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CPU MODULE (CPE1)

CPE1 General Description

HTM-300-0

The CPE1 module contains the central processing unit (CPU) for the
CRAY T90 series computer systems. There is one CPU per CPE1
module. This CPU uses the IEEE standard format for floating-point
arithmetic.

There have been many enhancements to the CRAY T90 series CPU, and
several new instructions have been added to increase the performance.

- Figure 1 illustrates CP module components. Figure 2 and Figure 3 show

the basic functions and locations of all options on a CP module. Figure 4
shows a block diagram of the CPU.

The CP modules are arranged in stacks in the system. A CRAY T94
system contains one stack of as many as four modules. A CRAY T916
systems contains up to two stacks of as many as eight modules. A
CRAY T932 system contains up to four stacks of as many as eight
modules.

Each module in a stack functions independently; there are no
interconnections between modules in a stack. The CP modules connect
directly with either the memory modules, as in the CRAY T94 system, or
with the system interconnect board (SIB), as in larger systems.

Cray Research Proprietary



Module CPU Module (CPE1)

Module Assembly Components

Refer to Figure 1 for an illustration of the CP module assembly
components. This illustration is provided to show the basic components
that are part of all mainframe modules. The sizes of various components
differ between modules.

A  Flow Block, Board 1 H Fiber-optic Coupler
B Optical Receiver I  Flow Block, Board 2
C PC Board Edge Shim J PC Logic Board 2

D Maintenance Connector Flex Assembly K  Quter Rail

E Fiber-optic Spool Assembly L Inner Rail

F  Voltage Regulator Board Assembly M PC Logic Board 1

G Maintenance Connector

Figure 1. CP Module Assembly Components
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Vector Control
Vector Registers !
/T Vector Masl;..: | _Logical | Logical
[(A0) + (AR, [(AD) + (VK] L o]  Add Add
_[{A0) + (AK)], [(A0) + (VK] Vi Fovadtor | poector
- Vk } 1 Functional unctiona
[(A0) + (AK), [(A0) + (VK] _ A~ V3 - »  Units Uniits
> Pipe 0 Pipe 1
; Bit Matrix Multiply
S -
00 / | Recip Appr | Recip Appr
1;7 ‘ Sj vj | Muttiply | Multiply
Real-time Clock| Si Vk Add Add
Si Vi Shared Shared
Status ! Si Vector/Scalar| Vector/Scalar
Lléjs Iga:ﬁ é(l)3 S/ Functional | Functional
y > ’ ' Programmable i > Units Units
VHISP Channels Clock Interrupt S Sk ol Pipe0 Pipe 1
Performance Si
Lo
— — s - [PoplParityiz] i
(A0) o ar Registers . Shift 'm
Logical J
Add
~] Scalar
| Functional
Units

Common - Exchange Ai
Memory | _[(Ah) + (onm)]_[ Data Control  Vector Ak
- Cache Control
Ejm 4
_— A Vector -
(AO) Length Muiltiply
Add
Address
Functional
| Units
To A Registers <t— Shared Resources
I/O Status and Control
i SB and ST Registers
To S Registers «t—— Semaphores
tnstruction
Buffers

‘ ™ NIP CiP

:@—»} Execution
> LIP1

37

Figure 4. CPU Block Diagram
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ADDRESS AND SCALAR REGISTERS

The address and scalar registers are located together on the same options.
The following subsections describe the address and scalar registers.

Address Registers

The address and scalar registers are contained on eight options: one AV
option, three AW options, two AX options, and two AY options. Each
CRAY T90 series CPU contains eight address registers designated A0
through A7. Each register is 64 bits wide (32 bits in C90 mode) and
performs the following functions:

Determines addresses for memory references

Provides memory reference indexing

Provides loop control

Determines shift counts

Provides 1/O channel set-up

Determines I/0 channel status

Receives results from scalar leading zero and pop count
Determines vector length

Provides an exchange address (monitor mode only)

Provides an index for shared registers and B and T instructions
Provides operands and results for address add and address multiply
Transfers data to and from scalar registers

Provides integer-to-floating-point conversion

As illustrated in Figure 5, each AV000, AW000, AW001, AW002, AX000,
AXO001, AY000, and AY001 option contains an 8-bit slice of the address
registers. Figure 5 also illustrates the input and output data paths for the
address and scalar registers.

HTM-300-0 Cray Research Proprietary 7
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AY001
Bits 56 —63
AY000
Bits 48 — 55
AX001
Bits 40 — 47
AX000
Bits 32 - 39
AW002
Bits 24 - 31
AW001
Bits 16 - 23
AW000
Bits 8- 15
AV000
Bits 0 -7
Floating-point Add
j —IAH AA -~OAH Operand (S
aN) Address Multiply Results  1AA - o) p (S) - > (FC)
_ Floating-point Ad
(HH) Shared Data IBA~1BH _ OBA-OBH Operand (SK) -
Constant Data ICA—ICH_ : Floating-point Multiply
(B) OCA - OCH__ Operand (S)) > (NE, NF)
BY) B/T Register Data IDA—IDH Floating-point Multiply ’
Floating-point Add Results_IEA ~ [EH ODA - ODH_ Operand (SK) > (NE, NF)
(FC) > CM Address to Vector
Floating-point OEA—-OEH Pipe0 > (VN, VQ)
(NH) Multiply Results {FA ~ IFH > OFI o g:\/l A1ddress to Vector
- = > (VN, VQ)
(RE) Divide Results IGA - IGH= OFA—OFH Sjto Shift, Pop/Parity/LZ/VM: (SS)
(S9) Shift Data, VM IHA — IHH OFI—OFP  Ajto Shiit, Pop/Parity/LZNM= (SS)
; Address Muitiply
Data t —
VQ) Vj(Even) Data to Scalar  IlIA —-liH OGA—OGH_Operand (A) - N
Vj (Odd) Data to Scalar =P Address Multiply
vaQ) > OHA - OHH _Operand (AK) - AN
CH Common Memory Path1  IJA - IJH o
(CH) OA-OH _ AitoSharedDataPath _ ..
oy Sommon Memory Path2__IKA -~ IKH > (HH)
(CH) OJA=OJH__Aito BIT Registers and CM _
- - (BU)
OA BMM ISA—ISH |
(OA) - OMA - OMH_Ah Addrossto CMPortE__
ONA -~ ONH Constant Data to CM Port E
onstant Data to > (CD)
OPA -OPG  Akto Vector Control
» (VB)
OQA -OQH Akto Scalar Shift Count (SS)
ORA-ORC  A/S Zero Test > (JB)
OSA -OSD  A/S Addres Carry > (A)
OXA Enter Exchange VL
g > (VB)

Figure 5. Address and Scalar Register Data Paths
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CPU Module (CPE1) ' Address and Scalar Registers

Entry Codes

During the instruction decode on the JB option, the A/S register options
receive an A/S entry code from the the JB option. This code generates the
control that is necessary to complete the operations. The operand data is
then transmitted to the appropriate resources, and a destination delay chain
is entered on the option. Refer to Table 1 for the address/scalar (A/S)
register entry codes and to Figure 6 for an illustration of the A/S control
terms.

Table 1. A/S Register Entry Codes

Entry Code Instruction
0 020i Constants
1 023i0 Sj
2 023i1 VLdata
3 024ijk B data
4 030,031jjk Add
5 026ij (0 —3), 027i (0 — 1) pop/par/iz
6 032ijk A multiply
7 022ijk, 04 (2 - 3) jk/mask data
10 N/A
11 073i(2-3) 0 VM data
12 N/A
13 N/A
14 04 (4 —7) ijk, 05 (0 — 1) ijk Logical
15 N/A
16 05 (2 — 5) ijk, 05 (6 — 7) ijk Shift
17 N/A

HTM-300-0 Cray Research Proprietary 9



Address and Scalar Registers CPU Module (CPE1)
AV000
i - AWO000
(JBO0O) A/S Register Read-out Code ILA—-ILB ! AW001
(JB0OO) Enter CPU VL ILC » AW002
(JB00D) Go 071/(0,1,2)k ILD
(SS000) Pop/Parity/LZ (ARC00 Only) IMA - IMG
(JBO0O) A/S Register Entry Code INA — INC
(JBO0D) A/S Entry Code Valid I0A - 10D _ |
(JB00O) A/S Entry Code Valid IOA - 10D
(JB00O) i, j, k, hData IPA~IPL _|
vQ) Memory Path 1 Read Code IQA —IQE _|
vQ) Memory Path 2 Read Code IRA - IRE
(HHO00) Shared Data Code IUA—IUE
(HHOO1) Enter Exchange VL (ARG00 Only) IVA
(1C001) Exchange Active VB |
(VQoo4) Exchange Path 2 Select IVE -
AX000
A/S Register Read-out Code ILA-ILB AX001
(JB001) S=TStE *1 AY000
(JB001) Enter CPU VL ILC »| AY001
(JBO001) Go 071K0,1,2)k ILD -
(JB001) AJS Register Entry Code INA — INC -
t i -
(JBO001) A/S Entry Code Valid 10A IOD:
(JBO01) A/S Entry Code Valid I0A — IODr
i, Ji PA -
(JBO01) i, j, k, hData | IPL -
vQ) Memory Path 1 Read Code IQA—IQE
vQ) Memory Path 2 Read Code IRA—IRE _|
(HHOO1) Shared Data Code IUA - [UE -
(10002) Exchange Active IVB -
(VQ004) Exchange Path 2 Select IVE -
Figure 6. A/S Control Terms
Cray Research Proprietary HTM-300-0
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CPU Module (CPE1) Address and Scalar Registers

3 A Register Memory References

Refer to Figure 7 for a memory-to-A/S-register block diagram. The
address registers read or write one word of memory during each
instruction. The B registers provide intermediate storage for the address
registers and perform memory block references; one B register instruction
can access a group of operands from memory. The A registers use these
operands to generate results that are sent back to the B registers and stored
in memory. Using the B registers as buffer storage, a block reference
requires fewer clock periods than if several individual address or scalar
references were issued.

The A registers also have an access path to cache memory, which provides
access to common memory data without having to reference memory

directly. If the requested address resides in cache, a “cache hit” is initiated
and the data is read from cache memory instead of from common memory.

Special Register Values

The AO register has special features that the other A registers do not have.
The AO register holds the starting address for all block transfers for the

a ) B, T, and V registers and branch control. AO is the only register that can
be tested for equal-to-zero, not-equal-to-zero, positive, or negative
conditions using A0 conditional branch instructions.

This register also has a special feature for reading data. If A is specified
as an operand in the 4, j, or k field of an instruction, it will not send the
actual contents of the register. Instead, the register sends a value of 0 if
A0 is used in the j or £ field, or it sends a value of 1 if AQ is used in the &
field. If AQ is used in the i field, the actual contents of the AQ register are
sent.

- Because the A registers in CRAY T90 series systems are 64 bits wide,
special mode instructions have been implemented. These instructions are
part of the extended instruction set (EIS). These instructions make the A
registers functionally equal to S registers, enabling A registers to be
shifted and logical operations to be performed. To execute these special
mode instructions, an EIS 005400 instruction must precede the actual A
register instruction.

HTM-300-0 Cray Research Proprietary 11
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CPU Module (CPE1)

CHO002
CHO000 CM Left (Path 1)
Read Data BUGO0
ICA-ICP | Bits0—-15,32-47
014 IDA-IDP _ OAA — OAP,
CHo OBA — OBP
=070 IEA—IEP |
IFA—IFP _
CH008
CM Left B/T Registers
Read Data
Read Data
CM Right BUOO1 A/S Registers
its 16 —31, 48 — AV000
.| | cHoot ica—icp | Bits16-31,48-63 AWO000
AX000
o IDA - IDH
IEA—IEP
> OAA - OAP, P
IFA—IFP _ OBA-OBP DA -IDH
Read Data o B/T Registers *1AW002
AY000
AY001
CH009 ]
! CHOM CM Right (Path 2)
Figure 7. Memory-to-A/S Register Block Diagram
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CPU Module (CPE1)

Address and Scalar Registers

Scalar Registers

The CPU contains eight 64-bit scalar registers that are designated SO
through S7. The scalar registers are contained on the AV, AW, AX, and
AY options (refer to Figure 5).

The scalar registers send operands to and receive results from the scalar
functional units and the floating-point functional units. The functional
units perform integer and floating-point arithmetic and logical operations.
The scalar registers read and write central memory through the T registers,
read and write the data cache, and provide paths to the vector registers,
vector mask, real-time clock, status register, programmable clock
interrupt, and the performance monitor.

Instruction Issue

When an instruction issues, the scalar register receiving the data is
reserved until the result is latched in the register. If an instruction in the
current instruction parcel (CIP) register requires the reserved result
register, that CIP instruction holds issue until the register is available.

The SO register is an exception. If the SO register is reserved as a result
register and is needed as an Sj or Sk operand in a following instruction, no
hold issue occurs because the SO register has special register values as an
operand.

The issue hardware also develops scalar functional unit codes. These
codes select the input terms to be gated from the proper functional unit
into the scalar register multiplexer.

S Register Memory References

HTM-300-0

Scalar registers read or write one word of memory during each instruction.
The T registers provide intermediate storage for the scalar registers, and
can perform memory block references; a single instruction can access a
group of operands from memory. These operands are then used by the
scalar registers to generate results that can be sent back to the T registers
and stored in memory. Using the T registers as buffer storage, a block
reference requires fewer clock periods than if several individual address or
scalar references were issued.

Cray Research Proprietary 13



Address and Scalar Registers CPU Module (CPE1)

The S registers also have an access path to cache memory, which provides
access to common memory data without having to reference memory
directly. If the requested address resides in cache, a “cache hit” is initiated
and the data is read from cache instead of from common memory.

Special Register Values

SO0 has special register values when Sj or Sk is used as an operand. When
the j field equals O, a value of O is sent out regardless of the actual value
stored in SO. When the £ field equals 0, bit 63 is setto a 1.

. Lower/Upper Scalar Register Load

It is possible to load either the lower- or upper-half of a scalar register
with a 32-bit quantity. The following four instructions load constants into
scalar registers.

e  040i00 nm Si exp: loads the quantity nm into the lower 32 bits of
register Si. The upper 32 bits are cleared.

e 041i00 nm Si exp: loads the one’s complement of nm into the lower
32 bits of register Si. The upper 32 bits are all 1’s.

®  040i20 nm Si exp: loads the quantity nm into the lower 32 bits of
register Si. The upper 32 bits are unchanged.

e 040i40 Si exp: loads the quantity nm into the upper 32 bits of
register Si. The lower 32 bits are unchanged.

14 Cray Research Proprietary HTM-300-0



) B AND T REGISTERS

HTM-300-0

Each CPU contains 64 (100g) B registers and 64 T registers. The Band T -

registers act as intermediate registers for the address and scalar registers,

respectively. Each B and T register is 64 bits wide.

Two BU options, BU0OO and BUOO1, compose the B and T registers.
Each option contains 32 bits of each register. BUOOO contains bits 00
through 15 and bits 32 through 47. BUOO1 contains bits 16 through 31
and bits 48 through 63. As shown in Figure 8, the B and T registers can
be loaded from the address and scalar registers, common memory, and

branch control.

AiLength (BUGO1 Only) A - 1IG_ | BUOO1
| Bits 1631,
48 - 63
IAA - 1AP,
From Aior Si IBA-IBP_ BUO0CO
*1 Bits0-15,
32-47
ICA - ICP,
CM Path 1 IDA-IDP_
- OAA — OAP, o
IEA — IEP, OBA-0OBP ToAiorSi

CM Path 2 IFA - IFP

P Entry on Branch IGA - IGP

OCA - OCP,
ODA -ODP Aj, Si,Bor T CM Data

OEA - OEP Bjk to Branch Control

Figure 8. B and T Register Inputs and Outputs

The B and T registers are used primarily for block transfers to and from
common memory. Refer to Table 2 for a list of the B and T register
instructions. Refer also to Figure 9 for a B/T-register-to-memory block

diagram.

Cray Research Proprietary
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16

CPU Module (CPE1)
Table 2. B/T Register Instructions
Instruction CAL Description
0050jk J Bjk Jump to Bjk _
0051k* JINV Bjk |Jump to Bjk (invalidate instruction buffers)
024ijk Ai Bjk Transmit (Bjk) to Ai
025ijk Bjk Ai Transmit (Aj) to Bjk
034ijk Bjk Ai, AQ | Transmit (Aj) words from common memory starting at
address (A0) to B registers starting at register jk
035ijk ,AQ BjkAi | Transmit (Aj) words from B registers starting at register jk to
memory starting at address (A0)
036ijk Tjk Ai, A0 | Transmit (Ai) words from memory starting at address (AQ) to
T register starting at register jk
037ijk A0 TjkAi | Transmit (Aj) words from T registers starting at register jk to
memory starting at address (AQ)
074ijk Si Tjk Transmit (Tjk) to Si
075ijk Tjk Si Transmit (Si) to Tjk

* Denotes a maintenance mode instruction only.
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70

B and T Registers

CHO11

i

CGOoco

Memory
Write Data

CHO002
CHOO00
CM Left
Read Data BUCOO
ICA—ICP I Bits0-15,32-47
Fﬂ- DA-DP »
i CHOT0 :IE: ":E: > OCA—OCP,
e - ODA - ODP
CM Left B/T Registers
Read Data
Read Data
CM Right BU00D1
CHoo1 icA-igp_| Bits16-31,48-63
cHoos IDA-IDP_ | OCA -0OCP,
o ODA -0ODP
IEA—-IEP |
N ) IFA—IFP
.. Read Data B/T Registers
CM Right
CH009

Figure 9. B/T-register-to-memory Block Diagram
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ADDRESS AND SCALAR ADD

The address and scalar registers are contained on eight options: one AV
option, three AW options, two AX options, and two AY options. Each

option contains 8 bits of the 64-bit address registers. These options also
contain the address and scalar add functional unit. Table 3 describes the

instructions that use the address and scalar add functional unit.

Table 3. A/S Adder Instructions

Instruction CAL Description
030ijk Ai AjrAk | Transmit integer sum of (Aj) and (AK) to Ai
0300k Ai AKS Transmit (AK) to Ai
030i0 Ai Aj+1S | Transmit integer sum of (Aj) and 1 to Ai
031ijk Ai AF-Ak | Transmit integer difference of (Aj) and (AK) to Ai
0310k Ai —AKS | Transmit inverse of (AK) to Ai
0310 Ai Aj-1S Transmit integer difference of (Aj) and 1 to Ai
060ijk Si 8j+Sk | Transmit integer sum of (Sj) and (Sk) to Si
061ijk Si Sj-Sk |Transmit integer difference of (Sj) and (Sk) to Si
0610k Si -Sk Transmit inverse of (Sk) to Si

D denotes a difference between Triton mode and C90 mode.

S denotes a special CAL syntax.

The address add and scalar functional units perform a 64-bit add; each

option performs the add function on the bits of the operands contained on
that option. Carry and enable bits generated during the add are passed on
to the next option, as shown in Figure 10. The 64-bit result is stored in the
destination register in 4 clock periods.

HTM-300-0
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Address and Scalar Add CPU Module (CPE1)

AVO OSA ISA_|
1 AWO0 NOTE: I1SA —1SG and OSA — OSC terms are )
Bi adder carries. ITA-ITF and OTA-OTC
its
- terms are adder enables.
ISA
0OSB N una AW
Ll a2
ISA
0sC —™ AX0
| SEE o ISD,
AW2 OSA AX0
I1SA | OTA o
AYO Bits
OSD 24— 34 ITC AX1
AY1 >
ISD
Ao A _| AWt ITc,
OTA > :
AW2
Bits ITA_
8-15 =0 OSA ISE
71 Ax1
osE 1SB_ OTA ITD
- ¢ 3zBit%9 '
Q1B > ISE_| . )
ia_| AX1 0sB "1 Avo -
oTB »
ISB_ - AY1
osc | avo .
oTC >
ma_ | AY
v OSA ISC_ e — ISF .
OTA ITB_ | OSA AYO
i - Bits >
1683823 40 - 47 | OTA >
ISC._| me | A
0SB "1 a0 >
OTB >
IT8_ AXi
AY
86 0 0SA ISG,_
> AY1
0sC AYO Bits | OTA ITF
> 48-55
oT1C >
me_ | AY1
Figure 10. Carry Bit and Enable Bit Fanouts \)

20 Cray Research Proprietary HTM-300-0



") SCALAR LOGICAL

The scalar logical functional unit performs logical operations on the scalar
registers. Logical operations include OR, AND, and XOR and merges.

Refer to Figure 11 for an illustration of the address and scalar registers.
The scalar registers are contained on eight options: one AV option, three
AW options, two AX options, and two AY options. Each option contains
8 bits of the 64-bit address registers. These options also contain the scalar
logical functional unit. . The operands are latched and the logical operation
is completed in 1 clock period. The result is then entered into the proper

~ destination register.

AY001 Bits 56 — 63
AY000 Bits 48 — 55
. ) AX001 Bits 40 - 47
AX000 Bits 32 — 39
AW002 Bits 24 — 31
AW001 Bits 16 —-23
AWO000 Bits 8-15
AV000 Bits0—-7
Address/Scalar Register |
(JBO) hijk Instruction Data__1PA — IPL wso|
A/S Register As1 LAS =
Data Path 1 IJA —IJH
(CHO) aisi |82 PRIk "
AJS Register AIS3
oho) D22 Path 2 IKA—1KH | AS4 3 |
(CHO) — A/S5 | | Operand

A;/S' A/S6 Select

A/S Entry Cod INA = IN A/S7 1

(JBO) == Cof | Select FL

k e

A/S Entry Code Valid 10A —10D

(JBO) 2 - I Logical
Functional Unit

Figure 11. Address/Scalar Logical Block Diagram (Instructions 044ijk
through 051ijk)
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Table 4 and Table 5 list the instructions used in the address and scalar
logical functional unit. The instructions listed in Table 5 must be
preceded by a 005400 instruction.

Table 4. Scalar Logical Functional Unit Instructions

Instruction CAL Description
044ijk SiSjaSk Logical product of (Sj) and (Sk) to Si
044ip SiSjaSB Sign bit of (S)) to Si
044ip0 Si SB&Sj Sign bit of (S)) to Si(Sj+ 0)
045ijk Si#Sk&Sj | Logical product of (Sj) and one’s compiement of (Sk) to Si
045i0 Si#SB&Sj | (S)) with sign bit cleared to Si
046ijk SiSASk Logical difference of (Sj) and (Sk) to Si (Sj= 0)
046i0 SiSASB Transmit (Sj) with sign bit toggled to Si
046i0 SiSB\Sj Transmit (Sj) with sign bit toggled to Si (Sj= 0)
047 ijk Si#SASk Logical equivalence of (SK) and (S)) to Si
0470k Si#Sk Transmit one’s complement of (Sk) to Si
047i0 Si#SASB Logical equivalence of (Sj) and sign bit to Si
047i0 Si#SB\Sj Logical equivalence of (Sj) and sign bit to Si (Sj= 0)
047000 Si#SB Enter one’s complement of sign bit into Si
050ijk SiSjASi&Sk | Logical product of (Si) and (Sk) complement ORed with
logical product of (Sj) and (SK)
050i00 SiSjSIi&SB | Scalar merge of (Si) and sign bit of (S)) to Si
051k SiSjSk Logical sum of (Sj) and (Sk) to S/
0510k SiSk Transmit (Sk) to Si
051if0 SiSjiSB Logical sum of (Sj) and sign bit to S/ (Sj= 0)
05100 SiSB Enter sign bit into S/

Cray Research Proprietary
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CPU Module (CPE1) Scalar Logical

/j Table 5. Address Logical Functional Unit Instructions

Instruction CAL Description
044ijk AiAj&Ak Logical product of (Aj) and (AK) to Aj
045ijk Ai #AK&A] Logical product of (Aj) and one’s complement of (Ak) to Ai
046ifk Ai ANk Logical difference of (Aj) and (Ak) to Ai (Aj=0)
047ijk Ai #ANAK Logical equivalence of (AK) and (Aj) to Ai
04710k Ai #Aj Transmit one’s complement of (AK) to Ai
050ijk Ai AjAiI&AK | Logical product of (Aj) and (Ak) complement ORed with

logical product of (Aj) and (AKk)

051ijk Ai AfAk Logical sum of (Aj) and (Ak) to Ai

Address and Scalar Mask

The address mask and scalar mask functions are not scalar logical
operations, but are included in this section. Address and scalar mask
functions use instructions 042ijk and 043ijk. Refer to Table 6 and Table 7
for the scalar and address mask instruction formats, respectively.

) : Table 6. Scalar Mask Instructions
Instruction CAL Description

042ijk Sicexp Form ones mask in Si exp bits from the right; jk
field = 100 — exp

042i77 Si1 Enter 1 into Si

042100 Si Enter -1 into S,
(Si= 177777 177777 177777 177777)

043ijk Si>exp Form ones mask in Si exp bits from the left:
Jjk field = exp

043ijk Si#t<exp |Form zeroes mask in Si exp bits from the right:
jk field gets 100g= exp

043100 Si0 Clear Si
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Table 7. Address Mask Instructions

Instruction CAL Description

042ijk Akexp Form ones mask in Ai exp bits from the right;
jk field = 100 — exp

042ir7 Ail Enter 1 into Aj

042100 A-1 -1 Enter -1 into Af,
(Ai= 177777 177777 177777 177777)

043ijk Abexp Form ones mask in Ai exp bits from the left:
Jjkfield = exp

043ijk Ai#t<exp Form zeroes mask in Ai exp bits from the right:
Jjk field gets 100g = exp

043100 AiO0 Clear Aj

The address and scalar mask functional unit is located on the SS options.
When the 042ijk or 043ijk instruction issues, the jk field is sent from the
BUO option. The jk field determines how many 1 bits are set, and the £
field bit O determines whether the mask should be formed from the left or
the right. Figure 12 is a block diagram of the scalar mask functional unit.

SS000

Scalar

|‘ Shift

Sji IAA - IDP _| Vector
(AV, AW, AX, AY) > * Mask |-

Upper
Lower |

ik 1GA ~ IGF_
(BL) — Address/
(1C) IEE_ - M | scalar Mask

|AY001 Bits 56 - 63

MUX

fAY000 Bits 48 - 55
AX001  Bits 4047
AX000 Bits 32 — 39

[AW002 Bits 24 - 31
AWO001 Bits 16 - 23
\WO000 Bits 8— 15
[Avo00 Bits0—-7

»] ORed |

Address/Scalar
Registers

Figure 12. Scalar Mask Block Diagram
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f) Transmit nm to Si, Si Upper, SiLower

Constant data can be transmitted to an S register by four different
instructions. Refer to Table 8 for a list of these instructions.

Table 8. Transmit nm to Si Instructions

Instruction CAL Description

04000nm Siexp Transmit expression = nm to S, bits
0 through 31 (bits 32 through 63 = 0)

04020nm SiSikexp Transmit expression = nm to Sj, bits 0 through
31 (bits 32 through 63 unchanged) (2 = 0)

040/40nm Siexp:Si | Transmit expression = nm to S, bits 32
through 63 (bits 0 through 31 unchanged)
(2=1)

04100nm Siexp Transmit expression = one’s complement of
nm to Si, bits 0 through 31 (S/ bits 32 through
63 =1)
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) ADDRESS/SCALAR POP/PARITY AND LEADING ZERO

The address/scalar population count functional unit counts the number of
1 bits in the scalar (S) register or address (A) register as designated by the
k field of instruction 026ijk (k=0 or 1 for S registers, and k=2 or 3 for A
registers). The maximum count is 100g (64;¢) for the corresponding
number of 1 bits set in the A or S register. The smallest count is zero,
which occurs when no bits are set in the A or S register.

The £ field of the instruction determines whether or not the entire
population count is recorded in Ai. If the instruction is 026i70/2, all 7 bits
of the final population count are sent to the A register. When a 026i;1/3
instruction is issued, the entire S or A register is counted for the number of
1 bits set, but only bit 0 of the count is sent to the A register. If bit 0 of the
count equals 0, then the count has even parity, indicating an even number
of bits set. If bit O of the count equals 1, then the count has odd parity.

Starting from bit position 63, the address/scalar leading zero count

: 3 functional unit counts the number of 0’s preceding the first bit setto a 1 in

- a specified address or scalar register. The number of leading 0’s is then
transferred to the lower 7 bits of the Ai register. To use the address/scalar
leading zero count functional unit, a 027ij0 instruction is issued where Sj
is the operand and Ai is the result register. The 027ij1 instruction is issued
when Aj is the operand and Ai is the result register.

The SS option performs scalar pop/parity and leading zero functions.
Population count/parity and leading zero functions are performed on either
a scalar or an address register operand, and the result is sent to an address
register. Table 9 describes the instructions that use the pop/parity and
leading zero functional unit, and Figure 13 illustrates the A/S
population/parity/leading zero count.
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Table 9. Scalar Pop Count/Parity and Leading Zero Count Instructions

Instruction CAL Description
0260 Ai PSj Transmit population count of (Sj) to Ai
026if1 Ai QSj Transmit population count parity of (S)) to Aj
026i2 Ai PAj Transmit population count of (Aj) to Ai
0263 Ai QAj Transmit population count parity of (Aj) to A/
0270 Ai Z5j Transmit leading zero count of (S)) to Aj
027if1 Ai ZAj Transmit leading zero count of (Aj) to Aj

Cray Research Proprietary
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Address/Scalar Pop/Parity and Leading Zero

OFA—-OFG ResultBits0—6

CPU Module (CPE1)
AV000
Bits 0—7
AW000
SS000
SjSiBits0—15  IAA—-IAP
Bits 8 — 15 AJAiBits0=15 IA—I1JP 4-bit Sum
AWO01 SjSiBits 16-31 IBA—IBP
AJAiBits 16 =31 IKA—IKP__
SjSiBits 32-47 ICA-ICP Y
Bits 16— 23 AJAiBits 32 —47 ILA~ILP 8-bit Sum
AW002 Sj'SiBits 48 —63 IDA—-IDP
AjAiBits 48 —63  IMA — IMP )
16-bit Sum
Bits 24 — 31 7
| D
AX000 Go 026ijx_IED n e
(JB000) ==~ 0 s o |32-bitSum
. t o I
Bits 32 —- 39 (1C000) hO Bit IEE ol lrj g
AX001 (BUOD1) jData IGA - IGC o ‘t: 64-bit Sum
- i
(BUODO) kDaa 1GD-IGF | }!
Bits 40 — 47 n
AY000
Bits 48 — 55
AY001
Bits 56 — 63
Figure 13. A/S Population/Parity/Leading Zero Count
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The address register shift function is performed on the SS option (refer to
Figure 22 for a block diagram of address register shift). This functional
unit performs both left and right single-register shifts and left and right
double-register shifts (also referred to as “long shifts”). All shifts are
end-off with zero fill. For example, if data is shifted more than 64,
places in a single shift, or more than 128;¢ places in a double-register
shift, the data is shifted completely off the register, leaving the register
cleared.

The shift unit performs only left shifts. The shift count for a right shift

- must be in the two’s complement form; the unit then performs a left shift.

Refer to Table 10 for a list of the address register shift instructions.

NOTE: To issue A-register-shift instructions, a 005400 (EIS) instruction
must precede the shift instruction.

