
/) CPU MODULE (CPE1)

CPE1 MODULE 1

CPEI General Description. 1

Module Assembly Components . 2

ADDRESS AND SCALAR REGISTERS 7

Address Registers . 7

Entry Codes .. 9

A Register Memory References . 11

Special Register Values 11

Scalar Registers 13

Instruction Issue . 13

S Register Memory References. 13

Special Register Values 14

Lower/Upper Scalar Register Load 14

BAND T REGISTERS 15

ADDRESS AND SCALAR ADD 19

SCALAR LOGICAL 21

Address and Scalar Mask . 23

Transmit nm to Si, Si Upper, Si Lower 25

•

HTM-300-0 Cray Research Proprietary iii

ADDRESS/SCALAR POP/PARITY AND LEADING ZERO 27

ADDRESS REGISTER SHIFT 31

SCALAR SHIFT

Address Register Single Shift 32

Address Register Double Shift. 32

Address Register Shift Count Description 33

Address Register Left Single Shift 34

Address Register Right Single Shift 35

Address Register Left Double Shift . 36

Address Register Right Double Shift . 37

Left Single-shift Instruction . 38

Right Single-shift Instruction . 39

Left Double-shift Instruction . 40

Right Double-shift Instruction . 41

43

Scalar Single Shift 43

Scalar Double Shift 44

Scalar Shift Count Description 44

Scalar Left Single Shift 46

Scalar Right Single Shift 47

Scalar Left Double Shift 48

Scalar Right Double Shift 49

Left Single-shift Instruction . 50

Right Single-shift Instruction . 51

Left Double-shift Instruction. 52

Right Double-shift Instruction. 53

ADDRESS MULTIPLY 55

Multiply Algorithm 56

Standard Binary Multiplication 57

)

Booth Recode Multiplication . 57,_)

iv Cray Research Proprietary HTM-300-0

~)
INTEGER MULTIPLY 59

VECTOR REGISTERS 61

VECTOR LOGICAL

VECTOR ADD

VECTOR SHIFT

VB Option ... 63

Vector Length Register 63

Chaining . 64

VB Option ... 64

VN Option ... 65

VQ Option ... 65

Write Data Steering 66

Read Data Steering 68

91

Vector Logical Instructions 93

Vector Merge ... 93

Vector Mask . 96

Compressed Iota. 98

RE Option .. 99

101

105

Vector Shift Instructions 105

Vector Shift Count Description 106

Vector Right Shift 005400 151ijO 108

Vector Right Double Shift 153ijk .. 109

Vector Transfer 005400 152ijk .. 110

Vector Compress 005400 153ijO 110

Vector Expand 005400 153ij1 111

VECTOR POP/POP PARITY AND LEADING ZERO 113

Pop/Parity/Leading Zero Functional Units 115

HTM-300-0 Gray Research Proprietary v

Vector Population Count 174ij1 .. 115

Vector Population/Parity 174iJ2 .. 115

Vector Leading Zero Count 174ij3 115

Vector Population/Parity Instructions 116

GATHERISCATTERINSTRUCTIONS 117

Gather Instructions .. 117

Scatter Instructions .. 118

IEEE FLOATING-POINT OVERVIEW 119

IEEE Floating-point Number Examples 120

IEEE Terms .. 120

Rules of Operation for NaNs 121

Deviations from the IEEE Standard. .. 123

Special Operand Values 123

Floating-point Exception (Flags) .. 124

Rounding .. 125

IEEE Mathematical Functions .. 126

Addition and Subtraction Rules. .. 127

Multiplication, Division, and Square Root Rules 127

IEEE FLOATING-POINT ADD AND COMPARE 129

Floating Point Addition / Subtraction 130

Floating-point Add Functional Unit Instructions 134

Floating-point Format 134

Floating-point-to-Integer Conversion 134

Integer-to-Floating-Point Conversion 135

Floating-point Comparisons .. 136

IEEE DIVIDE AND SQUARE ROOT 139

IEEE Divide .. 139

Divide/Square Root Options 140 ')
,~'

vi Cray Research Proprietary HTM-300-0

RD option .. 140

RE Option .. 141

Normalization 141

Rounding 142

Floating Point Exception Flags 142

Division and Square Root Rules 143

IEEE FLOATING-POINT MULTIPLY AND INTEGER MULTIPLY 147

Multiply Algorithm "............................ 148

Standard Binary Multiplication 148

Booth Recode Multiplication .. 149

Integer Multiply Instructions .. 149

Floating-point Multiply Instructions 150

Multiply Functional Unit Options 151

NE Option .. 151

NF Option .. 152

NG Option .. 152

NH Option .. 152

BIT MATRIX MULTIPLY 161

Bit Matrix Multiply Theory of Operation 161

Instructions .. 165

INSTRUCTION BUFFERS 171

INSTRUCTION ISSUE

HTM-300-0

Fetch. .. 171

Prefetch ... 172

183

Instruction Formats 184

One-parcel Instructions 184

Three-parcel Instructions .. 184

Four-parcel Instructions .. 185

Instruction Decode .. 185

Cray Research Proprietary vii

EXCHANGE

viii

P Register .. 186

Coincidence 186

Reading the Instruction Buffer .. 186

JB Option .. 187

Parcel Data Distribution .. 187

. NSNIB/T Register Requests. .. 188

Functional Unit Requests .. 188

Constant Data Requests 189

Extended Instruction Set (EIS) Requests 189

Common Memory Requests 189

Shared Resource Requests .. 190

Branch Requests .. 190

Exchange Requests 190

Interrupt Requests 191

Control Signal Distribution 192

Branch Instruction Control 194

Conditional Branch Instructions 194

Unconditional Branch Instructions 194

Issue Control ... 195

205

Exchange Process .. 205

SIPI ... 206

Interrupt Flag Set .. 207

Program Exit 207

Exchange Sequence 207

Exchange Package Descriptions 208

P Register .. 208

Modes .. 208

Status .. 209

Interrupt Flags 213

Vector Length .. 216

Exchange Address 216

Exit Address. .. 216

Cray Research Proprietary HTM-300-0

Cluster Number 216

Processor Number 217

Logical Address Translation 217

REAL-TIME CLOCK, PROGRAMMABLE CLOCK INTERRUPT,
STATUS REGISTER, PERFORMANCE MONITOR 219

SCALAR CACHE

HTM-300-0

Real-time Clock 219

Programmable Clock 220

RTC and PC Instructions 221

Performance Monitor .. 221

Performance Monitor Instructions .. 223

Clearing the Performance Counters .. 223

Reading the Performance Monitor. .. 223

Performance Monitor Block Diagram 224

Status Register .. '. .. 224

233

Cache Hit .. 233

Cache Miss .. 234

Cache Addressing 235

Potential Cache Problems 235

CH Option ... 236

Scalar Cache Instructions .. 236

Cray Research Proprietary ix

Figures

x

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

CP Module Assembly Components

Option Layout Board 1

Option Layout Board 2

CPU Block Diagram

2

3

4
5

Address and Scalar Register Data Paths 8

AfS Control Terms . 10

Memory-to-AfS Register Block Diagram..... 12

B and T Register Inputs and Outputs 15

Figure 9. B/T-register-to-memory Block Diagram 17

Figure 10. Carry Bit and Enable Bit Fanouts 20

Figure 11. Address/Scalar Logical Block Diagram
(Instructions 044ijk through 051 ijk) 21

Figure 12. Scalar Mask Block Diagram 24

Figure 13. AfS Population/Parity/Leading Zero Count 29

Figure 14. Shift Count Breakdown .. 33

Figure 15. Address Register Left Single Shift 34

Figure 16. Address Register Right Single Shift 35

Figure 17. Address Register Left Double Shift 36 ..)

Figure 18. Address Register Right Double Shift 37

Figure 19. Example of an A Register
Left Single-shift Instruction 38

Figure 20. Example of an Address Register
Left Double-shift Instruction 40

Figure 21. Example of an Address Register Right Double-shift
Instruction ~ . 41

Figure 22. Address Register Shift . 42

Figure 23. Shift Count Breakdown . 45

Figure 24. Scalar Left Single Shift 46

Figure 25. Scalar Right Single Shift. 47

Figure 26. Scalar Left Double Shift 48

Figure 27. Scalar Right Double Shift 49

Figure 28. Example of a Scalar Left Single-shift Instruction . . . 50

Figure 29. Example of a Scalar Register
Left Double-shift Instruction. 52

Figure 30. Example of a Scalar Register
Right Double-shift Instruction 53

Figure 31. Scalar Shift 54 .

Figure 32. AN Option ... 56 ''--)

Cray Research Proprietary HTM-300-0

)

HTM-300-0

Figure 33. C90 Integer Multiply Mode . 59

Figure 34. AM Option Inputs 60

Figure 35. Write Data Path 67

Figure 36. Read Data Path for Pipe 0, Even Elements 69

Figure 37. Read Data Path for Pipe 1, Odd Elements. 70

Figure 38. Vectors 0 through 3, Pipe 0/1, Read Data Path. 71

Figure 39. Vectors 4 through 7 , Pipe 0/ 1, Read Data Path 73

Figure 40. Vector Register Write Block Diagram, Pipe 0 75

Figure 41. S Register to Vectors. 77

Figure 42. Memory Data to Vectors, Even Elements 79

Figure 43. Memory Data to Vectors, Odd Elements....... . .. 81

Figure 44. Vector Register Decode Bit Fanout,
Pipe 0 and 1, Path 1 Only 83

Figure 45. Vector Register Decode Bit Fanout,
Pipe 0 and 1, Path 2 Only 85

Figure 46. Vectors 0 through 3, Pipe 0/1, Write Data Path. 87

Figure 47. Vectors 4 through 7, Pipe 0/1, Write Data Path. 89

Figure 48. Vector Logical Block Diagram

Figure 49. Vector Merge Operation

Figure 50. 1750jO Instructions

Figure 51. Function of the 175ij4 Instructions

92

95

97

98

Figure 51. Function of the 175ij4 Instructions 98

Figure 52. Iota Pipe 0 and 1 99

Figure 53. Function of the 070ijl Instructions. 100

Figure 54. Vector Add Block Diagram 103

Figure 55. Shift Count Breakdown. .. 106

Figure 56. Vector Shift Block Diagram 107

Figure 57. Vector Right Shift 108

Figure 58. Vector Right Double Shift .. 109

Figure 59. Vector Transfer 110

Figure 60. Vector Compress 110

Figure 61. Vector Expand 111

Figure 62. Vector Population/Parity/Leading Zero
Block Diagram. .. 114

Figure 63. IEEE Floating-point Format 119

Figure 64. Floating Add Functional Unit 133

Figure 65. IEEE Floating-point Format 134

Figure 66. Serial Floating-point Status 143

Figure 67. Divide Unit Block Diagram 145

Cray Research Proprietary xi

xii

Figure 68. IEEE Floating-point Format 150

Figure 69. NE Option Pyramid 153

Figure 70. NFO Option Pyramid 154

Figure 71. NFl Option Pyramid. 155

Figure 72. NO Option Pyramid 156

Figure 73. Multiply Data Paths. 157

Figure 74. Multiply Control Paths 159

Figure 75. Vector Storage of Bit Matrices 162

Figure 76. Mathematical Representation of Matrices A and B .. 163

Figure 77. B Matrix and Bt Matrix Relationships. 163

Figure 78. Multiplication of A and W 164

Figure 79. Bit Matrix Multiply Block Diagram, Pipe 0 167

Figure 80. Bit Matrix Multiply Block Diagram, Pipe 1 169

Figure 81. IC Options Bit Layout 174

Figure 82. IC Block Diagram 175

Figure 83. IC Option Terms 176

Figure 84. Memory-to-instruction Buffers, Path 1 177

Figure 85. Memory-to-instruction Buffers, Path 2 178

Figure 86. Common Memory Path, Code 1 Fanouts 179

Figure 87. Common Memory Path, Code 2 Fanouts 181

Figure 88. Instruction Issue Block Diagram 183

Figure 89. Format for a I-parcel Instruction. 184

Figure 90. Format for a 3-parcel Instruction. 184

Figure 91. Format for a 4-parcellnstruction 185

Figure 92. Bjk (Exchange P) Fan-out Bits 196

Figure 93. JB-to-IC Parcel Data for Branches 197

Figure 94. Path 1 CH-to-IC-to-JB Option. 198

Figure 95. Path 2 CH-to-IC-to-JB Option. 199

Figure 96. Instruction Data Distribution NS/B/TN Registers . 200

Figure 97. CIP Distribution to HH Options 201

Figure 98. CIP Distribution to HH Option 202

Figure 99. JB Option Block Diagram 203

Figure 100. Exchange Package 212

Figure 101. RTC and PCI Block Diagram 220

Figure 102 Performance Monitor Block Diagram 225

Figure 103. Status Registers 227

Figure 104. Cache Layout .. 234

Figure 105. Memory Addresses 235

Cray Research Proprietary HTM-300-0

Tables

)

HTM-300-0

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

Table 9.

Table 10.

Table 11.

Table 12.

Table 13.

Table 14.

Table 15.

Table 16.

NS Register Entry Codes 9

BIT Register Instructions

NS Adder Instructions

Scalar Logical Functional Unit Instructions

Address Logical Functional Unit Instructions

Scalar Mask Instructions

Address Mask Instructions

Transmit nm to Si Instructions

Scalar Pop CountIParity and Leading Zero Count
Instructions

Address Register Shift Instructions

Scalar Shift Instructions

Recode Groups

Vector Register Options

VN/VQ Data Steering

Vector Logical Instructions

Vector Merge Instructions

16

19

22

23

23

24

25

28

31

43

56

62

66

93

94

Table 17. Vector Mask Operations 96

Table 18. Vector Mask Test Operations 97

Table 19. Iota Instruction. 98

Table 20. Vector Add Instructions .. 101

Table 21. Vector Shift Instructions 105

Table 22.

Table 23.

Table 24.

Vector PopulationiParity Instructions 116

IEEE Floating-point Numbers. 120

NaN Tag Codes , 122

Table 25. Effects of Rounding Mode on LSB 126

Table 26. Addition and Subtraction Results 127

Table 27. Multiplication Results. .. 128

Table 28. Division Results .. 128

Table 29. Square Root Results .. 128

Table 30. Rounding Modes 131

Table 31. Effects of Rounding Mode on LSB 132

Table 32. Floating-point Add Functional Unit Instructions ... 134

Table 33. Floating-Point-to-Integer Conversion Instructions.. 135

Table 34. Conversion Instructions .. 135

Table 35. Compare Instructions 136

Cray Research Proprietary xiii

xiv

Table 37.

Table 38.

Table 39.

Table 40.

Table 41.

Table 42.

Table 43.

Table 44.

Table 45.

Table 46.

Table 47.

Table 48.

Table 49.

Table 50.

Table 51.

Table 52.

Divide Options 140

NaN Identifiers 144

Division Results .. 144

Square Root Results .. 144

Recode Groups 148

Integer Multiply Instructions. 150

Floating-point Multiply Instructions 151

Multiply Options 151

Bit Matrix Multiply Instructions 165

IC Options. .. 171

Read-out Path Codes 187

Interrupt Modes Register Bit Assignments 214

Flag Register Bit Assignments 215

LAT Fields .. 217

RTC and PC Instructions .. 221

Performance Monitor. .. 222

Table 53. Performance Monitor Instructions 223

Table 54. Status Register (SRO) 228

Table 55.

Table 56.

Table 57.

Table 58.

Table 59.

Status Register 4 (SR4) 229

Destination Codes 230

Status Register 7 (SR7) Bit Definitions 231

CH Option Bits 236

Scalar Cache Instructions 236

Cray Research Proprietary HTM-300-0

)
' --......- j

~) CPU MODULE (CPE1)

CPE1 General Description

HTM-300-0

The CPEI module contains the central processing unit (CPU) for the
CRAY T90 series computer systems. There is one CPU per CPEI
module. This CPU uses the IEEE standard format for floating-point
arithmetic.

There have been many enhancements to the CRA Y T90 series CPU, and
several new instructions have been added to increase the performance.
Figure 1 illustrates CP module components. Figure 2 and Figure 3 show
the basic functions and locations of all options on a CP module. Figure 4
shows a block diagram of the CPU.

The CP modules are arranged in stacks in the system. A CRA Y T94
system contains one stack of as many as four modules. A CRA Y T916
systems contains up to two stacks of as many as eight modules. A
CRA Y T932 system contains up to four stacks of as many as eight
modules.

Each module in a stack functions independently; there are no
interconnections between modules in a stack. The CP modules connect
directly with either the memory modules, as in the CRA Y T94 system, or
with the system interconnect board (SIB), as in larger systems.

Cray Research Proprietary 1

Module CPU Module (CPE1)

Module Assembly Components

A

B

C

D

E

F

G

2

Refer to Figure 1 for an illustration of the CP module assembly
components. This illustration is provided to show the basic components
that are part of all mainframe modules. The sizes of various components
differ between modules.

Flow Block, Board 1 H Fiber-optic Coupler

Optical Receiver I Flow Block, Board 2

. PC Board Edge Shim J PC Logic Board 2

Maintenance Connector Flex Assembly K Outer Rail

Fiber-optic Spool Assembly L Inner Rail

Voltage Regulator Board Assembly M PC Logic Board 1

Maintenance Connector

Figure 1. CP Module Assembly Components

Cray Research Proprietary HTM-300-0

)
'---../

CPU Module (CPE1) Module

HBOOO

I/O
Control

NAOOO RCOOO TZOOO HMOOO MZOOO TWO 1 0 RC001 NA001

Fit Mult Recip Clock
Logic

BS Fanout Not Used Recip Fit Mult Monitor

TWOOO NCOOO RBOOO FAOOO TW006 FA001 OA002 RB001 NC001

Fit Add Fit Add BMM
Not Used Fit Mult Recip Coeff Not Used Coeff and Recip Fit Mult

Parity

TW002 VM007 AUOOO VM006 SSOOO OAOOO OA001 VM014 VM015

Not Used Vector Even A/S Reg Vector Even Shift BMM BMM Vector Odd Vector Odd
R Bit 60-63 R Bit52-55 Pop and and R Bit52-55 R Bit 60-63
W Bit56-63 Bits 48-55 W Bit48-55 LZ Parity Parity W Bit48-55 W Bit56-63

HDOOO VM005 ATOOO VM004 JAOOO VAOOO CGOOO VM012 VM013

CIP Vector Even A/S Reg Vector Even Issue Vector Check-bit Vector Odd Vector Odd
Exchange R Bit 44-47 R Bit36-39 Control Control Generation RBit36-39 R Bit44-47
Package W Bit40-47 Bits 32-39 WBit32-39 WBit32-39 WBit40-47

VFOOO VM003 AS001 VM002 BTOOO CDOOO CBOOO VM010 VM011

Vector Vector Even A/S Reg Vector Even BITIP Reg Ports E Vector Odd Vector Odd
Control R Bit28-31 R Bit 20-23 Cache Ports C R Bit20-23 R Bit28-31

W Bit24-31 WBit16-23 BitsO-15 WBit16-23 W Bit24-31 Bits 16-23
Bits 32-47 HIT

TW004 VM001 AROOO VMOOO CH010 CH008 CAOOO VMOO8 VM009

Vector Even A/S Reg Vector Even DataMUX DataMUX Vector Odd Vector Odd Cache Cache Not Used RBit12-15 RBit4-7 20-23 16-19 Ports A, A' R Bit4-7 R Bit 12-15
W BitS-15 Bits 0-7 WBitO-7 52-55 48-51 WBitO-7 W BitS-15

HAOOO CCOOO ICOOO CHOO2 CH014 CH012 CHOOO IC002 VF002
Inst DataMUX DataMUX DataMUX DataMUX Inst

I/O to Mem Ports Buffers Cache Cache Cache Cache Buffers Vector
SBCDBD 0 BitO-7 4-7 2S-31 24-27 0-3 Bit 16-23 Control

Bit32-39 36-39 60-63 56-59 32-35 Bit4S-55

HA002 CF004 CFOOO CKOOO CH006 CH004 CK002 CF002 TWOOS
DataMUX DataMUX

VOtoMem Write Data Write Data Data Cache Cache Data Write Data
Not Used SBCDBD Conflicts Conflicts Steering 12-15 S-11 Steering Conflicts

44-47 40-43

HGOOO CIOOO CJOOO CI004 CJ004 CI002 CJ002 CI006 CJ006

Maint Section Section Section Section Section Section Section Section

Channel Driver Receiver Driver Receiver Driver Receiver Driver Receiver
Section 0 Section 0 Section 4 Section 4 Section 2 Section 2 Section 6 Section 6

I ZBOOS I I ZBOOO I I ZBOO4 I I ZB002 I I ZB006 I

Figure 2. Option Layout Board 1

HTM-300-0 Cray Research Proprietary 3

Module CPU Module (CPE1)

HCOOO

1/0 Relay
Data

ND001 AM001 TW011 HM001 AM002 NDOOO

Fit Mult
Integer

Not Used
Logic Integer

Fit Mult Multi Monitor Multi

NB001 RA001 OA005 FB001 TW007 FBOOO RAOOO NBOOO TW001

BMM Fit Add Fit Add
Fit Mult Recip and Exponent Not Used Exponent Recip Fit Mult Not Used

Parity

VR015 VR014 OA004 OA003 VSOOO VR006 AU001 VROO7 TW003

Vector 7 Vector 6 BMM BMM Vector 6 AlS Reg Vector 7
Odd Odd and and Vector Even Even Not Used Shift

Bits 56-59 Bits48-51 Parity Parity Bits48-51 Bits 56-63 Bits 56-59

VR013 VR012 CG001 VA001 JA001 VR004 AT001 VROO5 HD001
Vector 5 Vector 4 Vector 4 AlS Reg Vector 5 CIP

Odd Odd Check-bit Vector Issue Even Even
Generation Control Control Exchange

Bits 40-43 Bits 32-35 Bits 32-35 Bits 40-47 Bits 40-43 Package

VR011 VR010 CB001 CD001 BT001 VR002 AS002 VR003 V F001
Vector 3 Vector 2 Port BITIP Reg Vector 2 AlS Reg Vector 3

Odd Odd Port E Even Even Vector
C' Cache Bits 16-31 Control

Bits 24-27 Bits 16-19 Control Bits 48-63 Bits 16-19 Bits 24-31 Bits 24-27

VR009 VR008 CA001 CH009 CH011 VROOO ASOOO VR001 ANOOO
Vector 1 Vector 0 DataMUX DataMUX Vector 0 AlSReg Vector 1

Odd Odd Port Cache Cache Even Even Address
B,B' 16-19 20-23 Multi

Bits 8-11 Bits 0-3 48-51 52-55 Bits 0-3 Bits8-15 Bits 8 -11

VFOO3 ICOO3 CH001 CH013 CH015 CHOO3 IC001 TW005 HA001
Inst DataMUX DataMUX DataMUX DataMUX Inst

Vector Buffers Cache Cache Cache Cache Buffers
Not Used 1/0

Control Bit24-31 0-3 24-27 28-31 4-7 Bit 8 -15 SECDED
Bit56-63 32-35 56-59 60-63 36-39 Bit40-47

TWOO9 CFOO3 CK003 CH005 CH007 CK001 CF001 CF005 HAOO3
Data DataMUX DataMUX Data

Not Used Write Data Steering Cache Cache Steering Write Data Write Data Maint
Conflicts Cache 8-11 12-15 Cache Conflicts Conflicts Channel

Control 40-43 44-47 Control

CI007 CJ007 ClOO3 CJOO3 CI005 CJ005 CI001 CJ001 HFOOO

Section Section Section Section Section Section Section Section Perf Driver Receiver Driver Receiver Driver Receiver Driver Receiver
Section 7 Section 7 Section 3 Section 3 Section 5 Section 5 Section 1 Section 1 Monitor

I ZB007 I I ZBOO3 I I ZB005 I I ZB001 I I ZB009 I

Figure 3. Option Layout Board 2

4 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Module

Common
Memory

I Como/Exo Comp/Exp
Como Index Comp Index

lint Multiolv 1 Int Multipl~
Loaical2 1 Logical 2 I

vector.Control 711 =
Vector Registers, I Poo/Paritv/LZIPOIJ/Parity/LZI

---J ~ r Shift 1" Shift Ak LJ V':: I Vector Mas~: I Loaical I Loaical l}f
[(AO) + (Ak)], [(AO) + (Vk)] ~ V5,::~~ Add Add
[(AO) + (Ak)], [(AO) + (Vk)] ~ V4 Vi Vector Vector
[(AO) + (Ak)], [(AO) + (Vk)] ...t-r V3 l1"':Lt-"~"':V:.L.k---+-+-"""''''' Fu~~~~nal Fu~~:~nal r

(AO)

I

~ v~2~7 Vi PioeO Pioe 1

VO b!7 Si I Bit Matrix Multiply

or ~~~I r--LI·' __ ~~u I Recio Aoor I Recip Appr
1 17 ~ • Si Vi I Multiply I Multiply

Real-time Clock[§L ~ Vk - Add Add

I/O Data to
LOSP, HISP,

VHISP Channels

~
i I Vi Shared Shared

Status ,ILI-L_-_-~.:.S::i:.::VectorIScalar VectorlScalar
~====~ Si Functional Functional

Programmable Si Units Units
Clock Interrupt Sk Pipe 0 Pipe 1

I
I

• • •

Performance ~
Log r Pop/Parity/LZ~

T77 .. r-1 Scalar Registers Shift .rAkl
~ Si .r-I S7 # I

S;6 [Add r 11:
Loaical)

Tjk S4 l=l"7-__ t--_ ___ ... Scalar
TOO V JLf S3 FL ... __ _____ --I Functional

~ S2 -,...F7 L......;;,U;.;;ni.;.;;ts_..1

. , lji sg1"J:!? Exchange Ai
[(Ah) + (pnm)] I Data Control Vector Ak

I Cache Control

(AO)

Address Registers XA +
Z; A~:~ I B77

.r Ai I Vector I
Length

• • •
.t-r A4 ~j

B~ ~ A3 ~~~Ak~~--4-4-~~~

I Multiolv

Add
Address

Functional
Units

f L-----+l::I:ffi
L +1

+3
..... ~,......, +4

Buffers I IB6

To A Registers ... _~ Shared Resources
I/O Status and Control
SB and ST Registers

To S Registers ... -~ Semaphores
L--'-';:";';';';;;';:;';';';";"";';;_....I

Instruction I IB~

.-L~IB;.;;5;.., _

I IB2 ----...... LIP
I IB1 ------1 ... L1P1

} Execution

I I IB§f:4 J,..."jI:-~..-.I NIP 1--.~rr.Cii:IP"

o IBO

~37 .-

Figure 4. CPU Block Diagram

HTM-300-0 Cray Research Proprietary 5

--3

~) ADDRESS AND SCALAR REGISTERS

)

The address and scalar registers are located together on the same options.
The following subsections describe the address and scalar registers.

Address Registers

HTM-300-0

The address and scalar registers are contained on eight options: one AV
option, three AW options, two AX options, and two AYoptions. Each
CRAY T90 series CPU contains eight address registers designated AO
through A7. Each register is 64 bits wide (32 bits in C90 mode) and
performs the following functions:

•
•
•
•
•
•
•
•
•
•
•
•
•

Determines addresses for memory references
Provides memory reference indexing
Provides loop control
Determines shift counts
Provides 110 channel set-up
Determines 110 channel status
Receives results from scalar leading zero and pop count
Determines vector length
Provides an exchange address (monitor mode only)
Provides an index for shared registers and B and T instructions
Provides operands and results for address add and address multiply
Transfers data to and from scalar registers
Provides integer-to-floating-point conversion

As illustrated in Figure 5, each AVOOO, AWOOO, AWOOl, AW002, AXOOO,
AXOOl, AYOOO, and AYOOI option contains an 8-bit slice of the address
registers. Figure 5 also illustrates the input and output data paths for the
address and scalar registers.

Cray Research Proprietary 7

Address and Scalar Registers

(AN)

(HH)

(JB)

(BU)

(FC)

(NH)

(RE)

(SS)

(Va)

(Va)

(CH)

(CH)

(OA)

Address Multiply Results

Shared Data

Constant Data

BfT Reaister Data

Floatina-point Add Results

Floating-point
Multiply Results

Divide Results

Shift Data VM

Vi (Even) Data to Scalar

Vi (Odd) Data to Scalar

Common Memory Path 1

Common Memory Path 2

BMM

IAA-IAH

IBA-IBH

ICA-ICH

IDA-IDH

IEA-IEH

IFA-IFH

IGA-IGH

IHA-IHH

IIA-IIH

III-liP

IJA-IJH

IKA-IKH

ISA-ISH

I AYOO1
Bits 56-63

I AYOOO
Bits 48-55

I AXOO1
Bits 40-47

I AXOOO
Bits 32-39 ~

I AW002
Bits 24-31 ~

I AW001
Bits 16-23 I-

I AWOOO
Bits8-15 I-

AVOOO I-Bits 0-7

OAA-OAH

OBA-OBH

OCA-OCH

ODA-ODH

OEA-OEH

OEI-OEP

OFA-OFH

OFI-OFP

OGA-OGH

OHA-OHH

OIA-OIH

OJA-OJH

OMA-OMH

ONA-ONH

OPA-OPG

OaA-oaH

ORA-oRC

OSA-oSD

OXA

CPU Module (CPE1)

~

~

Floating-point Add
Operand (S)

(FC)
Floating-point Add
Operand (Sk)

Floating-point Multiply
(FC)

Operand (S)
(NE, NF)

Floating-point Multiply
Operand (Sk)

(NE, NF)
CM Address to Vector
Pipe 0

(VN, va)
CM Address to Vector
Pipe 1

(VN, va)

Silo Shift, Pop/Parity/LZIVM
(SS)

Aito Shift, Poo/Paritv/LZIVM
~ (SS)

Address Multiply
Operand (A)

~ (AN)
Address Multiply
Operand (Ak)

(AN)

Aito Shared Data Path
(HH)

Aito BfT Registers and CM
(BU)

Ah Address to CM Port E
(CD)

Constant Data to CM Port E
~ (CD)

Akto Vector Control
(VB)

Ak to Scalar Shift Count
(SS)

AlS Zero Test
(JB)

AlS Addres Carry
(A.J

Enter Exchange VL
(VB)

Figure 5. Address and Scalar Register Data Paths

8 Cray Research Proprietary HTM-300-0

-'~

.J

)

CPU Module (CPE1)

'~) Entry Codes

)

HTM-300-0

Address and Scalar Registers

During the instruction decode on the JB option, the NS register options
receive an NS entry code from the the JB option. This code generates the
control that is necessary to complete the operations. The operand data is
then transmitted to the appropriate resources, and a destination delay chain
is entered on the option. Refer to Table 1 for the address/scalar (NS)
register entry codes and to' Figure 6 for an illustration of the NS control
terms.

Table 1. NS Register Entry Codes

Entry Code Instruction

0 020i Constants

1 023ljO Sj

2 023ij1 VL data

3 024ijk B data

4 030,031 ijk Add

5 026ij (0 - 3), 027 ij (0 - 1) pop/par/lz

6 032ijk A multiply

7 022ijk, 04 (2 - 3) jklmask data

10 N/A

11 073i (2 - 3) 0 VM data

12 N/A

13 N/A

14 04 (4 - 7) ijk, 05 (0 - 1) ijk Logical

15 N/A

16 05 (2 - 5) ijk, 05 (6 - 7) ijk Shift

17 N/A

Cray Research Proprietary 9

Address and Scalar Registers

(JBOOO)

(JBOOO)

(JBOOO)

(SSOOO)

(JBOOO)

(JBOOO)

(JBOOO)

(JBOOO)

AlS Register Read-out Code

Enter CPU VL

Go 071i(0,1 ,2)k

Pop/Parity/LZ (AROOO Only)

AlS Reoister Entry Code

AlS Entry Code Valid

AlS Entrv Code Valid

i, j, k, h Data

Memory Path 1 Read Code

Memory Path 2 Read Code

Shared Data Code

AVOOO
ILA-ILB AWOOO

AW001
ILC AW002

ILD

IMA-IMG

INA-INC

IOA-IOD

IOA-IOD

IPA-IPL

IOA-IOE

IRA-IRE

IUA-IUE

(VQ)

(VQ)

(HHOOO)

(HH001)

(IC001)

Enter Exchange VL (AROOO Only) IVA

(V0004)

10

Exchange Active

Exchanoe Path 2 Select

(JB001)

(JBOO1)

(JBOO1)

(JBOO1)

(JBOO1)

(JBOO1)

(JBOO1)

(VO)

(VO)

(HHOO1)

(ICOO2)

(VOOO4)

IVB

IVE

AlS Register Read-out Code ILA-ILB

Enter CPU VL ILC

Go 071 i(0, 1 ,2)k ILD

AlS Register Entry Code INA-INC

AlS Entry Code Valid IOA-IOD

AlS Entry Code Valid IOA-IOD

i, j, k, h Data IPA-IPL

Memory Path 1 Read Code IOA-IOE

Memory Path 2 Read Code IRA-IRE

Shared Data Code IUA-IUE

Exchange Active IVB

Exchange Path 2 Select IVE

Figure 6. AlS Control Terms

Cray Research Proprietary

CPU Module (CPE1)

)
/

AXOOO
AXOO1
AYOOO
AY001

HTM-300-0

CPU Module (CPE1) Address and Scalar Registers

A Register Memory References

Refer to Figure 7 for a memory-to-AiS-register block diagram. The
address registers read or write one word of memory during each
instruction. The B registers provide intermediate storage for the address
registers and perform memory block references; one B register instruction
can access a group of operands from memory. The A registers use these
operands to generate results that are sent back to the B registers and stored
in memory. Using the B registers as buffer storage, a block reference
requires fewer clock periods than if several individual address or scalar
references were issued.

The A registers also have an access path to cache memory, which provides
access to common memory data without having to reference memory
directly. If the requested address resides in cache, a "cache hit" is initiated
and the data is read from cache memory instead of from common memory.

Special Register Values

HTM-300-0

The AO register has special features that the other A registers do not have.
The AO register holds the starting address for all block transfers for the
B, T, and V registers and branch control. AO is the only register that can
be tested for equal-to-zero, not-equal-to-zero, positive, or negative
conditions using AO conditional branch instructions.

This register also has a special feature for reading data. If AO is specified
as an operand in the h, j, or k field of an instruction, it will not send the
actual contents of the register. Instead, the register sends a value of 0 if
AO is used in the j or h field, or it sends a value of 1 if AO is used in the k
field. If AO is used in the i field, the actual contents of the AO register are
sent.

Because the A registers in eRA Y T90 series systems are 64 bits wide,
special mode instructions have been implemented. These instructions are
part of the extended instruction set (EIS). These instructions make the A
registers functionally equal to S registers, enabling A registers to be
shifted and logical operations to be performed. To execute these special
mode instructions, an EIS 005400 instruction must precede the actual A
register instruction.

Cray Research Proprietary 11

Address and Scalar Registers CPU Module (CPE1)

CH006 I
CH004 I

"-
CH002 I

I-

CHOOO CM Left (Path 1) -
Read Data BUOOO

ICA-ICP Bits 0-15, 32 -47

CH014 I IDA-lOP OAA-OAP,
OBA-OBP

CH012 I
"-

CH010 I
IEA-IEP - IFA-IFP

CHOOS -
CM Left Brr Registers

Read Data

Read Data
CM Right BU001 AlS Registers

r- Bits 16 -31, 4S-63 AVOOO
CH001 ICA-ICP AWOOO - AXOOO

CH003 I
~ IDA-lOP AX001

CH005 I IDA-IDH

CH007 I IEA-IEP
OAA-OAP,

IFA-IFP OBA-OBP IDA-IDH AW001

Read Data Brr Registers AW002
AYOOO
AY001

r-
CH009

r-
CH011 I CM Right (Path 2)

I""""'

I CH013

CH015 I

Figure 7. Memory-to-AiS Register Block Diagram

12 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Address and Scalar Registers

/) Scalar Registers

The CPU contains eight 64-bit scalar registers that are designated SO
through S7. The scalar registers are contained on the AV, AW, AX, and
AY options (refer to Figure 5). .

The scalar registers send operands to and receive results from the scalar
functional units and the floating-point functional units. The functional
units perform integer and floating-point arithmetic and logical operations.
The scalar registers read and write central memory through the T registers,
read and write the data cache, and provide paths to the vector registers,
vector mask, real-time clock, status register, programmable clock
interrupt, and the performance monitor.

Instruction Issue

When an instruction issues, the scalar register receiving the data is
reserved until the result is latched in the register. If an instruction in the
current instruction parcel (CIP) register requires the reserved result
register, that CIP instruction holds issue until the register is available.

The SO register is an exception. If the SO register is reserved as a result
register and is needed as an Sj or Sk operand in a following instruction, no
hold issue occurs because the SO register has special register values as an
operand.

The issue hardware also develops scalar functional unit codes. These
codes select the input terms to be gated from the proper functional unit
into the scalar register multiplexer.

S Register Memory References

HTM-300-0

Scalar registers read or write one word of memory during each instruction.
The T registers provide intermediate storage for the scalar registers, and
can perform memory block references; a single instruction can access a
group of operands from memory. These operands are then used by the
scalar registers to generate results that can be sent back to the T registers
and stored in memory. Using the T registers as buffer storage, a block
reference requires fewer·clock periods than if several individual address or
scalar references were issued.

Cray Research Proprietary 13

Address and Scalar Registers CPU Module (CPE1)

The S registers also have an access path to cache memory, which provides \
access to common memory data without having to reference memory)
directly. If the requested address resides in cache, a "cache hit" is initiated
and the data is read from cache instead of from common memory.

Special Register Values

SO has special register values when Sj or Sk is used as an operand. When
the j field equals 0, a value of 0 is sent out regardless of the actual value
stored in so. When the k field equals 0, bit 63 is set to a 1 .

. . Lower/Upper Scalar Register Load

14

It is possible to load either the lower- or upper-half of a scalar register
with a 32-bit quantity. The following four instructions load constants into
scalar registers.

• 040iOO nm Si exp: loads the quantity nm into the lower 32 bits of
register Si. The upper 32 bits are cleared.

• 04liOO nm Si exp: loads the one's complement of nm into the lower -.)
32 bits of register Si. The upper 32 bits are alII 's._

• 040i20 nm Si exp: loads the quantity nm into the lower 32 bits of
register Si. The upper 32 bits are unchanged.

• 040i40 Si exp: loads the quantity nm into the upper 32 bits of
register Si. The lower 32 bits are unchanged.

Cray Research Proprietary HTM-300-0

~) BAND T REGISTERS

HTM-300-0

Each CPU contains 64 (1008) B registers and 64 T registers. The B and T
registers act as intermediate registers for the address and scalar registers,
respectively. Each B and T register is 64 bits wide.

Two BU options, BUOOO and BUOOl, compose the Band T registers.
Each option contains 32 bits of each register. BUOOO contains bits 00
through 15 and bits 32 through 47. BUOOI contains bits 16 through 31
and bits 48 through 63. As shown in Figure 8, the B and T registers can
be loaded from the address and scalar registers, common memory, and
branch control.

