOOS. The
content of VL is always between 1 and 100S.

Instruction 002000 transmits the value of 1 to the VL register.

HOLD ISSUE CONDITIONS: Ak reserved (except AO)

EXECUTION TIME: Instruction issue, 1 CP
VL register ready, 1 CP

SPECIAL CASES: Maximum vector length is 64.
(Ak)=l if k=O.
(VL)=100S if k~O and (Ak)=O or a multiple of lOOS.

t Special CAL syntax

BR-0032 5-14 A

I

INSTRUCTIONS 0021 - 0027

CAL Syntax Description

EFI Enable interrupt on floating-point error

DFI Disable interrupt on floating-point error

ERI Enable interrupt on operand (address)
range error

DRI

DBM

CMR

Disable interrupt on operand (address)
range error

Disable bidirectional memory transfers

Enable bidirectional memory transfers

Complete memory references

Octal Code

002100

002200

002300

002400

002500

002600

002700

Instruction 002100 sets the Floating-point Mode flag in the M register.
Instruction 002200 clears the Floating-point Mode flag in the M
register. The two instructions do not check the previous state of the
flag. When set, the Floating-point Mode flag enables interrupts on
floating-point range errors as described in section 4. Issuing either of
these instructions also clears the Floating-Point Error Status flag.

Instruction 002300 sets the Operand Range Mode flag in the M register.
Instruction 002400 clears the Operand Range Mode flag in the M register.
The two instructions do not check the previous state of the flag. When
set, the Operand Range Mode flag enables interrupts on operand (address)
range errors as described in section 3.

Instruction 002500 disables the bidirectional memory mode. Instruction
002600 enables the bidirectional memory mode. Block reads and writes can
operate concurrently in bidirectional memory mode. If the bidirectional
memory mode is disabled, only block reads can operate concurrently.

Instruction 002700 assures completion of all memory references within a
particular CPU issuing the instruction. Instruction 002700 does not
issue until all memory references before this instruction are at the
stage of execution where completion occurs in a fixed amount of time.
For example, a load of any data that has been stored by the CPU issuing
instruction CMR, 002700 is assured of receiving the updated data if the
load is issued after the CMR instruction. Synchronization of memory
references between processors can be done by this instruction in
conjunction with semaphore instructions.

HR-0032 5-15 A

INSTRUCTIONS 0021 - 0027 (continued)

BOLD ISSUE CONDITIONS: Instructions 002500 and 002600, hold issue 2 CPs

EXECUTION TLME:

SPECIAL CASES:

HR-0032

Instruction 002700, ports A, B, C busy

Instruction 002700, scalar memory reference
active in clock period 1, 2, or 3

Ak reserved (except AO)

Instruction issue, 1 CP

Instructions 002100 and 002200 are issued even
if there are other floating-point operations in
process resulting from previous issues. The
interrupts are enabled or disabled at CP + 1;
floating-point overflows occurring after that
time cause interrupts if they are enabled even
if the overflow is generated by a previously
issued floating-point instruction.

Instructions 002300 and 002400 are issued even
if there are other memory references in process
resulting from previous issues. The interrupts
are enabled or disabled at CP + 1; operand range
errors occurring after that time cause
interrupts if they are enabled even if the
operand range error is generated by a previous
memory reference.

5-16 A

INSTRUCTIONS 0030, 0034, 0036, and 0037

CAL Syntax Description

ViM Sj Transmit (Sj) to VM register

VM ot Clear VM register

SMJK 1,TS Test and set semaphore jk, 0 ~ jk ~ 3110

SMjk 0 Clear semaphore jk, 0 ~ jk ~ 3110

SMjk 1 Set semaphore jk, 0 ~ jk ~ 3110

Octal Code

0030jO

003000

0034jk

0036jk

0037jk

Instruction 0030jO enters the VM register with the contents of Sj.
The VM register is cleared if the j designator is 0 in instruction
003000. These instructions are used in conjunction with the vector merge
instructions (146 and 147) in which an operation is performed depending
on the contents of VM.

Instruction 0034jk tests and sets the semaphore designated by jk. If
the semaphore is set, issue is held until the other CPU clears that
semaphore. If the semaphore is clear, the instruction issues and sets
the semaphore. If all CPUs in a cluster are holding issue on a test and
set, the DL flag is set in the Exchange Package (if not in monitor mode)
and an exchange occurs. If an interrupt occurs while a test and set
instruction is holding in the CIP register, the WS flag in the Exchange
Package sets, CIP and NIP registers clear, and an exchange occurs with
the P register pointing to the test and set instruction. The SM register
is 32 bits with SMO being the most significant bit.

Instruction 0036JK clears the semaphore designated by jk.

Instruction 0037jk sets the semaphore designated by jk.

HOLD ISSUE CONDITIONS: For instruction 0030jO:
Sj reserved (except SO)
Instruction 003 in process, unit busy 1 CP
Instruction lo4x in process, unit busy (VL)+5 CPs
Instruction 175 in process, unit busy (VL)+5 CPs

t Special CAL syntax

HR-0032 5-17 A

INSTRUCTIONS 0030, 0034, 0036, and 0037 (continued)

HOLD ISSUE CONDITIONS: For instruction 0034J1<:
(continued) If current Cluster Number~O and sMjk is

set, holds issue until other CPU in the same
cluster clears the semaphore.

EXECUTION TlME: Instruction issue, 1 CP

SPECIAL CASES: (Sj) =0 if j=O.

HR-0032

Instructions 0034jk, 0036jk, and 0037jk
are no-ops if CLN=O.

5-18 A

INSTRUCTION 004

CAL Syntax Description Octal Code

EX Normal exit , 004000

Instruction 004 causes an exchange sequence which voids the contents of
the instruction buffers. If monitor mode is not in effect, the Normal
Exit flag in theF register is set. All instructions issued before this
instruction are run to completion, that is, when all results arrive at
the operating registers because of previously issued instructions, an
exchange sequence occurs to the Exchange Package designated by the
contents of the XA register. The program address stored into the
Exchange Package is advanced one count from the address of the normal
exit instruction. Instruction 004 is used to issue a monitor request
from a user program.

HOLD ISSUE CONDITIONS: Any A, S, or V register reserved

EXECUTION TIME: Instruction issue, 40 CPs; this time includes an
exchange sequence (24 CPs) and a fetch operation
(16 CPs).

SPECIAL CASES: None

HR-0032 5-19 A

INSTRUCTION 005

CAL Syntax Description Octal Code

J B;jk Branch to (B;jk) 0050;jk

Instruction 005 sets the P register to the 24-bit parcel address
specified by the contents of BJ~ causing execution to continue at that
address. The instruction is used to return from a subroutine.

HOLD ISSUE CONDITIONS: Instruction 034 or 035 in process

EXECUTION TIME:

SPECIAL CASES:

HR-0032

Instruction 025 issued in the previous CP

Second parcel in a different buffer, 2 CP delay

Second parcel not in a buffer

Instruction issue:
Instruction parcel and following parcel both
in a buffer and branch address in a buffer, 7
CPs

Instruction parcel and following parcel both
in a buffer and branch address not in a
buffer, 18 CPs. Additional time is needed if
a memory conflict exists. The time to resolve
a memory conflict depends on factors present.

Instruction 0050J~ executes as if it were a
2-parcel instruction. Even though the parcel
following the first parcel of instruction
0050J~ is not used, it can cause a delay of
instruction 0050;jk if it is out of buffer.
See execution times above.

5-20 A

INSTRUCTION 006

CAL Syntax Description Octal Code

J erp Branch to iikm 006i;jkm

The 2-parcel instruction 006 sets the P register to the parcel address
specified by the low-order 24 bits of the iJKm field. Execution
continues at that address. The high-order bit of the iJKm field is
ignored.

HOLD ISSUE CONDITIONS: Second parcel in different buffer, 2 CP delay

EXECUTION TIME:

SPECIAL CASES:

HR-0032

Second parcel not in a buffer

Instruction issue:
Both parcels of instruction in the same buffer
and branch address in a buffer, 5 CPs

Both parcels of instruction in the same buffer
and branch address not in a buffer, 16 CPs.
Additional time is needed if a memory conflict
exists. The time to resolve a memory conflict
depends on factors present.

None

5-21 A

INSTRUCTION 007

CAL Syntax Description Octal Code

R e:cp Return jump to iJKm; set BOO to (P)+2. 007iJKm

The 2-parcel instruction 007 sets register BOO to the address of the
parcel following the second parcel of the instruction. The P register is
then set to the parcel address specified by the low-order 24 bits of the
ijkm field. Execution continues at that address. The high-order bit
of the iJKm field is ignored. This instruction provides a return
linkage for subroutine calls. The subroutine is entered through a return
jump. The subroutine can return to the caller at the instruction
following the call by executing a branch to the contents of the BOO
register.

HOLD ISSUE CONDITIONS: Instruction 034 or 035 in process

EXECUTION TIME:

SPECIAL CASES:

HR-0032

Second parcel in a different buffer, 2 CP delay

Second parcel not in a buffer

Instruction issue:
Both parcels of instruction in the same buffer
and branch address in a buffer, 5 CPs

Both parcels of instruction in the same buffer
and branch address not in a buffer, 16 CPs.
Additional time is needed if a memory conflict
exists. The time to resolve a memory conflict
depends on factors present.

None

5-22 A

I

I

I
I

I

I

I

CAL Syntax

JAZ exp

JAN exp

JAP exp

JAM exp

INSTRUCTIONS 010 - 013

Description

Branch to iikm if (AO) =0 (i 2=0)

Branch to ijkm if (AO);O (i2=0)

Branch to i;jkm if (AO) positive, includes
(AO) =0 (i2=0)

Branch to i;jkm if (AO) negative (i 2=0)

Octal Code

OlOi;jkm

Ollijkm

012ijkm

013ijkm

The 2-parcel instructions 010 through 013 test the contents of AO for the
condition specified by the h field. If the condition is satisfied, the
P register is set to the parcel address specified by the low-order 24
bits of the iJ~ field and execution continues at that address. The
high-order bit of the iJKm field must be O. If the condition is not
satisfied, execution continues with the instruction following the branch
instruction.

HOLD ISSUE CONDITIONS: AO busy in anyone of the previous 3 CPs

EXECUTION TIME:

HR-0032

Second parcel in a different buffer, 2 CP delay

Second parcel not in a buffer

Instruction issue for branch taken:
Both parcels of instruction in the same buffer,
branch taken, and branch address in a buffer, 5
CPs

Both parcels of instruction in the same buffer,
branch taken, and branch address not in a
buffer; 16 CPs for a 32-bank machine, 18 CPs
for a l6-bank machine. Additional time is
needed if a memory conflict exists. The time
to resolve a memory conflict is indeterminate.

Both parcels of instruction in different
buffers, branch taken, and branch address in a
buffer; 7 CPs.

Both parcels of instruction in different
buffers, branch taken, and branch address not
in a buffer; 18 CPs for a 32-bank machine, 20
CPs for a l6-bank machine.

5-23 A

I

I

I

I

I

EXECUTION TIME:
(continued)

INSTRUCTIONS 010 - 013 (continued)

Second parcel of instruction not in a buffer,
branch taken, and branch address in a buffer;
18 CPs for a 32-bank machine, 20 CPs for a
16-bank machine.

Second parcel of instruction not in a buffer,
branch taken, and branch address not in buffer;
29 CPs for a 32-bank machine, 33 CPs for a
16-bank machine.

Instruction issue for branch not taken:
Both parcels of instruction in the same buffer,
branch not taken, and next instruction in the
same instruction buffer, 2 CPs

Both parcels of instruction in the same buffer,
branch not taken, and next instruction in
different instruction buffer, 4 CPs

Both parcels of instruction in the same buffer
and branch not taken with next instruction in
memory; 16 CPs for a 32-bank machine, 18 CPs
for a l6-bank machine.

Both parcels of instructiori in different
buffers and branch not taken; 4 CPs.

Second parcel of instruction not in a buffer
and branch not taken; 15 CPs for a 32-bank
machine, 17 CPs for a 16-bank machine.

N~E

Whenever a fetch occurs, memory conflicts may produce a
delay.

SPECIAL CASES:

HR-0032

(AO)=O is considered a positive condition.

High-order bit of i designator (i 2) must be
O.

5-24 A

I

I

I

I

I

I

I

I

INSTRUCTIONS 014 - 017

CAL Syntax Description Octal Code

JSZ e:x:p Branch to iikm if (SO) =0 (i 2=0) 014i;jkm

JSN e:x:p Branch to iikm if (SO) ;0 (i2=0) 015ijkm

JSP e:x:p Branch to iikm if (SO) positive, includes 016i:jkm
(SO) =0 (i2=0)

JSM e:x:p Branch to iikm if (SO) negative (i 2=0) 017ijkm

The 2-parcel instructions 014 through 017 test the contents of SO for the
condition specified by the h field. If the condition is satisfied, the
P register is set to the parcel address specified by the low-order 24
bits of the ijkm field and execution continues at that address. The
high-order bit of the iJKm field must be O. If the condition is not
satisfied, execution continues with the instruction following the branch
instruction.

HOLD ISSUE CONDITIONS: SO busy in anyone of the previous 3 CPs

EXECUTION TIME:

HR-0032

Second parcel in a different buffer, 2 CP delay

Second parcel not in a buffer

Instruction issue for branch taken:
Both parcels of instruction in the same
buffer, branch taken, and branch address in a
buffer, 5 CPs

Both parcels of instruction in the same
buffer, branch taken, and branch address not
in a buffer~ 16 CPs for a 32-bank machine, 18
CPs for a l6-bank machine. Additional time is
needed if a memory conflict exists. The time
to resolve a memory conflict is indeterminate.

Both parcels of instruction in different
buffers, branch taken, and branch address in a
buffer~ 7 CPs.

Both parcels of instruction in different
buffers, branch taken, and branch address not
in a buffer; 18 CPs for a 32-bank machine., 20
CPs for a 16-bank machine.

5-25 A

I

I

I

I

•
I

EXECUTION TIME:
(continued)

INSTRUCTIONS 014 - 017 (continued)

Second parcel of instruction not in a buffer,
branch taken, and branch address in a buffer;
18 CPs for a 32-bank machine, 20 CPs for a
l6-bank machine.

Second parcel of instruction not in a buffer,
branch taken, and branch address not in buffer;
29 CPs for a 32-bank machine, 33 CPs for a
l6-bank machine.

Instruction issue for branch not taken:
Both parcels of instruction in the same buffer,
branch not taken, and next instruction in the
same instruction buffer, 2 CPs

Both parcels of instruction in the same buffer,
branch not taken, and next instruction in
different instruction buffer, 4 CPs

Both parcels of instruction in the same buffer
and branch not taken with next instruction in
memory; 16 CPs for a 32-bank machine, 18 CPs
for a l6-bank machine.

Both parcels of instruction in different
buffers and branch not taken; 4 CPs.

Second parcel of instruction not in a buffer
and branch not taken; 15 CPs for a 32-bank
machine, 17 CPs for a l6-bank machine.

NOTE

Whenever a fetch occurs, memory conflicts may produce a
delay •

SPECIAL CASES: (SO)=O is considered a positive condition.

High-order bit of i designator (i 2) must be o.

HR-0032 5-26 A

INSTRUCTIONS 020 - 021

CAL Syntax Description Octal Code

Ai exp Transmit JKm to Ai 020ijkm

Ai exp Transmit ones complement of jkm to Ai

The 2-parcel instruction 020 enters a 24-bit value into Ai composed of
the 22-bit jkm field and 2 high-order bits of O.

The 2-parcel instruction 021 enters a 24-bit value that is the complement
of a value formed by the 22-bit jkm field and 2 high-order bits of 0
into Ai. The complement is formed by changing all 1 bits to 0 and all
o bits to 1. Thus, for instruction 021, the high-order 2 bits of Ai
are set to 1. The instruction provides a means of entering a negative
value into Ai. However, if the instruction is used to enter a negative
number, the positive number used in the jkm field must be one smaller
than the absolute value of the expected final negative number.

HOLD ISSUE CONDITIONS: Ai reserved

Second parcel not in a buffer

EXECUTION TIME: Instruction issue:
Both parcels in same buffer, 2 CPs

Both parcels in different buffers, 4 CPs

Ai ready, 1 CP

SPECIAL CASES: None

HR-0032 5-27 A

INSTRUCTION 022

CAL Syntax Description Octal Code

Ai e~p Transmit jk to Ai 022ijk

Instruction 022 enters the 6-bit quantity from the jk field into the
low-order 6 bits of Ai. The high-order 18 bits of Ai are zeroed. No
sign extension occurs.

HOLD ISSUE CONDITIONS: Ai reserved

EXECUTION TLME: Instruction issue, 1 CP

Ai ready, 1 CP

SPECIAL CASES: None

HR-0032 5-28 A

INSTRUCTION 023

CAL Syntax Description Octal Code

Ai Sj

Ai VL

Transmit (Sj) to Ai

Read vector length

023ijO

023iol

Instruction 023ijO enters the low-order 24 bits of (Sj) into Ai. The
high-order bits of (Sj) are ignored.

Instruction 023iol enters the content of the VL register into Ai.

HOLD ISSUE CONDITIONS: Ai reserved

EXECUTION TIME:

SPECIAL CASES:

For instruction 023ijO, Sj reserved
(except SO)

Instruction issue, 1 CP

Ai ready, 1 CP

(Sj)=O if j=O.

If (Al)=O, the sequence:
VL Al
A2 VL
leaves (A2)=100S

If (Al)=23S' the sequence:
VL Al
A2 VL
leaves (A2)=23a

If (Al)=123S' the sequence:
VL Al
A2 VL
leaves (A2)=23S

The 26 bit in the VL is a 1 if the low-order 6
bits are 0; otherwise, the 26 bit is a o.

HR-0032 5-29 A

INSTRUCTIONS 024 - 025

CAL Syntax Description Octal Code

Ai Bjk Transmit (Bjk) to Ai 024ijk

Bjk Ai Transmit (Ai) to Bjk 025ijk

Instruction 024 enters the contents of Bjk into Ai.

Instruction 025 enters the contents of Ai into Bjk.

HOLD ISSUE CONDITIONS: Instruction 034 or 035 in process

For instruction 024ijk, instruction 025iJ~
issued in previous CP

Ai reserved

EXECUTION TIME: For instruction 024, Ai ready, 1 CP

Instruction issue, 1 CP

SPECIAL CASES: None

HR-0032 5-30 A

I

INSTRUCTION 026

CAL Syntax Description Octal Code

Ai PSj Population count of (Sj) to Ai 026ijO

Ai QSj Population count parity of (Sj) to Ai

Ai SBj Transfer (SBj) to Ai 026ij7

Instruction 026ijO counts the number of bits set to 1 in (Sj) and
enters the result into the low-order 7 bits of Ai. The high-order 17
bits of Ai are zeroed. If (Sj)=O, then (Ai)=O.

Instruction 026ijl counts the number of bits set to 1 in (sj). Then,
the low-order bit, showing the odd/even state of the result is
transferred to the low-order bit position of the Ai register. The
high-order 23 bits are cleared. The actual. population count is not
transferred.

Instructions 026ijO and 026ijl are executed in the Population/
Leading Zero Count functional unit.

Instruction 026ij7 transfers the contents of the SBj register shared
between the CPUs to Ai.

HOLD ISSUE CONDITIONS: Ai reserved

EXECUTION TIME:

Sj reserved (except SO)

For instruction 026ij7, hold issue 1 CP, then
2+t CP more after Ai not reserved.
Minimum 3 CP hold.

Instruction issue, 1 CP

For instructions 026ijO and 026ijl, Ai
ready 4 CPs

For instruction 026ij7, Ai ready 1 CP

t If more than one CPU attempts to access semaphores or shared registers
in the same clock period, a scanner will resolve the conflict. See
shared register explanation in section 2.

HR-0032 5-31 A

SPECIAL CASES:

HR-0032

For instructions 026ijO and 026ijl, (Ai)=O if
j=O.

For instruction 026ij7, (Ai)=O if CLN=O.

For instruction 026ij7:
If instruction 027ij7, write SBj, has just
been issued within the previous 2 CPs, then the
original value (instead of new value) of (SBj)
is delivered to Ai as a result of this
instruction.

5-32 A

I

I
I

INSTRUCTION 027

CAL Syntax Description Octal Code

Ai ZSj

SBj Ai

Leading zero count of (Sj) to Ai

Transfer (Ai) to SBj

027ijO

Instruction 027ijO counts the number of leading zeros in Sj and enters
the result into the low-order 7 bits of Ai. The high-order 17 bits of
Ai are zeroed. Instruction 027ijO is executed in the Population/Leading
Zero Count functional unit.