Table 10. Address Register Shift Instructions

Instruction CAL Description
052jjk AO Aicexp | Shift (Aj) left exp = jk places to AO
053ijk AQ Aexp | Shift (A)) right exp = 100g—jk places to A0
054 jjk AiAexp | Shift (A left exp = jk places to Ai
055ijk AiAbexp | Shift (Aj) right exp = 100g—jk places to Aj
056ijk Ai Ai, Ai<Ak | Shift (Aj) and (A)) left (AK) places to Ai
056i0 Ai Ai, Ai<i | Shift (Aj) and (A)) left one place to Aj
0560k AiAicAk | Shift (Aj) left (AK) places to Ai
057 jjk Ai Aj, ABAk | Shift (Aj) and (AJ) right (Ak) places to Ai
057i0 Ai Aj, A1 | Shift (Aj) and (Aj) right one place to Ai
0560k AiAB>Ak | Shift (Aj) right (AK) places to Ai
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Address Register Single Shift

The address register single-shift instructions are 052ijk through 055ijk.
The first two instructions perform left single shifts (052ijk) and right
single shifts (053ijk) on the content of the Ai register and always store the
result in AO. The shift count is obtained from the jk field of the
instruction. The value placed in the jk field for the single-shift
instructions depends on whether it is a left or right shift. For a single left
shift, the value in the jk field is the number of octal places desired to shift
Ai. This allows a shift left of 0 to 77g places. For a right shift, the jk field
is equal to the two’s complement of the actual number of places desired to
shift right. If a shift of 24g places were required, 54 would be entered in
the jk field (two’s complement of 24 is 54).

When instructions are written in machine code, this operation must be
done by the person writing the code. However, when instructions are

. written in CAL, this is done by the assembler. In the CAL instruction, you

would simply enter the shift count. This allows a shift right of 1 to 100g
places. Because the two’s complement of the shift count is used for a
single shift, a shift right O places is not possible.

The 054ijk and 055ijk instructions perform single shifts left or right on the
contents of Ai. However, these instructions store the result of the shift
back in Ai. These shifts overwrite the original contents of Si with the new
results from the shifter.

Address Register Double Shift

32

Double shifts work similarly to single shifts and are end-off with zero fill.
The difference is that a double shift concatenates two S registers, forming
a 128-bit register. The arrangement of the two registers is determined by
the shift direction.

Double shifts always shift data into Si. The two instructions associated
with double shifts are 056ijk (left double shift) and 057ijk (right double
shift). The double shifts use the i and j fields to specify the two operand
registers; the i field also specifies the result register. The & field of the
instructions specifies the A register used for the shift count.

Because a double shift uses a 128-bit operand and shifts are end-off with
zero fill, a shift equal to or greater than 128;( (200g) produces a result of
zero. The A register bits 0 through 6 are used as a shift count, providing a
shift of 0 to 177g. Bit 7 is checked, and if this bit is set to a 1, it causes the
double shift result to equal zero. For right double shifts, the shift count
does not need to be entered into the A register in two’s complement form;
the hardware performs this function.

Cray Research Proprietary HTM-300-0
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Address Register Shift

Address Register Shift Count Description

HTM-300-0

The AV option sends 7 bits of shift count to the SS option. With both
single and double shifts, the breakdown of the shift count is nearly the
same, except that the double shift has 1 extra bit (bit 6). Refer to
Figure 14 for a breakdown of the shift count.

Double

Shift

Only

6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Figure 14. Shift Count Breakdown

- Each bit position of the shift count represents a shift value, and the sum of

the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: All references to shift counts in this documentation are in
decimal notation.

If the jk field of a left single shift equals 27g and bits 4, 2, 1, and O are set,
the shift values are 16, 4, 2, and 1, respectively. The sum of the shift
values is 23 (16 + 4 + 2 + 1) and the unit shifts the data left 23 places.

The hardware that performs the shifts is the same for both left and right
shifts. In reality, the hardware can perform only left shifts. Right shifts
are accomplished by the way in which data is entered into the shifter,
hence the use of two’s complement for right shifts.
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Address Register Left Single Shift ™

Figure 15 illustrates how a left single shift is performed for a 054220
instruction. (Ai Ai<exp), shift A2 left jk places (20g) with data bit 10 set.

_ Bit
- 6,

Address Shift Functional Unit

Bit 10

Shift A2 1649 places
to the left, moving bit

@ 26 to bit position 10

Bit 26 A2 Final Restuits

Figure 15. Address Register Left Single Shift )
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j Address Register Right Single Shift

Figure 16 illustrates how a right single shift is performed using left shifts
and a two’s complement shift count. This example uses a 055254
instruction (Ai>Ai exp) that shifts Ai right exp = 100 — jk places to Ai. In
this example, data bit 45 shifts to the right 24g (20,0) places. Notice that
the jk field of the instruction 055254 contains 54g, which is the two’s
complement of 243. The content of A2 is shifted to the left 54g places to

set bit 25 of the result.
A2 = Bit 45
Address Shift Functional Unit
— 0 63 0
Bit 45 -
Shift 54g

. ) Bit 25

»A2 = Bit 25

Figure 16. Address Register Right Single Shift

NOTE: On aright shift, the programmer is responsible for converting
the shift count to a two’s complement value and supplying that
value to the functional unit.
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Address Register Left Double Shift

Double shift instructions execute in the same manner as single shifts
except that the double shift concatenates two 64-bit registers to form a
value. Figure 17 illustrates a left double shift using a 056123 instruction
(Ai Al, Aj<Ak). In this example, (Ai) and (Aj) left shift (Ak) places to
Ai. A3 =40g (3210), Al has bit 30 set, and S2 has bit 10 set. When a left
double shift occurs, the content of Aj is moved into Ai, and the two
registers are positioned as shown with Ai ahead of Aj.

A2 (A) = Bit 10
Al (A) = Bit 30
A3 = 40 — Shift Control

Address Shift Functional Unit

Ai (A1) ¢ Aj (A2) 3

Bit . Bit .
(62 Bit 30 Q2> Bit 10

P shirs2 | ] shitz2 |

Bit 62

\

Y

Bit 62 = A1 Final Result

Figure 17. Address Register Left Double Shift

Shifting Ai and Aj to the left 32 places puts bit 30 of Al at bit position 62
and bit 10 of A2 at bit position 41. Because bit 41 of A2 does not transfer
to the result register (A1), it is lost. The result bit (bit 62) is sent to the Ai
(A1) register. The Aj (A2) register remains unchanged.
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Address Register Right Double Shift

Address Register Shift

To perform an address register right double shift, a 057ijk [(Ai Aj, Ai

>Ak), shift (Aj) and (Ai) right (Ak) places to Ai] instruction is used.
Figure 18 illustrates a 057123 instruction with the indicated parameters.

Al = Bit 20
A2 = Bit 40
A3 = 60 — Shift Control

Address Shift Functional Unit

_ - Aj (A2) Ai (A1) ¢
1€ 4o (21 B 20
‘ Shift 80 1 shittso
Bit 56
»| Bit 56 = A1 Final Result

HTM-300-0

Figure 18. Address Register Right Double Shift

To right shift Aj and Ai using left shifts, the two’s complement is first
performed on A3, which currently equals 60g (4810). Because the two’s
complement is 120g (or 1010000, or 80;¢), the required shift can be
accomplished through successive shifts of 641 and 16, for a total shift of
8010 places. A left shift of 80;¢9 moves bit 40 of A2 to bit position 56
inside the dotted box and bit 20 of A1 to bit position 36 of A2. Because
bit 36 does not transfer into the result register (indicated by the dotted
box), it is lost. Bit 56 is sent to the final result register (A1).
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Left Single-shift Instruction 3

Refer to Figure 19 when reading the following two examples of the
address register left single-shift instruction.

Bts{2 1 o0f2 1 0 [=jkField

32 16 8 4 2 1 = Shift Values Decimal

052ijk Results to A0
054ijk Results to Aj

Figure 19. Example of an A Register Left Single-shift Instruction

Example 1: Write the instruction to shift the contents of A2 left
2019 places and put the result into AO.

Steps: 1. 052ijk — left shift instruction result goes to AQ
2. jk field — shift count 20,¢ = 243 = jk field
3. 052224 - final instruction )

Example 2: Write the instruction to shift A4 left 35;¢ places and put the
result into A4.

Steps: 1. 054ijk — left shift instruction result goes to Ai
2. jkfield — shift count 3510 = 433

3. 054443 - final instruction
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Right Single-shift Instruction

The right single-shift count is the jk field of the instruction, which must
either be in the two’s complement form or 100g minus the number of
places to right shift. The following two examples show an address
register right single-shift instruction.

o  053ijk results to AO
o  055ijk results to Ai

Example 1: Write the instruction to shift AS right 10;¢ places and put
the result into AQ.

Steps: 1. 053ijk — right shift instruction results to AOQ
2. jk field — shift count in two’s complement equals 665
1010 = 123 = 001010
two’s complement = 110101

+1

110110 =66g
3. 053566 - final instruction
Example 2: Write the instruction to shift A7 right 28 places.
Steps: 1. 055ijk right shift instruction results to Ai
2. jk field — shift count in two’s complement equals
2810 =343 =011100
two’s complement = 100011

+1

100100 = 44g
or 1003 — 34g = 443
3. 055744 — final instruction
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Left Double-shift Instruction

)

Refer to Figure 20 when reading the following example of an address
register left double-shift instruction.

056ifk Shift Ajand Ajleft by Ak places to Ai

Ai Aj

e

Ak contains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any bits from 7 through 63 are set, the results of Aj are zeroed.

Ai

Bits | 63 76|15 4 3 2 1 0 =Ak

Zero Results 643216 8 4 2 1 = Valid Decimal Shifts

On a left double shift, the contents of Aj are always shifted into Ai. This shift is done )
inside the address shift functional unit. _ >

Figure 20. Example of an Address Register Left Double-shift Instruction

Example 1: Write the instruction to double shift A2 and A3 left 649
places and put the results into A2.

056234 — final instruction, where A4 — 100g

NOTE: A 056 instruction with i = j and (Ak)< 64 effects a circular left
shift. -
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Address Register Shift

f) Right Double-shift instruction

Refer to Figure 21 when reading the following example of a scalar right
double-shift instruction.

057jjk  Shift Ajand Airight by Ak places to A/

Aj Ai
Ai
Bits | 63 7 6/5 4 3 2 1 0 =Ak
Zero Results
A J
Two’s Complement = During Right Double Shift
643216 8 4 2 1 = Valid Decimal Shifts
> Figure 21. Example of an Address Register Right Double-shift Instruction

HTM-300-0

Ak contains the shift count, and address (A) register bits O through 6
contain the valid shift counts. If any bits from 7 through 63 are set, the .
results of Ai are zeroed. Also, the hardware generates the two’s
complement of the shift count Ak register bits O through 6 on a right
double shift.

On a right double shift, the contents of Aj are always shifted into Ai. This
operation and the two’s complement of the shift count occur inside the
address shift functional unit.

Example 1:  Write the instruction to double shift right A4 and AS
3210 places and put the result into A4.

057454 — final instruction, where A4 = 40g
hardware generates a shift count of 140g inside
the functional unit.

NOTE: Issue a 057 instruction with i = j and (Ak)< 64 to effect a circular
right shift.
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Figure 22. Address Register Shift
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) SCALAR SHIFT

The scalar shift function is performed on the SS option (refer to Figure 31
for a block diagram of a scalar shift). This functional unit performs both
left and right single-register shifts, and left and right double-register shifts
(also referred to as “long shifts). All shifts are end-off with zero fill. For
example, if data is shifted more than 64 places in a single shift, or more
than 128;¢ places in a double-register shift, the data is shifted off the
register. The data is then lost, and the register is filled with 0’s.

The shift unit performs only left shifts. The shift count for a right shift
has to be in the two’s complement form; the unit then performs a left shift.
Refer to Table 11 for a list of the scalar shift instructions.

Table 11. Scalar Shift Instructions

Instruction CAL Description
052ijk S0 Sexp | Shift (Si) left exp = jk places to SO
053ijk S0 Siexp | Shift (Si) right exp = 100g — jk places to SO
054ijk SiSkexp | Shift (Si) left exp = jk places to Si
055ijk SiSiexp | Shift (S)) right exp = 100g - jk places to Si

056ijk S1 Si, Sj<Ak | Shift (S)) and (S)) left (Ak) places to Si
056j0 T S1 Si, Si<1 | Shift (Si) and (S)) left 1 place to Si
0560k * S1SicAk | Shift (S) left (Ak) places to Si

057ijk Si Sj, SAk | Shift (S)) and (S)) right (Ak) places to Si
057if0 ¥ S1 §j, S&1 | Shift (S)) and (S)) right 1 place to Si
0570k * S1 Si>Ak | Shift (Si) right (Ak) places to Si

tIfj=0,then (S =0.
1 If k=0, then (AK) =1.

Scalar Single Shift

HTM-300-0

The scalar single-shift instructions are 052ijk through 055ijk. The first
two instructions perform single shifts left (052ijk) and right (053ijk) on the
contents of the Si register and always store the result in SO. The shift
count is obtained from the jk field of the instruction. How the value is

Cray Research Proprietary 43



Scalar Shift CPU Module (CPE1)

represented in the jk field for single-shift instructions depends on whether
the shift is left or right. For a single left shift, the value in the jk field /7
represents the number of octal places (in the range of 0 to 77g places) to

shift Si. For a right shift, the jk field is equal to the two’s complement of

the actual number of places to shift right. If a shift of 24g places were

required, 54 would be entered in the jk field (the two’s complement of 24

is 54).

When instructions are written in machine code, the programmer is
responsible for complementing the shift count. However when
instructions are written in CAL, the assembler performs this operation
automatically; that is, in the CAL instruction, simply enter the shift count
in the range of 1 to 100g places. Because the two’s complement of the
shift count is used for a single shift, a right shift of O places is not possible.

The 054ijk and 055ijk instructions perform single shifts left or right on the
contents of Si. However, these instructions store the result of the shift
back in Si. These shifts overwrite the original contents of Si with the new
results from the shifter.

Scalar Double Shift

N\

Double shifts are similar to single shifts; all shifts are end-off with zero
fill. However, a double shift concatenates two S registers, forming a
128-bit register. The arrangement of the two registers is determined by
the shift direction.

Double shifts always shift data into Si. The two instructions associated
with double shifts are 056ijk (double left shift) and 057ijk (double right
shift). The double shifts use the i and j fields to specify the two operand
registers; the i field also specifies the result register. The & field of the
instructions specifies the A register used for the shift count.

A double shift uses a 128-bit operand and shifts are end-off with zero fill.
Therefore a shift equal to or greater than 128;¢ (200g) produces a result of
zero. The shift count is determined by bits 0 through 6 of the Ak register,
providing a shift range of 0 to 177g. For right double shifts, the shift
count does not need to be entered into the A register in two’s complement;
the hardware performs this function.

Scalar Shift Count Description

The AV000 option sends the shift count to the SS option. All eight ,
A-series options check the value of the 64-bit A register to determine if ; )
any bits greater than bit 6 have been set. If any of these bits are set, the -
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Scalar Shift

result is lost due to overshift. If each A-series option reports that its bits
are zero, the shift count is valid and a signal called Ak = 0 is sent to the SS
option.

The AR option sends 7 bits of shift count to the SS option. For both
single and double shifts, the breakdown of the shift count is similar,
except that the double shift has 1 extra bit (bit 6). Refer to Figure 23 for a
breakdown of the shift count.

Double
Shift
Only
6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Figure 23. Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in this document refer to a decimal count.

If the jk field of a left single shift equals 27g and bits 4, 2, 1, and O are set,
the shift values are 16, 4, 2, and 1, respectively. The sum of the shift
values is 23 (16 + 4 + 2 + 1), and the instruction shifts the data left 2319
places.

The hardware that performs the shifts is the same for both left and right
shifts. (Actually, the physical hardware can perform only left shifts.)
Right shifts are achieved by the way in which the data is entered into the
shifter and by the use of two’s complement values for shift counts.
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Scalar Left Single Shift
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Figure 24 is an illustration of how a left single shift is performed for a
054220 instruction (Si Si<exp). In the following example, the contents of
S2 (data bit 10 set) are shifted left 20g places (16;¢ ), and the result is

returned to S2.

82 = Bit 10

Scalar Shift Functional Unit

Bit 10

Bit
26

> Bit 26

Figure 24. Scalar Left Single Shift
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Shift S2 1649
places to the left,
moving bit 10 to
bit position 26

S2 Final Result
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? Scalar Right Single Shift

Figure 25 illustrates how a right single shift is performed using left shifts
and a two’s complement shift count. This example uses a 055254
instruction (Si>Si exp) that shifts Si right exp = 100 — jk places to Si.

In this example, data bit 45 shifts to the right 24g (20;) places. Notice
that the jk field of the instruction 055254 contains 54g, which is the two’s
complement of 243, causing S2 to be shifted to the left 54g places to set bit
25 of the result.

S2 Bit 45

Scalar Shift Functional Unit

= @ Bit 45
| . — L p—
_I Shift 545 |

Figure 25. Scalar Right Single Shift

NOTE: Itis the programmer’s responsibility to perform the two’s
complement of the shift count and supply that value to the
functional unit.
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Scalar Left Double Shift

Double shifts are similar to single shifts except that they concatenate two
64-bit registers to form a value. Figure 26 illustrates a left double shift
using a 056123 instruction (Si, Sj < Ak). In this example, S (Si) and (Sj)
shift left (Ak) places to Si. Ak = A3 =40g (321¢). Initially, bit 30 is set in
S1, and bit 10 is set in S2. During a left double shift, the content of Sj
moves into Si. The two registers are concatenated as illustrated, with Si

ahead of Sj.
S2(S)) = Bit 10
$1(S) = Bit 30
 A3= 40 — Shift Control

Scalar Shift Functional Unit

Si (S1) ¢ Sj (52) i

Bit . Bit .
QZ) Bit 30 QD Bit 10

t Shift 32 I tShift32 I

Bit 62

Bit 62 = §1 Final Result

Figure 26. Scalar Left Double Shift

Shifting Si and Sj to the left 32 places puts bit 30 of S1 at bit position 62
and bit 10 of S2 at bit position 41. Bit 41 of S2 does not enter the result
register S1 and is lost. The result bit (bit 62) is then sent to the Si (S1)
register. The content of register Sj (S2) remains unchanged.
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Scalar Right Double Shift

Scalar Shift

A 057ijk instruction (Si Sj, Si > Ak) shifts (Sj) and (Si) right (Ak) places to
Si. Figure 27 illustrates a 057123 instruction with the indicated

parameters.
S1= Bit 20
S2= Bit 40
A3 = 60 ~ Shift Control
Scalar Shift Functional Unit
_ ] S/ (82) Si (81)
@ a0 (& Bit 20
T P shirao 1 shittso
Bit 56
»1 Bit 56 = S1 Final Result

HTM-300-0

Figure 27. Scalar Right Double Shift

To right shift Sj and Si using left shift operations, the content of A3, which
currently equals 60g (481¢) is converted into a two’s complemented value.
The two’s complement of 60g is 1203 (or 1010000, or 8010). The required
shift can be accomplished through successive shifts of 6419 and 16;9. A
left shift of 80;¢ moves bit 40 in S2 to bit position 56 inside the dotted box
and bit 20 of S1 to bit position 36 of S2. Because bit 36 does not enter

the intermediate result register (indicated by the dotted box), it is lost, and
bit 56 is sent to the final result register (S1).
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Left Single-shift Instruction

Refer to Figure 28 while reading the following two examples of the scalar
left single-shift instruction:

e (052ijk, results to SO
o (054ijk, results to S1

i k

Bits | 2 1 0] 2 1 0 |=jkField

32 16 8 4 2 1 = Shift Values Decimal

Figure 28. Example of a Scalar Left Single-shift Instruction
Example 1: Write the instruction that shifts S2 left 20,¢ places, and
places the results into SO.
Steps: 1. 052ijk - left shift instruction result goes to SO
2. jk field— shift count 20;¢ = 243 = jk field
3. 052224 — final instruction

Example 2: Write the instruction that shifts S4 left 35¢ places, and
places the results into S4.

Steps: 1. 054ijk — left shift instruction result goes to Si
2. jk field- shift count 35,9 = 43g

3. 054443 — final instruction
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.A) Right Single-shift Instruction

The right single-shift count is the jk field of the instruction, which must be
either in the two’s complement form or equal to 100g minus the number of

places to right shift. Two examples of a scalar right single-shift
instruction follow:

e  053ijk, results to SO
o  (055ijk, results to Si

Example 1: Write the instruction that shifts S5 right 10;¢ places, and
places the results into SO.
Steps: 1. 053ijk — right shift instruction results to SO
2. jk field — shift count in two’s complement equals 663
1019 = 123 = 001010

one’s complement = 110101
+1

) two’s complement = 110110 = 663

3. 053566 — final instruction

Example 2: Write the instruction to shift S7 right 28;¢ places.
Steps: 1. 055ijk right shift instruction results to Si
2. jk field — shift count in two’s complement equals
2810 =343 =011100

one’s complement = 100011
+1

two’s complement = 100100 = 44g

or 100g — 343 = 443
3. 055744 — final instruction
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Scalar Shift CPU Module (CPE1)

Left Double-shift Instruction

Refer to Figure 29 while reading the following example of a scalar left
double-shift instruction: 056ijk, Shift Si and Sj left Ak places to Si.

056ijk Shift Siand Sj left by Ak places to Si

Si Sj

e

Ak contains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any of bits 7 through 63 are set, the results of Siare zeroed.

Si

Bits | 63 716 5 4 3 2 1 0]=Ak

Zero Results 64 32 16 8 4 2 1 = Valid Decimal Shifts

On a left double shift, the contents of Sj are always shifted into Si. This shift is done
inside the scalar shift functional unit.

Figure 29. Example of a Scalar Register Left Double-shift Instruction

Example 1: Write the instruction that left double shifts S2 and S3 64,
places, and places the result into S2.

Step 1. 056234 — final instruction, where (A4) = 1003

NOTE: A circular left shift can be achieved by issuing a 056 instruction

with i = j and (A%) < 64.
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CPU Module (CPET1) Scalar Shift

Right Double-shift Instruction

Refer to Figure 30 while reading the following example of a scalar right
double-shift instruction.

057ik  Shift Sjand Siright by Ak places to Si

Sj Si

Si

Bits | 63 716 5 4 3 2 1 0

Zero Results

Two’s Complement = During Right Double Shift

64 32 16 8 4 2 1 =Valid Decimal Shifts

Figure 30. Example of a Scalar Register Right Double-shift Instruction

Ak contains the shift count, and address (A) register bits O through 7
contain the valid shift counts. If any bit in the range from bit 7 through
bit 63 is set, the result from Si is zeroed. Also, the hardware generates the
two’s complement of the shift count on the Ak register bits O through 7 for
a right double shift.

During a right double shift, the contents of Sj are always shifted into Si.
This operation and the two’s complement of the shift count occur inside
the scalar shift functional unit.

Example 1: Write an instruction to right double shift S4 and S5
3210 places, and place the result into S4.

057454 — final instruction, where (A4) = 40g
hardware generates a shift count of 140g inside the
functional unit.

NOTE: A circular right shift can be effected by issuing a 057 instruction
with i = j and (Ak) < 64.
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0-00€-W1H

AV000

Bits0-7

AWO000

Bits 8- 15

Sj'SiBits 0 - 15

SS000

AP _ / SiResult ﬁ»

AW001

Bits 16 ~ 23

Sj/SiBits 16 — 31

IBA-1BP

SjSi Bits 32 - 47

ica-ice | /" SjData

AW002

Bits 24 - 31

SjSiBits 48 — 63

ipa-ipp | | _SiData

AX000

Bits 32 -39

AX001

Bits 40 — 47

AY000

Bits 48 - 55

AY001

Bits 56 — 63

Go 056ijk/0571jk IED

(JB0OO1)
HO Bit
(1 = Right Shift) |EE

(1C000)

Ak Shift Count  |HA—1HH |

OAA-OAP SiBits0-15

AV000

Bits0—-7

OBA - OBP SiBits 16 —31

AWO000

Bits 8- 15

OCA - OCP SiBits 32 —47

ODA —ODP SiBits 48 -63

AWO001

Bits 16 - 23

QOHA - OHG Ak Shift Count

(AV000)

Ak=0 lIA—-IIG

(AV, AW, AX, AY)

Figure 31. Scalar Shift
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ADDRESS MULTIPLY

HTM-300-0

The AN option performs the address multiply operation (a 032ijk
instruction). The AN option also distributes (fans out) the Aj and Ak
operands used for other A register operations.

In Triton mode, two 48-bit operands are presented to the functional unit to
produce a 48-bit result. The AN option then does a sign extension to bit
63 and a leading zero count on the operands to determine whether the
result will fit within 48 bits. If the result exceeds 48 bits, the 64-bit
incompatibility signal sets, which sets the Address Multiply Interrupt
(AMI) flag in the exchange package.

The AN option does not use a standard pyramid formation multiply

algorithm. Instead, it uses a variation of the Booth Recode algorithm.
This algorithm enables the address multiply unit to reside on a single
option.

Half of the recode groups form as soon as the data arrives at the AN
option (namely, those groups that are centered on bits 0, 4, 8, 12, 16, etc).
One clock period later, using the same logic, those groups centered on bits
2, 6, 10, and 14 are recoded. This method enables a multiply operation to
execute on about one-fourth of the logic used in a standard pyramid
multiply. Because this method holds the Ak operand for 2 clock periods,
the AN operand can accept data only every other clock period. Refer to
Figure 32 for an illustration of the AN option.
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Address Multiply CPU Module (CPE1)
IHA — IHB J Gooso 3
- Reqi
IAA — IGP Aj OAA -OBV_A Register Data__
. OIA-OIH _ Sign Extend Bits
A Registers Multiply >
IDA—IFP Ak
OCA - ODP,
OEA - OFP
Fanout o
AkBits0—-7to VL;
OGA - OGT,
IGF - 1GJ - g Data OHA — OHP -
Figure 32. AN Option
Multiply Algorithm
The multiplier is partitioned into 3-bit recode groups centered on the even -
bits (0 to 46); a forced zero is added to the first recode group. The recode - >

groups are formed as shown in Table 12. The following subsections
provide examples of standard and Booth Recode multiplication.

Table 12. Recode Groups

Odd Bit Even Bit i-1 Recode Value Recode Product

0 0 0 +0 0
0 0 1 +1 X47 — X0
0 1 0 +1 X47 - X0
0 1 1 +2 2(X47 — X0)
1 0 0 -2 {2(X47 — X0} +1
1 0 1 -1 (X47 — X0y+1
1 1 0 -1 (X47 — X0)'+1
1 1 1 -0 0

i—1 = Bit to right of recode X47 — X0 = Multiplicand

group

)
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CPU Module (CPE1) Address Multiply

ﬂ Standard Binary Multiplication

Refer to the following example of standard binary multiplication.

000011 (3)
011101 (35)
000011
000000
000011
000011
000011
000000
0000001010111

Booth Recode Multiplication

Refer to the following example of Booth Recode multiplication.

000011 (3)

011101 (35)

o~ 000000000011

1;/) 11111111010
00000110

1 000001010111

In the previous example, the multiplier is recoded into bit groups centered
on the even bit. A forced zero is appended to the first recode group.

As shown in Table 12, the first recode of the multiplier, bits 1 and 0 and
the forced zero, produces a recode value of 010, or +1. The multiplicand
is brought down to form the first partial product.

The second recode, bits 3, and 2, and 1, produces a recode value of ~1. In
this case, the multiplicand is two’s complemented and left shifted 1 place.

The final recode, bits 5, 4, and 3 produces a recode value of +2. The
multiplicand is left shifted 1 place.
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“) INTEGER MULTIPLY

The AM option performs the scalar vector integer multiply operation
(166ijk). In Triton mode, the AA option receives Sj and Vk operands and
sends a 40-bit output to Vi for VL length. In C90 mode, the AA option
produces a 32-bit result. To produce the 32 bit result, the Sj operand must
be left shifted 31, places, and the V& operand must be left shifted by 16,4
places before executing the 166ijk instruction. (Refer to Figure 33.)

Bits 63 48 47 32 31 16 15 0
) ) C90 32-bit Mode
- Bits 63 48 47 32 31 16 15 0

Sjbits 0 through 31 are gated into bit
positions 32 through 63 for Triton mode.

Bits 63 48 47 32 31 16 15 0
C90 32-bit Mode
Bits 63 48 47 32 31 16 15 0

Vk bits 0 through 31 are gated into bit
positions 15 through 47 for C30 mode.

) : Figure 33. C90 Integer Multiply Mode
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CPU Module (CPE1)

ViBits 0—-25to
OAA, OAZ Result Register

Vi Bits 26 — 51 to
OBA, OBZ Result Register

OHQ, OHR 40-bit Mode

Integer Multiply
The AM option, like the AN option (refer to the “Address Multiply”
section), also uses the Booth Recode algorithm for the multiply operation.
The AN option performs a leading zero count on the operands to
determine whether the results will fit within 40 bit positions. The input
operands pass through the floating-point multiply unit before they arrive at
the AM option, as shown in Figure 34.
AM
OGA-OGT §jBits0-19 IAA - IAT
NB OGU-OHN SjBits20-39 IBA- IBTV
OlA-OIF _ VkBits42-47 1GC-IGH
OJA Go V 166 IEC R
NA ODA—-ODH _SjBits40-47 IFA—IFH_
OEA-OET VkBits0-19 ICA-ICT
OEU-OFT VkBits20—-39 IDA-IDT_
OFO—-OFP VkBits40—-41 IGA-IGB_
NC o
OGA-0GO SjBits48—62 IFI—IFW _
OHA Valid IED _
IC
oYQ Triton Mode IEA
Figure 34. AM Option Inputs
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VECTOR REGISTERS

HTM-300-0

A CRAY T90 series computer system contains eight vector (V) registers,
which are designated VO through V7. Each register contains 128
elements; each element is 64¢ bits wide. The 1281 elements are divided
into two pipes of even and odd elements.

The vector registers have their own integer functional units, which include
vector add, vector logical 1, vector logical 2, vector shift, vector
population, vector leading zero count, and 32-bit integer multiply. The
vector registers share the floating-point functional units with the scalar
registers. These floating-point functional units include floating-point add,
floating-point multiply, floating-point divide/square root and bit matrix
multiply.

The vector registers can send data to memory or load data from memory.
The number of elements sent to a functional unit (including memory)
depends on the value contained in the vector length (VL) register. Any
element of a vector register can be loaded into a scalar register, and any
scalar register can be loaded into any element of a vector register by using
the 076ijk and 077ijk instructions.

The vector registers use 1-parcel instructions. In a 1-parcel instruction,
the gh field contains the instruction decode, and the ijk field contains the
operands and destination. The g# field of the instruction indicates the
functional unit needed, and the ijk field indicates the vector registers used.
Usually, the k field of the instruction selects the vector operand registers,
VO through V7. The j field of the instruction indicates either Sj or Vj,
depending on the instruction. The i field of the instruction points to the
destination or result register.

When preceded by a 005400 instruction, some vector instructions execute
differently. For example, an instruction sequence of 005400 150i/0 issues,
a left shift of V;j VO places to Vi is performed. Without the preceding
005400 instruction, a 150ij0 instruction performs a left shift of Vj AQ
places to Vi.
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Vector Registers

62

CPU Module (CPE1)

The vector registers in the CRAY T90 series system contain a dual set of
functional unit pipes. Each functional unit has an identical twin functional
unit. For example, the vector add functional unit is duplicated so that all
the even elements go to one of the vector add functional units, while all
the odd elements go to the other vector add functional unit. The even and
odd elements are sent to the functional unit simultaneously, and the two
results are loaded back into the result vector register simultaneously.

If the vector add functional unit fails in the even elements, the cause of the
failure is the pipe O vector add. Pipe 1 handles the odd vector elements. If
the vector length register is an even value, the results are written into the
vector register simultaneously using pipe O and pipe 1, until the last
element specified by the vector length is used. Refer to Table 13 for a list
of the vector register options.