Ai Length (BU001 Only) IIA-IIG BU001
Bits 16-31,

48-63
1M-lAP, BUOOO

From AiorSi IBA-IBP
Bits 0-15,

32-47

ICA-ICP,
CM Path 1 IDA-lOP

OM-OAP,

IEA-IEP,
OBA-OBP To Aior Si

CM Path 2 IFA-IFP

OCA-OCP,
OOA-OOP Ai, Si, B or T CM Data

P Entry on Branch IGA - IGP

OEA-OEP Bikto Branch Control

Figure 8. B and T Register Inputs and Outputs

The B and T registers are used primarily for block transfers to and from
common memory. Refer to Table 2 for a list of the B and T register
instructions. Refer also to Figure 9 for a B/T-register-to-memory block
diagram.

Cray Research Proprietary 15

Band T Registers CPU Module (CPE1)

Table 2. BIT Register Instructions

Instruction CAL Description

OOSOjk J 8jk Jump to 8jk

OOS1jk* JINV 8jk Jump to 8jk (invalidate instruction buffers)

024ijk Ai 8jk Transmit (8jk) to Ai

02Sijk 8jk Ai Transmit (AI) to 8jk

034ijk 8jk Ai, AO Transmit (AI) words from common memory starting at
address (AO) to 8 registers starting at register jk

03Sijk ,AO 8jk,Ai Transmit (AI) words from 8 registers starting at register jk to
memory starting at address (AO)

036ijk Tjk Ai, AO Transmit (AI) words from memory starting at address (AO) to
T register starting at register jk

037ijk ,AO Tjk,Ai Transmit (AI) words from T registers starting at register jkto
memory starting at address (AO)

074ijk Si Tjk Transmit (Tjk) to Si

07Sijk Tjk Si Transmit (S/) to Tjk

* Denotes a maintenance mode instruction only.

16 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Band T Registers

CHOO6 I
CH004 I

CHOO2 J ...
CHOOO -

CM Left CGOOO

Read Data BUOOO
ICA-ICP Bits 0 - 15, 32 - 47

I IDA-lOP
Memory

CH014 Write Data

CH012 I
CH010 I

IEA-IEP
OCA-OCP, ... IFA-IFP ODA-ODP CGOO1

CHOOS ...
CM Left BfT Registers Memory

Read Data Write Data

Read Data
CM Right BUOO1

~ Bits 16-31, 4S-63
CHOO1 ICA-ICP

r-
CHOO3 I IDA-lOP OCA-OCP, I"'""

I CHOO5 ODA-ODP

CHOO7 I IEA-IEP

IFA-IFP
Read Data BfT Registers

- CM Right

CH009
~

~
CH011 I

CH013 I
CH015 I

Figure 9. BIT-register-to-memory Block Diagram

)

HTM-300-0 Cray Research Proprietary 17

ADDRESS AND SCALAR ADD

HTM-300-0

The address and scalar registers are contained on eight options: one AV
option, three AW options, two AX options, and two AY options. Each
option contains 8 bits of the 64-bit address registers. These options also
contain the address and scalar add functional unit. Table 3 describes the
instructions that use the address and scalar add functional unit.

Table 3. NS Adder Instructions

Instruction CAL Description

030ijk Ai Aj+Ak Transmit integer sum of (A) and (AI<) to Ai

030A:lk Ai AirS Transmit (Ak) to Ai

03040 Ai Aj+1 S Transmit integer sum of (A) and 1 to Ai

031 ijk Ai Af-Ak Transmit integer difference of (A) and (Ak) to Ai

031A:lk Ai -AirS Transmit inverse of (Ak) to Ai

03140 Ai Af-1S Transmit integer difference of (A) and 1 to Ai

060ijk Si Sj+Sk Transmit integer sum of (S) and (SI<) to Si

061 ijk Si Sj-Bk Transmit integer difference of (S) and (Sk) to Si

061A:lk Si -Sk Transmit inverse of (Sk) to Si

o denotes a difference between Triton mode and C90 mode.

S denotes a special CAL syntax.

The address add and scalar functional units perform. a 64-bit add; each
option performs the add function on the bits of the operands contained on
that option. Carry and enable bits generated during the add are passed on
to the next option, as shown in Figure 10. The 64-bit result is stored in the
destination register in 4 clock periods.

Cray Research Proprietary 19

Address and Scalar Add CPU Module (CPE1)

AVO aSA t--=:=.:.._--.:.=:...:t ... NOTE: ISA -ISG and aSA - asc terms are
adder carries. ITA - ITF and aTA - aTC
terms are adder enables.

20

Bits
0-7

AWO

Bits
8-15

AW1

Bits
16-23

aSB

asc

aso

aSA

aTA

aSB

aTB

asc

aTC

aSA

OTA

OSB

aTB

OSC

OTC

AW2 aSA

Bits aTA

24-31

aSB

aTB

aSA
AXO

aTA

Bits
32-39

aSB

aTB

AYO

ITA
AY1

....--
ISC

AW2
ITB

AX1 aSA

~ Bits OTA 40-47

~ AXO -
ITB

AX1

f9- AYO

AYO aSA

Bits aTA
48-55 -

ITB AY1

Figure 10. Carry Bit and Enable Bit Fanouts

Cray Research Proprietary

~ AXO

L..;

ITC
AX1

~ AYO

-.:::::;

ITC
AY1

ISE

lTD

AYO

lTD
AY1

~ AYO

...........
ITE AY1

~

ISG
AY1

ITF
i-.-

HTM-300-0

-)

SCALAR LOGICAL

HTM-300-0

The scalar logical functional unit performs logical operations on the scalar
registers. Logical operations include OR, AND, and XOR and merges.

Refer to Figure 11 for an illustration of the address and scalar registers.
The scalar registers are contained on eight options: one AV option, three
AW options, two AX options, and two AY options. Each option contains
8 bits of the 64-bit address registers. These options also contain the scalar
logical functional unit. The operands are latched and the logical operation
is completed in 1 clock period. The result is then entered into the proper
destination register.

I AY001 Bits 56-63

AYOOO Bits 48-55

I AX001 Bits 40-47

I AXOOO Bits 32-39

I AW002 Bits24-31

I AW001 Bits 16-23

1 AWOOO Bits 8-15

AVOOO 8itsO-7

Address/Scalar Register I-

(JBO)
hij/{ I nstruction Data IPA-IPL

AlSO
AlS Register AlS1 AjSj I-
Data Path 1 IJA-IJH AlS2 1" '1' AlS3 I-

AlS Register
AlS4 Data Path 2 IKA-IKH
AlS5 -I Operand I

AilSi AlS6 Select
FU n f

I-
AlS Entry Code INA-INC Select AlS7

(CHO)

(CHO)

(JBO)

f Y Logow ~
-

AlS Entry Code Valid IOA-IOD

Functional Unit I-
(JBO)

Figure 11. Address/Scalar Logical Block Diagram (Instructions 044ijk
through 051 ijk)

Cray Research Proprietary 21

Scalar Logical CPU Module (CPE1)

Table 4 and Table 5 list the instructions used in the address and scalar
logical functional unit. The instructions listed in Table 5 must be
preceded by a 005400 instruction.

Table 4. Scalar Logical Functional Unit Instructions

Instruction CAL Description

044ijk SiSj&Sk Logical product of (S}) and (Sk) to Si

044~ SiSj&SB Sign bit Qf (S}) to Si

044~ SiSB&Sj Sign bit of (S}) to Si (Sj:t:- 0)

045ijk Si#Sk&Sj Logical product of (S}) and one's complement of (Sk) to Si

045~ Si#SB&Sj (S}) with sign bit cleared to Si

046ijk SiSjlSk Logical difference of (S}) and (Sk) to Si (Sj:t:- 0)

046~ SiSjlSB Transmit (S}) with sign bit toggled to Si

046~ SiSB\Sj Transmit (S}) with sign bit toggled to Si (Sj:t:- 0)

047ijk Si#SjlSk Logical equivalence of (Sk) and (S}) to Si

047,ok Si#Sk Transmit one's complement of (Sk) to Si

047~ Si#SjlSB Logical equivalence of (S}) and sign bit to Si

047~ Si#SB\Sj Logical equivalence of (S}) and sign bit to Si (Sj:t:- 0)

047,00 Si#SB Enter one's complement of sign bit into Si

050ijk SiSj.Si&Sk Logical product of (S/) and (Sk) complement ORed with
logical product of (S}) and (Sk)

050~ SiSj.Si&SB Scalar merge of (S/) and sign bit of (S}) to Si

051 ijk SiSj.Sk Logical sum of (S}) and (Sk) to Si

051,ok SiSk Transmit (Sk) to Si

051~ SiSj.SB Logical sum of (S}) and sign bit to Si (Sj:t:- 0)

051,00 SiSB Enter sign bit into Si

22 Cray Research Proprietary HTM-300-0

)

CPU Module (CPE1) Scalar Logical

Table 5. Address Logical Functional Unit Instructions

Instruction CAL Description

044ijk Ai Aj&Ak Logical product of (AJ) and (AI<) to Ai

045ijk Ai#Ak&Aj Logical product of (AJ) and one's complement of (AI<) to Ai

046ijk AiAMk Logical difference of (AJ) and (AI<) to Ai (Aj i:- 0)

047ijk Ai#AMk Logical equivalence of (AI<) and (AJ) to Ai

047,ok Ai#Aj Transmit one's complement of (AI<) to Ai

050ijk Ai AftAi&Ak Logical product of (AI) and (AI<) complement ORed with
logical product of (AJ) and (AI<)

051 ijk Ai AftAk Logical sum of (AJ) and (AI<) to Ai

Address and Scalar Mask

HTM-300-0

The address mask and scalar mask functions are not scalar logical
operations, but are included in this section. Address and scalar mask
functions use instructions 042ijk and 043ijk. Refer to Table 6 and Table 7
for the scalar and address mask instruction formats, respectively.

Table 6. Scalar Mask Instructions

Instruction CAL Description

042ijk Si<exp Form ones mask in Si exp bits from the right; jk
field = 100 - exp

042/77 Si1 Enter 1 into Si

042.00 SJ..1 Enter -1 into Si;
(Si = 177777 177777 177777 177777)

043ijk Si>exp Form ones mask in Si exp bits from the left:
jk field = exp

043ijk Si#<exp Form zeroes mask in Si exp bits from the right:
jk field gets 1 OOa= exp

043.00 SiO Clear Si

Cray Research Proprietary 23

Scalar Logical

24

(AV, AW, AX, AY)

(BU)

(Ie)

Sji

ik

h

CPU Module (CPE1)

Table 7. Address Mask Instructions

Instruction CAL Description

042ijk Ai<exp Form ones mask in Ai exp bits from the right;
jk field = 100 - exp

042177 Ai 1 Enter 1 into Ai

042AJO A-1 .. Enter -1 into At,
(Ai = 177777 177777 177777 177777)

043ijk Ai>exp Form ones mask in Ai exp bits from the left:
jk field = exp

043ijk Ai#<exp Form zeroes mask in Ai exp bits from the right:
jk field gets 1 008 = exp

043AJO AiO Clear Ai

The address and scalar mask functional unit is located on the SS options.
When the 042ijk or 043ijk instruction issues, the jk field is sent from the
BUO option. The jk field determines how many 1 bits are set, and the h
field bit 0 determines whether the mask should be formed from the left or
the right. Figure 12 is a block diagram of the scalar mask functional unit.

SSOoo

II Scalar I
Shift

IAA-IDP Vector ~'--
I AY001 Bits 56-63

Mask -II I AYOOO Bits 48-55
Upper

MUX ~ IAX001 Bits 40-47
Lower -II

IAXOOO Bits 32-39
"---

IAW002 Bits 24 - 31

I AW001 Bits 16-23

- IAWOoo Bits8-15
IGA IGF

Address! ORed
AVOOO BitsO-7

lEE ffJ Scalar Mask

- Address/Scalar
Registers

Figure 12. Scalar Mask Block Diagram

Cray Research Proprietary HTM-300-0

)

CPU Module (CPE1) Scalar Logical

) Transmit nm to Si, Si Upper, Si Lower

HTM-300-0

Constant data can be transmitted to an S register by four different
instructions. Refer to Table 8 for a list of these instructions.

Table 8. Transmit nm to Si Instructions

Instruction CAL Description

040'{)Onm Siexp Transmit expression = nm to Si, bits
o through 31 (bits 32 through 63 = 0)

040120nm Si Si:exp Transmit expression = nm to Si, bits 0 through
31 (bits 32 through 63 unchanged) (/2. = 0)

040i40nm Si exp:Si Transmit expression = nm to Si, bits 32
through 63 (bits 0 through 31 unchanged)
(/2.=1)

041'{)Onm Siexp Transmit expression = one's complement of
nm to Si, bits 0 through 31 (Si bits 32 through
63 = 1)

Cray Research Proprietary 25

) ADDRESS/SCALAR POP/PARITY AND LEADING ZERO

HTM-300-0

The address/scalar population count functional unit counts the number of
1 bits in the scalar (S) register or address (A) register as designated by the
k field of instruction 026ijk (k = 0 or 1 for S registers, and k = 2 or 3 for A
registers). The maximum count is 100g (6410) for the corresponding
number of 1 bits set in the A or S register. The smallest count is zero,
which occurs when no bits are set in the A or S register.

The k field of the instruction determines whether or not the entire
population count is recorded in Ai. If the instruction is 026ijO/2, all 7 bits
of the final population count are sent to the A register. When a 026ij1l3
instruction is issued, the entire S or A register is counted for the number of
1 bits set, but only bit 0 of the count is sent to the A register. If bit 0 of the
count equals 0, then the count has even parity, indicating an even number
of bits set. If bit 0 of the count equals 1, then the count has odd parity.

Starting from bit position 63, the address/scalar leading zero count
functional unit counts the number of O's preceding the first bit set to a 1 in
a specified address or scalar register. The number of leading O's is then
transferred to the lower 7 bits of the Ai register. To use the address/scalar
leading zero count functional unit, a 027ijO instruction is issued where Sj
is the operand and Ai is the result register. The 027 ijl instruction is issued
when Aj is the operand and Ai is the result register.

The SS option performs scalar pop/parity and leading zero functions.
Population count/parity and leading zero functions are performed on either
a scalar or an address register operand, and the result is sent to an address
register. Table 9 describes the instructions that use the pop/parity and
leading zero functional unit, and Figure 13 illustrates the AlS
population/parity/leading zero count.

Cray Research Proprietary 27

Address/Scalar Pop/Parity and Leading Zero CPU Module (CPE1)

Table 9. Scalar Pop Count/Parity and Leading Zero Count Instructions

Instruction CAL Description

026~ Ai PSj Transmit population count of (S}) to At

026ij1 Ai QSj Transmit population count parity of (S}) to Ai

026iJ2 Ai PAj Transmit population count of (A}) to Ai

026(13 Ai QAj Transmit population count parity of (A}) to Ai

027~ Ai ZSj Transmit leading zero count of (S}) to Ai

027ij1 Ai ZAj Transmit leading zero count of (AJ) to Ai

28 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Address/Scalar Pop/Parity and Leading Zero

AVOOO

-
BitsO-7

AWOOO

- S5000
S/Si Bits 0 -15 IAA-IAP

Bits8-15 AlAi Bits 0 -15 IJA-IJP 4-,bitSum

AW001 S/SiBits 16 - 31 IBA-IBP
AVAiBits 16 - 31 IKA-IKP

~ S/Si Bits 32 - 47 ICA-ICP
Bits 16-23 AlAi Bits 32 -47 ILA-ILP 8-bitSum I
AW002 S/Si Bits 48 - 63 IDA-lOP ~ I- AlAi Bits 48 - 63 IMA-IMP

16-bitSum I
Bits 24-31

r--- • AXOOO I 0
(JBOOO) Go 026ijx lED n e

32-bitSum I ~
027ijJ s c

t 0 • Bits 32-39 (ICODO) ffJ Bit lEE r d AVOOO
u e

64-bitSum I OFA - OFG Result Bits 0 - 6
(BU001) j Data IGA-IGC c AX001

t
I--

(BUOOO) k Data IGD-IGF i Bits 0-7
0

Bits 40-47 n
-

AYODO

Bits 48-55

AY001

Bits 56-63

Figure 13. AlS PopulationJParity/Leading Zero Count

HTM-300-0 Cray Research Proprietary 29

)

)

/) ADDRESS REGISTER SHIFT

HTM-300-0

The address register shift function is performed on the SS option (refer to
Figure 22 for a block diagram of address register shift). This functional
unit performs both left and right single-register shifts and left and right
double-register shifts (also referred to as "long shifts"). All shifts are
end-off with zero fill. For example, if data is shifted more than 6410
places in a single shift, or more than 12810 places in a double-register
shift, the data is shifted completely off the register, leaving the register
cleared.

The shift unit performs only left shifts. The shift count for a right shift
must be in the two's complement form; the unit then performs a left shift.
Refer to Table 10 for a list of the address register shift instructions.

NOTE: To issue A-register-shift instructions, a 005400 (EIS) instruction
must precede the shift instruction.

Table 10. Address Register Shift Instructions

Instruction CAL Description

052ijk AOAi<exp Shift (AI) left exp = jk places to AO

053ijk AOAi>exp Shift (AI) right exp = 1 OOs-jk places to AO

054ijk Ai Ai<exp Shift (AI) left exp = jk places to Ai

055ijk Ai Ai>exp Shift (AI) right exp = 1 OOs-jk places to Ai

056ijk Ai Ai, Aj<Ak Shift (AI) and (AJ) left (Ak) places to Ai

0561}O AiAi, Aj<1 Shift (AI) and (AJ) left one place to Ai

056Klk AiAi<Ak Shift (AI) left (Ak) places to Ai

057ijk AiAj, Ai>Ak Shift (AJ) and (AI) right (Ak) places to Ai

0571}O AiAj, Ai>1 Shift (AJ) and (AI) right one place to Ai

056Klk Ai Ai>Ak Shift (AI) right (Ak) places to Ai

Cray Research Proprietary 31

Address Register Shift CPU Module (CPE1)

Address Register Single Shift

The address register single-shift instructions are 052ijk through 055ijk.
The first two instructions perform left single shifts (052ijk) and right
single shifts (053ijk) on the content of the Ai register and always store the
result in AO. The shift count is obtained from the jk field of the
instruction. The value placed in the jk field for the single-shift
instructions depends on whether it is a left or right shift. For a single left
shift, the value in the jk field is the number of octal places desired to shift
Ai. This allows a shift left of 0 to 778 places. For a right shift, the jk field
is equal to the two's complement of the actual number of places desired to
shift right. If a shift of 248 places were required, 54 would be entered in
the jk field (two's complement of 24 is 54).

When instructions are written in machine code, this operation must be
done by the person writing the code. However, when instructions are
written in CAL, this is done by the assembler. In the CAL instruction, you
would simply enter the shift count. This allows a shift right of 1 to 1008
places. Because the two's complement of the shift count is used for a
single shift, a shift right 0 places is not possible.

The 054ijk and 055ijk instructions perform single shifts left or right on the
contents of Ai. However, these instructions store the result of the shift ..-).
back in Ai. These shifts overwrite the original contents of Si with the new .
results from the shifter.

Address Register Double Shift

32

Double shifts work similarly to single shifts and are end-off with zero fill.
The difference is that a double shift concatenates two S registers, forming
a 128-bit register. The arrangement of the two registers is determined by
the shift direction.

Double shifts always shift data into Si. The two instructions associated
with double shifts are 056ijk (left double shift) and 057ijk (right double
shift). The double shifts use the i and j fields to specify the two operand
registers; the i field also specifies the result register. The k field of the
instructions specifies the A register used for the shift count.

Because a double shift uses a 128-bit operand and shifts are end-off with
zero fill, a shift equal to or greater than 12810 (2008) produces a result of
zero. The A register bits 0 through 6 are used as a shift count, providing a
shift of 0 to 1778. Bit 7 is checked, and if this bit is set to aI, it causes the
double shift result to equal zero. For right double shifts, the shift count
does not need to be entered into the A register in two's complement form; ,~)
the hardware performs this function.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Address Register Shift

/~) Address Register Shift Count Description

HTM-300-0

The AV option sends 7 bits of shift count to the SS option. With both
single and double shifts, the breakdown of the shift count is nearly the
same, except that the double shift has 1 extra bit (bit 6). Refer to
Figure 14 for a breakdown of the shift count.

Double
Shift
Only
6 5 4 3 2 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Figure 14. Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: All references to shift counts in this documentation are in
decimal notation.

If the jk field of a left single shift equals 278 and bits 4, 2, 1, and 0 are set,
the shift values are 16,4,2, and 1, respectively. The sum of the shift
values is 23 (16 + 4 + 2 + 1) and the unit shifts the data left 2310 places.

The hardware that performs the shifts is the same for both left and right
shifts. In reality, the hardware can perform only left shifts. Right shifts
are accomplished by the way in which data is entered into the shifter,
hence the use of two's complement for right shifts.

Cray Research Proprietary 33

Address Register Shift CPU Module (CPE1)

Address Register Left Single Shift

A2=

34

Figure 15 illustrates how a left single shift is performed for a 054220
instruction. (Ai Akexp), shift A2leftjk places (208) with data bit 10 set.

(~g)

Address Shift Functional Unit

Bit 10

/
(~~)

Bit 26

Shift
to the I

A2 1610 places
eft, moving bit
t position 10 26 to bi

A2Fin al Results

Figure 15. Address Register Left Single Shift

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Address Register Shift

) Address Register Right Single Shift

HTM-300-0

A2.=

Figure 16 illustrates how a right single shift is performed using left shifts
and a two's complement shift count. This example uses a 055254
instruction (Ai>Ai exp) that shifts Ai right exp = 100 - jk places to Ai. In
this example, data bit 45 shifts to the right 248 (2010) places. Notice that
the jk field of the instruction 055254 contains 548, which is the two's
complement of 24g. The content of A2 is shifted to the left 548 places to
set bit 25 of the result.

Bit 45

Address Shift Functional Unit

Bit 63 a 63 0

~-- ~---.-.--__ ._.~I--~------------~-r-TIP--B~ Bit 45 I
~ ________ S_h_ift __ 54~8~1

Bit 25

L-...--------------..... A2. = Bit 25

Figure 16. Address Register Right Single Shift

NOTE: On a right shift, the programmer is responsible for converting
the shift count to a two's complement value and supplying that
value to the functional unit.

Gray Research Proprietary 35

Address Register Shift CPU Module (CPE1)

Address Register Left Double Shift

36

Double shift instructions execute in the same manner as single shifts
except that the double shift concatenates two 6~bit registers to form a
value. Figure 17 illustrates a left double shift using a 056123 instruction
(Ai AI, Aj<Ak). In this example, (Ai) and (AJ) left shift (Ak) places to
Ai. A3 = 408 (3210), Al has bit 30 set, and S2 has bit 10 set. When a left
double shift occurs, the content of Aj is moved into Ai, and the two
registers are positioned as shown with Ai ahead of Aj.

A2 (AJ) = I Bit 10 L
I

A1 (AI) = I Bit 30 I
J

A3= I 40 1- Shift Control

Address Shift Functional Unit

Ai (A1) 1 Aj (A2)
,

C~D Bit 30 1(~0 Bit 10

t Shift 32 I t Shift 32 I

l Bit62 I

-: Bit 62 I = A 1 Final Result

Figure 17. Address Register Left Double Shift

Shifting Ai and Aj to the left 32 places puts bit 30 of Al at bit position 62
and bit 10 of A2 at bit position 41. Because bit 41 of A2 does not transfer
to the result register (A 1), it is lost. The result bit (bit 62) is sent to the Ai
(AI) register. The Aj (A2) register remains unchanged.

Cray Research Proprietary HTM-300-0

)

CPU Module (CPE1) Address Register Shift

Address Register Right Double Shift

A1 =

A2=

A3=

HTM-300-0

To perform an address register right double shift, a 057ijk [(Ai Aj, Ai
>Ak) , shift (AJ) and (Ai) right (Ak) places to All instruction is used.
Figure 18 illustrates a 057123 instruction with the indicated parameters.

Bit 20
I
I

Bit 40 I
I

I 60 1- Shift Control

Address Shift Functional Unit

! Aj (A2) Ai (A1) ~

~~--- Bit 40 (~~) I Bit Bit 20
I 56

Shift 80 I f Shift 80 I

Bit 56 I

J Bit 56 I = A 1 Final Result

Figure 18. Address Register Right Double Shift

To right shift Aj and Ai using left shifts, the two's complement is fIrst
performed on A3, which currently equals 608 (4810). Because the two's
complement is 1208 (or 101000<h, or 8010), the required shift can be
accomplished through successive shifts of 6410 and 1610 for a total shift of
8010 places. A left shift of 8010 moves bit 40 of A2 to bit position 56
inside the dotted box and bit 20 of Al to bit position 36 of A2. Because
bit 36 does not transfer into the result register (indicated by the dotted
box), it is lost. Bit 56 is sent to the fInal result register (AI).

Cray Research Proprietary 37

Address Register Shift CPU Module (CPE1)

Left Single-shift Instruction

38

Refer to Figure 19 when reading the following two examples of the
address register left single-shift instruction.

j k

Bits 12 0 1 2 0 1 = jkField

32 16 8 4 2 = Shift Values Decimal

D52ijk Results to AD

D54ijk Results to Ai

Figure 19. Example of an A Register Left Single-shift Instruction

Example 1: Write the instruction to shift the contents of A2 left
2010 places and put the result into AO.

Steps: 1. 052ijk -left shift instruction result goes to AO

2. jk field - shift count 2010 = 24g = jk field

3. 052224 - final instruction

Example 2: Write the instruction to shift A4left 3510 places and put the
result into A4.

Steps: 1. 054ijk - left shift instruction result goes to Ai

2. jk field - shift count 3510 = 438

3. 054443 - final instruction

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Address Register Shift

/) Right Single-shift Instruction

HTM-300-0

The right single-shift count is the jk field of the instruction, which must
either be in the two's complement form or 1008 minus the number of
places to right shift. The following two examples show an address
register right single-shift instruction.

• 053ijk results to AO
• 055ijk results to Ai

Example 1: Write the instruction to shift A5 right 1010 places and put
the result into AO.

Steps: 1. 053ijk - right shift instruction results to AO

2. jk field - shift count in two's complement equals 668

1010 = 128 = 001010

two's complement = 110101

+1

110110 = 668

3. 053566 - final instruction

Example 2: Write the instruction to shift A 7 right 2810 places.

Steps: 1. 055ijk right shift instruction results to Ai

2. jk field - shift count in two's complement equals

2810 = 34g = 011100

two's complement = 100011

+1

100100 =44g

or 1008 - 34g = 44g

3. 055744 - final instruction

Cray Research Proprietary 39

Address Register Shift CPU Module (CPE1)

Left Double-shift Instruction

40

Refer to Figure 20 when reading the following example of an address
register left double-shift instruction.

056ijk Shift Ai and Aj left by Ak places to Ai

Ai Aj

Ai

Ak contains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any bits from 7 through 63 are set, the results of Ai are zeroed.

Bits L.163 ________ 7_6_1&.5 __ 4_3_2 ___ 0 __ =_A_k

Zero Results 64 32 16 8 4 2 = Valid Decimal Shifts

On a left double shift, the contents of Aj are always shifted into Ai. This shift is done
inside the address shift functional unit.

Figure 20. Example of an Address Register Left Double-shift Instruction

Example 1: Write the instruction to double shift A2 and A3 left 6410
places and put the results into A2.

056234 - final instruction, where A4 - 1008

NOTE: A 056 instruction with i = j and (Ak)< 64 effects a circular left
shift. -

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Address Register Shift

/~) Right Double-shift Instruction

)

HTM-300-0

Bits

Refer to Figure 21 when reading the following example of a scalar right
double-shift instruction.

057 ijk Shift Aj and Ai right by Ak places to Ai

Aj Ai

Ai

63 7 6 5 4 3 2 1 0 =Ak

Zero Results 1
Two's Complement = During Right Double Shift

64 32 16 8 4 2 1 = Valid Decimal Shifts

Figure 21. Example of an Address Register Right Double-shift Instruction

Ak contains the shift count, and address (A) register bits 0 through 6
contain the valid shift counts. If any bits from 7 through 63 are set, the .
results of Ai are zeroed. Also, the hardware generates the two's
complement of the shift count Ak register bits 0 through 6 on a right
double shift.

On a right double shift, the contents of Aj are always shifted into Ai. This
operation and the two's complement of the shift count occur inside the
address shift functional unit.

Example 1: Write the instruction to double shift right A4 and A5
3210 places and put the result into A4.

057454 - final instruction, where A4 = 408
hardware generates a shift count of 1408 inside
the functional unit.

NOTE: Issue a 057 instruction with i = j and (Ak)< 64 to effect a circular
right shift. -

Cray Research Proprietary 41

~

C)

~
:II
m
m a ::r
"tJ a

"C
~
-<

~
~
~ o

~

AVOOO

Bits 0-7

AWOOO

Bits 8-15

AW001

Bits 16-23

AW002

Bits 24-31

AXOOO

Bits 32-39

AX001

Bits 40-47

AYOOO

Bits 48-55

AYOO1

Bits 56-63

\ ,
"-..--'

AiA/BitsO-15

AVA/Bits 16-31

AVAi Bits 32 - 47

AlA/Bits 48 - 63

I-- JA001 via BT
jk Shift Count

Go A Type
(JBOOO) (Gate A Data)

flO Bit
(ICOOO) (1 = Riaht Shift)

(AVOOO) Ak Shift Count

(AV, AW, AX, Ay) Ak= 0

SS

/ A/Result r---IJA-IJP OAA - OAP Ai Bits 0 - 15

IKA-IKP OBA-OBP Ai Bits 16-31

ILA-ILP ~ AjData r OCA - OCP Ai Bits 32 - 47

IMA-IMP !/ A/Data r ODA - ODP Ai Bits 48 - 63

IGA-IGF

IEF OHA - OHG Ak Shift Count

lEE
OHH No Ak Overflow

IHA-IHH. I Shift Count (AI<)
I

IIA-IIG
: (AI<) 7-63=0 r--

Figure 22. Address Register Shift

, : I

\~

AVOOO

Bits 0-7

AWOOO

Bits8-15

AW001

Bits 16 -23

AW002

L.....-.

Bits24-31

(VS) AXOOO

(VS)
Bits 32-39

AX001

Bits 40-47

AYOOO I
I

I

Bits 48-55

AY001

Bits 56-63

\~

):.

8:
Ci1
~
::0,
~
(iI'
(j) ..,
~
:$

~
~
~
(j)

C)

~
.:::

) SCALAR SHIFT

The scalar shift function is performed on the SS option (refer to Figure 31
for a block diagram of a scalar shift). This functional unit performs both
left and right single-register shifts, and left and right double-register shifts
(also referred to as "long shifts"). All shifts are end-off with zero ftll. For
example, if data is shifted more than 6410 places in a single shift, or more
than 12810 places in a double-register shift, the data is shifted off the
register. The data is then lost, and the register is filled with O's.

The shift unit performs only left shifts. The shift count for a right shift
has to be in the two's complement form; the unit then performs a left shift.
Refer to Table 11 for a list of the scalar shift instructions.

Table 11. Scalar Shift Instructions

Instruction CAL

052ijk SO Si<exp

053ijk SO Si>exp

054ijk SiSi<exp

055ijk SiSi>exp

056ijk S1 Si, Sj<Ak

0561j{) t S1 Si, Sj<1

056Alk * S1Si<Ak

057ijk SiSj, Si>Ak

0571j{) t S1 Sj, Si>1

057Alk * S1 Si>Ak

t If j = 0, then (8)) = O.

+ If k= 0, then (AI<) = 1.

Description

Shift (S/) left exp = jk places to SO

Shift (S/) right exp = 1 OOs - jk places to SO

Shift (S/) left exp = jk places to Si

Shift (S/) right exp = 1 OOs - jk places to Si

Shift (S/) and (S}) left (Ak) places to Si

Shift (S/) and (S}) left 1 place to Si

Shift (S/) left (Ak) places to Si

Shift (S}) and (S/) right (Ak) places to Si

Shift (S}) and (S/) right 1 place to Si

Shift (S/) right (Ak) places to Si

Scalar Single Shift

HTM-300-0

The scalar single-shift instructions are 052ijk through 055ijk. The first
two instructions perform single shifts left (052ijk) and right (053ijk) on the
contents of the Si register and always store the result in SO. The shift
count is obtained from the jk field of the instruction. How the value is

Cray Research Proprietary 43

Scalar Shift CPU Module (CPE1)

represented in the jk field for single-shift instructions depends on Whether\. __
the shift is left or right. For a single left shift, the value in the jk field)
represents the number of octal places (in the range of 0 to 778 places) to
shift Si. For a right shift, the jk field is equal to .the two's complement of
the actual number of places to shift right. If a shift of 24g places were
required, 54 would be entered in the jk field (the two's complement of 24
is 54).

When instructions are written in machine code, the programmer is
responsible for complementing the shift count. However when
instructions are written in CAL, the assembler performs this operation
automatically; that is, in the CAL instruction, simply enter the shift count
in the range of 1 to 1008 places. Because the two's complement of the
shift count is used for a single shift, a right shift of 0 places is not possible.

The 054ijk and 055ijk instructions perform single shifts left or right on the
contents of Si. However, these instructions store the result of the shift
back in Si. These shifts overwrite the original contents of Si with the new
results from the shifter.

Scalar Double Shift

Double shifts are similar to single shifts; all shifts are end-off with zero
fill. However, a double shift concatenates two S registers, forming a
128-bit register. The arrangement of the two registers is determined by
the shift direction.

Double shifts always shift data into Si. The two instructions associated
with double shifts are 056ijk (double left shift) and 057ijk (double right
shift). The double shifts use the i andjfields to specify the two operand
registers; the i field also specifies the result register. The k field of the
instructions specifies the A register used for the shift count.

A double shift uses a 128-bit operand and shifts are end-off with zero fill.
Therefore a shift equal to or greater than 12810 (2008) produces a result of
zero. The shift count is determined by bits 0 through 6 of the Ak register,
providing a shift range of 0 to 1778. For right double shifts, the shift
count does not need to be entered into the A register in two's complement;
the hardware performs this function.

Scalar Shift Count Description

The AVOOO option sends the shift count to the SS option. All eight
A-series options check the value of the 64-bit A register to determine if)
any bits greater than bit 6 have been set. If any of these bits are set, the "'-

44 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

HTM-300-0

Scalar Shift

result is lost due to overshift. If each A-series option reports that its bits
are zero, the shift count is valid and a signal called Ak = 0 is sent to the SS
option.

The AR option sends 7 bits of shift count to the'SS option. For both
single and double shifts, the breakdown of the shift count is similar,
except that the double shift has I extra bit (bit 6). Refer to Figure 23 for a
breakdown of the shift count.

Double
Shift
Only
6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Figure 23. Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in this document refer to a decimal count.

If the jk field of a left single shift equals 278 and bits 4, 2, 1, and 0 are set,
the shift values are 16, 4, 2, and 1, respectively. The sum of the shift
values is 23 (16 + 4 + 2 + 1), and the instruction shifts the data left 2310
places.

The hardware that performs the shifts is the same for both left and right
shifts. (Actually, the physical hardware can perform only left shifts.)
Right shifts are achieved by the way in which the data is entered into the
shifter and by the use of two's complement values for shift counts.

Cray Research Proprietary 45

Scalar Shift CPU Module (CPE1)

Scalar Left Single Shift

46

Figure 24 is an illustration of how a left single shift is performed for a
054220 instruction (Si Si<exp). In the following example, the contents of
S2 (data bit 10 set) are shifted left 208 places (1610), and the result is
returned to S2.

S2 = Bit 10

Scalar Shift Functional Unit

I Bit 10 I
/'

I (~~) I I

y Bit 26

Figure 24. Scalar Left Single Shift

Cray Research Proprietary

I

Shift S21610
place
movin

S to the left,
gbit10to
sition 26 bit po

S2 Fi nal Result

HTM-300-0

CPU Module (CPE1) Scalar Shift

) Scalar Right Single Shift

HTM-300-0

Figure 25 illustrates how a right single shift is performed using left shifts
and a two's complement shift count. This example uses a 055254
instruction (Si>Si exp) that shifts Si right exp =100 - jk places to Si.

In this example, data bit 45 shifts to the right 24g (2010) places. Notice
that the jk field of the instruction 055254 contains 548, which is the two's
complement of 24g, causing S2 to be shifted to the left 54g places to set bit
25 of the result.

S2= Bit 45

Scalar Shift Functional Unit

Bit 63 0 63 ------ 0

r- ~it I Bit 45 I L __ 2:-_______ . __ L...--.,. ______ --'_

_ Shift 548 I

I Bit 25 I I

L...---------.S2= Bit 25

Figure 25. Scalar Right Single Shift

NOTE: It is the programmer's responsibility to perform the two's
complement of the shift count and supply that value to the
functional unit.

Cray Research Proprietary 47

Scalar Shift CPU Module (CPE1)

Scalar Left Double Shift

48

Double shifts are similar to single shifts except that they concatenate two
64-bit registers to form a value. Figure 26 illustrates a left double shift
using a 056123 instruction (Si, Sj < Ak). In this example, S (SO and (S))
shift left (Ak) places to Si. Ak = A3 = 408 (3210), Initially, bit 30 is set in
SI, and bit 10 is set in S2. During a left double shift, the content of Sj
moves into Si. The two registers are concatenated as illustrated, with Si
ahead ofSj.

S 2 (S}) = I Bit 10 I
I

1 (S/) = I Bit 30 I
I

S

A 3= I 40 1- Shift Control

Scalar Shift Functional Unit

Si (S1) ! Sj (S2) ~

I Bit)
62 Bit 30 I(~;~ Bit 10 I
t Shift32 I t Shift 32 I

: Bit62 I

: Bit 62 1= S1 Final Result

Figure 26. Scalar Left Double Shift

Shifting Si and Sj to the left 32 places puts bit 30 of Slat bit position 62
and bit 10 of S2 at bit position 41. Bit 41 of S2 does not enter the result
register S 1 and is lost. The result bit (bit 62) is then sent to the Si (S 1)
register. The content of register Sj (S2) remains unchanged.

Cray Research Proprietary HTM-300-0

~)

CPU Module (CPE1) Scalar Shift

') Scalar Right Double Shift

S1 =

S2=

A3=

.. ~)

HTM-300-0

A 057ijk instruction (Si Sj, Si > Ak) shifts (S}) and (Si) right (Ak) places to
Si. Figure 27 illustrates a 057123 instruction w~th the indicated
parameters.