Instruction 027ij7 stores (Ai) to the SBj register, which is shared
between the CPUs in the same cluster.

HOLD ISSUE CONDITIONS: For instruction 027ijO, instruction 033 issued
in CP 2

EXECUTION TIME:

SPECIAL CASES:

Ai reserved

Sj reserved (except SO)

For instruction 027ij7, hold issue I CP, then
2+t CP more after Ai not reserved. Minimum
3 CP hold.

Instruction issue, 1 CP

For instruction 027ij7, SBj ready I CP

For instruction 027ijO, Ai, ready 3 CPs

For instruction 027ijO, (Ai)=64 if j=O.

For instruction 027ijO, (Ai)=o if (sj) is
negative.

Instruction 027ij7 is a no-op if CLN=O.

t If more than one CPU attempts to access semaphores or shared
registers in the same clock period, a scanner will resolve the
conflict. See shared register explanation in section 2.

HR-0032 5-33 A

INSTRUCTIONS 030 - 031

. CAL Syntax Description Octal Code

Ai Aj+Ak Integer swn of (Aj) and

Ai Akt Transmit (M) to Ai

Ai Aj+lt Integer sum of (Aj) and

Ai Aj-Ak Integer difference (Aj)

Ai -It Transmit -1 to Ai

Ai -Akt Transmit the negative of

Ai Aj-lt Integer difference (Aj)

(Ak) to Ai

1 to Ai

less (Ak) to Ai

(M) to Ai

less 1 to Ai

030ijk

030iok

030ijO

03lilk.

03lioo

03liok

03lijO

Instruction 030 forms the integer swn of (Aj) and (Ak) and enters the
result into Ai. No overflow is detected.

Instruction 031 forms the integer difference of (Aj) and (Ak) and
enters the result into Ai. No overflow is detected.

Instructions 030 and 031 are executed in the Address Add functional unit.

HOLD ISSUE CONDITIONS: Ai reserved

EXECUTION TIME:

SPECIAL CASES:

t Special CAL syntax

HR-0032

Aj or Ak reserved (except AO)

Instruction issue, 1 CP

Ai ready, 2 CPs

For instruction 030:
(Ai)=(Ak) if j=O and k~O.
(Ai)=l if j=O and k=O.
(Ai)=(Aj) + 1 if j;O and k=O.

For instruction 031:
(Ai)= -(Ak) if j=O and k;O.
(Ai) = -1 if j=O and k=o.
(Ai) = (Aj) - 1 if j;O and k=O.

5-34 A

INSTRUCTION 032

CAL Syntax Description Octal Code

Ai Aj*Ak Integer product of (Aj) and (Ak) to Ai 032ijk

Instruction 032 forms the integer product of (Aj) and (Ak) and enters
the low-order 24 bits of the result into Ai. No overflow is detected.

Instruction 032 is executed in the Address Multiply functional unit.

HOLD ISSUE CONDITIONS: Ai reserved

EXECUTION TIME:

SPECIAL CASES:

HR-0032

Aj or Ak reserved (except AO)

Instruction issue, 1 CP

Ai ready, 4 CPs

(Ai)=o if j=O.
(Ak)=l if k=O.
Thus, (Ai) = (Aj) if j;O and k=O.

5-35 A

INSTRUCTION 033

CAL Syntax Description Octal Code

Ai CI Channel number of highest priority interrupt 033ioO
request to Ai

Ai CA,Aj Current address of channel (Aj) to Ai 033ijO

Ai CE,Aj Error flag of channel (Aj) to Ai 033ijl

Instruction 033 enters channel status information into Ai. The j and
k designators and the contents of Aj define the desired information.

The channel number of the highest priority interrupt request is entered
into Ai when the j designator is O. The contents of Aj specify a
channel number when the j designator is nonzero. The value of the
Current Address (CA) register for the channel is entered into Ai when
the k designator is O. The error flag for the channel is entered into
the low-order bit of Ai when the k designator is 1. The high-order
bits of Ai are cleared. The error flag can be cleared only in monitor
mode using instruction 0012.

Instruction 033 does not interfere with channel operation and is not
protected from user execution.

HOLD ISSUE CONDITIONS: Ai reserved

Aj reserved (except AO)

EXECUTION TIME: Instruction issue, 1 CP

Ai ready, 4 CPs

SPECIAL CASES: (Ai)=Highest priority channel causing interrupt
if (Aj) =0.

HR-0032

(Ai)=CUrrent address of channel (Aj) if
(Aj),-O and k=O.

(Ai)=I/O error flag of channel (Aj) if
(Aj),-O and k=l.

(Ai)=o if (Aj)=l.

5-36 A

I

SPECIAL CASES:
(con tinued)

HR-0032

INSTRUCTION 033 (continued)

2 CPs must elapse after instruction 0012jO issues
before issuing instruction 033iOO

If instruction 033 issues every 10 CPs (in a loop) ,
the same results may be returned to A(i).

When k=l:
Bits 212 through 220 contain the remaining
block length.

Bit 218 indicates a request in progress.

Bit 219 will return a O.

Bit 220 indicates a block length error.

Bit 221 indicates either an SSD double-bit
memory error (during a read SSD operation) or an
SSD double-bit channel error (during a write SSD
operation).

Bit 222 indicates a CPU double-bit memory error.

Bit 223 indicates a fatal error (if bit 220,
221, or 222 is set).

5-37 A

INSTRUCTIONS 034 - 037

CAL Syntax Description

~JK,Ai ,AO Block transfer (Ai) words from memory
starting at address (AO) to B registers
starting at register J~

t
Bjk,Ai O,AO Block transfer (Ai) words from memory

starting at address (AO) to B registers
starting at register JK

,AO BJK,Ai Block transfer (Ai) words from B registers
starting at register JK to memory starting
at address (AO)

t
O,AO Bjk,Ai Block transfer (Ai) words from B registers

TJK,Ai ,AO

starting at register JK to memory starting
at address (AO)

Block transfer (Ai) words from memory
starting at address (AO) to T registers
starting at register J~

t
Tjk,Ai O,AO Block transfer (Ai) words from memory

starting at address (AO) to T registers
starting at register JK

,AO TJ~,Ai Block transfer (Ai) words from T registers
starting at register J~ to memory starting
at address (AO)

t
O,AO Tjk,Ai Block transfer (Ai) words from T registers

starting at register JK to memory starting
at address (AO)

Octal Code

034ijk

034ijk

035ijk

035ijk

036iJK

036iJK

037ijk

037iJK

Instructions 034 through 037 perform block transfers between memory and B
or T registers.

In all the instructions, the amount of data transferred is specified by
the low-order 7 bits of (Ai). See special cases for details.

The first register involved in the transfer is specified by jk.
Successive transfers involve successive B or T registers until B77 or T77
is reached. Since processing of the registers is circular, BOO is
processed after B77 and TOO is processed after T77 if the count in (Ai)
is not exhausted.

t Special CAL syntax

HR-0032 5-38 A

INSTRUCTIONS 034 - 037 (continued)

The first memory location referenced by the transfer instruction is
specified by (AO). The AO register contents are-not altered by execution
of the instruction. Memory references are incremented by 1 for
successive transfers.

For transfers of B registers to memory, each 24-bit value is right
adjusted in the word, high-order 40 bits are zeroed. When transferring
from memory to B registers, only low-order 24 bits are transmitted;
high-order 40 bits are ignored.

HOLD ISSUE CONDITIONS: AO reserved

EXECUTION TIME:

HR-0032

Ai reserved

Scalar reference in CP1, CP2, or CP3

For instruction 034, Port A busy or instruction
035 in process or uni-directional memory mode and
Port C busy

For instruction 035, Port C busy or instruction
034 in process or uni-directional memory mode and
Port A or Port B busy

For instruction 036, Port B busy or instruction
037 in process or uni-directional memory mode and
Port C busy

For instruction 037, Port C busy or instruction
036 in process or uni-directional memory mode and
Port A or Port B busy

Instruction issue, 1 CP

For instruction 034 or 036:
B or T register reserved 16 CPs + (Ai) if
(Ai)~O; 6 CPs_ if (Ai)=o.
Port A or B busy for (Ai) + 5 CPs if
(Ai)~O; 4 CPs if (Ai)=O.

For instruction 035 or 037:
B or T register reserved 5 CPs + (Ai) if
(Ai)~O; 4 CPs if (Ai)=o.
Port C busy for (Ai) + 5 CPs if (Ai)~O; 4
CPs if (Ai) =0.

5-39 A

INSTRUCTIONS 034 - 037 (continued)

SPECIAL CASES: (Ai)=o causes a zero-block transfer.

HR-0032

(Ai) in the range greater than 100S and less
than 200S causes a wrap-around condition.

If (Ai) is greater than l77S' bits 27
through 223 are truncated. The block length is
equal to the value of 20 through 26.

Instruction 034 uses Port A, instruction 035 uses Port
C, instruction 036 uses Port B, and instruction 037
uses Port C.

5-40 A

INSTRUCTIONS 040 - 041

CAL Syntax Description Octal Code

si exp Transmit JKm to si

si exp Transmit complement of jkm to si·

The 2-parcel instructions 040 and 041 enter immediate values into an S
register.

Instruction 040 enters a 64-bit value composed of the 22-bit JKm field
and 42 high-order bits of 0 into si.

Instruction 041 enters a 64-bit value that is the complement of a value
formed by the 22-bit J~ field and 42 high-order bits of 0 into si.
The complement is formed by changing all 1 bits to 0 and all 0 bits
to 1. Thus, for instruction 041, the high-order 42 bits of Si are set
to l's. The instruction provides for entering a negative value into
si. Since the register value is the ones complement of JKm, to get
the twos complement jkm should be 0 to get -1, 1 to get -2, 3 to get
-4, etc.

HOLD ISSUE CONDITIONS: si reserved

EXECUTION TIME:

SPECIAL CASES:

HR-0032

Second parcel not in a buffer

Instruction issue:
Both parcels in same buffer, 2 CPs
Both parcels in different buffers, 4 CPs
si ready, 1 CP

None

5-41 A

INSTRUCTIONS 042 - 043

CAL Syntax Description Octal Code

si <ezp Form exp bits of ones mask in si from 042ijk
right; jk field gets 64-exp •

si • >erpt Form erp bits of zeros mask in si from 042iJK
left; JK field gets exp.

si It Enter 1 into si 042i77

si -It Enter -1 into si 042ioo

si >erp Form erp bits of ones mask in si from 043ilk
left; jk field gets exp •

si • <erpt Form exp bits of zeros mask in si from 043ijk
right; jk field gets 64-exp.

si ot Clear si 043ioo

Instruction 042 generates a mask of 64-jk ones from right to left in
si. For example, if jk=O, si contains all 1 bits (integer value= -1)
and if jk=77S' si contains zeros in all but the low-order bit
(integer value=l).

Instruction 043 generates a mask of jk ones from left to right in si.
For example, if jk=o, si contains all 0 bits (integer value=O) and if
jk=77S' si contains ones in all but the low-order bit (integer value= -2) •

Instructions 042 and 043 are executed in the Scalar Logical functional
unit.

HOLD ISSUE CONDITIONS: si reserved

EXECUTION TIME: Instruction issue, 1 CP

si ready, 1 CP

SPECIAL CASES: None

t Special CAL syntax

HR-0032 5-42 A

CAL Syntax

si Sj&sk

si Sj&SBt

si SB&Sjt

si iSk&Sj

si ISB&Sjt

si Sj sk

si sj SBt

si SB Sjt

si iSj sk

si iSkt

INSTRUCTIONS 044 - 051

Description

Logical product of (Sj) and (Sk) to si

Sign bit of (Sj) to si

Sign bit of (Sj) to si (j~O)

Logical product of (Sj) and complement of
(Sk) to si

(Sj) with sign bit cleared to si

Logical difference of (Sj) and (Sk) to si

Toggle sign bit of (Sj), then enter into si

Toggle sign bit of (Sj), then enter into si
(j~O)

Logical equivalence of (Sk) and (sj) to si

Transmit ones complement of (Sk) to si

Octal Code

o 44iJ1<.

044ijO

044ijO

045ijO

046iik

046ijO

046ijO

047ijk

047iOk

si iSj SBt Logical equivalence of (Sj) and sign bit to si 047ijO

si ISB Sjt Logical equivalence of (Sj) and sign
bit to si (j~O)

si iSBt Enter ones complement of sign bit into si

si sj:si&Sk Scalar merge

si Sj:Si&SBt Scalar merge of (Si) and sign bit
of (sj) to si

si sj:sk Logical sum of (sj) and (Sk) to si

si skt Transmit (Sk) to si

si Sj:SBt Logical sum of (Sj) and sign bit to si

si SB:Sjt Logical sum of (Sj) and sign bit to si

si SBt Enter sign bit into si

t Special CAL syntax

HR-0032 5-43

(j~O)

047ijO

047ioo

050ijO

05liik

05liok

05lijO

05lijO

05lioO

A

INSTRUCTIONS 044 - 051 (continued)

NOTE

For instructions 044 through 051, SB with no register
designator is the sign bit, not Shared Address register.

Instructions 044 through 051 are executed in the Scalar Logical
functional unit.

Instruction 044 forms the logical product (AND) of (Sj) and (Sk) and
enters the result into si. Bits of si are set to 1 when
corresponding bits of (Sj) and (Sk) are 1 as in the following example:

(Sj) = 1 1 0 0
(Sk) = 1 0 1 0
(Si) = 1 0 0 0

(sj) is transmitted to si if the j and k designators have the
same nonzero value. si is cleared if the j designator is O. The
sign bit of (sj) is transmitted to si if the j designator is
nonzero and the k designator is o.

Instruction 045 forms the logical product (AND) of (Sj) and the
complement of (Sk) and enters the result into si. Bits of si are
set to 1 when corresponding bits of (Sj) and the complement of (Sk)
are 1 as in the following example where (Ski) = complement of (Sk):

if (Sk) = 1 0 1 0

= 1 1 0 0
010 1

= 010 0

(sj)
(Ski) =
(Si)

si is cleared if the j and k designators have the same value or if
the j designator is o. (sj) with the sign bit cleared is transmitted
to si if the j designator is nonzero and the k designator is o.

Instruction 046 forms the logical difference (exclusive OR) of (Sj) and
(Sk) and enters the result into si. Bits of si are set to 1 when
corresponding bits of (Sj) and (Sk) are different as in the following
example:

HR-0032

(Sj) = 1 1 0 0
(Sk) = 1 0 1 0
(Si) = 0 1 1 0

5-44 A

INSTRUCTIONS 044 - 051 (continued)

si is cleared if the j and k designators have the same nonzero
value. (Sk) is transmitted to si if the j designator is 0 and the
k designator is nonzero. The sign bit of (Sj) is complemented and
the result is transmitted to si if the j designator is nonzero and
the k designator is o.

Instruction 047 forms the logical equivalence of (Sj) and (Sk) and
enters the result into si. Bits of si are set to 1 when corresponding
bits of (Sj) and (Sk) are the same as in the following example:

(Sj) = 1 1 0 0
(Sk) = 1 0 1 0
(Si) = 1 0 0 1

si is set to all ones if the j and k designators have the same
nonzero value. The complement of (Sk) is transmitted to si if the
j designator is 0 and the k designator is nonzero. All bits except
the sign bit of (Sj) are complemented and the result is transmitted to
si if the j designator is nonzero and the k designator is O. The
result is the complement produced by instruction 046.

Instruction 050 merges the contents of (Sj) with (Si) depending on
the ones mask in sk. The result is defined by the following Boolean
equation where skI is the complement of Sk as illustrated:

(Si) = (sj) (Sk) + (Si) (Sk I)

if (Sk) = 1 1 1 1 0 0 0 0

(Ski) = 0 0 0 0 1 1 1 1
(Si) = 1 1 0 0 1 1 0 0
(sj) = 1 0 1 0 1 0 1 0
(Si) = 1 0 1 0 1 1 0 0

Instruction 050 is intended for merging portions of 64-bit words into a
composite word. Bits of si are cleared when the corresponding bits of
sk are 1 if the j designator is 0 and the k designator is nonzero.
The sign bit of (sj) replaces the sign bit of si if the j designator
is nonzero and the k designator is O. The sign bit of si is cleared if
the j and k designators are both o.

Instruction 051 forms the logical sum (inclusive OR) of (sj) and (Sk)
and enters the result into si. Bits of si are set when 1 of the
corresponding bits of (sj) and (Sk) is set as in the following
example:

HR-0032

(Sj) = 1 1 0 0
(Sk) = 1 0 1 0
(Si) = 1 1 1 0

5-45 A

INSTRUCTIONS 044 - 051 (continued)

(Sj) is transmitted to si if the j and k designators have the
same nonzero value. (Sk) is transmitted to si if the j designator
is 0 and the k designator is nonzero. (Sj) with the sign bit set to
1 is transmitted to si if the j designator is nonzero and the k
designator is O. A ones mask consisting of only the sign bit is entered
into Si if the j and k designators are both O.

HOLD ISSUE CONDITIONS: si reserved

EXECUTION TIME:

SPECIAL CASES:

HR-0032

sj or sk reserved (except SO)

Instruction issue, 1 CP

si ready, 1 CP

(sj)=O if j=O.

(Sk)=263 if k=O.

5-46 A

INSTRUCTIONS 052 - 055

CAL Syntax Description Octal Code

SO si<exp Shift (Si) left exp=jk places to SO o 52i:jk

SO si>exp Shift (Si) right e~64-jk places to SO o 53i;jk

si Si<exp Shift (Si) left exp=jk places to si 054ijk

si si>exp Shift (Si) right e~64-jk places to si 055ilk

Instructions 052 through 055 are executed in the Scalar Shift functional
unit. They shift values in an S register by an amount specified by
JK.All shifts are end off with zero fill.

Instruction 052 shifts (Si) left jk places and enters the result into
SO. Shift range is 0 through 63 left.

Instruction 053 shifts (Si) right by 64-JK places and enters the
result into so. Shift range is 1 through 64 right.

Instruction 054 shifts (Si) left JK places and enters the result into
si. Shift range is 0 through 63 left.

Instruction 055 shifts (Si) right by 64-jk places and enters the
result into si. Shift range is 1 through 64 right.

HOLD ISSUE CONDITIONS: Instruction 056, 057, 060, or 061 issued in
previous CP

si reserved

For instructions 052 and 053, SO reserved

EXECUTION TIME: Instruction issue, 1 CP

For instructions 052 and 053, SO ready, 2 CPs

For instructions 054 and 055, si ready, 2 CPs

SPECIAL CASES: None

HR-0032 5-47 A

INSTRUCTIONS 056 - 057

CAL Syntax Description Octal Code

si Si,Sj<Ak Shift (Si) and (Sj) left by (Ak) places to si 056ijk

si Si,Sj<lt Shift (Si) and (Sj) left one place to si 056ijO

si Si<Akt Shift (Si) left (Ak) places to 8i 056iok

si sj,si>Ak Shift (sj) and (Si) right by (Ak) places to 8i 057ijk

si Sj,Si>lt Shift (Sj) and (Si) right one place to si 057ijO

si Si>Akt Shift (Si) right (Ak) places to si 057iok

Instructions 056 and 057 are executed in the Scalar Shift functional
unit. They shift 128-bit values formed by logically joining two S
registers. Shift counts are obtained from register Ak. All shift
counts, (Ak), are considered positive and all 24 bits of (Ak) are
used for the shift count. A shift of one place occurs if the k
designator is O. If j=O, the shifts function as if the shifted value
were 64 bits rather than 128 bits since the Sj value used is o.

The shifts are circular if the shift count does not exceed 64 and the i
and j designators are equal and nonzero. For instructions 056 and 057,
(sj) is unchanged, provided i~j. For shifts greater than 64, the
shift is end off with zero fill. If i=j and the shift is greater
than 64, the shift is the same as if the respective instruction 054 or
055 was used with a shift count 64 less.

Instruction 056 performs left shifts of (8i) and (Sj). with (Si)
initially the most significant bits of the double register. The
high-order 64 bits of the result are transmitted to Si. Si is
cleared if the shift count exceeds 127. Instruction 056 produces the
same result as instruction 054 if the shift count does not exceed 63 and
the j designator is o.