Table 13. Vector Register Options

Option Type | Number Used Description
Provide read/write address and control
(VBO pipe 0)
VB 2 (VB1 pipe 1)

Vector length register
Functional unit release

‘ Pipe control
VE 4 (VEO,VET1 for pipe 0)
(VE2,VES3 for pipe 1)

Data multiplexing (VNO — VN7 pipe 0)
(VN8 — VN15 pipe 1)

Vector add functional unit

Vector logical functional unit

VN 16

Data multiplexing and storage
vQ 16 (VQO - VQ7 pipe 0)

(VQ8 - VQ15 pipe 1)

Cray Research Proprietary HTM-300-0
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CPU Module (CPE1)

VB Option

Vector Registers

The two VB options on a CPU module provide vector read and write
control. VBO provides address and control for the even elements of the
vector registers, and VB1 provides the address and control for the odd
elements. Both VB options have the following common functions:

e  Vector read and write address
e  Vector read and write length
e  Vector chaining control

Each VB option also has the following unique features:
e VB0
e Release vectors for write operations

e  Functional unit release for:
Vector logical #1
Vector shift
Vector floating-point multiply
Vector divide

e Even-element addressing

e Release vectors for read operations

e  Functional unit release for:
Vector logical #2
Vector adder
Vector floating-point add
Vector matrix multiply

e  Odd-element addressing

Vector Length Register

HTM-300-0

The vector length register is located on the VB option. There are two VB
options, one for each pipe. Both vector length registers are loaded with
Ak data bits 00 through 06 from the AV00O option. These bits are needed
to form values from O to 177g. If a value of all 0’s is entered, the VL
register is forced to a value of 200g.
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Vector Registers

Chaining

VE Option

CPU Module (CPE1)

A vector length value enters a countdown (decrementing) register. VL

bit 0 is removed (pseudo right shifted so that a VL value of 200 becomes a
value of 100 in the active register) because each pipe can handle only 100
elements. Every time VL decrements, it generates

the Advance Address signal. The VB option also checks VL bit O to
determine whether the vector length is odd or even in order to enable
either pipe O for odd vector lengths or pipe 1 for even vector lengths, on
the last operation.

If Vi, j, or k is reserved as a destination register and the next instruction
tries to use the same vector register as an operand, the next instruction is
allowed to issue. This is referred to as chaining.

Chain slot time is the time required for the result of a previous instruction

- to be presented to the inputs on the VQ options. If another instruction is

waiting for these results or is addressing the same element, the VQ option
passes the results directly to the read-out register. The VB option controls
vector chaining by controlling the issuing of the Go Write signal.

Chaining to common memory read operations occurs on 8-word
boundaries. Vector control waits for 8 contiguous words to become valid
before the read of that group is allowed.

64

There are four VE options on the CP module. VEO and VE1 control
fanout for pipe 0; VE2 and VE3 control fanout for pipe 1. The VE
options perform the following functions.

Instruction parcel data fanout to VQ options

Vector add carry and enable summations and bit toggles
Vector register parity error information

Vector functional unit delay chains

Vector functional unit data valids

Vk address buffering for common memory

Release of Vi for write operations
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CPU Module (CPE1)

VN Option

Vector Registers

VQ Option

The VN options perform write data multiplexing on an 8-bit slice of all
functional unit data. There are 16 VN options. VNOOO to VNOO7 are for
even-clement steering, and VNOOS8 to VNO15 are for odd-element
steering.

The VN option performs the following functions:

Read and write data steering
Vector read-out control

Vector add functional unit

Both vector logical functional units

HTM-300-0

Sixteen VN and VQ options reside on the CP module as illustrated in
Table 14. Each option performs read data steering and vector data storage.
The read data steering is done on 4-bit slices. The contents of the selected
vector register are gated to one of the following destinations:

Floating-point add
Floating-point multiply
Reciprocal, pop, parity, LZ
Shift

Common memory port A
Common memory port B
Common memory port C
Common memory write data
V data to scalar

Bit matrix multiply

The VN and VQ options contain four high-speed register (HSR) storage
arrays that are 18 bits wide by 64 elements deep. Sixteen of the bits are
data and 2 bits are for parity. VQO00 through VQO0O7 store vector data for
the even elements (pipe 0), and VQOO08 through VQO15 store data for the
odd elements (pipe 1).

NOTE: VN/VQ options 12 through 15 do not handle exchange data.
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Vector Registers

Table 14. VN/VQ Data Steering

CPU Module (CPE1)

Option Pipe 0/Pipe 1 | VN3/11 | VQ3/11 | VN2/10 | VQ2/10 | VN1/9 | VQ1/9 | VNO/8 | VQO/8
Read Bits 28-31 | 24~-27 | 20-23 |16-19| 12—~-15 | 8-11 4-7 0-3
Write Bits 24 - 31 - 16-23 - 8-15 - 0-7 -

Exchange Bits 60-63 | 55-569 [ 52-565 (4851 |44 —-47 [40-43 | 36-39 {32-35
— |

Option Pipe 0/Pipe 1 | VN7/15 | VQ7/15 | VN6/14 | VQ6/14 | VN5/13 | VQ5/13 | VN4/12 | vQ4/12
Read Bits 60—-63 | 5659 [52-~-55 |48-51 (44 -47 [40-43 | 36—-39 |32-35
Write Bits 56 —- 63 - 48 — 55 - 40-47 - 32 -39 -

Exchange Bits 28-31 | 24-27 120-23 |16-19 | 12-156 ] 8 - 11 4-7 0-3

Each VQ option has an input that is used to force parity errors into the

HSR arrays. The maintenance channel provides the following two
features:

e force RAM parity error internal (code 100)

e force RAM parity error external (code 140)

Through the use of the maintenance channel, a specific loop controller and
a specific chip can be given a maintenance function such as force parity

CITOI.

Write Data Steering

66

The VN options receive the i instruction field from the VE options. This
field performs internal gating of data to the correct register. The i field
and the instruction decode enable separate write paths for each vector.
This path stays selected until a new instruction issue changes it. All the
write paths are separate and all can be active at the same time. Refer to
Figure 35 for an illustration of the write data path.
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CPU Module (CPE1)

VNOOO VNOO4
Bits Bits
0-7 32-39

VNOO1 VNOO05
Bits Bits

8~15 40-47

VNO002 VNO0B

Bits Bits
16-23 48 —-55

VNOO3 VNOO7

Bits Bits
24-3 56 -63

VN008 VNO12

Bits Bits
- 0-7 32-39

VNOQO9 VNO13

Bits Bits
8-~15 40 - 47

VNO10 VNO14

Bits Bits
16-23 48 -55

VNO11 VNO15

Bits Bits
24-31 56 -63
HTM-300-0
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Vector Registers

Figure 35. Write Data Path
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V7 VQO007
V6 VQO006
Even Element
Storage V5 VQO005
V4 vQ004
V3 VQ003
V2 VQ002
V1 VQO001
Vo VQ000
RAMO RAM 1
Bits Bits
0-15 16-31
Elements| ]Elements
0-62 0-62
RAM 2 RAM 3
Bits Bits
32-47 48 - 63
Elements| |Elements vi vQo15
0-¢2 062 V6 vQo14
V5 VQ013
V4 vQO012
V3 vQo1i1
V2 vQo10
Vi VQO009
\¢} VvQO008
RAM O RAM1
Bits Bits
0-15 16-~31
Elements]| |Elements
1-63 | 1-63
RAM 2 RAM 3
Bits Bits
32-47 | | 48-63 Odd Element
Elements| |Elements Storage
1-63 1-63
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Vector Registers CPU Module (CPE1)

Read Data Steering =

The VN and the VQ options are responsible for read data steering. Each
VN and VQ option steers 4 bits for all eight vector registers to one of the
following destinations: '

Floating-point add

Floating-point multiply

Reciprocal, pop, parity, leading zero
Shift

Common memory port A, B, C

V data to scalar

The VN and VQ options receive the j and k fields of the instruction from
the VE option along with the instruction; this enables one of eight vector
paths to which data is steered. These paths stay selected until another
instruction changes them. All the read paths are separate and all can be
active at the same time. Figure 36 shows the read data path for pipe 0 and
pipe 1 (even elements), and Figure 37 shows the read data path for pipe O
and pipe 1 (odd elements). Also refer to the following diagrams for
additional related vector register information:

Figure 38 — vector register write block diagram (pipe 0) E
Figure 39 — vectors O through 3 pipe 0/1 read data path

Figure 40 — vectors 4 through 7 pipe 0/1 read data path

Figure 41 — vectors O through 3 pipe 0/1 write data path

Figure 42 — vectors 4 through 7 pipe 0/1 write data path

Figure 43 — vector register decode bit fanout (pipe O and 1 path 1)
Figure 44 — vector register decode bit fanout (pipe O and 1 path 2) -
Figure 45 — S register to vectors

Figure 46 — memory data to vectors (even elements)

Figure 47 — memory data to vectors (odd elements)
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CPU Module (CPE1) Vector Registers
VQO07  Bits 56 - 59
VQO06  Bits 48 — 51
VQO07 Vector 7
VQO006 Vector 6 VQO05  Bits 40—-43
VQO05 Vector 5
VQ004 Bits 3235 |
vQ0o04 Vector 4 |
VQ003 Vector 3 VQO003 Bits 24 27 -
vaoo2 Vector 2 VQo02 Bits 16— 19 a
VQOO01 Vector 1
vVQO01 Bits 8~ 11
VQ000 Vector 0 -
VQO00  Bits0-3 |
Array 0 Array 1 >
Bits Bits
0-15 16-31
Elements 0 - 62
Array 2 Array 3
Bits Bits -
32-47 48-63
VNOOO  Bits4-7 ]
Elements 0 — 62
VNOO1 Bits 12— 15 |
VNO0O2 Bits 20-23
VNOO3  Bits 28 — 31
VNOO4 Bits 36 - 39
VNOO5 Bits 44 — 47
VNOO6 Bits 52 ~55
VNOO7 Bits 60— 63
Figure 36. Read Data Path for Pipe O, Even Elements
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Vector Registers CPU Module (CPE1)
VQoi5  Bits 56 — 59
VQ014  Bits 48 -51
vQois Vector 7
vQo14 Vector 6 VQO13  Biis 40-43
vQo1 Vector 5
Q013 it VQO12 Bits 32— 35 n
vQo12 Vector 4 |
vQo11 Vector 3 VQO11 Bits24-27 .
vaoio Vector 2 VQO10 Bits 16~ 19 ||
VQ009 Vector 1
VQ009 Bits8—11
VQ008 Vector 0 =
VQ008  Bits0-3 |
Array 0 Array 1 >
Bits Bits
0-15 16 - 31
Elements 1 - 63
Array 2 Array 3
Bits Bits e
32-47 48-63
VNOO8  Bits4-7 ]
Elements 1 - 63
VNOO9 Bits 12— 15 ]
VNO10 Bits 20-23 1
VNO11  Bits 28— 31
VNO12 Bits 36 -39
VNO13 Bits 44 — 47
VNO14 Bits 52 - 55
VNO15 Bits 60 —63
Figure 37. Read Data Path for Pipe 1, Odd Elements
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CPU Module (CPE1) Vector Registers
Vector 0 tor 3
IEA— Vector 1 EE - Vector 2 El— Vector IEM—
VQOOoo IED _ | vQ000/8 V00T IEH _ | vQooo/s VQo02 iEL _ | vaoooss VQ003 iEp__ [ vaooos
VQo08 OAA- ICA— VQO09 OAA- ICE - | vQo10 OAA- ICl— | vQoi2 OAA- ICM -
OAD Bits0-3 | 1CD _| vNooO/8 OAD Bits0—3 | ICH _}vNoOO/8 OAD Bits 0-3 | ICL _| vNooo/s OAD Bits0—3 | ICP ] VN00O/8
OAE - IEA~ OAE - EE - | OAE - IEl— OAE ~ IEM - [UN
OAH  Bits4-7 IED | YMO0OB OAH  Bits4-7 IEH | /NO0OB OAH  Bits4-7 IEL | VNOOUB OAH  Bits4—7 Iep | VNOOOB
IEA- IEE - IEI - IEM—
IED _ | vQo01/9 IEH _{vQ001/9 IEL__]vaoo1/9 IEP__I vaoo1/e
OAl - ICA=— OAIl - ICE— OAI- ICl— OAl - ICM -
OAL Bits8~11 } ICD | vNoo1/9 OAL Bits 8—~11 1 ICH | vNo01/9 OAL Bits8—11 | ICL _|yNoo1/9 OAL Bits8-11 | ICP »| YNOO1/9
OAM - IEA- | OAM — IEE- OAM - IEI- | OAM — IEM —
OAP _ Bits12—15 IED | YNOOV/9 OAP _ Bits12-15 I[EH | YNOO1® OAP  Bits12—15 IEL | VNOO1® oAP  Bits12-15 1EP | YNOO1S
IEA- IEE - EI - IEM -
IED _['VQoo2/10 IEH _[Vaoozrio IEL__[Vaooz/io IEP__[Vaooz/1o
OBA- ICA— OBA- ICE - OBA- ICl— OBA- ICM =
OBD__ Bits16-19] 1D |\ 00210 0BD__ Bits 16-19) 1CH _|\no0210 08D _ Bits 16-19] ICL |\ noooro OBD__ Bits 16-19f ICP _{ ynoo2/10
OBE - IEA~ OBE - IEE - OBE - EI - OBE- IEM—~
OBH _ Bits20-23 IED | VNO02/10 OBH  Bits20—23 IEH | YN002/10 OBH  Bits20-23 IEL _| VN002/10 OBH  Bits20-23 IEP | VN002/10
IEA- IEE - IEI - IEM—
IED__['vaooa/ IEH _[vaooa/t IEL__['vQooart1 IEP__[vaooari
OB - ICA= OBI - ICE - oBI- ICl— OB! - ICM -
. _ . _ . _ . - P
OBL  Bits24-27] 10D |\ ooos OBL _ Bits24-27] ICH |\ oo, OBL _ Bits24-27[ 1CL |\ \ oo OBL__ Bits24-27 1P |\ oo
OBM - IEA- OBM — IEE - OBM-— IEl - OBM — IEM—
OBP _ Bits28—31 IED _}VNOO3/1 OBP _ Bits28—-31 IEH | VNOO3/11 OBP_ Bits28-31 IEL _| VNOO3/11 OBP _ Bits28-31 IEP | VNOO3/11
IEA- IEE~ El - IEM —
IED _} vQo04/12 [EH _| vQo04/12 IEL__{VvQoo4/12 IEP__| vQoo4/12
OCA- ICA= OCA- ICE— OCA- ICl— OCA- ICM =
OCD__ Bits 32-35] ICD | yNpp4/12 OCD  Bits 32-35] ICH | yNoo4/12 OCD  Bits32-35] ICL I vNoo4/12 OCD  Bits 32-35] ICP _}vyNpo4/12
OCE- IEA—~ OCE - IEE- OCE - IEl— OCE - IEM~
OCH _ Bits36—39 IED _|VN004/12 OCH _ Bits36-39 IgH | VNO0412 OCH  Bits36—39 IEL | YNOO412 OCH _ Bits36-39 Igp | YNOO4/12
IEA- IEE ~ el - IEM—
IED _I'vQoos/13 IEH _['vQo05/13 EL__fVvQoos/13 IEP__I'vaoos/i3
ocI - ICA- oCi - ICE ~ ocCl - ICl— oCl - ICM =
OCL__ Bits 40 -43] 10D | \/noos/1a OCL__ Bits 40430 1CH 1 \nogsia OCL__ Bits40-431 1OL _} \Noosii3 OCL__ Bits40-430 10F I \noosi13
OCM — IEA- OCM - IEE - OCM — IEI - OCM — IEM~
OCP  Bits44-47 IED _|VNO005/13 OCP  Bits44—47 IEH | VNO05/13 OCP  Bits44—47 IEL ] VN005/13 OCP  Bits44—47 IEP _| VNOO05/13
IEA- IEE - IEl- IEM—
iED _ [ vQ006/14 iEH _ | vaooe/14 iEL _} vaQoos/i4 iEP | vQoos/14
ODA- ICA— ODA - ICE - ODA- ICl— | ODA- ICM —
oDD Bits 48-51] ICD ¥ vNO06/14 OoDD Bits 48-51] ICH ] vN006/14 QDD Bits48—-511 ICL I VN0O6/14 ODD Bits 48 - 511 ICP | vNOO6/14
ODE - IEA -~ ODE - IEE- ODE - IEl- ODE - IEM—
ODH__ Bits52-55 _IED _| VN00%/14 ODH__ Bits52-55 IEn | YNOOO/14 ODH _ Bitss2—55 IEL | YNOOO/14 ODH__ Bits52-55 Igp | VNOOO/14
IEA - [EE - IEI - IEM—
iED | vQoo7/15 IEH _] vQ007/15 IEL__| vQo07/15 IEP__} vQo07/15
ODi- ICA— oDl - ICE - oDI - ICl— OoDi - ICM =
ODM — IEA- ODM —~ IEE - ODM - IEI - ODM - IEM —
ODP  Bits60—63 IED _}VNO07/15 ODP  Bits60—63 IEH | VNOO7/15 ODP  Bits60—63 IEL | YN0O7/15 ODP  Bits60-63 IEP | YNOO7/15
Figure 38. Vectors O through 3, Pipe 0/1, Read Data Path
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CPU Module (CPE1) Vector Registers
Vector 4 Vect Vector 6 Vector 7
DA - ector 5 IDE — ector Dl - IDM -
VQ004 IbD _| vaooors VQOO5 iDH [ vaooors VQoo6 IoL | vaooors VQO07 IDP__| vQo00/8
VQO012 OAA-— IFA— vVQo13 OAA- IFE - VQo14 OAA— IFl— vQo15 OAA- IFM —
OAD  Bits0—-3 | IFD _|VN0OO/8 OAD  Bits0-3 | IFH ] VNOOO/8 OAD  Bits0-3 | IFL | VN000/8 OAD  Bits0—3 | IFP ] VNOOO/8
OAE - IDA— OAE - IDE— OAE - IDI— OAE — IDM - Fomooos
OAH  Bits4-7 I1DD | VNO0O OAH  Bits4-7 IDH VNoOo/8 OAH Bits4-7 IDL VN0oo/8 OAH  Bits4-7 IDP 000/
IDA - IDE - IDI - IDM -
IDD _ | vaoo1/9 IDH__{ vQ001/9 IDL__| vaoot/9 IDP__| vQoo1/9
OAl - IFA - OAl - IFE — OAl - IFl— OAl - IFM —
OAL Bits 8 —- 11 IFD 1 vNoo1/g OAL Bits 8 — 11 IFH _ 1yNoO1/9 OAL Bits 8 — 11 IFL 1 vyNoo1/9 OAL Bits 8 — 11 IFP 1 vNOO1/9
OAM - IDA - | OAM - IDE - OAM — IDI- OAM- IDM —
OAP__ Bits12—15 IDD | YNOO1/9 OAP  Bits12-15 IpH | YNOOY9 OAP  Bis12—15 DL | YNOO1® OAP  Bits12-15 pp | VNOO1/9
IDA - IDE - IDI— IDM —
IDD I vaooz/10 IDH _I'vao02/10 IDL__|'vaoo2/10 IDP__Ivaoo2/10
OBA- IFA - OBA- IFE - OBA- IFl— OBA- IFM —
OBD_Bits16-19] IFD _|\noo2/10 OBD _ Bits 16—19] IFH _|\noo2s10 OBD _Bits16-19] IFL _|\noo2/10 OBD _ Bits 16—19] IFP |\ 00210
OBE - IDA — OBE - IDE~ OBE - IDI - OBE - IDM —
OBH  Bits20—23 IDD _| VNO02/10 OBH  Bits20-23 IDH | VN002/10 OBH  Bits20-23 IDL _| VYN002/10 OBH  Bits20-23 IDP | YNOO2/10
IDA — IDE — 1D — DM -
IDD _IvQooari1 IDH _[vaoo3r1 IDL _I'vaoosn1 IDP__FvQoo3i
OBl - IFA— OBI - IFE - OBl - IFl - oBI- IFM —
on oa on og i
OBL Bits24-27 | IFD o VNoo3/11 OBL Bits 24 -27| IFH o Vo031 OBL Bits 24 - 27] IFL o] VNO03/11 OBL Bits 24 —-27] IFP =] VNOO3/11
OBM - IDA - OBM — IDE - OBM — IDI - OBM - IDM —
OBP  Bits28—31 IDD _| VNOD3/11 OBP  Bits28~31 IDH | VNOO3/11 OBP  Bits28—-31 IDL ] VNOO3/11 OBP  Bits 28—31 IDP | VN0OO3/11
IDA - IDE - DI - IDM -
IDD _ | vQ004/12 IDH _ | vQoo4/12 IDL__{vQo04/12 IDP__ | vQo04/12
OCA- IFA - OCA- IFE— OCA- IFl— OCA- IFM —
OCD Bits32-35] IFD _|yNgo4/12 OCD  Bits32-35] iFH _|vyNoo4/12 OCD  Bits32-35] IFL I vyNQo4/12 OCD  Bits 32-35] IFP | yNoo4/12
OCE - IDA — OCE - IDE— OCE - DI— OCE - IDM ~
OCH _Bits36-39 _IDD_|YN004/12 OCH_ _ Bits 3639 _IDH _|VNO04/12 OCH _ Bits 3639 _IDL | VNOD4/12 OCH _ Bits36-39 _IDp | YN0O4/12
IDA - IDE - IDI - IDM -
10D _I'vaoos13 IDH _[VQ005/13 IDL__ I'vQo05/13 IDP__I'vaoos/13
ocCl - IFA — ocCl - IFE - ocl - IFl— oCl- IFM —
OCL  Bits40-43 ] IFD |\ 10sia OCL__ Bits40—-43] IFH l oo OCL__ Bits40-43] IFL |\ ociia OCL__ Bits40-43] IFP |\ \oca
ocM- IDA - OCM - IDE — OCM - IDI - OCM - IDM —
OCP  Bits44—-47 IDD _| yN0OD5/13 OoCP Bits 44 -47 IDH 1vN0D05/13 OoCP Bits 44—-47 IDL | yN0OO05/13 ocCP Bits 44 —47 IDP _ } yNO05/13
iDA - IDE - IDI - IDM -
IDD | vQoos/14 iDH _ | vQoo6/14 oL _ | vQoos/14 IDP _ | vQoose/14
ODA - IFA — ODA- IFE— ODA- IFl— ODA- IFM—
ODD  Bits 48 — 51 IFD _ ] vNOO6/14 ODD Bits 48 -51] IFH | vN0O06/14 OoDD Bits 48 -511 IFL | vNOO6/14 OoDD Bits 48-51] IFP [ vNOO6/14
ODE - IDA — ODE - IDE - ODE - iDI- ODE - IDM —
ODH _Bits52-55 _Ipp_| YNO0&/14 ODH _ Bits52-55 _ipH | YNOO&/14 ODH _mits52-55 b | VN0 ODH__ Bits52-55 Iop | VNOOO14
IDA - IDE - IDI - IDM —
IDD _ | vQoo7/15 IDH _IvQoo7/15 IDL__ I vaoor/15 IDP ] vQoo7/15
oDl - IFA - oDl - IFE — oDI- IFI - oDI- IFM —
oDL Bits 56 — 59 IFD o1 VNOO7/15 ODL Bits 56 — 59 IFH o] vNOO7/15 OoDL Bits 56 — 59 IFL o VNOO7/15 ODL Bits 56 — 59 IFP =1 VNOO7/15
ODM - IDA - ODM — IDE - ODM — iDI— ODM - IDM —
ODP  Bits60—63 DD _| YNOO7/15 ODP__ Bits60—-63 _IDH _|YNOO7/15 ODP  Bits60—-63 DL _}VYNO07/15 ODP  Bits60—63 IDP | YNOO7/15
Figure 39. Vectors 4 through 7, Pipe 0/1, Read Data Path
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CPU Module (CPET1)

Functional Units
Floating-point Add vwggo VN;?:
Floating-point 0 _'_37 32 -39
Multiply V Write Data 1AA, IBX
Vector Shift IGA, IGH Bits Bits
BMM _ " 8—15 40— 47
Integer Multiply 1A, 1IH OAA — ODP V Write Data 1AA - IDP
VNOQO2 VNQOO6
AV, AW, AX, AY WA 1IH Bits Bits
Scalar Data IMA, IMH VNO003 VNOO7
IMA. IMD Bits Bits
CHO00 ~ CHO14 — 2431 5663
Common Memory JOIA, OIH IME, IMH
Data Path 1 =‘
CH001 — CHO15 vB0O1 |
Common Memory |OIA, OIH VB00G
Data Path 2 .
AV000 OPA, OPG Ak Data IHA, IHG :E VL Registe I,l O_{-0_N V Write Address IJA = IJF>
VQO000 - VvQ007 '~ .
Vector Select  JOY1, OYP OAQ Go Write WH_
Code (Fanout Instruction
from CK) JB00O OCA, OCP __ Parcel IAA, 1AP
vQ1, Va3, vaQs, L.
vQs KA
Common Memory |OY1, OYL ODA,ODC__Issue IBA, BB 1BD| _ IKP
Path 1 Code |
(Fanout from CK)
= OAA - OAP
VQ1, vQ3 vas, VEOOT OMA, OMH _ Release ICA, ICH OBA - OBP
VQ6 o VEO0OO OCA-0QOCP
Common Memory |OYM, OYP > OWA — OWP Instruction Fields IKA-IKP [} ODA - ODP
Path 2 Code OAQ Parcel 0
(Fanout from CK) 0OBQ Parcel 1
CKO000 OCQ Parcel 2
OGA, OGJ _ Path 1 Code IDA, 1DJ - owa lssue g 0DQ Parcel 3
IXA —iXH Go Write OMA — OMH
CK002 OGA,0GJ  Path2Code _IEA, IEJ
Pipe 0
INJ ONE

HTM-300-0

Advance Vi Write Address (Expand)

Figure 40. Vector Register Write Block Diagram, Pipe O
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Vector Registers
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AWO01

CPU Module (CPE1)
AV000
VNOOO
OEA- IGA -
OEH Bits 0— 7 IGH
Pipe 0
Pipe 1
VNOO8
OEl - IGA-
OEP  Bits0-7 IGH
AX000
OEA- IGA - VNoo4
OEH  Bits32-39 IGH |
Pipe 0
Pipe 1
VNO12
OEi- IGA -
OEP Bits 32-39 IGH

HTM-300-0

S Register to Vector

AY000

Bits 40 - 47

Vector Registers

AW000
VNOO1
OEA- IGA -
OEH  Bits8-15__ IGH
VNO09
OEil - IGA -
OEP  Bits8-15  IGH _
AX001
v
OEA- iGA— | OO
OEH  Bits40—47 IGH
VNO13
OEI - IGA -
OEP IGH

VN0O02
OEA- IGA—-
OEH  Bits16—-23 IGH
VNO10
OEl - IGA -
OEP Bits 16 —23 IGH
VNO0OB
OEA - IGA -
OEH  Bits48-55 IGH
VNO14
OEl - IGA-
OEP  Bits48—-55 IGH

Figure 41. S Register to Vectors

Cray Research Proprietary

AW002
VN0O3
OEA-— IGA -
OEH  Bits24-31 IGH
VNO11
OEI— IGA -
OEP  Bits24-31 IGH
AY001
VNGO7
OEA-— IGA —
OEH  Bits56-63 IGH |
VNO15
OEI - IGA -
OEP  Bits56-63 IGH
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CPU Module (CPE1)

Path 1
CH000
OIA~-0ID HA—11D | VNOOO
OlA- IIE-
CHOO? (o][] o
OE- IE-
OIH IIH ] VNOO4
OIE - OIH IIA—IID
Path 2
CHO01
OIA-0ID WA~ 14D, | YNOOO
OlA- WE-
CHOO3 OID WH .
OIE- WE-
OlH wH |VNOO4
OIE - OlH IIA-IID
HTM-300-0

CHO004 CHo08
OlA-0ID HA— D _ | YNOO1 QOlA—0ID i1A- 11D _ | VNOO2
OlA- lIE- OlA-  lIE-
choos oD 1H cHoto 2D IH
OIE- IE- OIE- lE-
OH  1H _JvnNoos OH iH | VNOO6
OIE - OIH A —IiD OIE-OIH A - IID
Common Memory Data to Vector Paths 1 and 2 Even Elements
CHO05 CHO09
VNOO1 VNOO2
OIA—OID IJA=1JD_ OlA-OID tJA—1JD
OlA- WJE- OlA— WE-
CHO07 OID IWH_ CHO11 oID IJH
OIE- IJE- OIE- NE-
OH 1H_JVYNO05 oM 1n_|VYNO0B
OIE - OIH HA-ID OIE - OIH HA—ID |

Figure 42. Memory Data to Vectors, Even Elements
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Vector Registers
CHO12
OIA-0ID lA—IiD _ | VNOO3
OlA- lIE-
CHO14 0ID e
OIE~ IIE-
OIH IiH | VNOO7
OIE - OiH A= IID
CHO13
VNOO3 -
QIA-0ID IJA — IJD,
OIA- NE-
CHO15 OID  WH_
OlE-~ WNE-
OH  IJH | VNOO7
QIE - OIH IIA =D
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CPU Module (CPE1)

Path 1
CHO00
0OJA—0JD jA—ip | VNOO8
OlA- IlE-
CHoo? oD iH
OE- IE-
OlH 1IH | VNO12
OJE - QJH HA - IID
' ) Path 2
- CH001
OJA-0JD lJA—1JD _J VNOO8
OlA- IE-
=03 oD WH
OIE- NE-
, OH IJH | VNO12
OJE - OJH HA=IID
HTM-300-0

CH004 —
QIA- 04D la-up | YNOOS OJA—0JD a—-1p _|VNO10
qp- lIE- OlA-  IIE-
cHoos  |2D___IH STeTe 0D I
OE- IE- _ _
OIH___IiH _|VvNO13 8:5 ::5 v
QIE_OH Sy OJE — OJH A - IID
Common Memory Data to Vector Paths 1 and 2 Odd Elements
CH005 CHO09
_ _ VNO10
OJA—0JD IJA—1JD_ | VNOO9 OJA—0JD IJA—1JD
N
cHoo7  J2D__ WH_ CHO -
OE- WNE-
OIE- E-
OH  1H_|VNO13 OIH iJH JVNO14
QJE — OJH OJE — OJH A ~IID -

IIA—=1D _

Figure 43. Memory Data to Vectors, Odd Elements
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Vector Registers
CHO12
OJA-0JD A— 11D _ | YNO11
OlA- liE-
Chota |20 iH
OE- IE-
OH 1+ _[vNo15
OJE - OJH A-HID _
CHO13
OJA-0JD IJA—1Jp_| VNO1T
OA- WE-
chots |22 _WH_
OE- WE-
OH  IH | VNO15
OJE — OJH NA-IID
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CPU Module (CPE1)

Vector Registers

gﬁggg OFD ve [vaoos ovI IMC__[VNoo Vector Register Decode Bits
vQo13 ovJ VNO08
vQOO1 QY IMA =l VNOOO OYK IMD* IMC IMB IMA
OFB Iy _]vaoos oYJ VN008 v Tvnooz
> oYL > 1 0 0 0 VO
OYK VNO10
OFC oYL ma | vNoo2
- i 0 0 1 V1
»| VNO10 IMC _ | VNOO4
1 VND12
1 10 V2
OFA ma _[VNoos 0
| VNO12 mc  vNOOB 1 0 1 1 V3
VNO14
IMA _ | vnOOB 1 1 0 0 v4
VNO14 Mc | vNOO1
VNOO9 11 0 1 V5
iMA | VNOO1
™1 VNOO9 mc  [VNOO3 i1 1 0 Vb
»| VNO11
wma  [VNOO3 11 1 1 v7
VNO11 IMC ] VNOO5
VNO13 * Path 1 Valid
IMA _ | VNOO5
=] VNO13 IMC | VNOO7
VNO15
IMA | VNOO7 NOTES: The top option number represents pipe O.
- The bottom number represents pipe 1.
>l VNO15 vaoos =Y MD 0G0 P PP
vQo15 VN0O08
oYl IMB__ o
vQ003 VNOOO oYK
IYB _lvQo11 oYJ VNO08 iMD | vNOO2
OYK oYL 1 VNO10
QYL IMB VNOO2 VQO00
*1 VNO10 oYM mp _ [vNooa INA | 00
OYN > vNo12
IMB _ | vNOO4 IYB INA ] vaoo2
> VNO12 > ovo imp _ | vNOOB \,8810
IYC OYP VNO14
imB _ | vNoOB
™ vNO14 IMD__ | VNOO1 A - 2’,83?;‘
*1 VNOO9
iMB _ | VNOO1
1 VNOO9 IMD VNOO3 INA - ://88?2
1 VNO11
. IMB _] VNOO3 VQOO01
> VNO11 mp__[VNoos INA_t V008
1 vNO13
mB | vNOO5
VNO13 iMD _ | VNOO7 INA \\;88?13
™ vNo1s
iMB _ | VNOO7 °
Path 1 Valid
Path 1 Valid vQoo7
Path 1 Valid INA | VQO15
Figure 44. Vector Register Decode Bit Fanout, Pipe 0 and 1, Path 1 Only
HTM-300-0 Cray Research Proprietary
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CPU Module (CPE1)