Bit 20
I
I

Bit 40 I
I

I 60 1-Shift Control

Scalar Shift Functional Unit

! Sj (S2) Si (S1) ~

~~----- Bit 40 (~V Bit 20
I 56 --- I t -' Shift 80 Shift 80

Bit 56 I

Bit 56 I = S1 Final Result

Figure 27. Scalar Right Double Shift

To right shift Sj and Si using left shift operations, the content of A3, which
currently equals 608 (4810) is converted into a two's complemented value.
The two's complement of 608 is 1208 (or 10100002 or 8010). The required
shift can be accomplished through successive shifts of 6410 and 1610. A
left shift of 8010 moves bit 40 in S2 to bit position 56 inside the dotted box
and bit 20 of S 1 to bit position 36 of S2. Because bit 36 does not enter
the intermediate result register (indicated by the dotted box), it is lost, and
bit 56 is sent to the final result register (SI).

Cray Research Proprietary 49

Scalar Shift CPU Module (CPE1)

Left Single-shift Instruction

50

Refer to Figure 28 while reading the following two examples of the scalar
left single-shift instruction:

• 052ijk, results to SO
• 054ijk, results to S 1

j k

Bits 12 01 2 0 l=ikFieid

32 16 8 4 2 = Shift Values Decimal

Figure 28. Example of a Scalar Left Single-shift Instruction

Example 1: Write the instruction that shifts S2 left 2010 places, and
places the results into SO.

Steps: 1. 052ijk -left shift instruction result goes to ~O

2. jk field- shift count 2010 = 24g = jk field

3. 052224 - final instruction

Example 2: Write the instruction that shifts S4left 3510 places, and
places the results into S4.

Steps: 1. 054ijk - left shift instruction result goes to Si

2. jk field- shift count 3510 = 438

3. 054443 - final instruction

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Scalar Shift

Right Single-shift Instruction

HTM-300-0

The right single-shift count is the jk field of the instruction, which must be
either in the two's complement form or equal to 1008 minus the number of
places to right shift. Two examples of a scalar right single-shift
instruction follow:

• 053ijk, results to SO
• 055ijk, results to Si

Example 1: Write the instruction that shifts S5 right 1010 places, and
places the results into SO.

Steps: 1. 053ijk - right shift instruction results to SO

2. jk field - shift count in two's complement equals 668

1010 = 128 = 001010

one's complement = 110101
+1

two's complement = 110110 = 668

3. 053566 - final instruction

Example 2: Write the instruction to shift S7 right 2810 places.

Steps: 1. 055ijk right shift instruction results to Si

2. jk field - shift count in two's complement equals

2810 = 34g = 011100

one's complement = 100011
+1

two's complement = 100100 = 44g

or 100g - 34g = 44g

3. 055744- final instruction

Cray Research Proprietary 51

Scalar Shift CPU Module (CPE1)

Left Double-shift Instruction

52

Refer to Figure 29 while reading the following example of a scalar left
double-shift instruction: 056ijk, Shift Si and Sj left Ak places to Si.

056ijk Shift Si and Sj left by Ak places to Si

Si Sj

Si

Ak contains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any of bits 7 through 63 are set, the results of Si are zeroed.

Bits 163 71S 5 4 3 2 0 I = Ak

Zero Results 64 32 16 8 4 2 = Valid Decimal Shifts

On a left double shift, the contents of Sj are always shifted into Si. This shift is done
inside the scalar shift functional unit.

Figure 29. Example of a Scalar Register Left Double-shift Instruction

Example 1: Write the instruction that left double shifts S2 and S3 6410
places, and places the result into S2.

Step 1. 056234 - final instruction, where (A4) = 1008

NOTE: A circular left shift can be achieved by issuing a 056 instruction
with i = j and (Ak) ~ 64.

Cray Research Proprietary HTM-300-0

- --)

CPU Module (CPE1) Scalar Shift

/j Right Double-shift Instruction

Bits

HTM-300-0

Refer to Figure 30 while reading the following example of a scalar right
double-shift instruction.

057 ijk Shift Sj and Si right by Ak places to Si

Sj Si

~
Si

63 7 6 5 4 3 2 1 0

Zero Results 1
Two's Complement = During Right Double Shift

64 32 16 8 4 2 1 = Valid Decimal Shifts

Figure 30. Example of a Scalar Register Right Double-shift Instruction

Ak contains the shift count, and address (A) register bits 0 through 7
contain the valid shift counts. If any bit in the range from bit 7 through
bit 63 is set, the result from Si is zeroed. Also, the hardware generates the
two's complement of the shift count on the Ak register bits 0 through 7 for
a right double shift.

During a right double shift, the contents of Sj are always shifted into Si.
This operation and the two's complement of the shift count occur inside
the scalar shift functional unit.

Example 1: Write an instruction to right double shift S4 and S5
3210 places, and place the result into S4.

057454 - final instruction, where (A 4) = 408
hardware generates a shift count of 1408 inside the
functional unit.

NOTE: A circular right shift can be effected by issuing a 057 instruction
with i = j and (Ak) ~ 64.

Cray Research Proprietary 53

C11
.j:>..

o
~
:0

I o
=r
"'C a

"0 ...
m:
-<

:c
-I
s::

'" o
<? o

AVOOO

BitsO-7

AWOOO

Bits 8-15

AW001

Bits 16 -23

AW002

Blts24-31

AXOOO

Bits 32-39

AX001

Bits 40-47

AYOOO

Bits 48-55

AY001

Bits 56-63

L

SjSiBits 0 -15 IAA-IAP

Sj'SiBits 16-31 IBA-IBP

SjSi Bits 32 - 47 ICA-ICP

SUSi Bits 48 - 63 IDA-lOP

-

(JB001) Go 056i1k10571jk lED

ffJ Bit
(ICOOO) (1 = Right Shift) lEE

(AVOOO) Ak Shift Count IHA-IHH

(AV, AW, AX, AY) Ak = 0 IIA-IIG

SSOOO

/ SiResult
OAA - OAP SiBits 0 -15

OBA-OBP SiBits 16-31

r-/ SjOata .r- OCA - OCP Si Bits 32 - 47

/ SiOata r- OOA - OOP Si Bits 48 - 63

: Shift Count (AI<) I
OHA - OHG Ak Shift Count

(VS)

I I
I (AI<) 7 - 63 = 0 r OHH No Ak Overflow

(VS)

Scalar Shift

Figure 31. Scalar Shift

u

AVOOO

Bits 0-7

AWOOO

Bits 8-15

AW001

Bits 16-23

AW002

4

Bits 24-31

AXOOO

....
Bits 32 -39

AX001

----- Bits 40-47

AYOOO

Bits 48 -55

AY001

Bits 56-63

o

C/)

2
iii" ..,
~
~

~
~ g.
(i)

n
~
~

ADDRESS MULTIPLY

HTM-300-0

The AN option performs the address multiply operation (a 032ijk
instruction). The AN option also distributes (fans out) the Aj and Ak
operands used for other A register operations.

In Triton mode, two 48-bit operands are presented to the functional unit to
produce a 48-bit result. The AN option then does a sign extension to bit
63 and a leading zero count on the operands to determine whether the
result will fit within 48 bits. If the result exceeds 48 bits, the 64-bit
incompatibility signal sets, which sets the Address Multiply Interrupt
(AMI) flag in the exchange package.

The AN option does not use a standard pyramid formation multiply
algorithm. Instead, it uses a variation of the Booth Recode algorithm.
This algorithm enables the address multiply unit to reside on a single
option.

Half of the recode groups form as soon as the data arrives at the AN
option (namely, those groups that are centered on bits 0,4,8, 12, 16, etc).
One clock period later, using the same logic, those groups centered on bits
2, 6, 10, and 14 are recoded. This method enables a multiply operation to
execute on about one-fourth of the logic used in a standard pyramid
mUltiply. Because this method holds the Ak operand for 2 clock periods,
the AN operand can accept data only every other clock period. Refer to
Figure 32 for an illustration of the AN option.

Cray Research Proprietary 55

Address Multiply CPU Module (CPE1)

IHA-IHB Go 032

A Registers {

,
Ai

OAA-OBV A Register Data
IAA-lep

OIA-OIH Slg!l Extend Bits

IDA-IFP Ak
Multiply

OCA-ODP,
OEA OFP

Fanout
Ak Bits 0 - 7 to VL

OGA-OGT,
IGF-IGJ gData OHA-OHP

Figure 32. AN Option

Multiply Algorithm

The multiplier is partitioned into 3-bit recode groups centered on the even ~-)
bits (0 to 46); a forced zero is added to the first recode group. The recode
groups are formed as shown in Table 12. The following subsections
provide examples of standard and Booth Recode multiplication.

Table 12. Recode Groups

Odd Bit Even Bit ;-1 Recode Value Recode Product

0 0 0 +0 0

0 0 1 +1 X47-XO

0 1 0 +1 X47-XO

0 1 1 +2 2(X47 -XO)

1 0 0 -2 {2(X47 - XO}'+ 1

1 0 1 -1 (X47 -XO)'+1

1 1 0 -1 (X47 - XO)'+ 1

1 1 1 -0 0

; - 1 = Bit to right of recode X47 - XO = Multiplicand
group

56 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Address Multiply

/} Standard Binary Multiplication
/

Refer to the following example of standard binary multiplication.

OOG011 (3)
011101 (35)
000011

000000
000011

000011
000011

000000
00000010 10 111

Booth Recode Multiplication

HTM-300-0

Refer to the following example of Booth Recode multiplication.

000011 (3)
011101 (35)

000000000011
11111111010

00000110
1 0000010 10 111

In the previous example, the multiplier is recoded into bit groups centered
on the even bit. A forced zero is appended to the first recode group.

As shown in Table 12, the first recode of the multiplier, bits 1 and 0 and
the forced zero, produces a recode value of 010, or + 1. The multiplicand
is brought down to form the first partial product.

The second recode, bits 3, and 2, and 1, produces a recode value of -1. In
this case, the multiplicand is two's complemented and left shifted 1 place.

The final recode, bits 5, 4, and 3 produces a recode value of +2. The
multiplicand is left shifted 1 place.

Cray Research Proprietary 57

'~-) INTEGER MULTIPLY

Bits 63

Bits 63

Bits 63

Bits 63

HTM-300-0

The AM option performs the scalar vector integer multiply operation
(l66ijk). In Triton mode, the AA option receives Sj and Vk operands and
sends a 4O-bit output to Vi for VL length. In C90 mode, the AA option
produces a 32-bit result. To produce the 32 bit result, the Sj operand must
be left shifted 31 10 places, and the Vk operand must be left shifted by 1610

places before executing the 166ijk instruction. (Refer to Figure 33.)

48 47

48 47

48 47

48 47

32 31 16 15

32 31 16 15

Sjbits 0 through 31 are gated into bit
positions 32 through 63 for Triton mode.

32 31 16 15

32 31 16 15

Vkbits 0 through 31 are gated into bit
positions 15 through 47 for C90 mode.

Figure 33. C90 Integer Multiply Mode

Cray Research Proprietary

o

o

o

o

59

Integer Multiply

OGA-OGT
NB OGU-OHN

OIA-OIF

OJA

NA OOA-OOH

OEA-OET
OEU-OFT

OFO-OFP

NC
OGA-OGO

OHA

IC

OYO

60

CPU Module (CPE1)

The AM option, like the AN option (refer to the "Address Multiply"
section), also uses the Booth Recode algorithm for the multiply operation.
The AN option performs a leading zero count on the operands to
determine whether the results will fit within 40 bit positions. The input
operands pass through the floating-point multiply unit before they arrive at
the AM option, as shown in Figure 34.

AM

SjBits 0 -19 IAA-IAT
Sj Bits 20 - 39 IBA-IBT

Vk Bits 42 - 47 IGC-IGH

Go V 166 IEC
Vi Bits 0 - 25 to

OAA,OAZ Result Register

Sj Bits 40 - 47 IFA-IFH Vi Bits 26 - 51 to

VkBits 0 -19 ICA-ICT OBA, OBZ Result Register

VkBits 20 - 39 IDA-lOT

OHO, OHR 40-bit Mode
VkBits 40 -41 IGA-IGB

Sj Bits 48 - 62 IFI-IFW

Valid lED

Triton Mode lEA

Figure 34. AM Option Inputs

Cray Research Proprietary HTM-300-0

)

~) VECTOR REGISTERS

HTM-300-0

A CRAY T90 series computer system contains eight vector (V) registers,
which are designated VO through V7. Each register contains 12810
elements; each element is 6410 bits wide. The 12810 elements are divided
into two pipes of even and odd elements.

The vector registers have their own integer functional units, which include
vector add, vector logical 1, vector logical 2, vector shift, vector
population, vector leading zero count, and 32-bit integer multiply. The
vector registers share the floating-point functional units with the scalar
registers. These floating-point functional units include floating-point add,
floating-point multiply, floating-point divide/square root and bit matrix
multiply.

The vector registers can send data to memory or load data from memory.
The number of elements sent to a functional unit (including memory)
depends on the value contained in the vector length (VL) register. Any
element of a vector register can be loaded into a scalar register, and any
scalar register can be loaded into any element of a vector register by using
the 076ijk and 077ijk instructions.

The vector registers use I-parcel instructions. In a I-parcel instruction,
the gh field contains the instruction decode, and the ijk field contains the
operands and destination. The gh field of the instruction indicates the
functional unit needed, and the ijk field indicates the vector registers used.
Usually, the k field of the instruction selects the vector operand registers,
VO through V7. The j field of the instruction indicates either Sj or Vj,
depending on the instruction. The i field of the instruction points to the
destination or result register.

When preceded by a 005400 instruction, some vector instructions execute
differently. For example, an instruction sequence of 005400 150ijO issues,
a left shift of V j VO places to Vi is performed. Without the preceding
005400 instruction, a 150ijO instruction performs a left shift ofVj AO
places to Vi.

Cray Research Proprietary 61

Vector Registers

62

CPU Module (CPE1)

The vector registers in the CRAY T90 series system contain a dual set of
functional unit pipes. Each functional unit has an identical twin functional
unit. For example, the vector add functional unit is duplicated so that all
the even elements go to one of the vector add functional units, while all
the odd elements go to the other vector add functional unit. The even and
odd elements are sent to the functional unit simultaneously, and the two
results are loaded back into the result vector register simultaneously.

If the vector add functional unit fails in the even elements, the cause of the
failure is the pipe 0 vector add. Pipe 1 handles the odd vector elements. If
the vector length register is an even value, the results are written into the
vector register simultaneously using pipe 0 and pipe 1, until the last
element specified by the vector length is used. Refer to Table 13 for a list
of the vector register options.

Table 13. Vector Register Options

Option Type Number Used Description

Provide read/write address and control
(VBO pipe 0)

VB 2 (VB1 pipe 1)
Vector length register
Functional unit release

Pipe control
VE 4 (VEO, VE1 for pipe 0)

(VE2,VE3 for pipe 1)

Data multiplexing (VNO - VN? pipe 0)

VN 16 (VN8 - VN15 pipe 1)
Vector add functional unit
Vector logical functional unit

Data multiplexing and storage
VQ 16 (VQO - VQ? pipe 0)

(VQ8 - VQ15 pipe 1)

Cray Research Proprietary HTM-300-0

-)

CPU Module (CPE1)

VB Option

Vector Registers

The two VB options on a CPU module provide vector read and write
control. VBO provides address and control for the even elements of the
vector registers, and VB 1 provides the address and control for the odd
elements. Both VB options have the following common functions:

• Vector read and write address
• Vector read and write length
• Vector chaining control

Each VB option also has the following unique features:

• VBO

• Release vectors for write operations

• Functional unit release for:
Vector logical #1
Vector shift
Vector floating-point multiply
Vector divide

• Even-element addressing

• VB1

• Release vectors for read operations

• Functional unit release for:
Vector logical #2
Vector adder
Vector floating-point add
Vector matrix multiply

• Odd-element addressing

Vector Length Register

HTM-300-0

The vector length register is located on the VB option. There are two VB
options, one for each pipe. Both vector length registers are loaded with
Ak data bits 00 through 06 from the AVOOO option. These bits are needed
to form values from 0 to 1778. If a value of all O's is entered, the VL
register is forced to a value of 2008.

Gray Research Proprietary 63

Vector Registers

Chaining

VE Option

64

CPU Module (CPE1)

A vector length value enters a countdown (decrementing) register. VL
bit 0 is removed (pseudo right shifted so that a VL value of 200 becomes a)
value of 100 in the active register) because each pipe can handle only 100
elements. Every time VL decrements, it generates
the Advance Address signal. The VB option also checks VL bit 0 to
determine whether the vector length is odd or even in order to enable
either pipe 0 for odd vector lengths or pipe 1 for even vector lengths, on
the last operation.

If Vi, j, or k is reserved as a destination register and the next instruction
tries to use the same vector register as an operand, the next instruction is
allowed to issue. This is referred to as chaining.

Chain slot time is the time required for the result of a previous instruction
to be presented to the inputs on the VQ options. If another instruction is
waiting for these results or is addressing the same element, the VQ option
passes the results directly to the read-out register. The VB option controls
vector chaining by controlling the issuing of the Go Write signal.

Chaining to common memory read operations occurs on 8-word
boundaries. Vector control waits for 8 contiguous words to become valid \
before the read of that group is allowed. _j

There are four VE options on the CP module. VEO and VEl control
fanout for pipe 0; VE2 and VE3 control fanout for pipe 1. The VE
options perform the following functions.

• Instruction parcel data fanout to VQ options
• Vector add carry and enable summations and bit toggles
• Vector register parity error information
• Vector functional unit delay chains
• Vector functional unit data valids
• Vk address buffering for common memory
• Release of Vi for write operations

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

VN Option

VQ Option

/_)

HTM-300-0

Vector Registers

The VN options perform write data multiplexing on an 8-bit slice of all
functional unit data. There are 16 VN options. VNOOO to VN007 are for
even-element steering, and VN008 to VNO 15 are for odd-element
steering.

The VN option performs the following functions:

• Read and write data steering
• Vector read-out control
• Vector add functional unit
• Both vector logical functional units

Sixteen VN and VQ options reside on the CP module as illustrated in
Table 14. Each option performs read data steering and vector data storage.
The read data steering is done on 4-bit slices. The contents of the selected
vector register are gated to one of the following destinations:

• Floating-point add

• Floating-point multiply

• Reciprocal, pop, parity, LZ

• Shift

• Common memory port A

• Common memory port B

• Common memory port C

• Common memory write data

• V data to scalar

• Bit matrix multiply

The VN and VQ options contain four high-speed register (HSR) storage
arrays that are 18 bits wide by 64 elements deep. Sixteen of the bits are
data and 2 bits are for parity. VQOOO through VQ007 store vector data for
the even elements (pipe 0), and VQ008 through VQ015 store data for the
odd elements (pipe 1).

NOTE: VN/VQ options 12 through 15 do not handle exchange data.

Cray Research Proprietary 65

Vector Registers .

Option Pipe O/Pipe 1

Read Bits

Write Bits

Exchange Bits

Option Pipe O/Pipe 1

Read Bits

Write Bits

Exchange Bits

CPU Module (CPE1)

Table 14. VN/VQ Data Steering

VN3/11 VQ3/11 VN2/10 VQ2/10 VN1I9 VQ1/9 V NO/8 VQO/8

28-31 24-27 20-23 16 -19 12-15 . 8 -11 4-7 0-3

24 -31 - 16-23 - 8-15 - 0-7 -
60-63 55-59 52-55 48-51 44-47 40-43 36-39 32-35

VN7/15 VQ7/15 VN6/14 VQ6/14 VN5/13 VQ5/13 VN4/12 VQ4/12

60-63 56-59 52-55 48-51 44-47 40-43 36-39 32-35

56-63 - 48-55 - 40-47 - 32-39 -
28-31 24-27 20-23 16-19 12-15 8 -11 4-7 0-3

Each VQ option has an input that is used to force parity errors into the
HSR arrays. The maintenance channel provides the following two
features:

• force RAM parity error internal (code 100)
• force RAM parity error external (code 140)

Through the use of the maintenance channel, a specific loop controller and
a specific chip can be given a maintenance function such as force parity
error.

Write Data Steering

66

The VN options receive the i instruction field from the VE options. This
field performs internal gating of data to the correct register. The i field
and the instruction decode enable separate write paths for each vector.
This path stays selected until a new instruction issue changes it. All the
write paths are separate and all can be active at the same time. Refer to
Figure 35 for an illustration of the write data path.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

VNOOO VN004

Bits Bits
0-7 32-39

VN001 VN005

Bits Bits
8-15 40-47

VN002 VN006

Bits Bits
16-23 48-55

VN003 VN007

Bits Bits
24-31 56-63

)
VN008 VN012

Bits Bits
0-7 32-39

VN009 VN013

Bits Bits
8-15 40-47

VN010 VN014

Bits Bits
16-23 48-55

VN011 VN015

Bits Bits
24-31 56-63

HTM-300-0

Vector Registers

I V7 Va007

IV6 Va006
Even Element r V5 va005 Storage

I V4 VQ004

rV3 VQ003

I V2 Va002

I V1 Va001

VO vaooo

RAMO RAM 1 I-
Bits Bits

0-15 16-31 ~

Elements Elements I--0-62 0-62

i--
RAM 2 RAM 3
Bits Bits I--

32-47 48-63

Elements Elements - rV7 Va015

0-62 0-62
I- IV6 Va014

I V5 Va013

va012

Va011

Va010

VQ009 _....L.-----...
VO Va008

RAMO RAM 1

Bits Bits
0-15 16-31

Elements Elements
1-63 1-63

RAM 2 RAM 3
Bits Bits

32-47 48-63 Odd Element
Elements Elements Storage
1-63 1-63

Figure 35. Write Data Path

Cray Research Proprietary 67

Vector Registers CPU Module (CPE1)

Read Data Steering

68

The VN and the VQ options are responsible for read data steering. Each
VN and VQ option steers 4 bits for all eight vector registers to one of the
following destinations:

• Floating-point add
• Floating-point multiply
• Reciprocal, pop, parity, leading zero

• Shift
• Common memory port A, B, C
• V data to scalar

The VN and VQ options receive the j and k fields of the instruction from
the VE option along with the instruction; this enables one of eight vector
paths to which data is steered. These paths stay selected until another
instruction changes them. All the read paths are separate and all can be
active at the same time. Figure 36 shows the read data path for pipe 0 and
pipe 1 (even elements), and Figure 37 shows the read data path for pipe 0
and pipe 1 (odd elements). Also refer to the following diagrams for
additional related vector register information:

• Figure 38 - vector register write block diagram (pipe O)-~)
• Figure 39 - vectors 0 through 3 pipe 0/1 read data path "~

• Figure 40 - vectors 4 through 7 pipe 0/1 read data path
• FIgure 41 - vectors 0 through 3 pipe 0/1 write data path
• Figure 42 - vectors 4 through 7 pipe 0/1 write data path
• Figure 43 - vector register decode bit fanout (pipe 0 and 1 path 1)
• Figure 44 - vector register decode bit fanout (pipe 0 and 1 path 2) .
• Figure 45 - S register to vectors
• Figure 46 - memory data to vectors (even elements)
• Figure 47 - memory data to vectors (odd elements)

Cray Research Proprietary HTM-300-0

)

CPU Module (CPE1)

va007 Vector 7 I

-

Va006 Vector 6 I

-

Va005 Vector 51

Va004 Vector 4 I

-

Va003 Vector 3 I

-

Va002 Vector 2 I

-

Va001 Vector 1 I
vaooo Vector 0

Array 0 Array 1

Bits Bits
0-15 16-31

Elements 0 - 62

Array 2

Bits
32-47

Array 3

Bits
48-63

Elements 0 - 62

Vector Registers

I Va007 Bits 56-59

va006 Bits 48-51

I Va005 Bits 40 - 43

I VaOO4 Bits 32 - 35 l-

I Va003 Bits 24 - 27 I--

Iva002 Bits16-19 _

I Va001 Bits 8 -11 _

vaooo Bits 0 - 3 -

-

-
VNOOO Bits 4 - 7

I VN001 Bits 12-15

I VN002 Bits 20 - 23 -
I VN003 Bits 28 - 31

I VN004 Bits 36 - 39

I VN005 Bits 44 - 47

I VN006 Bits 52 - 55

VN007 Bits 60 - 63

Figure 36. Read Data Path for Pipe 0, Even Elements

HTM-300-0 Cray Research Proprietary 69

Vector Registers

VQ015 Vector 7 1
VQ014 Vector 61

VQ013 Vector 51

VQ012 Vector 4 I

-

VQ011 Vector 3 I
VQ010 Vector 21

VQ009 Vector 1 I
VQ008 Vector 0

Array 0 Array 1

Bits Bits
0-15 16-31

Elements 1 - 63

Array 2

Bits
32-47

Array 3

Bits
48-63

Elements 1 - 63

CPU Module (CPE1)

I VQ015 Bits 56 - 59

I VQ014 Bits 48 - 51

I VQ013 Bits 40 - 43

I VQ012 Bits 32 - 35

I VQ011 Bits 24 - 27

I VQ010 Bits 16 -19

I VQ009 Bits 8 -11

VQ008 Bits 0 - 3 I-

-
I-

-

VN008 Bits 4 - 7
p.....

I VN009 Bits 12 -15

I VN010 Bits20-23

I VN011 Bits 28 - 31

-)VN012 Bits36-39

I-

IVN013 Bits44-47

I-

I VN014 Bits 52 - 55

VN015 Bits 60 - 63

Figure 37. Read Data Path for Pipe 1, Odd Elements

70 Cray Research Proprietary HTM-300":O

CPU Module (CPE1) Vector Registers

Vector 0
lEA - Vector 1

lEE - Vector 2
lEI -

Vector 3
IEM -

VQOOO lED VQOOO/8
VQ008 OAA-

Bits 0-31
ICA-

OAD ICD VNOOO/8

VQ001 IEH VQOOO/8
VQ009 OAA- 1 ICE-

OAD Bits 0-3 ICH VNOOO/8

VQ002 IEl VQOOO/8

VQ010 OAA-
Bits 0-31

ICI-
OAD ICl VNOOO/8

VQ003 IEP VQOOO/8

VQ012 OAA- !ICM-
OAD BitsO-3 ICP VNOOO/8

OAE lEA VMOOO/8 OAH Bits4-7 lED
OAE lEE VNOOO/8
OAH Bits 4-7 IEH

OAE lEI VNOOO/8
OAH Bits 4-7 IEl

OAE- IEM- VNOOO/8
OAH Bits 4-7 IEP

IEA- IEE- IEI- IEM-
lED VQ001/9 IEH VQ001/9 IEl VQ001/9 IEP VQ001/9

OAI-
Bits 8 -11 1

ICA-
OAl ICD VN001/9

OAI-
Bits 8 -11 I ICE-

OAl ICH VN001/9
OAI-

Bits 8 -11 1
ICI-

OAl ICl VN001/9
OAI- I'CM-
OAl Bits 8 -11 ICP VN001/9

OAM lEA
VN001/9 OAP Bits 12 -15 lED

OAM lEE
VN001/9 OAP Bits 12 -15 IEH

OAM lEI VN001/9 OAP Bits 12 -15 IEl
OAM IEM VN001/9 OAP Bits 12 -15 IEP

IEA- IEE- IEI- IEM-
lED VQ002/10

OBA-
Bits 16 -191

ICA-
OBD ICD VN002/10

IEH VQ002l10
OBA- 11 ICE-
OBD Bits 16 - 19 ICH VN002/10

IEl VQ002/10
OBA-

Bits 16 -191
ICI-

OBD ICl VN002l10

IEP VQ002l10
OBA-

Bits 16 -191
ICM-

OBD ICP VN002/10
OBE- IEA-
OBH Bits 20-23 lED VN002l10

OBE- IEE-
OBH Bits 20-23 IEH VN002/10

OBE- IEI-
OBH Bits 20-23 IEl VN002l10

OBE- IEM-
OBH Bits 20 -23 IEP VN002/10

IEA- IEE- IEI- IEM-
lED VQ003/11

OBI-
Bits 24 -271

ICA-
OBl ICD

VN003/11
OBM- IEA-

IEH VQ003/11
OBI- ,1 ICE-
OBl Bits 24 - 27 ICH

VN003/11
OBM- IEE-

IEl VQ003/11
OBI-

Bits 24 -271
ICI-

OBl ICl
VN003/11

OBM- IEI-

IEP VQ003/11
OBI-

Bits 24-27!
ICM-

OBl ICP
VN003/11

OBM- IEM-
OBP Bits 28-31 lED VN003/11 OBP Bits 28-31 IEH VN003/11 OBP Bits 28-31 IEl VN003/11 OBP Bits 28-31 IEP VN003/11

IEA- IEE- IEI- IEM-
lED VQ004/12 IEH VQ004/12 IEl VQ004/12 IEP VQ004/12

OCA-
Bits 32 - 351

ICA-
OCD ICD VN004/12

OCA-
Bits 32 -351

ICE-
OCD ICH VN004/12

OCA-
Bits 32 -351

ICI-
OCD ICl VN004/12

OCA-
Bits 32 -351

ICM-
OCD ICP VN004/12

OCE lEA
VN004/12 OCH Bits 36-39 lED

OCE lEE VN004/12 OCH Bits 36-39 IEH
OCE lEI

VN004/12 OCH Bits 36-39 IEl
OCE IEM

VN004/12 OCH Bits 36 -39 IEP

IEA- IEE- IEI- IEM-
lED VQ005/13

OCI-
Bits 40 -431

ICA-
OCl ICD

VN005/13
OCM- IEA-

IEH VQ005/13
OCI-

Bits 40-431
ICE-

OCl ICH
VN005/13

OCM- IEE-

IEl VQ005/13
OCI-

Bits 40 -431
ICI-

OCl ICl
VN005/13

OCM- IEI-

IEP VQ005/13
OCI-

Bits 40-431
ICM-

OCl ICP
VN005/13

OCM- IEM-
OCP Bits 44-47 lED VN005/13 OCP Bits 44-47 IEH VN005/13 oCP Bits 44-47 IEl VN005/13 OCP Bits 44 -47 IEP VN005/13

IEA- IEE- IEI- IEM-
lED VQ006/14 IEH VQ006/14 IEl VQ006/14 IEP VQ006/14

ODA-
BitS48-511

ICA-
ODD ICD VN006/14

ODA- 1 ICE-
ODD Bits 48 - 51 ICH VN006114

ODA-
Bits48-511

ICI-
ODD ICl VN006/14

ODA-
Bits 48 -511

ICM-
ODD ICP VNOO6/14

ODE lEA VN006/14
ODH Bits 52 -55 lED

ODE- IEE- VN006/14
ODH Bits 52-55 IEH

ODE lEI VN006/14
ODH Bits 52-55 IEl

ODE- IEM- VN006/14
ODH Bits 52 -55 IEP

IEA- IEE- IEI- IEM-
lED VQ007/15

001-
Bits 56 - 591

ICA-
ODl ICD VN007/15

IEH VQ007/15
001- lICE-
ODl Bits 56 - 59 ICH VN007/15

IEl VQ007/15
001-

Bits 56 - 591
ICI-

ODl ICl VN007/15

IEP VQ007/15
001-

Bits 56-59!
ICM-

ODl ICP VN007l15
ODM lEA
ODP Bits 60-63 lED VN007/15

ODM lEE
VN007/15 ODP Bits 60-63 IEH

ODM IEI-
VN007/15 ODP Bits 60-63 IEl

ODM IEM
VN007/15 ODP Bits 60-63 IEP

Figure 38. Vectors 0 through 3, Pipe Oil, Read Data Path

HTM-300-0 Cray Research Proprietary 71

CPU Module (CPE1) Vector Registers

Vector 4
IDA - Vector 5

IDE - Vector 6
101 -

Vector 7
10M -

VQ004 100 VQOOO/8
VQ012 OM-

1
IFA-

OAO Bits 0-3 IFO VNOOO/8

VQ005 10H VQOOO/8
VQ013 OAA-

Bits 0-31
IFE-

OAO IFH VNOOO/8

VQ006 10l VQOOO/8
VQ014 OAA-

Bits 0-31
IFI-

OAO IFl VNOOO/8

VQOO7 lOP VQOOO/8
VQ015 OAA-

Bits 0-3 1
IFM-

OAO IFP VNOOO/8

OAE IDA VNOOO/8 OAH Bits 4-7 100
OAE IDE VNOOO/8
OAH Bits 4-7 10H

OAE 101 VNOOO/8
OAH Bits 4-7 10l

OAE 10M VNOOO/8
OAH Bits 4-7 lOP

10A- 10E- 101- 10M-
100 VQ001/9 10H VQ001/9 10l VQOO1/9 lOP VQOO1/9

OAI-
Bits 8 -11 1

IFA-
OAl IFO VN001/9

OAI-
Bits 8-11 I IFE-

OAl IFH VN001/9
OAI-

Bits 8 -11 1
IFI-

OAl IFl VN001/9
OAI-

Bits 8 -11 1
IFM-

OAl IFP VN001/9
OAM IDA

VN001/9 OAP Bits 12 -15 100
OAM IDE

VN001/9 OAP Bits 12 -15 10H
OAM 101

VN001/9 OAP Bits 12 -15 10l
OAM 10M

VN001/9 OAP Bits 12 -15 lOP

10A- 10E- 101- 10M-
100 VQ002/10

OBA-
Bits 16 -191

IFA-
OBO IFO

VN002/10

10H VQOO2/10
OBA-

Bits 16-191
IFE-

OBO IFH VNOO2l10

10l VQ002/10
OBA-

Bits 16 -191
IFI-

OBO IFl VN002/10

lOP VQ002/10
OBA-

Bits 16 -191
IFM-

OBO IFP VN002l10
OBE- 10A-
OBH Bits 20-23 100 VN002/10

OBE- 10E-
OBH Bits 20-23 10H VN002/10

OBE 101
OBH Bits 20-23 IOl VN002/10

OBE 10M
OBH Bits 20 -23 lOP VN002l10

10A- 10E- 101- 10M-
100

VQ003/11
OBI-

Bits24-271
IFA-

OBl IFO
VN003/11

OBM- 10A-

10H VQ003/11
OBI-

Bits 24-271
IFE-

OBl IFH
VN003/11

OBM- 10E-

10l VQOO3/11
OBI-

Bits 24 - 271
IFI-

OBl IFl
VNOO3/11

OBM- 101-

lOP VQ003/11
OBI-

Bits 24 - 271
IFM-

OBl IFP
VN003/11

OBM- 10M-
OBP Bits 28-31 100 VN003/11 OBP Bits 28 - 31 10H VN003/11 OBP Bits28-31 10l VNOO3/11 OBP Bits 28-31 lOP VN003/11

IDA 10E- 101- 10M-
100 VQ004/12 10H VQ004/12 10l VQOO4/12 lOP VQ004/12

OCA-
Bits 32 -351

IFA-
OCO IFO VN004/12

OCA-
Bits 32 -351

IFE-
OCO IFH VN004/12

OCA-
Bits 32 -351

IFI-
OCO IFl VNOO4/12

OCA-
Bits 32 -351

IFM-
OCO IFP VN004112

OCE IDA
VN004/12 OCH Bits 36- 39 100

OCE IDE
VNOO4/12 OCH Bits 36-39 10H

OCE 101
VNOO4/12 OCH Bits 36-39 10l

OCE 10M
VN004/12 OCH Bits 36-39 lOP

IDA 10E- 101- 10M-
100 VQ005/13

OCI-
Bits 40 -431

IFA-
OCl IFO

VN005/13
OCM- IDA

10H VQ005/13
OCI-

Bits40-431
IFE-

OCl IFH
VN005/13

OCM- 10E-

10l VQOO5/13
OCI-

Bits 40 -431
IFI-

OCl IFl
VN005/13

OCM- 101-

lOP VQ005/13
OCI-

Bits 40-431
IFM-

OCl IFP
VN005113

OCM- 10M-
OCP Bits 44-47 100 VN005/13 OCP Bits 44-47 10H VN005/13 OCP Bits 44-47 10l VN005/13 OCP Bits 44-47 lOP VN005/13

10A- 10E- 101- 10M-
100 VQ006/14 10H VQOO6/14 10l VQ006/14 lOP VQ006/14

OOA-
Bits48-511

IFA-
ODD IFO VN006/14

OOA-
Bits 48- 511

IFE-
ODD IFH VN006/14

OOA-
Bits48-511

IFI-
ODD IFl VN006/14

OOA-
Bits 48 - 511

IFM-
ODD IFP VN006/14

ODE IDA VN006/14
OOH Bits 52-55 100

ODE IDE VN006/14
OOH Bits 52 -55 10H

ODE 101 VN006/14 OOH Bits 52 -55 10l
ODE 10M VN006/14
OOH Bits 52 -55 lOP

10A- 10E- 101- 10M-
100 VQ007/15

001-
Bits 56-591

IFA-
OOl IFO VN007/15

10H VQ007/15
001-

Bits 56-591
IFE-

OOl IFH VNOO7/15

10l VQ007/15
001-

Bits 56-591
IFI-

OOl IFl VN007/15

lOP VQ007/15
001-

Bits 56 - 591
IFM-

OOl IFP VN007/15
OOM IDA

VN007/15 OOP Bits 60 -63 100
OOM IDE

VN007/15 OOP Bits 60-63 10H
OOM 101

VNOO7/15 OOP Bits 60-63 10l
OOM 10M

VN007l15 OOP Bits 60 - 63 lOP

Figure 39. Vectors 4 through 7, Pipe Oil, Read Data Path

HTM-300-0 Cray Research Proprietary 73

CPU Module (CPE1) Vector Registers

"-) Functional Units
Floating-point Add
Floating-point

Multiply V Write Data
Divide/Sq Root
Vector Shift
BMM
Integer Multiply

VNOOO VN004

IG

Bits Bits rVQ7
0-7 32-39

,IBX IVQ6
VN001 VN005 fVQ5

A,IGH Bits Bits
fVQ4 8-15 40-47

IVQ3 ,IIH OAA-ODP V Write Data IAA-IDP

IAA

IIA

AV, AW, AX, AY

OEA,OEH

Scalar Data

VN002 VN006 .6 IV02 ,IIH Bits Bits
VQ1

I-
16-23 48-55 -

VQO A,IMH -VN003 VN007

IIA

1M

CHOOO - CH014

Bits Bits I-
A,IMD 24-31 56-63 I--

1M

Common Memory OIA,OIH

Data Path 1

- I-
E,IMH

I-
"--

1M

CH001 - CH015 VB001 I
Common Memory OIA,OIH VBOOO

Data Path 2

VQOOO - VQ007
Vector Select OYI,OYP

AVOOO OPA,OPG AkData IHA,IHG
. ~ VL Register I 01-0 N V Write Address IJA-IJF

L
OAQ Go Write IJH

Code (Fanout
from CK)

Instruction
JBOOO OCA,OCP Parcel IAA, lAP

VQ1, VQ3, VQ5, 1:
VQ6

--\
Common Memory OYI,OYL

--~ Path 1 Code
(Fanout from CK)

IKA, ILA
ODA,ODC Issue IBA, BB, IBD IKP

1:
VQ1, VQ3 ,VQ5,
VQ6

Common Memory OYM,OYP

OAA-OAP
VE001 OMA,OMH Release ICA,ICIi OBA-OBP

L VEOOO OCA-OCP
OWA - OWP Instruction Fields IKA -IKP ODA-ODP ----------

Path 2 Code
(Fanout from CK)