Instruction 057 performs right shifts of (sj) and (Si) with (sj)
initially the ~st significant bits of the double register. The
low-order 64 bits of the result are transmitted to Si. si is cleared
if the shift count exceeds 127. Instruction 057 produces the same result
as instruction 055 if the shift count does not exceed 63 and the j
designator is o.

t Special CAL syntax

HR-0032 5-48 A

INSTRUCTIONS 056 - 057 (continued)

BOLD ISSUE CONDITIONS: si reserved

EXECUTION TIME:

SPECIAL CASES:

HR-0032

sj or Ak reserved (except SO and/or AO)

Instruction issue, I CP

si ready, 3 CPs

(sj)=O if j=O.

(M)=l if k=O.

Circular shift if i=j10 and Ak greater
than or equal to 0 and less than or equal to 64.

5-49 A

INSTRUCTIONS 060 - 061

CAL Syntax Description Octal Code

si Sj+sk

si Sj-Sk

Integ;r sum of (Sj) and (Sk) to si

Integer difference of (sj) and (Sk) to si

Transmit negative of (Sk) to si

060ijk

06lijk

06liOk

Instruction 060 forms the integer sums of (Sj) and (Sk) and enters
the result into si. No overflow is detected.

Instruction 061 forms the integer difference of (Sj) and (Sk) and
enters the result into si. No overflow is detected.

Instructions 060 and 061 are executed in the Scalar Add functional unit.

HOLD ISSUE CONDITIONS: si reserved

EXECUTION TIME:

SPECIAL CASES:

t Special CAL syntax

HR-0032

sj or sk reserved (except SO)

si ready, 3 CPs

Instruction issue, 1 CP

(Si)=2 63 if j=O and k=O.

For instruction 060:
(Si)=(Sk) if j=O and k~O.
(Si)=(Sj) with 2 63 complemented if
j~O and k=o.

For instruction 061:
(Si)= -(Sk) if j=O and k~O.
(Si)=(Sj) with 2 63 complemented if
j~O and k=o.

5-50 A

INSTRUCTIONS 062 - 063

CAL Syntax Description Octal Code

si Sj+FSk

si +FSkt

si sj-FSk

si -Fskt

Floating-point sum of (Sj) and (Sk) to si

Normalize (Sk) to si

Floating-point difference of (Sj) and (Sk)
to si

Transmit normalized negative of (Sk) to si

o 62iJI<

062iok

063ijk

063iok

Instructions 062 and 063 are performed in the Floating-point Add
functional unit. Operands are assumed to be in floating-point format.
The result is normalized even if the operands are not normalized.

Instruction 062 forms the sum of the floating-point quantities in Sj
and sk and enters the normalized result into si.

Instruction 063 forms the difference of the floating-point quantities in
Sj and sk and enters the normalized result into si.

Overflow conditions are described in section 4. For floating-point
operands with the sign bit set (bit=l), zero exponent~and zero
coefficient are treated as 0 (that is, all 64 bits=O).tt

HOLD ISSUE CONDITIONS: si reserved

EXECUTION TIME:

t Special CAL syntax

Sj or sk reserved (except SO)

Instructions 170 through 173 in process, unit
busy (VL) + 4 CPs

Instruction issue, 1 CP

si ready, 6 CPs

tt Considered -0. No floating-point unit generates a -0 except the
Floating-point Multiply functional unit if one of the operands was a
-0. Normally, -0 occurs in logical manipulations when a sign is
attached to a number~ that number can be O.

HR-0032 5-51 A

SPECIAL CASES:

HR-0032

INSTRUCTIONS 062 - 063 (continued)

For instruction 062:
(Si)=(Sk) normalized if (Sk) exponent is
valid, j=O and k~O.
(Si)=(Sj) normalized if (Sj) exponent is
valid, j~O and k=O.

For instruction 063:
(Si)= -(Sk) normalized if (Sk) exponent is
valid, j=O and k~O. Sign of (Si) is
opposite that of (Sk) if (Sk)~O.
(Si) = (sj) normalized if (sj) exponent is
valid, j~O and k=O.

5-52 A

I

INSTRUCTIONS 064 - 067

CAL Syntax Description Octal Code

si Sj*FSk Floating-point product of (Sj) and (Sk) to si o 64ijk

si Sj*HSk Half-precision rounded floating-point 065iJK
product of (sj) and (Sk) to si

si sj*RSk Rounded floating-point product of (sj) and 066iJK
(Sk) to si

si sj*Isk Reciprocal iteration1 2-(sj)*(Sk) to si 067ijk

Instructions 064 through 067 are executed in the Floating-point Multiply
functional unit. Operands are assumed to be in floating-point format.
The result is not guaranteed to be normalized if the operands are not
normalized.

Instruction 064 forms the product of the floating-point quantities in
Sj and sk and enters the result into si.

Instruction 065 forms the half-precision rounded product of the
floating-point quantities in Sj and sk and enters the result into
si. The low-order 19 bits of the result are cleared.

Instruction 066 forms the rounded product of the floating-point
quantities in Sj and sk and enters the result into si.

Instruction 067 forms two minus the product of the floating-point
quantities in Sj and sk and enters the result into si. This
instruction is used in the divide sequence as described in section 4
under Floating-point Arithmetic.

In the evaluation C = 2-B*A, B must be a reciprocal of A of less than 47
significant bits and not the exact reciprocal, otherwise C will be in
error., The reciprocal produced by the reciprocal approximation
instruction meets this criterion.

HOLD ISSUE CONDITIONS: si reserved

HR-0032

Sj or sk reserved (except SO)

Instructions 160 through 167 in process, unit
busy (VL) + 4 CPs

For mainframes with a Second Vector Logical
unit: instructions 140 through 145 in process,
unit busy (VL) + 4 CPs.

5-53 A

EXECUTION TIME:

SPECIAL CASES:

HR-0032

INSTRUCTIONS 064 - 067 (continued)

Instruction issue, 1 CP

si ready, 7 CPs

(sj)=O if j=O.

(Sk)=263 if k=O.

If both exponent fields are 0, an integer
multiply is performed. Correct integer multiply
results are produced if the following conditions
are met:

• Both operand sign bits are o.

• The sum of the 0 bits to the right of the
least significant 1 bit in the two operands
is greater than or equal to 48.

The integer result obtained is the high-order 48
bits of the 96-bit product of the two operands.

5-54 A

INSTRUCTION 070

CAL Syntax Description Octal Code

si /BSj Floating-point reciprocal approximation
of (sj) to si

070ijO

Instruction 070 is executed in the Reciprocal Approximation functional
unit.

Instruction 070 forms an approximation to the reciprocal of the
normalized floating-point quantity in Sj and enters the result into
si. This instruction occurs in the divide sequence to compute the
quotient of two floating-point quantities as described in section 4 under
Floating-point Arithmetic.

The reciprocal approximation instruction produces a result of 30
significant bits. The low-order 18 bits are zeros. The number of
significant bits can be extended to 48 using the reciprocal iteration
instruction and a multiply.

HOLD ISSUE CONDITIONS: si reserved

Sj reserved (except SO)

Instruction 174 in process, unit busy (VL) + 4 CPs

EXECUTION TIME:

SPECIAL CASES:

HR-0032

si ready, 14 CPs

Instruction issue, 1 CP

(Si) is meaningless if (Sj) is not
normalized; the unit assumes that bit 247 of
(Sj)=l; no test is made of this bit.

(Sj) =0 produces a range error; the result is
meaningless.

(Sj) =0 if j=O.

5-55 A

INSTRUCTION 071

CAL Syntax Description Octal Code

si Ak Transmit (Ak) to si with no sign extension 07liOk

si +Ak Transmit (Ak) to si with sign extension 07lilk

si +FAk Transmit (M) to si as unnormalized 07li2k
floating-point number

si 0.6 Transmit constant 0.75 x 248 to Si 07li30

si 0.4 Transmit constant 0.5 to si 07li40

si 1. Transmit constant 1.0 to si 07li50

si 2. Transmit constant 2.0 to si 07li60

si 4. Transmit constant 4.0 to si 071i70

Instruction 071 performs functions that depend on the value of the j
designator. The functions are concerned with transmitting information
from an A register to an S register and with generating frequently used
floating-point constants.

When the j designator is 0, the 24-bit value in Ak is transmitted to
si. The value is treated as an unsigned integer. The high-order bits
of si are zeros.

When the j designator is 1, the 24-bit value in Ak is transmitted to
si. The value is treated as a signed integer. The sign bit of Ak is
extended through the high-order bit of si.

When the j designator is 2, the 24-bit value in Ak is transmitted to
si as an unnormalized floating-point quantity (the result is then added
to 0 to normalize). For this instruction, the exponent in bits
262 through 248 is set to 400608. The sign of the coefficient is
set according to the sign of Ak. If the sign bit of Ak is set, the
twos complement of Ak is entered into si as the magnitude of the
coefficient and bit 263 of si is set for the sign of the coefficient.

A sequence of instructions is used to convert an integer whose absolute
value is less than 24 bits to floating-point format:

CAL code:

HR-0032

Al
SI
SI

Sl
+FAl
+FSI 9 CPs required

5-56 A

INSTRUCTION 071 (continued)

When the j designator is 3, the floating-point constant of 0.75 x 24S

is entered into si (0 40060 6000 0000 0000 OOOOS). This constant is
used to create floating-point numbers from integer numbers (positive and
negative) whose absolute value is less than 47 bits. A sequence of
instructions is used for conversion of an integer in Sl:

CAL code: S2 0.6
Sl S2-Sl
Sl S2-FSI 11 CPs required

When the j designator is 4, the floating-point constant 0.5
(= 0 40000 4000 0000 0000 OOOOS) is entered into si.

When the j designator is 5, the floating-point constant 1.0
(= 0 40001 4000 0000 0000 OOOOS) is entered into si.

When the j designator is 6, the floating-point constant 2.0
(= 0 40002 4000 0000 0000 OOOOS) is entered into si.

When the j designator is 7, the floating-point constant 4.0
(= 0 40003 4000 0000 0000 OOOOS) is entered into si.

HOLD ISSUE CONDITIONS: si reserved

EXECUTION TIME:

SPECIAL CASES:

HR-0032

Ak reserved (except AO); applies to all forms
of the instruction, that is, j designators 0
through 7.

Instruction issue, 1 CP

si ready, 2 CPs

(M)=l if k=o.

(Si) = (Ak) if j=O.

(Si) = (Ak) sign extended if j=l.

(Si) = (Ak) unnormalized if j=2.

(Si)=0.6 x 260 (octal) if j=3.

(Si) =0. 4 x 20 (octal) if j=4.

(Si) =0. 4 x 21 (octal) if j=5.

(Si) =0. 4 x 22 (octal) if j=6.

(Si)=0.4 x 23 (octal) if j=7.

5-57 A

INSTRUCTIONS 072 - 075

CAL Syntax Description Octal Code

si RT

si 8M

si STj

si VM

t

t

t

si SRj

SM si

STj si

si Tjk

Transmit (RTC) to si

Read semaphores to si

Read (STj) register to Si

Transmit (VM) to si

Read performance counter into si

Increment performance counter

Clear all maintenance modes

Transmit (SRj) to si; j=O

Load semaphores from si

Load (STj) register from si

Transmit (Tjk) to si

Transmit (Si) to Tjk

072iOO

072io2

072ij3

073ioO

073ill

073i21

073i31

073ijl

073io2

073ij3

074iJK.

075ijk

Instruction 072iOO enters the 64-bit value of the real-time clock (RTC)
into si. The clock is incremented by 1 each CP. The RTC can be set
only by the monitor through use of instruction 0014jO.

Instruction 072io2 enters the values of all of the semaphores into
si. The 32-bit SM register is left justified in si with SMOO
occupying the sign bit.

Instruction 072ij3 enters the contents of STj into si.

Instruction 073ioo enters the 64-bit value of the VM register into
si. The VM register is usually read after being set by instruction 175.

Instruction 073ill is used for performance monitoring and is privileged
to monitor mode. Each execution of the 073ill instruction advances a
pointer and enters either the high- or low-order bits of a performance
counter into the high-order bits of si. See Appendix C for information
on performance monitoring.

t Not supported at present time

HR-0032 5-58 A

Instructions 073i2l and 073i3l are part of the SECDED maintenance
mode functions and are executed only if the maintenance mode switch on
the mainframe's control panel is on. Instruction 073i2l enables
certain data bits to replace the 8 check bits used for SECDED as they are
written into memory for any subsequent write to memory (except for I/O
write to memory). Instruction 073i3l clears all three SECDED
maintenance mode instructions: 001501, 001521, and 001531. See Appendix
D for complete information on the SECDED maintenance modes.

Instruction 073ijl enters the contents of the Status register SRj
into si. Instruction 073iOl returns the following status to the
high-order bits of si:

si Bit

263
257
251
250
249
248
240t

233t
232t

Description

Clustered, CLN i 0 (CL)
Program state (PS)
Floating-point error occurred (FPS)
Floating-point interrupt enabled (IFP)
Operand range interrupt enabled (lOR)
Bidirectional memory enabled (BDM)
Processor number bit 0 (PNO)
Cluster number bit 1 (CLNl)
Cluster number bit 0 (CLNO)

Instruction 073i02 sets the semaphores from 32 high-order bits of
si. SMOO receives the sign bit of si.

Instruction 073ij3 enters the contents of Si into STj.

Instruction 074 enters the contents of Tjk into si.

Instruction 075 enters the contents of si into Tjk.

HOLD ISSUE CONDITIONS: si reserved

For instructions 074 and 075, instructions 036
through 037 in process

For instruction 074, instruction 075 issued in
the previous CP

For instruction 073iOO:
Instruction l4x or 175 in process, VM busy
for (VL) + 5 CPs
Instruction 003 in process, VM busy for 1 CP

I t These bit positions return a value of 0 if not executed in monitor mode.

HR-0032 5-59 A

I

I

I

INSTRUCTIONS 072 - 075 (continued)

HOLD ISSUE CONDITIONS: For instructions 072ij3, 073ij3 and 73i02,
(continued) hold issue 1 CP, then 2+t CP more after si

not reserved. Minimum 3 CP hold.

EXECUTION TIME:

SPECIAL CASES:

Instruction issue, 1 CP

Result register ready 1 CP

For 073i02, SM ready, 1 CP

For instructions 072i02 and 072ij3, (Si)=o
if CLN=O.

Instructions 073i02 and 073ij3 are no-ops if
CLN=O.

There must be a 2 CP delay between sequential
073ill instructions.

t If more than one CPU attempts to access semaphores or shared
registers in the same clock period, a scanner will resolve the
conflict. See shared register explanation in section 2.

HR-0032 5-60 A

INSTRUCTIONS 076 - 077

CAL Syntax Description Octal Code

si vj,Ak Transmit (vj element (Ak» to si

vi,Ak sj Transmit (sj) to vi element (Ak)

Vi,Ak ot Clear vi element (Ak)

076ijk

o 77i;jk

077iok

Instructions 076 and 077 transmit a 64-bit quantity between a V register
element and an S register.

Instruction 076 transmits the contents of an element of register Vj to
si.

Instruction 077 transmits the contents of register Sj to an element of
register vi.

The low-order 6 bits of (Ak) determine the vector element for either
instruction.

HOLD ISSUE CONDITIONS: Ak reserved (except AO)

For instruction 076, si reserved or vj
reserved as operand or as result

For instruction 077, vi reserved as operand or
as result or sj reserved

EXECUTION TIME:

SPECIAL CASES:

t Special CAL syntax

HR-0032

Instruction issue, 1 CP

For instruction 076, si ready, 4 CPs

For instruction 077, vi ready, 1 CP

(Sj) =0 if j=O.

(Ak) =1 if k=o.

5-61 A

INSTRUCTIONS lOh - l3h

CAL Syntax Description Octal Code

Ai e~,Ah Read from ((Ah) + jkm) to Ai lOhilkm

Ai exp,ot Read from (jkm) to Ai lOOijkm

Ai exp,t Read from (jkm) to Ai lOOijkm

Ai ,Afl Read from (M) to Ai lOhioO 0

e~,Ah Ai Store (Ai) to (M) + jkm llhijkm

exp,O Ait Store (Ai) to jkm 110ijkm

exp, Ait Store (Ai) to exp 110ijkm

,Ah Ait Store (Ai) to (Ah) llhioo 0

si e~,Ah Read from ((Ah) + jkm) to Si l2hilkm

si exp,ot Read from (exp) to si l20ijkm

Si exp,t Read from (exp) to si 1 2 Oijkm

Si ,Aht Read from (Ah) to Si l2hioo 0

exp,Ah si Store (Si) to (M) + jkm l3hilkm

exp,O sit Store (Si) to exp l30iikm

exp, sit Store (Si) to exp l30iJK.m

,Ah sit Store (si) to (Ah) l3hioo 0

The 2-parcel instructions lOh through l3h transmit data between
memory and an A register or an S register. The content of Ah (treated
as a 22-bit signed integer) is added to the 'signed 22-bit integer in the
jkm field to determine the memory address. If h is 0, (M) is 0
and only the jkm field is used for the address. The address arithmetic
is performed by an address adder similar to but separate from the Address
Add functional unit.

t Special CAL syntax

HR-0032 5-62 A

INSTRUCTIONS loh - l3h (continued)

Instructions loh and Ilh transmit 24-bit quantities to or from A
registers. When transmitting data from memory to an A register, the
high-order 40 bits of the memory word are ignored. On a store from Ai
into memory, the high-order 40 bits of the memory word are zeroed.

Instructions l2h and 13h transmit 64-bit quantities to or from
reg ister si.

HOLD ISSUE CONDITIONS: Port A, B, or C busy

EXECUTION TIME:

SPECIAL CASES:

HR-0032

Ah reserved or busy previous CP

For instructions loh and llh, Ai reserved

For instructions l2h and l3h, si reserved

Instructions lOx through l3x in CP 2 and CP
3 and conflict

Second parcel not in a buffer

Second parcel in different buffer, 2 CP

Instruction issue:
Both parcels in same buffer, 2 CPs
For instruction lOh, Ai ready, 14 CPs
For instruction l2h, si ready, 14 CPs
Bank ready for next scalar read or store, 4 CPs

NOTE

After issuing instructions lOh through l3h,
attempting to issue instructions 034 through 037,
176, or 177 causes Ports A, B, or C to be
considered busy for 4 CPs (plus additional CPs if
there are conflicts).

None

5-63 A

I

CAL Syntax

vi Sj&Vk

vi vj&Vk

vi sj!Vk

vi vkt

vi vj!Vk

vi Sj\Vk

vi Vj\Vk

vi ot

INSTRUCTIONS 140 - 147

Description

Logical products of (Sj) and (Vk elements)
to vi elements

Logical products of (vj elements) and
(vk elements) to vi elements

Logical sums of (Sj) and (Vk elements)
to vi elements

Transmit (vk elements) to vi elements

Logical sums of (Vj elements) and
(Vk elements) to vi elements

Logical differences of (Sj) and
(Vk elements) to vi elements

Logical differences of (Vj elements) and
(Vk elements) to vi elements

Clear vi elements

vi Sj~Vk&VM If VM bit=l, transmit (Sj) to the corres
ponding element in vi
If VM bit=O, transmit the (corresponding
Vk element) to the (corresponding vi element)

vi tVM&Vk t If VM bit=l, transmit (0) to the corres
ponding element in vi
If VM bit=O, transmit the (corresponding
Vk element) to the (corresponding vi element)

vi vj:Vk&VM If VM bit=l, transmit the (corresponding vj
element) to the (corresponding vi element)
If VM bit=O, transmit the (corresponding vk
element) to the (corresponding vi element)

Octal Code

l40ijk

l42ijk

l42iok

l43ijk

l44ijk

l45ijk

l45iii

l46ijk

l46iok

l47ijk

On mainframes equipped with Second Vector Logical functional units,
instructions 140 through 145 can be executed in either the Full Vector or
the Second Vector Logical units, provided the Second Vector Logical unit
is enabled. If the Second Vector Logical unit is disabled, instructions
140 through 145 can be executed only in the Full Vector Logical unit.

t Special CAL syntax

HR-0032 5-64 A

INSTRUCTIONS 140 - 147 (continued)

I Instructions 146 and 147 execute in the Full Vector Logical unit only.
The number of operations performed is determined by the contents of the
VL register. All operations start with element 0 of the vi, Vj, or
vk register and increment the element number by 1 for each operation
performed. All results are delivered to vi.

For instructions 140, 142, 144, and 146, a copy of the content of sj is
delivered to the functional unit. The copy of the content is held as one
of the operands until completion of the operation. Therefore, Sj can
be changed immediately without affecting the vector operation. For
instructions 141, 143, 145, and 147, all operands are obtained from V
registers.