CK000

j CK002

-

HTM-300-0

Vector Registers

Vector Register Decode Bits
S 2 vaoss oYM IMG_[Vroo0
VQo01 oYM IME _I'VNO0O OYN VN0O8 IMH* IMG_IMF_IME
OFB IYC ] VQO009 QYN VNOO8 oYO
oYo OYP MG, | VN0O2 1. 0 0 0 VO
OFC OvF e [vnoo2 VNO10
VNO10 1 0 0 1 Vi
OFA iMG_ | VNOD4
IME _ ] VNOO4 | VNO12 1 0 1 0 \
VNO12
Mg [VNOOG 1 0 1 1 V3
™1 VNO14
s 358?3 1 1 0 0 v4
VNOO1
IMG— VNOO9Q 1 1 0 1 V5
iME _ ] VNOO1
*1 VNOO9 1 1 1 0 V6
MG | VNOO3
IME | VNOO3 VNOT1 1 1 1 1 V7
™1 VNO11
MG s * Path 2 Valid
IME | VNOO5
1 VNO13
IMG_ |} VNOO7
IME | VNOO7 VNO15 NOTES: The top option number represents pipe 0.
1 VNO15 The bottom number represents pipe 1.
oyl IMH_
vQ0oo7 »1 VNCOO
VQoo3 oVl M VNG00 vaots |ovy VN0O8
IYB | vao11 ovJ VNO008 OYK
OYK imH | vNoo2
OYL IMF [ VNOO2 VB OYL VNO10
*| vNO10 > oYM N [VQO000
IYc IMH _ | VNOO4 »1 vQ008
IMF_ | VNOO4 o OYN VNQ12
*1 VNO12 V
ovo imH | vNOOB INB_f vaoe
IMF_ | VNOOB QYP VNO14
g il IMH ] VNOOA1 INB vQoo4
IMF_ | VNOO1
1 VNOO9 INB VQo06
1 VNO11
IMF_ ] VNOO3
VNO11 Vi 1
iMH_ | vNOOS iN_ | VQ00
*1 VNO13 vQ009
IMF | VNOO5
=1 VNO13
vQO003
IMH _ | VNOO7 W8 o vao11
i [VNo07 VNO15
> vNo15 Path 2 Valid INB__| VQO05
. 1 VQ013
Path 2 Valid
Path 2 Valid VQ007
Path 2 Valid INB _}VQO15

Figure 45. Vector Register Decode Bit Fanout, Pipe 0 and 1, Path 2 Only
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CPU Module (CPE1)

Vector 1
VQOO1
VQ009
VNOOO OAl - 1AA —
VNOO8 OAP  Bits0-7 IAH
VNOO1
OAl - 1Al -
VNOO9 OAP _ Bits8-15__ IAP _
mg?ﬁ OAl - IBA -
OAP Bits 16 —-23 IBH
VNO
VNO?? OAl - Bl -
OAP  Bits24—31 IBP
oo OAl - ICA—
OAP  Bits32-39 ICH_|
VNOOS
VNO13 OAl - ICl -
OAP  Bits40—47 ICP
VNOOB
VNO14 OAl - IDA-
OAP  Bits48-55 IDH
VNOO7
VNO15 OAl - IDf —
OAP Bits 56 —-63 IDP _

Vector 0
VQO00o
VvQO008
VNOOO OAA — 1AA —
VNOO8 OAH _ Bits0-7__ IAH _
o
OAH Bits 8 — 15 IAP
YNO10 OMA - 1BA-
OAH Bits 16—23 IBH
VNOO3
VNO11 QAA - Bl —
OAH Bits 24 — 31 IBP
T P
OAH Bits32-39 ICH
VNO0O5
VNO13 OAA - ICI -
OAH Bits40—-47 ICP
VNQO06
VNO14 OAA - IDA ~
OAH  Bits48-55 IDH |
VNQO7
VNO15 OAA - IDI -
OAH Bits 56—-63 IDP |
HTM-300-0

Vector 2
vVQ002
VQO10
VNOOO OBA- IAA -
VNOO8 OBH Bits0 -7 IAH
VNOO1
OBA - 1Al -
VNO09 OBH Bits8—15 IAP _
OBH Bits 16 -23 IBH
VN
vmg?? OBA - Il ~
OBH Bits24—-31 IBP
VNOT2 0BA- IA-
OBH Bits 3239 ICH _
VNO05
VNO13 OBA- ICI -
OBH Bits 40—-47 ICP |
VNO06
VNO14 OBA - IDA—
OBH Bits 48 —55 IDH
VNO0O07
VNO15 OBA- DI -
OBH Bits 56-63 IDP _|

Figure 46. Vectors O through 3, Pipe 0/1, Write Data Path
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Vector Registers
Vector 3
VQ003
vQoi1

VNOOO OBl - IAA -
VNQO8 OBP Bits0-7 IAH
VNOO1

OBl — 1Al -
VNOO9 OBP Bits8-15 IAP
mg% oBI- IBA-

oBP Bits 16 —23 IBH
Qo3 oBI- Bi-

OBP Bits24-31 IBP
yNoo oBI- ICA-

OBP Bits32-39 ICH
VN0O5
VNO13 OBl - ICI -

OBP  Bits40—-47 ICP
VN0O6
VNO14 OBl - IDA-

OBP  Bits48-55 IDH
VNOO7
VNO15 OBt - DI -

OBP  Bits56—-63 IDP |
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CPU Module (CPE1)

Vector 5
VQo05
vQo13
VNOOO oCl - 1AA —
VNOO8 OCP  Bits0-7 1AH
VNOOf oCl - 1Al -
VNOO9 OCP  Bits8—15 AP
VNOO2
ocCl - IBA -
VNO10 OCP Bits16~-23 IBH
o oci- IBI—
OCP  Bits24-31 IBP
VNoO4 oci- cA-
OCP  Bits32-39 ICH
Y
Vﬁg?g oCI - ICt-
OCP  Bits40-47 ICP
VNOO6
VNO14 oCl - IDA-
OCP  Bits48—-55 IDH
VN0O7
VNO15 ocCl - DI -
OCP  Bits56-63 IDP

Vector 4
VQO04
vQo12

VNOQO OCA - IAA—
VNOO8 OCH Bits0-7 IAH
VNOO1

OCA- 1Al —
VNOOS OCH  Bits8~15  IAP _
mg% OCA- IBA—

OCH Bits16~23 IBH
oo ocA- 8-

OCH Bits24-31 IBP
noos ocA- oA

OCH Bits32—-39 ICH
Y
V',:,’g?g OCA- ICl -

OCH Bits40-47 ICP
VNO0B
VNO14 OCA- IDA -

OCH Bits48—55 IDH
VN0O7
VNO15 OCA- IDI -

OCH  Bits56—-63 IDP _

HTM-300-0

Vector 6
VQO006
vQo14

VNOGO ODA~- JAA —
VN0OO8 ODH  Bits0-7 IAH |
VNOO1 ODA- 1Al -
VNOO9 ODH Bits8—15 AP _
VNOO2

ODA- IBA -
VN010 ODH Bits16-23 IBH
mg?i’ ODA- 1Bl -

ODH Bits24—-31 IBP _
338?3 ODA- ICA-

ODH  Bits32-39 ICH
yNgos oo~ o1~

ODH Bits40-47 ICP
VNOOB
VNO14 ODA- IDA -

ODH  Bits48—-55 IDH _|
VN0O7
VNO15 ODA- IDI —

ODH  Bits56-63 IDP

Figure 47. Vectors 4 through 7, Pipe 0/1, Write Data Path
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Vector Registers
Vector 7
VQoo7
vQo15
VNOOO ODI - IAA -~
VNOO8 ODP Bits0-7 IAH |
VNOO1 oDl - 1Al -
VNOO9 ODP _ Bits8—15  IAP _
VN002
oDl - 1BA -
VNO10 ODP Bits16-23 IBH _
M oDI - IBI -
ODP Bits24—31 IBP _
NS oDI - ICA—
ODP Bits32-39 ICH _
‘\j,ﬁg?g oDI - ICi—
ODP Bits40-47 ICP
VNOOB
VNO14 ODI - IDA-
ODP Bits48—55 IDH
VNOO7
VNO15 ODI - IDI -
ODP  Bits56-63 IDP _|
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There are two independent vector logical units in a CRAY T90 series
system. (Refer to Figure 48 for a block diagram of the vector logical
units.) These functional units reside on 16 VN options. VNOOO through
VNO007 handle pipe O (the even elements), and VNOO8 through VNO15
handle pipe 1 (the odd elements). Each VN option operates on a 4-bit
slice of all eight vector registers.

The vector logical units receive input data from the VQ options and send
the results to the vector registers. The second vector logical unit is
enabled by setting mode bit 2 (ESL) in the mode field of the exchange

package. When both logical units are enabled, data is processed first in

the second unit because only the first unit can process the 146 and 147
(vector merge) instructions. For example, if a 140 instruction (logical
product) issues, the second unit processes the instruction in case a 146 or
147 issues next. If the first unit processed the 140 instruction, it would be
busy and the 146 instruction would have to hold issue.

The vector logical unit performs the logical product (AND), logical sum

(OR), and logical difference [also called exclusive OR (XOR)] functions
using either scalar or vector registers.
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VE0Q0 - 001 Vector Logical 1 and 2
Vect(_)rs 0-7 VNOOO
Pipe 0 VNOO7
:]_l OAA — OAP —
IKA -
‘ " | Instruction Parcel KP ] =
1
VQ000-007
» Result Vector
Even Elements
V Data
o Unit 2
IGA - _—
IGH
ILC _
g = OVA, Vj= Neg INA,
— Vj=Ne P= VEQ00 -
VN=1 </j=Og ovB Vj 0 |OH‘ 001
oYU
1C000 — IC003 10A
Enable Vector
Logical 2
OEA - QEH
OEA - OEH .
SS000 Pipe 0
————— AV! va AX! AY Sj Data e s e e e e} Vector Mask Register e o s s et e e S s e e o
OEl - OEP _ Pipe 1
VEQ02 - 003 OE! - OEP
Vectors 0 -7
Pipe 1 OAA - OAP I0A
VNOO8
. VNO15
Instruction KA - v OVA Vi Nea INA
Parcel IKP , VJ/= Neg , -
o [ oy | [Vvi=Pos | Jove vi-0 "~ ioH J¥ES02
VQO08 - 015 Vj=0 >
IGA — ;
IGH Unit 1
gy N # Result Vector
— Odd Elements
gy V Data Ui 2
1C000 - ICOOS' —
Enable Vector oYy iLc >
Logical 2

Vector Logical 1 and 2

Figure 48. Vector Logical Block Diagram
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Vector Logical

Vector Logical Instructions

Table 15 lists the vector logical instructions.

Table 15. Vector Logical Instructions

Instruction CAL Description

140ik ViSj&Vk | Transmit logical product of (Sj) and (Vk elements) to Vi
elements _

141ijjk ViVj&Vk | Transmit logical product of (Vjelements) and (Vk elements)
to Vielements

142ijk ViSiVk Transmit logical sum of (S)) and (Vk elements) to Vi
elements

143jjk ViVivk Transmit logical sum of (Vj elements) and (Vk elements) to
Vielements

144ijk ViSAVk Transmit logical differences of (Sj) and (Vk elements) to Vi
elements

145ijk ViVAVKk Transmit logical differences of (Vjelements) and (Vk
elements) to Vi elements

Vector Merge

HTM-300-0

The 146 and 147 instructions merge the contents of the registers using the
vector mask register for control. The 146 instruction merges the contents
of Sj with the contents of Vk; the 147 instruction merges the contents of
Vjand Vk. If the vector mask bit is a 1, the Vj or Sj data is used; if the
vector mask bit is a 0, the Vk data is used.

The vector logical functional unit holds a copy of the S-register value.
Therefore, a subsequent instruction can change the S-register value and
not affect the results. These instructions are confined to the second logical
unit. Refer to Table 16 for the vector merge instructions, and refer to
Figure 49 for an example of a vector merge operation.
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Table 16. Vector Merge Instructions
Instruction CAL Description
146k ViSAVK&VN [Merge (S)) and (Vk elements) to Vi elements using (VN) as
mask
1460k Vi#VN&Vk |Merge 0 and (Vk elements) to Vi elements using (VN) as
mask
147 ijk ViVAVK&VN |Merge (Vjelements) and (Vk elements) to Vielements
using (VN) as mask
94 HTM-300-0
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Vector Logical

147ifk Merge Sjand Vk elements to Vi elements using VN as mask

Vector Mask (SS)
VL=5 0001100 =——— 0
Vk Elements (VQ/VN) Vi Elements (VN/VQ)
Element0]| © 0 .» VkElement O } Element 0
Element1] O 1 »| Vk Element 1 | Element 1
Element2] 0 2 Vk Element 2 | Element 2
Element3] 0 3 Sj Element 3
Element4] O 4 » Sj Element 4
S2 0 7 NOTE: Elements 5 through

127 are unchanged.

146jjk Merge Vjelements and Vk elements to Vielements using VN as mask

Element 0

Element 1

Element 2

Element 3

Element 4

Element 0

Element 1

Element 2
Element 3

Element 4

HTM-300-0

Vector Mask (SS)
VL5 0001100 ———————— 0
Vk Elements (VQ/VN) Vi Elements (VN/VQ)
0 0 »] VkElement 0 | Element 0
0 1 VkElement 1 { Element 1
0 2 o1 VkElement 2 | Element2
0 3 VjElement0 | Element 3
0 4 —»{ VjElement1 | Element 4
Vj Elements (VQ/VN)
0 7
0 7
0 7
0 7
5 - NOTE: Elements 5 through

127 are unchanged.

Figure 49. Vector Merge Operation
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96

VMO and VM1 are vector mask registers. Each register is 64 bits wide,
and the two registers are aligned to create a 128-bit register. Each bit in
the register corresponds to an element in a vector register. The vector
mask register stores the results of the test condition of an element in a
vector register. For example, the mask register can indicate which

-elements of a particular vector register contain positive values.

The vector mask register receives data either from the scalar registers or
from the result of comparing a condition within the elements of a vector.
The vector mask register is arranged so that mask bit 127 corresponds to
element O of the vector.

Refer to Table 17 and Table 18 for a list of the vector mask and vector
mask test operations, respectively. Refer also to Figure 50 for an
illustration of the 175050 instructions.

Table 17. Vector Mask Operations

Instruction CAL Description

00300 VMO Sj Transmit (Sj) to VMO
0030j1 VM1 §j Transmit (Sj) to VM1

*0030/2 VMO Aj Transmit (Aj) to VMO
*0030,3 VM1 Aj Transmit (Aj) to VM1

070ij1 ViCl,Sj&VM | Transmit compressed index of (Sj) controlled by (VM) to Vi
073800 SiVMO Transmit (VMO) to Si
07310 SiVM1 Transmit (VM1) to Si
*073120 AiVMO Transmit (VMO) to Ai
*07330 AiVM1 Transmit (VM1) to Aj

* These instructions must be preceded by a 005400 (EIS) instruction.

Cray Research Proprietary
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Table 18. Vector Mask Test Operations

Instruction CAL Description

17500 VM VjzZ Set VM bit if (Vjelement) =0

175011 VM VjN Set VM bit if (Vjelement) =0

17502 VM Vj,P Set VM bit if (Vjelement)20

17503 VM VjM Set VM bit if (Vjelement) <0

175i4 ViVM VjZ | Set VM bit if (Vjelement) = 0 and store compressed
indices of Vjelements = 0 in Vi

175i5 ViVM VjN | Set VM bit if (Vj element) 0 and store compressed
indices of Vjelements = 0 in Vi

175i6 ViVM VjP | Set VM bit if (Vjelement) 20 and store compressed
indices of Vjelements = 0in Vi

175i7 ViVM VjM | Set VM bit if (Vjelement) < 0 and store compressed
indices of Vjelements < 0in Vi

17500 Set VM bit if Vjelement = 0

VL=5
Compare VE
i Vector Mask Register (SS
Vector Register (V)) (VQ/VN) Test Vj=0 9 (SS)
Element 0 00000000000000000 - > 0 Bit 127
Element 1 00000001110000001 ~ » 1 Bit 126
Element 2 11111111111 111111 > — 0 Bit 125
Element 3 00000000000000000 > > 1 Bit 124
Element 4 1111111111111000000 > > 0 Bit 123
0 Bit 122
*
[ ]
0 Bit0

Figure 50. 17500 Instructions
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Figure 51 illustrates the function of the 175ij4 instructions that use the
vector mask to create a compressed vector.

175i4 Set VM bit if Vjelement = 0 and store compressed indices of Vjelements = 0 in Vi

VM Reg Index
Vj Elements (VQ/VN) VE (88) Bits Address (VE) V/Elements (VN/VQ)
Elemento | 0 0 o 1 @—— o - o Element 0
Test
Element1 | O 1 > S -1 0 126 1 -l" 2 Element 1
Element2 | 0 0 -] 1 @" 2 3 Element 2
Element3 | 0 0 , 1 | 13 3 4 Element 3
Vj=0 . o
Element4 | O 0 1 177 Unchanged | Element 4
0
VL=5

Figure 51. Function of the 175ij4 Instructions

Compressed lota

The iota function is performed on the RE options. RE000 is used for pipe
0 and REOO1 is used for pipe 1. Table 19 lists the instruction used in iota
operations, and Figure 52 is a block diagram of iota pipe 0 and 1.

Table 19. Iota Instruction

v
R

Instruction CAL Description

070if1 ViCl,Sj&VM | Transmit compressed index of (S)) controlled by (VM) to Vi

The 070ij1 instruction forms multiples of the contents of register Sj
starting with 0 (0, Sj, 2 X Sj, 3 X Sj, and so on). It stores multiples that
correspond to each 1 bit set in the vector mask register in successive
elements of register Vi (beginning at element 0). The instruction stops
when all unused bits of the vector mask are O or are used.
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ssooo VMO Element Valid  1GA

OGA
$S000 VM1 Element Valid 1GB

oGB

SS000_ VM =0 IGC
OGC
BU001 _Go lota IGD
0oscC

BIN/},/Q SjData 0-863 1AA — IDB

REOQO

Vector Logical

OAA —ODP Resultto VNO-7_

OMA lota Valid » VB00O
INH -
OMC End lota » VB000/VB001
INI
OGA
OGB
OGD
REQO1
| VMO Element Valid IGA |

VM1 Element Valid 1GB

Go lota IGD

OAA-~
| oDP_ VN 8- 15

OMA_ lota Valid |
VBO001 INH

VN/VQ _SjData0-—63 IAA - IDE
8-15

Figure 52. Iota Pipe O and 1

Figure 53 on page 100 illustrates the function of the 070ij1 instructions
that use the vector mask to create a compressed vector.

RE Option

The REOOO receives the Go Iota signal from the BUQO1 option, makes a
copy of this signal, and sends it to the REOO1 option. The Sj data arrives
at both options along with a Element Valid signal. After the operand has
been used and a pair of elements is ready to be written to the result vector,

HTM-300-0
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the Jota Valid signal is sent to the VB option. The two Iota Valid signals, ,
one from REOQO and on from RE001, are usually identical except when /)
there is an odd number of elements on Pipe 0. The operation ends when

the VM=0 signal arrives from the SS option and causes the RE00O option

to send the Signal End Iota signal to both VB options. The Signal End

Iota signal is sent concurrently with the last Element Valid signal.

07041 Transmit compressed index of (S)) controlled by (VM) to Vi

Vector Mask (SS)

1001110100 ~——— 0

Vi Elements (VM/VQ)
Functional
ur:fnllt " 0 Element 0
™ §jx VM Bit 6 Element 1
2x0
2x3 - 8 Element 2
1 2x4 10 Element 3
25 emen
2x7 14 Element 4

S |0 —————2

Figure 53. Function of the 070ij1 Instructions
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The vector add functional unit is located on the VN and VE options.
(Refer to Figure 54 for a block diagram of vector add.) The VN options
perform the actual addition of the input operands and then pass the group
carries and group enables to the VE for summation. These bit toggles are
then returned to the VN option for final summation. The functional unit
uses two’s complement arithmetic and does not detect any overflow
conditions.

Refer to Table 20 for a list of the vector add instructions.

Table 20. Vector Add Instructions

Instruction CAL Description

154ik ViSj+Vk | Transmit integer sum of (Sj) and (Vk elements) to Vi elements

1565ijk ViVj#Vk Transmit integer sum of (Vj elements) and (Vk elements) to
Vielements

156ijk ViSi-Vk | Transmit integer difference of (S) and (Vk elements) to Vi
elements

1660k Vi-Vk Transmit two’s complement of (Vk elements) to Vielements

157 ijk ViVi-Vk | Transmit integer difference of (Vj elements) and (Vk elements)

to Vielements

HTM-300-0

The 154 and 156 instructions use the content of the Sj register as an input
operand. The VN option keeps a copy of the Sj register, which enables a
subsequent instruction to proceed and change the content of Sj without
affecting the 154 or 156 instruction in progress.
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VEOQQO

OIA  Adder Bit Toggles INA

vQ007)

OIB  Adder Bit Toggles INA

(VQ000 Vector Data
———

JOIC__Adder Bit Toggles INA

vQ007)

(VQ000 Vector Data
———

Summation
ILA VEQO1
Adder —»{ VEQOO
VNOOO _ Bits 0—7 IMA
OWA
Carry
Enable owe VEOOT
ILA
IMA
—= Result Data to Vectors
ILB _TvEO0D
VNOOT  Bits 8- 15 IMB
OWA
Carry
Enable JOWC
VEOO1
ILB
IMB

(VQOOO Vector Data
————1

VQ007)

VNQOO2 Bits 16—23
Carry
Enable

= Result Data to Vectors

OID _Adder Bit Toggles INA

(VQO00 Vector Data
—

VNOO3 Bits 24 — 31
Carry

Enable

VQ007)

HTM-300-0

ILC _IVEO00
IMC
OWA
QWC
VEQO1
ILC
IMC _
——» Result Data to Vectors
ILD__IvEooo
IMD
OWA o
OwWC
VEQO1
ILD
IMD

— Result Data to Vectors

Figure 54. Vector Add Block Diagram

OIA Adder Bit Toggles INA

(VQooo Vector Data

VQO007)

OIB__Adder Bit Toggles INA

(VQOOO Vector Nata

VQO007)

OIC Adder Bit Toggles INA _|

(VQ000 Vector Data

vQ007)

OID Adder Bit Toggles INA

Cray Research Proprietary

(VQOOO Vector Data

vQ007)

Vector Add
Summation
ILE
Adder —> VEQ00
VNOO4 Bits 32 — 39 IME )
Carry JOWA
Enable |QWC
VEOQO1
ILE
IME
——» Result Data to Vectors
ILF__]vEooo
VNOO5 _ Bits 40 — 47 IMF
Cary |OWA
Enable jOWC
VEQOI
ILF
IMF
——p= Result Data to Vectors
ILG _[veooo
" IMG
VNQOO6 Bits 48 — 55 »
Carry OWA
Enable JWC
VEO001
ILG _|
IMG _|
= Result Data to Vectors
VNO0O7 Bits 56 — 63
Carry
Enable
———— Resuit Data to Vectors
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) VECTOR SHIFT

The vector shift functional unit is contained within the VS option. Vector
shift is a dual-pipe functional unit; it accepts a pair of elements and
generates a pair of results. If the vector length is odd, the last operand
generates a single result. There is only one VS option for each CPU.

The vector shift functional unit is responsible for vector transfer
operations. For example, it transfers the contents of one vector register to
another vector register; then the functional unit uses the Ak value as a
starting element number for the block move.

This unit also performs the vector compress and expand operations. The
compress operation writes the elements of Vjto Vi if a corresponding bit
in the vector mask register sets. The expand operation reads the elements
of Vj to Vi if a corresponding bit in the vector mask register sets. These
operations are illustrated later in this section.

The 150 to 153 instructions use Ak as the shift count. The 150 to 151
instructions, when preceded by a 005400 (EIS) instruction, use VO for the
shift count. In either case, if bit 7 or above is set, the result is O’s.

Vector Shift Instructions

Refer to Table 21 for a list of the vector shift instructions.

Table 21. Vector Shift Instructions

HTM-300-0

Instruction CAL Description

150ik ViVi<cAk | Shift (Vjelements) left (AK) places to Vielements
*150if0 ViViV0 Shift (Vj elements) left (VO elements) places to Vi elements
151k ViViAk Shift (Vj elements) right (AK) places to Vielements
*151i0 ViviV0 Shift (Vj elements) right (VO elements) places to Vielements
152ijk ViVjVj<Ak | Double shift (Vjelements) left (AK) places to Vielements
*152ijk ViVj,Ak Transfer (Vj elements) starting at element (AK) to Vielements
153ijk ViVjViAk | Double shift (Vjelements) right (Ak) places to Vielements

) * These instructions must be preceded by a 005400 (EIS) instruction.
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Table 21. Vector Shift Instructions (continued)

Instruction CAL Description
*1563i0 ViVj{VN] |Compress Vjby (VN) to Vi
*1563ij1 ViJVN]Vj |Expand Vjby (VN) to Vi

* These instructions must be preceded by a 005400 (EIS) instruction.

Vector Shift Count Description

106

The Ak shift count is sent to the VS option by the AV00O option, and all
eight A series options check the value of the 64-bit A register. This test
determines if any bits above bit 6 have been set. If any bits have been set,
the result is lost due to overshift. If no overflow is detected, a No Ak
Overflow signal is sent from the SS to the VS. AVO000 sends bits 0
through 6 as the shift count.

To better understand this process, examine the composition of the shift
count. For both single and double shifts, the shift count is similar except
that the double shift has 1 extra bit (bit 6). Refer to Figure 55 for an
examination of the shift count and to Figure 56 for a block diagram of
vector shift.

Double
Shift
Only

1 0 Bit Position
2 1 Shift Value

Figure 55. Shift Count Breakdown

Each bit position of the shift count represents a shift value. The sum of

the shift value for each bit set in the shift count equals the total number of
places shifted. The maximum shift count that could be generated is 12719
or 177g.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count. Also,
a shift of O generates a maximum shift of 1773 places and clears
the result register.

Cray Research Proprietary
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0-00€-W1H

Aeysudoayg yoressay Aesn

201

\\_/l

VN/VQ Vector Shift Data Pipe 0 IAA, IDP
Vector Shift Data Pipe 1 IEA, IHP |
HA, i - 1
55000 OHA, OHG Ak Shift Count 06 NAIG
OHH No Ak Overflow iIM _
OID Vector Mask Bit = 1 (Even) IMM o
OIE Vector Mask Bit =1 (Odd) IMN
VQ000 OMA, OMH Vector Shift Count (V0) Pipe 0 IKA, IKH
OMI VO Overflow IKM
vQoo8 OMA, OMH Vector Shift Count (V0) Pipe 1 ILA, ILH _
OMI VO Overflow ILM _
VEOQO1 INA
ONB Pipe 0 Valid INB |
VEOO3 ONB Pipe 1 Valid o—NC
L_IND |
VB00O 0QB End Vector Shiftor KO Field ~ INM
0000 0SG EIS Bit MC
ORA Go Vector Shift IME

VS000

OAA, ODP Vector Shift Result Data Pipe 0

»1 VN/VQ
OEA, OHP Vector Shift Result Data Pipe 1
OMA Shift Result Valid Pipe 0 INE _I vBOOO
INF
OMC End Vector Shift
INF
VBO001
OMB Shift Result Valid Pipe 1 INE _

Figure 56. Vector Shift Block Diagram
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If the jk field of a left single shift equals 27g and bits 4, 2, 1, and O are set,
the shift values are 16, 4, 2, and 1, respectively. The sum of the shift
values is 23 (16 + 4 + 2 + 1). Therefore, the instruction shifts left 2319
places.

The actual hardware that performs the shifts is the same for both left and
right shifts. In fact, the hardware performs only left shifts. Right shifts
are accomplished according to the way data is entered into the shifter and
the use of two’s complement shift counts for right shifts.

The vector shift unit also receives a shift count from VO when performing
the 150 and 151 EIS instructions. The shift count is sent to the VS option
from VQO for pipe 0 and from VQ8 for pipe 1.

Vector Right Shift 005400 151ij0

Refer to Figure 57 for an illustration of a vector right shift using VO for
the shift count. Note that the shift count for element 0 is 0, which results
in an end-off shift for that element. This instruction must be preceded by
the 054100 instruction in order to function as illustrated. This process
continues for vector length.

Vk Elements (VQ/VN) Pipe 0/1

Element0 | O 0
Element 1 0 1
VO Shift Count
Eiement 2 0 2
Element3 | 0 3
Element4 | 0 4 VL=5
Vj Elements (VQ/VN) Pipe 0/1 Vs Vi Elements (VN/VQ) Pipe 0/1
Element 0 1 0 » » 0 0 | Element0
Element 1 0 10 »{ Vector Shift 0 1 ] Element 1
Functional
Element2 ] 0 100 > Unit o LY 1 | Element2
Element3 | O 1000 > = 0 1 { Element3
Element4 | 0 10000 » » 0 1 | Element 4
VL=5
Figure 57. Vector Right Shift
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e Vector Right Double Shift 153ijk

Vector Shift

)

Element 0
Element 2
Element 4

Element 6

Element 8

Element 1
Element 3
Element 5

Element7

Element 9

HTM-300-0

Refer to Figure 58 for an illustration of a vector right double shift, using
Ak for the shift count. This instruction concatenates two successive
elements of register Vj and right shifts the lower 64 bits to Vi. The first
operation combines element O with a word of all 0’s. Element O becomes
the lower 64 bits, and this value is then shifted right Ak places to Vi.

The next operation combines element 0 and element 1 of Vj, with element
1 containing the least significant bits, and shifts this value right to Vi.
This operation continues for vector length. Note that the shift count for
element O is 0, which results in an end-off shift for that element.

Vk Elements (VQ/VN) Pipe 0

0 17
1 6 Shift Count from Ak
0 0 VS Vector Shift Functional Unit
0 0 Word of 0’s Element 0
0 0 Element 0 Element 1
» Element 1 Element 2
Vj Elements (VQ/VN) Pipe 1
Element 2 Element 3
6 6
Element 3 Element 4
16 0
0 0
0 0
0 0 Vi Elements (VQ/VN) Pipe 0/1
0 1 | Element0
166 0 | Element 1
of 15 0 | Element2
156 0 | Element3
0 0 | Element 4
Figure 58. Vector Right Double Shift
Cray Research Proprietary
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Vector Transfer 005400 152ijk

Element 0
Element 1
Element 2

Element 3

Element 4

This instruction moves the contents of Vj to Vi starting with element Ak as
illustrated in Figure 59. Note that this is an EIS instruction.

Ak=2
VL=5
Vj Elements (VQ/VN) Pipe 0/1 VS Vi Elements (VN/VQ) Pipe 0/1
1 0 »{ 0 100 | Element O
0 10 o] Vector Shift » 0 1000 | Element 1
Functional
0 100 Unit > 0 10000 | Element 2
0] 1000 = 0 0 | Element3
0 10000 » 0 0 ] Element4

Figure 59. Vector Transfer

Vector Compress 005400 153ij0

This instruction compresses a vector register using a vector mask and
transmits the results to Vi as shown in Figure 60.

Two element counters are initialized to 0, one for V;j and the other for Vi.
The vector mask is then scanned from right to left. For every 1 bit set, an
element of Vjis written to Vi. The element counters internal to the VS
option determine the element position within each register.