OAO Parcel 0
OBO Parcel 1

CKOOO OGA,OGJ Path 1 Code IDA,IDJ OCO Parcel 2
OWQ Issue ODO Parcel 3 -----------

IXA-IXH Go Write OMA-OMH

CK002 OGA,OGJ Path 2 Code IEA,IEJ

Pipe 0

INJ ONE

~

""-

Advance Vi Write Address (Expand)

Figure 40. Vector Register Write Block Diagram, Pipe 0

HTM-300-0 Cray Research Proprietary 75

CPU Module (CPE1) Vector Registers

AVOOO AWOOO AW001 AW002

VNOOO VN001 VN002 VN003
OEA- IGA- OEA- IGA- OEA- IGA- OEA- IGA-
OEH Bits 0-7 IGH OEH Bits 8-15 IGH OEH Bits 16-23 IGH OEH Bits 24-31 IGH

Pipe 0
~---- ------------------ ----- ------------------ f---- ------------------ 1----- ------------------

Pipe 1

VN008 VN009 VN010 VN011
OEI- IGA- OEI- IGA- OEI- IGA- OEI- IGA-
OEP Bits 0-7 IGH OEP Bits 8 -15 IGH OEP Bits 16-23 IGH OEP Bits 24-31 IGH

S Register to Vector

AXOOO AX001 AYOOO AY001

OEA- IGA-
VN004

OEA- IGA-
VN005 VN006

OEA- IGA- IGA-
VN007

OEA-
OEH Bits 32 -39 IGH OEH Bits 40-47 IGH OEH Bits 48-55 IGH OEH Bits 56-63 IGH

Pipe 0
r---- ~----------------- ----- ------------------ 1----- ------------------ ----- ------------------

Pipe 1

VN012 VN013 VN014 VN015
OEI- IGA- OEI- IGA- OEI- IGA- OEI- IGA-
OEP Bits 32 -39 IGH OEP Bits 40-47 IGH OEP Bits 48-55 IGH OEP Bits 56-63 IGH

Figure 41. S Register to Vectors

HTM-300-0 Cray Research Proprietary 77

CPU Module (CPE1) Vector Registers

Path 1

CHOOO CHOO4 CHOO8 CH012

OIA-OID IIA-IID VNOOO OIA-OID IIA-IID VNOO1 OIA-OID IIA-IID VNOO2 OIA-OID IIA-IID VNOO3

OIA- IIE- OIA- IIE- OIA- IIE- OIA- IIE-

CHOO2 010 IIH
CHOO6

010 IIH CH010
010 IIH CH014

OlD IIH

OIE- IIE- OIE- IIE- OIE- IIE- OIE- IIE-
OIH IIH VNOO4 OIH IIH VNOO5 OIH IIH VNOO6 OIH IIH VNOO7

OIE-OIH IIA-IID OIE-OIH IIA-IID OIE-OIH IIA-IID OIE-OIH IIA-IID

Common Memory Data to Vector Paths 1 and 2 Even Elements

~)' Path 2

-~
CHOO1 CHOO5 CHOO9 CH013

OIA-OID IJA-IJD
VNOOO VNOO1

OIA-OID IJA-IJD
VNOO2

OIA-OID IJA-IJD
VNOO3

OIA-OID IJA-IJD

OIA- IJE-

CHOO3 010 IJH
OIA- IJE-

CHOO7 010 IJH
OIA- IJE-

CH011 010 IJH
OIA- IJE-

CH015 OlD IJH

OIE- IJE-
OIH IJH VNOO4

OIE- IJE-
OIH IJH VNOO5

OIE- IJE-
VNOO6 OIH IJH

OIE- IJE-
OIH IJH VNOO7

OIE-OIH IIA-IID OIE-OIH IIA-IID OIE-OIH IIA-IID OIE-OIH IIA-IID

Figure 42. Memory Data to Vectors, Even Elements

HTM-300-0 Cray Research Proprietary 79

CPU Module (CPE1) Vector Registers

Path 1

CHOOO CHOO4 CHOO8 CH012

OJA-OJD IIA-IID VNOO8 OJA-OJD IIA-IID VNOO9
OJA-OJD IIA-IID VN010 OJA-OJD IIA-IID VN011

OIA- IIE-

CHOO2 OlD IIH
OIA- IIE-

CHOO6 OlD IIH~
OIA- IIE-

CH010 OlD IIH
OIA- IIE-

CH014 OlD IIH

OIE- IIE-
OIH IIH VN012

OIE- IIE-
OIH IIH VN013 OIE- IIE-

OIH IIH VN014
OIE- IIE-
OIH IIH VN015

OJE-OJH IIA-IID OJE-OJH IIA-IID OJE- OJH IIA-IID OJE- OJH IIA-IID

Common Memory Data to Vector Paths 1 and 2 Odd Elements

) Path 2

CHOO1 CHOO5 CHOO9 CH013

OJA-OJD IJA-IJD VNOO8
OJA-OJD IJA-IJD VNOO9 OJA-OJD IJA-IJD VN010 OJA-OJD IJA-IJD VN011

OIA- IJE-

CHOO3 OlD IJH
OIA- IJE-

CHOO? OlD IJH

OIA- IJE-

CH011 OlD IJH
OIA- IJE-

CH015 OlD IJH

OIE- IJE-
- OIH IJH VN012 OIE- IJE-

OIH IJH VN013

OIE- IJE-
OIH IJH VN014

OIE- IJE-
OIH IJH VN015

OJE-OJH IIA-IID OJE- OJH IIA-IID
OJE- OJH IIA-IID OJE- OJH IIA-IID

Figure 43. Memory Data to Vectors, Odd Elements

HTM-300-0 Cray Research Proprietary 81

CPU Module (CPE1) Vector Registers

CKOOO OFO Vector Register Oecode Bits IYB VQOO5 OYI IMC J VNOOO I CKOO2 VQ013 OYJ -I VNOO8
VQOO1 OYI IMA _I VNOOO

~
IMO* IMC 1MB IMA

OFB IYB VQOO9 OYJ 1 VNOO8
OYK

IMC 1 VNOO2 I OYL 1 0 0 0 VO OYK -I VN010
OFC OYL IMA J VNOO2 I 1 0 0 1 V1 I VN010 IMC 1 VN004 I -I VN012 IOFA .I VNOO4

J
1 0 1 0 V2

IMA
1 VN012 IMC .I VNOO6 I 1 0 1 1 V3

IMA .I VNOO6 I
-I VN014

1 1 0 0 V4
I VN014 IMC J VNOO1 I I VNOO9 1 1 0 1 V5
1 VNOO1 I IMA

-I VNOO9 IMC I VNOO3 I
1 1 1 0 V6

-I VN011

J VNOO3 I 1 1 1 1 V7 IMA
I VN011 IMC .1 VNOO5 I -I VN013 * Path 1 Valid
1 VNOO5 I IMA

-I VN013 IMC I VNOO7 I 1 VN015
.1 VNOO7 I

NOTES: The top option number represents pipe O.
IMA OYI IMO The bottom number represents pipe 1. -I VN015 VQOO6 -I VNOOO I VQ015 OYJ VNOO8

VQOO3
OYI 1MB -I VNOOO 1 IYB VQ011 OYJ VNOO8 OYK

IMO 1 VNOO2 I OYK OYL I VN010
I VNOO2] OYL 1MB

IVQOOO I OYM INA I VN010 IMO JVN004 I -I VQOO8
OYN -I VN012

1MB J VNOO4] IYB IVQOO2 I OYO INA 1 VN012 J VNOO6 I IMO 1 VQ010 IYC OYP I VN014
_I VNOO6 J 1MB

INA IVQOO4 I -I VN014 IMO J VNOO1 I -I VQ012 ·1 VNOO9

I 1MB J VNOO1
INA 1 vaOO6 I I VNOO9 IMO _I VNOO3 I 1 va014 I VN011

.I VNOO3 I - 1MB
INA I vaOO1 I I VN011 IMO .I VNOO5 I -lvaoo9 1 VN013

1MB .1 VNOO5 I IvaOO3 I INA 1 VN013 IMO 1 VNOO7 I -I va011 1 VN015
.I VNOO7 I 1MB

Path 1 Valid INA IvaOO5 I I VN015
Path 1 Valid

-I Va013

Path 1 Valid I Ivaoo7
Path 1 Valid INA Va015

Figure 44. Vector Register Decode Bit Fanout, Pipe 0 and 1, Path 1 Only

J
HTM-300-0 Gray Research Proprietary 83

CPU Module (CPE1) Vector Registers

l
CKOOO Vector Register Decode Bits OFD IYC VQOO5 OYM IMG IVNOOO I CKOO2

VQ013
VQOO1 OYM IME I VNOOO 1 OYN -I VNOO8 IMH* IMG IMF IME

1 VNOO8 OFB IYC VQOO9 OYN OYO
IMG JVNOO2 I 1 0 0 0 vo OYO OYP

OFC OYP IME .1 VNOO2 I I VN010
1 0 0 1 V1 I VN010

IMG .IVN004 I ~
IME J VNOO4

J
1 VN012 1 0 1 0 V2

L VN012
IMG IVNOO6 I

1 0 1 1 V3

IME 1 VNOO6

J
1 VN014

1 1 0 0 V4 1 VN014
IMG 1 VNOO1 I 1 1 0 1 V5

IME J VNOO1

J
I VNOO9

L VNOO9 1 1 1 0 V6
IMG IVNOO3 I IME 1 VNOO3

J
-I VN011 1 1 1 1 V7

·1 VN011
IMG JVNOO5 I * Path 2 Valid

IME 1 VNOO5

J
1 VN013

L VN013
IMG 1 VNOO7 I IME 1 VNOO7

J
-I VN015 NOTES: The top option number represents pipe O.

L VN015 OYI IMH
The bottom number represents pipe 1.

VQOO7 I VNOOO I VQOO3
OYI IMF I VNOOO I

VQ015 OYJ VNOO8
IYB VQ011 OYJ VNOO8 OYK

IMH .IVNOO2 I OYK
-I VN010

IMF J VNOO2 I
OYL

OYL IYB 1 VN010 OYM
IMH JVN004 I

INB 1 VQOOO I IYC 1 VQOO8
IMF J VN004 I OYN -I VN012

1 VN012 OYO
IMH .IVNOO6 I

INB 1 VQOO2 I -I VQ010
IMF I VNOO6 I OYP -I VN014

1 VN014
IMH JVNOO1 I

INB 1 VQOO4 I 1 VQ012
IMF .1 VNOO1] 1 VNOO9

·lvNoo9
IMH .1 VNOO3 I

INB 1 VQOO6 I 1 VQ014
IMF 1 VNOO3

J
1 VN011

IVN011
IMH JVNOO5 I

INB 1 VQOO1 I 1 VQOO9
IMF 1 VNOO5

J
1 VN013

1 VN013
IMH IVNOO7 I

INB 1 VQOO3 I 1 VQ011
IMF 1 VNOO7

J
1 VN015

·IVN015 Path 2 Valid INB rVQOO5 I Path 2 Valid
I VQ013

Path 2 Valid rVQOO7 I Path 2 Valid INB VQ015

Figure 45. Vector Register Decode Bit Fanout, Pipe 0 and 1, Path 2 Only

HTM-300-0 Cray Research Proprietary 85

CPU Module (CPE1) Vector Registers

Vector 0 Vector 1 Vector 2 Vector 3

VQOOO VQ001 VQ002 VQ003
VQ008 VQ009 VQ010 VQ011

VNOOO OAA- IAA-
VN008 OAH Bits 0-7 IAH

VNOOO OAI- IAA-
VN008 OAP Bits 0-7 IAH

VNOOO OBA- IAA-
VN008 OBH Bits 0-7 IAH

VNOOO OBI- IAA-
VN008 OBP Bits 0-7 IAH

VN001
OAA- IAI-VN009
OAH Bits 8 - 15 lAP

VN001 OAI- IAI-VN009
OAP Bits8-15 lAP

VN001 OBA- IAI-
VN009 OBH Bits8-15 lAP

VN001 OBI- IAI-
VN009 OBP Bits 8 -15 lAP

VN002
OAA- IBA-VN010
OAH Bits 16-23 IBH

VN002
OAI- IBA-VN010
OAP Bits 16 -23 IBH

VN002
OBA- IBA-VN010
OBH Bits 16-23 IBH

VN002
OBI- IBA-VN010 OBP Bits 16-23 IBH

VN003
OAA-VN011 IBI-
OAH Bits24-31 IBP

VNOO3
OAI-VN011 IBI-
OAP Bits24-31 IBP

VN003
OBA- IBI-VN011
OBH Bits 24-31 IBP

VN003
OBI- IBI-VN011
OBP Bits 24-31 IBP

VN004
OAA- ICA-VN012
OAH Bits 32 -39 ICH

VN004
OAI- ICA-VN012
OAP Bits 32 -39 ICH

VN004
OBA- ICA-VN012
OBH Bits 32-39 ICH

VN004
OBI- ICA-VN012
OBP Bits 32 -39 ICH

VN005
VN013 OAA- ICI-

OAH Bits 40-47 ICP

VN005
VN013 OAI- ICI-

OAP Bits 40-47 ICP

VN005
VN013 OBA- ICI-

OBH Bits 40-47 ICP

VN005
VN013 OBI- ICI-

OBP Bits 40-47 ICP

VN006 VN006 VN006 VN006
VN014 OAA- IDA- VN014 OAI- IDA- VN014 OBA- IDA- VN014 OBI- IDA-

OAH Bits48-55 IDH OAP Bits 48-55 IDH OBH Bits 48-55 IDH OBP Bits 48-55 IDH

VN007 VN007 VN007 VN007
VN015 OAA- IDI- VN015 OAI- IDI- VN015 OBA- IDI- VN015 OBI- IDI-

OAH Bits 56-63 IDP OAP Bits 56-63 IDP OBH Bits 56-63 IDP OBP Bits 56-63 IDP

Figure 46. Vectors a through 3, Pipe all, Write Data Path

HTM-300-0 Cray Research Proprietary 87

CPU Module (CPE1) Vector Registers

Vector 4 Vector 5 Vector 6 Vector 7

VQ004 VQ005 VQ006 VQ007
VQ012 VQ013 VQ014 VQ015

VNOOO OCA- IAA-
VN008 OCH Bits 0-7 IAH

VNOOO OCI- IAA-
VN008 OCP Bits 0-7 IAH

VNOOO OOA- IAA-
VN008 OOH Bits 0-7 IAH

VNOOO 001- IAA-
VN008 OOP BitsO-7 IAH

VN001 OCA- IAI-
VNOO9 OCH Bits 8-15 lAP

VN001 OCI- IAI-
VNOO9 OCP Bits 8 -15 lAP

VN001 OOA- IAI-
VN009 OOH Bits 8-15 lAP

VN001 001- IAI-
VN009 OOP Bits8-15 lAP

VN002 OCA- IBA-VN010 OCH Bits 16-23 IBH

VN002 OCI- IBA-
VN010 OCP Bits 16-23 IBH

VN002 OOA- IBA-
VN010 OOH Bits 16-23 IBH

VN002 001- IBA-
VN010 OOP Bits 16-23 IBH

VN003
OCA- IBI-VN011
OCH Bits 24-31 IBP

VNOO3
OCI- IBI-VN011
OCP Bits 24-31 IBP

VN003
OOA- IBI-VN011
OOH Bits 24-31 IBP

VN003
001- IBI-VN011
OOP Bits 24-31 IBP

VN004
OCA- ICA-VN012
OCH Bits 32-39 ICH

VNOO4
OCI- ICA-VN012
OCP Bits 32-39 ICH

VN004
OOA- ICA-VN012
OOH Bits 32 -39 ICH

VN004
001- ICA-VN012
OOP Bits 32 -39 ICH

VN005
OCA- ICI-VN013
OCH Bits 40-47 ICP

VN005
OCI- ICI-VN013
OCP Bits 40-47 ICP

VN005
OOA- ICI-VN013
OOH Bits 40-47 ICP

VN005
001- ICI-VN013
OOP Bits 40 -47 ICP

VN006
VN014 OCA- 10A-

OCH Bits 48-55 10H

VNOO6
VN014 OCI- 10A-

OCP Bits 48 -55 10H

VN006
VN014 OOA- 10A-

OOH Bits 48-55 10H

VN006
VN014 001- 10A-

OOP Bits 48-55 10H

VN007
VN015 OCA- 101-

OCH Bits 56-63 lOP

VN007
VN015 OCI- 101-

OCP Bits 56-63 lOP

VN007
VN015 OOA- 101-

OOH Bits 56-63 lOP

VN007
VN015 001- 101-

OOP Bits 56-63 lOP

Figure 47. Vectors 4 through 7, Pipe 0/1, Write Data Path

HTM-300-0 Cray Research Proprietary 89

) VECTOR LOGICAL
-"

"-)

)

HTM-300-0

There are two independent vector logical units in a CRAY T90 series
system. (Refer to Figure 48 for a block diagram of the vector logical
units.) These functional units reside on 16 VN options. VNOOO through
VN007 handle pipe 0 (the even elements), and VN008 through VN015
handle pipe 1 (the odd elements). Each VN option operates on a 4-bit
slice of all eight vector registers.

The vector logical units receive input data from the VQ options and send
the results to the vector registers. The second vector logical unit is
enabled by setting mode bit 2 (ESL) in the mode field of the exchange
package. When both logical units are enabled, data is processed first in
the second unit because only the first unit can process the 146 and 147
(vector merge) instructions. For example, if a 140 instruction (logical
product) issues, the second unit processes the instruction in case a 146 or
147 issues next. If the first unit processed the 140 instruction, it would be
busy and the 146 instruction would have to hold issue.

The vector logical unit performs the logical product (AND), logical sum
(OR), and logical difference [also called exclusive OR (XOR)] functions
using either scalar or vector registers.

Cray Research Proprietary 91

Vector Logical CPU Module (CPE1)

VEOOO-001
Vectors 0-7

Pipe 0

OAA- OAP

Instruction Parcel

VQOOO-007

IKA-
IKP

Vector Logical 1 and 2

VNOOO
VN007

Unit 1

r--
~

Result Vector
Even Elements

-- 00 ILC

-

92

-I..

""-..... _---'

OEA-OEH

AV, AW, AX, AY 5j Data

OEI-OEP

VN = 1 Vj=: Neg OVB Vj = 0 IOH I II I
OVA, Vj= Neg INA,

VJ=O I

OYU

ICOOO -IC003 lOA
Enable Vector

Logical 2
OEA-OEH

55000 PipeD

VEOOO-
001

----- Vector Mask Register ------------
Pipe 1

VE002-003
OEI-OEP

Vectors 0-7
Pipe 1 OAA-OAP lOA

.... -
-100

""

VQ008-015

00
00

-..... _--"'"

Instruction IKA-
Parcel IKP

V Data

IGA
IGH

VN008
VN015

I II
Vj

'=Pos I OVA, Vj= Neg INA, VE002-
OVB Vj = 0 IOH 003

VN=1 Vj=O I

Unit 1

Unit 2

-

.... -f---. Result Vector
Odd Elements

ICOOO -IC003 OYU ILC
Enable Vector ~.;....;.--=--t-_~

-
Logical 2 1...-__ ---'

Vector Logical 1 and 2

Figure 48. Vector Logical Block Diagram

Cray Research Proprietary HTM-300-0

)

CPU Module (CPE1) Vector Logical

/) Vector Logical Instructions

Table 15 lists the vector logical instructions.

Table 15. Vector Logical Instructions

Instruction CAL Description

140ifl< ViSj&Vk Transmit logical product of (S1) and (Vkelements) to Vi
elements

141 ijk ViVj&Vk Transmit logical product of (Vjelements) and (Vkelements)
to Vi elements

142ijk ViSflVk Transmit logical sum of (S1) and (Vkelements) to Vi
elements

143ijk ViVflVk Transmit logical sum of (Vjelements) and (Vkelements) to
Vi elements

144ijk ViSj.Vk Transmit logical differences of (S/J and (Vkelements) to Vi
elements

145ijk ViVj.Vk Transmit logical differences of (Vjelements) and (Vk
elements) to Vi elements

_~) Vector Merge

HTM-300-0

The 146 and 147 instructions merge the contents of the registers using the
vector mask register for control. The 146 instruction merges the contents
of Sj with the contents ofVk; the 147 instruction merges the contents of
Vj and Vk. If the vector mask bit is a 1, the Vj or Sj data is used; if the
vector mask bit is a 0, the Vk data is used.

The vector logical functional unit holds a copy of the S-register value.
Therefore, a subsequent instruction can change the S-register value and
not affect the results. These instructions are confined to the second logical
unit. Refer to Table 16 for the vector merge instructions, and refer to
Figure 49 for an example of a vector merge operation.

Cray Research Proprietary 93

Vector Logical CPU Module (CPE1)

Table 16. Vector Merge Instructions

Instruction CAL Description

146ijk ViSj.Vk&VN Merge (S}) and (Vkelements) to Vielements using (VN) as
mask

146Klk Vi#VN&Vk Merge 0 and (V k elements) to Vi elements using (VN) as
mask

147ijk ViVj.Vk&VN Merge (V j elements) and (V k elements) to Vi elements
using (VN) as mask

94 Cray Research Proprietary HTM-300-0

)

CPU Module (CPE1) Vector Logical

147ijk Merge 8jand Vkelements to Vi elements using VN as mask

Element 0

Element 1

Element 2

Element 3

Element 4

82

VL=5

Vk Elements (VQNN)

0 0

0 1

0 2

0 3

0 4

0 7
I

Vector Mask (88)

0001100 ----- o

Vi Elements (VNNQ)

VkElement 0

VkElement 1

VkElement 2

8j

8j

Element 0

Element 1

Element 2

Element 3

Element 4

NOTE: Elemen ts 5 through
unchanged. 127 are

146ijk Merge V j elements and V k elements to Vi elements using VN as mask

Vector Mask (88)

Element 0

Element 1

Element 2

Element 3

Element 4

Element 0

Element 1

Element 2

Element 3

Element 4

HTM-300-0

VL=5 0001100

V k Elements (VQNN)

0 0

0 1

0 2

0 3

0 4

Vj Elements (VQNN)

0 7

0 7

0 7

0 7

0 7

-----0 I

~

Vi Elements (VNNQ)

VkElement 0

VkElement 1

VkElement 2

VjElementO

VjElement 1

Element 0

Element 1

Element 2

Element 3

Element 4

NOTE: Element s5through
unchanged. 127 are

Figure 49. Vector Merge Operation

Cray Research Proprietary 95

Vector Logical

Vector Mask

CPU Module (CPE1)

VMO and VMl are vector mask registers. Each register is 64 bits wide,
and the two registers are aligned to create a 128-bit register. Each bit in
the register corresponds to an element in a vector register. The vector
mask register stores the results of the test condition of an element in a
vector register. For example, the mask register can indicate which

. elements of a particular vector .register contain positive values.

The vector mask register receives data either from the scalar registers or
from the result of comparing a condition within the elements of a vector.
The vector mask register is arranged so that mask bit 127 corresponds to
element 0 of the vector.

Refer to Table 17 and Table 18 for a list of the vector mask and vector
mask test operations, respectively. Refer also to Figure 50 for an
illustration of the 1750jO instructions.

Table 17. Vector Mask Operations

Instruction CAL Description

0030P VMOSj Transmit (S)) to VMO

0030j1 VM1 Sj Transmit (S)) to VM1

*0030/2 VMOAj Transmit (A)) to VMO

*0030/3 VM1 Aj Transmit (A)) to VM1

070ij1 ViCI,Sj&VM Transmit compressed index of (S)) controlled by (VM) to Vi

073AJO SiVMO Transmit (VMO) to Si

073i10 SiVM1 Transmit (VM1) to Si

·073120 AiVMO Transmit (VMO) to Ai

*073i30 AiVM1 Transmit (VM1) to Ai

* These instructions must be preceded by a 005400 (EIS) instruction.

96 Cray Research Proprietary HTM-300-0

~)

)

CPU Module (CPE1) Vector Logical

Table 18. Vector Mask Test Operations

Instruction CAL Description

1750jJ VM Vj,Z Set VM bit if (Vj element) = 0

1750j1 VM Vj,N Set VM bit if (V j element) ~ 0

1750/2. VM Vj,P Set VM bit if (Vj element) ~ 0

1750/3 VMVj,M Set VM bit if (Vj element) < 0

175ij4 Vi,VM Vj,Z Set VM bit if (Vj element) = 0 and store compressed
indices of V j elements = 0 in Vi

175iP Vi,VM Vj,N Set VM bit if (V j element) ~ 0 and store compressed
indices of V j elements ~ 0 in Vi

175iP Vi,VM Vj,P Set VM bit if (Vj element) ~ 0 and store compressed
indices of V j elements ~ 0 in Vi

175ij7 Vi,VM Vj,M Set VM bit if (Vj element) < 0 and store compressed

VL=5

Element 0

Element 1

Element 2

Element 3

Element 4

HTM-300-0

indices of V j elements < 0 in Vi

1750P Set VM bit if Vj element = 0

Compare VE

Vector Register fill) (VQNN) TestVj=O

00000000000000000

00000001110000001

1111111111111111111

00000000000000000

1111111111111000000

Figure 50. 1750jO Instructions

Cray Research Proprietary

Vector Mask Registe

0

1

0

1

0

0

• • •
0

r (SS)

Bit 127

Bit 126

Bit 125

Bit 124

Bit 123

Bit 122

Bit 0

97

Vector Logical CPU Module (CPE1)

Element 0

Element 1

Element 2

Element 3

Element 4

Figure 51 illustrates the function of the 175ij4 instructions that use the
vector mask to create a compressed vector.

175ij4 Set VM bit if Vj element = 0 and store compressed indices of VI elements = 0 in Vi

Vj Elements (VQNN) VE

0 0 -- r---
Test

0 1 -- r--
O 0 -- r--
0 0

Vj=O

0 0

VL=5

VM Reg Index
(88) Bits Address (VE) VI Elements (VNNQ)

1 -@r
0 126

1 G)-
1 124 • • • 1

0

0

1

2

3 • • •
177

f- 0

lr 2

3

4

Unchanged

Element 0

Element 1

Element 2

Element 3

Element 4

Figure 51. Function of the 175ij4 Instructions

Compressed Iota

98

The iota function is performed on the RE options. REOOO is used for pipe
o and REDO 1 is used for pipe 1. Table 19 lists the instruction used in iota
operations, and Figure 52 is a block diagram of iota pipe 0 and 1.)

Table 19. Iota Instruction

Instruction CAL Description

070ij1 ViCI,Sj&VM Transmit compressed index of (S)) controlled by (VM) to Vi

The 070ij1 instruction forms multiples of the contents of register Sj
starting with 0 (0, Sj, 2 x Sj, 3 x Sj, and so on). It stores multiples that
correspond to each 1 bit set in the vector mask register in successive
elements of register Vi (beginning at element 0). The instruction stops
when all unused bits of the vector mask are 0 or are used.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

55000
OGA

55000
OGB
55000
OGC

BU001
05C

VNNQ
0-7

VMO Element Valid

VM1 Element Valid

VM=O

Go Iota

5;OataO-63

RE Option

HTM-300-0

Vector Logical

REOOO

IGA

1GB

OAA - OOP Result to VN 0 - 7
IGC

OMA Iota Valid VBOOO
IGO INH

OMC End Iota VBOOONB001
INI

OGA

OGB

IAA-IOI?.
lOGO

RE001

VMO Element Valid IGA

VM1 Element Valid 1GB

Go Iota IGO
OAA-
OOP VN 8-15

OMA Iota Valid
VB0011NH

VNNQ 5iOataO-63 IAA-IOP-
8-15

Figure 52. Iota Pipe 0 and I

Figure 53 on page 100 illustrates the function of the 070iji instructions
that use the vector mask to create a compressed vector.

The REOOO receives the Go Iota signal from the BUOOI option, makes a
copy of this signal, and sends it to the REOOI option. The Sj data arrives
at both options along with a Element Valid signal. After the operand has
been used and a pair of elements is ready to be written to the result vector,

Gray Research Proprietary 99

Vector Logical

100

CPU Module (CPE1)

the Iota Valid signal is sent to the VB option. The two Iota Valid signals, ~

one from REOOO and on from REOO 1, are usually identical except when)
there is an odd number of elements on Pipe O. The operation ends when
the VM=O signal arrives from the SS option and causes the REOOO option
to send the Signal End Iota signal to both VB options. The Signal End
Iota signal is sent concurrently with the last Element Valid signal.

070ij1 Transmit compressed index of (SJ) controlled by (VM) to Vi

Vector Mask (SS)

1001110100 0

Vi Elements (
Functional

0 Unit

Sjx VM Bit 6
2xO

8 2x3
2x4

10 2x5
2x7 14

Sj I 0 2 I
Figure 53. Function of the 070ijl Instructions

Cray Research Proprietary

VMNQ)

Element 0

Element 1

Element 2

Element 3

Element 4

HTM-300-0

~) VECTOR ADD

HTM-300-0

The vector add functional unit is located on the VN and VE options.
(Refer to Figure 54 for a block diagram of vector add.) The VN options
perform the actual addition of the input operands and then pass the group
carries and group enables to the VE for summation. These bit toggles are
then returned to the VN option for final summation. The functional unit
uses two's complement arithmetic and does not detect any overflow
conditions.

Refer to Table 20 for a list of the vector add instmctions.

Table 20. Vector Add Instructions

Instruction CAL Description

154!fl<

155ijk

156ijk

156XJk

157ijk

Vi8j+Vk Transmit integer sum of (8,) and (V k elements) to Vi elements

ViVj+Vk Transmit integer sum of (Vj elements) and (V k elements) to
Vi elements

Vi8j-Vk Transmit integer difference of (8,) and (Vkelements) to Vi
elements

Vi-Vk Transmit two's complement of (V k elements) to Vi elements

ViVj-Vk Transmit integer difference of (Vj elements) and (V k elements)
to Vi elements

The 154 and 156 instructions use the content of the Sj register as an input
operand. The VN option keeps a copy of the Sj register, which enables a
subsequent instruction to proceed and change the content of Sj without
affecting the 154 or 156 instruction in progress.

Cray Research Proprietary 101

CPU Module (CPE1)

VEOOO

Adder

alA Adder BitToggles INA VNOOO Bits 0-7

Carry
OWA

(VQOOO Vector Data Enable
OWC

VQ007) -

alB Adder Bit Toggles INA VN001 Bits 8-15

Carry
OWA

(VQOOO Vector Data
Enable

OWC

VQ007)
..... f--

OIC Adder Bit Toqqles INA VN002 Bits 16-23

Carry
OWA

(VQOOO Vector Data Enable
OWC

-
VQ007)

OlD Adder Bit Toqqles INA
VN003 Bits 24 - 31

Carry
OWA

(VQOOO Vector Data
Enable

OWC

-VQ007)

HTM-300-0

Summation

ILA VEOOO VE001

IMA

VE001
ILA

IMA

L....-. Result Data to Vectors

ILB VEOOO

1MB

VE001
ILB

1MB

- Result Data to Vectors

ILC VEOOO

IMC

VE001
ILC

IMC

Result Data to Vectors

ILD VEOOO

IMD

VE001
ILD

IMD

- Result Data to Vectors

Figure 54. Vector Add Block Diagram

Cray Research Proprietary

Summation

Adder

alA Adder Bit Toggles INA VN004 Bits 32 - 39
Carry OWA

.....-___ :.=IL:::,E..-I VEOOO

IME

(VQOOO Vector Data Enable t"0_W~C:::...._+-__ ..

VQ007) ~ '--_____ .JI-- VE001

alB Adder Bit Toqgles INA

(VQOOO Vector n"t"
VQ007)

OIC Adder Bit Toggles INA

(VQOOO Vector Data
VQ007)

ILE

IME

~ Result Data to Vectors

.-___ .:.:IL;;,..F VEOOO

VN005 Bits 40 - 47
IMF

Carry I-'0_W~A:.:....._.

Enable to_W"""",,C_-f __ ~
....... ____J- VEDOI

ILF

IMF

~ Result Data to Vectors

ILG VEOOO

IMG
VN006 Bits 48 - 55

Carry OWA

Enable to""W"""""C_-f __

....... ____Jf-- VE001
ILG

IMG

I.-...-. Result Data to Vectors

OlD Adder Bit Toggles INA VN007 Bits 56 - 63

(VQOOO Vector Data
VQ007)

Carry

Enable

L ______ J--....... Result Data to Vectors

Vector Add

103

/~) VECTOR SHIFT

The vector shift functional unit is contained within the VS option. Vector
shift is a dual-pipe functional unit; it accepts a pair of elements and
generates a pair of results. If the vector length is odd, the last operand
generates a single result. There is only one VS option for each CPU.

The vector shift functional unit is responsible for vector transfer
operations. For example, it transfers the contents of one vector register to
another vector register; then the functional unit uses the Ak value as a
starting element number for the block move.

This unit also performs the vector compress and expand operations. The
compress operation writes the elements of Vj to Vi if a corresponding bit
in the vector mask register sets. The expand operation reads the elements
of V j to Vi if a corresponding bit in the vector mask register sets. These
operations are illustrated later in this section.

The 150 to 153 instructions use Ak as the shift count. The 150 to 151
instructions, when preceded by a 005400 (EIS) instruction, use VO for the
shift count. In either case, if bit 7 or above is set, the result is O's.

Vector Shift Instructions

Refer to Table 21 for a list of the vector shift instructions.

Table 21. Vector Shift Instructions

Instruction CAL Description

150~ ViVj<Ak Shift (Vjelements) left (AI<) places to Vi elements

*150lj{) ViVj<VO Shift (V j elements) left (VO elements) places to Vi elements

151Qk ViVj>Ak Shift (V j elements) right (AI<) places to Vi elements

*151lj{) ViVj>VO Shift (V j elements) right (VO elements) places to Vi elements

152Qk ViVj,Vj<Ak Double shift (Vjelements) left (Ak) places to Vi elements

*152Qk ViVj,Ak Transfer (V j elements) starting at element (AI<) to Vi elements

153Qk ViVj,Vj>Ak Double shift (V j elements) right (AI<) places to Vi elements

* These instructions must be preceded by a 005400 (EIS) instruction.

HTM-300-0 Cray Research Proprietary 105

Vector Shift CPU Module (CPE1)

Table 21. Vector Shift Instructions (continued)

Instruction CAL Description

*153iIJ ViVj,{VN] Compress Vjby (VN) to Vi

*153ij1 Vi,[VN] Vj Expand V j by (VN) to Vi

* These instructions must be preceded by a 005400 (EIS) instruction.

Vector Shift Count Description

106

The Ak shift count is sent to the VS option by the AVOOO option, and all
eight A series options check the value of the 64-bit A register. This test
determines if any bits above bit 6 have been set. If any bits have been set,
the result is lost due to overshift. If no overflow is detected, a No Ak
Overflow signal is sent from the SS to the VS. AVOOO sends bits 0
through 6 as the shift count.

To better understand this process, examine the composition of the shift
count. For both single and double shifts, the shift count is similar except
that the double shift has 1 extra bit (bit 6). Refer to Figure 55 for an
examination of the shift count and to Figure 56 for a block diagram of
vector shift.

Double
Shift
Only
6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Figure 55. Shift Count Breakdown

Each bit position of the shift count represents a shift value. The sum of
the shift value for each bit set in the shift count equals the total number of
places shifted. The maximum shift count that could be generated is 12710
or 1778.

NOTE:· The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count. Also,
a shift of 0 generates a maximum shift of 1778 places and clears
the result register.

Cray Research Proprietary HTM-300-0

)

:J:
~
~
&
8
6

(")

a
'<
:c

I a
::::r
"tJ a
"C
m:
-<

~

~

\,~

VNNQ

SSOOO

VQOOO

VQOOS

VE001

V E003

VBOOO

I BUOOO

\~
,

VSOOO

Vector Shift Data Pipe 0 IAA,IDP
OAA ODP Vector Shift Result Data Pipe 0

Vector Shift Data Pipe 1 IEA,IHP

OEA, OHP Vector Shift Result Data Pipe 1
OHA, OHG Ak Shift Count 0 - 6 IIA,IIG

OHH No Ak Overflow 11M

010 Vector Mask Bit = 1 (Even) IMM OMA Shift Result Valid Pipe 0 INE
OlE Vector Mask Bit = 1 (Odd) IMN

INF

OMA, OMH Vector Shift Count (VO) Pipe 0 IKA,IKH OMC End Vector Shift

OMI VO Overflow IKM INF

OMB Shift Result Valid Pipe 1 INE

OMA OMH Vector Shift Count (VO) Pipe 1 ILA,ILH

OMI VO Overflow ILM

INA

ONB Pipe o Valid 1 INB

ONB Pipe 1 Valid INC

T IND

OQB End Vector Shift or 1<0 Field INM

10SG EIS Bit IMC

ORA Go Vector Shift IME

Figure 56. Vector Shift Block Diagram

VNNQ

VBOOO

VB001

\ j ,,---I

S6 c::
~
~
Cii
C)

~
~

~
C')

8' .,
~
~

Vector Shift CPU Module (CPE1)

If the jk field of a left single shift equals 278 and bits 4, 2, 1, and 0 are set,
the shift values are 16, 4, 2, and 1, respectively. The sum of the shift
values is 23 (16 + 4 + 2 + 1). Therefore, the instruction shifts left 2310
places.

The actual hardware that performs the shifts is the same for both left and
right shifts. In fact, the hardware performs only left shifts. Right shifts
are accomplished according to the way data is entered into the shifter and
the use of two's complement shift counts for right shifts.

The vector shift unit also receives a shift count from VO when performing
the 150 and 151 EIS instructions. The shift count is sent to the VS option
from VQO for pipe 0 and from VQ8 for pipe 1.

Vector Right Shift 005400 151;jO

Refer to Figure 57 for an illustration of a vector right shift using VO for
the shift count. Note that the shift count for element 0 is 0, which results
in an end-off shift for that element. This instruction must be preceded by
the 054100 instruction in order to function as illustrated. This process
continues for vector length.

Vk Elements (VQNN) Pipe 0/1

Element 0

Element 1

Element 2

Element 3

Element 4

0

0

0

0

0

0

1

2

3

4

v j Elements (VQNN) Pipe 0/1

Element 0

Element 1

Element 2

Element 3

Element 4

1

0

0

0

0

VL=5

0

10

100

1000

10000

VO Shift Count

VL=5

VS Vi Elements (VNNQ) Pipe 01

0 0

Vector Shift 0 1
Functional

Unit 0 1

0 1

0 1

Element 0

Element 1

Element 2

Element 3

Element 4

Figure 57. Vector Right Shift

108 Cray Research Proprietary HTM-300-0

)

CPU Module (CPE1) Vector Shift

Vector Right Double Shift 153ijk

HTM-300-0

Refer to Figure 58 for an illustration of a vector right double shift, using
Ak for the shift count. This instruction concatenates two successive
elements of register Vj and right shifts the lower 64 bits to Vi. The first
operation combines element 0 with a word of all O's. Element 0 becomes
the lower 64 bits, and this value is then shifted right Ak places to Vi.