Instructions 140 and 141 form the logical products (AND) of operand pairs
and enter the result into vi. Bits of an element of vi are set to 1
when the corresponding bits of (sj) or (vj element) and (Vk element)
are 1 as in the following:

(Sj) or (vj element) = 1 1 0 0
= 1 0 1 0
= 1 0 0 0

(Vk element)
(Vi element)

Instructions 142 and 143 form the logical sums (inclusive OR) of operand
pairs and deliver the results to vi. Bits of an element of vi are
set to 1 when one of the corresponding bits of (sj) or (vj element)
and (Vk element) is 1 as in the following:

(sj) or (vj element) = 1 1 0 0
(Vk element) = 1 0 1 0
(Vi element) = 1 110

Instructions 144 and 145 form the logical differences (exclusive OR) of
operand pairs and deliver the results of vi. Bits of an element are
set to 1 when the corresponding bit of (sj) or (vj element) is
different from (Vk element) as in the following:

(Sj) or (vj element) = 1 1 0 0
(Vkelement) = 1 0 1 0
(Vi element) = 0 1 1 0

Instructions 146 and 147 transmit o~erands to vi depending on the
contents of the VM register. Bit 2°3 of the mask corresponds to
element 0 of a V register. Bit 20 corresponds to element 63. Operand
pairs used for the selection depend on the instruction. For instruction
146, the first operand is always (Sj), the second operand is (Vk
element). For instruction 147, the first operand is (vj element) and
the second operand is (Vk element). If bit n of the vector mask is
1, the first operand is transmitted; if bit n of the mask is 0, the.
second operand, (Vk element), is selected.

HR-0032 5-65 A

I

INSTRUCTIONS 140 - 147 (continued)

Examples:

1. If instruction 146 is to be executed and the following register
conditions exist:

(VL) = 4
(VM) = 0 60000 0000 0000 0000 0000
(52) = -1
(V600) = 1
(V601) = 2
(V602) = 3
(V603) = 4

Instruction 146726 is executed. Following execution, the first four
elements of V7 contain the following values:

(V700) = 1
(V70l) = -1
(V702) = -1
(V703) = 4

The remaining elements of V7 are unaltered.

2. If instruction 147 is to be executed and the following register
conditions exist:

(VL) = 4
(VM) = 0 600000 0000 0000 0000 0000
(V200) = 1 (V300) = -1
(V20l) = 2 (V30l) = -2
(V202) = 3 (V302) = -3
(V203) = 4 (V303) = -4

Instruction 147123 is executed. Following execution, the first four
elements of VI contain the following values:

(V100) = -1
(VIOl) = 2
(Vl02) = 3
(Vl03) = -4

The remaining elements of VI are unaltered.

HOLD ISSUE CONDITIONS:

HR-0032

Vk reserved as operand

vi reserved as operand or result

For instructions 140, 142, 144, and 146, Sj
reserved

5-66 A

INSTRUCTIONS 140 - 147 (continued)

HOLD ISSUE CONDITIONS:
(continued)

EXECUTION TIME:

SPECIAL CASES:

FOr instructions 141, 143, 145, and 147, Vj
reserved as operand

FOr instructions 146 and 147, or instructions 140
through 145 with Second vector Logical
disabled: tt

Instruction l4x or 175 in process, Full vector
Logical unit busy (VL) + 4 CPs

FOr instructions 140 through 145 with Second
vector Logical unit enabled: tt

See discussion on Second Vector Logical issue in
section 4

Instructions 140 through 145 or l6x in process
in Second Vector Logicaltt/Floating-point
Multiply unit, Second Vector Logical unit busy
(VL) + 4 CPs

Instruction 140 through 147 or 175 in process in
Full Vector Logical unit, Full Vector Logical unit
busy (VL) + 4 CPs

Instruction issue, 1 CP

Vj or VI<. ready in (VL) + 3 CPs if data
availablet

If data available,t Vi ready in (VL) + 7
CPs if Full vector Logical unit is used, 9 CPs if
Second Vector Logical unit is used. tt

Unit ready, (VL) + 4 CPs if data availablet

(Sj)=O if j=O.

t Vector instructions mayor may not start execution immediately; they
execute as data becomes available. In particular, a memory conflict
that slows execution of some elements of a vector load can cause
delays in all instructions in the operation chain starting with that
load.

tt Only on mainframes equipped with Second vector Logical functional
units

HR-0032 5-67 A

INSTRUCTIONS 150 - 151

CAL Syntax Description Octal Code

vi vj<Ak. Shift (vj) elements left by (Ak) places l50ilk
to vi elements

vi Vj<lt Shift (VJ1 elements left one place to l50ijO
vi elements

vi vj>Ak Shift (VJ1 elements right by (Ak) places l5lijk
to vi elements

vi Vj>lt Shift (vj) elements right one place to l5lijO
vi elements

Instructions 150 and 151 are executed in the Vector Shift functional
unit. The number of operations performed is determined by the contents
of the VL register. Operations start with element 0 of the vi and Vj
registers and end with elements specified by (VL)-l.

All shifts are end off with zero fill. The shift count is obtained from
(Ak) and all 24 bits of Ak are used for the shift count. Elements of
vi are cleared if the shift count exceeds 63. All shift counts (Ak)
are considered positive.

Unlike shift instructions 052 through 055, these instructions receive the
shift count from Ak, rather than the jk fields.

HOLD ISSUE CONDITIONS: vj reserved as operand

t Special CAL syntax

vi reserved as operand or result

Ak reserved (except AO)

Instructions 150 through 153 in process, unit
busy (VL) + 4 cPstt

tt Vector instructions mayor may not start execution immediately;
they execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector load can
cause delays in all instructions in the operation chain starting with
that load.

HR-0032 5-68 A

INSTRUCTIONS 150 - 151

EXECUTION TIME: vj ready in (VL) + 3 CPs if data availablet

vi ready in (VL) + 8 CPs if data availablet

Unit ready, (VL) + 4 CPs if data availablet

SPECIAL CASES: (Ak)=l if k=O.

t Vector instructions mayor may not start execution immediately; they
execute as data becomes available. In particular, a memory conflict
that slows execution of some elements of a vector load can cause
delays in all instructions in the operation chain starting with that
load.

HR-0032 5-69 A

INSTRUCTIONS 152 - 153

CAL Syntax Description Octal Code

vi Vj,Vj<Ak Double shifts of (Vj elements) left (Ak) l52ijk
places to vi elements

vi vj,Vj<lt Double shifts of (vj elements) left one l52ijO
place to vi elements

vi Vj,Vj>Ak Double shifts of (vj elements) right (M) 1 53i3"'1<
places to vi elements

vi Vj,Vj>lt Double shifts of (vj elements) right one l53ijO
place to vi elements

Instructions 152 and 153 are executed in the Vector Shift functional
unit. The instructions shift l2S-bit values formed by logically joinin9
the contents of two elements of the Vj re9ister. The direction of the
shift determines whether the high-order bits or the low-order bits of the
result are sent to vi. Shift counts are obtained from register Ak.

All shifts are end off with zero fill.

The number of operations is determined by the contents of the VL re9ister.

Instruction 152 performs left shifts. The operation starts with element
o of vj. If (VL) is 1, element 0 is joined with 64 bits of 0, and the
resultin9 l2S-bit quantity is then shifted left by the amount specified
by (M). Only the one operation is performed. The 64 high-order bits
remaining are transmitted to element 0 of vi.

If (VL) is 2, the operation starts with element 0 of Vj being joined
with element 1, and the resulting l2S-bit quantity is then shifted left
by the amount specified by (Ak). The high-order 64 bits remainin9 are
transmitted to element 0 of vi. Figure 5-7 illustrates this operation.

If (VL) is greater than 2, the operation continues by joining element 1
with element 2 and transmitting the 64-bit result to element 1 of vi.
Figure 5-S illustrates this operation.

If (VL) is 2, element 1 is joined with 64 bits of 0 and only two
operations are performed. In genera1, the last element of Vj as
determined by (VL) is joined with 64 bits of zeros. Figure 5-9
illustrates this operation.

t Special CAL syntax

HR-0032 5-70 A

INSTRUCTIONS 152 - 153 (continued)