SS Vector Mask Register
{10011 0o | VL=5
Vj Elements (VQ/VN) Pipe 0/1 VS ¢ Vi Elements (VN/VQ) Pipe 0/1
Element0 | O 0 > Q ——— 0 | Element0
Element1 | O 10 Vector Shift > 0 1000 ] Element 1
Functional
Element2 | 0 100 Unit ™0 10000 § Element 2
Element3 | O 1000 > =1 0 0 jElement3
Element4 | 0 10000 o 0 0 ] Element 4
Figure 60. Vector Compress
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Vector Expand 005400 153ij1

Vector Shift

This instruction expands a vector register using a vector mask and
transmits the results to Vi as shown in Figure 61.

Two element counters are initialized to 0, one for Vj and the other for Vi.
The vector mask is then scanned from right to left, and for every 1 bit set,
an element of Vj is written to Vi. The element counters internal to the VS
option determine the element position within each register. In this
instruction, the element counter for V; falls behind the counter for Vi by
one position for each O bit in the vector mask register.

88 Vector Mask Register
| 10011 0 |- VL=5

Vj Elements (VQ/VN) Pipe 0/1 VS Vi Eilements (VN/VQ) Pipe 0/1
Element0 | 0 0 > o 00— 0 | Element0
Element1 | 0 10 »| Vector Shift Unchanged Element 1

Functional
Element2 | 0 100 Unit Unchanged Element 2
Element3 | O 1000 o Y 10 | Element 3
Element4 | O 10000 > 0 100 | Element 4
Figure 61. Vector Expand
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B VECTOR POP/ POP PARITY AND LEADING ZERO

The vector population/parity functional unit performs the population count
(174ij1) and parity for vector operations (174ij2) instructions. This
functional unit shares logic with the Divide and Square Root functional
unit. The k field of the instruction determines the type of operation to be
performed. Refer to Figure 62 for a block diagram of the vector
population/parity functional unit.

The vector population/parity functional unit shares logic with the
divide/square root fanctional unit. Therefore all vector operations reserve
the associated functional unit. The divide/square root functional unit is
reserved when the vector population/parity functional unit is reserved and
vice versa.

Both scalar and vector register operations share the divide/square root
functional unit. Therefore, when vector divide/square root, or vector
7 population/parity instructions are executed, a scalar divide/square root
) instruction must wait until the vector operation is finished.

The 174ij1 instruction counts the number of 1 bits in each element of a
vector register specified by Vj. Each element is counted individually, and
the result is stored in the corresponding element of Vi. For example, the
count of 1 bits in element O of Vj is stored in element 0 of Vi; the count of
1 bits in element 1 of Vj is stored in element 1 of Vi; and so on. This
process continues for the number of elements specified by the vector

length.

The 174ij2 instruction counts the number of 1 bits in each element of a
vector register specified by Vj and stores a 1-bit parity result in a vector
register specified by Vi. The 174ij2 instruction uses the same logic as the
174ij1 but outputs only bit 0 of the result. Bits 1 through 6 are forced to
0’s. This instruction determines whether an odd or even number of bits is
set in each element of a vector register. If the result equals O, there is an
even number of bits. If the result equals 1, there is an odd number of bits.
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Figure 62. Vector Population/Parity/Leading Zero Block Diagram
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— Pop/Parity/Leading Zero Functional Units

The RE options contain part of the divide/square root unit and the logic
for vector pop, vector pop parity, and vector leading zero. There are two
RE options for each CPU. REQQO handles pipe 0 (the even elements), and
REO001 handles pipe 1 (the odd elements).

The RE options receive data from the VN and VQ options; 4 bits come
from each VQ and VN. Pop/parity/leading zero data uses the same wires
and terms as the divide/square root data. The data is then sent to VNOOO
and VNOOS on the same terms that the divide/square root output data uses.
Data is sent to only those two options because the pop functional unit
returns only a 7-bit value to the result register.

Vector Population Count 174ij1

Vector pop counts the number of bits set in a vector element and reports
that count to a result vector. The count ranges anywhere from 0 (no bits in
the element set) to 100 (all bits in the element set). The functional unit
sends only bits 0 through 6 to the result vector; the remaining bits are
zeroed out.

) Vector Population/Parity 174if2

This instruction counts the number of bits set in each element of a vector
and then determines whether this number of bits is an even or an odd
number. If the result is an even number of bits, a O is written to the result
vector. If the number of bits is odd, a 1 is written to the result vector.
Only bit 0 is written to the result vector; the rest of the bits in the element
are set to 0’s.

Vector Leading Zero Count 174ij3 |

This instruction counts the number of 0’s that precede the first bit set in
each element of a vector. The count will be from 0 (bit 63 of the element
set) to 100 (no bits in the element set).
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Vector Population/Parity Instructions

Refer to Table 22 for a list of the vector population/parity instructions.

Table 22. Vector Populé.tion/Parity Instructions

Instruction CAL Description
174if1 ViPVj Population count (V)) to Vi
174i2 ViQVj Parity of (V)) to Vi
175i3 ViZVj Transmit leading zero count of (V)) to Vi

116
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B GATHER/SCATTER INSTRUCTIONS

The 176ilk and 1771k instructions transfer blocks of data between
common memory and the vector registers. The 176 instruction invokes
the gather, or read function; the 177 instruction invokes the scatter, or
write function. When the 176i1k instruction is preceded by a 005400
instruction parcel, it performs a double gather function, which utilizes the
dual-pipe capability of the computer system. The contents of the vector
length (VL) register determine the number of words transferred.

Gather Instructions

HTM-300-0

The 176i1k instruction transfers data from common memory to the Vi
register. Register AQ contains the initial (base) address; the Vk register
contains the address indices.

For each element transferred to Vi, the memory address is the sum of (A0)
and the corresponding element of register Vk. For example, during a
176213 instruction, V2[0] is loaded from address (A0Q) + (V3[0]); V2[1]is
loaded from address (A0O) + (V3[1]); etc.

The 005400 176ijk instruction performs the double gather operation. Data
is transferred from common memory to Vi and Vj in two separate data
transfers that occur simultaneously. The AQ register contains the base
address for the transfer to Vi. The Ak register contains the base address
for the transfer to Vj. The Vk register contains the address indices for
both transfers.

For each element transferred to Vi, the memory address is the sum of (AQ)
and the corresponding element of Vk. For example, during a 005400
176213 instruction, V2[0] is loaded from address (A0) + (V3[0]); V2[1] is
loaded from address (AO) + (V3[1]); etc. Simultaneously, V1[0] is loaded
from address (A3) + (V3[0]); V1[1] is loaded from address (A3) +

(V3[1]); etc.
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Scatter Instructions

118

The 1771jk instruction transfers data from Vj to common memory. The
AQ register contains the initial address. Vk contains the address indices.

For each element transferred from register Vi, the memory address is the
sum of (A0) and the corresponding element of register Vk. For example,
element O of Vi is stored to address (AQ) + (VA[O]); element 1 of Vi is
stored to address (AO) + (Vk[1]); etc.
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2 IEEE FLOATING-POINT OVERVIEW

In general, the CRAY T90 series system CPE1 module conforms to the
IEEE standard for binary floating-point arithmetic. It performs 64-bit
floating-point add, subtract, multiply, divide and square root calculations.
The CPE1 module also provides several new instructions that compare
and convert floating-point and integer numbers.

The number and distribution of bits in the coefficient and the exponent
(refer to Figure 63) are different than they are in the Cray proprietary
floating-point format. (In the Cray proprietary floating-point format, the
coefficient comprises bit O through bit 47; the exponent comprises bit 48
through bit 63.) Moreover, to ensure that the IEEE arithmetic results
provide additional precision, bit -1 through bit -10 are appended in the
logic to the right of the least significant bit of the coefficient. These
supplemental bits are known as the Guard bit and the Sticky bits.

IEEE floating-point numbers are always represented as fractions — a
\) number such as .1xxxxxxx...x raised to a power. The first bit in the
N fraction (the 1 bit, also called “the hidden bit”) is always present in the
hardware. Therefore all numbers in this computer system are considered
normalized numbers; it is impossible to submit a number to the system
that is not normalized. This bit, although invisible to the user, is included
in the calculations. Consequently, calculations are made on a 53-bit
fraction. The result that the user sees is in the form illustrated in

Figure 63.
Bits 63 52| 51
Exponent Coefficient
Sign Bit 48[ 47 32 | 31 T L
Parcel 3 Parcel 2 Parcel 1 Parcel 0

Figure 63. IEEE Floating-point Format
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The benefits of the IEEE format are:

IEEE Floating-point Number Examples

Control of rounding mode

Expanded exceptions

Greater precision with 4 more bits in the coefficient field

Consistency in handling of end-cases

Specific representation for infinity and non-numeric numbers

Table 23 lists some examples of IEEE floating-point numbers.

Table 23. IEEE Floating-point Numbers

Value

64-bit Word

+0

0000000000000000000000

-0

1000000000000000000000

+Greatest number

Q777577777777717777777

+Smallest number

0000200000000000000000

Infinity

0777600000000000000000

qNaN

O7 77T XXXXXXXXXXXXXXXX T

sNaN

0777 BXXXXXXXXXXXXXXXX T

IEEE Terms

N

-~

The following new terms are associated with IEEE floating-point:

Normal 0. Defined as an exponent of all 0’s. The sign of a normal
0 may be positive or negative.
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Floating-point Overview

Denormalized. Defined as a minimum exponent in which the
leading bit of the coefficient is equal to 0. The CRI implementation
of IEEE does not support denormalized numbers. A denormalized
number input into a floating-point unit will be converted to a zero
before it is used. This is a departure from the IEEE standard.

Unnormalized. Defined as an unnormalized number in which the
value of the exponent is greater than the minimum value of the
format being used, and the leftmost bit of the significand is O (this
number represents an unnormalized 0). Only normalized number
representations are supported.

Normalized. Defined as a nonzero number in which the leftmost bit
of the significand is a 1. If the significand is a O then the number
becomes a normal 0. Normalization does not change the sign of the
number.

NaN. Defined as a symbolic entity encoded in floating-point format
and resulting from an operation that has no mathematical
interpretation. For example, 0 divided by 0 produces a NaN

(Not A Number).

) Rules of Operation for NaNs

HTM-300-0

The sign of a NaN is never significant.

When any floating-point unit receives a NaN, it generates an Invalid
(NVI) signal and returns a result of NaN.

There are two different types of NaNs: quiet and signaling. If the
most significant bit of the coefficient is a 1, the NaN is considered
quiet. When a single operand NaN is received by the floating add or
floating multiply unit, that NaN is returned as a result except that:

e A signaling NaN is converted to a quiet NaN.

e The sign is converted to positive.

When two signaling NaNs or two quiet NaNs are received by the
floating add or floating multiply unit, the j operand is returned as a
result and modified in compliance with the single-operand NaN rule.

When a signaling NaN and a quiet NaN are received by the floating

add or floating multiply unit, the signaling NaN is returned as a
result and modified according to the preceding rule.
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CPU Module (CPE1)

When either the divide or square root unit receives a NaN, it returns
a quiet NaN with all bits set in the coefficient.

NaNs that are generated within a floating-point unit that were not
caused by receiving a NaN as an operand are given a tag code, which
is returned as part of the result. The result returned will be all bits
set except for bits 48, 49, and 50. These bits will show which
functional unit generated that result. Table 24 lists the NaN tag

codes.

Table 24. NaN Tag Codes

Functional Unit Bit 50 Bit 49 Bit 48
Add 0 0 1
Multiply 0 1 0
Divide 1 0 0
Square Root 1 0 1

Cray Research Proprietary

HTM-300-0

D)

i
\—‘—/l.



CPU Module (CPE1)

Floating-point Overview

When NaNs are sent to the compare unit:

NaNs never compare to another operand

NaNs never compare to another NaN

NaNs are not equal to another NaN

NaNs always fail equality tests and pass inequality tests
The unordered test returns true if either input is a NaN

Deviations from the IEEE Standard

In the following cases, CRI does not follow the IEEE standard:

Only 64-bit format, no support for the 32-bit format

No support for denormalized numbers

Exception flags are not precise because of a lack of instruction
ordering

Special Operand Values

HTM-300-0

Three special operand cases that are considered in IEEE are as follows:

Any floating-point operand with an exponent field of all 0’s is
considered a zero value. The sign is significant.

+nnn x -0 =-0

-nx+0=-0

+nnn — +nnn = +0 (except if rounding down)
Sqrt-0=-0

+0 result rounded down = -0

Compare instructions +0 = -0

When there is a maximum exponent and the coefficient is all O’s, the
operand is considered to be infinite. The sign is significant. Infinite
values are generated when the exponent range required to represent
the number is exceeded. The value is operated on and exceptional
results are generated (overflow).

e  (777600000000000000000 = positive infinity

e  1777600000000000000000 = negative infinity
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e  When there is a maximum exponent and the coefficient is not all 0’s,
the operand is not considered to be a real number (NaN). The sign is
ignored. There are two different types of NaNs: quiet qNaN and
signaling sNaN. If the most significant bit of the coefficientis a 1,
the NaN is considered quiet. A qNaN is operated on like all other
operands; however, an exceptional input exception signal is
generated in the status register. If an sNaN is received as an operand,
an invalid signal is generated.

o  (077760xxxxxxxxxxxxxxxxx1 = Quiet NaN (gNaN)
e 077770xxxxxxxxxxxxxxxxx1 = Signaling NaN (sNaN)

Floating-point Exception (Flags)

Floating-point operations can generate several exception flags. These
exceptions can be seen in Status register SR0O. Associated with these
exceptions are interrupt bits. The interrupt bits can be enabled or disabled
by the user. An interrupt will be generated if the exception is enabled, and
then a status register bit is set. If an exception is set and then the user

- enables the interrupt, no interrupt will be generated. This is different
from previous Cray computer systems.

For instructions that can change interrupt mode bits, floating-point
instruction issue halts until all floating-point functional units are quiet.
All floating-point operations will complete with the same interrupt modes
that were set when they began.

There are six exceptions; they are:

e Invalid (NVI) An attempt was made to generate a result that is not a
real number. Invalid is signaled for the following reasons:
e A signaling NaN (sNaN) was received as an input operand
Addition or subtraction of infinite operands in some cases
+00 — +00 = invalid '
Multiplication of O x infinity
Division of 0/ 0 or infinity / infinity
Square root of any negative number
Signed compare where one or both inputs are NaNs
(>, <=, <, >=) Every NaN shall compare unordered
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Rounding

Floating-point Overview

Divide by 0 (DVI) An attempt has been made to divide a finite
normal numerator by zero.

Overflow (OVF) A result larger than the greatest representable
number was generated. A positive infinity is returned
(07776000000000000000000). Overflow is handled differently than
the IEEE standard. Overflow is carried to positive or negative
infinity when rounding away from zero, and to the largest finite
number when rounding toward zero when the interrupt on overflow
is disabled. The standard specifies that when interrupt on overflow
is enabled, the operation will deliver the result, with the exponent
biased toward zero by 3000g. Cray Research floating-point units
cannot detect whether the interrupts are enabled or disabled, and
therefore are unable to handle the two cases differently.

Underflow (UNF) A result smaller than the least representable
number was generated. A coefficient of zero with the sign bit is
returned. (00000000000000000000000). This result is different
from the IEEE standard. The IEEE standard returns the result
obtained after multiplying the infinitely precise result by 2% (where
2%is the bias adjust) and then rounding.

Inexact (NX) A result was generated that would be different if all
possible significant bits were returned or could be returned. Inexact
is also signaled on both overflow and underflow when the returned
result is not exactly zero. For example, 1 divided by 3 returns the
repeating decimal, 0.33333.......3, and signals Inexact.

Exceptional Input (XI) A floating-point unit received an operand
of infinity or NaN. XI is a Cray feature, not an IEEE standard.

HTM-300-0

Rounding is done by adding 1 to the least significant bit (LSB) of the
result if it is determined to be required by the rounding mode bits and any
bit of less significance than the LSB of the coefficient.

The first bit to the right of the LSB is called the guard bit; all the bits to
the right of the guard bit are “ORed” together into a “sticky” bit. If the
guard bit and the sticky bits are all 0’s, then the results are exact and no
rounding occurs. If either bit is a 1, then inexact is signaled and a 1 is
added to the LSB, depending on the rounding mode.
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There are four rounding modes that apply to the floating-point units:

e Round to the nearest. The result closest to infinitely precise is
returned. If the bits to the right of the LSB are greater than half the
value of the LSB, a 1 is added to the results. If the bits to the right
of the LSB are exactly half the value of the LSB, a 1 is added to the
results if the LSB=1.

¢ Round up. The more positive result closest to infinitely precise is
returned.

e Round to zero. The result closest to zero is returned.
e Round down. The more negative result is returned.

Table 25 shows the effect of the sign bit, guard bit and sticky bit on the
LSB, depending on the rounding mode selected.

Table 25. Effects of Rounding Mode on LSB

Result Bits Rounding Mode
Sign Bit Guard Bit Sticky Bit Round to Round to Round Up | Round Down
Nearest Zero
X 0 0 No v No No No
0 0 1 No No Yes No
0 1 0 Yes it LSB=1 No Yes No
0 1 1 Yes No Yes No
1 0 1 No No No Yes
1 1 0 Yes if LSB=1 No No Yes
1 1 1 Yes No No Yes

IEEE Mathematical Functions
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With the inclusion of NaN and infinity operands, more exceptional results
are possible. Table 26 through Table 28 show the results from different
combinations of operands and different operations. Remember to consider
the state of the rounding mode when you calculate the final results.
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’j Addition and Subtraction Rules

Addition of equal operands with opposite signs produces a zero result. A
positive zero results if rounding mode is set to round to nearest or round
up or round to zero. A negative zero results if the round down mode is
used. A zero value is also returned if the operation underflows; the sign of
the result is the sign determined before underflow occurs. If the operation

- signals overflow and the rounding.mode is set to round to nearest or round
up, the result returned is a +oco (077760000000000000000). If the round
mode is set to round to zero or round down, the result rounds to the
greatest representable value (0777577777T7TT7TTT77T77).

Table 26. Addition and Subtraction Results

joperand
k operand
n 0 co NaN
0,n, o0 n oo NaN
0 n 0 0 NaN
oo oo o0 oo, NaN* NaN
) NaN NaN NaN NaN NaN
‘> * A NaN is returned when adding two oo of different signs.

Subtracting two oo of different signs results in a result of co with the sign of the minuend.

Multiplication, Division, and Square Root Rules

Multiplication or division of two nonzero numbers results in zero only if
the operation detects underflow. If an overflow occurs, a

Fco0 (0777600000000000000000) or the greatest representable value
(0777577777777777777777) is returned, depending on the rounding
mode.
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Table 27. Multiplication Results

joperand
k operand -
n 0 o0 NaN
0,n, 0 o0 NaN
0 0 0 NaN NaN
oo oo NaN o NaN
NaN NaN NaN NaN NaN
Table 28. Division Results
operand
k operand Jop
n 0 1% NaN
0,n, oo 0 %) NaN
0 o NaN o0 NaN
o0 0 0 NaN NaN
NaN NaN NaN NaN NaN
Table 29. Square Root Results
j operand +n +0 -n NaN
Results +n +0 NaN NaN
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B IEEE FLOATING-POINT ADD AND COMPARE

The floating-point add unit is contained on the FC options. The FC
options perform the following four types of operations:

IEEE floating add and subtract

IEEE floating point-to-integer conversion
IEEE integer-to-floating point conversion
IEEE compare instructions

There are three FC options in each CPU. Each FC option has a specific

function.
e FCO000
e  Performs all scalar-to-scalar floating add functions
e  Performs all scalar-to-scalar compare functions
e  Performs all scalar-to-scalar conversions
. e  Passes all pipe 0 vector data
) e FC001

e  Performs all pipe O floating add functions

e  Performs all scalar-to-vector (Sj Vk) compare functions
e  Performs all vector-to-vector (Vj Vk) compare functions
e  Performs all vector-to-vector conversions for pipe 0

e  Passes all output data to FC000

e FC002

e  Performs all pipe 1 floating add functions

e  Performs all scalar-to-vector (Sj Vk) compare functions
e  Performs all vector-to-vector (Vj Vk) compare functions
e  Performs all vector-to-vector conversions for pipe 1

HTM-300-0 Cray Research Proprietary
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Floating Point Addition / Subtraction

130

The floating add functional unit, like the floating-point multiply unit,
receives normalized numbers as inputs. Because of the hidden bit, all
numbers are normalized. An input number that contains an exponent of
0’s will clear the coefficient to O before using it as an operand in the
functional unit. NaN operands are handled in accordance with the IEEE
standard. Performing an add or subtract operation on a NaN results in a
NaN being produced and a flag set.

Four IEEE standard flags and one non-IEEE standard flag are used in the
floating-point add unit. They are:

Invalid (NVI) An attempt was made to generate a result that is not a
number. NVI is signaled for the following conditions:

A NaN as an input operand

Addition or subtraction of infinity

Signed compare with at least one NaN input
Attempt to convert an out-of-range number

Overflow (OVF) A result larger than the greatest representable
number has been generated. Positive infinity
(0777600000000000000000) is returned. The CRAY T90 series
version of IEEE treats OVF differently than the IEEE standard. In
the CRAY T90 series application, overflow is carried to positive or
negative infinity when rounding away from zero. Overflow is
carried to the largest finite number when rounding towards zero,
when the interrupt on overflow is disabled. The IEEE standard
specifies that the operation will deliver the result, with the exponent
biased toward zero by 3000 when interrupt on overflow is enabled.

The floating-point units have no way to detect whether the traps are

enabled or disabled, and therefore are unable to handle the two cases
differently.

Underflow (UNF) A result smaller then the least representable
number was generated. A value of zero with the sign bit
=+-(0000000000000000000000) is returned.

Inexact (NX) A result was generated whose value would be
different if all possible significant bits were returned or could be
returned. Inexact is also signaled on both overflow and underflow
when the result is not exactly 0. Some examples of inexact numbers
are repeating decimals and pi.
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e Exceptional Input (XI) A floating-point unit received either an
infinite or NaN operand. XI is a CRI feature that is not an IEEE
standard. :

Figure 64 is a diagram of the floating add functional unit. The functional
unit uses 2 round mode bits to select one of four rounding modes.
Table 30 shows the four rounding modes used by the FC options.

Table 30. Rounding Modes

Round Mode (RMO0) (RM1)
Nearest 0 0
Up infinity 1 0
~ Tozero 0 1
Down infinity 1 1

You can set the rounding modes either by issuing an instruction or by
setting a bit in the exchange package. The 003004 through 003007
instructions set the rounding mode directly; the 005400 073i05 instruction
sets the rounding mode from the contents of Si. A change to the rounding
mode affects all floating-point instructions issued thereafter, but it has no
effect on instructions issued previously. The two exchange package bits,
RMO and RM1, determine the rounding modes (as illustrated in Table 30).

Rounding is determined by the choice of rounding mode and the values of

the guard bit, the sign bit, the sticky bits, and the least significant bit
(LSB). Table 31 defines when a 1 bit is added to the LSB of the results.
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Table 31. Effects of Rounding Mode on LSB

Result Bits Rounding Mode
Sign Bit Guard Bit Sticky Bit Round to Roundto |- Round Up |Round Down
Nearest Zero
X 0 0 No No No No
0 0 1 No No Yes No
0 1 0 Yes if LSB=1 No Yes No
0 1 1 Yes No Yes No
1 0 1 No No No Yes
1 1 0 Yes if LSB=1 No No Yes
1 1 1 Yes No No Yes
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Floating-point Add and Compare

FCO000
AV, AW, AX, AY OAA—-OAH §j IAA~1DP _
OBA-OBH Sk IEA—IHP
VNO-7
INA — INB OAA-ODP_ Vi IAA-IAH
HHOO00
OGE — OGF IRA
Rounding Mode IR -
OEA Go Scalar FA
JB0O1
OE
Q Go S Compare AV, AW, AX_ AY
IPA = IPC Si__ IEA-IE
IQA - 1QC, IXA=0 OE! SiViFlags IYA
IC000 - =1 ol ags
OXA — OXC HA —ILP IXB =1
ho, H1, H2 IMA — IME, OFA S0 Jump Sign
Scalar
BUOOO
OWD — OWF EEE Flags JBOA
KO, K1, K2 MUX Vi Data IKH
BU00T IPA - IPC o FC001
ORB Go Vector FA ISA
0S| __Go V-S Compare ISl OAA — ODP
|OSJ_Go V-V Compare 1SQ
OEA - OEE
BU00O OWD — OWF IQA - IQC,
KO, K1, K2 VEQ00
VONNO-7 JOEA-OED Sjvj  IAA-IDP XA 1 OGA  SetVM __ IVA
QEE-OBd Wk =-lE, X8 =1 ITA Vector Valid ONA
INA — INB -
AY000/1 OYF - OYG I Pipe 0
Rounding Mode
OYF-OYG
VN8 - 15
INA-INB _| FC002
BU0OT ORB Go Vector FA __ISA OAA — ODP Vi IAA — IAH
0S| Go V-S Compare ISI
Go V-VC
0sJ Go ompare ISQ AY001
OWD —OV\II(I:) s I0A-1QC
» b OEl___ViFlags IYA
1C002 OXD - OXE IPA - IPC
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IXB = Pipe 0 position contant
Figure 64. Floating Add Functional Unit
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Floating-point Add Functional Unit Instructions ,,/)

Refer to Table 32 for a list of the floating-point add functional unit
instructions.

Table 32. Floating-point Add Functional Unit Instructions

Instruction CAL Description

062ijk SiSj+ FSk | Scalar floating-point sum of (Sj) and (Sk) to Si

063k SiSj— FSk | Scalar floating-point difference of (Sj) minus (Sk) to Si

170ijk ViSj+ FVk | Vector floating-point sum of (Sj) and (Vk elements) to Vi

171ijk ViVj+ FVk | Vector floating-point sum of (Vi elements) and (Vk elements) to
Vi

172ijk ViSj— FVk | Vector floating-point difference of (Sj) minus (Vk) to Vi

173ijk ViVj—FVk | Vector floating-point difierence of (Vjelements) minus (Vk
elements) to Vi

Floating-point Format

Refer to Figure 65 for an illustration of floating-point format. Consider a )
floating-point number normalized when the most significant bit of the
coefficient (bit 51) is set.

Bits 63] 62 52| 51 0

Exponent Coefticient

Sign Bit

Figure 65. IEEE Floating-point Format

Floating-point-to-Integer Conversion

Floating-point-to-integer conversion takes place on the FC options. This

operation converts a floating-point number to a signed 64-bit integer.

There are two cases of this conversion instruction. One case converts

without rounding and is not IEEE standard. The other case enables

rounding. Table 33 describes the floating-point-to-integer conversion

instructions. N
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Table 33. Floating-Point-to-Integer Conversion Instructions

Instruction CAL Description
070i2 Siint, Sf Floating-point Sjto integer Si
070i3 Sirint, Sj | Floating-point Sjto rounded integer Si
167if0 Viint, Vj Floating-point Vjto integer Vi
167if1 Virint, Vj | Floating-point Vjto rounded integer Vi

There are some notable special cases that involve the instructions listed in
Table 33. The invalid signal is sent:

e If the j field of the instruction is a 0, then (Sj) or (Vj) is 0. The
result is +0 (0000000000000000000000).

o Ifthe floating-point number has a value greater than 264 -1,
then the unit will return 3=07775777777777777771777. This
value is the largest number that can be represented.

e If the input is a NaN, then +0777777777777T7T7777T7777 is
returned and invalid is signaled.

e  If the input value is less than 1, a 0 or a 1 is returned, depending
on the rounding mode. The inexact signal will be sent unless
the input operand was exactly 0.

Integer-to-Floating-Point Conversion

Integer-to-floating-point conversions occur on the FC options. Two
instructions can convert a signed 64 bit integer into a floating-point
number. The result will be exact if the absolute value of the source
operand is less than 254. Otherwise the result is rounded, using the current
rounding mode. Refer to Table 34 for a description of the two
integer-to-floating-point conversion instructions.

Table 34. Conversion Instructions

Instruction CAL Description
070i4 Siflt, Sj Integer Sjto floating-point Si
167i2 Vifit, Vj Integer Vjto floating-point Vi

HTM-300-0
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Floating-point Comparisons

The IEEE standard supports a full set of floating-point comparison
instructions. There are four mutually exclusive operations that are
possible, they are:

e Lessthan

e  Greater than
e Equal

e  Unordered

Comparisons are always exact. They never overflow, underflow, or signal
inexact exceptions. If a signaling NaN (bit 51 of the fraction is 0) is
received as an input, it will generate an exception (XI) interrupt and also
an invalid (NVI) interrupt for signed compare tests (>, >=, <, <=). An
invalid also occurs if a quiet NaN (bit 51 of the fraction is 1) is received in
a signed compare test (>, >=, <, <=). Note that a NaN will always fail an
equal test (NaNs are equal to nothing) and always pass the Not equal test.

For compare functions, the sign of a zero value is ignored. Therefore a
positive zero will equal a negative zero, and a positive zero is not greater
than a negative zero.

When a scalar compare instruction tests true for a condition, all of the bits -
in the result register are set. If the test fails, the result register will contain
0’s. For vector operations, passing a test sets a bit in the mask register and

failing a test clears the corresponding bit in the mask register. Table 35
lists the instructions used in the compare function.

Table 35. Compare Instructions

Instruction CAL Description
005501 164ijk SiSjEQ,Sk |Floating-point compare equal
005502 164ijk Si8jNQ,Sk |Floating-point compare not equal
005503 164ijk SiSj,GT,Sk |Floating-point compare greater than
005504 164ijk Si Sj,LE,Sk | Floating-point compare less than or equal
005505 164ijk SiSjLT,Sk | Floating-point compare less than
005506 164ijk SiSj,GE,Sk | Floating-point compare greater than or equal
005507 164ijk SiSj,UN,Sk | Floating-point compare unordered
005521 1640jk | VM Sj,EQ,Vk | Floating-point compare equal .
005522 1640jk | VM Sj,NQ,Vk | Floating-point compare not equal \)
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Table 35. Compare Instructions (continued)

Instruction CAL Description

005523 1640jk | VM Sj,GT,Vk | Floating-point compare greater than

005524 1640jk | VM SjLE,Vk |Floating-point compare less than or equal

005525 1640jk | VM SjLT,Vk |Floating-point compare less than

005526 1640/k | VM Sj,GE,Vk | Floating-point compare greater than or equal

005527 1640jk | VM Sj,UN,Vk | Floating-point compare unordered

005541 1640jk | VM VjEQ,Vk | Floating-point compare equal

005542 1640jk | VM VjNQ,Vk | Floating-point compare not equal

005543 1640jk | VM VjGT,Vk | Floating-point compare greater than

005544 1640jk | VM VjLE,Vk |Floating-point compare less than or equal

005545 1640jk | VM VjL1,Vk | Hoating-point compare less than

005546 1640jk | VM Vj,GE,Vk Floating-point compare greater than

005547 1640jk | VM Vj,UN,Vk | Floating-point compare unordered

HTM-300-0
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The vector and scalar registers share the divide and square root functional
unit. The divide functional unit also handles the iota instructions and the
pop, parity, and leading zero operations. (These functions are discussed in
the Vector Logical and in the Vector Pop/Parity sections.) There are two
divide and square root pipes; each pipe consists of one RE option and two
RD options. (Refer to Figure 67 at the end of this section for a block
diagram of the divide functional unit.)

All input data from the vector and scalar registers arrives at the functional
unit from the vector options. Scalar data is also routed through the vector
options, using the same path to the RE options.

NOTE: The divide unit operates in either full- or half-precision mode.
Although the hardware for half-precision is on the module, there
is no compiler or software support for the half-precision

. instructions.