The next operation combines element 0 and element I ofVj, with element
I containing the least significant bits, and shifts this value right to Vi.
This operation continues for vector length. Note that the shift count for
element 0 is 0, which results in an end-off shift for that element.

V k Elements (VQNN) Pipe 0

0 17 VL=3

1 6 Shift Count from Ak

0 0 VS Vector Shift Functional Unit

0 0 Word ofO's Element 0

0 0 Element 0 Element 1

Element 1 Element 2
V j Elements (VQNN) Pipe 1

Element 2 Element 3
6 6

Element 3 Element 4
16 0

0 0

0 0

0 0 Vi Elements (VQNN) Pipe 0/1

0 1 Element 0

166 0 Element 1

~ 15 0 Element 2

156 0 Element 3

0 0 Element 4

Figure 58. Vector Right Double Shift

Cray Research Proprietary 109

Vector Shift CPU Module (CPE1)

Vector Transfer 005400 152ijk

This instruction moves the contents of V j to Vi starting with element Ak as
illustrated in Figure 59. Note that this is an EIS instruction.

Ak=2
VL=5

v j Elements (VQNN) Pipe 0/1 VS Vi Elements (VNNQ) Pipe 0/1

Element 0

Element 1

Element 2

Element 3

Element 4

1

0

0

0

0

0

10

100

1000

10000

0

Vector Shift 0
Functional

Unit 0

0

0

Figure 59. Vector Transfer

100

1000

10000

0

0

Element 0

Element 1

Element 2

Element 3

Element 4

Vector Compress 005400 153ijO

This instruction compresses a vector register using a vector mask and
transmits the results to Vi as shown in Figure 60.

Two element counters are initialized to 0, one for Vj and the other for Vi.
The vector mask is then scanned from right to left. For every 1 bit set, an
element of V j is written to Vi. The element counters internal to the VS
option determine the element position within each register.

SS Vector Mask Register

I 1 00 1 1 o I VL=5
I

Elemen

Elemen

to

t 1

Elemen t2

Elemen t3

Elemen t4

110

Vj Elements (VQNN) Pipe 0/1

0 0

0 10

0 100

0 1000

0 10000

VS

Vector Shift
Functional

Unit

Figure 60. Vector Compress

Cray Research Proprietary

/1 Vi Elements (VNNQ) Pipe 0

0 0

0 1000

0 10000

0 0

0 0

Element 0

Element 1

Element 2

Element 3

Element 4

HTM-300-0

)

CPU Module (CPE1) Vector Shift

Vector Expand 005400 153ij1

This instruction expands a vector register using a vector mask and
transmits the results to Vi as shown in Figure 61.

Two element counters are initialized to 0, one for Vj and the other for Vi.
The vector mask is then scanned from right to left, and for every 1 bit set,
an element ofVj is written to Vi. The element counters internal to the VS
option determine the element position within each register. In this
instruction, the element counter for Vj falls behind the counter for Vi by
one position for each 0 bit in the vector mask register.

SS Vector Mask Register

1 1 0011 o L

Vj Elements (VQNN) Pipe 0/1

Elemen

Elemen

to

t 1

Elemen t2

Elemen t3

Elemen t4

HTM-300-0

0 0

0 10

0 100

0 1000

0 10000

VS

Vector Shift
Functional

Unit

Figure 61. Vector Expand

Cray Research Proprietary

VL=5

11 Vi Elements (VNNQ) Pipe 0

0

Unchanged

Unchanged

0

0

0

10

100

Element 0

Element 1

Element 2

Element 3

Element 4

111

VECTOR POPI POP PARITY AND LEADING ZERO

HTM-300-0

The vector population/parity functional unit performs the population count
(174ij1) and parity for vector operations (174ij2) instructions. This
functional unit shares logic with the Divide and Square Root functional
unit. The k field of the instruction determines the type of operation to be
performed. Refer to Figure 62 for a block diagram of the vector
population/parity functional unit.

The vector population/parity functional unit shares logic with the
nivine/sqnare root fnnctional nnit. Therefore all vector operations reserve
the associated functional unit. The divide/square root functional unit is
reserved when the vector population/parity functional unit is reserved and
vice versa.

Both scalar and vector register operations share the divide/square root
functional unit. Therefore, when vector divide/square root, or vector
population/parity instructions are executed, a scalar divide/square root
instruction must wait until the vector operation is finished.

The 174ij1 instruction counts the number of 1 bits in each element of a
vector register specified by Vj. Each element is counted individually, and
the result is stored in the corresponding element of Vi. For example, the
count of 1 bits in element 0 of Vj is stored in element 0 of Vi; the count of
1 bits in element 1 ofVjis stored in element 1 of Vi; and so on. This
process continues for the number of elements specified by the vector
length.

The 174ij2 instruction counts the number of 1 bits in each element of a
vector register specified by Vj and stores a I-bit parity result in a vector
register specified by Vi. The 174ij2 instruction uses the same logic as the
174ij1 but outputs only bit 0 of the result. Bits 1 through 6 are forced to
O's. This instruction determines whether an odd or even number of bits is
set in each element of a vector register. If the result equals 0, there is an
even number of bits. If the result equals 1, there is an odd number of bits.

Cray Research Proprietary 113

Vector Pop/Pop Parity and Leading Zero CPU Module (CPE1)

VN011 Bits 28 31 I

VQ011 Bits 24 - 27

VN010 Bits 20 - 23 \ - VQ010 Bits 16 -19 I
I

VN009 Bits 12 -15 I
I

VQO09 Bits 8 -11 I - VN008 Bits 4 - 7 I ~ - VQ008 Bits 0 - 3 RE001 - IBA-IBP

~ - Vector Registers
Pipe 1

I IAA-IAP
VN015 Bits60-63 _1-

VQ015 Bits 56 - 59 OAA-OAG
IDA-lOP

VN014 Bits 52 - 55 ~ ICA-ICP - VQ014 Bits 48 51 I / - VN013 Bits 44-47 I
I - VQ013 Bits 40 - 43 I

(IC002) KO IEB - VN012 Bits 36 - 39 I
Pipe 1

- (IC002) K1 IEC
VQ012 Bits 32 - 35 - (BUOOO) Go Vector lED

Vector Registers - Pipe 1

VQOO7 Bits 56 59 I

VQ006 Bits 48 - 51

VQ005 Bits 40 - 43 I "
L

VQOO4 Bits 32 - 35 I
~

VQOO3 Bits 24 - 27
I
I

~
- VQOO2 Bits 16 -19 I - VQOO1 Bits 8 -11 REOOO - VQOOO Bits 0 - 3

~ -
Vector Registers IBA-IBP - Pipe 0

VN007 Bits 60 63 I IAA-IAP
OAA-OAG

VN006 Bits 52 - 55
IDA-lOP

VN005 Bits 44 - 47 I , ICA-ICP

/ - I VN004 Bits 36 39
VNOO3 Bits 28 31 I

VNOO2 Bits 20 - 23 I (ICOOO) KO IEB Pipe 0 --- I VNOO1 Bits 12 -15
(lCOOO) K1 IEC --- VNOOO Bits 4 - 7

(BUOOO) Go Vector lED -
- Vector Registers

Pipe 0

Figure 62. Vector PopulationJParity/Leading Zero Block Diagram

114 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Vector Pop/Pop Parity and Leading Zero

Pop/Parity/Leading Zero Functional Units

The RE options contain part of the divide/square root unit and the logic
for vector pop, vector pop parity, and vector leading zero. There are two
RE options for each CPU. REOOO handles pipe 0 (the even elements), and
REOOI handles pipe I (the odd elements).

The RE options receive data from the VN and VQ options; 4 bits come
from each VQ and VN. Pop/parity/leading zero data uses the same wires
and terms as the divide/square root data. The data is then sent to VNOOO
and VN008 on the same terms that the divide/square root output data uses.
Data is sent to only those two options because the pop functional unit
returns only a 7 -bit value to the result register.

Veotor Population Count 174ij1

Vector pop counts the number of bits set in a vector element and reports
that count to a result vector. The count ranges anywhere from 0 (no bits in
the element set) to 100 (all bits in the element set). The functional unit
sends only bits 0 through 6 to the result vector; the remaining bits are
zeroed out.

Vector Population/Parity 174ij2.

This instruction counts the number of bits set in each element of a vector
and then determines whether this number of bits is an even or an odd
number. If the result is an even number of bits, a 0 is written to the result
vector. If the number of bits is odd, a I is written to the result vector.
Only bit 0 is written to the result vector; the rest of the bits in the element
are set to O's.

Vector Leading Zero Count 174ij3

HTM-300-0

This instruction counts the number of O's that precede the first bit set in
each element of a vector. The count will be from 0 (bit 63 of the element
set) to 100 (no bits in the element set).

Cray Research Proprietary 115

Vector Pop/Pop Parity and Leading Zero CPU Module (CPE1)

Vector Population/Parity Instructions

Refer to Table 22 for a list of the vector population/parity instructions.

Table 22. Vector PopulationlParity Instructions

Instruction CAL Description

174ij1 ViPVj Population count (VJ) to Vi

174iJ2 ViQVj Parity of (VJ) to Vi

175ifJ ViZVj Transmit leading zero count of (VJ) to Vi

116 Cray Research Proprietary HTM-300-0

GATHER/SCATTER INSTRUCTIONS

The 176i1k and 1771jk instructions transfer blocks of data between
common memory and the vector registers. The 176 instruction invokes
the gather, or read function; the 177 instruction invokes the scatter, or
write function. When the 176i1k instruction is preceded by a 005400
instruction parcel, it performs a double gather function, which utilizes the
dual-pipe capability of the computer system. The contents of the vector
length (VL) register determine the number of words transferred.

Gather Instructions

HTM-300-0

The 176i1k instruction transfers data from common memory to the Vi
register. Register AO contains the initial (base) address; the V k register
contains the address indices.

For each element transferred to Vi, the memory address is the sum of (AO)
and the corresponding element of register Vk. For example, during a
176213 instruction, V2[0] is loaded from address (AO) + (V3[0]); V2[1] is
loaded from address (AO) + (V3[1]); etc.

The 005400 176ijk instruction performs the double gather operation. Data
is transferred from common memory to Vi and Vj in two separate data
transfers that occur simultaneously. The AO register contains the base
address for the transfer to Vi. The Ak register contains the base address
for the transfer to Vj. The Vk register contains the address indices for
both transfers.

For each element transferred to Vi, the memory address is the sum of (AO)
and the corresponding element of Vk. For example, during a 005400
176213 instruction, V2[0] is loaded from address (AO) + (V3[0]); V2[1] is
loaded from address (AO) + (V3[1]); etc. Simultaneously, VI [0] is loaded
from address (A3) + (V3[0]); Vl[l] is loaded from address (A3) +
(V3[1]); etc.

Cray Research Proprietary 117

Gather/Scatter Instructions CPU Module (CPE1)

Scatter Instructions

118

The 1771jk instruction transfers data from Vj to common memory. The
AO register contains the initial address. Vk contains the address indices.

For each element transferred from register Vi, the memory address is the
sum of (AO) and the corresponding element of register V k. For example,
element 0 of Vi is stored to address (AO) + (Vk[O]); element 1 of Vi is
stored to address (AO) + (Vk[l]); etc.

Cray Research Proprietary HTM-300-0

IEEE FLOATING-POINT OVERVIEW

Sign Bit

HTM-300-0

In general, the CRAY T90 series system CPE 1 module conforms to the
IEEE standard for binary floating-point arithmetic. It performs 64-bit
floating-point add, subtract, multiply, divide and square root calculations.
The CPEI module also provides several new instructions that compare
and convert floating-point and integer numbers.

The number and distribution of bits in the coefficient and the exponent
(refer to Figure 63) are different than they are in the Cray proprietary
floating-point format. (In the Cray proprietary floating-point format, the
coefficient comprises bit 0 through bit 47; the exponent comprises bit 48
through bit 63.) Moreover, to ensure that the IEEE arithmetic results
provide additional precision, bit -1 through bit -10 are appended in the
logic to the right of the least significant bit of the coefficient. These
supplemental bits are known as the Guard bit and the Sticky bits.

IEEE floating-point numbers are always represented as fractions - a
number such as .lxxxxxxx ... x raised to a power. The first bit in the
fraction (the 1 bit, also called "the hidden bit") is always present in the
hardware. Therefore all numbers in this computer system are considered
normalized numbers; it is impossible to submit a number to the system
that is not normalized. This bit, although invisible to the user, is included
in the calculations. Consequently, calculations are made on a 53-bit
fraction. The result that the user sees is in the form illustrated in
Figure 63.

52 51

Exponent Coefficient

4 47 1 15
Parcel 3 Parcel 2 Parcel 1 Parcel 0

Figure 63. IEEE Floating-point Format

Cray Research Proprietary 119

Floating-paint Overview CPU Module (CPE1)

The benefits of the IEEE format are:

• Greater precision with 4 more bits in the coefficient field

• Specific representation for infinity and non-numeric numbers

• Control of rounding mode

• Consistency in handling of end-cases

• Expanded exceptions

IEEE Floating-point Number Examples

IEEE Terms

120

Table 23 lists some examples of IEEE floating-point numbers.

Table 23. IEEE Floating-point Numbers

Value 64-bitWord

+0 0000000000000000000000

-0 1000000000000000000000

+Greatest number 0777577777777777777777

+Smallest number 0000200000000000000000

Infinity 0777600000000000000000

qNaN 07777xxxxxxxxxxxxxxxx1

sNaN 07776xxxxxxxxxxxxxxxx1

The following new terms are associated with IEEE floating-point:

Normal O. Defined as an exponent of all O's. The sign of a normal
o may be positive or negative.

Cray Research Proprietary HTM-300-0

)

CPU Module (CPE1) Floating-point Overview

Denormalized. Defmed as a minimuD;l exponent in which the
leading bit of the coefficient is equal to O. The eRI implementation
of IEEE does not support denormalized numbers. A denormalized
number input into a floating-point unit will be converted to a zero
before it is used. This is a departure from the IEEE standard.

Unnormalized. Defmed as an unnormalized number in which the
value of the exponent is greater than the minimum value of the
format being used, and the leftmost bit of the significand is 0 (this
number represents an unnormalized 0). Only normalized number
representations are supported.

Normalized. Defmed as a nonzero number in which the leftmost bit
of the significand is a 1. If the significand is a 0 then the number
becomes a normal O. Normalization does not change the sign of the
number.

NaN. Defined as a symbolic entity encoded in floating-point format
and resulting from an operation that has no mathematical
interpretation. For example, 0 divided by 0 produces a NaN
(Not A Number) .

.) Rules of Operation for NaNs

HTM-300-0

• The sign of a NaN is never significant.

• When any floating-point unit receives a NaN, it generates an Invalid
(NVI) signal and returns a result of NaN.

• There are two different types of NaNs: quiet and signaling. If the
most significant bit of the coefficient is aI, the NaN is considered
quiet. When a single operand NaN is received by the floating add or
floating multiply unit, that NaN is returned as a result except that:
• A signaling NaN is converted to a quiet NaN.
• The sign is converted to positive.

• When two signaling NaNs or two quiet NaNs are received by the
floating add or floating multiply unit, the j operand is returned as a
result and modified in compliance with the single-operand NaN rule.

• When a signaling NaN and a quiet NaN are received by the floating
add or floating multiply unit, the signaling NaN is returned as a
result and modified according to the preceding rule.

Cray Research Proprietary 121

Floating-paint OveNiew

122

CPU Module (CPE1)

• When either the divide or square root unit receives a NaN, it returns ~\.
a quiet NaN with all bits set in the coefficient.)

• NaNs that are generated within a floating-point unit that were not
caused by receiving a NaN as an operand are given a tag code, which
is returned as part of the result. The result returned will be all bits
set except for bits 48, 49, and 50. These bits will show which
functional unit generated that result. Table 24 lists the NaN tag
codes.

Table 24. NaN Tag Codes

Functional Unit Bit 50 Bit 49 Bit 48

Add 0 0 1

Multiply 0 1 0

Divide 1 0 0

Square Root 1 0 1

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Floating-point Overview

• When NaNs are sent to the compare unit:
• NaNs never compare to another operand
• NaNs never compare to another NaN
• NaNs are not equal to another NaN
• NaNs always fail equality tests and pass inequality tests
• The unordered test returns true if either input is a NaN

Deviations from the IEEE Standard

In the following cases, CRI does not follow the IEEE standard:

• Only 64-bit format, no support for the 32-bit format
• No support for denormalized numbers
• Exception flags are not precise because of a lack of instruction

ordering

Special Operand Values

HTM-300-0

Three special operand cases that are considered in IEEE are as follows:

• Any floating-point operand with an exponent field of all O's is
considered a zero value. The sign is significant.
• +nnnx-O=-O
• -nx +0=-0
• +nnn - +nnn = +0 (except if rounding down)
• Sqrt-O =-0
• +0 result rounded down = -0
• Compare instructions +0 = -0

• When there is a maximum exponent and the coefficient is all O's, the
operand is considered to be infinite. The sign is significant. Infinite
values are generated when the exponent range required to represent
the number is exceeded. The value is operated on and exceptional
results are generated (overflow).
• 0777600000000000000000 = positive infmity
• 1777600000000000000000 = negative infinity

Cray Research Proprietary 123

Floating-paint Overview CPU Module (CPE1)

• When there is a maximum exponent and the coefficient is not all O's, /\
the operand is not considered to be a real number (NaN). The sign is ~}

ignored. There are two different types of NaNs: quiet qNaN and
signaling sNaN. If the most significant bit of the coefficient is ai,
the NaN is considered quiet. A qNaN is operated on like all other
operands; however, an exceptional input exception signal is
generated in the status register. If an sNaN is received as an operand,
an invalid signal is generated.
• 077760xxxxxxxxxxxxxxxxxi = Quiet NaN (qNaN)
• 077770xxxxxxxxxxxxxxxxx 1 = Signaling NaN (sNaN)

Floating-point Exception (Flags)

124

Floating-point operations can generate several exception flags. These
exceptions can be seen in Status register SRO. Associated with these
exceptions are interrupt bits. The interrupt bits can be enabled or disabled
by the user. An interrupt will be generated if the exception is enabled, and
then a status register bit is set. If an exception is set and then the user
enables the interrupt, no interrupt will be generated. This is different
from previous Cray computer systems.

For instructions that can change interrupt mode bits, floating-point)
instruction issue halts until all floating-point functional units are quiet.
All floating-point operations will complete with the same interrupt modes
that were set when they began.

There are six exceptions; they are:

• Invalid (NVI) An attempt was made to generate a result that is not a
real number. Invalid is signaled for the following reasons:
• A signaling NaN (sNaN) was received as an input operand
• Addition or subtraction of infinite operands in some cases
• +00 - +00 = invalid
• Multiplication of 0 x infinity
• Division of 0 / 0 or infinity / infmity
• Square root of any negative number
• Signed compare where one or both inputs are NaNs

(>, <=, <, >=) Every NaN shall compare unordered

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

Rounding

HTM-300-0

Floating-point Overview

• Divide by 0 (DVI) An attempt has been made to divide a finite
normal numerator by zero.

• Overflow (OVF) A result larger than the greatest representable
number was generated. A positive infinity" is returned
(07776000000000000000000). Overflow is handled differently than
the IEEE standard. Overflow is carried to positive or negative
infinity when rounding ,away from zero, and to the largest fmite
number when rounding toward zero when the interrupt on overflow
is disabled. The standard specifies that when interrupt on overflow
is enabled, the operation will deliver the result, with the exponent
biased toward zero by 30008. Cray Research floating-point units
cannot detect whether the interrupts are enabled or disabled, and
therefore are unable to handle the two cases differently.

• Underflow (UN.)!') A result smaller than the least representable
number was generated. A coefficient of zero with the sign bit is
returned. (00000000000000000000000). This result is different
from the IEEE standard. The IEEE standard returns the result
obtained after multiplying the infinitely precise result by 2Cl (where
2Cl is the bias adjust) and then rounding.

• Inexact (NX) A result was generated that would be different if all
possible significant bits were returned or could be returned. Inexact
is also signaled on both overflow and underflow when the returned
result is not exactly zero. For example, 1 divided by 3 returns the
repeating decimal, 0.333333, and signals Inexact.

• Exceptional Input (XI) A floating-point unit received an operand
of infinity or NaN. XI is a Cray feature, not an IEEE standard.

Rounding is done by adding 1 to the least significant bit (LSB) of the
result if it is determined to be required by the rounding mode bits and any
bit of less significance than the LSB of the coefficient.

The first bit to the right of the LSB is called the guard bit; all the bits to
the right of the guard bit are "ORed" together into a "sticky" bit. If the
guard bit and the sticky bits are all O's, then the results are exact and no
rounding occurs. If either bit is aI, then inexact is signaled and a 1 is
added to the LSB, depending on the rounding mode.

Cray Research Proprietary 125

Floating-point Overview CPU Module (CPE1)

Sign Bit

x

0

0

0

1

1

1

There are four rounding modes that apply to the floating-point units:

• Round to the nearest. The result closest to infmitely precise is
returned. If the bits to the right of the LSB are greater than half the
value of the LSB, a 1 is added to the results. If the bits to the right
of the LSB are exactly half the value of the LSB, a 1 is added to the
results if the LSB=l.

• Round up. The more positive result closest to infinitely precise is
returned.

• Round to zero. The result closest to zero is returned.

• Round down. The more negative result is returned.

Table 25 shows the effect of the sign bit, guard bit and sticky bit ulllhe
LSB, depending on the rounding mode selected.

Table 25. Effects of Rounding Mode on LSB

Result Bits Rounding Mode

Guard Bit Sticky Bit Round to Round to Round Up Round Down
Nearest Zero

0 0 No No No No

0 1 No No Yes No

1 0 Yes if LSB=1 No Yes No

1 1 Yes No Yes No

0 1 No No No Yes

1 0 Yes if LSB=1 No No Yes

1 1 Yes No No Yes

IEEE Mathematical Functions

126

With the inclusion of NaN and infinity operands, more exceptional results
are possible. Table 26 through Table 28 show the results from different
combinations of operands and different operations. Remember to consider
the state of the rounding mode when you calculate the fmal results.

Cray Research Proprietary HTM-300-0

)

CPU Module (CPE1) Floating-point Overview

Addition and Subtraction Rules

koperand

n

0

00

NaN

Addition of equal operands with opposite signs produces a zero result. A
positive zero results if rounding mode is set to round to nearest or round
up or round to zero. A negative zero results if the round down mode is
used. A zero value is also returned if the operation underflows; the sign of
the result is the sign determined before underflow occurs. If the operation
signals overflow and the,rounding.mode is set to round to nearest or round
up, the result returned is a +00 (077760000000000000000). If the round
mode is set to round to zero or round down, the result rounds to the
greatest representable value (0777577777777777777777).

Table 26. Addition and Subtraction Results

joperand

n 0 00 NaN

0, n, 00 n 00 NaN

n 0 00 NaN

00 00 00, NaN* NaN

NaN NaN NaN NaN

* A NaN is returned when adding two 00 of different signs.
Subtracting two 00 of different signs results in a result of 00 with the sign of the minuend.

Mu'ltiplication, Division, and Square Root Rules

HTM-300-0

Multiplication or division of two nonzero numbers results in zero only if
the operation detects underflow. If an overflow occurs, a
±oo (0777600000000000000000) or the greatest representable value
(0777577777777777777777) is returned, depending on the rounding
mode.

Cray Research Proprietary 127

Floating-point Overview CPU Module (CPE1)

Table 27. Multiplication Results .. ~

koperand
joperand

n 0 00 NaN
n 0, n, 00 0 00 NaN

0 0 0 NaN NaN

00 00 NaN 00 NaN
NaN NaN NaN NaN NaN

Table 28. Division Results

koperand
joperand

n 0 00 NaN
n 0, n, 00 0 00 NaN
0 00 NaN 00 NaN
00 0 0 NaN NaN

NaN NaN NaN NaN NaN

Table 29. Square Root Results

j operand +n ±O -n NaN
Results +n ±O NaN NaN

128 Cray Research Proprietary HTM-300-0

.:)

IEEE FLOATING-POINT ADD AND COMPARE

HTM-300-0

The floating-point add unit is contained on the FC options. The FC
options perform the foll<;>wing four types of operations:

• IEEE floating add and subtract
• IEEE floating point-to-integer conversion
• IEEE integer-to-floating point conversion
• IEEE compare instructions

There are three FC options in each CPU. Each FC option has a specific
function.

• FCOOO

• Performs all scalar-to-scalar floating add functions
• Performs all scalar-to-scalar compare functions
• Performs all scalar-to-scalar conversions
• Passes all pipe 0 vector data

• FCOOl

• Performs all pipe 0 floating add functions
• Performs all scalar-to-vector (Sj Vk) compare functions
• Performs all vector-to-vector (Vj Vk) compare functions
• Performs all vector-to-vector conversions for pipe 0
• Passes all output data to FCOaO

• FCOO2

• Performs all pipe 1 floating add functions
• Performs all scalar-to-vector (Sj Vk) compare functions
• Performs all vector-to-vector (Vj Vk) compare functions
• Performs all vector-to-vector conversions for pipe 1

Cray Research Proprietary 129

Floating-point Add and Compare CPU Module (CPE1)

Floating Point Addition I Subtraction

The floating add functional unit, like the floating-point multiply unit,
receives normalized numbers as inputs. Because of the hidden bit, all
numbers are normalized. An input number that contains an exponent of
O's will clear the coefficient to 0 before using it as an operand in the
functional unit. NaN operands are handled in accordance with the IEEE
standard. Performing an add or subtract operation on a NaN results in a
NaN being produced and a flag set.

Four IEEE standard flags and one non-IEEE standard flag are used in the
floating-point add unit. They are:

• Invalid (NVI) An attempt was made to generate a result that is not a
number. NYI is signaled for the following conditions:

• A NaN as an input operand
• Addition or subtraction of infinity
• Signed compare with at least one NaN input
• Attempt to convert an out-of-range number

• Overflow (OVF) A result larger than the greatest representable
number has been generated. Positive infinity _)

130

(0777600000000000000000) is returned. The CRAY T90 series
version of IEEE treats OVF differently than the IEEE standard. In
the CRAY T90 series application, overflow is carried to positive or
negative infinity when rounding away from zero. Overflow is
carried to the largest finite number when rounding towards zero,
when the interrupt on overflow is disabled. The IEEE standard
specifies that the operation will deliver the result, with the exponent
biased toward zero by 3000 when interrupt on overflow is enabled.
The floating-point units have no way to detect whether the traps are
enabled or disabled, and therefore are unable to handle the two cases
differently.

• Underflow (UNF) A result smaller then the least representable
number was generated. A value of zero with the sign bit
±(OOOOOOOOOOOOOOOooooooo) is returned.

• Inexact (NX) A result was generated whose value would be
different if all possible significant bits were returned or could be
returned. Inexact is also signaled on both overflow and underflow
when the result is not exactly O. Some examples of inexact numbers
are repeating decimals and pi.

Cray Research Proprietary HTM-300-0

,j

CPU Module (CPE1)

HTM-300-0

Floating-point Add and Compare

• Exceptional Input (XI) A floating-point unit received either an
infinite or NaN operand. XI is a CRI feature that is not an IEEE
standard.

Figure 64 is a diagram of the floating add functional unit. The functional
unit uses 2 round mode bits to select one of four rounding modes.
Table 30 shows the four rounding modes used by the FC options.

Table 30. Rounding Modes

Round Mode (RMO) (RM1)

Nearest 0 0

Up infinity 1 0

To zero 0 1

Down infinity 1 1

You can set the rounding modes either by issuing an instruction or by
setting a bit in the exchange package. The 003004 through 003007
instructions set the rounding mode directly; the 005400 073i05 instruction
sets the rounding mode from the contents of Si. A change to the rounding
mode affects all floating-point instructions issued thereafter, but it has no
effect on instructions issued previously. The two exchange package bits,
RMO and RMl, determine the rounding modes (as illustrated in Table 30).

Rounding is determined by the choice of rounding mode and the values of
the guard bit, the sign bit, the sticky bits, and the least significant bit
(LSB). Table 31 defines when a 1 bit is added to the LSB of the results.

Cray Research Proprietary 131

Floating-point Add and Compare CPU Module (CPE1)

Table 31. Effects of Rounding Mode on LSB

Result Bits Rounding Mode

Sign Bit Guard Bit Sticky Bit Round to Round to . Round Up Round Down
Nearest Zero

x 0 0 No No No No

0 0 1 No No Yes No

0 1 0 Yes if LSB=1 No Yes No

0 1 1 Yes No Yes No

1 0 1 No No No Yes

1 1 0 Yes if LSB=1 No No Yes

1 1 1 Yes No No Yes

132 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Floating-point Add and Compare

AV, AW, AX, AY FCOOO
OAA-OAH Si IAA-IDP

OBA-OBH Sk IEA-IHP

INA-INB
VNO-7

OAA-ODP Vi IAA-IAH

HHOOO
OGE-OGF IRA
Rounding Mode J IRI

OEA Go Scalar FA
JBOO1

OEO Go S Compare
AV, AW, AX, AY

IPA-IPC Si IEA-IEH.

IOA-IOC IXA=O OEI SiViFlaas IYA
ICOOO

OXA-OXC IIA-ILP IXB= 1

hO, H1, H2 IMA-IME OFA SO Jump Sign
Scalar

BUOOO IEEE Flags
OWD-OWF .18011
KO,K1,K2 MUXViData IKH

IPA-IPC
BUOO1 FCOO1

ORB Go Vector FA ISA

OSI Go V-S Compare lSI OAA-ODP

OSJ Go V-V Comoare ISO

OEA-OEE
BUOOO OWD-OWF IOA-IOC

KO,K1,K2 VEOOO

OEA OED SiNi IAA IDP VONNO 7
IXA=1

OGA SetVM IVA
OEE-OEH Vk IEA-IHP IXB= 1

INA-INB
ITA Vector Valid ONA

AYOOO/1 OYF-OYG Pipe 0

Roundina Mode
OYF-OYG

VN8-15

INA-INB FCOO2
BUOO1 ORB Go Vector FA ISA OAA-ODP Vi IAA-IAH

OSI Go V-S Compare lSI

OSJ Go V-V Compare ISO
AYOO1

OWD-OWF IOA-IOC
KO,K1,K2 OEI Vi Flags IYA

ICOO2 OXD-OXF IPA-IPC
hO, H1, H2

VEOO2 OGA SetVM IVA
VONN 8-15

SiNi
IXA=1

OEA-OED IAA-IDP IXB=O

OEE-OEH Vk IEA-IHP ITA Vector Valid ONA

Pipe 1

IXA = Vector osition P
IXB = Pipe 0 position contant

J Figure 64. Floating Add Functional Unit

HTM-300-0 Cray Research Proprietary 133

Floating-paint Add and Compare CPU Module (CPE1)

Floating-point Add Functional Unit Instructions

Refer to Table 32 for a list of the floating-point add functional unit
instructions.

Table 32. Floating-point Add Functional Unit Instructions

Instruction CAL Description

062ijk SiSj+ FSk Scalar floating-point sum of (S}) and (Sf<) to Si

063ijk SiSj- FSk Scalar floating-point difference of (S}) minus (Sf<) to Si

170ijk ViSj+ FVk Vector floating-point sum of (S}) and (V k elements) to Vi

171 ijk ViVj+ FVk Vector floating-point sum of (Vi elements) and (V k elements) to
Vi

172ijk ViSj- FVk Vector floating-point difference of (S}) minus (Vf<) to Vi

173ijk ViVj- FVk Vector floating-point difference of (Vj elements) minus (Vk
elements) to Vi

Floating-point Format

Refer to Figure 65 for an illustration of floating-point format. Consider a
floating-point number normalized when the most significant bit of the
coefficient (bit 51) is set.

o Bits 631 62 I Exponent Coefficient

Sign Bit

Figure 65. IEEE Floating-point Format

Floating-point-to-Integer Conversion

Floating-point-to-integer conversion takes place on the FC options. This
operation converts a floating-point number to a signed 64-bit integer.
There are two cases of this conversion instruction. One case converts
without rounding and is not IEEE standard. The other case enables
rounding. Table 33 describes the floating-point-to-integer conversion
instructions.

I

134 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Floating-point Add and Compare

Table 33. Floating-Point-to-Integer Conversion Instructions

Instruction CAL Description

070if2.

070ij3

167ifJ

167ij1

Siint, Sj Floating-point Sj to integer Si

Sirint, Sj Floating-point Sj to rounded integer Si

Viint, Vj Floating-point Vjto integer Vi

Virint, Vj Floating-point Vjto rounded integer Vi

There are some notable special cases that involve the instructions listed in
Table 33. The invalid signal is sent:

• If the j field of the instruction is a 0, then (Sj) or (VJ) is O. The
result is +0 (0000000000000000000000).

• If the floating-point number has a value greater than 264 -1,
then the unit will return ±0777577777777777777777. This
value is the largest number that can be represented.

• If the input is a NaN, then +0777777777777777777777 is
returned and invalid is signaled.

• If the input value is less than 1, a 0 or a 1 is returned, depending
on the rounding mode. The inexact signal will be sent unless
the input operand was exactly O.

Integer-to-Floating-Point Conversion

HTM-300-0

Integer-to-floating-point conversions occur on the FC options. 1\vo
instructions can convert a signed 64 bit integer into a floating-point
number. The result will be exact if the absolute value of the source
operand is less than 254. Otherwise the result is rounded, using the current
rounding mode. Refer to Table 34 for a description of the two
integer-to-floating-point conversion instructions.

Table 34. Conversion Instructions

Instruction CAL Description

070ij4 Siflt, Sj Integer Sjto floating-point Si

167if2. Viflt, Vj I nteger V j to floating-point Vi

Cray Research Proprietary 135

Floating-paint Add and Compare CPU Module (CPE1)

Floating-point Comparisons

136

The IEEE standard supports a full set of floating-point comparison
instructions. There are four mutually exclusive operations that are
possible, they are:

• Less than
• Greater than
• Equal
• Unordered

Comparisons are always exact. They never overflow, underflow, or signal
inexact exceptions. If a signaling NaN (bit 51 of the fraction is 0) is
received as an input, it will generate an exception (XI) interrupt and also
an invalid (NVI) interrupt for signed compare tests (>, >=, <, <=). An
invalid also occurs if a quiet NaN (bit 51 of the fraction is 1) is received in
a signed compare test (>, >=, <, <=). Note that a NaN will always fail an
equal test (NaNs are equal to nothing) and always pass the Not equal test.

For compare functions, the sign of a zero value is ignored. Therefore a
positive zero will equal a negative zero, and a positive zero is not greater
than a negative zero.

When a scalar compare instruction tests true for a condition, all of the bits
in the result register are set. If the test fails, the result register will contain
O's. For vector operations, passing a test sets a bit in the mask register and
failing a test clears the corresponding bit in the mask register. Table 35
lists the instructions used in the compare function.

Table 35. Compare Instructions

Instruction CAL Description

005501 164ijk SiSj,EQ,Sk Floating-point compare equal

005502 164ijk SiSj,NQ,Sk Floating-point compare not equal

005503 164ijk SiSj,GT,Sk Floating-point compare greater than

005504 164ijk SiSj,LE,Sk Floating-point compare less than or equal

005505 164ijk SiSj,LT,Sk Floating-point compare less than

005506 164ijk SiSj,GE,Sk Floating-point compare greater than or equal

005507 164ijk SiSj,UN,Sk Floating-point compare unordered

005521 1640jk VMSj,EQ,Vk Floating-point compare equal

005522 1640jk VM Sj,NQ,Vk Floating-point compare not equal

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Floating-point Add and Compare

Table 35. Compare Instructions (continued)

Instruction CAL Description

0055231640jk VM Sj,GT,Vk Floating-point compare greater than

0055241640jk VM Sj,LE,Vk Floating-point compare less than or equal

0055251640jk VM Sj,LT,Vk Floating-point compare less than

0055261640jk VM Sj,GE,Vk Floating-point compare greater than or equal

005527 1640jk VM Sj,UN,Vk Floating-point compare unordered

005541 1640jk VM Vj,EQ,Vk Floating-point compare equal

0055421640jk VMVj,NQ,Vk Floating-point compare not equal

0055431640jk VMVj,GT,Vk Floating-point compare greater than

005544 1640jk VMVj,LE,Vk Floating-point compare less than or equal

UUbb4b 104Ujk VM Vj,LI,Vk Hoating-point compare less than

0055461640jk VM Vj,GE,Vk Floating-point compare greater than

0055471640jk VM Vj,UN,Vk Floating-point compare unordered

HTM-300-0 Cray Research Proprietary 137

IEEE DIVIDE AND SQUARE ROOT

IEEE Divide

HTM-300-0

The vector and scalar registers share the divide and square root functional
unit. The divide functional unit also handles the iota instructions and the
pop, parity, and leading zero operations. (These functions are discussed in
the Vector Logical and in the Vector Pop/Parity sections.) There are two
divide and square root pipes; each pipe consists of one RE option and two
RD options. (Refel Lo Figure 67 aL the end of this section for a block
diagram of the divide functional unit.)

All input data from the vector and scalar registers arrives at the functional
unit from the vector options. Scalar data is also routed through the vector
options, using the same path to the RE options.

NOTE: The divide unit operates in either full- or half-precision mode.
Although the hardware for half-precision is on the module, there
is no compiler or software support for the half-precision
instructions.

In half-precision mode, the divide unit stops iterating after 16 iterations
and produces 32-bit results. In full-precision mode. the divide unit
performs 28 iterations. The top bit of the result is generally a 0, but it can
be 1 if the ratio of the mantissa to the radicand is approximately 2: 1. The
next bit is the hidden bit if no left shift is required. The hidden bit is 2 bits
below the top bit if a left shift is required. which leaves 29 or 30 bits to the
right of the hidden bit. The remaining (unused) 22 or 23 bits are set to O·s.

Table 36 lists the IEEE floating-point divide and square root instructions
that are available on eRA Y T90 series systems.

Cray Research Proprietary 139

IEEE Divide and Square Root CPU Module (CPE1)

Table 36. Floating-point Divide and Square Root Unit Instructions

Instruction CAL Description

065ijk SiSklFSj Floating-point Skdivided by Sjto Si.

065ijk* SiSklHSj Half precision floating-point Skdivided by Sjto Si.

070ijJ SiSQR Sj Floating-point square root of Sjto Si.

070ijJ* SiSQRH Sj Half precision floating-point square root of Sjto Si.

162ijk ViVklFSj Floating-point Vkdivided by Sjto Vi.

162ijk* ViVklHSj Half precision floating-paint Vkdivided by Sjto Vi.

163ijk ViVklFVj Floating-point Vkdivided by Vjto Vi.

163ijk* ViVklHVj Half precision floating-point Vkdivided by Vjto Vi.

174ijkO ViSQRVj Floating-paint square root of Vjto Vi.