20 263 263

I (element 0) of vj I (element 1) of vj I
", ,...

~~~------------
of V 

,..., 
263- (Ak) 

;;> 

264- (Ak) 

j 

64-bit result to element 0 of vi 

.... ---- (Ak) 

Figure 5-7. Vector left double shift, first element, 
VL greater than 1 

....... --

~~I ______ (e_l_e_m_e_n_t __ l_) __ O_f __ V_j ______ ~>~I _____ (_e_l_e_m_e_n_t __ 2_)_O_f __ V_J_· ______ ~=_~1 -
of .... 111(~-- (Ak) 

64-bit result to element 1 of vi 

Figure 5-8. Vector left double shift, second element, 
VL greater than 2 

---

_~I-----(-e-l-e-m-e-n-t--(VL--)---l-t-)--O-f-V~j~7~1-------0_0_0_._._ •• _._._._._._0 ________ ~~1 -
63 ,.. --2 ......... 

2
0 
----------..,.... 

----
(element (VL)-l .... f----- (A k) 

64-bit result to element (VL)-lt of Vj 

Figure 5-9. Vector left double shift, last element 

t Elements are numbered 0 through 63 in the V registers: therefore, 
element {VL)-l refers to the VLth element. 

HR-0032 5-71 A 

--



INSTRUCTIONS 152 - 153 (continued) 

If (Ak) is greater than or equal to 128, the result is all zeros. If 
(Ak) is greater than 64, the result register contains at least (Ak) - 64 
zeros. 

Examples: 

1. If instruction 152 is to be executed and the following register 
conditions exist: 

(VL) = 4 
(AI) = 3 
(V400) = 0 00000 0000 0000 0000 0007 
(V401) = o 60000 0000 0000 0000 0005 
(V402) = 1 00000 0000 0000 0000 0006 
(V403) = 1 60000 0000 0000 0000 0007 

Instruction 152541 is executed. Following execution, the first four 
elements of V5 contain the following values: 

(V500) = 0 00000 0000 0000 0000 0073 
(V50l) = 0 00000 0000 0000 0000 0054 
(V502) = 0 00000 0000 0000 0000 0067 
(V503) = 0 00000 0000 0000 0000 0070 

Instruction 153 performs right shifts. The original element 0 of 
Vj is joined with 64 high-order bits of 0 and the l28-bit quantity 
is shifted right by the amount specified by (Ak). The 64 
low-order bits of the result are transmitted to element 0 of vi. 
Figure 5-10 illustrates this operation. 

~1, ____ o_o_o_._._._._ .. _._._._o __________ ~I~< _____ (_e_l_e_m_e_n_t __ O_) __ O_f_V_J_· ______ ~l , " , , 
'", 263 2 (Ak)~l 2°263 

~----------------~ 
(Ak)~ 000 ••••••••• 

64-bit result to 
element ° of vi 

, 
2 (Ak) 

Figure 5-10. Vector right double shift, first element 

If (VL)=l, only one operation is performed. In general, however, 
instruction execution continues by joining element 0 with element 1, 
shifting the l28-bit quantity by the amount specified by (Ak), and 

HR-0032 5-72 A 



INSTRUCTIONS 152 - 153 (continued) 

transmitting the result to element 1 of vi. This operation is 
shown in figure 5-11. 

I (element 0) of vj I (element 1) of vj I 
~,,~------------------------~<-,----------------------------~, 

(Ak) (element 0) 

64-(Ak) bits 

"- "-
2 (Ak)-l' 

64-bit result to 
element 1 of vi 

Figure 5-11. Vector right double shift, second eleaent, 
VL greater. than 1 

The last operation performed by the instruction joins the last 
element of Vj as determined by (VL) with the preceding element. 
Figure 5-12 illustrates this operation. 

element (VL)-2) of vj 

(Ak) (element (VL)-2) 0 

(element (VL)-lt) of Vj 

64-bit result to 
element (VL)-l of Vj 

Figure 5-12. Vector right double shift, last operation 

2. If an instruction 153 is to be executed and the following register 
conditions exist: 

t Elements are numbered 0 through 63 in the V registers; therefore, 
element (VL)-l refers to the VLth element. 

HR-0032 5-73 A 



(VL) 
(A6) 
(V200) 
(V201) 
(V202) 
(V203) 

= 4 
= 3 

INSTRUCTIONS 152 - 153 (continued) 

= a 00000 0000 0000 0000 0017 
= a 60000 0000 0000 0000 0006 
= 1 00000 0000 0000 0000 0006 
= 1 60000 0000 0000 0000 0007 

Instruction 153026 is executed and following execution, register va 
contains the following values: 

(VOOO) = a 00000 0000 0000 0000 0001 
(Vaal) = 1 66000 0000 0000 0000 0000 
(V002) = 1 50000 0000 0000 0000 0000 
(V003) = 1 56000 0000 0000 0000 0000 

The remaining elements of va are unaltered. 

HOLD ISSUE CONDITIONS: vj reserved as operand 

EXECUTION TIME: 

SPECIAL CASES: 

vi reserved as operand or result 

Ak reserved (except AO) 

Instructions 150 through 153 in process, unit 
busy (VL) + 4 cPst 

Instruction issue, 1 CP 

vj ready in (VL) + 3 CPs if data availablet 

For instruction 152, vi ready in (VL) + 9 CPs 
if data availablet 

Instruction 153, vi ready in (VL) + 8 CPs if 
data availablet 

Unit ready, (VL) + 4 CPs if data availablet 

(Ak)=l if k=O. 

t Vector instructions mayor may not start execution immediately; they 
execute as data becomes available. In particular, a memory conflict 
that slows execution of some elements of a vector load can cause 
delays in all instructions in the operation chain starting with that 
load. 

HR-0032 5-74 A 



INSTRUCTIONS 154 - 157 

CAL Syntax Description Octal Code 

vi Sj+VI< 

vi Vj+VI< 

vi sj-VI< 

vi -Vkt 

vi Vj-V'k 

Integer sums of (Sj) and (Vk elements) to 
vi elements 

Integer sums of (Vj elements) and 
(Vk elements) to vi elements 

Integer differences of (Sj) and (Vk elements) 
to vi elements 

Transmit negative of (Vk elements) to vi 
elements 

Integer differences of (Vj elements) and 
(VI< elements) to vi elements 

l54ijk 

l55ijk 

l56ijk 

l56iok 

Instructions 154 through 157 are executed in the Vector Add functional 
unit. 

Instructions 154 and 155 perform integer addition. Instructions 156 and 
157 perform integer subtraction. The number of additions or subtractions 
performed is determined by the contents of the VL register. All 
operations start with element 0 of the V registers and increment the 
element number by 1 for each operation performed. All results are 
delivered to elements of vi. No overflow is detected. 

Instructions 154 and 156 deliver a copy of (sj) to the functional unit 
where the copy is retained as one of the operands until the vector 
operation completes. The other operand is an element of Vk. For 
instructions 155 and 157, both operands are obtained from V registers. 

HOLD ISSUE CONDITIONS: vk reserved as operand 

t Special CAL syntax 

HR-0032 

vi reserved as operand or result 

Instructions 154 through 157 in process, unit 
busy (VL) + 4 cPst 

For instructions 154 and 156, Sj reserved 
(except SO) 

For instructions 155 and 157, Vj reserved as 
operand 

5-75 A 



EXECUTION TIME: 

SPECIAL CASES: 

INSTRUCTIONS 154 - 157 (continued) 

Instruction issue, 1 CP 

Vj or Vk ready in (VL) + 3 CPs if data 
availablet 

vi ready in (VL) + 8 CPs if data availablet 

Unit ready, (VL) + 4 CPs if data availablet 

For instruction 154, if j=O, then (Sj)=O and 
(Vi element) = (Vk element). 

For instruction 156, if j=O, then (Sj)=O and 
(Vi element)= -(Vk element). 

t Vector instructions mayor may not start execution immediately; they 
execute as data becomes available. In particular, a memory conflict 
that slows execution of some elements of a vector load can cause 
delays in all instructions in the operation chain starting with that 
load. 

HR-0032 5-76 A 



INSTRUCTIONS 160 - 167 

CAL Syntax Description Octal Code 

vi Sj*Fvk Floating-point products of (Sj) and l60ijk 
(Vk elements) to vi elements 

vi vj*FVk Floating-point products of (Vj elements) l6lijk 
and (Vk elements) to vi elements 

vi Sj*HVk Half-precision rounded floating-point products l62ijk 
of (sj) and (Vk elements) to vi elements 

vi vj*HVk Half-precision rounded floating-point products l63ijk 
of (vj elements) and (Vk elements) to 
vi elements 

vi sj*Rvk Rounded floating-point products of (sj) and 1 64iJK. 
(Vk elements) to vi elements 

vi vj*Rvk Rounded floating-point products of 1 65iJ1<. 
(vj elements) and (Vk elements) to vi elements 

vi sj*Ivk Reciprocal iterations; 2 - (sj) * (Vk elements) 1 66iJK. 
to vi elements 

vi vj*Ivk Reciprocal iterations; 2 - (vj elements) * l67iJ1<. 
(Vk elements) to vi elements 

Instructions 160 through 167 are executed in the Floating-point Multiply 
functional unit. The number of operations performed by an instruction is 
determined by the contents of the VL register. All operations start with 
element 0 of the V registers and increment the element number by 1 for 
each successive operation. 

Operands are assumed to be in floating-point format. Instructions 160, 
162, 164, and 166 deliver a copy of (Sj) to the functional unit where 
the copy is retained as one of the operands until the completion of the 
operation. Therefore, Sj can be changed immediately without affecting 
the vector operation. The other operand is an element of vk. For 
instructions 161, 163, 165, and 167, both operands are obtained from V 
registers. 

All results are delivered to elements of vi. If either operand is not 
normalized, there is no guarantee that the products will be normalized. 
If neither operand is normalized, the product will not be normalized. 

Out-of-range conditions are described in section 4. 

HR-0032 5-77 A 



INSTRUCTIONS 160 - 167 (continued) 

Instruction 160 forms the products of the floating-point quantity in 
Sj and the floating-point quantities in elements of Vk and enters 
the results into vi. 

Instruction 161 forms the products of the floating-point quantities in 
elements of Vj and Vk and enters the results into vi. 

Instruction 162 ~orms the half-precision rounded products of the 
floating-point quantity in Sj and the floating-point quantities in 
elements of vk and enters the results into vi. The low-order 19 
bits of the result elements are zeroed. 

Instruction 163 forms the half-precision rounded products of the 
floating-point quantities in elements of Vj and Vk and enters the 
results into vi. The low-order 19 bits of the result elements are 
zeroed. 

Instruction 164 forms the rounded products of the floating-point 
quantity in Sj and the floating-point quantities in elements of Vk 
and enters the results into vi. 

Instruction 165 forms the rounded products of the floating-point 
quantities in elements of Vj and Vk and enters the results into vi. 

Instruction 166 forms for each element, two minus the product of the 
floating-point quantity in Sj and the floating-point quantity in 
elements of vk. It then enters the results into vi. See the 
description of instruction 067 for more details. 

Instruction 167 forms for each element pair, two minus the product of 
the floating-point quantities in elements of Vj and Vk and enters 
the results into vi. See the description of instruction 067 for more 
details. 

HOLD ISSUE CONDITIONS: Vk reserved as operand 

vi reserved as operand or result 

Instruction l6x in process, unit busy 
(VL) + 4 cPst 

t vector instructions mayor may not start execution immediately; they 
execute as data becomes available. In particular, a memory conflict 
that slows execution of some elements of a vector load can cause 
delays in all instructions in the operation chain starting with that 
load. 

HR-0032 5-78 A 



I 
HOLD CONDITIONS: 
(continued) 

EXECUTION TIME: 

SPECIAL CASES: 

INSTRUCTIONS 160 - 167 (continued) 

On mainframes equipped with Second Vector 
Logical unit: instructions 140 through 145 in 
process in Second Vector Logical unit. Unit 
busy (VL) +4 CPs. 

For instructions 160, 162, 164, and 166, Sj 
reserved (except SO) 

For instructions 161, 163, 165, and 167, Vj 
reserved as operand 

Instruction issue, 1 CP 

Vj and Vk ready in (VL) + 3 CPs if data 
availab1e f 

vi ready in (VL) + 12 CPs if data 
availablef 

Unit ready, (VL) + 4 CPs if data avai1ab1ef 

(Sj)=O if j=O. 

t Vector instructions mayor may not start execution immediatelY1 they 
execute as data becomes available. In particular, a memory conflict 
that slows execution of some elements of a vector load can cause 
delays in all instructions in the operation chain starting with that 
load. 

HR-0032 5-79 A 



INSTRUCTIONS 170 - 173 

CAL Syntax Description 

vi Sj+FVk Floating-point sums of (Sj) and 
(Vk elements) to vi element 

vi +FVkt Transmit normalized (Vk elements) to vi 
elements 

vi Vj+F~ Floating-point sums of (Vj elements) and 
(Vk elements) to vi elements 

vi Sj-FVk Floating-point differences of (Sj) and 
(Vk elements) to vi elements 

vi -FVkt Transmit normalized negatives of 
(Vk elements) to vi elements 

vi vj-FVk Floating-point differences of (vj elements) 
and (Vk elements) to vi elements 

Octal Code 

170ijk 

170iok 

171ijk 

172ijk 

172iok 

Instructions 170 through 173 are executed in the Floating-point Add 
functional unit. Instructions 170 and 171 perform floating-point 
addition; instructions 172 and 173 perform floating-point subtraction. 
The number of additions or sUbtractions performed by an instruction is 
determined by contents of the VL register. All operations start with 
element 0 of the V registers and increment the element number by 1 for 
each operation performed. All results are delivered to vi normalized 
and results are normalized even if the operands are not normalized. 

Instructions 170 and 172 deliver a copy of (Sj) to the functional unit 
where it remains as one of the operands until the completion of the 
operation. The other operand is an element of vk. For instructions 
171 and 173, both operands are obtained from V registers. Out-of-range 
conditions are described in section 4. 

HOLD ISSUE CONDITIONS: Vk reserved as operand 

vi reserved as operand or result 

t Special CAL syntax 

HR-0032 5-80 A 



INSTRUCTIONS 170 - 173 (continued) 

HOLD ISSUE CONDITIONS: Instructions 170 through 173 in process, unit 
(continued) busy (VL) + 4 cPst 

EXECUTION TIME: 

SPECIAL CASES: 

For instructions 170 and 172, Sj reserved 
(except SO) 

For instructions 171 and 173, Vj reserved as 
operand 

Instruction issue, 1 CP 

Vj and Vk ready in (VL) + 3 CPs if data 
availablet 

vi ready in (VL) + 11 CPs if data availablet 

Unit ready, (VL) + 4 CPs if data availablet 

(Sj) =0 if j=O. 

t Vector instructions mayor may not start execution immediately; they 
execute as data becomes available. In particular, a memory conflict 
that slows execution of some elements of a vector load can cause 
delays in all instructions in the operation chain starting with that 
load. 

HR-0032 5-81 A 



INSTRUCTION 174 

CAL Syntax Description Octal Code 

Floating-point reciprocal approximation of 
(vj elements) to vi elements 

l74ijO 

Instruction 174 is executed in the Reciprocal Approximation functional 
unit. The instruction forms an approximate value of the reciprocal of 
the normalized floating-point quantity in each element of Vj and enters 
the result into elements of vi. The number of elements for which 
approximations are found is determined by the contents of the VL register. 

Instruction 174 occurs in the divide sequence to compute the quotients of 
floating-point quantities as described in section 4 under floating-point 
arithmetic. 

The reciprocal approximation instruction produces results of 30 
significant bits. The low-order 18 bits are zeros. The number of 
significant bits can be extended to 48 using the reciprocal iteration 
instruction and a multiply. 

HOLD ISSUE CONDITIONS: vi reserved as operand or result 

EXECUTION TIME: 

SPECIAL CASES: 

vj reserved as operand 

Instruction 174 in process, unit busy for 
(VL) + 4 cPst 

Instruction issue, 1 CP 

vj ready in (VL) + 3 CPs if data availablet 

vi ready in (VL) + 19 CPs if data 
available t 

Unit ready, (VL) + 4 CPs if data availablet 

(vi element) is meaningless if (Vj element) 
is not normalizedl the unit assumes that bit 
247 of (Vj element) is 11 no test of this 
bit is made. 

t Vector instructions mayor may not start execution immediatelYI they 
execute as data becomes available. In particular, a memory conflict 
that slows execution of some elements of a vector load can cause 
delays in all instructions in the operation chain starting with that 
load. 

HR-0032 5-82 A 



INSTRUCTIONS 174ijl - 174ij2 

CAL Syntax Description Octal Code 

Population count of (Vj elements) to vi 
elements 

Population count parity of (Vj elements) to 
vi elements 

174ijl 

l74ij2 

Instructions 174ijl and 174ij2 are executed in the Vector 
Population/Parity functional unit, sharing some logic with the Reciprocal 
Approximation functional unit. 

Instruction l74ijl counts the number of bits set to I in each element 
of vj and enters the results into corresponding elements of vi. The 
results are entered into the low-order 7 bits of each vi element, the 
remaining high-order bits of each vi element are zeroed. 

Instruction 174ij2 counts the number of bits set to I in each element 
of vj. The least significant bit of each element result shows whether 
the result is an odd or even number. Only the least significant bit of 
each element is transferred to the least significant bit position of the 
corresponding element of register vi. The remainder of the element is 
set to zeros. The actual population count results are not transferred. 

HOLD ISSUE CONDITIONS: vi reserved as operand or result 

vj reserved as operand 

Instructions 174xxl and 174xx2 in process, 
unit busy for (VL) + 4 cPst 

Instruction 174~0 in process, unit busy for 
(VL) + 9 cPst 

Instruction 070 in process, unit busy (070 issue 
time) + 7 cPst 

t Vector instructions mayor may not start execution immediately; they 
execute as data becomes available. In particular, a memory conflict 
that slows execution of some elements of a vector load can cause 
delays in all instructions in the operation chain starting with that 
load. 

HR-0032 5-83 A 



INSTRUCTIONS l74ijl - l74ij2 (continued) 

EXECUTION TIME: Instruction issue, 1 CP 

vj ready in (VL) + 3 CPs if data avallablet 

vi ready in (VL) + 10 CPs if data availablet 

Unit ready, (VL) + 4 CPs if data avallablet 

t Vector instructions mayor may not start execution immediately; they 
execute as data becomes available. In particular, a memory conflict 
that slows execution of some elements of a vector load can cause 
delays in all instructions in the operation chain starting with that 
load. 

HR-0032 5-84 A 



I 

INSTRUCTION 175 

CAL Syntax Description Octal Code 

VM vj,Z 

VM Vj,N 

VM vj,P 

VM vj,M 

VM=l when (Vj element)=O 

VM=l when (vj element)~O 

VM=l when (vj element) positive, 
(bit 263=0), includes (vj e1ement)=0 

VM=l when (vj element) negative, 
(bit 263=1) 

l750jO 

1750j1 

1750j2 

1750j3 

Vector mask instruction 175 is executed in the Full Vector Logical 
functional unit. 

Instruction 1750JK creates a vector mask in VM based on the results of 
testing the contents of the elements of register vj. Each bit of VM 
corresponds to an element of vj. Bit 263 corresponds to element 0; 
bit 20 corresponds to element 63. 

The type of test made by the instruction depends on the low-order 2 bits 
of the k designator. The high-order bit of the k designator is not 
used. 

If the k designator is 0, the VM bit is set to 1 when (vj element) is 
o and is set to 0 when (vj element) is nonzero. 

If the k designator is 1, the VM bit is set to 1 when (Vj element) is 
nonzero and is set to 0 when (vj element) is o. 

If the k designator is 2, the VM bit is set to 1 when (Vj element) is 
positive and is set to 0 when (vj element) is negative. A zero value 
is considered positive. 

If the k designator is 3, the VM bit is set to 1 when (Vj element) is 
negative and is set to 0 when (vj element) is positive. A zero value 
is considered positive. 

The number of elements tested is determined by the contents of the VL 
register. VM bits corresponding to untested elements of Vj are zeroed. 

Vector mask instruction 175 provide a vector counterpart to the scalar 
conditional branch instructions. 

HR-0032 5-85 A 



INSTRUCTION 175 (continued) 

HOLD ISSUE CONDITIONS: Vj reserved as operand 

EXECUTION TIME: 

SPECIAL CASES: 

Instruction 14~ in process, unit busy 
(VL) + 4 cPst 

Instruction 175 in process, unit busy 
(VL) + 4 cPst 

Instruction issue, 1 CP 

vj ready, (VL) + 3 CPs if data availablet 

Except for instruction 073, VM ready (VL) + 4 CPs 
if data availablet 

For instruction 073, VM ready (VL) + 5 CPs if 
data availablet 

k=O or 4, VM bit :=:=1 if (Vj element :ex)=0. 

k=l or 5, VM bit ~x=l if (Vj element :ex)~0. 

k=2 or 6, VM bit ~x=l if (vj element :ex) is 
positive; 0 is a positive condition. 

k=3 or 7, VM bit ~x=l if (vj element:ex) is 
negative. 

t Vector instructions mayor may not start execution immediately; they 
execute as data becomes available. In particular, a memory conflict 
that slows execution of some elements of a vector load can cause 
delays in all instructions in the operation chain starting with that 
load. 

HR-0032 5-86 A 



INSTRUCTIONS 176 - 177 

CAL Syntax Description Octal Code 

vi ,AO,Ak 

vi ,AO,lt 

,AO,Ak Vj 

AO 1 VJ·t , , 

Transmit (VL) words from memory to vi 
elements starting at memory address (AO) 
and incrementing by (Ak) for successive 
addresses 

Transmit (VL) words from memory to vi 
elements starting at memory address (AO) 
and incrementing by 1 for successive 