In half-precision mode, the divide unit stops iterating after 16 iterations
and produces 32-bit results. In full-precision mode, the divide unit
performs 28 iterations. The top bit of the result is generally a 0, but it can
be 1 if the ratio of the mantissa to the radicand is approximately 2:1. The
next bit is the hidden bit if no left shift is required. The hidden bit is 2 bits
below the top bit if a left shift is required, which leaves 29 or 30 bits to the
right of the hidden bit. The remaining (unused) 22 or 23 bits are set to 0’s.

Table 36 lists the IEEE floating-point divide and square root instructions
that are available on CRAY T90 series systems. |
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Table 36. Floating-point Divide and Square Root Unit Instructions

Instruction CAL Description
065ijk SiSKFSj |Floating-point Sk divided by Sjto Si.
065k * SiSKHSj | Half precision floating-point Sk divided by Sjto Si.
070i0 SiSQR S/ | Floating-point square root of Sjto Si.
070i0* SiSQRH Sj | Half precision floating-point square root of Sjto Si.
162ijk ViVKIFSj | Floating-point Vk divided by Sjto Vi.
162ijk* ViVKHSj | Half precision floating-point Vk divided by Sjto Vi.
163ijk ViVKIFVj | Floating-point Vk divided by Vjto Vi.
163ijk* ViVkHVj | Half precision floating-point Vk divided by Vjto Vi.
174ijk0 ViSQR Vj |Floating-point square root of Vjto Vi.
174ijk0* ViSQRH V;j |Half precision floating-point square root of Vjto Vi.

* Must be preceded by a 005400 instruction

Divide/Square Root Options

There are two sets of options because this functional unit has two pipes.
The even elements are processed by pipe 0, and the odd elements are
processed by pipe 1. Table 37 shows the options used for each pipe.

Table 37. Divide Options

Pipe 0 Pipe 1

REOOCO REO0O1
RD000 RD002
RDOO1 RD003

RD option

The RD option communicates only with the RE option; there are two RD
options for each RE option. The RD receives input operands from the RE
option: first the j operand, then the k operand. The RD option sends the
mantissa serially to the RE option.
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Each RD option contains four identical divide/square root cores. There
are a total of eight cores in each unit. Divide and square root operands are
sent to the RD options so that each RD option receives operands at a
maximum rate of one every 4 clock periods (CPs) in half-precision mode
or one every 8 CPs in full-precision mode. Operands are always sent to
the even-numbered RD option first. If a new divide operation is starting
and it has been at least 16 CPs since the last operation, the unit will reset

-the pipe back to the even-numbered RD option. This feature allows a

failure to be isolated to a particular RD option.

The input data is received at the RE option and sent to the RD option
along with the Yugo signal. The Yugo signal causes the RD option to
assign one of the divide cores to begin calculation.

There is one RE option for each pipe. The RE option is responsible for:
e [ota (See the “Vector Logical” section for a description of Iota)

e  Vector Pop/Pop Parity and Leading Zero instructions (See the
“Vector Pop/Pop Parity and Leading Zero” section for a
description of these instructions)

e Exponents calculation
e  Exceptions

e  Normalization

¢  Rounding

All communication with the CPU occurs through the RE options. There is
only one 64-bit operand path into the divide unit. The divide unit receives
data from the VN and VQ options and passes it on to the RD option. The j
and & operands for divide are multiplexed; first j arrives and then k. Scalar
data is also routed through the VN and VQ options.

A floating-point divide operation may be normalized at most by one
position. If the divisor is greater then the mantissa, then the most
significant bit of the result is 0 and a left shift of one position is
preformed. Otherwise, the most significant bit of the result is always a 1.
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Rounding

Square root operations should never require normalization. The radicand
is shifted left one position before the operation is started. There is one
exception. Although it is mathematically impossible for the ratio of two
mantissas to be equal to 2, or the square root of n<4 to be 2, it is possible,
in half-precision mode, for this result to be produced. Also if rounding
away from zero, the square root of the largest possible n<4 must be
rounded up to 2. In all these cases, the bit above the most significant bit is

.-set and all other bits are forced to 0’s. For square root, this case is

detected and the exponent is adjusted accordingly. For divide, the
exponent is left unjustified and the mantissa is forced to O.

Two rounding mode bits are received at the RE option and held for vector
length. The 2 rounding mode bits select one of following four rounding
modes:

00 = Round to nearest

01 = Round toward positive
10 = Round toward zero

11 = Round toward negative

Rounding occurs by adding one to the least significant bit (LSB) of the
results. (Rounding is determined to be required by the rounding mode bits
and any bit of less significance than the LSB of the coefficient and
possibly the sign bit and the LSB.)

In rounding, the first bit to the right of the LSB is called the guard bit, all
the bits to the right of the guard bit are “ORed” together into a “sticky”
bit. If the guard bit and the sticky bit are 0’s, then the results are exact and
no rounding will take place. If either bit is a 1, then Inexact is signaled
and a 1 is added to the LSB, depending on the rounding mode.

Floating Point Exception Flags

142

The divide square root unit has six exception flags:

e Imvalid (NVI) An attempt has been made to generate a result that is
not a real number. Invalid is signaled for the following conditions:
e A signaling NaN (sNaN) was received as an input operand
e Division of 0 by O or infinity by infinity
e  Square root of a negative number
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e  Divide by 0 (DVI) An attempt has been made to divide a finite
normal numerator by zero.

e  Overflow (OVF) A result that is larger than the largest
representable number was generated. '

e Underflow (UNF) A nonzero result that is smaller than the smallest
representable number was generated.

e Inexact (NX) A result was generated whose value would be
different if all possible significant bits were returned or could be
returned. Inexact is also signaled on both overflow and underflow
when the result is not exactly 0. For example, 1 divided by 3 returns
the repeating decimal, 0.33333.......3, and signals Inexact.

e Exceptional Input (XI) A floating-point unit received an operand
of infinity or NaN. XI is a CRI feature, not an IEEE standard.

Exception flags and other generated information about the operation are
sent serially to the AY option and onward to the status registers of the HH
options. The information is recoded and staged as shown in Figure 66.

Bit 19 18 17-1614 13

12

11

10 9

8

7

6

5

4

3

2

Sqrt

Sclr

i {0 RM1

RMO

sign

X | inv

dbz

und

ovf

zZero

inf

qNaN

sNaN

Figure 66. Serial Floating-point Status

Division and Square Root Rules

HTM-300-0

If either operand of a divide is a NaN, or if the operand in a square root is
a NaN, or if the operation is invalid, then the result must be a NaN. If one
of the operands is a NaN, the result will be a positive value quiet NaN,
with a mantissa of all 1’s. If a NaN is generated because of an invalid
operation, the result will be a positive value quiet NaN, but 1 or 2 bits of
the mantissa will be set to identify which unit generated the NaN. These
identifier bits are shown in Table 38.
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Table 38. NaN Identifiers
Unit Bit 50 Bit 49 Bit 48
Divide 1 0
Square Root 1 1

Division of two nonzero numbers results in a 0, only when an underflow
operation occurs. If overflow occurs, a F-co (0777600000000000000000)
or the greatest representable value (07775777777777T7777777) is
returned. Table 39 lists the characteristics of floating divide input
operands and how they affect the quotient. Table 40 contains a list for
square root calculations.

Table 39. Division Results

joperand
k operand
n 0 1) NaN
n 0,n, o 0 1% NaN
0 0 NaN 1% NaN
co 0 0 NaN NaN
NaN NaN NaN NaN NaN
Table 40. Square Root Results
j operand +n 10 -n NaN
Resuits +n +0 NaN NaN
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Figure 67. Divide Unit Block Diagram
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OAA —OAP Result Bits 0 — 15 to S/V Register

OBA — OBP Result Bits 16 — 31 to S/V Reqiste&

QCA — OCP Result Bits 32 — 47 to S/V Registep

ODA — ODP Result Bits 48 — 63 to S/V Reqister:

OFA

Status Fiags to HH000 via AY000

QOSA - OSB Divide SiRelease

QSC — OSD Divide Si Release

OSA = Valid, iBit 1 B)

0SB =Bits 0,2

0SC = valid, /Bt 1+ AV AW)

OSD=Bits 0,2

OSE — OSF Divide Si Release

OSG - OSH Divide Si Release

OSE = Valid, iBit 1 (AW)

OSF =Bits 0,2
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QSI-08SJ Divide Si Release
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The scalar and vector registers share the floating-point multiply functional
unit. Two floating-point operands arrive at the multiply functional unit
from either the scalar or the vector registers. The signs of the two
operands are combined through an exclusive OR operation, the exponents
are added together, and the two 51-bit coefficients are multiplied.

The floating-point multiply functional unit also performs the integer
multiply operation. Two 64-bit operands arrive at the functional unit and
a 128-bit result is generated. With the EIS instruction set, the user can
select either the upper 64 bits or the lower 64 bits of the result.

The multiply unit is a dual pipe unit. Each unit consists of five options:
the NE option, two NF options, an HG option, and an NH option. Refer to
the block diagrams of the multiply functional unit in Figure 73 and

Figure 74.
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Standard Binary Multiplication
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The multiply functional unit uses a type of recode multiplication algorithm
known as Booth’s Algorithm. :

The multiplier, in this case the j operand, is partitioned into 3-bit recode
groups centered on the even bits. A forced zero is added to the first
recode group. The recode groups are formed as shown in Table 41. The
following subsections provide examples of standard and Booth Recode

multiplication.
Table 41. Recode Groups
Odd Bit Even Bit i-1 Recode Value Recode Product

0 0 0 +0 0
0 0 1 +1
0 1 0 +1 X
0 1 1 +2 2X
1 0 0 -2 (2X)y+1
1 0 1 -1 (Xy+1
1 1 0 ~1 (X)'+1
1 1 1 -0 (0)° +1

i—1 = Bit to right of recode X = Multiplicand

group

Refer to the following example of standard binary multiplication:

000011 (3)
011101 (35)
000011
000000
000011
000011
000011
000000
0000001010111 (127)
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f) Booth Recode Multiplication

Refer to the following example of Booth Recode multiplication:

000011 (3)
011101 (35)
000000000011
11111111010
00000110
1 000001010111 (127)

In the previous example, the multiplier is recoded into bit groups centered
on the even bit. A forced zero is appended to the first recode group.

As shown in Table 41, the first recode of the multiplier, bit 1, bit O, and the
forced zero, produces a recode value of 010, or +1. In this case, the
multiplicand is brought down to form the first partial product.

The second recode, bit 3, bit 2, and bit 1, produces a recode value of —1.
In this case, a two’s complement and a shift of 1 are performed on the
multiplicand, which forms the second partial product.

- ) The final recode, bits 5, 4, and 3 produces a recode value of +2, which
results in a shift of 1 on the multiplicand and forms the third partial
product.

Integer Multiply Instructions

The floating-point multiply functional unit also performs the integer
multiply operation. Two 64-bit operands are presented to the unit and a
128-bit result is generated. The EIS instruction set allows the user to
select either the upper 64 bits or the lower 64 bits of the 128-bit result.
Refer to Table 42 for a list of the integer multiply instructions.
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Table 42. Integer Multiply Instructions

Instruction CAL Description
066ijk S8/ LSk |Integer product, (S)) times (SK) to Si, returning lower
066k * SiS/USk |Integer product, (S)) times (Sk) to Si, returning upper
165ijk VV/'LVk Integer product, (Vj elements) times (Vk elements) to Vi,
returning lower
165ijk * VNjUVk |Integer product, (Vjelements) times (Vk elements) to Vi,
returning upper
166k ViSj*'LVk Integer product, (Sj) times (Vk elements) to Vi, returning lower
166k * ViSj*UVk |Integer product, (S)) times (Vk elements) to Vi, returning upper

* Must be preceded by a 005400 instruction

Floating-point Multiply Instructions

The floating point-multiply unit uses the IEEE standard for multiplication.
There are 11 exponent bits and 52 coefficient bits. Refer to Figure 68 for

the IEEE format.

Bits 63| 62

52| 51

Exponent

Coefficient

Sign Bit

Figure 68. IEEE Floating-point Format

When two operands are presented to the unit, a pyramid is formed. The
least significant bits are captured by the NE option (NEOOO for pipe 0 and
NEO001 for pipe 1). These bits are the sticky bits when rounding modes
are in operation, and they are also the lower bits of the integer multiply
results. The two NF options, (NFO0O and NF001 for pipe O and NF002
and NF003 for pipe 1) form the middle of the pyramid.

Refer to Table 43 for a list of the floating-point multiply instructions.
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Table 43. Floating-point Multiply Instructions

Instruction CAL Description
064ijk SiSj"FSk | Scalar floating-point product of (Sj) times (Sk) to (Si)
160k ViSj*FVk | Vector floating-point product (S)) times (Vk elements) to Vi
161ijk ViVj*FVk | Vector floating-point product (Vj elements) times (Vk elements)
to Vi

Multiply Functional Unit Options

There are two sets of options because the multiply functional unit is a
dual-pipe functional unit. The even elements are processed by pipe 0,
and the odd elements are processed by pipe 1. Table 44 shows the options
used for each pipe.

Table 44. Multiply Options

Pipe 0 Pipe 1
NEOOO NEO0O1
NFO000 NF002
NF001 NF003
NGO000 NGO001
NHO000 NHO001

NE Option

The NE option forms the rightmost (least significant) portion of the
pyramid. (Refer to Figure 69.) The NE option receives Sk and Vk
operand bits 0 through 49 and Sj and Vj bits 0 through 50. During a
floating multiply operation, this portion of the pyramid is used mainly to
create the sticky bits; however, during an integer multiply, the results will
be used.to produce the full 128-bit result. The NE option receives very
little control from the rest of the unit. It cannot distinguish whether the
operands are to be used as floating point or integer.
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NH Option
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There are two NF options per pipe. NF000 and NF0O! are used for

pipe 0, and NF002 and NF003 are used for pipe 1. A particular input may
be used on one option and not the other, depending on its position. The
NF option may receive control signals from the NG option with
information that an invalid operand was received and instructions to abort
further calculations.

NFO000 receives Sk and Vk operands bit 33 through bit 65 (bit 64 and bit
65 are forced to 0’s) and Sj and Vj bit —1 through bit 47 (bit -1 is forced to
a zero). NFOOO generates the upper-middle portion of the pyramid. (Refer
to Figure 70).

NFO001 receives Sk and Vk operand bit —1 through bit 33, (bit -1 is forced

to zcro) and Sj and Vj bit 17 through bit 65 (bit 64 and bit 65 are forced to
0’s). NF0O1 generates the lower-middle portion of the pyramid. (Refer to
Figure 71.)

The NG option forms the left portion of the pyramid. (Refer to

Figure 72.) The NG option receives Sk and Vk operand bit 17 through bit
65 (bit 64 and bit 65 are forced to 0’s) and Sj and V; bit 17 through bit 65
(bit 64 and bit 65 are forced to a 0’s).

The NG option also detects exceptional inputs such as:
Zero j exponent/fraction

Zero k exponent/fraction

Signaling NAN j operand

Signaling NAN £ operand

Quiet NAN j operand

Quiet NAN £ operand

Infinite NAN j operand

Infinite NAN k operand

and communicates the presence of these inputs to the NF options and the
NH option.

The NH option performs the final summation for the floating-point
multiply pyramid and sends the final coefficient and exponent to the result
registers. The NH also transmits the interrupt signal to the AY option
where it is relayed to the HH option for use in the exchange package.
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Vi0-24 ICA-ICY.

Vi25-49 IDA-IDY,

Sk0-23 |EA-IEX
Sk24-49 IFA-IFZ
Vk0-23 IGA-IG

Vk24-49 (HA-IHZ

freyaudoid yoseasay Aein

NEOOO

Sj Captured for Use
with Sj Vk Operations

Skand Vk Bits 0— 49
Sjand VjBits 0 - 50

&

OAA - OCB

OCC - OClI

OCJ ~OCN

OCO -0Cz

Result Bits 0 — 53

IAA - 1IC

Result Bits 11, 15, 19, 23, 27, 28, 30ICC — ic]

Resuit Bits 32, 34, 36, 38, 40 ICJ-1C
Result Bits 42 — 53 ICO-IC
NFO000
SjForced0 _ IAA >
$j0-22 JAB —~ IAX Sj Captured for Use
with S Vk Operations
Sj23-47 IBA - 1BY_
VjForced0  ICA -
Vi0-22 ICA-IC Skand Vk Bits 33 - 65
Sjand VjBits -1 - 47
Vj23-47 _ IDA-IDY Jand = OAA-OBK  Result Bits 50 - 86 IDA - [EK_
SkForced 0 |IEA-IEB k Bit 64, 65 Forced 0
jBit-1 Forced 0
Sk33-48 IEC — IER
Sk49 63 IFA - IFO
SkForced 0 IFP-1FQ
VkForced0 IGA ~1GB
Vk 33 ~48 IGC - 1G
Vk49-863  IHA —IHO
VkForced 0 IHP — IHQ
NF001
Sj17 40 1AA — |1AX
Sj41-63 IBA ~IBW.
§j Captured for Use
SjForced 0 IAX —1BY with Sjand Vk
Operations
Vj17 -~ 40 ICA —ICX
Vj41 - 63 IDA - IDW. Sk and Vk Bits -1 - 33 OAA - OBK Result Bits 50 - 86 IFA-IGK
k bit 64, 65 Forced 0
VjForced0 IDX ~IDY
Sjand VjBits 17 - 65
SkForced 0 IEA k Bit -1 Forced 0
jBit 64,65 Forced 0
Sk0-16 IEB—IER_
Sk17 —33 IFA—IFC)I
VkForced 0 IGA
Vk0-16 IGB - IGR
Vk17 - 33 IHR - IHY
NG000
$j17-40 1AA — 1AX
S/41-63 |BA — |BW,
] Sj Captured for Use
SjForced 0 IAX —IBY with Sjand Vk
Operations
Vj17 - 40 ICA ~ICX
Vj41-63 IDA — IDW,
OCA - OBT Result Bits 82 — 127 1HA = IIT
VjForced0 IDX-—IDY
OCA -~ OCH_Result Bits 83,86,88 — 93 IJA = IJH
Sk17-40  [EA—IEX |
OC| - 0OCO_Result Bits 95,97,99,101,103,105,107 _IJi —1JO
Sk41-63  IFA—IFW

SkForced 0 IFX~IFY

VK17 —-40_ _ IGA - 1GX

Vk41~-63  I1HA - IHW

VkForced 0 IHX —IHY

OCP ~ OCU_Result Bits 112,116,120,124,127

WP - 1JuU

Figure 73. Multiply Data Paths
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h Bit 2
h Bit 2 190G
NF001 1QH
IQF
[o]]
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IQH ™ OQD - OQF K Operand Zero (NGO0O)
QL
1QJ
To NF000
IQK ALSO
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QN _/ lac,
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Infinite NaN k Operand
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Quiet NaN jOperand
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Signaling NaN j Operand
Zero k Exponent/Fraction
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oQD
OQE
OQF
oQG
hBit2 IQF OQH
, 0ODB Invalid Input
jOperand Zero  1QG | —
obC Exceptional Input
ODA Sign Bit to Branch Control WB)

Figure 74. Multiply Control Paths
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B BIT MATRIX MULTIPLY

The OA option performs the bit matrix multiply operation. The functional
unit consists of six OA options.

The OA option performs two functions related to bit matrix multiply. The
first function loads the B array with the Vj operand. The second function
performs the A X BT operation where A is either the Sj or Vj operand and
BT is the B array transposed. The scalar operation produces a scalar
result, and the vector operation produces a vector result.

Each OA option receives 22 bits of the operand. OA002 and OA005
receive 20 bits, and the last two inputs are forced to zero. Each OA option
holds 32 elements X 22 bits. When performing the A X BT operation,
each OA produces a partial result for each of the 32 elements. The partial
results are then sent to the appropriate OA option to complete the final
results. There is only one copy of each control bit coming into the
functional unit, so OA001 and OA004 relay the control bits to the other
options.

Bit Matrix Multiply Theory of Operation

HTM-300-0

The bit matrix multiply (BMM) functional unit performs a logical
multiplication of two matrices, designated A and B, which results in a
single-bit result for each pair of elements multiplied. The matrices, which
are held in vector registers, may vary in size from 1 bit X 1 bit (1 X 1) to
64 x 64 bits. The size of the matrix is specified by the vector length (VL)
register (example: VL = 20 specifies 20 X 20 matrices).

The following conditions are necessary to obtain valid results:
¢  The two matrices must be square and of equal size.

e  The two matrices must be left-justified in the vector registers to
element O, bit 63.

e  Unused bits of each element that contain part of the matrix must be
zeroed.

Elements not containing parts of a matrix are unaffected.

Cray Research Proprietary 161



Bit Matrix Multiply

162

CPU Module (CPE1)

Result matrix C is the product of matrix A and matrix B transposed (B).
Btis formed from matrix B by interchanging its rows and columns.

In addition to performing full 64 X 64 matrix multiply operations, the
BMM functional unit performs a scalar-vector multiply operation and

stores the result in an S register.

Figure 75 is an illustration of 20 X 20 and 50 x 50 matrices stored in vector
registers.

Bits 63 44 43

Element 0

Element 19
Element 20

Element 63

Valid

Data Zeroes

Don't Care

VL =2040

Bits 63 14 13 0
Element 0
Valid Data Zeroes
Element 49
Element 50
Don't Care
Element 63
VL =5049

Figure 75. Vector Storage of Bit Matrices

In this section, the notation used to represent individual bits of a matrix is
a lower-case letter followed by a subscripted numeric field. The letter
represents the name of the matrix; the numerics denote, respectively, the
element and bit of the vector register data. Elements and bits numbered
from 1 to 9 are represented as a 2-digit number; elements and bits
numbered upward from 10 are separated by a comma. For example:

a3, 7 represents matrix A, element 3, bit 7

b15,43 represents matrix B, element 15, bit 43

a3 12 represents matrix A, element 3, bit 12

Cray Research Proprietary
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Matrices A and B can be represented mathematically as illustrated in
Figure 76. Note that the ultimate degree of both element and bit can be

Bit Matrix Multiply

represented by n because matrices must be square. Each row of a matrix

corresponds to an element of a vector register.

a1 a2 a3
a1 axpn ax

an] ap2 an3

Figure 76. Mathematical Representation of Matrices A and B

The BMM functional unit transposes matrix B as it is loaded into the

ain
an

ann

b1
by

bat

b1z bis
byy by

bz bus

bln
b2n

. b

BMM storage area. The elements (rows) of the B matrix data are
interchanged with the bit positions (columns) as illustrated in Figure 77.

bi; bz bis

by by by
B=|b3; b3y bss

but B bus ...

Figure 77. B Matrix and B! Matrix Relationships

HTM-300-0

. b3y

bln
b2n

-

Bt-=
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a1
a1
a3}
ABt=].
ani
164

a2
a2
a3

an2

The operation, C = AB? is illustrated in Figure 78.

213 aln
a3 aon
a33 a3n
an3 apn
where:

Ci1=ajib11PajabioPaisbizd . . .
Ci2=a;1b21Da12b22Pai3b23D . .
Ci3=aj1b31DaizbzrPajsbss®P . .

Ca1=a31b11DaxbiaDarzbi3d . . .

Csp=a31b21PazabraPazsbid . .

byi
b1z
bi3

by
by
b3

b2n

Bt

b3y
b32
b3z

b3n

T @ indicates an exclusive OR operation,

by

i
€21
€31

Cnl

€12
€22
€32

Cn2

@ajnbin T

. Dajpbog
. @Panban

Dagnbin

Figure 78. Multiplication of A and Bt
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CPU Module (CPE1) Bit Matrix Multiply
Instructions
Refer to Table 45 for a list of the bit matrix multiply instructions.
Table 45. Bit Matrix Multiply Instructions
Instruction CAL Description
1740/4 BMM LVj |Transmit Vjelements 0~ 63 to B matrix
17405 BMM UVj |Transmit Vjelements 64 — 127 to B matrix
174if Vi Vj*BT | Transmit the value of Vjmultiplied by the transposed B matrix
to Vi
070i6 Si §j*BT |Transmit the value of Sjmultiplied by the transposed B matrix
to Si
002210 CBL Clear the bit matrix loaded (BML) flag

+ New instruction

Refer to Figure 79 for a BMM block diagram for pipe 0 and to Figure 80
for a BMM block diagram for pipe 1.

HTM-300-0
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| VROOO  Bits0—3
VM0OO Bits4-7

IAA— 1AV

VROO1 — Bits 8— 11
| VM0OO1  Bits 12~ 15
| VROO2 Bits 16 - 19

VM002 Bits 20 — 21

| VvM002  Bite22 23
] VROO3  Bits 2427
{ VM003  Bits 28 - 31
| VROO4  Bits 32~-35

| vMo04  Bits 36 - 39
VROO5  Bits 40— 43

IAA — 1AV

OAO00O Bits 0-21

OAO001 Bits 22 — 43

Bit Matrix Multiply

IAA — Al

y

OA002 Bits 44 — 63

IAA— 1AV |

{VM0O05  Bits 44 — 47

~ | VROO6  Bits 48 — 51

] VMOO6  Bits 52 — 55

| VROO7  Bits 56 ~ 59

VM0OO7 Bits 60-63

OA003 Bits 0 - 21

IAA — AV

OA004 Bits 22 - 43

IAA — 1AU_

OAO005 Bits 44 - 63

- Al
OCK —OCU IDA-IDK OA000
VMO00/ARQOQ0
- 0dd Bits 1 - 21
- VM002/AS001
OCV — ODF ICA —ICK Partial Results L]
OCK - OCU IDA—IDK | OA001
. OAA — OAK Final Result Bits
OCV - ODF ICA-ICK_} Bits20,22~40 Odd Bits 23 — 43
IEA - IEK
QOCA-0CJ > Partial Results
OCV - ODF DA-1DJ ] OAOC2
its 0,2 - 18 L -
OCK - OCU Bits 0.2-1 QAA - VAJ Final Kesult Bits
ICA-IC Odd Bits 45 — 63
OCA-0CJ IEA—IEJ Partial Results VM002/AS001
VMOO03/AS002
VMO04/AT000
OCK - OCU IDA - IDK _I OA003 VMO05/AT001
IEA_IEK ] Bits43,45-63 | OAA-OAK Final Result Bits
OCA - 0CJ Even Bits 0 —20
OCV - ODF ICA—ICK_) Partial Results
OCK - OCU IDA—IDK _| OA004
OCV -ODF Bits 21, 23 — 41 OAA - OAK Final Result Bits
iICA—ICK , -
> Even Bits 22 - 42 VMOO5/ATO001
Partial Results _
Z VMO007/AU001
OCV - ODF bA-1ps | OAD05
OCK - 0CU Bits 1,3—19 OAA — OAJ Final Result Bits
ICA—ICJ Even Bits 44 — 62
OCA-0CJ

IEA—IEJ _

Partial Results

Figure 79. Bit Matrix Multiply Block Diagram, Pipe O
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| VROO8  Bits 03

| vM008  Bits 4 -7

[ VR0O0O9  Bits 8- 11
| vM009  Bits 1215
| vRO10  Bits 16-19

VMO10  Bits 20 — 21

IBA - 1BV

IBA - 1BV

OAO000 Bits 0-21

|vM010  Bite 22 -23

IBA ~ 1BU

OAOO01 Bits 22 - 43

OA000

Bits 42, 44 - 62

Partial Results

JVRO11  Bits 24— 27

| vmo11  Bits 28 - 31
| VRO12  Bits 3235
jvMO012  Bits 36 -39
VRO13 Bits 40 - 43

/

OAO002 Bits 44 — 63

OA0O1

Bits 20, 22 - 40

Partial Results

| vM013  Bits 44— 47
| VRO14  Bits 48 - 51
| vMO14  Bits 52 - 55
JVRO15  Bits 56 - 59

VMO15 Bits 60— 63

IBA - 1BV

IBA - 1BV

OAQ03 Bits 0 - 21

OA002

Bits 0,218

Partial Results

IBA—IBU _|

OAQ04 Bits 22 - 43

OAQ03

Bits 43, 45—-63

Partial Results

/

OAO0O05 Bits 44 — 63

OA004

Bits 21, 23 — 41

Partial Results

-IGK
OEK - OEU IGA — 16K,
OEA - OEJ IHA — IHK
OEV - OEF IFA-IFK
OEK - OEU IGA—IGK
OEV - OEF IFA—IFK
OEA - OEJ IHA - HK
OEV — OEF IGA—IGJ
OEK - OEY IFA=IFJ__
OEA - OEJ IHA=1HJ
OEK — OEU IGA - IGK |

IHA — IHK _
OEA — OEJ >
OEV — OEF IFA—IFK _
OEK — OEU IGA - IGK_
OEV — OEF IFA—IFK _
OEA - OEJ HA — IHK
OEV — OEF

IGA — IGJ
OEK — OEU

IFA—IFJ
OEA - OEJ

IHA - IHJ

OA005

Bits 1,3-19

Partial Results

Bit Matrix Multiply
OBA-OBK Final Result Bits /] VMO008 J
Odd Bits 1 —21 7 VMOO9
Z VMO010 =
OBA - OBK Final Result Bits
QOdd Bits 23 - 43
OBA - 0BJ Final Result Bits
Odd Bits 45 - 63
VMO10
VMO11
VM012
VMO13
OBA - OBK Final Result Bits
Even Bits 0~ 20
OBA - OBK Final Result Bits
Even Bits 22 — 42 VMO13
7 VMO14
Z VMO15
OBA - OBJ Final Result Bits

Figure 80. Bit Matrix Multiply Block Diagram, Pipe 1
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INSTRUCTION BUFFERS

The instruction buffers are distributed across four IC options. (Table 46
illustrates how the four IC options are partitioned.) Each IC option
contains 8 buffers, and each buffer holds 32 16-bit words. The IC options
also hold data for the functions listed in Table 46.

Table 46. IC Options

Bit Type 1C000 1C001 1C002 IC003

Instruction data bits 0-7and 8-15and 16 -23 and 24 - 31 and

32-39 40 - 47 48 - 55 56 — 63
B address bits 0-7 8-15 16 -23 24 — 31
Fetch address bits 0-7 8-15 16 -23 24 - 31
Logical address translation 0-7 and 8-15and 16— 23 and 24 - 31 and
(LAT) address bits 32-39 40-47 48 —-55 56 — 63
Exchange P address bits 0-7 and . 8-15and 16-23 and 24 -31 and

32-39 40 - 47 48 - 55 56 — 63
Fetch destination code 0,1 2,3 4,5 6,7
fan-out bits

Fetch

HTM-300-0

The IC options generate a deadstart fetch after the first 20g words (the
number of words in the exchange package) have been received. The IC
option counts the number of common memory valid codes received, and
this count enables the generation of the deadstart fetch signal.

When data is fetched from memory, it is requested as a block of 32 words
(4 blocks of 8 words where the first word of this block is the first word
that is needed). For example, if a branch is made to address 1005, that

- address is requested first, followed by addresses 1006 to 1037, then

addresses 1000 to 1004.

When the common memory data arrives, the IC compares the incoming
code with the expected code. This code tells the IC option where to put
the data in the buffer. Data can arrive at the IC from memory in any order,
and because of the memory code, it is reordered inside the buffer.

Cray Research Proprietary
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Prefetch

CPU Module (CPE1)

A 9-bit code accompanies every 16 bits of memory data. This code
specifies the buffer and the element in the buffer into which the word is to
be loaded. The following illustration shows a breakdown of the code.

Valid Buffer Element

' 8]176 5143210

Two words of data arrive together at the IC options. As the data starts to
arrive, the IC options sense the first 4 words. These words proceed
through a bypass path, to the read-out registers, and then to the JB options
for issue.

Two pointers are associated with bypass: a read pointer and a write
pointer. As long as the write pointer stays ahead of read issue, the first 4
words will issue. The buffers will continue to fill while the first 4 words
are issuing. If the first 4 words issue and the buffers are not full, issue
stops until the buffers fill and the buffer valid bit sets. The instruction
parcels are then transmitted to the JB options from the buffers.

172

A prefetch begins when the buffer read-out pointer reaches address 30g in
the buffer or a branch occurs to addresses 30 to 37g.