174ijkO* ViSQRH Vj Half precision floating-point square root of Vjto Vi.

* Must be preceded by a 005400 instruction

Divide/Square Root Options

RD option

140

There are two sets of options because this functional unit has two pipes.
The even elements are processed by pipe 0, and the odd elements are
processed by pipe 1. Table 37 shows the options used for each pipe.

T~ble 37. Divide Options

Pipe 0 Pipe 1

REOOO REOO1

RDOOO RDOO2

RDOO1 RDOO3

The RD option communicates only with the RE option; there are two RD
options for each RE option. The RD receives input operands from the RE
option: first the j operand, then the k operand. The RD option sends the
mantissa serially to the RE option.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

RE Option

~'-)

Normalization

HTM-300-0

IEEE Divide and Square Root

Each RD option contains four identical divide/square root cores. There
are a total of eight cores in each unit. Divide and square root operands are
sent to the RD options so that each RD option receives operands at a
maximum rate of one every 4 clock periods (CPs) in half-precision mode
or one every 8 CPs in full-precision mode. Operands are always sent to
the even-numbered RD option first. If a new divide operation is starting
and it has been at least 16 CPs since the last operation, the unit will reset
'the pipe back to the even-numbered RD option. This feature allows a
failure to be isolated to a particular RD option.

The input data is received at the RE option and sent to the RD option
along with the Yugo signal. The Yugo signal causes the RD option to
assign one of the divide cores to begin calculation.

There is one RE option for each pipe. The RE option is responsible for:

• Iota (See the "Vector Logical" section for a description of Iota)

• Vector Pop/Pop Parity and Leading Zero instructions (See the
"Vector Pop/Pop Parity and Leading Zero" section for a
description of these instructions)

• Exponents calculation

• Exceptions

• Normalization

• Rounding

All communication with the CPU occurs through the RE options. There is
only one 64-bit operand path into the divide unit. The divide unit receives
data from the VN and VQ options and passes it on to the RD option. The j
and k operands for divide are multiplexed; fIrst j arrives and then k. Scalar
data is also routed through the VN and VQ options.

A floating-point divide operation may be normalized at most by one
position. If the divisor is greater then the mantissa, then the most
signifIcant bit of the result is 0 and a left shift of one position is
preformed. Otherwise, the most signifIcant bit of the result is always a 1.

Cray Research Proprietary 141

IEEE Divide and Square Root CPU Module (CPE1)

Rounding

Square root operations should never require normalization. The radicand /-\
is shifted left one position before the operation is started. There is one . _)
exception. Although it is mathematically impossible for the ratio of two
mantissas to be equal to 2, or the square root of n<4 to be 2, it is possible,
in half-precision mode, for this result to be produced. Also if rounding
away from zero, the square root of the largest possible n<4 must be
rounded up to 2. In all these cases, the bit above the most significant bit is
. set and all other bits are forced to O's. For square root, this case is
detected and the exponent is adjusted accordingly. For divide, the
exponent is left unjustified and the mantissa is forced to O.

1\vo rounding mode bits are received at the RE option and held for vcctor
length. The 2 rounding mode bits select one of following four rounding
modes:

• 00 = Round to nearest
• 0 I = Round toward positive
• 10 = Round toward zero
• 11 = Round toward negative

Rounding occurs by adding one to the least significant bit (LSB) of the
results. (Rounding is determined to be required by the rounding mode bits
and any'bit of less significance than the LSB of the coefficient and
possibly the sign bit and the LSB.)

In rounding, the first bit to the right of the LSB is called the guard bit, all
the bits to the right of the guard bit are "ORed" together into a "sticky"
bit. If the guard bit and the sticky bit are O's, then the results are exact and
no rounding will take place. If either bit is aI, then Inexact is signaled
and a 1 is added to the LSB, depending on the rounding mode.

Floating Point Exception Flags

142

The divide square root unit has six exception flags:

• Invalid (NVI) An attempt has been made to generate a result that is
not a real number. Invalid is signaled for the following conditions:
• A signaling NaN (sNaN) was received as an input operand
• Division of 0 by 0 or infinity by infinity
• Square root of a negative number

Cray Research Proprietary HTM-300-0

.)
'--

CPU Module (CPE1) IEEE Divide and Square Root

• Divide by 0 (DVI) An attempt has been made to divide a finite
normal numerator by zero.

• Overflow (OVF) A result that is larger than the largest
representable number was generated.

• Underflow (UNF) A nonzero result that is smaller than the smallest
representable number was generated.

• Inexact (NX) A result was generated whose value would be
different if all possible significant bits were returned or could be
returned. Inexact is also signaled on both overflow and underflow
when the result is not exactly O. For example, 1 divided by 3 returns
the repeating decimal, 0.333333, and signals Inexact.

• Exceptional Input (XI) A floating-point unit received an operand
of infinity or NaN. XI is a eRI feature, not an IEEE standard.

Exception flags and other generated information about the operation are
sent serially to the AY option and onward to the status registers of the HH
options. The information is recoded and staged as shown in Figure 66.

Figure 66. Serial Floating-point Status

Division and Square Root Rules

HTM-300-0

If either operand of a divide is a NaN, or if the operand in a square root is
a NaN, or if the operation is invalid, then the result must be a NaN. If one
of the operands is a NaN, the result will be a positive value quiet NaN,
with a mantissa of aliI's. If a NaN is generated because of an invalid
operation, the result will be a positive value quiet NaN, but lor 2 bits of
the mantissa will be set to identify which unit generated the NaN. These
identifier bits are shown in Table 38.

Cray Research Proprietary 143

IEEE Divide and Square Root CPU Module (CPE1)

koperand

n

0

00

NaN

j operand

Results

144

Table 38. NaN Identifiers

Unit Bit 50 Bit 49 Bit 48

Divide 1 O' 0

Square Root 1 0 1

Division of two nonzero numbers results in a 0, only when an underflow
operation occurs. If overflow occurs, a ±oo (0777600000000000000000)
or the greatest representable value (0777577777777777777777) is
returned. Table 39 lists the characteristics of floating divide input
operands and how they affect the quotient. Table 40 contains a list for
square root calculations.

Table 39. Division Results

joperand

n 0 00 NaN

0, n, 00 0 00 NaN

00 NaN 00 NaN

0 0 NaN NaN

NaN NaN NaN NaN

Table 40. Square Root Results

+n ±O -n NaN

+n ±O NaN NaN

Cray Research Proprietary HTM-300-0

.)

CPU Module (CPE1) IEEE Divide and Square Root

RDOOO

Core Select

I I
r -~

Valid Divide/Sort (Yuao) IAA

CoreA
OYA Remainder Zero

IHJ OYB Remainder Neaative Output MUX
REOOO IHC Input Core B

Data OOA-OOC

(V-)

(V-)

j / k Bits 0 - 15
IHB J First IAA-IAP

then K ORA-ORC
REOOO IHA Core C OSA-OSC

j/ kBits 16-31 IBA-IBP
IYA IIA-IIP OTA-OTC

(V-) .1/ k Bits 32 - 47 ICA-ICP .
UI::A

IYB
IJA-IJP Core 0

(V-)

(JB)

i / k Bits 48 - 63 IDA-lOP IOA-IOC OAA-OAP Result Bits 0 - 15 to SN Reaister
Check for IKA-IKP
Illegal inputs OIA-OIP Bits 0-15 IRA-IRC

Go Scalar Divide/Sart lEA OBA-OBP Result Bits 16 - 31 to SN Reaister
OJA-OJP Bits 16-31 IlA-llPr- ISA-ISC

(IC) kO-1 IEB-IEC
ITA-ITC OCA - OCP Result Bits 32 - 47 to SN Reaister OKA - OKP Bits 32 - 47

(BU) Go Vector Divide/Sort I ED OLA - OlP Bits 48 - 63 Serial Ouotient to RE Exponent Calculation ODA - ODP Result Bits 48 - 63 to SN Reoister
IUA-IUC

-)
(VE)

(BU)

(AY)

(IC)

(AY)

Vector Element Valid lEE OHA Sort Normalization

RD001
IVA-IVC

Rounding
OFA Status Flaas to HHOOO via AYOOO

EIS IEH OHB Odd Exponent
IlA-llP~ IWA-IWC.

OHC Half Precision
OSA-OSB Divide Si Release

IEK-IEM OHJ Hold J Operand IXA-IXC
OSA = Valid, i Bit 1

(JB)
i Bits (Which Sito Write) IKA-IKP Core Select

I I IYC OSB = Bits 0, 2
hO-1 IEP-IEO OSC - OSD Divide Si Release IJA-IJP I ~ (AV, AW)

OOA-OOC IYD OSC = Valid, i Bit 1 Roundina Mode IFA-IFB OEB
OSD = Bits 0, 2 IIA-IIP ORA-ORC

CoreA OSE-OSF Divide Si Release (AW) IHA OSA-OSC OSE = Valid, iBit 1
OSF = Bits 0, 2

IHB Output MUX OTA-OTC
OSG - OSH Divide Si Release

(AX)
Input Core B OYA Remainder Zero OSG = Valid, i Bit 1 IHC
Data

OYB Remainder Neaative
OSH = Bits 0, 2

IHJ J First
OSI-OSJ Divide Si Release then K (AY)

Core C OSI = Valid, i Bit 1

AYOOO Roundina Mode IFA-IFB OSJ = Bits 0, 2

AY001
Valid Divide/Sort (Yuao) IAA

Core 0

Figure 67. Divide Unit Block Diagram

HTM-300-0 Cray Research Proprietary 145

IEEE FLOATING-POINT MULTIPLY AND INTEGER
MULTIPLY

HTM-300-0

The scalar and vector registers share the floating-point multiply functional
unit. Two floating-point operands arrive at the multiply functional unit
from either the scalar or the vector registers. The signs of the two
operands are combined through an exclusive OR operation, the exponents
are added together, and the two 5 I-bit coefficients are multiplied.

The floating-point multiply functional unit also performs the integer
multiply operation. 1\\'0 64-bit operands arrive at the functional unit and
a 128-bit result is generated. With the EIS instruction set, the user can
select either the upper 64 bits or the lower 64 bits of the result.

The multiply unit is a dual pipe unit. Each unit consists of five options:
the NE option, two NF options, an HG option, and an NH option. Refer to
the block diagrams of the multiply functional unit in Figure 73 and
Figure 74.

Cray Research Proprietary 147

Floating-point Multiply CPU Module (CPE1)

Multiply Algorithm

The multiply functional unit uses a type of recode multiplication algorithm
known as Booth's Algorithm.

The multiplier, in this case the j operand, is partitioned into 3-bit recode
groups centered on the even bits. A forced zero is added to the first
recode group. The recodegroups are formed as shown in Table 41. The
following subsections provide examples of standard and Booth Recode
multiplication.

Table 41. Recode Groups

Odd Bit Even Bit i-1 Recode Value Recode Product

0 0 0 +0 0

0 0 1 +1 X

0 1 0 +1 X

0 1 1 +2 2X

1 0 0 -2 (2X),+1

1 0 1 -1 (X)'+1

1 1 0 -1 (X)'+1

1 1 1 -0 (0)' +1

i - 1 = Bit to right of recode X = Multiplicand
group

Standard Binary Multiplication

148

Refer to the following example of standard binary multiplication:

000011 (3)
011101 (35)
000011

000000
000011

000011
000011

000000
0000001010111 (127)

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Floating-point Multiply

Booth Recode Multiplication

Refer to the following example of Booth Recode multiplication:

000011 (3)
011101 (35)

000000000011
11111111010

00000110
1 000001010111 (127)

In the previous example, the multiplier is recoded into bit groups centered
on the even bit. A forced zero is appended to the first recode group.

As shown in Table 41, the fIrst recode of the multiplier, bit 1, bit 0, and the
forced zero, produces a recode value of 010, or + 1. In this case, the
multiplicand is brought down to form the fIrst partial product.

The second recode, bit 3, bit 2, and bit 1, produces a recode value of -1.
In this case, a two's complement and a shift of 1 are performed on the
multiplicand, which forms the second partial product.

The fInal recode, bits 5, 4, and 3 produces a recode value of +2, which
results in a shift of 1 on the multiplicand and forms the third partial
product.

Integer Multiply Instructions

HTM-300-0

The floating-point multiply functional unit also performs the integer
multiply operation. Two 64-bit operands are presented to the unit and a
128-bit result is generated. The EIS instruction set allows the user to
select either the upper 64 bits or the lower 64 bits of the 128-bit result.
Refer to Table 42 for a list of the integer multiply instructions.

Cray Research Proprietary 149

Floating-point Multiply CPU Module (CPE1)

Table 42. Integer Multiply Instructions

Instruction CAL Description

066ijk SB/LSk Integer product, (S)) times (Sf<) to Si, returning lower

066ijk* SB/USk Integer product, (S)) times (Sf<) to Si, returning upper

165ijk VJV/LVk Integer product, (Vjelements) times (Vkelements) to Vi,
returning lower

165ijk* VJV/UVk Integer product, (Vjelements) times (Vkelements) to Vi,
returning upper

166ijk VB/LVk Integer product, (S)) times (Vkelements) to Vi, returning lower

166ijk* VB/UVk Integer product, (S)) times (Vkelements) to Vi, returning upper

* Must be preceded by a 005400 instruction

Floating-point Multiply Instructions

150

The floating point-multiply unit uses the IEEE standard for multiplication.
There are 11 exponent bits and 52 coefficient bits. Refer to Figure 68 for
the IEEE format.

Bits 63162 52151 I Exponent . Coefficient

o

I
Sign Bit

Figure 68. IEEE Floating-point Format

When two operands are presented to the unit, a pyramid is formed. The
least significant bits are captured by the NE option (NEOOO for pipe 0 and .
NEOO 1 for pipe 1). These bits are the sticky bits when rounding modes
are in operation, and they are also the lower bits of the integer multiply
results. The two NF options, (NFOOO and NFOOI for pipe 0 and NF002
and NFOO3 for pipe 1) form the middle of the pyramid.

Refer to Table 43 for a list of the floating-point multiply instructions.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Floating-point Multiply

Table 43. Floating-point Multiply Instructions

Instruction CAL Description

064ijk SiSfFSk Scalar floating-point product of (S,) times (Sk) to (S/)

160ijk ViSfFVk Vector floating-point product (S,) times (V k elements) to Vi

161 ijk VIYj*FVk Vector floating-point product (V j elements) times (V k elements)
to Vi

Multiply Functional Unit Options

NE Option

HTM-300-0

There are two sets of options because the multiply functional unit is a
dual-pipe functional unit. The even elements are processed by pipe 0,
and the odd elements are processed by pipe 1. Table 44 shows the options
used for each pipe.

Table 44. Multiply Options

Pipe 0 Pipe 1

NEOOO NEOO1

NFOOO NFOO2

NFOO1 NFOO3

NGOOO NGOO1

NHOOO NHOO1

The NE option forms the rightmost (least significant) portion of the
pyramid. (Refer to Figure 69.) The NE option receives Sk and Vk
operand bits 0 through 49 and Sj and Vj bits 0 through 50. During a
floating multiply operation, this portion of the pyramid is used mainly to
create the sticky bits; however, during an integer multiply, the results will
be used.to produce the full 128-bit result. The NE option receives very
little control from the rest of the unit. It cannot distinguish whether the
operands are to be used as floating point or integer.

Cray Research Proprietary 151

Floating-point Multiply CPU Module (CPE1)

152 Cray Research Proprietary HTM-30o-0

:::c
~
l:J
o

6

() ...
~
::c

I a
::::r
"'C
a

"'C
~.

j

......
~

L (~ \.J
kOperand

49484746454443424140393837363534333231302928272625 2423 22 2120191817161514131211 1009080706050403020100

'--- -

I I I

J8_0~1
05,06, (

II 07,08,09
11_09,10,11

-- 11,12,13
I 13,14, 15

NE 15,16,17
17,18,19

- 19,20,21
21,22,23

23,24,25
111 25,26,27

27,28,29
jOperand 29,30,31

31,32,33
33,34,35

35,36,37
37,38,39

39,40,41
41,42,43

43,44,45
45,46,47

47,48,49

Figure 69. NE Option Pyramid

-1,00,01
.01,02,03
4,05

~
~
@
(j)

o
~
~

:n
g
g.

<9 -g
s·
~ ;::;::
is·
~

......
~

()

~
:ll
(\)

~
l» a
:::T

"'0 a
"C

~
-<

:::c
-I
~
1:J
o o

I o

L

NFO

xx. xx. xx
xx. xx. xx
xx. xx. xx
xx. xx. xx
xx. xx. xx
xx. xx. xx

".jJ xx. XX. -1

........,-I--+-+--I--I-+-+-l--l-l--+-+--+-+--+-+-I-1. 00. 01
........,-I--+-+--I--I-+-+-l--lf---+-+-+--+-+--+-+-+-I--I 01. 02. 03

........,-J.-+-+-+-I-+-+-H-J.-+-+-+-I--+-+-HH-J.---1 03. 04. 05
........,-J.-+-+--I--I-+-+-HI-4-+-+--I--I--+-+-+-H-+-+-+--I 05. 06. 07

,...--,-J.-+-I--+-+-HH-+-+-+--+-+-H-+-+--+-+-+-H-+-+-; 07. 08. 09
.......,.....-J-I--+-I--I--I-+---I-I-I-J.-+-+--I--I--+-+-HI-4-+-I--I--I--+-+-l 09. 10. 11

.......,.....-J-I--I--I--I--+-+--+-I-I-J.-+-+-+-I-+-+-HI-4-+-I-+-+--+-+-+-H11.12.13
.......,.....-J-I--+-I--I--I-+---I-I-I-J.-+-+--I--I--+-+-HH-+-I--I--+--+-+-+-H-J.---113.14.15

65.64 15.16.17
63.62 1<1'" 17.18.19
61. 60 ~, .. , 19. 20. 21
59. 58 ~ .. 21.22.23
~~ _. ~~~~
55. 54.'''''' 25. 26. 27
53. 52 27. 28, 29
51.50 29.30.31
49.48 31.32.33
47.46 33.34.35
45.44 35.36.37
4~~ 37.3~39
41.40 39.40.41
39.38 41.42.43
37.36 43.44.45
35.34 45.46.47
xx. xx

Figure 70. NFO Option Pyramid

,

U \~

::n
!5
§

<9 -g
:So -~ ;:;:
is'
~

~ c:
~ g.
(j)

C)

~
-::=

:::I:
-I
3:
c',.,
o
'? o

o
~
:Il
CD
CIJ
CD
I» a
~

"'tJ a
"0 ...
m:
-<

......
g:

(
~. (J

.---.-+-+--1 17, 18, 19
...--.--+--+--+--I--I 19, 20, 21

....--.--+-+-+-+-+-+-121, 22, 23
.---.-+-+-t--+-+-+-Ir--t-l 23, 24, 25

r--1-+-+-+-+-t-t-+-+-+-+-t 25, 26, 27
.---.-I--+-++-+-HH-+-+---f-+-l27, 28, 29

,.......,-I--+-++-+-HH-+-+---f-+-+-H 29, 30, 31
.---.-I--+-++-+-HH-+-+---f-+-+-H-+--l31, 32, 33

,.......,r-I--+-+--f-+-HH-+-+---f-+-+-I-t-+-+-+--1 33, 34, 35
,.......,r-I--+-+-I-+-HH-+-+--I-+-+-H-+-+-+--+--H 35, 36, 37

,.......,r-I--+-+-I-+-HI-f-+-+---f-+-+-I-t-+-+-+--+-+-H---i 37, 38, 39
,........,r-I--+-+-I-+-HH-+-+-I-+-+-I-t-+-+-+--+-+-H-I--+--1 39, 40, 41

....--.,..-j.-J--+-+-+-~I-+--1--++-+-+-I-+--+-+-+-+-+-+-I-+-+-t--t-I 41, 42, 43
,........,r-I--+-+-I-+-HH-+-+-I-+-+-H-+-+-+--+-+-HH-+-I--I-+-t-I43, 44, 45

r--1-+++-I-+-H-+-+-+--t-+-HH-+-t--t--t-t-H-+-+-+-+-+-H-t-i 45,46,47

NF1

33,32 47,48,49
31,30 49,50,51
29,28 51,52,53
27,26 53,54,55
25,24 55,56,57
~~ ~~w
21,20 59,60,61
19,18 61,62,63
17,16 63,64,65
15,14 65, XX, XX
13,12 XX,XX,XX
11,10 XX, XX, xx
o~~ ~. XX,X~XX
07,06 XX, XX, XX
O~M X~X~XX

~~ • X~XX,XX
01,00 XX,XX,XX

Figure 71. NFl Option Pyramid

<~

S6 c::
~
~
(j)

C)

~
~

::n
~
g.
~ o
s"
~
;::;:
-e"
~

......
01
C>

()

~
:D
m
fR a
~

"'0
a

"C ...
~
-<

::J:
-I
s::
~
<? o

- ;--

NG

I I
I I I I
65646362616059585756555453525150494847464544434241 4039383736353433323- 30292827262524232221201918

Figure 72. NG Option Pyramid

L u

17,18,19
19,20,21
21,22,23
23,24,25
25,26,27
27,28,29
29,30,31
31,32,33
33,34,35
35,36,37
37,38,39
39,40,41
41,42,43
43,44,45
45,46,47
47,48,49
49,50,51
51,52,53
53,54,55
55,56,57
57,58,59
59,60,61
61,62,63
63,64,65

\~

::n
g
s:

<9
"tJ o
5"
~ ;;:

"'6"
~

~
~
~
(j)

()

~
.:::!

I
-i s:
~ a
a

I a

0
III
"<
:0
CD
CJ)
CD
III
(3
=r
-0 a

"'0
(i)' -III
~

~

0'1
-..,j

(
" "-,

SiO -24

S125-49

ViO-24

Vi25 - 49

SkO-23

Sk24-49

VkO-23

Vk24-49

SiForced 0

SiO-22

Si 23 - 47

Vi Forced 0

VjO-22

Vi23-47

SkForced 0

Sk33-48

Sk49-63

SkForced 0

VkForced 0

Vk33-48

Vk49-63

VkForced 0

~17-40

S'41-63

S'Forced 0

V'17 -40

Vi41 - 63

V'Forced 0

SkForced 0

SkO-16

Sk17 -33

VkForced 0

VkO-16

Vk17-33

NEOOO

IAA-IAY

IBA-IBY
Sj Captured for Use

ICA-ICY_ with Sj Vk Qperations

IDA-IDY-1

IEA-IEX·I
Sk and Vk Bits 0 - 49
Sj and Vj Bits 0 - 50

IFA-IFZ.

IGA-IG

IHA-IHZ_

NFOOO
I

IAA

lAB-lAX_I Sj Captured for Use

IBA-IBY •
with Sj Vk Qperations

ICA

ICA -ICX.,.J Sk and Vk Bits 33 - 65

IDA-IDY
Sj and Vj Bits -1 - 47

IEA-IEB k Bit 64, 65 Forced 0
j Bit -1 Forced 0

IEC-IER

IFA-IFQ

IFP-IFQ

IGA-IGB_
1

IGC-IGIl

IHA-IHo.

IHP-IHQ

I NF001
IAA-IAX

IBA-IBW
Sj Captured for Use

IAX-IBY with Sjand Vk
Qperations

ICA-ICX

IDA-IDW_ Skand Vk Bits -1 - 33

IDX-IDY
k bit 64, 65 Forced 0

lEA
SjandVjBits 17-65
k Bit -1 Forced 0

IEB-IER
jBil 64, 65 Forced 0

IFA-IFQ

IGA

IGB-IGR

IHR-IHY

\0

QAA-QCB

QCC-QCI

QCJ-QCN

QCQ-QCZ
I

I I I I Result Bits 0 - 53 IAA - ICa.

Result Bits 11. 15. 19.23.27.28. 30lCC -.!Q

Result Bits 32. 34. 36. 38. 40 ICJ -ICt\.

I Result Bits 42 - 53 ICQ-IC"

IQAA-QBK Result Bits 50 - 86 IDA-IEK

IQAA-QBK Result Bits 50 - 86 IFA-IGK

QCA - QBT Result Bits 82 - 127 IHA-IiT

QCA - QCH Result Bits 83.86.88 - 93 IJA-IJH

QCI - QCQ Result Bits 95.97.99.101.103.105.107 IJ! - IJQ

QCP - QCU Result Bits 112.116.120.124.127 IJP -IJU

Figure 73. Multiply Data Paths

'\~

I NHOOO

Final Summation

IQAA-QCL

()
"1l
c::
s:
0

&
CD
()
"1l
111
"-

:n
~
S-
to
-6 o
S· .-,.

~
is'
~

I
--I s::
~
o
? o

()

ii3
'<
JJ
(l)
en
(l)
l»
o
::::r
""0 a

"0
~

* -<

~

~

L

NEOOO

(JB) Go Scalar lOA - 10B~1

(BU) Go Vector , 10C

NFOOO

10C

(NFOOO) h Bit 2 10F

J Operand Zero

NF001
10F

lOG ~I-..
10H

101

10J

h Bit2

h Bit 2

To NFOOO
_-----:.::IO:.:.K~.I r ALSO

10L

10M

ION .I~

Infinite NaN kOperand

Infinite NaN k Operand

Ouiet NaN k Operand

Ouiet NaN i Operand

SiQnalinQ NaN kOperand

SiQnalinQ NaN iOperand

Zero k Exponent/Fraction

Zero i Exponent/Fraction

NGOOO

h Bit2 10F

j Operand Zero lOG

G:

OOG Go FP Mode

OOH Go Scalar

001 Go Vector

QQIS tJ Eli! 2 ~ NFOO2
OOL h Bit2 ~ NFOO2
OON h Bit2 ~ NGOO1
OOJ

I:OOM
OOA-OOC

I

000 - OOF kOperand Zero

.QQ8

OOB

OOC

000

OOE

OOF

OOG

OOH

ODB Invalid Input

ODC Exceptional Input

(NGOOO)

ODA Sjgn Bit to Branch Control

Figure 74. Multiply Control Paths

lOG

10H

101

10C

100

(JB)

.. ~

NHOOO

Sci
c::
~ g.
<n-
O ;g
~

:n
~
5-
~ -g
S·
~ .g.
~

BIT MATRIX MULTIPLY

The OA option performs the bit matrix multiply operation. The functional
unit consists of six OA options.

The OA option performs two functions related to bit matrix multiply. The
first function loads the B array with the Vj operand. The second function
performs the A x BT operation where A is either the Sj or Vj operand and
B T is the B array transposed. The scalar operation produces a scalar
result, and the vector operation produces a vector result.

Each OA option receives 22 bits of the operand. OA002 and OA005
receive 20 bits, and the last two inputs are forced to zero. Each OA option
holds 32 elements x 22 bits. When performing the A x BT operation,
each OA produces a partial result for each of the 32 elements. The partial
results are then sent to the appropriate OA option to complete the final
results. There is only one copy of each control bit coming into the
functional unit, so OAOOI and OA004 relay the control bits to the other
options.

Bit Matrix Multiply Theory of Operation

HTM-300-0

The bit matrix multiply (BMM) functional unit performs a logical
multiplication of two matrices, designated A and B, which results in a
single-bit result for each pair of elements multiplied. The matrices, which
are held in vector registers, may vary in size from 1 bit x 1 bit (l xl) to
64 x 64 bits. The size of the matrix is specified by the vector length (VL)
register (example: VL = 20 specifies 20 x 20 matrices).

The following conditions are necessary to obtain valid results:

• The two matrices must be square and of equal size.

• The two matrices must be left-justified in the vector registers to
element 0, bit 63.

• Unused bits of each element that contain part of the matrix must be
zeroed.

Elements not containing parts of a matrix are unaffected.

Gray Research Proprietary 161

Bit Matrix Multiply

162

CPU Module (CPE1)

Result matrix C is the product of matrix A and matrix B transposed (Bt). .~)
Bt is formed from matrix B by interchanging its rows and columns.

In addition to performing full 64 x 64 matrix multiply operations, the
BMM functional unit performs a scalar-vector niultiply operation and
stores the result in an S register.

Figure 75 is an illustration of 20 x 20 and 50 x 50 matrices stored in vector
registers.

Bits 63 44 43 o Bits 63 14 13 o
ElementO ,.....---,.....----....., Element 0 r------r------.

Valid
Data Zeroes

Element 19 1--___ '---____ --1
Valid Data Zeroes Element 20

Don't Care Element49 1--_____ __ --1
Element 50

Don't Care

Element63 ________ __ Element 63 ________ --'

VL= 2010 VL = 5010

Figure 75. Vector Storage of Bit Matrices

In this section, the notation used to represent individual bits of a matrix is
a lower-case letter followed by a subscripted numeric field. The letter
represents the name of the matrix; the numerics denote, respectively, the
element and bit of the vector register data. Elements and bits numbered
from 1 to 9 are represented as a 2-digit number; elements and bits
numbered upward from 10 are separated by a comma. For example:

a3,7 represents matrix A, element 3, bit 7

b15,43 represents matrix B, element 15, bit 43

a3,12 represents matrix A, element 3, bit 12

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

HTM-30o-0

Bit Matrix Multiply

Matrices A and B can be represented mathematically as illustrated in
Figure 76. Note that the ultimate degree of both element and bit can be
represented by n because matrices must be square. Each row of a matrix
corresponds to an element of a vector register.

A=

all a12 a13
a21 a22 a23

B=

bll b12 b13
b21 b22 b23

Figure 76. Mathematical Representation of Matrices A and B

The BMM functional unit transposes matrix B as it is loaded into the
BMM storage area. The elements (rows) of the B matrix data are
interchanged with the bit positions (columns) as illustrated in Figure 77.

bll b12 bl3
~l b22 ~3

B = b31 b32 b33

bll ~l b31
b12 b22 b32

Bt = bl3 b23 b33

Figure 77. B Matrix and Bt Matrix Relationships

Gray Research Proprietary 163

Bit Matrix Multiply CPU Module (CPE1)

The operation, C = ABt, is illustrated in Figure 78.)

all a12 a13 aln bll b21 b31 hoI Cll C12 C13 Cln
a21 a22 a23 a2n bl2 ~2 b32 hn2 C21 C22 C23 C2n
a31 a32 a33 a3n bl3 ~3 b33 ho3 C31 C32 C32 C3n

ABt=

Col Cn2 Cn2

A C

where:

Cll=anbllffiaI2b12ffia13bI3ffi ... ffialnbln t
C12=an~lffia12b22ffia13b23ffi ... ffialnb2n
C13=allb3Iffia12b32ffia13b33ffi ... ffialnb3n

.
t ffi indicates an exclusive OR operation.

Figure 78. Multiplication of A and Bt

164 Cray Research Proprietary HTM-30o-0

CPU Module (CPE1) Bit Matrix Multiply

Instructions

HTM-300-0

Refer to Table 45 for a list of the bit matrix multiply instructions.

Table 45. Bit Matrix Multiply Instructions

Instruction CAL Description

1740j4 BMM LVj Transmit Vj elements 0 - 63 to B matrix

1740j5 t BMM UVj Transmit Vj elements 64 -127 to B matrix

174jp Vi Vj* BT Transmit the value of Vj multiplied by the transposed B matrix
to Vi

070jp Si Sj*BT Transmit the value of Sjmultiplied by the transposed B matrix
to Si

002210 CBL Clear the bit matrix loaded (BML) flag

t New instruction

Refer to Figure 79 for a BMM block diagram for pipe 0 and to Figure 80
for a BMM block diagram for pipe 1.

Cray Research Proprietary 165

CPU Module (CPE1) Bit Matrix Multiply

OAOOO Bits 0 - 21 IDA-IDK OAOOO
OCK-OCU

I VROOO Bits 0-3 VMOOO/AROOO
I VMOOO Bits 4-7 IAA-IAV IEA-IEK OAA-OAK Final Result Bits OCA-OCJ Bits 42, 44 - 62 I VMOO1/ASOOO j-I VROO1 Bits 8-11 Odd Bits 1 - 21 I I VMOO1 Bits 12 -15 VMOO2/ASOO1

I VROO2 Bits 16 -19
OCV-ODF ICA-ICK Partial Results -L-

VMOO2 Bits20-21

J OA001 Bits 22 - 43 OCK-OCU IDA-IDK OAOO1

IAA-IAV
OAA-OAK Final Result Bits

OCV ODF ICA-ICK Bits 20, 22 - 40 Odd Bits 23 - 43

OCA-OCJ
IEA-IEK

Partial Results

OA002 Bits 44 - 63 OCV ODF
IDA-IDJ OAOO2

Bits 0, 2-18 I VMOO2 Bita22 23 IAA-IAII
UCK.-UCU OAA-OAJ !-inal Hesult 81ts

I VR003 Bits 24-27 :! ICA ICJ
Odd Bits 45 - 63

1 VM003 Bits 28 - 31 -

VMOO2/ASOO~ I VR004 Bits 32 - 35 - OCA-OCJ IEA-IEJ Partial Results

I VM004 Bits 36 - 39 l- I VMOO3/ASOO2

VROO5 Bits 40-43 - I I VMOO4/ATOOO

U OA003 Bits 0 - 21 OCK-OCU IDA-IDK OAOO3 L VMOO5/ATOO1

IAA-IAV IEA-IEK Bits 43, 45 - 63 OAA-OAK Final Result Bits
OCA-OCJ Even Bits 0 - 20

OCV-ODF ICA-ICK Partial Results

OA004 Bits 22 - 43 OCK-OCU IDA-IDK OAOO4

IAA-IAV OCV-ODF OAA-OAK Final Result Bits I VMOO5 Bits 44-47 ICA ICK Bits 21,23 - 41

I VROO6 Bits 48-51 Even Bits 22 - 42 VMOO5/ATOO1
I VMOO6 Bits 52 -55 I- OCA-OCJ IEA-IEK

I I VMOO6/AUOOO J I VROO7 Bits 56-59 - Partial Results

VMOO7 Bits 60-63 r-
OCV-ODF L VMOO7/AUOO1 - OA005 Bits 44 - 63 IDA-IDJ OAOO5

IAA-IAU

~
OCK-OCU Bits 1,3 -19 OAA-OAJ Rnal Result Bits

ICA-ICJ Even Bits 44 - 62

OCA-OCJ IEA-IEJ Partial Results

Figure 79. Bit Matrix Multiply Block Diagram, Pipe 0

J
HTM-300-0 Cray Research Proprietary 167

CPU Module (CPE1) Bit Matrix Multiply

OAOOO Bits 0 - 21 IGA-IGK
OAOOO OEK-OEU

L VROO8 Bits 0-3

I VMOO8 Bits 4-7 IBA-IBV OEA-OEJ IHA-IHK Bits 42, 44 - 62 OBA-OBK Final Result Bits ri VMOO8
I VROO9 -Bits 8 -11 Odd Bits 1 - 21 7 I VMOO9

I VMOO9 Bits 12 -15 l- I-
OEV-OEF IFA-IFK L I VR010 ~ Partial Results VM010 Bits 16 - 19 I-

VM010 Bits 20 -21 -- OEK OEU IGA IGK OAOO1
OA001 Bits 22 43

LJ IFA-IFK Bits 20, 22 - 40
OBA-OBK Final Result Bits

IBA-IBV OEV OEF Odd Bits 23 - 43

IHA-IHK
OEA-OEJ Partial Results

OEV OEF
IGA-IGJ OAOO2

OA002 Bits 44 - 63

I VM010 8it622 -23 IBA -IBU OEK-OEU Bits 0, 2 -18
OBA-OBJ Final Result Bits IFA IFJ

I VR011 Bits 24 - 27 Odd Bits 45 - 63

I VMOl1 8" 28 - 3' lj OEA-OEJ IHA-IHJ I VR012 Bits 32 - 35 - Partial Results VM010

I VM012 Bits 36 - 39 ~ 7 I VM011 I-
VR013 Bits 40-43 ~ ... L IVMO'2 l-

II OA003 Bits 0 - 21 OEK-OEU IGA-IGK OAOO3
VM013 I-

IBA-IBV IHA-IHK
Bits 43, 45 - 63 OBA-OBK Final Result Bits

OEA-OEJ Even Bits 0 - 20

OEV-OEF IFA-IFK Partial Results

OAOO4 OEK-OEU IGA-IGK
OA004 Bits 22 - 43

IBA-IBV OEV-OEF OBA-OBK Final Result Bits I VM013 Bits 44-47 IFA-IFK Bits 21,23 -41

IVRO'4 8"48_5'7 Even Bits 22 - 42
VM013

I VM014 Bits 52 - 55 ~ OEA-OEJ IHA-IHK

7 I VM014
IVR015 Bits 56-59 ~ Partial Results

L VM015 Bits 60 - 63 - OEV-OEF OAOO5
VM015 -- OA005 Bits 44 - 63

IGA-IGJ
IBA-IBU

LJ OEK-OEU Bits 1, 3 -19 OBA-OBJ Final Result Bits
IFA-IFJ Even Bits 44 - 62

OEA-OEJ IHA-IHJ Partial Results

Figure 80. Bit Matrix Multiply Block Diagram, Pipe 1

HTM-300-0 Cray Research Proprietary 169

INSTRUCTION BUFFERS

Bit Type

Instruction data bits

B address bits

Fetch address bits

The instruction buffers are distributed across four Ie options. (Table 46
illustrates how the four Ie options are partitioned.) Each Ie option
contains 8 buffers, and each buffer holds 32 16-bit words. The Ie options
also hold data for the functions listed in Table 46.

Table 46. Ie Options

ICOOO IC001 IC002 IC003

0-7 and 8 -15 and 16-23 and 24- 31 and
32-39 40-47 48-55 56-63

0-7 8-15 16-23 24-31

0-7 8-15 16-23 24-31

Logical address translation 0-7 and 8-15 and 16-23 and 24- 31 and
(LAT) address bits 32-39 40-47 48-55 56-63

Exchange P address bits 0-7 and 8 -15 and 16 -23 and 24-31 and
32-39 40-47 48-55 56-63

Fetch destination code 0, 1 2,3 4,5 6, 7
fan-out bits

Fetch

HTM-300-0

The Ie options generate a deadstart fetch after the fIrst 208 words (the
number of words in the exchange package) have been received. The Ie
option counts the number of common memory valid codes received, and
this count enables the generation of the deadstart fetch signal.

When data is fetched from memory, it is requested as a block of 32 words
(4 blocks of 8 words where the fIrst word of this block is the fIrst word
that is needed). For example, if a branch is made to address 1005, that

. address is requested fIrst, followed by addresses 1006 to 1037, then
addresses 1000 to 1004.

When the common memory data arrives, the Ie compares the incoming
code with the expected code. This code tells the Ie option where to put
the data in the buffer. Data can arrive at the Ie from memory in any order,
and because of the memory code, it is reordered inside the buffer.

Cray Research Proprietary 171

Instruction Buffers

Prefetch

172

CPU Module (CPE1)

A 9-bit code accompanies every 16 bits of memory data. This code
specifies the buffer and the element in the buffer into which the word is to
be loaded. The following illustration shows a breakdown of the code.