addresses 

Transmit (VL) words from Vj elements to 
memory starting at memory address (AO) and 
incrementing by (Ak) for successive 
addresses 

Transmit (VL) words from Vj elements to 
memory starting at memory address (AO) and 
incrementing by 1 for successive addresses 

l76iOk 

l76ioo 

l770lk 

l770jO 

Instructions 176 and 177 transfer blocks of data between V registers and 
memory. 

Instruction 176 transfers data from memory to elements of register vi. 

Instruction 177 transfers data from elements of register vj to memory. 

Register elements begin with 0 and are incremented by 1 for each 
transfer. Memory addresses begin with (AO) and are incremented by the 
contents of Ak. Ak contains a signed 22-bit integer which is added 
to the address of the current word to obtain the address of the next 
word. The 2 high-order bits of (Ak) are ignored. Ak can specify 
either a positive or negative increment allowing both forward and 
backward streams of reference. 

The number of words transferred is determined by the contents of the VL 

register. 

HOLD ISSUE CONDITIONS: For instruction 176 if Ports A and B busy 

For instruction 177 if Port C busy 

AO reserved 

t Special CAL syntax 

HR-0032 5-87 A 



INSTRUCTIONS 176 - 177 (continued) 

BOLD ISSUE CONDITIONS: Ak reserved where k=l through 7 
(continued) 

EXECUTION TIME: 

SPECIAL CASES: 

HR-0032 

Scalar reference in CP1, CP2, CP3, or CP4 

For instruction 176, V register i reserved as 
operand or result 

For instruction 177, V register j reserved as 
operand 

If not bidirectional memory mode, then 
instruction 176 holds on Port C busy and 
instruction 177 holds on Port A or B busy. 

For instruction 176: 
Instruction issue, 1 CP 
vi ready, (VL) + 17 CPs if memory is available 
Port A or B busy, (VL) + 5 CPs 

For instruction 177: 
Instruction issue, 1 CP 
Vj ready, (VL) +3 CPs if data is available 
Port C busy, (VL) + 6 CPs 

Increment (AO)=l if k=o. 

Instruction 176 uses Port B. If Port B is busy 
at issue time, instruction 176 uses Port A. 
Instruction 177 uses Port C. 

(Ak) determines the memory increment. 
Successive addresses are located in successive 
banks. References to the same bank can be made 
every 4 CPs or more. Incrementing (Ak) by 32 
places successive memory references in the same 
bank, so a word is transferred every 4 CPs or 
more. If the address is incremented by 16, every 
other reference is to the same bank, and words 
can transfer no faster than one every 2 CPs. 
With any address incrementing that allows 4 CPs 
before addressing the same bank, the words can 
transfer each CP. 

Memory conflict can slow loading or storing of 
individual vector elements. The elements are 
loaded or stored in order, so any delay for any 
element delays all succeeding elements. 

5-88 A 



SPECIAL CASES : 
(continued) 

HR-0032 

For instruction 176, if there is an instruction 
using its destination register as a source, the 
execution of that instruction is delayed whenever 
there is a delay in instruction 176 results. 

5-89 A 









I 

I 

INSTRUCTION SUMMARY FOR 
CRAY X-MP MODELS 22 AND 24 

A 

CRAYX-MP CAL 

000000 ERR 
ttoolOjk CA,Aj Ak 

ttOOlljk CL,Aj Ak 

ttOO12jO CI,Aj 

ttOO12jl MC,Aj 

ttOO13jO XA Aj 
ttOO14jO RT Sj 
ttOO140l IP 1 
ttOO1402 IP 0 
ttOO1403 CLN 0 
ttOO14l3 CLN 1 
ttOO1423 CLN 2 
ttOO1433 CLN 3 
ttOO14j4 PCI Sj 
ttOO1405 CCI 
ttOO1406 ECI 
ttOO1407 DCI 
ttOO15jO ttt 

ttOO150l ttt 

ttOO15ll ttt 
ttOO152l ttt 

ttOO153l ttt 
00200k VL Ak 

t002000 VL 1 
002100 EFI 

002200 DFI 

002300 ERI 

t Special syntax form 
tt Privileged to monitor 
ttt Not supported at this 

HR-0032 

UNIT 

mode 
time 

A-I 

DESCRIPTION 

Error exit 
Set the channel (Aj) current 
address to (Ak) and begin the I/O 
sequence 
Set the channel (Aj) limit address 
to (Ak) 
Clear Channel (Aj) Interrupt flag; 
clear device master-clear (output 
channel). 
Clear Channel (Aj) Interrupt flag; 
set device master-clear (output 
channel); clear device ready-held 
(input channel) • 
Enter XA register with (Aj) 
Enter RTC register with (sj) 
Set interprocessor interrupt 
Clear interprocessor interrupt 
Enter CLN register with 0 
Enter CLN register with 1 
Enter CLN register with 2 
Enter CLN register with 3 
Enter II register with (Sj) 
Clear PCI request 
Enable PCI request 
Disable PCI request . 
Select performance monitor 
Set maintenance read mode 
Load diagnostic check byte with Sl 
Set maintenance write mode 1 
Set maintenance write mode 2 
Transmit (Ak) to VL register 
Transmit 1 to VL register 
Enable interrupt on floating-point 
error 
Disable interrupt on floating-point 
error 
Enable operand range interrupts 

A 



CRAY X-MP 

002400 
002500 
002600 
002700 
0030jO 

t003000 
0034jk 
0036jk 
0037jk 
004000 
0050jk 
o06ijkm 
007iJK.m 
oloijkm 
Ollijkm 
Ol2ijkm 

Ol3iJKm 

Ol4ijkm 
Ol5iJK.m 
Ol6iJKm 

Ol7iJKm 

020iJKm 
02liJKm 

o 22ijk 
023ijO 
023iol 
024ijk 
o 25iJK 
026ijO 
o 26ijl 

026ij7 
027ijO 
027ij7 
030ijk 

t030iok 
t030ijo 
03lijk 

DRI 
DBM 
EBM 
CMR 
VM Sj 
VM 0 
SMJK l,TS 
sMjk 0 
SMJK 1 
EX 
J Bjk 
J e:cp 
R exp 
JAZ e:cp 
JAN exp 
JAP Up 

JAM exp 

JSZ exp 
JSN exp 
JSP exp 

JSM exp 

Ai exp 
Ai e:cp 

Ai exp 
Ai Sj 
Ai VL 
Ai Bjk 
Bjk Ai 
Ai psj 
Ai Qsj 

Ai SBj 
Ai zSj 
SBj Ai 
Ai Aj+Ak 

Ai Ak 
Ai Aj+l 
Ai Aj-Ak 

t Special syntax form 

HR-0032 

Pop/LZ 
Pop/LZ 

Pop/LZ 

A Int Add 

A Int Add 
A Int Add 
A Int Add 

A-2 

DESCRIPTION 

Disable operand range interrupts 
Disable bidirectional memory transj 
Enable bidirectional memory transf~ 
Complete memory references 
Transmit (Sj) to VM register 
Clear VM register 
Test & set semaphore jk in SM 
Clear semaphore jk in SM 
Set semaphore jk in SM 
Normal. exit 
Jump to (Bjk) 
Jump to e:cp 
Return jump to e~p; set BOO to P. 
Branch to exp if (AO)=O (i2=O) 
Branch to exp if (AO)~O (i2=O) 
Branch to e:cp if (AO) positive; 0 
is positive (i2=0). 
Branch to e:cp if (AO) negative 
( i 2=0) 
Branch to exp if (SO)=O (i2=O) 
Branch to exp if (SO)~O (i2=O) 
Branch to exp if (SO) positive; 0 
is positive (i2=0). 
Branch to e:cp if (SO) negative 
(i2=0) 
Transmit e~=jkm to Ai 
Transmit exp=ones complement of 
J7<.m to Ai 
Transmi t e~p=jk to Ai 
Transmit (Sj) to Ai 
Transmit (VL) to Ai 
Transmit (Bjk) to Ai 
Transmit (Ai) to Bjk 
Population count of (Sj) to Ai 
Population count parity of (sj) 
to Ai 
Transmit (SBj) to Ai 
Leading zero count of (Sj) to Ai 
Transmit (Ai) to SBj 
Integer sum of (Aj) and (Ak) to 
Ai 
Transmit (Ak) to Ai 
Integer sum of (Aj) and 1 to Ai 
Integer difference of (Aj) less 
(Ak) to Ai 

A 



CRAY X-MP CAL 

t03liOO 
t03liOk 

t03lijO 

o 32ijk 

033ioo 
033ijO 

033ijl 

034ijk 

t034ijk 

035iJI<. 

t035iJI<. 

036ijk 

t036ijk 

037iJI<. 

t037ijk 

040ijkm 
04lijkm 

042ijk 

t042iJI<. 

t042i77 
t042ioo 
043ijk 

t043ijk 

t043ioo 
044ijk 

Ai -1 
Ai -Ak 

Ai Aj-l 

Ai Aj*Ak 

Ai CI 
Ai CA,Aj 

Ai CE,Aj 

Bjk,Ai ,AO 

Bjk,Ai O,AO 

,AO BJI<.,Ai 

O,AO BJI<.,Ai 

Tjk,Ai ,AO 

Tjk,Ai O,AO 

,AO Tjk,Ai 

o ,AO TJI<.,Ai 

si up 
si exp 

si <exp 

si '>exp 

si 1 
si -1 
si >exp 

si '<exp 

si 0 
si sj&Sk 

t Special syntax form 

HR-0032 

DESCRIPTION 

A Int Add Transmit -1 to Ai 
A Int Add Transmit the negative 

of (Ak) to Ai 
A Int Add 

A Int Mult 

Memory 

Memory 

Memory 

Memory 

Memory 

Memory 

Memory 

Memory 

S Logical 

S Logical 

S Logical 
S Logical 
S Logical 

S Logical 

S Logical 
S Logical 

A-3 

Integer difference of (Aj) less 
1 to Ai 
Integer product of (Aj) and 
(Ak) to Ai 
Channel number to Ai ( j=O) 
Address of channel (Aj) to Ai 
(iJiO; k=O) 
Error flag of channel (Aj) to Ai 
(ijlO; k=l) 
Read (Ai) words to B register 
jk from (AO) 
Read (Ai) words to B register 
jk from (AO) 
Store (Ai) words at B register 
jk to (AO) 
Store (Ai) words at B register 
jk to (AO) 
Read (Ai) words to T register 
jk from (AO) 
Read (Ai) words to T register 
jk from (AO) 
Store (Ai) words at T register 
jk to (AO) 
Store (Ai) words at T register 
jk to (AO) 
Transmit jkm to Si 
Transmit exp=ones complement of 
jkm to si 
Form ones mask exp bits in si from 
the right; jk field gets 64-exp. 
Form zeros mask exp bits in si from 
the left; jk field gets 64-exp. 
Enter 1 into si 
Enter -1 into si 
Form ones mask exp bits in si from 
the left; jk field gets exp. 
Form zeros mask exp bits in si 
from the right; JI<. field gets 
64-exp. 
Clear si 
Logical product of (sj) and 
(Sk) to si 

A 



CRAY X-MP 

t044ijO 
t044ijO 
045ijk 

t045ijO 
046iik 

t046ijO 

t046ijO 

047ijk 

t047iok 

t047ijo 

t047ijO 

t047ioo 

050ijk 

t050ijO 

05lijk 
tosliok 
toslijO 

tOSlijO 

toslioo 
OS2ijk 

OS3ijk 

OS4ijk 
OS5ijk 

OS6ijk 

tOS6ijO 

~ 

si Sj&SB 
si SB&Sj 
si tSk&Sj 

si fSB&Sj 
si Sj\sk 

si Sj\sB 

si SB\Sj 

si fSj\Sk 

si Isk 

si fSj\SB 

si tSB\Sj 

si iSB 

si sj:Si&sk 

si Sj:Si&SB 

si sj:sk 
si sk 
si Sj:SB 

si SB!Sj 

si SB 
so si<e:cp 

so si>e:cp 

si Si<e:cp 
si si>e:cp 

si Si,Sj<Ak 

si Si,Sj<l 

t Special syntax form 

HR-0032 

S Logical 
S Logical 
S Logical 

S Logical 
S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 
S Logical 
8 Logical 

S Logical 

8 Logical 
S Shift 

S Shift 

8 Shift 
S Shift 

S Shift 

8 Shift 

A-4 

DESCRIPTION 

Sign bit of (Sj) to si 
Sign bit of (8j) to 8i (~O) 
Logical product of (8J1 and ones 
complement of (8k) to 8i 
(Sd) with sign bit cleared to si 
Logical difference of (SJ1 and 
(Sk) to 8i 
Toggle sign bit of 8j, then enter 
into 8i 
Toggle sign bit of Sj, then enter 
into 8i (j~O) 
Logical equivalence of (8k) and 
(Sj) to 8i 
Transmit ones complement of (Sk) 
to 8i 
Logical equivalence of (SJ1 and 
sign bit to si 
Logical equivalence of (Sj) and 
sign bit to si (j~O) 

Enter ones complement of sign bit 
into si 
Logical product of (Si) and (Sk) 
complement ORed with logical product 
of (Sj) and (Sk) to si 
Scalar merge of (Si) and sign bit 
of (Sj) to si 
Logical sum of (sj) and (8k) to si 
Transmit (8k) to si 
Logical sum of (sj) and sign bit 
to si 
Logical sum of (Sj) and sign bit 
to si (j~O) 
Enter sign bit into si 
Shift (8i) left exp=jk places 
to SO 
Shift (Si) right exp=64-jk 
places to SO 
Shift (8i) left exp=jk places 
Shift (Si) right e~64-jk 
places 
Shift (8i and 8j) left (Ak) 
places to si 
Shift (Si and Sj) left one 
place to 8i 

A 



CRAY X-MP CAL 

tos6iOk si si<Ak 

OS7ijk si sj,Si>Ak 

tos7ijO si Sj,Si>l 

tos7iok si si>Ak 

060ijk 

06lijk 

t06liok 

062ijk 

t062iok 
063ijk 

t063iOk 

064ijk 

06Siik 

066ijk 

067ijk 

070ijO 

07liok 

07lilk 

07li2k 

07li30 
07li40 
07lisO 
07li60 

si sj+Sk 

si sj-Sk 

si -sk 

si sj+FSk. 

si +Fsk 
si sj-Fsk 

si -Fsk 

si sj*Fsk 

si sj*HSk 

si Sj*RSk 

si sj*Isk 

si /HSj 

si Ak 

si +Ak 

si +FAk 

si 0.6 
si 0.4 
si 1. 
si 2. 

t Special syntax form 

HR-0032 

.Y!!£! 

S Shift 

S Shift 

S Shift 

S Shift 

DESCRIPTION 

Shift (Si) left (Ak) places 
to si 
Shift (Sj and Si) right (Ak) 
places to si 
Shift (Sj and Si) right one 
place to si 
Shift (Si) right (Ak) places 
to si 

s Int Add Integer sum of (Sj) and (Sk) 
to si 

S Int Add 

S Int Add 

Fp Add 

Fp Add 
Fp Add 

Fp Add 

Fp Mult 

Fp Mult 

Fp Mult 

Fp Mult 

Fp Rcpl 

A-S 

Integer difference of (Sj) and 
(Sk) to si 
Transmit negative of (Sk) 
to si 
Floating-point sum of (Sj) and 
(Sk) to si 
Normalize (Sk) to Si 
Floating-point difference 
of (Sj) and (Sk) to si 
Transmit normalized negative 
of (Sk) to si 
Floating-point product of (sj) 
and (Sk) to si 
Half-precision rounded 
floating-point product of (Sj) 
and (Sk) to si 
Full-precision rounded 
floating-point product of (Sj) 
and (Sk) to si 
2-floating-point product of (sj) 
and (Sk) to si 
Floating-point reciprocal 
approximation of (Sj) to si 
Transmit (Ak) to si with no 
sign extension 
Transmit (Ak) to Si with sign 
extension 
Transmit (Ak) to Si as 
unnormalized floating-point number 
Transmit constant 0.75*2**48 to Si 
Transmit constant 0.5 to si 
Transmit constant 1.0 to Si 
Transmit constant 2.0 to si 

A 



CRAY X-MP CAL ~ DESCRIPTION 

07li70 si 4. Transmit constant 4.0 to si 
072ioO si RT Transmit (RTC) to Si 
072i02 si SM Transmit (SM) to si 
o 72ij3 Si STj Transmit (STj) to Si 
073ioO si VM Transmit (VM) to si 

I 
073ill tt Read performance counter into si 
073i2l tt Increment performance counter 

(maintenance) 
073i3l tt Clear all maintenance modes 
073ijl si SRj Transmit (SRj) to si (j=O) 
073i02 SM Si Transmit (Si) to SM 
073ij3 STj si Transmit (Si) to STj 
o 74ijk Si Tjk Transmit (Tjk) to Si 
075ijk Tjk si Transmit (Si) to Tik. 
o 76iik. si Vj,Ak Transmit (Vj, element (Ak) ) 

to si 
o 77ijk vi,Ak sj Transmit (sj) to vi element (Ak) 

t077iok vi,Ak 0 Clear vi element (Ak) 
10hiJKm Ai e:x:p,Ah Memory Read from «Ah) +e:x:p) to Ai 

(AO=O) 
tlOOijkm Ai exp,O Memory Read from (exp) to Ai 
tlOOijkm Ai e:cp, Memory Read from ( e:cp) to Ai 
tlohioO 0 Ai ,Ah Memory Read from (Ah) to Ai 
llhijkm exp,Ah Ai Memory store (Ai) to (Ah)+e:cp (AO=O) 

tllOijkm exp,O Ai Memory Store (Ai) to e:x:p 
tllOiJKm exp, Ai Memory Store (Ai) to e:cp 
tllhiOO 0 ,Ah Ai Memory Store (Ai) to (Ah) 
l2hijkm si e:cp,Ah Memory Read from «Ah) +exp) to si 

(AO=O) 
t120ijkm si exp,O Memory Read from exp to Si 
t120ijkm si e:cp, Memory Read from e:cp to S i 
t12hiOO 0 si ,Ah Memory Read from (Ah) to Si 

l3hiJKm exp,Ah si Memory Store (Si) to (Ah)+exp (AO=O) 
t130ijkm exp,O si Memory Store (Si) to e:x:p 
t130ijkm exp, si Memory Store (Si) to e:cp 
t13hiOO 0 ,Ah si Memory Store (Si) to (Ah) 

l40iJK vi sj&vk v Logical Logical products of (Sj) and 
(Vk) to vi 

l4lijk vi vj&vk V Logical Logical products of (vj) and 
(Vk) to vi 

l42ijk vi Sj:vk v Logical Logical sums of (sj) and (Vk) 
to vi 

t142iok vi vk V Logical Transmit (vk) to vi 
l43ijk vi Vj!Vk V Logical Log ical sums of (Vj) and (Vk) 

to vi 
l44ijk vi Sj\Vk V Logical Logical differences of (Sj) and 

(Vk) to vi 

t Special syntax form 

I tt Not supported at this time 

HR-0032 A-6 A 



CRAY X-MP 

l45ijk 

tl45iii 
l46i:lk 

tl46iok 

l47ijk 

l50ijk 

tl50ijO 
l5lijk 

tl5lijO 
l52iik 

tl52ijO 

l53ijk 

tl53ijO 

l54ijk 

l55ijk 

l56ijk 

tl56iok 

l57ijk 

l60ijk 

l6lijk 

l62ijk 

l63ijk 

l64ijk 

CAL 

vi Vj\Vk 

vi 0 
vi Sj!Vk&VM 

vi IVM&vk 

vi vj:Vk&VM 

vi Vj<Ak 

vi vj<l 
vi Vj>Ak 

vi Vj>l 
vi vj,vj<Ak 

vi Vj,Vj<1 

vi vj,Vj>Ak 

vi vj,vj>l 

vi sj+vk 

.vi vj+vk 

vi sj-vk 

vi -vk 

vi vj-vk 

vi sj*FVk 

vi vj*FVk 

vi sj*HVk 

vi Vj*HVk 

vi sj*RVk 

t Special syntax form 

HR-0032 

v Logical 

v Logical 
V Logical 

V Logical 

v Logical 

v Shift 

v Shift 
V Shift 

v Shift 
v Shift 

v Shift 

v Shift 

v Shift 

V Int Add 

DESCRIPTION 

Logical differences of (Vj) and 
(Vk) to Vi 
Clear vi 
Transmit (Sj) if VM bit=IJ 
(Vk) if VM bit=O to vi. 
Vector merge of (Vk) and 
o to vi 
Transmit (vJ1 if VM bit=l; 
(Vk) if VM bit=O to vi. 
Shift (vj) left (Ak) places 
to vi 
Shift (Vj) left one place to vi 
Shift (Vj) right (Ak) places 
to vi 
Shift (Vj) right one place to vi 
Double shift (Vj) left (Ak) 
places to vi 
Double shift (Vj) left one place 
to vi 
Double shift (vj) right (Ak) 
places to vi 
Double Shift (vj) right one 
place to vi 
Integer sums of (sj) and (vk) 
to vi 

V Int Add Integer sums of (vj) and (Vk) 
to vi 

v Int Add Integer differences of (sj) and 
(Vk) to vi 

v Int Add Transmit negative of (Vk) 
to vi 

v Int Add Integer differences of (vj) and 
(Vk) to vi 

Fp Mult Floating-point products of (Sj) 
and (Vk) to vi 

Fp Mult Floating-point products of (Vj) 
and (Vk) to vi 

Fp Mult 

Fp Mult 

Fp Mult 

A-7 

Half-precision rounded 
floating-point products of (Sj) 
and (Vk) to vi 
Half-precision rounded 
floating-point products of (Vj) 
and (Vk) to vi 
Rounded floating-point products 
of (Sj) and (Vk) to vi 

A 



CRAYX-MP 

l65ijk 

l66ijk 

l67ijk 

l70ijk 

tl7oiok 
l7lijk 

l72ijk 

tl72iok 

l73ijk 

l74ijO 

l74ijl 
l74ij2 

l750jO 
l750jl 
l750j2 

l750j3 
l76iok 

tl76ioo 

l770jk 

tl770jO 

£!!! 

vi Vj*RYk. 

vi sj*IVk 

vi vj*IVk 

vi sj+Fvk 

vi +Fvk 
vi vj+Fvk 

vi sj-FVk 

vi -FVk 

vi vj-FVk 

vi /HVj 

vi pvj 
vi QVj 

VM vj,z 
VM Vj,N 
VM vj,P 

VM Vj,M 
vi ,AO,Ak 

vi ,AO,l 

,AO,Ak Vj 

,AO,l vj 

t Special syntax form 

HR-0032 

Fp Mult 

Fp Mult 

Fp Mult 

Fp Add 

Fp Add 
Fp Add 

Fp Add 

Fp Add 

Fp Add 

Fp Rcpl 

v Pop 
V Pop 

V Logical 
V Logical 
V Logical 

V Logical 
Memory 

Memory 

Memory 

Memory 

A-a 

DESCRIPTION 

Rounded floating-point products 
of (vj) and (Vk) to vi 
2-floating-point products of (Sj) 
and (Vld to vi 
2-floating-point products of (Vj) 
and (Vk) to vi 
Floating-point sums of (Sj) and 
(Vk) to vi 
Normalize (Vk) to vi 
Floating-point sums of (vj) and 
(Vk) to vi 
Floating-point differences of 
(Sj) and (Vk) to vi 

Transmit normalized 
negatives of (Vk) to vi 
Floating-point differences of 
(Vj) and (Vk) to vi 
Floating-point reciprocal 
approximations of (Vj) to vi 
Population counts of (vj) to vi 
Population count parities of (Vj) 
to vi 
VM=l where (Vj)=O 
VM=l where (vj)~O 
VM=l if (Vj) positive; 0 is 
positive. 
VM=l if (Vj) negative 
Read (VL) words to vi from 
(AO) incremented by (Ak) 
Read (VL) words to vi from (AO) 
incremented by 1 
Store (VL) words from Vj to (AO) 
incremented by (Ak) 
Store (VL) words from Vj to (AO) 
incremented by 1 

A 



6 MBYTE PER SECOND CHANNEL 
DESCRIPTIONS 

INTRODUCTION 

B 

Each input or output 6 Mbyte per second channel directly accesses Central 
Memory. Input channels store external data in memory and output channels 
read data from memory. A primary task of a channel is to convert 64-bit 
Central Memory words into l6-bit parcels or l6-bit parcels into 64-bit 
Central Memory words. Four parcels make up one Central Memory word with 
bits of the parcels assigned to memory bit positions (see section 2 of 
this publication). 

Each input or output channel has a data channel (4 parity bits, 16 data 
bits, and 3 control lines), a 64-bit assembly or disassembly register, a 
channel Current Address (CA) register, and a channel Limit Address (CL) 
register. 

Three control signals (Ready, Resume, and Disconnect) coordinate the 
transfer of parcels over the channels. In addition to the three control 
signals, the output channel of the pair has a Master Clear line. 

This appendix describes the signal sequence of a 6 Mytes per second input 
channel and an output channel. 

6 MBYTE PER SECOND INPUT CHANNEL SIGNAL SEQUENCE 

A general view of a 6 Mbyte per second input channel signal sequence is 
illustrated in table B-1. The data bits, parity bits, and each signal in 
the sequence are described below. 

DATA BITS 20 THROUGH 215 

Data bits 2°, 21, ••• , 215 are signals carrying the l6-bit parcel 
of data from the external device to Central Memory. The data bits must 
all be valid within 25 nanoseconds after the leading edge of the Ready 
signal. Data bit signals must remain unchanged on the lines until the 
corresponding Resume signal is received by the external device. 
Normally, data is sent coincidentally with the Ready signal and is held 
until the subsequent Ready signal. 

HR-0032 B-1 A 



Table B-1. Input channel signal exchange 

Central Memory Channel External Equipment 

1. Activate channel 
(set CL and CA). 

2. t .. Data 263 - 248 with Ready 

3. Resume .. 
4. t( Data 247 - 232 with Ready 

5. Resume .. 
6. t( Data 231 - 216 with Ready 

7. Resume .. 
8. t( Data 215 - 20 with Ready 

9. Write word to memory 
and advance 
current address. 

lOa. Resume .. 
lOb. If (CA) = (CL) , 

go to 13. 

11. If more data, go to 2. 

12. .. Disconnect (ignored if 
CA=CL or if channel 
not active). 

13. Set interrupt and 
deactivate channel. 

t Step 2 can initially precede step l~ that is, the first parcel and 
ready signal can arrive before requested. 

PARITY BITS 0 THROUGH 3 

Parity bits 0, 1, 2, and 3 are each assigned to a 4-bit group of data bits. 
The parity bits are set or cleared to give the bit group odd parity. Bit 
assignments follow. 

HR-0032 B-2 A 



Parity bit 

o 
1 
2 
3 

Data bits 

Parity bits are sent from the external device to Central Memory at the 
same time as data bits and are held stable in the same way as the data 
bits. 

READY SIGNAL 

The Ready signal sent to Central Memory indicates a parcel of data is 
being sent to the Central Memory input channel and can be sampled. A 
Ready signal is a pulse 50 ~lO nanoseconds wide (at 50% voltage points). 
The leading edge of the Ready signal at Central Memory begins the timing 
for sampling the data bits. 

RESUME SIGNAL 

The Resume signal is sent from Central Memory to the external device 
showing the parcel was received and Central Memory is ready for the next 
data transmission. A Resume signal is a pulse 50 ~8 nanoseconds wide (at 
50% voltage points). 

DISCONNECT SIGNAL 

The Disconnect signal is sent from the external device to Central Memory 
and indicates transmission from the external device is complete. The 