The prefetch determines if the next sequential buffer is already in-stack.
If it is not, a fetch accesses the next sequential common memory address.
When the count in the buffer reaches 37g, the IC advances the buffer
pointer and ensures that the read data valid bit is set. If the read data valid
bit is not set, the IC option enables the wait first word flag and waits for
the first word to be received from common memory.

NOTE: The prefetch will always occur, but it can be blocked or aborted
by any branch sequence in progress.

Prefetch can at times degrade performance. For example, if the first word
of the next sequential instruction block is needed while the current
instruction block is being fetched, a delay occurs. In this case, issue stops
until the last word of the next block is fetched.

If an out-of-stack branch occurs while the next sequential block is
awaiting prefetch, the prefetch is aborted and the block containing the
branch address is fetched instead. Issue of instructions at the branch
address are delayed until the fetch of the current block is completed and a
fetch of the current block containing the branch address begins.
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Instruction Buffers

Another problem with prefetch occurs when executing an instruction at
the top of logical address translation (LAT) space. The program may
execute a branch to lower memory but the prefetch may try to initiate a
fetch from the next sequential memory location. If the next sequential
memory location is out of the LAT range and the branch is within 8 words
of the last valid LAT address, a range error may occur.

Refer to Figure 81 for the IC options bit layout, to Figure 82 for an IC
block diagram, and to Figure 83 for the IC option terms.

Figure 84 is a block diagram of the memory-to-instruction buffers for path
1, and Figure 85 is a block diagram of the memory-to-instruction buffers
for path 2. Figure 86 is a block diagram of the common memory path
code 1 fanouts, and Figure 87 is a block diagram of the common memory
path code 2 fanouts.
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1C003

B Bits 24 — 31
Fetch Bits 24 — 31

Instruction Data Bits 24 -~ 31 and 56 — 63

LAT Address Bits 24 — 31 and 56 — 63
Exchange P Data Bits 24 — 31 and 56 — 63

1C002

Instruction Data Bits 16 — 23 and 48 — 55
B Bits 16 - 23

Fetch Bits 16 — 23

LAT Address Bits 16 — 23 and 48 — 55
Exchange P Data Bits 16 — 23 and 48 — 55

1C001

B Bits 8 - 15
Fetch Bits 8 — 15

Instruction Data Bits 8 — 15 and 40 — 47

LAT Address Bits 8 — 15 and 40 — 47
Exchange P Data Bits 8 — 15 and 40 - 47

1C000

Instruction Data Bits 0 — 7 and 32 — 39

BBits0-7
Fetch Bits 0—7

LAT Address Bits 0 -7 and 32 — 39
Exchange P Data Bits 0 -7 and 32 -39

RAM Array 0| RAM Array 2

Buffer0 -3 Buffer 0 -3
Even Words Odd Words
0-30 0-

30

RAM Array 1| RAM Array 3

Buffer4 -7 Buffer4 -7
Even Words Odd Words
0-30 0-

30

Figure 81. IC Options Bit Layout
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Instruction Buffers

IC OWA —-OWC
Fan-out Data OWD — OWE gg ',‘5"))
— OWI - OWK
IPA — PP Coincidence Butfer OWQ - OWS HM)
(JB) > Parcel Data OXA - OXC HE) &
> P Reg Data h,i j kBits |OXD-OXF (\'\/jS’ ﬁC))
Bufter Maich Branch Address
Branch or LAT OFA - OFH »(CC)
»  Address LAT Address OEl — OEP_
*(CC)
zéith 1 Code/ » Array 0 E ou
rray Write, > Parity Error to OUA o
((cy -Read Address) 1AQ 1A o Dt > (OA)
_| Words
Path 1 Valid AX >l 0-15
(10) {Write Enable) Array 1 R
e
(r Fath1Data 1A IAP g Dyl a
Lol Words d
0~ 16 - Ingt Data to OAA ~ OAP
> o > (JB)
- Array 2 u
- Butffer t
CH) Path 2 Dat.a IBA — IBP 0-30dd
Path 1 Valid Words R
(10) (;Nr;]te1 Enable) IBX T 0-15 e
ath 1 Code
(Array Write/ gtgzrs g
(I0) Read Address) 1BQ ~IBX 4—-70dd
Words
0-15
»] Bypass
PBits0-15 IDA - IDP
(I0) pBits 16—31  IEA-IEP [ Fetch Address New Pto OAA—OAH
(IC) - Regi » (BU)
gister
OCA - OCH y
- - BjKP F t
8U) ICA -ICH o] Fan-out Data OCIl - OCP B;j anout (10)
Figure 82. IC Block Diagram
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IAA- ] IC OAA -
1AP OAP Instruction Data
(CH) CMPath 1 Data o _ > (JB)
1) CM Path 1 Code IAY OAQ Instruction Data Ready > (JB)
IVC— OCA -
(CK) CM Path 1 Code to Fanout IVD | OCH Bjk Exchange P to Fanout (BU)
IBA - oCi -
(CH) CM Path 2 Data IBP OCP Bjk Exchange P to Fanout > (BU)
IBQ- | ODA - -
IBY ODH New P X
(10) CM Path 2 Code — - W > (BU)
(K CM Path 2 Code to Fanout :;i_: ODI  Enter New P/Dump Mode > (BU)
(BU) Bjk Exchange P to Fanout ICH ODJ Go Branch/Exchange Enable JB)
IDA - OEA -
ik E> > Bit 0~ 15 EH
(BU) Bjk Exchange P Bit0~15 IDP o) Branch Addreas > (CC)
IEA - OEIl -
j it 16 - EP
(BU) Bjk Exchange P Bit 16 - 31 IEH - Ol Exchange LAT > (CC)
OEQ Fetch Requests > (CC)
QER Go Dump > (CB)
IPA~ Buffer Load Point
B Parcel Data IPP ODJ Buffer Load Pointers > (JB)
(uB) o Rankc ] oA OVD, G Paih 1 Rel Gote F
g Enter Rank 2 IQE = alh 1 Read Sode Tanout o (i)
Clear Rank 2 IQA _ OVE-
(JB) OVH CM Path 2 Read Code Fanout _
WB) Data Resume IoM OWA = *(iC)
(J) Eranch Issue 10Q OWC K0, ki, k2 at Phase 3 - (M)
WB) Go Branch IQR _ OWD —
WB) Branch Fall Through 1QS OWE KO, ki at Phase 2 - (RE)
WB) Interrupt Request 1QU oWl — o
OWK ijat Phase 3 > (HM)
owQ-
(+ay CPU MC to Fanout IRA gz\s ijat Phaso2 (HI)
Exchange Active to Fanout IRB -
cc 9
(co) Triton Mode to Fanout IRC _ OXC 10, M, 2 at Phase 2 »(FC)
(Force 1) >
(VB) VL2 or CM B to Fanout IRD
(HA) CM MC to Fanout IRE
(cO) Fetch Done ISA
(HA) Maint Mode ITA |
IUA
(Force) 1C Select iUB
(€C) Enter Exchange P VB _
Figure 83. IC Option Terms
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Instruction Buffers

OMA - IAA — -
. | CHoog | OMA - IAA - 1 1co02

CHO00 |omp  Bits0-3  1aD__|C000 OMD  Bits16—19  IAD

OME - 1Al - OME - 1Al -

OMH _ Bits32-35 AL _ OMH  Bits48-51  IAL _|

OMA - IAE - _

‘ Ho10 | OMA- IAE

CHO02 JoMD Bitsa-7  1AH | CHO10 ) oMb Bits20-23 _1an

OME - IAM — OME - IAM —

OMH _ Bits36-39 AP _ OMH  Bits52—-55 IAP _|

OMA — IAA - - IAA —
CHO04 Iomp  Bits8~11  1AD | 'C00 cHotz | MR picoa-27  iap |'€O%

OME - 1Al - - -

OMH  Bits40—-43 IAL 8::5 Bits 56 — 59 :ﬁ:_

OMA - IAE — - IAE —
CHO06 |oMD Bits12-15 1AH _ CHOl4 | SMB=  Licog-31 AN N

OME - 1AM~ OME - 1AM —

OMH Bits 44 -47 IAP _| OMH Bits 60 — 63 IAP

Figure 84. Memory-to-instruction Buffers, Path 1
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CHOO1 | OMA- IBA - 11c000 CHO009 | omA - IBA - | IC002
OMD _ Bits0-3 _IBD _ OMD __ Bits16—-19 IBD
OME - Bl - OME - Bl -
OMH _ Bits32-35 IBL OMH Bits48—-51 IBL _|
CHoO3 | OMA- IBE — cHonl | oma- IBE -
OMD  Bits4—-7 IBH _ OMD Bits20—23 IBH
OME —- IBM - - 1BM-
OMH Bits36-39 IBP gm:i Bits52-55 IBP
OMA - IBA - _ _ licoos
CHO% lomp  Bitss—11 1D _|'c00! RO 1 b~ Bits24-27 BB
OME — 1Bl — OME - Bl -
OMH__ Bits40-43 _IBL | OMH Bits 56 -59  IBL
OMA - IBE - - _
CHOO7 Jomp_ Bits12-15__IBH CHOS 1 oMb~ Bits28-31  Ioti
OME - IBM - OME — IBM —
OMH Bits 44—-47 IBP OMH Bits60—-63 IBP
Figure 85. Memory-to-instruction Buffers, Path 2
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Instruction Buffers

1C000
OoVB
ovD
1C003
1C002
IA
Q »| Element Bit 0
1C001
IAR
»1 Element Bit 1
QVB IAS
*1 Element Bit 2
OovD IAT .
®1 Element Bit 3
1C002 .
ovB 1AU | .
Element Bit 4
OvD 1AV » Buffer Bit 0
IAW Buffer Bit 1
IAX Bufter Bit 2
1C003
ovB IAY
OovD
Valid

IC000
VG OVA
VD . OovC
1C001
CKO000 IC0O00
Element Bit 0 | .ONF IAQ 1 Element Bit 0
1C001
. ONG
Element Bit 1 IAR Element Bit 1
.~ | ONH IVC
Element Bit 2
OvA IAS Flement Bit 2
Element Bit 3 |.ON! VD OVG AT
»1 Element Bit 3
1C002
VA 1A
ONJ VG 2 Y Element Bit 4
Element Bit 4
ove IAV ) Buter Bit 0
Buffer Bit 0 f2NC. VD AW, Butter Bit 1
Buffer Bit 1 |- OND IAX ol Buter Bit 2
. ONE
Buffer Bit 2 1C003
OVA IAY
ONB ONA IVC
OovC
IVD
Valid
Figure 86. Common Memory Path, Code 1 Fanouts
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IC000 OVE 10000
IVC_| OVF
OVG
VD OVH
1C001 10003
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CKO001 onF 50 CQo00 1C002
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Figure 87. Common Memory Path, Code 2 Fanouts
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) INSTRUCTION ISSUE

In the CRAY T90 series computer system, a process called instruction
issue introduces instructions into the central processing unit (CPU).

The first instruction parcel is read from of one of eight instruction buffers
(IBs) and sent to the next instruction parcel (NIP) register where it is
partially decoded to determine whether it is a 1-, 3- or 4-parcel instruction.

Refer to Figure 88 for an instruction issue block diagram. The program
address (P) register points to the next parcel to be read out of the
instruction buffer. If it is a 1-parcel instruction, the NIP moves to the
current instruction parcel (CIP), the parcel from the instruction buffer
moves to NIP, and P is incremented by 1. If it is a 3-parcel instruction, as
NIP moves to CIP, the second parcel moves into LIPO, the third parcel
moves into LIP1, and P is incremented by 3. If it is a 4-parcel instruction,
as the first parcel moves from NIP to CIP, the second and third parcels
move to LIPO and LIP1. Then, the fourth parcel goes to NIP and on to
; ) CIP as the other three parcels are leaving. In the next clock period, the

- fourth parcel leaves CIP, and the value in the P register increments by 4.

B7 | ) .
IB 6
| +1, 43, +4
‘ﬁ » NIP »} CIP
1B 1
IBO LIPO
»! LIP1
J

Figure 88. Instruction Issue Block Diagram
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Instruction Formats

There are three instruction formats: 1-, 3-, or 4- parcel instructions. The
first parcel always contains the operation code. The operation code is
examined in NIP to determine whether it is an exit instruction (000000 or
004000) or a 1-, 3-, or 4- parcel instruction.

One-parcel Instructions

The gh portion generally is the operation code, although some instructions
also use the i, j, or & fields. The i field is usually the result designator, and
the jk portions are generally operand register designators. Some
instructions use the i field or bit 2 of the j field to provide additional bits
for the operation code.

Some 1-parcel instructions are part of the extended instruction set (EIS)
and perform different operations when immediately preceded by the EIS
parcel (005400 or 0055jk).

Figure 89 illustrates the format of a 1-parcel instruction.

7 3 3 3 Bits/Parcel

L__gnh L i1 7 1 « ]
165-9 8-6 5-3  2-0 Bit Number

Figure 89. Format for a 1-parcel Instruction

Three-parcel Instructions

In the 3-parcel instruction format, the nm fields hold the 32-bit address or
constant value. Figure 90 illustrates a 3-parcel instruction format.

NOTE: The n portion holds the most significant bits, and the m portion
holds the least significant bits.

4 3 3 3 3 16 16 Bits/Parcel
Lo [ o 1 i 1 i 1 « L J0Lm]
15-12 11-9 8-6 5-3 2-0 15-0 15-0 Bit Number

Figure 90. Format for a 3-parcel Instruction
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Four-parcel Instructions

In the 3-parcel instruction format, the instruction field mnemonic pmn
represents a 48-bit field of which the p portion is the most significant
parcel. Figure 91 illustrates a 4-parcel instruction format.

4 3 3 3 3 16 16 16 Bits/Parcel
Lo [ o 1 ¢ [ 7 I « 3 e Jn JLm|
15-12 11-9 8-6 5-3 2-0  15-0  15-0  15-0 BitNumber

Figure 91. Format for a 4-parcel Instruction

Four-parcel instructions are used in A and S register memory references
that use extended addressing. The 4 field selects an A register that
contains an address index. The i field designates which A or S register is
the source or destination of the data. During read references, bit 1 of the j
field disables or enables cache bypass. Bit 2 of the j field must be set to a
1 to indicate a 4-parcel instruction. The £ field is not used.

Instruction Decode

When an instruction parcel is loaded into NIP, its size is determined. If it
is a 1-parcel instruction, it moves to CIP for further decoding to determine
which registers, functional units, and memory ports are required.
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Coincidence

The P register is 32 bits wide and resides on the BUO and BU1 options.
The P register indicates the relative memory address of the next
instruction to be read out of the instruction buffer read-out register (and
sent to either NIP or LIP0). The lower 2 bits (bits —1 and —2) point to the
parcel, and the upper 30 bits (bits 8 through 29) point to the word address.

‘There are three ways to-load the P register:

e  Multiplex 8 bits at a time during an exchange sequence
e Load from Bjk as a result of a 005ijk instruction

e  Load from the ijk or nm fields of a 006ijk, 007ijk, or O1xjk
instruction

Every time a parcel issues, the JB option sends an Advance P signal to the
BU options. Advance P increments the P register by 1.

A condition called coincidence exists when the next needed parcel is in
one of the eight instruction buffers. (Coincidence is checked only on
branch instructions.) A coincidence check compares the upper 25 bits of
the P register to the 25-bit buffer address (A) register and determines
whether the buffer valid bit is set. All 25 bits must match, and the buffer
valid bit must be set in order for a coincidence condition to exist. If there
is no coincidence, a fetch operation is initiated.

Reading the Instruction Buffer

186

When a buffer read occurs, the even and odd words are read out of the
buffer to a read-out register. Depending on the content of the P register,
the BU options direct one of these words to NIP or LIP for decoding.
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JB Option

Instruction Issue

The two JB options on the CP module provide the issue control signals for
the processor. These options receive the instruction word from the IC
options, select and decode the correct parcels, and provide control to the
rest of the CPU. The JB option also has all the resource reservations and
holds issue if a resource is busy. The JB options are responsible for the
functions described in the following subsections.

Parcel Data Distribution

HTM-300-0

The JB option transmits parcel data to the AV, AW, AX, AY, BU, and VB
options and alters the j field going to the AV, AW, AX, and AY options for
certain instruction types during the following instructions:

e 10h, 11h, 12h, 13k; the Aj becomes the Ak field
0013;0; the Ai field becomes the Aj field

The JB option also transmits a read-out pointer code to the A and S

registers. The read-out pointer code selects the read-out path. Refer to
Table 47 for a list of these codes.

Table 47. Read-out Path Codes

Code Instruction Description
00 075, 13h Sito BU path
01 034, 036, 025, 11h Aito BU path
11 035, 037 Aito BU path
00 00130, 027i2/3, 027i/p/7 Aito SR path
01 073if2, 073if3, 073ip, 073i® | Sito SR path
10 0010jk, 0011k Akto SR path
11 00140, 00144 Sjto SR path
00 057, 0030/0/1, 026i0/1, 027i0 | Sjto shift path
11 052 - 056 Sito shift path
00 Sjto vector pipe 0
o1 176 A0 to vector pipe 0
10 034, 036 A0 to vector pipe 0
1 035, 037, 177 A0 to vector pipe 0
00 Sjto vector pipe 1
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Table 47. Read-out Path Codes (continued)

Code Instruction Description

01 176 'l Ak to vector pipe 1

10 034, 036 Aito vector pipe 1

11 035, 037, 177 A0 to vector pipe 1

00 10h, 12h, 13h, 0017 jk Ah (Aj) to CM port B/E
01 00200k Ak to CM port B/E

10 11h Ah (Aj) to CM port B/E
11 177 Ak to CM port B/E

A/S/V/BIT Register Requests

The JB option checks for register conflicts and receives a register release
signal from the shared resource control and from common memory for the
A and S registers. The JB option also receives a vector read/write (R/W)
release for V registers and a B/T read/write release. The JB option also
transmits A and S register entry codes. The A and S registers use these
codes, the ghijk field, the instruction, and the 2-bit register read-out code
to define the instruction to be performed and to reserve the needed path.

Functional Unit Requests

188

The JB option detects functional unit conflicts in the following functional
units:

Logical #1: 140 -147/175

Logical #2: 140 — 145 if Logical #1 busy / Logical #2 enabled

Vector Mask: 146 — 147/ 175/ 070ij1 / EIS 153i50,1

Vector Shift: 150 — 153

Vector Add: 154 - 157

Floating Multiply/Divide: 160 — 167

Floating Add: 170-173

Cray Research Proprietary
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e  Square Root: 070ij1, 174ij0 (V pop, parity, leading zero, iota:
174ij(1 - 3)

e Matrix Multiply: 174ij(4 - 7)/ 070ij(6 - 7)

Constant Data Requests

The JB option checks for the presence of constant data in multiple-parcel
instructions such as jumps, branches, and instructions that use the pmn
fields. Each JB option handles 32 bits of the constant data distribution.
JBO transmits data to the AV, AW, and CD options through the A series
options; and JB1 transmits data to the AX, AY, and CD options through
the A series options. JBO also provides the jk data on the constant path
when needed.

Extended Instruction Set (EIS) Requests

When the JB option issues 005400 or 0055xx instructions, the parcel
following either of these instructions is defined by the extended
instruction set. If an EIS-capable instruction is issued without a
preceeding 005400 or 0055xx instruction, the instruction issues and
performs its primary function. For example:

044ijk  Transmit the logical product of (Sj) and (Sk) to Si
044ijk  In EIS mode, this instruction transmits the logical
product of (Aj) and (Ak) to Ai
Common Memory Requests

The JB options receive the following external common memory control
signals:

e Release Port A
e Release Port B
e Release Port C

e Bidirectional Mode: (Mode = 1) Enables block reads and writes at
the same time
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e Common Memory Quiet: Indicates that all memory activity in the
CPU has been completed. Requires that all ports are quiet, conflict
logic is quiet, memory sections are quiet, and all read and write
operations are complete.

e Hold Common Memory Issue: No more references can issue

e  Cache Miss In Progress: Indicates a cache miss is pending

e Read Quiet: Read references have cleared all conflict checks

e  Write Quiet: Write references have cleared all conflict checks

e Exchange Active: Indicates an exchange has not completed

Shared Resource Requests

The JB options receive the following external signals, which control the
shared resource path, from the HD option:

e  A/S Register Shared Resource Release: Releases a specific A or S
register (0 — 7) path

e Release Shared Resource: Used in combination with Go Semaphore
Branch to cause issue to resume or P to advance

e  Go Semaphore Branch: Signals that the conditions of a semaphore
branch have been satisfied
Branch Requests
The JB options check the conditional branch test conditions to determine
whether the condition is satisfied; if it is, the JB option issues a Go Branch
signal to the IC options.
Exchange Requests

The JB options perform the following actions during an exchange
sequence:

e 000000 (error exit) issues. Issue stops, P advances.

e 0040jk (exit k) issues. Issue stops, P stops.
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Interrupt Requests

HTM-300-0
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e  The shared path is released. The state of Go Semaphore Branch
determines whether P advances on a 0040jk. One of two possible
results can occur:

¢ A normal exit occurs and P advances when the shared path is
released and Go Semaphore Branch is a 0.

¢  An error exit occurs, P will not advance when the shared path is
released, and Go Semaphore Branch is a 1.

An interrupt request can be generated in one of three ways:

e A 000000 (error exit) instruction issues
e A 0040jk (Exit k) instruction issues
e A hardware error condition occurs

Interrupt requests are processed in two phases. In phase 1, the following
conditions are checked: :

e  No multiparcel instructions are in process
e No EIS type waiting for second parcel
¢ No branch sequence in progress

In phase 2, the following conditions are checked, and then the Go
Exchange signal is sent to the HH, IC, and CC options.

No branch sequence in progress
Shared path available

All registers available
Common memory quiet

When a hardware interrupt request occurs, the JB option performs the
phase 1 checks and stops issue. If the phase 2 checks are all valid, the JB
option sends a Go Exchange signal to the IC options. If any of the shared
type instructions have issued during this shut-down time, the HD option
must release the shared path and the following actions must occur:

e If a 0034 (test and set semaphore) has issued, a Release signal and a
Go Branch signal must be sent before Go Exchange can occur.

e If a 000000 (error exit) or a 0040jk (exit jk) has issued, a release path
must occur to clear the JB option control.

Issue will resume when Go Branch occurs.
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Control Signal Distribution

192

The JB option transmits the following control signals:

Issue group O, 1, and 2: These signals are combined on the BU and
VA options to complete the issue signal.

Issue: Sent to the AN option for fanout.

Enter Vector Length: Sent to the AV option following the decode of
a 00200k (Ak to VL) instruction.

Read Vector Mask: Sent to the SS option during a 073i (0-3) 0
(VMO or VM1 to Si or Ai) instruction.

Enter Vector Mask: Sent (o the SS option during a 0030j (0 — 3) (Si
or Ai to VMO or VM) instruction.

Go Scalar Pop/Parity/Lz: Sent to the SS option during a 026ij (0 — 3)
or 027ij (0 - 1).

Go Scalar Double Shift: Sent to the SS option during a 056ijk Shift
(Si) and (Sj) left Ak places to Si.

Go A Type: Sent to the SS option when a 005400 (EIS) is issued
using A register data.

Go Scalar Divide: Sent to the RE option during a 065ijk instruction.

Go Scalar Floating Add: JB1 sends this signal to the FC option
when a 062ijk (sum) or 063ijk (difference) issues.

Go Scalar Floating Multiply: Sent to the NG option when a 064ijk
instruction issues.

Go Address Multiply: Sent to the AV option whén a 032ijk issues.

Go Compare: This signal is transmitted to the FC option from
JB001 when a 00550x 164ijk issues.

Common Memory A or S Requests: Sent to the CD options when a
memory load or store issues. JBO sends out an A register request,
and JB1 sends out S register requests.

Common Memory A or S Writes: Sent to the CD options when a

memory write 11kixxpnm or 13hixxpnm issues. JBO sends out A
register write requests, and JB1 sends out S register write requests.
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CM Port B Enabled: Sent to the VB option through the JBO option
and to the BU option through the JB1 options to select the vector
read ports. '

Vector Logical #2 Enabled: Sent to the VB options by JBO to select
vector logical functional units.

Data Resume: Sent to the instruction stack (IC options) to indicate
that the JB option can accept another word.

Go Exchange: Sent to the IC options to indicate that an exchange is
required. Another copy is sent to the HH option to clear the SIE bit
(taking I/O interrupt), and to the CC option to begin the swapping of
exchange packages in memory.

Go Branch: Sent to the 1C options to indicate that a conditional
branch condition has been satisfied.

Branch Fall Through: Sent to the IC options to indicate that a
conditional branch has failed the condition test.

Branch Issued: Sent to the IC options to indicate that a branch has
issued.

Enter Rank 1, Enter Rank 2, or Clear Rank 2: Sent to the IC options
to move parcel data into or out of the ranks into issue.

The following signals are transmitted to the performance (HI)
monitor to indicate a hold issue condition:

¢ Holding Issue on A Registers

e Holding Issue on S Registers

e Holding Issue on B/T Registers

¢ Holding Issue on V Registers

¢  Holding Issue on Common Memory

¢ Holding Issue on Functional Unit

Holding Issue on Shared Resources

Advance P: Sent to the P register (BU options) to advance P by 1 as
each parcel is issued.
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Branch Instruction Control

The JB options decode and control the execution of branch instructions.
When a conditional branch passes or fails a test, it returns either the Go
Branch control signal or the Branch Fall Through control signal to the IC
options. Issue is halted until the Go Branch signal is received by the IC
options. Another signal, Branch Issued, is also sent to the ICs when a
branch is in progress.

Conditional Branch Instructions

Conditional branches use instructions 010ijk through 017ijk. Once the
instruction issues, branch control logic examines either the AQ or SO
register for the condition defined by the operation code. If the condition is
met, the value of the P register is replaced with the nm field, and program
flow is passed to the instruction specified by P. If the condition is not met,
program flow drops through to the instruction that follows the branch.

Another type of conditional branch instruction for a CRAY T90 series
computer system is called test and set branch (0064jkmn). If a specified
semaphore register equals 0, the bit is made a 1 and the next instruction
issues. If the semaphore is a 1, the P register is replaced with the value in
the nm field.

Unconditional Branch Instructions

194

Unconditional branches use instructions 00505k through 007ijkmn, and
each code operates differently, except that none of them depends on
satisfying a condition before the branch takes place. In other words, they
always take the branch in the ijkm or nm fields.

The jump to Bjk instruction (0050jk) branches to the parcel address
specified by the contents of Bjk. The unconditional jump instruction
(006000mn) branches to the nm field. The unconditional jump instruction
(006100mn) branches to the address in nm field.

The return jump instruction (007000mn) jumps to the address in the
address field and places P + 3 (the address of the next instruction) into
B0O. The return jump allows a jump to a subroutine, the last instruction of
which must be a 005000 instruction, which is a jump to B0OO.

The 007100nm jump instruction is an indirect jump. This instruction

stores the address of the next sequential instruction in the BOO register;
then the instruction uses the nm field to specify a common memory
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address. The lower 32 bits of the contents of that address are transferred
to the P register, causing program execution to continue at that point.
When this instruction executes, the instruction buffers are set invalid.

Issue Control

The first parcel of the instruction leaves NIP and moves into all the CIPs
on options HI000, HHO000, and HHOO1. The CIP located on the HI
options is responsible for the instructions that affect the exchange package
and performance monitor.

The HH option CIP is used for A/S path release and provides A/Si
designators and shared path release. The JB options determine whether
any register or functional unit reservation exists. If not, these options send
the Issue signal to the HH and HI options. 'L'he instruction issues,
reserving the appropriate registers and/or functional unit. If resource
conflicts do exist, the JB option does not send the Issue signal, and the
instruction remains in CIP until the conflict is resolved. This is called a
hold issue condition.

The JB options are responsible for providing issue control, and checking
and making functional unit and path reservations for the following items:

Vector registers

Vector functional units

A/S shared resource control
Memory ports

CM path/cache

A/S register entry codes
B/T register

The functional units must send a release back to the JB options to indicate
that the units are available.

The JB options also send out the 4, i, j, and & fields to the A/S registers for
further instruction decode.