Valid Buffer Element

Two words of data arrive together at the Ie options. As the data starts to
arrive, the Ie options sense the first 4 words. These words proceed
through a bypass path, to the read-out registers, and then to the JB options
for issue.

Two pointers are associated with bypass: a read pointer and a write
pointer. As long as the write pointer stays ahead of read issue, the first 4
words will issue. The buffers will continue to fill while the first 4 words
are issuing. If the first 4 words issue and the buffers are not full, issue
stops until the buffers fill and the buffer valid bit sets. The instruction
parcels are then transmitted to the JB options from the buffers.

A prefetch begins when the buffer read-out pointer reaches address 308 in
the buffer or a branch occurs to addresses 30 to 378.

The prefetch determines if the next sequential buffer is already in-stack.
If it is not, a fetch accesses the next sequential common memory address.
When the count in the buffer reaches 378, the Ie advances the buffer
pointer and ensures that the read data valid bit is set. If the read data valid
bit is not set, the Ie option enables the wait first word flag and waits for
the first word to be received from common memory.

NOTE: The prefetch will always occur, but it can be blocked or aborted
by any branch sequence in progress.

Prefetch can at times degrade performance. For example, if the first word
of the next sequential instruction block is needed while the current
instruction block is being fetched, a delay occurs. In this case, issue stops
until the last word of the next block is fetched.

If an out-of-stack branch occurs while the next sequential block is
awaiting prefetch, the prefetch is aborted and the block containing the
branch address is fetched instead. Issue of instructions at the branch
address are delayed until the fetch of the current block is completed and a)
fetch of the current block containing the branch address begins. ~

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

/j

...)

HTM-300-0

Instruction Buffers

Another problem with prefetch occurs when executing an instruction at
the top of logical address translation (LAT) space. The program may
execute a branch to lower memory but the prefetch may try to initiate a
fetch from the next sequential memory location. If the next sequential
memory location is out of the LAT range and the branch is within 8 words
of the last valid LAT address, a range error may occur.

Refer to Figure 81 for the Ie options bit layout, to Figure 82 for an IC
block diagram, and to Figure 83 for the IC option terms.

Figure 84 is a block diagram of the memory-to-instruction buffers for path
1, and Figure 85 is a block diagram of the memory-to-instruction buffers
for path 2. Figure 86 is a block diagram of the common memory path
code 1 fanouts, and Figure 87 is a block diagram of the common memory
path code 2 fanouts .

Cray Research Proprietary 173

Instruction Buffers CPU Module (CPE1)

174

IC003
Instruction Data Bits 24 - 31 and 56 - 63
B Bits 24 -31
Fetch Bits 24 - 31
LAT Address Bits 24 - 31 and 56 - 63
Exchange P Data Bits 24 - 31 and 56 - 63

ICOOO

IC001

IC002

Instruction Data Bits 16 - 23 and 48 - 55
B Bits 16-23
Fetch Bits 16 - 23
LAT Address Bits 16 - 23 and 48 - 55
Exchange P Data Bits 16 - 23 and 48 - 55

Instruction Data Bits 8 - 15 and 40 - 47
I:H:3its B-1b
Fetch Bits 8 - 15
LAT Address Bits 8 - 15 and 40 - 47
Exchange P Data Bits 8 - 15 and 40 - 47

Instruction Data Bits a - 7 and 32 - 39
B Bits 0-7
Fetch Bits a - 7
LAT Address Bits 0-7 and 32 - 39
Exchange P Data Bits a - 7 and 32 - 39

RAM Array a RAM Array 2

Buffer a - 3 Buffer 0-3
Even Words Odd Words

0-30 0-30

RAM Array 1 RAM Array3

Buffer 4-7 Buffer 4-7
Even Words Odd Words

0-30 0-30

Figure 81. Ie Options Bit Layout

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

(JB)

(IC)

(IC)

(CH)

(CH)

(IC)

(IC)

(IC)
(IC)

(BU)

Path 1 Code
(Array Write!
Read Address)

Path 1 Valid
(Write Enable)

Path 1 Data

Path 2 Data
Path 1 Valid
(Write Enable)

Path 1 Code
(Array Write!
Read Address)

P Bits 0-15
P Bits 16 -31

HTM-300-0

IPA-IPP

IAQ-IAX

lAX

1M-lAP

IBA-IBP

IBX

IBQ-IBX

IDA-IDP
IEA-IEP

ICA-ICH

IC· ---.j Fan-out Data I
Coincidence Buffer

Parcel Data I
P Reg Data I I h, i, j, k Bits

Buffer Match

:I Branch or LAT I
Address

Array 0
~ Buffer

0-3 Even
Words

1 0-15 r--
Array 1 R
Buffer e

4-7 Even a

~ Words d
0-16 -

~ Array 2 0
u

Buffer t
0-3 Odd

Words R
0 15 e

I Array 3 9
Buffer "--

4-7Odd
~ Words

0 15

BYpasS:

J Fetch Address I
Register I

J Fan-out Data I

Figure 82. Ie Block Diagram

Cray Research Proprietary

Instruction Buffers

OWA-OWC
OWD-OWE (HM)
OWI-OWK (RE)
OWQ-OWS {~~/ OXA-OXC
OXD-OXF NF,N

(VS, F
Branch Address
OEA-OEH

LAT Address OEI - OEP

Parity Error to ~UA

Inst Data to OM - OAP

New P to OAA - OAH

OCA-OCH
OCI - OCP BjWP Fanout

G)
C)

(CC)

(cC)

(OA)

(J8)

(BU)

(IC)

175

Instruction Buffers

(CH)

(IC)

(CK)

(CH)

(IC)

(CK)

(BU)

(BU)

(BU)

(JB)

(JB)

(JB)

(JB)

(JB)
(JB)

(JB)

(JB)

(JB)

(HA)

(CC)

(Force 1)

(VB)

(HA)

(CC)

(HA)

(Force)

(CC)

176

IAA-

CM Path 1 Data lAP

IAO-
CM Path 1 Code lAY

IVC-
CM Path 1 Code to Fanout IVD

IBA-
CM Path 2 Data IBP

IBO-
CM Path 2 Code IBY

IVE-
CM Path 2 Code to Fanout IVF

ICA-
Bjk Exchange P to Fanout ICH

IDA-
Blk Exchange P Bit 0 - 15 IDP

IEA-
Bjk Exchange P Bit 16 - 31 IEH

IPA-
Parcel Data IPP

Enter Rank 1 lOA

Enter Rank 2 10E

Clear Rank 2 lOA

Data Resume 10M
Branch Issue 100

Go Branch lOR

Branch Fall Throuoh lOS
Interrupt Request IOU

CPU MC to Fanout IRA

Exchange Active to Fanout IRB

Triton Mode to Fanout IRC

VL2 or CM B to Fanout IRD

CM MC to Fanout IRE

Fetch Done ISA
MaintMode ITA

IUA
ICSelect IUB

Enter Exchange P IVB

CPU Module (CPE1)

/)
IC OAA-

OAP Instruction Data
(JB)

OAO Instruction Data Ready

OCA-
(JB)

OCH Bjk Exchange P to Fanout

OCI-
(BU)

OCP Bjk Exchange P to Fanout

ODA-
(BU)

ODH NewP
(BU)

ODI Enter New P/Dump Mode
(BU)

ODJ Go Branch/Exchange Enable

OEA-
(JB)

OEH Branch Addrc33

OEI-
(CC)

OEP Exchange LAT
(CC)

OEO Fetch Requests
(CC)

OER Go Dump
(CB)

ODJ Buffer Load Pointers

OVA-
OVD CM Path 1 Read Code Fanout

OVE-

(JB)

~)
(IC)

OVH CM Path 2 Read Code Fanout

OWA-
(IC)

OWC ItO, k1, k2. at Phase 3

OWD-
(HM)

OWE ItO, k1 at Phase 2

OWI-
(RE)

OWK 8j at Phase 3

OWO-
(HM)

OWS Vi at Phase 2

OXA-
(HI)

OXC 00, h1, ff2. at Phase 2
(FC)

Figure 83. Ie Option Terms

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Instruction Buffers

CHOOO OMA- IAA-
ICOOO OMD Bits 0-3 lAD CHOOS OMA- IAA- IC002

OMD Bits 16 -19 lAD

OME- IAI-
OMH Bits 32 -35 IAL

OME- IAI-
OMH Bits 48-51 IAL

OMA- IAE-
CH002 OMD Bits4-7 IAH CH010 OMA- IAE-

OMD Bits 20-23 IAH

OME- IAM-
OMH Bits 36-39 lAP

OME- IAM-
OMH Bits 52-55 lAP

CH004 OMA- IAA- IC001
OMD Bits8-11 lAD

IAA-CH012 OMA- IC003
OMD Bits 24-27 lAD

OME- IAI-
OMH Bits 40-43 IAL

OME- IAI-
OMH Bits 56-59 IAL

OMA- IAE-
CH006 OMD Bits 12-15 IAH

IAE-CH014 OMA-
OMD Bits28-31 IAH

OME- IAM-
OMH Bits 44-47 lAP

OME- IAM-
OMH Bits 60-63 lAP

Figure 84. Memory-to-instruction Buffers, Path 1

HTM-300-o Cray Research Proprietary 177

Instruction Buffers CPU Module (CPE1)

CH001 OMA- IBA- ICOOO
OMD Bits 0-3 IBD

CH009 OMA- IBA- IC002
OMD Bits 16-19 IBD

OME- IBI-:
OMH Bits 32-35 IBL

OME- IBI-
OMH Bits48-51 IBL

CH003 OMA- IBE-
OMD Bits 4-7 IBH

CH011 OMA- IBE-
OMD Bits 20-23 IBH

OME- IBM-
OMH Bits 36-39 IBP

OME- IBM-
OMH Bits 52-55 IBP

CH005 OMA- IBA-
IC001 OMD Bits 8 -11 IBD

CH013 OMA- IBA- ICOO3
OMD Bits24-27 IBD

OME- IBI-
OMH Bits 40-43 IBL

OME- IBI-
OMH Bits 56-59 IBL

CH007 OMA- IBE-
OMD Bits 12-15 IBH

CH015 OMA- IBE-
OMD Bits 28-31 IBH

OME- IBM-
OMH Bits 44-47 IBP

OME- IBM-
OMH Bits 60-63 IBP

Figure 85. Memory-to-instruction Buffers, Path 2

178 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Instruction Buffers

ICOOO
ICOOO

OVB IVC OVA

IVO OVC
OVO r ICOO1

IICOO3
ICOOO CKOOO

ICOO2 IAq. Element Bit 0
lAO

Element Bit 0
Element Bit 0 ONF

ICOO1
ICOO1

ONG
IAR

Element Bit 1 IAR
Element Bit 1

Element Bit 1
ONH IVC

OVA lAS
OVB lAS

Element Bit 2
Flemflnt Ait :>

Element Bit 2
Element Bit 3 ONI IVO

IAT
IAT

OVC
Element Bit 3 OVO

Element Bit 3

ICOO2
ICOO2

IAU
OVA IAU~

Element Bit 4 OVB
Element Bit 4

ONJ IVC
Element Bit 4

OVC IAV
Buffer Bit 0 OVO IAV

Buffer Bit 0
IVO lAW

Buffer Bit 1 lAW
Buffer Bit 1

ONC
Buffer Bit 0

lAX
Buffer Bit 2 lAX

Buffer Bit 2
~

ONO
I-Buffer Bit 1

ONE
Buffer Bit 2

ICOO3
lAY ICOO3

lAY
OVA

OVB ONB ONA IVC

OVC
OVO

IVO

Valid
Valid

Figure 86. Common Memory Path, Code 1 Fanouts

J
HTM-300-0 Cray Research Proprietary 179

CPU Module (CPE1) Instruction Buffers

ICOOO
OVE ICOOO IVC OVF

IVD OVG
OVH

IICOO1
IICOO3

ICOOO CKOO1
ICOO2 IBO

IBO Element Bit 0
Element Bit 0

Element Bit 0 ONF
ICOO1

ICOO1
ONG

IBR
Element Bit 1 IBR

Element Bit 1

Element Bit 1

Element Bit 2 ONH IVC
IBS

OVF IBS
OVE

Element Bit 2
Element Bit 2

Element Bit 3 ONI IVD

IBT
OVG IBT

OVH
Element Bit 3

Element Bit 3

ICOO2
ICOO2 OVE IBU

Element Bit 4 OVF IBU
Element Bit 4 ONJ IVC

Element Bit 4
OVG IBV

IBV Buffer Bit 0 OVH Buffer Bit 0
ONC IVD~ IBW

Buffer Bit 1 IBW
Buffer Bit 1

Buffer Bit 0

OND IBX
Buffer Bit2 IBX

Buffer Bit 2
Buffer Bit 1

~

~

ONE
Buffer Bit 2

ICOO3
OVE IBY ICOO3

ONB ONA IVC OVF IBY

OVG
OVH

IVD

Valid
Valid

Figure 87. Common Memory Path, Code 2 Fanouts

HTM-300-0 Cray Research Proprietary 181

/) INSTRUCTION ISSUE

.)

HTM-300-0

In the CRA Y T90 series computer system, a process called instruction
issue introduces instructions into the central processing unit (CPU).

The first instruction parcel is read from of one of eight instruction buffers
(IBs) and sent to the next instruction parcel (NIP) register where it is
partially decoded to determine whether it is a 1-,3- or 4-parcel instruction.

Refer to Figure 88 for an instruction issue block diagram. The program
address (P) register points to the next parcel to be read out of t.he
instruction buffer. If it is a 1-parcel instruction, the NIP moves to the
current instruction parcel (CIP), the parcel from the instruction buffer
moves to NIP, and P is incremented by 1. If it is a 3-parcel instruction, as
NIP moves to CIP, the second parcel moves into LIPO, the third parcel
moves into LIP 1 , and P is incremented by 3. If it is a 4-parcel instruction,
as the first parcel moves from NIP to CIP, the second and third parcels
move to LIPO and LIP1. Then, the fourth parcel goes to NIP and on to
CIP as the other three parcels are leaving. In the next clock period, the
fourth parcel leaves CIP, and the value in the P register increments by 4.

+1.+3.+4

Figure 88. Instruction Issue Block Diagram

Cray Research Proprietary 183

Instruction Issue CPU Module (CPE1)

Instruction Formats

There are three instruction formats: 1-,3-, or 4- parcel instructions. The
first parcel always contains the operation code. The operation code is
examined in NIP to determine whether it is an exit instruction (000000 or
004000) or a 1-, 3-, or 4- parcel instruction.

One-parcel Instructions

The gh portion generally is the operation code, although some instructions
also use the i, j, or k fields. The i field is usually the result designator, and
the jk portions are generally operand register designators. Some
instructions use the i field or bit 2 of the j field to provide additional bits
for the operation code.

Some I-parcel instructions are part of the extended instruction set (EIS)
and perform different operations when immediately preceded by the EIS
parcel (005400 or 0055jk).

Figure 89 illustrates the format of a I-parcel instruction.

7 3 3 3 Bits/Parcel
r----g--h-----r----~---j--~--k--~

15 - 9 8 - 6 5 - 3 2 - 0 Bit Number

Figure 89. Format for a I-parcel Instruction

Three-parcel Instructions

4

g

15-12

184

In the 3-parcel instruction format, the nm fields hold the 32-bit address or
constant value. Figure 90 illustrates a 3-parcel instruction format.

NOTE: The n portion holds the most significant bits, and the m portion
holds the least significant bits.

3 3 3 3 16 16 Bits/Parcel

h j k I I n II m I
11 -9 8-6 5-3 2-0 15-0 15-0 Bit Number

Figure 90. Format for a 3-parcel Instruction

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Instruction Issue

Four-parcel Instructions

4

9
15-12

In the 3-parcel instruction format, the instruction field mnemonic pmn
represents a 48-bit field of which the p portion is the most significant
parcel. Figure 91 illustrates a 4-parcel instruction format.

3 3 3 3 16 16 16 Bits/Parcel

h j k I I p II n II m

11 -9 8-6 5-3 2-0 15-0 15-0 15-0 Bit Number

Figure 91. Format for a 4-parcel Instruction

Four-parcel instructions are used in A and S register memory references
that use extended addressing. The h field selects an A register that
contains an address index. The i field designates which A or S register is
the source or destination of the data. During read references, bit 1 of the j
field disables or enables cache bypass. Bit 2 of the j field must be set to a
1 to indicate a 4-parcel instruction. The k field is not used.

Instruction Decode

HTM-300-0

When an instruction parcel is loaded into NIP, its size is determined. If it
is a 1-parcel instruction, it moves to CIP for further decoding to determine
which registers, functional units, and memory ports are required.

Cray Research Proprietary 185

Instruction Issue

P Register

Coincidence

CPU Module (CPE1)

The P register is 32 bits wide and resides on the BUO and BUl options.
The P register indicates the relative memory address of the next
instruction to be read out of the instruction buffer read-out register (and
sent to either NIP or LIPO). The lower 2 bits (bits -1 and -2) point to the
parcel, and the upper 30 bits (bits 8 through 29) point to the word address.
·Thereare three ways to load the P register:

• Multiplex 8 bits at a time during an exchange sequence

• Load from B jk as a result of a 005 ijk instruction

• Load from the ijk or nm fields of a 006ijk, 007 ijk, or 0 lxjk
instruction

Every time a parcel issues, the JB option sends an Advance P signal to the
BU options. Advance P increments the P register by 1.

A condition called coincidence exists when the next needed parcel is in .. oJ
one of the eight instruction buffers. (Coincidence is checked only on
branch instructions.) A coincidence check compares the upper 25 bits of
the P register to the 25-bit buffer address (A) register and determines
whether the buffer valid bit is set. All 25 bits must match, and the buffer
valid bit must be set in order for a coincidence condition to exist. If there
is no coincidence, a fetch operation is initiated.

Reading the Instruction Buffer

186

When a buffer read occurs, the even and odd words are read out of the
buffer to a read-out register. Depending on the content of theP register,
the BU options direct one of these words to NIP or LIP for decoding.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

/J JB Option

Instruction Issue

The two JB options on the CP module provide the issue control signals for
the processor. These options receive the instruction word from the IC
options, select and decode the correct parcels, and provide control to the
rest of the CPU. The JB option also has all the resource reservations and
holds issue if a resource is busy. The JB options are responsible for the
functions described in the following subsections.

Parcel Data Distribution

HTM-300-0

The JB option transmits parcel data to the AV, AW, AX, AY, BU, and VB
options and alters the j field going to the AV, AW, AX, and AY options for
certain instruction types during the following instructions:

• lOh, llh, 12h, 13h; the Ajbecomes the Ah field
• 0013jO; the Ai field becomes the Aj field

The JB option also transmits a read-out pointer code to the A and S
registers. The read-out pointer code selects the read-out path. Refer to
Table 47 for a list of these codes.

Table 47. Read-out Path Codes

Code Instruction Description

00 075, 13h Sito BU path

01 034, 036, 025, 11 h Aito BU path

11 035,037 Aito BU path

00 0013p, 027if2./3, 027jft317 Aito SR path

01 073Q2,073ij3,073ij5,073jft3 Sito SR path

10 0010jk,0011jk Akto SR path

11 0014P, 0014j4 Sjto SR path

00 057, 0030P/1, 026(p/1, 027(p Sjto shift path

11 052 -056 Sito shift path

00 Sjto vector pipe 0

01 176 AO to vector pipe 0

10 034,036 AO to vector pipe 0

11 035,037,177 AO to vector pipe 0

00 Sjto vector pipe 1

Cray Research Proprietary 187

Instruction Issue CPU Module (CPE1)

Table 47. Read-out Path Codes (continued)

Code Instruction Description

01 176 . Ak to vector pipe 1

10 034,036 Aito vector pipe 1

11 035,037,177 AO to vector pipe 1

00 10h, 12h, 13h,0017jk Ah (AJ) to CM port B/E

01 00200k Ak to CM port B/E

10 11h Ah (AJ) to CM port B/E

11 177 Ak to CM port B/E

A/SNIB/T Register Requests

The JB option checks for register conflicts and receives a register release
signal from the shared resource control and from common memory for the
A and S registers. The JB option also receives a vector read/write (RlW)
release for V registers and a BIT read/write release. The JB option also
transmits A and S register entry codes. The A and S registers use these
codes, the ghijk field, the instruction, and the 2-bit register read-out code
to define the instruction to be performed and to reserve the needed path.

Functional Unit Requests

The JB option detects functional unit conflicts in the following functional
units:

• Logical #1: 140 - 147 I 175

• Logical #2: 140 - 145 if Logical #1 busy I Logical #2 enabled

• Vector Mask: 146 - 147 I 175 I 070ij1 lEIS 153ijO,1

• Vector Shift: 150 - 153

• Vector Add: 154 - 157

• Floating MultiplylDivide: 160 - 167

• Floating Add: 170 - 173

188 Cray Research Proprietary HTM-300-0

)
_/

CPU Module (CPE1) Instruction Issue

• Square Root: 070ij1, 174ijO (V pop, parity, leading zero, iota:
174ij(1 - 3)

• Matrix Multiply: 174ij(4 - 7) / 070ij(6 -7)

Constant Data Requests

The JB option checks for the presence of constant data in multiple-parcel
instructions such as jumps, branches, and instructions that use the pmn
fields. Each JB option handles 32 bits of the constant data distribution.
JBO transmits data to the AV, AW, and CD options through the A series
options; and JB1 transmits data to the AX, AY, and CD options through
the A series options. JBO also provides the jk data on the constant path
when needed.

Extended Instruction Set (EIS) Requests

When the JB option issues 005400 or 0055xx instructions, the parcel
following either of these instructions is defined by the extended
instruction set. If an EIS-capable instruction is issued without a
preceeding 005400 or 0055xx instruction, the instruction issues and
performs its primary function. For example:

044ijk Transmit the logical product of (S}) and (Sk) to Si

044ijk In EIS mode, this instruction transmits the logical
product of (AJ) and (Ak) to Ai

Common Memory Requests

HTM-300-0

The JB options receive the following external common memory control
signals:

• Release Port A

• Release Port B

• Release Port C

• Bidirectional Mode: (Mode = 1) Enables block reads and writes at
the same time

Cray Research Proprietary 189

Instruction Issue CPU Module (CPE1)

• Common Memory Quiet: Indicates that all memory activity in the ~
CPU has been completed. Requires that all ports are quiet, conflict .)
logic is quiet, memory sections are quiet, and all read and write
operations are complete.

• Hold Common Memory Issue: No more references can issue

• Cache Miss In Progress: Indicates a cache miss is pending

• Read Quiet: Read references have cleared all conflict checks

• Write Quiet: Write references have cleared all conflict checks

• Exchange Active: Indicates an exchange has not completed

Shared Resource Requests

Branch Requests

The JB options receive the following external signals, which control the
shared resource path, from the HD option:

• AlS Register Shared Resource Release: Releases a specific A or S
register (0 - 7) path

• Release Shared Resource: Used in combination with Go Semaphore
Branch to cause issue to resume or P to advance

• Go Semaphore Branch: Signals that the conditions of a semaphore
branch have been satisfied

The JB options check the conditional branch test conditions to determine
whether the condition is satisfied; if it is, the JB option issues a Go Branch
signal to the IC options.

Exchange Requests

The JB options perform the following actions during an exchange
sequence:

• 000000 (error exit) issues. Issue stops, P advances.

• 0040jk (exit k) issues. Issue stops, P stops.

190 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

Interrupt Requests

HTM-300-0

Instruction Issue

• The shared path is released. The state of Go Semaphore Branch
determines whether P advances on a 0040jk. One of two possible
results can occur:

• A normal exit occurs and P advances when the shared path is
released and Go Semaphore Branch is a O.

• An error exit occurs,P will not advance when the shared path is
released, and Go Semaphore Branch is a 1.

An interrupt request can be generated in one of three ways:

• A 000000 (error exit) instruction issues
• A 0040jk (Exit k) instruction issues
• A hardware error condition occurs

Interrupt requests are processed in two phases. In phase 1, the following
conditions are checked:

• No multiparcel instructions are in process
• No EIS type waiting for second parcel
• No branch sequence in progress

In phase 2, the following conditions are checked, and then the Go
Exchange signal is sent to the HH, IC, and CC options.

• No branch sequence in progress
• Shared path available
• All registers available
• Common memory quiet

When a hardware interrupt request occurs, the JB option performs the
phase 1 checks and stops issue. If the phase 2 checks are all valid, the JB
option sends a Go Exchange signal to the IC options. If any of the shared
type instructions have issued during this shut-down time, the HD option
must release the shared path and the following actions must occur:

• If a 0034 (test and set semaphore) has issued, a Release signal and a
Go Branch signal must be sent before Go Exchange can occur.

• If a 000000 (error exit) or a 0040jk (exitjk) has issued, a release path
must occur to clear the JB option control.

Issue will resume when Go Branch occurs.

Cray Research Proprietary 191

Instruction Issue CPU Module (CPE1)

Control Signal Distribution

192

The JB option transmits the following control signals:

• Issue group 0, 1, and 2: These signals are combined on the BD and
VA options to complete the issue signal.

• Issue: Sent to the AN option for fanout.

• Enter Vector Length: Sent to the AV option following the decode of
a 00200k (Ak to VL) instruction.

• Read Vector Mask: Sent to the SS option during a 073i (0 - 3) 0
(VMO or VM1 to Si or Ai) instruction.

• Enter Vector Mask: Sent to the SS option during a 0030j (0 - 3) (Sf
or Ai to VMO or VM 1) instruction.

• Go Scalar Pop/Parity/Lz: Sent to the SS option during a 026ij (0 - 3)
or 027ij (0 - 1).

• Go Scalar Double Shift: Sent to the SS option during a 056ijk Shift
(Si) and (S}) left Ak places to Si.

• Go A Type: Sent to the SS option when a 005400 (EIS) is issued
using A register data.

• Go Scalar Divide: Sent to the RE option during a 065ijk instruction.

• Go Scalar Floating Add: JB 1 sends this signal to the FC option
when a 062ijk (sum) or 063ijk (difference) issues.

• Go Scalar Floating Multiply: Sent to the NO option when a 064ijk
instruction issues.

• Go Address Multiply: Sent to the AV option when a 032ijk issues.

• Go Compare: This signal is transmitted to the FC option from
JBOO! when a 00550x 164ijk issues.

• Common Memory A or S Requests: Sent to the CD options when a
memory load or store issues. JBO sends out an A register request,
and JB 1 sends out S register requests.

• Common Memory A or S Writes: Sent to the CD options when a
memory write 11hixxpnm or 13hixxpnm issues. JBO sends out A)
register write requests, and JB 1 sends out S register write requests.~-~

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Instruction Issue

~ • CM Port B Enabled: Sent to the VB option through the JBO option
and to the BU option through the JBl options to select the vector
read ports.

• Vector Logical #2 Enabled: Sent to the VB options by JBO to select
vector logical functional units.

• Data Resume: Sent to the instruction stack (IC options) to indicate
that the JB option can accept another word.

• Go Exchange: Sent to the IC options to indicate that an exchange is
required. Another copy is sent to the HH option to clear the SIE bit
(taking 110 interrupt), and to the CC option to begin the swapping of
exchange packages in memory.

• Go Branch: Sent to the Ie optIons to mdlcate that a conditional
branch condition has been satisfied.

• Branch Fall Through: Sent to the IC options to indicate that a
conditional branch has failed the condition test.

• Branch Issued: Sent to the I C options to indicate that a branch has

:.-) issued.

• Enter Rank 1, Enter Rank 2, or Clear Rank 2: Sent to the IC options
to move parcel data into or out of the ranks into issue.

• The following signals are transmitted to the performance (HI)
monitor to indicate a hold issue condition:

• Holding Issue on A Registers

• Holding Issue on S Registers

• Holding Issue on BIT Registers

• Holding Issue on V Registers

• Holding Issue on Common Memory

• Holding Issue on Functional Unit

• Holding Issue on Shared Resources

• Advance P: Sent to the P register (BU options) to advance P by 1 as

J each parcel is issued.

HTM-300-0 Cray Research Proprietary 193

Instruction Issue CPU Module (CPE1)

Branch Instruction Control

The JB options decode and control the execution of branch instructions.
When a conditional branch passes or fails a test, it returns either the Go
Branch control signal or the Branch Fall Through control signal to the IC
options. Issue is halted until the Go Branch signal is received by the IC
options. Another signal, Branch Issued, is also sent to the ICs when a
branch is in progress.

Conditional Branch Instructions

Conditional branches use instructions 01 Oijk through 017 ijk. Once the
instruction issues, branch control logic examines either the AO or SO
register for the condition defmed by the operation code. If the condition is
met, the value of the P register is replaced with the nm field, and program
flow is passed to the instruction specified by P. If the condition is not met,
program flow drops through to the instruction that follows the branch.

Another type of conditional branch instruction for a CRA Y T90 series
computer system is called test and set branch (0064jkmn). If a specified
semaphore register equals 0, the bit is made a 1 and the next instruction
issues. If the semaphore is ai, the P register is replaced with the value in : ,')
the nm field. ' _

Unconditional Branch Instructions

194

Unconditional branches use instructions 0050jk through 007ijkmn, and
each code operates differently, except that none of them depends on
satisfying a condition before the branch takes place. In other words, they
always take the branch in the ijkm or nm fields.

The jump to Bjk instruction (0050jk) branches to the parcel address
specified by the contents of Bjk. The unconditional jump instruction
(006000mn) branches to the nm field. The unconditional jump instruction
(006100mn) branches to the address in nm field.

The return jump instruction (007000mn) jumps to the address in the
address field and places P + 3 (the address of the next instruction) into
BOO. The return jump allows a jump to a subroutine, the last instruction of
which must be a 005000 instruction, which is a jump to BOO.

The 0071 OOnm jump instruction is an indirect jump. This instruction
stores the address of the next sequential instruction in the BOO register;
then the instruction uses the nm field to specify a common memory,,---)

Cray Research Proprietary , HTM-300-0

CPU Module (CPE1)

Issue Control

:)

J

HTM-300-0

Instruction Issue

address. The lower 32 bits of the contents of that address are transferred
to the P register, causing program execution to continue at that point.
When this instruction executes, the instruction buffers are set invalid.

The first parcel of the instruction leaves NIP and moves into all the CIPs
on options HIOOO, HHOOO, and HHOO 1. The CIP located on the HI
options is responsible for the instructions that affect the exchange package
and performance monitor.

The HH option CIP is used for AlS path release and provides AlSi
designators and shared path release. The JB options determine whether
any register or functional unit reservation exists. If not, these options send
the Issue signal to the HH and HI optIons. The instruction issues,
reserving the appropriate registers and/or functional unit. If resource
conflicts do exist, the JB option does not send the Issue signal, and the
instruction remains in CIP until the conflict is resolved. This is called a
hold issue condition.

The JB options are responsible for providing issue control, and checking
and making functional unit and path reservations for the following items:

• Vector registers

• Vector functional units

• AlS shared resource control

• Memory ports

• CM path/cache

• AlS register entry codes

• BIT register

The functional units must send a release back to the JB options to indicate
that the units are available.

The JB options also send out the h, i, j, and k fields to the AlS registers for
further instruction decode.

Refer to Figure 92 through Figure 98 for related instruction issue block
diagrams.

Cray Research Proprietary 195

Instruction Issue CPU Module (CPE1)

OCA - IDA - OOA-
ICODO OCH Bits 0-7 10H J ICOOO IOOH

l IDA-I I

10H J IC001 I OEA- ICA- IDA-I BUOOO
OCI-

BUOOO OEH BitsO-7 ICH OCP Bits 0-7 10H IIC002
I

IGA-

I IDA_I
BitsO-7 IGH

10H IIC003
I

IGI-

I Bits 8-15 IGP

OCA- 101-
OEI- ICA- IC001 OCH Bits8-15 lOP IICOOO

IOOA-OEP Bits8-15 ICH I 101-
lOP IIC001 .OOH

OCI- 101-
I I

OCP Bits 8 -15 lOP .IIC002 J 1 101- 1
lOP IIC003

I -I

OCA - lEA -
IC002 OCH Bits 16 -23 IEH J ICOOO

I I lEA I
IEH IIC001

IOOA-OCI- lEA-I IGA- BU001

BU001
OEA- ICA- OCP Bits 16 -23 IEH .IIC002 IOOH Bits 16-23 IGH
OEH Bits 16 - 23 ICH

1 lEA -I I

IEH IIC003
I I

OCA- IEI- IGI-

IC003 OCH Bits 24 - 31 IEP J ICOOO
I

Bits 24-31 IGP
OEI- ICA-

I I
OEP Bits24-31 ICH IEI-

IEP J IC001
I

OCI- IEI-- I

:J

OCP Bits 24 - 31 IEP .IIC002

JOOA -f IEI- L
IEP J IC003 IOOH

I I

Figure 92. Bjk (Exchange P) Fan-out Bits

196 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Instruction Issue

JBOO1 IICOO1 JBOO1 IICOO3

OKE- IPA-
ICOOO OKM- IPA-

ICOO2

OKH a Field Bits 0 - 3 IPO OKP a Field Bits 0 - 3 IPO

OKB- IPE- OKJ- IPE-
OKO h Field Bits 0 - 2 IPG OKL h Field Bits 0 - 2 IPG

OKA iField Bit 2 IPJ OKI iField Bit 2 IPJ

JBOOO OKG- IPH-
OKH i Field Bits 0 - 1 IPI

JBOOO OKO- IPH-
OKP i Field Bits 0 - 1 IPI

UKIJ- IPK- OKL- IPK-
OKF j Field Bits 0 - 3 IPM OKN j Field Bits 0 - 3 IPM

OKA- IPN- OKI- IPN-
OKC k Field Bits 0 - 3 IPP OKK kField Bits 0 -3 IPP

- -

:-)
"----

Figure 93. JB-to-IC Parcel Data for Branches

,-)

HTM-300-0 Cray Research Proprietary 197

Instruction Issue CPU Module (CPE1)

OMA- IAA-

CHOOO OMO BitsO-3 lAD ICOOO I JB001
OME- IAI- JBOOO
OMH Bits 32 -35 IAL OAA- 10A-

OAH Bits 0-7 IPH

OMA- IAE-

CH002 OMO Bits4-7 IAH
OAI- IBA-

OME- lAM OAP Bits 32-39 IBH
OMH Bits 36-39 lAP

OMA- IAA-

CH004 OMO BitsS-11 lAD IC001 OAA- 101-
OME- IAI- OAH Bits S-15 lOP
OMH Bits40-43 IAL

OMA- IAE- OAI- IBI-
CH006 OMO Bits 12-15 IAH OAP Bits 40-47 IBP

OME- IAM-
OMH Bits 44-47 lAP

OMA- IAA-

CHOOS OMO Bits 16-19 lAD IC002 OAA- ICA-
OME- IAI- OAH Bits 16-23 ICH
OMH Bits4S-51 IAL

OMA- IAE- OAI- IAA-

CH010 OMO Bits 20-23 IAH OAP Bits 4S-55 IAH

OME- IAM-
OMH Bits 52-55 lAP

OMA- IAA-

CH012 OMO Bits24-27 lAD IC003
OME- IAI- OAA- ICI-

OMH Bits 56-59 IAL OAH Bits 24-31 ICP

OMA- IAE-

CH014 OMO Bits2S-31 IAH OAI- IAI-
OAP Bits 56-63 lAP

OME- IAM-
OMH Bits 60-63 lAP

~

Figure 94. Path 1 CH-to-IC-to-JB Option

198 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) Instruction Issue

OMA - IBA -
CH001 OMD Bits 0-3 IBD ICOOO I JB001

OME- IBI- JBOOO
OMH Bits 32-35 IBL OAA- IDA-

OAH Bits 0-7 IDH

OMA- IBE-
CH003 OMD Bits 4-7 IBH

OAI- IBA-
OME- IBM- OAP Bits 32 -39 IBH
OMH Bits 36-39 IBP

OMA- IBA-
CH005 OMD Bits 8-11 IBD IC001

OAA- IDI-
OME- IBI- OAH Bits 8-15 IDP
OMH Bits 40-43 IBL

OMA- IBE- OAI- IBI-
CH007 OMD Bits 12-15 IBH OAP Bits 40-47 IBP

OME- IBM-
OMH Bits 44-47 IBP

OMA- IBA-
CH009 OMD Bits 16-19 IBD IC002 ICA-OAA-

OME- IBI- OAH Bits 16-23 ICH
OMH Bits 48-51 IBL __

OMA- IBE- OAI- IBA-
CH011 OMD Bits 20-23 IBH OAP Bits 48-55 IBH

OME- IBM-
OMH Bits 52-55 IBP

OMA- IBA-
CH013 OMD Bits 24-27 IBD IC003

OME- IBI- OAA- ICI-

OMH Bits 56-59 IBL OAH Bits 24-31 ICP

OMA- IBE-
CH015 OMD Bits 28-31 IBH OAI- IBI-

OAP Bits 56-63 IBP
OME- IBM-
OMH Bits 60-63 IBP

I--

Figure 95. Path 2 CH-to-IC-to-JB Option

HTM-300-0 Cray Research Proprietary 199

Instruction Issue CPU Module (CPE1)

JBOOO AWOOO)
OAA-OAC kBits IPG-IPI AVOOO _/J

OAD-OAF jBits IPD-IPF

OAG-OAI iBits IPA-IPC

OAJ-OAL hBits IPJ-IPL

AWOO2
OBA-OBC kBits IPG-IPI AWOO1

OBD-OBF jBits IPD-IPF

OBG-OBI iBits IPA-IPC

OBJ-OBL hBits IPJ-IPL

VBOO1
OCA OCC kBits IPG-IPI VBOOO
OCD-OCF "Bits IPD-IPF

OCG-OCI iBits IPA-IPC

OCJ-OCL hBits IPJ-IPL

OCM-OCP Bits IPJ-IPL

JBOO1 I AXOO1
OAA-OAC kBits IPG-IPI AXOOO

OAD-OAF jBits IPD-IPF

OAG-OAI iBits IPA-IPC

OAJ-OAL hBits IPJ-IPL ~

I AYOO1
OBA-OBC kBits IPG-IPI AYOOO

OBD-OBF jBits IPD-IPF

OBG-OBI iBits IPA-IPC

OBJ -OBL hBits IPJ-IPL ~

OCA-OCC kBits IPG-IPI
I BUOO1

BUOOO
OCD-OCF jBits IPD-IPF

OCG-OCI i Bits IPA-IPC

OCJ-OCL hBits IPJ-IPL

OCM-OCP gBits IPJ -IPL -

" Figure 96. Instruction Data Distribution AlSIB/T/V Registers .)
'------

200 Cray Research Proprietary HTM-300-0

CPU Module with IEEE Instruction Issue

I HHOO1
JBOO1 HHOOO

AYOOO
OBA-OBC IPG-IPI

OWJ-OWL kBits IEA-IEC

ICOO1

OKD-OKF IPK-IPM OWo-ows jBits IED-IEF

ICOOO

IPH-IPJ OWo-ows iBits lEG-lEI

AYOOO

:)
OBJ-OBL IPJ -IPL

OWA-OWC hBits IEJ-IEL

OMA-OMB

JBOOO IGH-IGI ANOOO

OGI-OGL gBits IEM-IEP

OMA-OMB IGF-IGG

OLG Issue lEO -

Figure 97. eIP Distribution to HH Options

HTM-300-0 Cray Research Proprietary 201

Instruction Issue CPU Module (CPE1)

JBOOO
JBOO1 AYOO1 HHOOO

JBOO1 OBA-OBC IPG-IPI
OWJ-OWL kBits IDA-IDC

/j

ICOO3

JBOOO
OKL-OKN IPK-IPM

OWQ-OWS iBits IDD-IDF

ICOO2

JBOOO OKO-OKP IPH-IPI
OWQ-OWS iBits IDG-IDI

JBOOI OKI IPJ

AYOO1

JBOO1
OBJ-OBL IPJ-IPL

OWA-OWC h Bits IDJ-IDL

OMA-OMB IGH-IGI ANOO1
JBOO1

OGE-OGH oBits IDM-IDP

JBOOO
OMA-OMB IGF-IGG

JBOOO ODD Issue via ANOOO IDO

Figure 98. CIP Distribution to HH Option

202 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

IGA Vector Logical 1 VBO
1GB Vector Logical 2 VB1

V Reg Read Release VB1 (8) IEA-IEH

V Reg Write Release VBO (8) IFA-IFH
IGC Vector Shift VBO
IGD Vector Add VB1

V FU Release VBONB1 (11) IGA-IGK

IGE Vector FP Mult VBO
IGF Vector FP Add VB1

NS Register (Shared Resource) IIA-IIE

IGG Vector Recip VBO NS Path (Shared Resource) IIF
IGH BMM VB1
IGI Vector Mask VBO Release Mem Port A, B, C ILA-ILC

IGJ B Reg Release BUO
IGK T Reg Release BU1

CM Path/Cache Release (Even) IJA-IJE
(Odd) IJI-IJM

Instruction Data from ICs (64) IAA -IDP

Instruction Data Ready IKA IKA
Parcel Pointers Bit a and Bit 1 IKB,IKC

Interrupt from HH IKF

Exchange Active from CC IPB

FA (SO) Test Valid IKG

FA (SO) Sign State IKH

FM (SO) Sign State IKJ

AO=O INA-INH

AO Negative INA-INJ

SO= a 10A-IOH

SO Negative 101

HTM-300-0

JBOOO / JB001

I--
V Reg Reservation

~

V FU Reservation I-- Conflict
t- Issue Check

Shared Reservation I--

Memory Port Reservation I--

CM Path/Cache Reservation

Reg Translation

I Decode
Inst Translation (NIP)

1
-I

P
a .-- 0 0 r
c

~ 1 1
e
I

~ 2 2 D
a

~ 3 3
t
a

""" g, h, i,j, kto CIP

~

Go Exchange

Sign Bit Test

Figure 99. JB Option Block Diagram

Cray Research Proprietary

OOA - OOD Hold Issues to Performance Monitor

ODE JBOOO Advance P BUO, BU1

ODE JB001 Go FP Multiply NF

ODA Issue Group 0 Valid VBO and VB1 (JBO)
ODA Issue Group 0 Valid BUO and BU1 (JB1)

ODB Issue Group 1 Valid VBO and VB (JBO)
ODB Issue Group 1 Valid BUO and BU1 (JB{)

ODC Issue Group 2 Valid VBO and VB1 (JBO)
ODC Issue Group 2 Valid BUO and BU1 (JB1)

OLG JBOOO Issue CIP HHO, HH1

ODD JAOOO Issue CIP HIO via AND

h, i, j, k Field to NS
OM-OAL ReQisters AV, AW, AX, AY

h, i, j, k Field to NS
OBA-OBL ReQisters AV, AW, AX, AY

OCA - OCP g, h, i, i, k Field to VB/BU Reqisters

NS Read-out Code Bit 0
OPA,OPC to AV, AW, AX, AY

NS Read-out Code Bit 1
OPB,OPD to AV, AW, AX, AY

NS Entry Code Bit 0, 1, 2
OFA-OFF to AV, AW, AX, AY

OGA - OGH NS Constant Bits to AVO or AXO

OHA-OHH NS Constant Bits to AWO or AX1

OIA-OIH NS Constant Bits to AW1 or AYO

OJA-OJH NS Constant Bits to AW2 or AY1

OKA-OKH Parcel Data to Stack

OKI-OKP Parcel Data to Stack

To HDs via Fanout NS Path Release

To HF via Fanout Shared Path Release/Exchanqe Data

ODF Go Exchange to ICs

OOAto ICs Branch Issued

OOBto ICs Branch Fall Through

OOCto ICs Go Branch

Instruction Issue

KEY

Group 0: V Registers, A Registers
Group 1: S Registers, BIT Registers,
Vector Logical, Vector Shift, Reciprocal,
Vector Read Port NPort B
Group 2: Shared Resource, Memory ~uiet,
AO/SO Sign Test, Others (hold issue,
exchange, etc.)