Disconnect signal is sent after the Resume signal is received for the 
last Ready signal. A Disconnect signal is a pulse 50 ±lO nanoseconds 
wide (at the 50% voltage points). 

6 MBYTE PER SECOND OUTPUT CHANNEL SIGNAL SEQUENCE 

A general view of a 6 Mbyte per second output channel signal sequence is 
illustrated in table B-2. The data bits, parity bits, and each signal in 
the sequence are described following the table. 

HR-0032 B-3 A 



Table B-2. Output channel signal exchange 

Central Memory Channel External Equipment 

1. Activate channel 
(set CL and CA). 

2. Read word from 
memory and advance 
current address. 

3. Data 263 _ 248 

with Ready .. 
4. • Resume 

5. Data 247 _ 232 
with Ready • 

6. 11( Resume 

7. Data 231 - 216 
with Ready .. 

8. ... Resume 

9. Data 215 - 20 
with Ready • 

10. iI( Resume 

11. If (CA);I(CL), 
go to 2. 

12. Disconnect. • 
13. Set interrupt and 

deactivate channel. 

DATA BITS 20 THROUGH 215 

Data bits 2°, 21, ••• , 215 are signals carrying a l6-bit parcel of 
data from Central Memory to an external device. The data bits are sent 
concurrently within 5 nanoseconds of the leading edge of the Ready 
signal. Data bit signals remain steady on the lines until the Resume 
signal is received. 

HR-0032 B-4 A 



PARITY BITS 0 THROUGH 3 

Parity bits 0, 1, 2, and 3 are each assigned to a 4-bit group of data 
bits. The parity bits are set or cleared to give the bit group odd 
parity. Bit assignments follow: 

Parit~ bit Data bits 

0 20 - 23 

1 24 - 27 
2 28 _ 211 

3 212 _ 215 

parity bits are sent from Central Memory to the external device at the 
same time as the data bits and are held stable in the same way as the 
data bits. 

READY SIGNAL 

The Ready signal sent from Central Memory to the external device 
indicates data is present and can be sampled. A Ready signal is a pulse 
50 +8 nanoseconds wide (at 50% voltage points). The leading edge of the 
Ready signal can be used to time data sampling in the external device. 

RESUME SIGNAL 

The Resume signal is sent from the external device to Central Memory 
showing the parcel was received and the external device is ready for the 
next parcel transmission. A Resume signal is a pulse 50 ±10 nanoseconds 
wide (at 50% voltage points). 

DISCONNECT SIGNAL 

The Disconnect signal is sent from Central Memory to the external device 
and indicates transmission from Central Memory is complete. The 
Disconnect signal is sent after Central Memory receives the Resume signal 
from the last Ready signal. A Disconnect signal is a pulse 50 ±8 
nanoseconds wide (at 50% voltage points). 

HR-0032 B-5 A 





I 

PERFORMANCE MONITOR 

INTRODUCTION 

The system contains a set of eight performance counters to track certain 
hardware related events that can be used to indicate relative 
performance. The events that can be tracked are the number of specific 
instructions issued, hold issue conditions, the number of fetches, 
references, etc. and are selected through instruction OOISjO. Table 
C-I lists all operations that can be monitored. 

C 

Performance monitoring instructions allow you to select specific hardware 
related events for monitoring, read the results of the performance 
monitors into a scalar register, and test the operation of the 
performance counters. 

The instructions used for performance monitoring are: 

OOlsjO Select performance monitor 

073ill Read performance counter into si 

073i21 Increment performance counter (maintenance) 

All instructions are executed in monitor mode. 

SELECTING PERFORMANCE EVENTS 

Instruction OOISjO selects for monitoring one of the four groups of 
hardware related events shown in table C-I and clears all performance 
monitors. The low-order 2 bits of the j field selects the group. 

During each CP in non-monitor (user) mode, the performance counters 
advance their totals according to the number of monitored events that 
occur. Each of the performance counters can increment at a maximum rate 
of +3 per CP. This allows a counter to continuously monitor for 
approximately 62 hours before it is reset. 

Performance events are monitored only while operating in user 
(non-monitor) mode. Entering monitor mode disables advancing of the 
performance counters. 

HR-0032 C-I A 



I 

Monitor 
Function 

j=O 

j=l 

j=2 

j=3 

HR-0032 

Table C-l. Performance counter group descriptions 

Performance 
Counter 

o 
1 
2 
3 
4 
5 
6 
7 

o 
1 
2 
3 
4 
5 
6 
7 

o 
1 
2 
3 
4 
5 
6 
7 

o 
1 
2 
3 
4 
5 
6 
7 

Description 

Number of: 
Instructions issued 
CPs holding issue 
Fetches 
I/O references 
CPU references 
Floating-point add operations 
Floating-point multiply operations 
Floating-point reciprocal operations 

Hold issue conditions: 
Semaphores 
Shared registers 
A registers 
S registers 
V registers 
V functional units 
Scalar memory 
Block memory 

Number of: 
Fetches 
Scalar references 
Scalar conflicts 
I/O references 
I/O conflicts 
Block references 
Block conflicts 
Vector memory references 

Number of: 
000 - 017 instuctions 
020 - 137 instructions 
140 - 157, 175 instructions 
160 - 174 instructions 
176, 177 instructions 
Vector integer operations 
Vector floating point operations 
Vector memory references 

C-2 

Increment 
Per CP 

+1 
+1 
+1 
+1 
+3 max 
+1 
+1 
+1 

+1 
+1 
+1 
+1 
+1 
+1 
+1 
+1 

+1 
+1 
+1 
+1 
+1 
+3 max 
+3 max 
+3 max 

+1 
+1 
+1 
+1 
+1 
+3 max 
+3 max 
+3 max 

A 



I 

READING PERFORMANCE RESULTS 

Performance counter totals can be read using instruction 073ill, which 
transmits either the high-order or low-order bits of a performance 
counter to the high-order bits of scalar register si according to the 
contents of the performance counter pointer. 

Entering monitor mode disables advancing of all performance counters and 
clears the performance counter pointer. The first execution of a 
073ill instruction reads the low-order bits of counter 0 into si and 
increments the performance counter pointer. The second 073ill 
instruction reads the high-order bits of counter 0 into si and again 
increments the pointer. After each 073ill instruction, the performance 
counter pointer is advanced by 1. Even values of the pointer select the 
low-order bits of a performance counter to be read into si; odd values 
of the pointer select the high-order bits of the performance counter to 
be read. 

Low-order bits 0 through 25 of the performance counter are read into bits 
32 through 57 of si. High-order bits 26 through 45 of the performance 
counter are read into bits 38 through 57 of si. 

A sequence for reading a set of performance counters appears as follows 
(there must be a 2 CP delay between sequential 073ill instructions): 

073ill 
2 CP delay 
073ill 
2 CP delay 
073ill 
2 CP delay 
073ill 
2 CP delay 

Low-order bits of counter 0 to si 

High-order bits of counter 1 to si 

Low-order bits of counter 1 to si 

High-order bits of counter 2 to si 

TESTING PERFORMANCE COUNTERS 

Instruction 073i2l is used to test the operation of the performance 
counters by incrementing the value stored in the counter while in monitor 
mode. 

Entering monitor mode disables advancing of all performance counters by 
user programs and clears the performance counter pointer. This pointer 
determines which performance counter, and which bits in that counter, 
will be incremented. Even values of the pointer increment bits 0 arid 6 

HR-0032 C-3 A 



I 

of the performance counter when instruction 073i21 is executed, odd 
values of the pointer increment bit 26. The pointer is advanced from 
even to odd and to the next counter through instruction 073ill. 

There must be a I CP delay between sequential 073i21 instructions. 

Execution of instruction 073i21 loads register si with all ones as a 
side effect of the basic 073 instruction. 

HR-0032 C-4 A 



I 

SECDED- MAINTENANCE MONITOR 

INTRODUCTION 

Modules involved with generating and interpreting the a-bit check byte 
used for SECDED include logic that can be used for verifying check bit 
storage, check bit generation, and error detection and correction. 

The instructions used for these maintenance mode functions are: 

001501 Set maintenance read mode 

001511 Load diagnostic check byte with Sl 

001521 Set maintenance write mode 1 

001531 Set maintenance write mode 2 

073i3l Clear all maintenance modes 

D 

These instructions are all executed in monitor mode, and for instructions 
0015xx, the maintenance mode switch (located on the mainframe's control 
panel) must be on or the instructions become no-ops. 

VERIFICATION OF CHECK BIT STORAGE 

To verify the storage ability of the SECDED check bits without moving 
memory modules, two instructions are used: 001501 and 001521. 

The maintenance write mode 1 instruction, 001521, replaces the a check 
bits generated by the SECDED circuitry with specific bits of a data word 
as it is written into memory. The maintenance read mode instruction, 
001501, complements the write instruction by replacing the same bits of a 
data word with the 8 check bits as it is read from memory. 

By using the instructions together (and with error correction disabled 
through the switch on the mainframe's control panel), specified bits of a 
data word are stored and read back through the check bit storage paths 
and verification of SECDED check bit storage operation is accomplished. 

HR-0032 D-l A 



I 

Instruction 001521, maintenance write mode 1, and 001501, maintenance 
read mode, replace data bits with check bits and vice versa as shown 
below. 

Data bit 
46 

Check bit 
o 

47 1 
62 2 
63 Read-----~ 3 
14 ~---Write 4 
15 5 
30 6 
31 7 

VERIFICATION OF CHECK BIT GENERATION 

The maintenance read mode instruction, 001501, is used to verify the 
correct generation of SECDED check bits for a word of data. 

When the instruction is executed, the 8 check bits for SECDED replace 
specific data bits as the word is read into memory, as shown above. A 
test program can easily extract these check bits and verify their 
correctness, thus checking the accuracy of the SECDED check bit circuitry. 

Since the CPU replaces the data bits with check bits on all reads to 
memory until instruction 073i31 is executed (including fetch, scalar 
and vector reads, and I/O for the CPU), the test program should initially 
rewrite all of memory using the 001501 instruction to set up the SECDED 
check bits for a subsequent read by fetch or I/O. 

Error correction must be disabled during this test. 

VERIFICATION OF ERROR DETECTION AND CORRECTION 

The maintenance write mode 2 instruction, 001531, and the load diagnostic 
check byte with Sl instruction, 001511, are used to verify operation of 
the SECDED circuitry. 

HR-0032 D-2 A 



I 

To verify operation, a diagnostic check byte is initially loaded with the 
high-order bits of register 81 through instruction 001511 as shown below: 

Sl bit 
56 
57 
58 
59 
60 
61 
62 
63 

Diagnostic 
check bit 

o 
1 
2 
3 
4 
5 
6 
7 

This diagnostic check byte is then written into memory in place of the 
normal SECDED check bits on any subsequent CPU write to memory (writes 
from I/O through this CPU are not affected). With error correction 
enabeled (through the switch on the mainframe's control panel), a 
subsequent read of the memory location allows different paths within the 
error detection and correction circuitry to be checked out. 

The diagnostic check byte retains its value until a new one is entered. 

CLEARING MAINTENANCE MODE FUNTIONS 

Instruction 073i3l, clear all maintenance modes, clears the following 
maintenance mode instructions: 

001501 Set maintenance read mode 

001521 Set maintenance write mode 1 

001531 Set maintenance write mode 2 

A Master Clear also clears the instructions. 

As a side effect of the 073i31 instruction, si is loaded with all 
ones. 

HR-0032 D-3 A 









INDEX 

I-Parcel instruction format 
with combined j and k fields, 5-2 
with discrete j and k fields, 5-1 

100 Mbyte per second channel, 2-16 
1250 Mbyte channel, 2-14 
16-bank phasing, 2-8 
2-Parcel instruction format 

with combined i, j, k, and m fields, 5-3 
with combined j, k, and m fields, 5-2 

6 Mbyte per second channels, 2-16, B-1 
I/O interrupts, 2-18 
I/O program flowchart, 2-19 
data bits, B-1 
descriptions, B-1 
input channel error conditions, 2-20 
input channel programming, 2-19 
input signal sequence, B-1 
instructions, 2-16 
multi-CPU programming, 2-17 
operation, 2-18 
output channel programming, 2-20 
output signal sequence, B-3 
word assembly/disassembly, 2-18 

8-bit status register, 4-8 
A registers, see Address registers 
Access conflicts, shared registers, 2-13 
Access prior~ties for memory, 2-7 
Access time, memory, 2-1 
Active exchange package, 3-13 
Addition algorithm, 4-27 
Addition, floating-point, 4-28 
Address Add "functional unit, 4-15 
Address assembly, 2-3 
Address functional units, 4-14 
Address Multiply functional unit, 4-15 
Address processing, 4-1 
Address registers, 4-3 
Addressing, memory, 2-3, 2-4 
Algorithm 

addition, 4-27 
derivation of division, 4-31 
division, 4-22 
multiplication, 4-28 

AND function, 4-35 
Arithmetic operations 4-21 
Auxiliary I/O processor (XIOP), 1-9 

B registers, see Intermediate registers 
Beginning address registers, 3-3 
Bank phasing, 2-2, 2-8 
Bidirectional Memory Mode flag, 3-10 
Bidirectional memory references, 2-5 

HR-0032 Index-l 

Block reads and writes, concurrent, 2-5 
Block transfer references, 2-5 
Branching within buffers, 3-4 
Buffer I/O processor (BIOP), 1-9 
Buffers, instruction, 3-3 

CA register, see Cu~rent Address register 
Central Memory 

access, 2-4 
access priorities, 2-7 
access time, 2-1 
addressing l2-column mainframe, 2-4 
addressing, 6-column mainframe, 2-3 
banks, 2-1 
cycle time, 2-1 
error correction, 2-8 
I/O access priority, 2-7 
inter-CPU access priority, 2-7 
organization, 2-2 
ports, 2-4 
reference, 2-6 
size, 1-1 
transfer rates, 2-1 
word size, 2-1 

Central Processing Unit 
computation section characteristics, 4-2 
control and data paths, 1-6 
input/output section, 2-14 
instruction format, 5-1 
instructions, 5-1 
overview, 1-5 
shared resources, 2-1 
speed, 1-3 

Channel 
100 Mbyte per second, 2-16, B-1 
1250 Mbyte, 2-14 
6 Mbyte per second, 2-16 
features, 2-15 
groups, 2-24 
I/O control, 2-22 
input/output data paths, 2-23 
numbers, 2-24 
types, 2-14 

Channel Limit register (CL), 2-16 
Channels for I/O, 2-6 
Characteristics of system, 1-3 
Check bits, 2-9 
CIP register, see Current Instruction 

Parcel register 
CL register, See Channel Limit register 
Clear programmable clock interrupt request, 

3-20 

A 



CLN register, see C1uster Number register 
Clock 

programmable, 3-19 
real-time, 2-10 

Clock period, 1-4 
Cluster number register (CLN), 2-11 
Communication, inter-CPU, 2-11 
Computation section, 4-1 
Concurrent reads and writes, block, 2-5 
Condensing units, 1-13 
Configurations of system, 1-16 
Conflict, memory access, 2-7 
Control and data paths of CPU, 1-6 
Control, inter-CPU, 2-11 
Conventions, notational, 1-4 
Correctable Memory Error Mode flag, 3-10 
CP, see clock period 
CPU, see Central Processing Unit 
CPO operating registers 

A registers, 4-3 
address registers, 4-3 
B registers, 4-5 
S registers, 4-6 
scalar registers, 4-6 
T registers, 4-8 
V registers, 4-9 
Vector ~egisters, 4-9 

CSB - read address, 3-8 
Current Address register (CA), 2-16 
Current Instruction Parcel register (CIP), 

3-2 
Cycle time, memory, 2-1 

Data Base Address register (DBA), 3-18 
Data formats 

integer, 4-22 
floating-point, 4-23 

Data Limit Address register (DLA), 3-18 
DBA register, see Data Base Address register 
Deadstart sequence, 3-21 
Derivation of the division algorithm, 4-31 
Disk control unit, 1-11 
Disk I/O processor (DIOP), 1-9 
Disk storage units, 1-11 
Division algorithm, 4-22, 4-30 
DLA register, see Data Limit Address 

register 
Double-precision numbers, 4-27 

E - error type, 3-8 
Error correction, see SECDED 
Exchange 

initiated by deadstart sequence, 3-14 
initiated by interrupt flag set, 3-14 
initiated by program exit, 3-14 
sequence issue conditions, 3-15 
sequence, 3-13 

Exchange Address (XA) register, 3-5 
Exchange mechanism, 3-5 
Exchange package, 3-5 

active, 3-13 
assignments, 3-7 
contents, 3-5 

HR-0032 Index-2 

Exchange package, (continued) 
enable Second Vector Logical, 3-8 
management, 3-15 
memory error data, 3-8 
processor number, 3-7 
vector not used (VNU), 3-7 

Exchange package registers 
A registers, 3-12 
Cluster Number register, 3-12 
Exchange Address register, 3-9 
Flag register, 3-11 
Memory Field registers, 3-13 
Mode register, 3-9 
Program Address register, 3-13 
Program State register, 3-12 
S registers, 3-12 

Exchange request, memory ports, 2-6 
Exclusive NOR function, 4-36 
Exclusive OR function, 4-36 
Execution interval, 3-13 
Exponent matrix for floating-point multiply 

unit, 4-25 
External Interrupts flag, 3-10 

F register, see Flag register 
Fetch 

following scalar store, 2-6 
request, 2-6 

Flag register, exchange package, 3-11 
Flags 

Bidirectional Memory Mode, 3-10 
Correctable Memory Error Mode, 3-10 
Exchange register flags, 3-11 
External Interrupts, 3-10 
Floating-point Error Mode, 3-10 
Monitor Mode, 3-10 
Operand Range Error Mode, 3-10 
Operand Range Error, 3-18 
Program Range Error, 3-18 
Semaphore, 3-9 
Uncorrectable Memory Error Mode, 3-10 

Floating-point 
Add functional unit, 4-20 
add functional unit range error, 4-24 
addition, 4-28 
arithmetic, 4-22 
data format, 4-23 
Error Mode flag, 3-10 
exponent matrix, 4-25 
functional units, 4-20 
integer multiply, 4-27 
Multiply functional unit, 4-20 
multiply functional unit out-of-range 

conditions, 4-25 
multiply partial-product sums pyramid, 

4-29 
normalized numbers, 4-24 
range errors, 4-24 
range overflow, 4-24 
reciprocal approximation functional 

unit range error, 4-27 
subtraction, 4-27 

A 



Floating-point arithmetic, 4-22 
exponent range, 4-23 
underflow, 4-23 

Functional units, 4-14 
address, 4-14 
Address Add, 4-15 
Address Multiply, 4-15 
Floating-point, 4-20 
Floating-point Add, 4-20 
Floating-point Multiply, 4-20 
Full vector Logical, 4-18 
Reciprocal Approximation, 4-21 
scalar, 4-15 
Scalar Add, 4-15 
Scalar Logical, 4-16 
Scalar Population/parity/Leading Zero, 

4-16 
Scalar Shift, 4-16 
Second Vector Logical, 4-18 
vector, 4-16 
Vector Add, 4-17 
vector Population/parity, 4-19 
Vector Shift, 4-17 
vector reservation, 4-17 

g field, 5-1 
Group descriptions, performance counter, C-2 

h field, 5-1 

i field, 5-1 
I/O channels, 2-6 
I/O memory 

access, 2-21 
access priority, 2-7 
addressing, 2-25 
conflicts, 2-24 
lockout, 2-24 
request conditions, 2-25 

I/O processors, types of, 1-9 
I/O Subsystem, data transfer, 2-16 
IBA register, see Instruction Base Address 
register 
IOl, see Interrupt Countdown counter 
II register, see Interrupt Interval register 
lLA register, see Instruction Limit Address 
register· 
In-buffer condition, 3-4 
Inclusive OR function, 4-36 
Instruction 

descriptions, 5-6 
issue, 5-5 
sUDllD8ry, A-l 

Instruction Base Address register, 3-17 
Instruction buffers, 3-3 
Instruction fetch 

following scalar store, 2-6 
request, 2-6 

Instruction format 
l-Parcel with combined j and k fields, 

5-2 

HR-0032 Index-3 

Instruction format (continued) 
I-Parcel with discrete j and k fields, 

5-1 
2-Parcel with combined i, j, k, and m 

fields, 5-3 
2-Parcel with combined j, k, and m 

fields, 5-2 
Instruction issue 

and control elements, 3-1 
to memory ports, 2-5 

Instruction Limit Address register (ILA), 
3-17 

Instruction parcel, 3-1 
Instructions, general form for, 5-1 
Integer arithmetic, 4-21 
Integer data formats, 4-22 
Inter-CPU 

communication and control, 2-11 
memory access priority, 2-7 

Interfaces, 1-7 
Intermediate registers, 4-3 
Interrupt Countdown Counter (IOl), 3-20 
Interrupt Interval register (II), 3-19 
Issue, 3-2 

j field, 5-1 

k field, 5-1 

Logical operations 
AND function, 4-35 
exclusive NOR function, 4-36 
exclusive OR function, 4-36 
inclusive OR function, 4-36 
mask, 4-36 

Lower Instruction Parcel register (LIP), 3-3 

m field, 5-1 
M register, see Mode register 
Managing Exchange package, 3-5 
Mask operation, 4-36 
Mass storage, 1-11 
Master Clear sequence, to external device, 

2-21 
Master I/O processor (MIOP), 1-9 
Memory, see Central Memory 
Memory access conflicts 

bank busy, 2-7 
section access, 2-7 
simultaneous bank, 2-7 

Memory bank conflicts, 2-24 
Memory data path with SECDED, 2-8 
Memory error data fields, 3-8 
Memory field protection, 3-16 
Memory reference conflict resolution, 2-7 
Mode register (M), 3-8 
Monitor Mode flag, 3-10 
Motor-generator units, 1-15 
Multi-CPU programming of 6 Mbyte per second 

channels, 2-17 

A 



Multiplication algorithm, 4-28 
Multiply pyramid, 4-28 

Newton's method, 4-30 
Next Instruction Parcel register (NIP), 3-2 
Normalized floating-point numbers, 4-23 
Notation conventions, 1-4 