203

~) EXCHANGE

The exchange mechanism in a CRA Y T90 series computer system has the
following features:

• Means of switching execution from program to program

• Exchange package - Block (408 words) of program parameters that:

• Must be present in order for any program to execute; defmes
where and how the program runs

• Must be 408 words long

• Must reside in lower 2 MW of memory

• Must start on a 408 word boundary

...) Exchange Process

J

HTM-300-0

The exchange sequence is the process that deactivates the current
exchange package and puts it into memory, then loads a new exchange
package from memory and activates it.

In CRA Y T90 series systems, a feature in the exchange package allows a
process to exchange to either the address specified by the exchange
address ·(XA) register or to one of five different addresses specified by one.
of the five exit address (EA) registers. With this capability, a user job can
exchange to another user job, or it can exchange to specific areas in the
kernel, without first exchanging to the monitor.

The CRA Y T90 series system also incorporates another special feature.
When an exchange occurs, the CPU that exchanges out retains the cluster
number that was initially assigned to it unless the system is operating in
C90 mode or unless AutoBCD (automatic broadcast cluster detach) is
active. Also, when a CPU is master cleared and then exchanged out, the
pending interrupt bits are retained so that the maximum amount of
information about the process is available. A second exchange sequence
can retrieve this information.

Cray Research Proprietary 205

Exchange

SIPI

206

CPU Module (CPE1)

If an exchange occurs and the program is in monitor mode, the monitor /.\ ...
needs to save the B registers, T registers, shared registers, scalar (S))
registers, and vector (V) registers. If the vector not used (VNU) bit is a 1.
the V registers do not need to be saved. If the exchange is to another user
job, the user is responsible for saving the register values.

Four conditions cause an exchange sequence:

• Deadstart sequence (SIPI)
• Interrupt flag set (F register)
• Program exit (004000,000000 instruction)
• Hardware error that causes a flag to set, which causes an exchange

A CRA Y T90 series system does not use a deadstart signal or command.
Instead, the system uses Set Interprocessor Interrupt (SIPI) signals from
either a 0014j1 instruction [send inter-CPU interrupt to CPU (A})], or
during an initial deadstart, when a CPU loop controller function of 768,
issued by the maintenance channel, starts an exchange.

The following sequence lists the events that invoke the Mainframe
Maintenance Environment (MME):

1. Set CPU Master Clear.

2. Load data to memory address 0 via the maintenance channel.

3. Issue a loop controller function of 1768 via the maintenance channel
to allow CPU maintenance instructions.

4. Issue a loop controller function of 1418 via the maintenance channel
to allow CPU instruction exchange and halt.

The exchange package at memory location 0 loads into the CPU
registers, and what was in the CPU registers loads to memory
starting at location O. There is no fetch after this exchange.

5. Drop CPU Master Clear via the maintenance channel.

6. Issue the loop controller function of 768 via the maintenance
channel.

The dropping of CPU Master Clear works as an enable; the function
768 must be present along with the Master Clear signal before the
exchange can occur.

Cray Research Proprietary HTM-300-0

:)

)

CPU Module (CPE1)

Interrupt Flag Set

Program Exit

Exchange

7. Interrupted CPU exchanges to address 0, a fetch is done and issue
starts.

In this case, because I/O is handled by the maintenance channel, the return
path for output depends on how the sanity tree has been configured. From
this point, the initially started CPU can issue SIPI commands to the other
CPUs.

In the CRA Y T90 series system, each interrupt flag has an enable interrupt
mode bit. The interrupt modes are enabled by the enabled interrupt mode
(ElM) flag. An exchange to nonmonitor mode sets the ElM flag.

An exchange to monitor mode clears the ElM flag. While the program is
in monitor mode, a 001302 instruction sets the ElM flag, and an 001303
instruction clears the ElM flag.

Each CPU has an ElM flag. In monitor mode, the ElM flag is cleared and
all interrupt modes are disabled except enable flag on normal exit (FNX),
enable flag on error exit (FEX), and enable interrupt on program range
error (IPR). This scheme provides a stable environment within monitor
mode immediately following an exchange.

Program exit follows the decode of instructions 000000 and 004000.
Instruction 000000 is an error exit instruction; instruction 004000 is a
normal exit.

Exchange Sequence

HTM-300-0

Before a CPU can perform an exchange, the CPU must first fmish all
active instructions. If a test and set instruction (0034jk) is in the next
instruction parcel (NIP) or entering the current instruction parcel (CIP),
the program (P) register will hold the current value until the test and set
condition is true. The JB option then waits until the condition is resolved
before it advances P. Memory must also be quiet, and all memory writes
must be complete.

The processor that is performing the exchange clears the buffer valid bits
and buffer counter. Clearing the buffer valid bits causes a fetch to occur
after the exchange has completed. Clearing the instruction buffer address
register (mAR) counter causes the data that was fetched from memory to

Cray Research Proprietary 207

Exchange CPU Module (CPE1)

load into instruction buffer 0 first. Also, issuing a 0051 jk instruction
clears the buffer valid bits. The 0051jk is a maintenance instruction that
loads the P register from Bjk and invalidates the instruction buffers if the
CPU is in maintenance mode (MM).

Exchange Package Descriptions

P Register

Modes

208

Figure 100 illustrates the exchange package. The exchange parameters
are located on two options: HHOOO and HHOOL HHOOO handles bits 0
through 31 for words 0 through 17, and HH001 handles bits 32 through 63
for words 0 through 17.

P register - Program register, word 10 bits 0 through 31. The P register
contains 32 bits, the lower 2 bits of which are used for parcel selects. P
register bits -2 through 29 enable the addressing of 1 gigaword of
memory.

Modes - MM, BDM, ESL, SCE, RMO, RM1, BDD word 11, bits 0
through 7. Selectable interrupt modes enable the programmer to choose
the conditions under which the active program can be interrupted.

• MM - Monitor mode, word 11, bit 0

Certain operations are privileged to monitor mode: controlling the
channel, setting the real-time clock, setting the programmable clock,
and so on. Monitor mode instructions perform specialized functions
that are useful to the operating system. A monitor mode instruction
that issues while the CPU is not in monitor mode is treated as a
no-operation instruction. If a monitor mode instruction issues while
the IMI flag is set, the MIl flag sets, and an exchange occurs.

• BDM - Bidirectional memory, word 11, bit 1

When BDM is set, block reads and writes may occur concurrently.

Gray Research Proprietary HTM-300-0

CPU Module (CPE1)

... -)

Status

HTM-300-0

Exchange

• ESL - Enable second vector logical, word 11, bit 2

IfESL is set and any 140ijk through 145ijk instructions issue, the
instruction is routed to the second vector logical unit. IfESL = 0,
the second vector logical unit is not used. The second vector logical
unit is used before the full vector logical unit if a choice exists.

• SCE - Scalar cache enabled, word 11, bit 4

If SCE is set to aI, onboard scalar cache is enabled.

• RMO - Rounding Mode Bit 0, word 11, bit 5

This is used to determine the rounding mode to be used for
floating-point operations.

• RMl- Rounding Mode Bit 1, word 11, bit 6

•

This is used to determine the rounding mode to be used for
floating-point operations.

BDD - Bidirectional memory disable, word 11, bit 7

When BDD is set to aI, bidirectional block reads and writes are
disabled.

Status (BML, WS, VNU, SBU, SBM) word 12, bit 0 through 7.
Status (NVS, DVS, OVS, UNS, NXS, XIS) word 13, bits 9 through 14.
The status register reflects the condition of the CPU at the time of an
exchange. The bits in the status field are set during program execution
and are not user selectable.

• BML - Bit matrix loaded, word 12, bit 0

The BML bit indicates the Bt (B transposed) registers have been
successfully loaded by a 1740j4 instruction.

• WS - Waiting on semaphore, word 12, bit 1

The WS bit sets when a 0034jk instruction is in CIP and holding
issue.

Cray Research Proprietary 209

Exchange CPU Module (CPE1)

210

• VNU - Vectors not used, word 12, bit 3

After a program has been exchanged into memory, the B and T
registers must be saved as well as the SB, ST, and SM registers of
the cluster that the program is using. If the VNU bit is equal to 1,
then this indicates that the vector registers were not used so the
vector registers do not need to be saved. However, if the VNU bit is

··0, then the vector registers must be saved as well. The VNU bit is
set when a 077xxx or a 140 through 177xxx instruction issues.

• SBU - Status Bit-user mode, word 12, bit 6

Indicates that the CPU is in user mode.

• SBM - Status Bit-monitor mode, word 12, bit 7

Indicates that the CPU is in monitor mode.

• NVS - Floating point invalid, word 13, bit 9

An attempt was made to generate a result that is not a real number.
Invalid is signaled in any of the following cases:

• An input operand is an sNAN

• Addition or subtraction of infinites

• Multiplication of 0 by infinity

• Division of 0 by 0 or infinity by infinity

• Division of a finite normal numerator by 0

• Square root of a negative number

• Signed compare where one or both inputs are NaNs

• DVS-Floating point divide by zero, word 13, bit 10

• OVS-Floating point overflow, word 13, bit 11

A result larger than the greatest representable number was generated.
Infinity (03777 000000000000000000) is returned.

• UNS-Floating point underflow, word 13, bit 12

A result smaller than the least representable number was generated.
Zero (00000 000000000000000000) with the sign bit is returned.

Cray Research Proprietary HTM-300-0

/~)

, , --

//)
J

/

)

CPU Module (CPE1)

HTM-300-0

Exchange

• NXS-Floating point not exact, word 13, bit 13

A result was generated that would be different if all possible
significant bits were returned. Inexact is also signaled on both
overflow and underflow, but not if the returned result is exactly O.

• 1 / 3 returns 0.333333 and signals Inexact

• 0.5 / 2 returns .25 all bits returned.

• A floating-point unit received an operand of infinity or NaN.
This is a Cray Research feature not an IEEE standard.

Cray Research Proprietary 211

Exchange

11

13

14

15

16

17

212

63 48 47 3231

LAT7 Physical Bias

Words 20 - 27: A Registers 0 - 7
Words 30 - 37: S Registers 0 - 7

Figure 100. Exchange Package

Cray Research Proprietary

CPU Module (CPE1)

1615

Exit Address 0

~)

HTM-300-0

CPU Module (CPE1)

Interrupt Flags

J

HTM-300-0

Exchange

Interrupt modes, word 11, bits 9 through 31. Refer to Table 48 for a list of
the bit assignments for the modes field in the exchange package. All
modes except IPR, FEX, and FNX must be enabled by the ElM flag to be
effective. The ElM flag sets on an exchange to nonmonitor mode and
clears on an exchange to monitor mode. The ElM flag enables interrupt
modes if set. The ElM bit can be set or cleared by a 001302 or a 001303
instruction, respectively.

Cray Research Proprietary 213

Exchange CPU Module (CPE1)

Table 48. Interrupt Modes Register Bit Assignments

Binary
Word Exponent Acronym Name

11 31 IRP Interrupt on Register Parity Error

11 30 IUM Interrupt on Uncorrectable Memory Error

11 29 - - Not Used

11 28 lOR Interrupt on Operand Range Error

11 27 IPR Interrupt on Program Range Error

11 26 FEX Enable Flag on Error Exit (does not disable
exchange)

11 25 IBP Interrupt on Breakpoint

11 24 ICM Interrupt on Correctable Memory Error

11 23 IMC Interrupt on MCU Interrupt

11 22 IRT Interrupt on Real-time Interrupt

11 21 liP Interrupt on Interprocessor Interrupt

11 20 110 Interrupt on 1/0

11 19 IPC Interrupt on Programmable Clock

11 18 IDL Interrupt on Deadlock

11 17 IMI Interrupt on 001jk~0 or 033 instruction -)
11 16 FNX Enable Flag on Normal Exit (does not disable

exchange)

11 15 lAM Interrupt on Address Multiply Range Error

11 14 IXI Interrupt on floating-point exceptional input

11 13 INX Interrupt on floating-point not exact

11 12 IUN Interrupt on floating-paint underflow

11 11 10V Interrupt on floating-point overflow

11 10 IDV Interrupt on floating-paint divide by zero

11 9 INV Interrupt on floating-point invalid

214 Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

HTM-300-0

Word

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

Exchange

Refer to Table 49 for a list of the bit assignments for the
interrupt flags field in the exchange package.

Table 49. Flag Register Bit Assignments

Binary
Exponent Acronym Name

31 RPE Register Parity Error

30 MEU Uncorrectable Memory Error

29 - Not Used

28 ORE Operand Range Error

27 PRE Program Range Error

?fl FFX Frror Fxit (000 issllerl)

25 BPI Breakpoint Interrupt

24 MEC Correctable Memory Error

23 MCU MCU Interrupt

22 RTI Real-time Interrupt

21 ICP Interrupt from Internal CPU

20 101 1/0 Interrupt (if 110 and SIE)t

19 PCI Programmable Clock Interrupt

18 DL Deadlock Interrupt

17 Mil 001jk~O or 033 Instruction Interrupt (if IMI
and not MM)

16 NEX Normal Exit (004 issued)

15 AMI Address Multiply Interrupt

14 XI Floating-point exceptional input interrupt

13 NX Floating-point not exact interrupt

12 UNF Floating-point underflow interrupt

11 OVF Floating-point overflow interrupt

10 DVI Floating-point divide by zero interrupt

9 NVI Floating-point invalid interrupt

t SIE = System I/O interrupt enabled.

Cray Research Proprietary 215

Exchange

Vector Length

CPU Module (CPE1)

VL - vector length, word 13, bits 0 through 7. The VL register holds the
content of the VL register. The 8-bit field contains the number of
elements to be operated on in the vector register. In a CRAY 1'90 series
system, if VL = 000 or VL = 200, all 2008 vector elements are used within
the vector register.

Exchange Address

Exit Address

Cluster Number

216

XA - exchange address, word 17, bits 16 through 31. The 16-bit field
specifies the address of the first word of the next exchange package. This
exchange package is loaded when anyone of the following conditions
occurs:

• An interrupt occurs that sets any of the following flags: RPE, MEV,
FPE, OPR, BPI, MEC, MCV, RTI, ICP, 101, PCI, DL, MIl, NEX, or
AMI

• A 000 is issued

• A 0040jk is issued with k being an illegal value (5, 6, or 7)

The XA field contains only bits 5 through 20. The lower bits are assumed
to be O's.

EXIT Address 0 through 4, words 15, 16, 17 bits 0 through 31. Each of
the five 16-bit fields specifies the starting address of a 32-word exchange
package. The k field of the 0040jk instruction specifies the exchange
package to use. Only k fields equal to 0 through 4 are valid; if an invalid
value is used, the exchange is to the XA address. Exit Address (EA) 0 is
expected to be used for normal exits to maintain compatibility with
existing systems.

Each EA field contains only bits 5 through 20. The lower bits are
assumed to be O's.

:)

CLN - cluster number, word 13, bits 24 through 31. The CLN contains an
8-bit field. There may be up to 368 clusters in the system, depending on
the system configuration. ~

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

Processor Number

Exchange

PPN - Processor number, word 13, bits 16 through 22. The contents of
the 7 -bit field in the exchange packages show the logical number of the
CPU in which the exchange was executed. The maximum number is 127.

Logical Address Translation

HTM-300-0

LAT - Logical address translation, words 0 through 17. Refer to the
exchange package diagram for bit layouts. Each LAT has four associated
fields; Table 50 identifies those fields.

Table 50. LAT Fields

Field Name Description

Logical Base First logical address of this LAT

Logical Limit Last address + 1 of this LAT

Physical Bias Physical bias = Physical base address - Logical base address

Modes The controlling bits for each LAT
R(ead), W(rite), X(ecute), C(achable), D(irty)

The use of LATs allows programs to share memory space. For example,
two user jobs can reference the same library routine in memory while
keeping their local code private.

Cray Research Proprietary 217

._)

SCALAR CACHE

Cache Hit

HTM-300-0

Each CPU has a scalar data cache. The data cache accelerates common
memory data access for address register and scalar register read requests.
Only address and scalar registers can access the data cache.

The data cache has the following features:

• The cache is organized into 8 pages of data. Each page contains 8
lines of 16 words, which provides 1,024 words of data in the cache.
Figure 104 illustrates the logical layout of the cache.

• Cache is parity protected; each 8-bit byte has an associated parity bit.
If enabled, a parity error on a cache read will cause an interrupt.

• When an A or S register memory reference is made, one of two
things may occur: a cache hit or a cache miss.

• A and S register store requests are write-through. The cache word
will be updated if there is a hit; if a miss occurs, no cache lines are
requested.

• B, T, and V register store requests cause corresponding cache lines to
be set invalid on a cache hit. Store requests on a cache miss have no
effect on the cache. B, T, and V register load requests also have no
effect on the cache.

A cache hit is determined using logical addresses, not physical addresses.
A cache hit occurs when the following conditions are met:

• A valid page address consisting of address bits 7 through 39, held
within the cache, matches the corresponding address bits of a
memory request.

• The cache line indicated by bits 4 through 6 of the requesting address
is valid within the cache.

Cray Research Proprietary 233

Scalar Cache

I Page 7

I Page 6

I Page 5

1 Page 4

I Page 3

I Page 2

I Page 1

Page 0

Line 0

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Cache Miss

234

CPU Module (CPE1)

I-

-
-

I-

:-
Words 0-15

Figure 104. Cache Layout

A cache miss occurs when a request from an A or S register load request
does not match a page address. When this occurs, the corresponding line
is requested from memory and the previously valid page address is set to
the new page address. All lines in the new page are set invalid. As the
new requested line returns from memory, the new page address is set valid
as is the cache line that was requested.

Another type of miss occurs when a memory reference matches the page
but not any line in the page, or if the page is not valid. When this occurs,
16 sequential words are requested from memory, and the line is set valid .

Cray Research Proprietary HTM-300-0

)

.. ~

REAL-TIME CLOCK,
PROGRAMMABLE CLOCK INTERRUPT,
STATUS REGISTER,
PERFORMANCE MONITOR

Real-time Clock

HTM-300-0

Refer to the following subsections for information about the real-time
clock, programmable clock interrupt, status register, and the performance
monitor.

A CRA Y T90 series computer system contains one 64-bit real-time clock
(RTC) in each central processing unit (CPU). The RTC is synchronized
when a CPU issues a 0014jO instruction. The 00 14jO instruction causes all
CPUs in the same cluster to be loaded with the contents of Sj.

The RTC is located on two HH options, each of which handles 32 bits. .
The HHOOO option handles bits 0 through 31; the HHOO 1 option handles
bits 32 through 63.

HHOOOl detects a carry from the RTC, at a count of 37777777776 during
normal operation and increments the upper bits during the next clock
period. HHOOO suppresses any toggles.

The RTC is incremented each clock period. The RTC enables
clock-period timing of program execution. When the machine is
deadstarted, all RTCs must be loaded in order to synchronize all the CPU s.
Otherwise, each CPU will have a different RTC value.

The 00 14jO instruction writes to the RTC by sending a copy of the Sj
register from the CPU issuing the instruction to all RTC registers through
the issue paths of the shared registers. The072iOO instruction reads the
RTC register of the CPU that issued the 072iOO instruction and copies the
content into the scalar registers.

Refer to Figure 101 for an RTC and programmable clock interrupt (PCI)
block diagram.

Gray Research Proprietary 219

RTC, PCI, Status Register, Performance Monitor CPU Module (CPE1)

SjData from HIOOO

Shared Module OM-OCl

Shared Data Path
(RTC Data or PCI)

ICA-IDF
HHOOO

RTCto Si
OAA-OBF Bits 0 -31

PCI logic Used on

CIP from Issue IEA-IEP
This Option Only

ONA

Carry to RTC

IKB HHOO1

RTCto Si
OAA-OBF Bits 32-63

ICA-IDF

IEA-IEP

Figure 101. RTC and PCI Block Diagram

Programmable Clock

220

Each CPU has one programmable clock (PC), which is a 32-bit counter.
The programmable clock decrements every clock period; the clock is
located on the HDOOO option.

The programmable clock is loaded by the 00 14j4 instruction when the
program is in monitor mode. When the programmable clock equals zero,
an interrupt request (PCI) is generated. To generate a PCI, the IPC mode
bit must be set. In user mode, IPC must have been set in the user's
exchange package. If the CPU is in monitor mode, either IPC was set in

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) RTC, PCI, Status Register, Performance Monitor

the monitor's exchange package, or a 001406 instruction was issued. The
interrupt request remains set until a 001405 instruction clears it. If the
CPU is in monitor mode and if the interrupt request is not desired, use a
001407 instruction to disable the IPC mode bit.

The PCI request is enabled and disabled on the HI option, which contains
the exchange parameters.

RTC and PC Instructions

Refer to Table 51 for a list of the RTC and PC instructions.

Table 51. RTC and PC Instructions

Instruction CAL Description

0014jJ t RTSj Enter RTC register with Sj

072.00 SiRT Transmit RTC to Si

0014j4 t PCISj Transmit Sjto programmable clock

001405 t CCI Clear PCI request

001406 t ECI Enable PCI request

001407 t DCI Disable PCI request

t Monitor mode instruction.

Performance Monitor

HTM-300-0

The performance monitor (PM) is normally used to monitor software
performance. With the results of the performance monitor, a programmer
can determine how efficiently a program is running in the system. If, for
example, the program is performing too many instruction fetches or too
many hold issue conditions are occurring, the programmer can review the
program structure and modify it to minimize these occurrences.

Each CPU contains a performance monitor. (Because each CPU is
identical, all references in this section pertain to a single CPU.) Each
CPU contains 32 performance counters; each counter is 48 bits wide.
Table 52 shows which event each counter monitors .. Each counter
increments each time a particular event occurs in the CPU while the CPU
is not in monitor mode (IMI bit is not set). The counters related to
memory references may increment as many as eight times per clock
period (CP). Counters related to vector operations increment by the value
in the vector length register at the time the instruction issues.

Cray Research Proprietary 221

RTC, PCI, Status Register, Performance Monitor CPU Module (CPE1)

Table 52. Performance Monitor

Counter Event Monitored Instructions Increments

Number of:

0 Clock periods monitored +1

1 Instructions issued +1
2 Clock periods holding issue +1
3 Instruction fetches +1
4 CPU memory references (ports A, B, C) +8
5 Clock periods for references (ports A, B, C) +2047
6 I/O memory references (port D, I/O only) +2
7 Cache misses +1

Holding issue on:

10 A registers and access conflicts +1
11 S registers and access conflicts +1
12 V registers +1
13 Bff registers +1
14 Functional units +1
15 Shared registers +1
16 Memory ports +1
17 Number of cache hits +1

Number of instructions:

20 Instructions 000000 through 004000 000-004 +1
21 Branches 005-017 +1
22 Address instructions 02x, 030 - 033, EIS 042 - 057, +1

073120, 073130
23 Bff memory instructions 034-037 +1
24 Scalar instructions 040 - 043, 071 - 077 except +1

073120, 073130
25 Scalar integer instructions 044 - 061, 070iftj +1
26 Scalar floating-point instructions 062-070 +1
27 S/A memory instructions 10x-13x +1

Number of operations:

30 Vector logical 070ij1,140-147, +VL
1740j4 - 17 40j6, 175

31 Vector shifts, pop., leading zero 150-153, 174xx (1-3) +VL
32 Vector integer adds 154-157 +VL
33 Vector floating-point multiplies 160,161,165,166 +VL
34 Vector floating-point add/compare/converts 167 -173 +VL
35 Vector floating-point divide/square root 162,163,174xjl) +VL
36 Vector memory reads 176 +VL
37 Vector memory writes 177 +VL

222 Cray Research Proprietary HTM-300-0

CPU Module (CPE1) RTC, PCI, Status Register, Performance Monitor

Performance Monitor Instructions

Table 53 lists all the instructions associated with the performance monitor.

Table 53. Performance Monitor Instructions

Instruction CAL Description

001500 Clear all performance counters

073ij1 SiSRj Transmit (SR}) to Si (monitor mode only for
j=2-7)

073.05 SROSi Transmit (S/) bits 48 - 52 to SRO

073125 SR2Si Advance performance monitor pointer

073/75 SR7Si Transmit (S/) to maintenance channel
,----

"0' _~_. _, _______ ., __ ,,,._~_

Clearing the Performance Counters

Instruction 001500 clears all performance counters. This instruction must
be issued while the CPU is in monitor mode in order for the instruction to
operate correctly.

Reading the Performance Monitor

HTM-300-0

The 073i21 and 073i31 instructions read the performance monitor. Each
instruction reads half of the counters at a time, which requires that two
instructions be issued to read all the counters. The 48 bits of the counter
read are stored in the Si register. When the 073i21 instruction is issued,
counters 0 through 17 are sent to Si. The 073i31 instruction, when issued,
reads counters 20 through 37 and sends the bits to Si.

The system hardware requires an interval of at least 3 clock periods
between 073ix1 instructions, and the PM Busy Status (PMBY) bit (bit 47
of SRO) must be cleared before reading the counters. If the 3-CP wait is
not written into the program, an indeterminable corruption of performance
monitor data occurs.

Cray Research Proprietary 223

RTC, PCI, Status Register, Performance Monitor CPU Module (CPE1)

Performance Monitor Block Diagram

Refer to Figure 102 for the performance monitor block diagram. The
performance monitor is composed of the mooo, HHOOO, and HHOO 1
options. The mooo option contains the lower bits (0 through 31) and the
HHOOO and HH001 options contain the upper bits (32 through 47) for all
32 counters. There is one counter for each event tracked by the

--performance monitor. These 48-bit counters increment as each event
occurs, as long as the CPU is not in monitor mode.

Status Register

224

A eRA Y T90 series computer system has eight status registers, which are
located on the HH and HI options. The status register is not part of the
exchange package in CRAY 1'90 series systems. Figure 103 shows the
status register format and bit assignments of each register. The status
registers are read by the 073ij1 instruction.

Cray Research Proprietary HTM-300-0

J

CPU Module (CPE1)

HTM-300-0

Shared Data

Performance Monitor
Increment Terms
(ReQisters 10 - 16)

IKI

ILA-
IlH

IAA-
ICl

IKA
IKG

Cache Miss (ReQister 17) IKH

Cache Hit (ReQister 7) IKK

I/O Reference Requests IKl-
(ReQister 6) IKM

HIOOO

Performance
Counter

Registers 0 - 37
Bits 0-31

Vector length

Go Increment

Vector lenQth
IAA
IBF

ICA-

HHOOO

Performance
Counter

Registers 0 - 37
Bits 32-47

OMQ

OMA
OMH

OAA
OBF

Shared Data Path IDF IMI Allow Read

OAA-
OBF

OFI

OFO

OFK

OFA
OFE

OBG
OCl

Carry

IKO

IKP

IKM

IKH
IKl

ONB of HPM IJQ

OFA Carry Out

Busy

Hold

Select Pointers

Shared Data Path

IKM

IKP

IKO

IKH
IKl

ICA
IDF

Figure 102. Performance Monitor Block Diagram

Cray Research Proprietary

RTC, PCI, Status Register, Performance Monitor

S Register

Performance Monitor to Si Bits 0 - 31

HH001

Performance
Counter

Registers 0 - 37
Bits 32-47

OAA
OBF

Performance Monitor
to Si Bits 32 - 47

225

(
\....../ IV

:r:
-l
s::
I

U)
a a
I Bits 63 57 52 48 47 4039 32 31 a

SRO
C B I F I I B P Processor Cluster t
L M B P F 00 M Number Number
N L P S P RM B

017 ¢O Y 6 0

SR1

SR2 Performance Monitors 0 - 17

()
47 32 31

~ SR3
:JJ Performance Monitors 20 - 37
CD en 47 32 31
CD s:u
0 SR4 ~ U C

Error Type
Destination Code

'"0 M M
a E E 13 0
"0
~

~ SR5
Error Syndrome

-< 11 0

Error Address
SR6

12 0

LAT Faults S RPE Chip SRREChip

Multiple Hit Miss R R Number Number

o C' C B' B A' A I 0 c' C B' B A' A
P R
E E 11 o 7 0

SR7

Bits 63 62 61 55 54 484746 43 32 31 24

t SRO bit 20 = monitor mode· maintenance mode· not (SR? busy)

Figure 103. Status Registers

~

I
'---.../

16 15 0
M
M
I

M
M

16 15 0

16 15 0

16 15 o

~
~ g.
(j)

o
~ -

:0

~
~ .:-
0)
&;
2'
(I)

:0
~ Cij.

Cii
~
~
5-
~
III
::J

~

~
::J a:

RTC, PCI, Status Register, Performance Monitor CPU Module (CPE1)

228

The eight status registers are further defmed in Table 54 through Table 57.

Status register 0 (SRO) shows the status of several bits in the active
exchange package.

Table 54. Status Register (SRO)

Bits Name Description

63 CLN~O Cluster number not equal to zero

57 BML Bit matrix loaded

47 PMBY Performance monitor busy

40 through 46 PN Processor number

32 through 39 CLN Cluster number

31 5MBt Interrupt on floating-point error

30 SMUt Interrupt on operand range error

20 IBpt Interrupt on breakpoint

19 IORt Interrupt on operand range error mode

18 BDMt Bidirectional memory mode

17 SCEt Scalar cache enabled

16 XISt Floating-point exceptional input

15 NXSt Floating-point not exact

14 UNSt Floating-point underflow

13 ovst Floating-point overflow

12 DVSt Floating-point divide by zero

11 NVSt Floating-point invalid

9 IXI t Interrupt on floating-point exceptional
input

8 INXt Interrupt on floating-point not exact

7 IUNt Interrupt on floating-point underflow

6 IOVt Interrupt on floating-point overflow

5 IDVt Interrupt on floating-point divide by
zero

4 INVt Interrupt on floating-point invalid

2 RM1 t Floating-point round mode bit 1

1 RMOt Floating-point round mode bit 0

t Designates that this was written by a 073'{)5 instruction. All other bits of SRO
are read-only.

Status register 1 (SRI) is not defined.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1)

)

HTM-300-0

RTC, PCI, Status Register, Performance Monitor

Status register 2 (SR2) bits 0 through 47 are bits of the performance
monitor counters 0 through 17.

Status register 3 (SR3) bits 0 through 47 are bits of the performance
monitor counters 20 through 37.

Status register 4 (SR4) bits are shown in Table 55. SR4 contains the
correctable and uncorrectable memory error flags, port bits, and read
mode bits. The error information stored in SR4 is latched into the register
and held until the register is read. Once SR4 is read, the register is
cleared, and new error data can be stored in the register. If multiple errors
occur, only the first error is held in SR4. Bits 32 through 45 defme the
destination code associated with the error. Table 56 is a decode of these
destination bits.

Table 55. Status Register 4 (SR4)

Bits Name Description

47 UME Uncorrectable memory error

46 CME Correctable memory error

32 through 45 CODE Destination code (refer to Table 56)

Cray Research Proprietary 229

RTC, PCI, Status Register, Performance Monitor CPU Module (CPE1)

230

Table 56. Destination Codes

Bit

Destination 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cache read 1 1 1 - Word

V register read 1 1 0 Register - Element

S register read 1 0 1 Register 0 -

A register read 1 0 1 Register 1 -
T register read 1 0 0 - 0 - Register

B register read 1 0 0 - 1 - Register

Fetch read 0 1 1 Group Word

I/O read 0 1 0 Type Word

Exchange read 0 0 1 - Word

I/O write 0 0 0 Type 1

Processor write 0 0 0 - 0 1 0 AlS

Reconfigure 0 0 0 - 1 1 0 -

Memory error 0 0 0 - 0 0 0 -

Status register 5 (SR5) bits 32 through 43 contain the syndrome code of
the memory error. The information is held until the status register is read.

Status register 6 (SR6) bits 32 through 44 contain the error address for
the memory error. These bits are latched into the SR6 on a memory error.
The information is held until the status register is read.

Status register 7 (SR7) contains information on LAT faults, register
parity errors (RPE), and shared register errors (SRRE). Bits 48 through
54 contain an LAT miss flag for each memory port. Bits 55 through 61 -
contain an LAT multiple-hit flag for each memory port. Bit 47 is the RPE
flag. If this bit sets, then bits 32 through 43 contain the chip number. Bit
46 is the SRRE flag and, if this flag is set, bits 24 through 31 contain the
chip number.

Cray Research Proprietary HTM-300-0

CPU Module (CPE1) RTC, PCI, Status Register, Performance Monitor

Table 57. Status Register 7 (SR7) Bit Defmitions

Bits Name Description

48 through 54 LATfault LATmiss

55 through 61 LATfault Multiple LAT hit

46 SRRE Shared register read error

24 through 31 Shared register chip number

47 RPE Register parity error

32 through 43 RPE chip number

)

HTM-300-0 Cray Research Proprietary 231

-)

CPU Module (CPE1) Scalar Cache

Cache Addressing

Figure 105 shows how memory addresses are used to determine a cache
hit or miss.

Memory Address

Subsection
Word Select Bank Select Select Section Select

r~-----------JA~----------~v~----_A~--~v~----~A~----~v~----~A~ ____ ~\

..... 139 _____ 1_9 18 __ 7 16 15 __ 41-""312 _____ °1 Bits

~~ ____ ~y~-----A~ ____ ~y~----~A~----~y------J

Cache Page Cache Line Cache Word

Cache Address

Figure 105. Memory Addresses

Potential Cache Problems

HTM-300-0

Because no communication occurs between caches in different CPUs, two
or more CPU s can have data in their respective caches from the same
physical address in memory, and one of the CPUs can write data to that
memory address. The CPU that writes the data will update its cache, and
the other CPU s will contain old data. This problem can be managed in
several ways:

• There are load instructions that bypass cache. These instructions
cause the cache line to be invalidated on a cache hit.

• LATs can be set up to define areas of memory that are not cache
enabled.

• If the SCE (scalar cache enable) bit is not set in the exchange
package, it will prevent the use of cache for that job.

Another problem that can occur is thrashing memory with a stride value
of 128. A stride of 128 uses 1 word of 1 line from each cache page. Then
when you start replacing lines, you will get 16 words back from memory
to cache but will be using only 1 word. This problem is avoided by
redesigning user code.

Cray Research Proprietary 235