Operand 
range error, 3-19 
Range Error flag, 3-19 
Range Error Mode flag, 3-10 

Operating registers, see CPU operating 
registers 

Organization of system, 1-5 
Organization, memory, 2-2 
Out-of-buffer condition, 3-4 

P register, see Program Address register 
Parallel vector operations, 4-11 
Parity error, 2-20 
Performance counter group descriptions, C-2 
Performance events, selecting, C-l 
Performance monitor, 3-20 

instructions, C-l 
Physical dimensions of system, 1-3 
PN, see Processor number 
Power distribution units, 1-14 
Processor Number (PH), 3-7 
Program 

Address register (P), 3-2 
range error, 3-18 
Range Error flag, 3-18 
State register (PS), 3-11 

Programmable clock, 3-19 
Programmed Master Clear to external device, 

2-21 

R - read mode, 3-8 
Read address, 3-8 
Read mode, 3-8 
Reading performance results, C-3 
Real-time clock, 2-10 
Real-time Clock register (RTC), 2-10 
Reciprocal Approximation functional unit, 

4-21 
Reciprocal Approximation functional unit 

iterations, 4-33 
References, memory, 2-5 
Registers 

8-bit status, 4-8 
Address (A), 4-3 
Beginning Address, 3-3 
Channel Limit (CL), 2-16 
Cluster Number (CLN), 2-11 
Current Address (CA), 2-16, 2-25 
Current Instruction Parcel (CIP), 3-2 
Data Base Address, 3-18 
Data Limit Address, 3-18 
Exchange Address (XA), 3-5 

HR-0032 Index-4 

Registers (continued) 
Exchange, see Exchange registers 
Flag (F), 3-11 
Instruction Base Address, 3-17 
Instruction Limit Address, 3-17 
Intermediate, 4-3 
Interrupt Interval, 3-19 
Limit Address (CL), 2-16, 2-25 
Lower Instruction Parcel (LIP), 3-3 
Mode (M), 3-8 
Next Instruction Parcel (NIP), 3-2 
operating, see CPU operating registers 
Program Address, 3-2 
Program State (PS), 3-12 
Real-time Clock register, 2-10 
scalar registers (5), 4-6 
Semaphore, 2-12 
shared, 2-11 
Shared Address, 2-12 
Shared Scalar, 2-12 
Vector Length, 4-13 
Vector Mask, 4-13 

RTC register, see Real-time Clock register 

S - syndrome, 3-8 
S registers, see Scalar registers 
SB registers, see Shared Address registers 
Scalar 

Add functional unit, 4-15 
functional units, 4-15 
Logical functional unit, 4-16 
memory references, 2-5 
registers (S), 4-6 
Population/Parity/Leading Zero 

functional unit, 4-16 
Shift functional unit, 4-16 

SECDED, 2-8 
SECDED maintenance functions 

instructions, D-1 
verification of check bit storage, D-l 
verification of check bit generation, 

D-2 
verification of error detection and 

correction, D-2 
Second Vector Logical unit enable/disable, 

4-18 
Second Vector Logical/Floating-point 

Multiply input, output data paths, 4-19 
Selecting performance events, C-l 
Semaphore flag, 3-9 
Semaphore registers, 2-12 
Shared 

address registers, 2-12 
register access conflicts, 2-13 
registers, 2-11 
resources of CPU, 2-1 
scalar registers, 2-12 

SM registers, see Semaphore registers 
Solid-state Storage Device, 1-12 

data transfer, 2-15 
Special register values, 5-4 
ST registers, see Shared Scalar registers 
Status register, 4-8 

A 



Syndrome, 2-9, 3-8 
System 

basic organization, 1-5 
characteristics, 1-3 
configurations, 1-16 
physical dimensions of, 1-3 

T registers, see Intermediate scalar 
registers 
Testing performance counters, C-3 
Time slot, 2-21 
Transfer rates, memory, 2-1 
Twos complement integer arithmetic, 4-22 

Uncorrectable Memory Error Mode flag, 3-10 
Unexpected Ready signal, 2-20 

V registers, see Vector registers 
V register reservations and chaining, 4-12 
Vector 

Add functional unit, 4-17 
Length register, 4-13 
logical functional units, 4-16 
Mask register (VM), 4-13 
Population/Parity functional unit, 4-19 
processing, 4-1 
register as result and operand 

register, 4-13 
regist~r parallel operations, 4-11 
Shift functional unit, 4-17 

VL register, see Vector Length register 
VM register, see Vector Mask register 
VNU - vector not used, 3-7 

Word assembly/disassembly for 6 Mbyte per 
second channel, 2-18 

Word size, memory, 2-1 

XA register, see Exchange Address register 
XIOP, see Auxiliary I/O processor 

HR-0032 Index-S A 





READERS COMMENT FORM 

CRAY X-MP Series Models 22 and 24 Mainframe Reference Manual HR-0032 A 

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided 
below to share with us your comments. When possible, please give specific page and paragraph references. 

NAME ______________________________________ __ 

JOB TITLE _______________ ----
c=li=li ...... ..." FIRM ________________________ -----__ --__ __ 
~ESEA~CHJ INC. 

ADDRESS _________________________ ___ 

CITY_-_______ STATE ___ ZIP ___ -



FOLD 

FOLD 

- - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - ---4 

Attention: 
PUBLICATIONS 

111111 

BUSINESS REPLY CARD 
fiRST CLASS PERMIT NO 6184 ST PAUl. MN 

POST AGE WILL BE PAID BY AI'lORESSEE 

O~~ 
- • Is 4fT 
~ESEA~CH, INC. 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

1440 Northland Drive I 
Mendota Heights, MN 55120 I 
U.S.A. I 

----------------------------------------, 

STAPLE 

o 
C 
-4 
:.. 
r o 
Z 
Cl 
-4 
1: 
c;; 
C 
Z 
m 



READERS COMMENT FORM 

CRAY X-MP Series Models 22 and 24 Mainframe Reference Manual HR-0032 A 

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided 
below to share with us your comments. When possible, please give specific page and paragraph references. 

NAME ____________________________________ ___ 

JOB TITLE __________________ _ c=1,=li .... ....., 
FIRM ________ - _____________ ~---__ ------ RESEARCH, INC. 
ADDRESS __________ --------_____________ __ 

CITY_--__________ STATE ___ ZIP ___ -



FOLD 

Attention: 
PUBLICATIONS 

FOLD 

111111 

BUSINESS REPLY CARD 
fiRST CLASS PERMIT NO 6184 S1 PAUL. MN 

POST AGE Will BE PAlO BY AI)DRESSEE 

I=1ESEAI=1CH) INC. 

1440 Northland Drive 
Mendota Heights, MN 56120 
U.S.A. 

In c 
I~ ,.. 
I~ 

G') 

I ... 
:I: 

I en 
~ 

I~ 

I 

I 

-----~ 
NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

----------------------------------------, 

STAPLE 



c: 
RESEARCH, INC. 

Any shipment to a country outside of the 
United States requires a U.S. Government 
export license. 

CRAY COMPUTER SYSTEMS 

CRAY X-MP SERIES 
MODEL 48 

MAINFRAME REFERENCE MANUAL 

HR-0097 

Copyright© 1984 by CRAYRESEARCH, INC. This manual or 
parts 'thereof may not be reproduced in any form without 
permission of CRAY RESEARCH, INC. 



PREFACE 

This publication describes the CRAY X-MP Series Model 48 Computer 
System. It is written to assist programmers and engineers and assumes a 
familiarity with digital computers. 

The manual describes the overall computer system, its configurations, and 
equipment. It also describes the operation of the Central Processing 
Units that execute instructions, provide memory protection, report 
hardware exceptions, and provide interprocessor communications within the 
system. 

Details of the I/O Subsystem, the disk storage units, and the Solid-state 
Storage Device are given in the following publications: 

HR-0030 
HR-0630 
HR-003l 

I/O Subsystem Hardware Reference Manual 
Mass Storage Subsystem Hardware Reference Manual 
Solid-state Storage Device (SSD®) Reference Manual 

HR-0097 

/////////////////////////////////////////////////////// 

WARNING 

This equipment generates, uses, and can radiate radio 
frequency energy and if not installed and used in 
accordance with the instructions manual, may cause 
interference to radio communications. It has been 
tested and found to comply with the limits for a Class 
A computing device pursuant to Subpart J of Part 15 of 
FCC Rules, which are designed to provide reasonable 
protection against such interference when operated in a 
commercial environment. Operation of this equipment in 
a residential area is likely to cause interference in 
which case the user at his own expense will be required 
to take whatever measures may be required to correct 
the interference. 

/////////////////////////////////////////////////////// 

iii 



CONTENTS 

PREFACE 

1. 

2. 

SYSTEM DESCRIPTION 

INTRODUCTION 
CONVENTIONS • 

Italics • 
Register conventions 
Number conventions 
Clock per iod 

SYSTEM COMPONENTS • 
Central Processing Units 
Interfaces 
I/O Subsystem • 
Disk storage units 
Solid-state Storage Device 
Condensing units 
Power distribution ~nits 
Motor-generator units • 

SYSTEM CONFIGURATION 

CPU SHARED RESOURCES 

INTRODUCTION 
CENTRAL MEMORY 

Memory organization 
Memory addressing • 
Memory access • 

Conflict resolution 

• 

Bank Busy conflict 
Simultaneous Bank conflict 
Section Access conflict • 

Memory access priorities • 
Memory error correction • 

INTER-CPU COMMUNICATION SECTION • 
Real-time clock • 
Inter-CPU communication and control • 

Shared Address and Shared Scalar registers • 
Semaphore registers 
Shared register and semaphore conflicts 

HR-0097 v 

iii 

1-1 

1-1 
1-1 
1-1 
1-3 
1-4 
1-4 
1-4 
1-5 
1-7 
1-8 
1-10 
1-11 
1-13 
1-14 
1-15 
1-16 

2-1 

2-1 
2-1 
2-2 
2-3 
2-3 
2-5 
2-6 
2-6 
2-6 
2-6 
2-6 
2-9 
2-9 
2-10 
2-11 
2-11 
2-12 



4. 

EXCHANGE MECHANISM (continued) 
Exchange initiated by interrupt flag set • 
Exchange initiated by program exit • 
Exchange sequence issue conditions • 

Exchange package management • 
MEMORY FIELD PROTECTION 

Instruction Base Address register 
Instruction Limit Address register 
Data Base Address register 
Data Limit Address register • 
Program range error • 
Operand range error • 

PROGRAMMABLE CLOCK 
Instructions 
Interrupt Interval register • 
Interrupt Countdown counter • 
Clear programmable clock interrupt request 

PERFORMANCE MONITOR 
DEADSTART SEQUENCE 

CPU COMPUTATION SECTION • 

INTRODUCTION 
OPERATING REGISTERS • 
ADDRESS REGISTERS • 

A registers • 
B registers • 

SCALAR REGISTERS 
S registers • 
T registers • 

VECTOR REGISTERS 
V registers • 

.. 

.' 
V register reservations and chaining • 

Vector control registers 
Vector Length register • 
Vector Mask register • 

FUNCTIONAL UNITS 
Address functional units 

Address Add functional unit 
Address Multiply functional unit • 

Scalar functional units • 
Scalar Add functional unit • 
Scalar Shift functional unit • 
Scalar Logical functional unit • 
Scalar Population/Parity/Leading Zero 
functional unit 

Vector functional units • 
Vector functional unit reservation • 

HR-0097 vii 

3-14 
3-14 
3-15 
3-15 
3-16 
3-17 
3-17 
3-18 
3-18 
3-18 
3-19 
3-19 
3-19 
3-19 
3-20 
3-20 
3-20 
3-21 

4-1 

4-1 
4-3 
4-3 
4-3 
4-5 
4-6 
4-6 
4-8 
4-9 
4-9 
4-12 
4-13 
4-13 
4-13 
4-13 
4-14 
4-14 
4-14 
4-15 
4-15 
4-15 
4-16 

4-16 
4-16 
4-16 



B. 

C. 

D. 

6 MBYTE PER SECOND CHANNEL DESCRIPrIONS . . . . . . . . . . . . 
INTRODUCTION • • • • • • .- • • • • • • • • • • • • • • • • 
6 MBYTE PER SECOND INPUT CHANNEL SIGNAL SEQUENCE • • • • 

Data bits 20 through 215 • • • • • • • 
Parity bits 0 through 3 • • • • • • • • • 
Ready signal •• 
Resume signal 
Disconnect signal • • • 

6 MBYTE PER SECOND OUTPUT CHANNEL SIGNAL SEQUENCE •• 
Data bits 20 through 215 •••••••••• 
Parity bits 0 through 3 • • • • • • 
Ready signal • • 
Resume signal • • • • • • • • • • • • • • • 
Disconnect signal • • • • • • • • • • 

PERFORMANCE MONITOR . . . . . . . . . . . . . . . . . . . . . . 
INTRODUCTION . . . . . . . . 
SELECTING PERFORMANCE EVENTS 
READING PERFORMANCE RESULTS • • 
TESTING PERFORMANCE COUNTERS 

SECDED MAINTENANCE FUNCTIONS 

INTRODUCTION 
VERIFICATION OF CHECK B.IT STORAGE • • 
VERIFICATION OF CHECK BIT GENERATION 

. . . . . . . . . . 
. . . 

VERIFICATION OF ERROR DETECTION AND CORRECTION 
CLEARING MAINTENANCE MODE FUNCTIONS •••••• 

FIGURES 

1-1 CRAY X-MP Model 48 mainframe with a Cray I/O Subsystem 

1-2 

1-3 
1-4 
1-5 
1-6 
1-7 
1-8 
1-9 
1-10 
1-11 

1-12 

2-1 

and an SSD • • • • • • • • • • • • • • • 
Basic organization of the 
4-processor system • • • • • • • • • • • • 
Control and data paths for a single CPU 
Typical interface cabinet 
I/O Subsystem chassis 
DD-29 Disk Storage Unit • • • • 
Solid-state Storage Device chassis • 
Condensing unit •• • • • • 
Power distribution units • • 

. . . . . . 
Motor-generator equipment • • • 

. . . . . . . . . . . . . . . . . 
. . . . . 

. . . . . 
Block diagram of the four-processor system with 
full disk capacity • • • • • • • • • • • • 
Block diagram of the four-processor system with 
block multiplexer channels • • • • • • • • • • • • • • • • • • 
Central Memory organization for a 
4-processor system • • • • • • • • • • • • • • • • • • • • • • 

HR-0097 ix 

B-1 

B-1 
B-1 
B-1 
B-2 
B-3 
B-3 
B-3 
B-3 
B-4 
B-5 
B-5 
B-5 
B-5 

C-l 

C-l 
C-l 
C-3 
C-3 

D-l 

D-l 
D-l 
D-2 
D-2 
D-3 

1-2 

1-5 
1-6 
1-8 
1-9 
1-11 
1-12 
1-13 
1-14 
1-15 

1-16 

1-17 

2-2 



SYSTEM DESCRIPTION 

INTRODUCTION 

The CRAY X-MP model 48 Computer System is a powerful, general purpose 
machine that contains four central processing units (CPOs). Like all 
CRAY X-MP multiprocessor systems, it is able to achieve extremely high 
multiprocessing rates by efficiently using the scalar and vector 
capabilities of all CPUs combined with the system's random-access 
solid-state memory (RAM) and shared registers. 

Vector processing is the performance of iterative operations on sets of 
ordered data. When two or more vector operations are chained together, 
two or more operations can be executing each 9.5-nanosecond clock period, 
greatly exceeding the computational rates of conventional scalar 
processing. Scalar operations complement the vector capability by 
providing solutions to problems not readily adaptable to vector 
techniques. 

The machine has very high performance levels, and equipment options allow 
systems to be configured for a particular use. Central Memory of the 
4-processor mainframe is 8 million 64-bit words (see table 1-1). The 
system is compatible with all existing models of the Cray I/O Subsystem 
and its associated mass storage subsystem. In addition, an optional 
high-performance Cray Solid-state Storage Device (SSD) can be attached to 
the mainframe. Figure 1-1 illustrates the mainframe with a Cray I/O 
Subsystem and an SSD. 

This section describes system components and configurations. Table 1-1 
gives overall system characteristics. 

CONVENTIONS 

The following conventions are used in this manual. 

ITALICS 

Italicized lowercase letters, such as J~, indicate variable information. 

HR-0097 1-1 

1 



Table 1-1. CRAY X~P 4-processor system characteristics 

Configuration - Mainframe with 4 Central Processing Units (CPOs) 
- I/O Subsystem with 2, 3, or 4 I/O Processors 

CPU speed 

Memory 

- Optional Solid-state Storage Device (SSD) 

- 9.5 ns CPU clock period 
- 105 million floating-point additions per second per CPU 
- 105 million floating-point multiplications per second 

per CPU 
- 105 million half-precision floating-point divisions per 

second per CPU 
- 33 million full-prectsion floating-point divisions per 

second per CPU 
- Simultaneous floating-point addition, multiplication, 

and reciprocal approximation within each CPU 

- Mainframe has 8 million (model 48) 64-bit words in 
Central Memory 

Input/Output - Two 1250 Mbyte per second channel pairs for interface 
to Solid-state Storage Device (SSD) 

Physical 

- Four 100 Mbyte per second channel pairs for interface 
to I/O Subsystem 

- Four 6 Mbyte per second channel pairs 

- 64 sq ft floor space for mainframe 
- 15 sq ft floor space for I/O Subsystem 
- 15 sq ft floor space for SSD 
- 5.65 tons, mainframe weight 
- 1.5 tons, I/O Subsystem weight 
- 1.5 tons, SSD weight 
- Liquid refrigeration of each chassis 
- 400 Hz power from motor-generators 

REGISTER CONVENTIONS 

Parenthesized register names are used frequently in this manual as a form 
of shorthand notation for the expression "the contents of register ---." 
For example, -Branch to (P)" means "Branch to the address indicated by the 
contents of register P." 

HR-0097 1-3 



CENTRAL PROCESSING UNITS 

Each CPU has independent control and computation sections. All CPOs share 
Central Memory and the inter-CPU communication and I/O sections. (CPU 
sections are described in later sections.) Figure 1-2 shows the mainframe 
chassis. Figure 1-2 illustrates the basic organization of the computerJ 
figure 1-3 illustrates the components and control and data paths of each 
CPU in the system. 

CPU COMMUNICATION 
CONTROL SECTION SECTION CONTROL SECTION 

• Instruction • Shared registers • Instruction 
buffers buffers 

• Semaphore 

• Control registers • Control 
registers registers 

• Real-time Clock 

• Exchange register • Exchange 
mechanism mechanism 

- • Interrupt / ~ • Interrupt ---
• Programmable COMPUTATION COMPUTATION • Programmable 

clock SECTION SECTION clock 

• Status ~ • Registers • Register - • Status 
register register 

• Functional • Functional 
units units 

t-------
MEMORY SECTION 

8 million 
64-bit words 

r-----
CONTROL SECTION CONTROL SECTION 

• Instruction • Instruction 
buffers buffers 

• Control • Control 
registers registers 

• Exchange • Exchange 
mechanism mechanism 

• Interrupt • Interrupt 

• Programmable COMPUTATION COMPUTATION • Programmable 
clock SECTION SECTION clock 

• Status ---- • Registers • Register f---- • Status 
register register 

• Functional • Functional 
units units 

I I/O SECTION I 
• Four 6 Mbyte per second channel pairs 

• Two 1250 Mbyte per second channel pairs 

• Four 100 Mbyte per second channel pairs 

Figure 1-2. Basic organization of the 4-processor system 

HR-0097 1-5 



INTERFACES 

The Cray system is designed ~or use with front-end computers in a 
computer network. A front-end computer system is self contained and 
executes under the control of its own operating system. 

Standard interfaces connect the Cray mainframe's I/O channels to channels 
of front-end computers, providing input data to the Cray system and 
receiving output from it for distribution to peripheral equipment. 
Interfaces compensate for differences in channel widths, machine word 
size, electrical logic levels, and control signals. (The Master I/O 
Processor of the I/O Subsystem communicates with the mainframe through a 
6 Mbyte per second channel pair to a channel adapter module in the Cray 
mainframe.) Communication continues through a front-end interface, to 
the front-end computer typically through a front-end computer I/O channel. 

The front-end interface is housed in a stand-alone cabinet (figure 1-4) 
located near the host computer. Its operation is invisible to the 
front-end computer user and the Cray user. 

A primary goal of the interface is to maximize the use of the front-end 
channel connected to the Cray system. Since the MIOP channel connected 
to the interface is faster than any front-end channel connected to the 
interface, the burst rate of the interface is limited by the maximum rate 
of the front-end channel. 

Interfaces to front-end computers allow the front-end computers to 
service the Cray Computer System in the following ways: 

• As a master operator station 

• As a local operator station 

• As a local batch entry station 

• As a data concentrator for multiplexing several other stations 
into a single Cray channel 

• As a remote batch entry station 

• As an interactive communication station 

Peripheral equipment attached to the front-end computer varies depending 
on the use of the Cray system. 

HR-0097 ~7 



The Master I/O Processor ~MIOP) controls the front-end interfaces and the 
standard group of station peripherals. The Peripheral Expander 
interfaces the station peripherals to one direct memory access (DMA) port 
of the MIOP. The MIOP also connects to Buffer Memory and to the 

Figure 1-5. I/O Subsystem chassis 

t The term station means both hardware and software. Station is the 
link to the front end or can act as a limited front end (as the MIOP). 

HR-0097 1-9 



Each DSU has two accesses for connecting it to controllers. The second 
independent data path to each DSU exists through another Cray Research, 
Inc., controller. Reservation logic provides controlled access to each 
DSU. Dynamic sharing of devices is not supported by the Cray Operating 
System (COS) software. Further information about the mass storage 
subsystem is included in the I/O Subsystem Reference Manual, CRI 
publication HR-0030, and the Mass Storage Subsystem Hardware Reference 
Manual, CRI publication HR-0630. 

Figure 1-6. DD-49 Disk Storage Unit 

SOLID-STATE STORAGE DEVICE 

The Solid-state Storage Device (SSD) shown in figure 1-7 is used for 
temporary data storage and transfers data to and from the mainframe's 
Central Memory. The transfer speed is dependent on the SSD memory size 
and configuration as described in the Solid-state Storage Device (SSD) 
Reference Manual, CRI publication HR-003l. The maximum speed attained 
from the SSD to Central Memory is 1250 Mbytes per second for each 1250 
Mbyte channel. 

HR-0097 1-11 



Cray Research, Inc. 
Publications Department 
1440 Northland Drive 
Mendota Heights, ,MN 55120 
612-452-6650 
TLX 298444 