Refer to Figure 92 through Figure 98 for related instruction issue block
diagrams.
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OCA- IDA- ODA-
IC000 JOCH Bits0—7 [DH_}1C000 |ODH
IDA—
IDH_[icoo1
BUODO |OEN Bits0 ICA- ocI - IDA- - BU00O
EH Bits0-7 ICH . _
OEH Bits OCP_Bits0-7__1DH_[TC002 B0y A
IDA- - >
IDH -
1Co03 Bits8-15 IGP
OCA- IDI -
OEI - icA-]icoo1 JOcH Bits8—=15 IDP_|!C000
OEP Bits8~15 ICH o ODA—
iop_[icoor  |ORH
ocl - iDI -
OCP Bits8-15 IDP_[icoo2
DI -
IDP_11Cc003
OCA - |EA—
1C002 OCH Bits 16 -23 |EH‘ 1C000
IEA-
IEH _I'1Cc001
OEA ICA ocCl - IEA— 8DA-— IGA — | BUOO1
- - Bits 16— 2 DH Bits16-23 IGH
BUO0T |oEH Bits16-23 ICH OcP _Bits 3_1EH _11C002 i GH
IEA-
IEH_1ico03
IGI -
OCA- IEl - ]
iC003 | OCH_Bits 2431 IEP_[Coo0 Bits 24 -31 IGP
OEI - ICA-
OEP Bits24-31 ICH IEI -
1EP _}ico01
0OCi - IEl -
OCP Bits24-31 IEP _[C002
IEl - ODA -
iIeP _[icoos | ODH

Figure 92. Bjk (Exchange P) Fan-out Bits
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/) JB001 IC001 JB0O1 1C003
e C002

OKE - 1pa— | 10000 OKM - O

OKH gFieldBits 03 IPD OKP__gFieldBits0—3 IPD _j

OKB — IPE - OKJ - IPE

OKD hFieldBits 0~2 IPG OKL _hFieldBits0—-2 IPG

OKA  iField Bit 2 Py OKI _ iField Bit2 IPJ__

JB00O OKG - IPH - JB000 OKO - IPH -

OKH  jField Bits0—1 IPI OKP jFieldBits0—~1 IPI

OKD - IPK — -JOKL ~ IPK —

OKF  jFieldBits0—3 IPM OKN jFieldBits0~3 IPM

OKA - IPN - OKI - IPN -

OKC kFieldBits0—~3 IPP OKK KkField Bits0 —3 IPP

Figure 93. JB-to-IC Parcel Data for Branches
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OMA - IAA -
CHO00 OMD Bits0-3 1AD 1000 [3B001
OME - IAl - JB000
OMH Bits32-35 AL OAA - IDA -
OAH  Bits0—7  IDH
OMA - IAE —
OMD Bits4-7  IAH
oo OME ™ oM~ 18R~
- OAP  Bits32-39 IBH
OMH Bits36-39 AP _
OMA - IAA -
OMD Bits8—~11__ IAD
CHO04 its > 1C001 OAA— DI
OME - Al - OAH _ Bits8~15  IDP
OMH Bits40-43 IAL _
OMA — IAE- | OAI - 1B -
CHO06 OMD Bits12-15 IAH OAP _ Bits40-47 1BP
OME - IAM ~
OMH _Bits44-47 AP _
OMA — IAA —
OME - 1Al - OAH  Bits16-23 ICH
OMH Bits48—-51 AL _
OMA - IAE - OAl— 1AA -
CHO10 OMD Bits20-23 IAH _ OAP__ Bits 48—55 _1AH
OME - IAM ~
OMH Bits52—-55 IAP
OMA - IAA -
CHO12 OMD Bits24-27 IAD o1 1c003
OME - Al - OAA - ICl -
OMH Bits 5659 IAL OAH _ Bits24-31 ICP
OMA - IAE -
CHO14 OMD Bits28—31 IAH OAI - IAl -
OAP  Bits 56— IAP
OME - 1AM — its 56 -3
OMH Bits60-63 IAP
Figure 94. Path 1 CH-to-IC-to-JB Option
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CPU Module (CPE1) Instruction Issue

o OMA — IBA -
) CHO01 OMD  Bits 0—-3 IBD 1C000 [JE001
OME —- 1Bl - JBOOO
OMH Bits32-35 IBL OAA - IDA -
OAH  Bits0-7 . IDH |
OMA — IBE -
CHO003 OMD  Bits4-7 IBH
OME -y OAl - 1BA -
- - OAP  Bits32 - IBH
OMH Bits36-39 IBP : its 32 — 39 >
OMA — IBA -
CHO005 OMD Bits8—11 I1BD _{ IC001
> OAA - IDI -
OME - 1Bl - OAH  Bits8—15 IDP
OMH Bits40-43 IBL | >
OMA - 1BE - OAl - Bl -
OME - IBM —
OMH  Bits44-47 IBP
. ) OMA — IBA -
R OMD i - BD
CHO009 Bits 16 —-19 _]1co02 OAA — ICA —
OME - 1Bl — OAH  Bits16-23 ICH _
OMH Bits48-51 IBL >
OMA - IBE - OAl - IBA—
CHO11 OMD Bits 20-23 IBH QAP Bits 48 - 55 IBH _
OME - IBM -
OMH  Bits52-55 IBP
OMA — IBA -
CHO13 OMD Bits24—27 IBD _|1c003
OME — IBI - OAA- ICl -
OMH  Bits 56 —59 IBL OAH  Bits 2431 ICP |
OMA — IBE -
CHO15 OMD  Bits28—31 IBH | OAIl - 1BI -
OAP  Bits 56— IBP
OME — 1BM — its 56 — 63 -
OMH  Bits60-63 IBP

) Figure 95. Path 2 CH-to-IC-to-JB Option
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CPU Module (CPE1)

Instruction Issue
JB0O0O | AW000
OAA-OAC kBits IPG-IPl_] Av000
OAD - OAF jBits IPD - IPF
OAG - OAl i Bits IPA-IPC
OAJ — OAL hBits IPJ—IPL | —
| AW002
OBA-0OBC kBits IPG—IPl ] Aw001
OBD - OBF j Bits IPD - IPF
0BG - OBI iBits IPA-IPC
0BJ - OBL hBits IPJ—IPL —
VB001
OCA -OCC _ kBits IPG—IPl_[NE000
OCD-OCF  jBits  IPD—IPF
0OCG - OCl i Bits IPA-IPC
OCJ-OCL  hBits IPJ—IPL_|
OCM—-OCP gBits IPJ—IPL —
JBOOA I AXO001
0QAA — OAC kBits IPG—IPl_] AX000
OAD - OAF j Bits IPD - IPF
OAG - OAI i Bits IPA - 1PC
OAJ - OAL hBits 1PJ~-IPL_ e
| AY001
OBA - OBC kBits IPG—IPl | AY000
OBD - OBF j Bits IPD — IPF
0BG - OBl i Bits IPA - IPC
0OBJ — OBL hBits IPJ-IPL e
BUOO1
OCA-0OCC kBits IPG-IPI BUO0O
OCD-OCF jBits IPD—IPF_
0OCG-0Cl i Bits IPA - IPC
OCJ - OCL hBits IPJ—IPL_
OCM - OCP g Bits [IPJ-IPL =
" Figure 96. Instruction Data Distribution A/S/B/T/V Registers
200 Cray Research Proprietary
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CPU Module with IEEE Instruction Issue

HHOO1
JB0O1 HHO00
AY000
OBA - 0BC IPG _ IPI OWJ-OWL _ kBits ~ IEA-IEC _
1C001
OKD — OKE IPK — IPM OWQ—-OWS  jBits IED ~ IEF _|
IG000
IPH — IPJ OWQ—-OWS  Bits IEG-IEl |
AY000
OBJ - OBL IPJ —1PL OWA-OWC _ hBits  IEJ—IEL _
OMA — OMB
JB00O icH-1c1 | ANooO
OGI-OGL __ gBits __ IEM—IEP
OMA-OMB  IGF-1GG
oLG Issue IEQ

Figure 97. CIP Distribution to HH Options
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Instruction Issue

CPU Module (CPE1)

JB000 -
JB001 AY001 HHO00 -
JBoo1 | OBA ~ OBC IPG_IP1 OWJ-OWL kBits IDA—IDC
IC003
JBo0o 2L —OKN IPK—1PM OWQ-OWS jBits  IDD—IDF._
1C002
JB00o | OKO — OKP IPH-IPL_, OWQ-OWS iBits  IDG—IDI
38001 LOK! IPJ
AY001
JBoo1 jOBJ—OBL IPJ-IPL OWA—OWC hBits  IDJ—IDL
JB001 LOMA —OMB IGH —1GI _| AN0O1 D
OGE-OGH __ gBits __IDM—IDP
JBo0o | OMA=OMB IGF - IGG
JB0O0O OoDD Issue via ANOOO IDQ
Figure 98. CIP Distribution to HH Option
™
;\J)
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CPU Module (CPET) Instruction Issue

JB000 / JBOO1 : OOA - 00D Hold Issues to Performance Monitor -
ODE JBO0O Advance P BUO, BU1 o
ODE JB001 Go FP Muitiply NF s
A VeolorLomoa T veo| \LHeqRead Release VB1(8)  1EA - IEH - ODA Issue Group 0 Valid VB0 and VB1 (JB0) KEY
IGB  Veotor Logical2 VB1| VRegWrite Release VBO (8) _IFA— IFH V Reg Reservation ODA Issue Group 0 Valid BUO and BUT (JB1) _ | Group 0: V Registers, A Registers
IGC  Vector Shift VBO > ODB Issue Group 1 Valid VBO and VB (JBO0) Group 1: S Registers, B/T Registers,
IGD  Vector Add VB V FU Release VBO/VB1 (11) IGA - 1GK - V FU Reservation Conflict | _| Issue ODB Issue Group 1 Valid BUQ and BU1 (JB1) Y/ector Iéogigari, Ve/cit/or ShiBﬁ, Reciprocal,
Check : - o ector Read Port A/Port
IGE Vector FP Mult  VBO | a/g Register (Shared Resource) 1A - IE ODC Issue Group 2 Val!d VBO and VB1 (JB0) Group 2: Shared Resource, Memory Quiet,
IGF  Vector FP Add  VBH ™| Shared Reservation | oDC Issue Group 2 Valid BUQ and BUT (9B1) _ | Ap/50 Sign Test, Others (hold issue
IGG Vector Recip VBO A/S Path (Shared Resource) lIF \ o exchan g etc.) ’ '
IGH BMM VB1 o OLG JB00O Issue CIP  HHO, HH1 o nge, ew.
IGI Vector Mask veo | Release Mem PortA B, C ILA-ILC M . >
emory Port Reservation .
I6J  BRegRelease BUO | (M Path/Cache Release (Even) 1A — IJE ODD JAQQQ Issue CIP HIO via ANO -
IGK T RegRelease BU1 (Odd) 1JI— UM CM Path/Cache Reservation h, i, j, k Field to A/S
- OAA — OAL _Registers AV, AW, AX, AY .
= - h, i, j, k Field to A/S
| Reg Translation OBA — OBL _Registers AV, AW, AX, AY .
) OCA-QOCP g, h, i,j, kField to VB/BU Registers
D(?\J(:I?D(;e »{ Inst Translation A/S Read-out Code Bit 0
OPA, OPC 1o AV, AW, AX, AY -
A/S Read-out Code Bit 1
OPB, OPD to AV, AW, AX, AY .
A/S Entry Code Bit0, 1, 2
_ OFA - OFF to AV, AW, AX, AY .
| 1P
a OGA —OGH A/S Constant Bits to AV0 or AX0 o
= 0] o r -
c OHA — OHH A/S Constant Bits to AWO or AX1 o
> e
Instruction Data from ICs (64) IAA—IDP_ 1] I OIA—OIH A/S Constant Bits to AW1 or AYO
" 2] 2 p OJA-OJH A/S Constant Bitsto AW2 or AYT
t
= 3| 3 a OKA — OKH Parcel Data to Stack A
Instruction Data Ready IKA IKA ' OKlI -OKP Parcel Data to Stack
Parcel Pointers Bit 0 and Bit 1 IKB, IKC w——
To HDs via Fanout A/S Path Release -
Interrupt from HH IKF -
td h! .7 .) kt I .
Exchange Active from CC IPB 9. h i, ko CIP To HF via Fanout Shared Path Release/Exchange Data
FA (S0) Test Valid IKG - ODF Go Exchange to ICs
FA (S0) Slg. n State IKH - Go Exchange
FM (S0) Sign State IKJ _
A0=0 INA - INH »  Sign Bit Test - OQAtcICs Branch Issued _
A0 Negative INA - INJ | —
S0=0 I10A — IOH R 0QB to ICs__Branch Fall Through .-
S0 Negative 101 _ OQC to ICs _Go Branch -

Figure 99. JB Option Block Diagram
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D EXCHANGE

The exchange mechanism in a CRAY T90 series computer system has the
following features:

e  Means of switching execution from program to program
e Exchange package — Block (40g words) of program parameters that:

e  Must be present in order for any program to execute; defines
where and how the program runs

e  Must be 40g words long
e  Must reside in lower 2 MW of memory

e  Must start on a 40g word boundary

) Exchange Process

The exchange sequence is the process that deactivates the current
exchange package and puts it into memory, then loads a new exchange
package from memory and activates it.

In CRAY T90 series systems, a feature in the exchange package allows a
process to exchange to either the address specified by the exchange
address (XA) register or to one of five different addresses specified by one
of the five exit address (EA) registers. With this capability, a user job can
exchange to another user job, or it can exchange to specific areas in the
kernel, without first exchanging to the monitor.

The CRAY T90 series system also incorporates another special feature.
When an exchange occurs, the CPU that exchanges out retains the cluster
number that was initially assigned to it unless the system is operating in
C90 mode or unless AutoBCD (automatic broadcast cluster detach) is
active. Also, when a CPU is master cleared and then exchanged out, the
pending interrupt bits are retained so that the maximum amount of
information about the process is available. A second exchange sequence
can retrieve this information.
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Exchange

SIPI
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CPU Module (CPE1)

If an exchange occurs and the program is in monitor mode, the monitor
needs to save the B registers, T registers, shared registers, scalar (S)
registers, and vector (V) registers. If the vector not used (VNU) bitisa 1,
the V registers do not need to be saved. If the exchange is to another user
job, the user is responsible for saving the register values.

Four conditions cause an exchange sequence:

Deadstart sequence (SIPI)

Interrupt flag set (F register)

Program exit (004000, 000000 instruction)

Hardware error that causes a flag to set, which causes an exchange

A CRAY T90 series system does not use a deadstart signal or command.
Instead, the system uses Set Interprocessor Interrupt (SIPI) signals from
either a 0014;1 instruction [send inter-CPU interrupt to CPU (Aj)], or
during an initial deadstart, when a CPU loop controller function of 76g,
issued by the maintenance channel, starts an exchange.

The following sequence lists the events that invoke the Mainframe
Maintenance Environment (MME):

1. Set CPU Master Clear.
2. Load data to memory address O via the maintenance channel.

3. Issue a loop controller function of 176g via the maintenance channel
to allow CPU maintenance instructions.

4. Issue a loop controller function of 141g via the maintenance channel
to allow CPU instruction exchange and halt.

The exchange package at memory location 0 loads into the CPU
registers, and what was in the CPU registers loads to memory
starting at location 0. There is no fetch after this exchange.

5. Drop CPU Master Clear via the maintenance channel.

6. Issue the loop controller function of 76g via the maintenance
channel.

The dropping of CPU Master Clear works as an enable; the function
76g must be present along with the Master Clear signal before the
exchange can occur.

Cray Research Proprietary HTM-300-0
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CPU Module (CPE1)

Interrupt Flag Set

Exchange

7. Interrupted CPU exchanges to address 0, a fetch is done and issue
starts.

In this case, because I/O is handled by the maintenance channel, the return
path for output depends on how the sanity tree has been configured. From
this point, the initially started CPU can issue SIPI commands to the other
CPUs.

In the CRAY T90 series system, each interrupt flag has an enable interrupt
mode bit. The interrupt modes are enabled by the enabled interrupt mode
(EIM) flag. An exchange to nonmonitor mode sets the EIM flag.

An cxchangc to monitor mode clears the EIM flag. While the program is
in monitor mode, a 001302 instruction sets the EIM flag, and an 001303
instruction clears the EIM flag.

Each CPU has an EIM flag. In monitor mode, the EIM flag is cleared and

~ all interrupt modes are disabled except enable flag on normal exit (FNX),

Program Exit

enable flag on error exit (FEX), and enable interrupt on program range
error (IPR). This scheme provides a stable environment within monitor
mode immediately following an exchange.

Program exit follows the decode of instructions 000000 and 004000.
Instruction 000000 is an error exit instruction; instruction 004000 is a
normal exit.

Exchange Sequence

HTM-300-0

Before a CPU can perform an exchange, the CPU must first finish all
active instructions. If a test and set instruction (0034;jk) is in the next
instruction parcel (NIP) or entering the current instruction parcel (CIP),
the program (P) register will hold the current value until the test and set
condition is true. The JB option then waits until the condition is resolved
before it advances P. Memory must also be quiet, and all memory writes
must be complete.

The processor that is performing the exchange clears the buffer valid bits
and buffer counter. Clearing the buffer valid bits causes a fetch to occur

after the exchange has completed. Clearing the instruction buffer address
register (IBAR) counter causes the data that was fetched from memory to
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Exchange

CPU Module (CPE1)

load into instruction buffer O first. Also, issuing a 0051k instruction
clears the buffer valid bits. The 0051k is a maintenance instruction that
loads the P register from Bjk and invalidates the instruction buffers if the
CPU is in maintenance mode (MM).

Exchange Package Descriptions

P Register

Modes

208

Figure 100 illustrates the exchange package. The exchange parameters
are located on two options: HH000 and HHO01. HHOOO handles bits O
through 31 for words 0 through 17, and HHOO1 handles bits 32 through 63
for words O through 17.

P register — Program register, word 10 bits O through 31. The P register
contains 32 bits, the lower 2 bits of which are used for parcel selects. P
register bits —2 through 29 enable the addressing of 1 gigaword of
memory.

Modes - MM, BDM, ESL, SCE, RM0, RM1, BDD word 11, bits 0
through 7. Selectable interrupt modes enable the programmer to choose
the conditions under which the active program can be interrupted.

e MM — Monitor mode, word 11, bit 0

Certain operations are privileged to monitor mode: controlling the
channel, setting the real-time clock, setting the programmable clock,
and so on. Monitor mode instructions perform specialized functions
that are useful to the operating system. A monitor mode instruction
that issues while the CPU is not in monitor mode is treated as a
no-operation instruction. If a monitor mode instruction issues while
the IMI flag is set, the MII flag sets, and an exchange occurs.

¢ BDM - Bidirectional memory, word 11, bit 1

When BDM is set, block reads and writes may occur concurrently.
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Status

HTM-300-0

Exchange

ESL - Enable second vector logical, word 11, bit 2

If ESL is set and any 140ijk through 145ijk instructions issue, the
instruction is routed to the second vector logical unit. If ESL =0,

the second vector logical unit is not used. The second vector logical

unit is used before the full vector logical unit if a choice exists.
SCE - Scalar cache enabled, word 11, bit 4

If SCE is set to a 1, onboard scalar cache is enabled.

RMO - Rounding Mode Bit 0, word 11, bit 5

This is used to determine the rounding mode to be used for
floating-point operations.

RM1 - Rounding Mode Bit 1, word 11, bit 6

This is used to determine the rounding mode to be used for
floating-point operations.

BDD - Bidirectional memory disable, word 11, bit 7

When BDD is set to a 1, bidirectional block reads and writes are
disabled.

Status (BML, WS, VNU, SBU, SBM) word 12, bit O through 7.

Status (NVS, DVS, OVS, UNS, NXS, XIS) word 13, bits 9 through 14.

The status register reflects the condition of the CPU at the time of an
exchange. The bits in the status field are set during program execution
and are not user selectable.

BML - Bit matrix loaded, word 12, bit 0

The BML bit indicates the Bt (B transposed) registers have been
successfully loaded by a 174074 instruction.

WS — Waiting on semaphore, word 12, bit 1

The WS bit sets when a 0034k instruction is in CIP and holding
issue.
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CPU Module (CPE1)

VNU - Vectors not used, word 12, bit 3

After a program has been exchanged into memory, the B and T
registers must be saved as well as the SB, ST, and SM registers of
the cluster that the program is using. If the VNU bit is equal to 1,
then this indicates that the vector registers were not used so the
vector registers do not need to be saved. However, if the VNU bit is

-0, then the vector registers must be saved as well. The VNU bit is

set when a 077xxx or a 140 through 177xxx instruction issues.
SBU - Status Bit-user mode, word 12, bit 6

Indicates that the CPU is in user mode.

SBM - Status Bit-monitor mode, word 12, bit 7

Indicates that the CPU is in monitor mode.

NVS - Floating point invalid, word 13, bit 9

An attempt was made to generate a result that is not a real number.
Invalid is signaled in any of the following cases:

An input operand is an SNAN

Addition or subtraction of infinites

Multiplication of 0 by infinity

Division of 0 by 0 or infinity by infinity

Division of a finite normal numerator by 0

Square root of a negative number

Signed compare where one or both inputs are NaNs

DVS-Floating point divide by zero, word 13, bit 10
OVS-Floating point overflow, word 13, bit 11

A result larger than the greatest representable number was generated.
Infinity (03777 000000000000000000) is returned.

UNS-Floating point underflow, word 13, bit 12

A result smaller than the least representable number was generated.
Zero (00000 000000000000000000) with the sign bit is returned.

Cray Research Proprietary HTM-300-0
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CPU Module (CPE1) Exchange

e  NXS-Floating point not exact, word 13, bit 13

A result was generated that would be different if all possible
significant bits were returned. Inexact is also signaled on both
overflow and underflow, but not if the returned result is exactly O.

e 1/3returns 0.33333.......3 and signals Inexact
e 0.5/2returns .25 all bits returned.

e A floating-point unit received an operand of infinity or NaN.
This is a Cray Research feature not an IEEE standard.
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Exchange
63 48 47 32 31 16 15 0 ,
0 1516 31.32 47.48 63 /3

0 LAT 0 Logical Limit LAT O Logical Base
39 14
1 LAT 1 Logical Limit LAT 1 Logical Base
39 14
2 LAT 2 Logical Limit LAT 2 Logical Base
39 14
3 LAT 3 Logica! Limit LAT 3 Logical Base
39 14
4 LAT 4 Logical Limit LAT 4 Logical Base
39 14
5 LAT 5 Logical Limit LAT 5 Logical Base
39 14
6 LAT 6 Logical Limit LAT 6 Logical Base
39 14
7 LAT 7 Logical Limit LAT 7 Logical Base
39 N 14
TTTTTITTITTIITTI TSI TTTTTITEE TTTTITT I TR T Ty I TR TITirITd
LATO
10| Modes LAT 0 Physical Bias P Register
RW X D}37
F v VST T TTTTTI T T TT I T T I ]l
LAT 1
11| Modes LAT 1 Physical Bias
RW X D] 37
T T VT IITFTTTITTT T T T I T I T T I T
LAT 2 . i
12| Modes LAT 2 Physical Bias
RW X D} 37
T T O IV TT T T T ITI T T I iTTI oI
LAT 3
13| Modes LAT 3 Physical Bias
RW X D] 37
T VT [TTTTTITTTITI T ItTITIT T
LAT 4
14| Modes LAT 4 Physical Bias
RW X D] 37
T T {TTTiTTTI T T I I T T T I rTIr o IrT
LAT 5 i " .
15| Modes LAT 5 Physical Bias Exit Address 3 Exit Address 4
RW X D} 37 20 20
TV VJTTTT T I TT Tt o rIrITTId IERELEEAR R AN R
16 bg;ez LAT 6 Physical Bias Exit Address 1 Exit Address 2
RW X D} 37 20 5120
LI TTerTvTeEsIrTsEvsnvrvysgnTisrosgey ryryyyryriIrrnra LU LR R
LAT7 Exch A .
171 Modes LAT 7 Physical Bias change Address Exit Address 0
RW X D] 37 1 20 5 120 5
Words 20 — 27: A Registers 0 -7
Words 30 — 37: S Registers 0—7
Figure 100. Exchange Package
HTM-300-0
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CPU Module (CPE1) Exchange

ﬂ Interrupt Flags

Interrupt modes, word 11, bits 9 through 31. Refer to Table 48 for a list of
the bit assignments for the modes field in the exchange package. All
modes except IPR, FEX, and FNX must be enabled by the EIM flag to be
effective. The EIM flag sets on an exchange to nonmonitor mode and
clears on an exchange to monitor mode. The EIM flag enables interrupt
modes if set. The EIM bit can be set or cleared by a 001302 or a 001303
instruction, respectively. '
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Table 48. Interrupt Modes Register Bit Assignments

Binary
Word | Exponent | Acronym ~ Name
11 31 IRP Interrupt on Register Parity Error
11 30 IUM Interrupt on Uncorrectable Memory Error
11 29 - 1 Not Used
11 28 IOR Interrupt on Operand Range Error
11 27 IPR Interrupt on Program Range Error
11 26 FEX Enable Flag on Error Exit (does not disable
exchange)
11 25 IBP Interrupt on Breakpoint
11 24 ICM interrupt on Correctable Memory Error
11 23 IMC Interrupt on MCU Interrupt
11 22 IRT Interrupt on Real-time Interrupt
11 21 liP Interrupt on Interprocessor Interrupt
11 20 o Interrupt on 1/O
11 19 IPC Interrupt on Programmable Clock
11 18 iDL Interrupt on Deadlock
11 17 MI Interrupt on 001 jk= 0 or 033 instruction
11 16 FNX Enable Flag on Normal Exit (does not disable
exchange)
11 15 IAM Interrupt on Address Multiply Range Error
11 14 X1 interrupt on floating-point exceptional input
11 13 INX Interrupt on floating-point not exact
11 12 IUN Interrupt on floating-point underflow
11 11 10V Interrupt on floating-point overflow
11 10 IDV Interrupt on floating-point divide by zero
11 9 INV Interrupt on floating-point invalid
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Exchange

Refer to Table 49 for a list of the bit assignments for the
interrupt flags field in the exchange package.

Table 49. Flag Register Bit Assignments

Binary
Word | Exponent | Acronym Name
12 31 RPE Register Parity Error
12 30 MEU Uncorrectable Memory Error
12 29 - Not Used
12 28 ORE Operand Range Error
12 27 PRE Program Range Error
12 26 FFX Frror Fxit (000 issuerd)
12 25 BPI Breakpoint Interrupt
12 24 MEC Correctable Memory Error
12 23 MCU MCU Interrupt
12 22 RTI Real-time Interrupt
12 21 ICP Interrupt from internatl CPU
12 20 101 /O Interrupt (if 110 and SIE)*
12 19 PCI Programmable Clock Interrupt
12 18 DL Deadlock Interrupt
12 17 Mil 001 k=0 or 033 Instruction Interrupt (if IMI
and not MM)
12 16 NEX Normal Exit (004 issued)
12 15 AMI Address Multiply Interrupt
12 14 Xl Floating-point exceptional input interrupt
12 13 NX Floating-point not exact interrupt
12 12 UNF Floating-point underflow interrupt
12 11 OVF Floating-point overflow interrupt
12 10 DVI Floating-point divide by zero interrupt
12 9 NvI Floating-point invalid interrupt

T SIE = System VO interrupt enabled.
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VL - vector length, word 13, bits O through 7. The VL register holds the
content of the VL register. The 8-bit field contains the number of
elements to be operated on in the vector register. In a CRAY T90 series
system, if VL = 000 or VL = 200, all 2003 vector elements are used within
the vector register.

Exchange Address

Exit Address

Cluster Number

216

XA - exchange address, word 17, bits 16 through 31. The 16-bit field
specifies the address of the first word of the next exchange package. This
exchange package is loaded when any one of the following conditions
occurs:

e  An interrupt occurs that sets any of the following flags: RPE, MEU,
FPE, OPR, BPI, MEC, MCU, RTI, ICP, 10], PCI, DL, MIl, NEX, or
AMI

e A 000is issued
® A 0040jk is issued with & being an illegal value (5, 6, or 7)

The XA field contains only bits 5 through 20. The lower bits are assumed
to be 0’s.

EXIT Address 0 through 4, words 15, 16, 17 bits O through 31. Each of
the five 16-bit fields specifies the starting address of a 32-word exchange
package. The k field of the 0040jk instruction specifies the exchange
package to use. Only £ fields equal to 0 through 4 are valid; if an invalid
value is used, the exchange is to the XA address. Exit Address (EA) 0 is
expected to be used for normal exits to maintain compatibility with
existing systems. ‘

Each EA field contains only bits 5 through 20. The lower bits are
assumed to be 0’s.

CLN - cluster number, word 13, bits 24 through 31. The CLN contains an
8-bit field. There may be up to 36g clusters in the system, depending on
the system configuration.
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Processor Number

PPN - Processor number, word 13, bits 16 through 22. The contents of
the 7-bit field in the exchange packages show the logical number of the
CPU in which the exchange was executed. The maximum number is 127.

Logical Address Translation

LAT - Logical address translation, words O through 17. Refer to the
exchange package diagram for bit layouts. Each LAT has four associated
fields; Table 50 identifies those fields.

Table 50. LAT Fields

Field Name Description

Logical Base | First logical address of this LAT
Logical Limit | Last address +1 of this LAT
Physical Bias | Physical bias = Physical base address - Logical base address

Modes The controlling bits for each LAT
R(ead), W(rite), X(ecute), C(achable), D(irty)

The use of LATs allows programs to share memory space. For example,
two user jobs can reference the same library routine in memory while
keeping their local code private.
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D SCALAR CACHE

Cache Hit

Each CPU has a scalar data cache. The data cache accelerates common
memory data access for address register and scalar register read requests.
Only address and scalar registers can access the data cache.

The data cache has the following features:

The cache is organized into 8 pages of data. Each page contains 8
lines of 16 words, which provides 1,024 words of data in the cache.
Figure 104 illustrates the logical layout of the cache.

Cache is parity protected; each 8-bit byte has an associated parity bit.
If enabled, a parity error on a cache read will cause an interrupt.

When an A or S register memory reference is made, one of two
things may occur: a cache hit or a cache miss.

A and S register store requests are write-through. The cache word
will be updated if there is a hit; if a miss occurs, no cache lines are
requested.

B, T, and V register store requests cause corresponding cache lines to
be set invalid on a cache hit. Store requests on a cache miss have no
effect on the cache. B, T, and V register load requests also have no
effect on the cache.

HTM-300-0

A cache hit is determined using logical addresses, not physical addresses.
A cache hit occurs when the following conditions are met:

A valid page address consisting of address bits 7 through 39, held
within the cache, matches the corresponding address bits of a
memory request.

The cache line indicated by bits 4 through 6 of the requesting address
is valid within the cache.
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Scalar Cache
| Page 7
Page 6
Page 5
Page 4
Page 3
[Page 2
Page 1
Page O
Words 0-15
Line 0
Line 1
Line 2
Line 3
Line 4
Line 5
Line 6
Line7

Cache Miss

Figure 104. Cache Layout

234

A cache miss occurs when a request from an A or S register load request
does not match a page address. When this occurs, the corresponding line
is requested from memory and the previously valid page address is set to
the new page address. All lines in the new page are set invalid. As the
new requested line returns from memory, the new page address is set vatid

as is the cache line that was requested.

Another type of miss occurs when a memory reference matches the page
but not any line in the page, or if the page is not valid. When this occurs,
16 sequential words are requested from memory, and the line is set valid.
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REAL-TIME CLOCK,

PROGRAMMABLE CLOCK INTERRUPT,
STATUS REGISTER,

PERFORMANCE MONITOR

Real-time Clock

Refer to the following subsections for information about the real-time
clock, programmable clock interrupt, status register, and the performance
monitor.

HTM-300-0

A CRAY T90 series computer system contains one 64-bit real-time clock
(RTC) in each central processing unit (CPU). The RTC is synchronized
when a CPU issues a 00140 instruction. The 00140 instruction causes all
CPUs in the same cluster to be loaded with the contents of Sj.

The RTC is located on two HH options, each of which handles 32 bits.
The HHOO0O option handles bits 0 through 31; the HH001 option handles
bits 32 through 63.

HHO001 detects a carry from the RTC, at a count of 37777777776 during
normal operation and increments the upper bits during the next clock
period. HHOOO suppresses any toggles.

The RTC is incremented each clock period. The RTC enables
clock-period timing of program execution. When the machine is
deadstarted, all RTCs must be loaded in order to synchronize all the CPUs.
Otherwise, each CPU will have a different RTC value.

The 001450 instruction writes to the RTC by sending a copy of the Sj
register from the CPU issuing the instruction to all RTC registers through
the issue paths of the shared registers. The 072i00 instruction reads the
RTC register of the CPU that issued the 072i00 instruction and copies the
content into the scalar registers.

Refer to Figure 101 for an RTC and programmable clock interrupt (PCI)
block diagram.
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Sj Data from

Shared Module

HI000
OAA — OCL
Shared Data Path
(RTC Data or PClI)
HHOOO
ICA - IDF RTC to Si
o OAA-OBF Bits0-31
PCI Logic Used on o
This Option Only
CIP from Issue IEA—IEP |
ONA
Carry to RTC
IKB HHOO1
™ RTC to Si
OAA - OBF Bits 32—-63
ICA — IDF

IEA — IEP

Figure 101. RTC and PCI Block Diagram

Programmable Clock

220

Each CPU has one programmable clock (PC), which is a 32-bit counter.
The programmable clock decrements every clock period; the clock is
located on the HDOOO option.

The programmable clock is loaded by the 00144 instruction when the
program is in monitor mode. When the programmable clock equals zero,
an interrupt request (PCI) is generated. To generate a PCI, the IPC mode
bit must be set. In user mode, IPC must have been set in the user’s
exchange package. If the CPU is in monitor mode, either IPC was set in
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the monitor’s exchange package, or a 001406 instruction was issued. The
interrupt request remains set until a 001405 instruction clears it. If the
CPU is in monitor mode and if the interrupt request is not desired, use a
001407 instruction to disable the IPC mode bit.

The PCI request is enabled and disabled on the HI option, which contains
the exchange parameters.

RTC and PC Instructions

Refer to Table 51 for a list of the RTC and PC instructions.

Table 51. RTC and PC Instructions

Instruction CAL Description
0014p0 ¥ RT Sj Enter RTC register with Sj
072100 SiRT Transmit RTC to S/
0014/ T PCISj  |Transmit Sjto programmable clock
001405 ccl Clear PCI request
001406 * ECI Enable PCI request
001407 ¥ DCI Disable PCI request

T Monitor mode instruction.

Performance Monitor

HTM-300-0

The performance monitor (PM) is normally used to monitor software
performance. With the results of the performance monitor, a programmer
can determine how efficiently a program is running in the system. If, for
example, the program is performing too many instruction fetches or too
many hold issue conditions are occurring, the programmer can review the
program structure and modify it to minimize these occurrences.

Each CPU contains a performance monitor. (Because each CPU is
identical, all references in this section pertain to a single CPU.) Each
CPU contains 32 performance counters; each counter is 48 bits wide.
Table 52 shows which event each counter monitors. Each counter
increments each time a particular event occurs in the CPU while the CPU
is not in monitor mode (IMI bit is not set). The counters related to
memory references may increment as many as eight times per clock
period (CP). Counters related to vector operations increment by the value
in the vector length register at the time the instruction issues.
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Table 52. Performance Monitor

CPU Module (CPE1)

Counter Event Monitored Instructions Increments
Number of:
0 Clock periods monitored +1
1 Instructions issued +1
2 Clock periods holding issue +1
3 Instruction fetches +1
4 CPU memory references (ports A, B, C) +8
5 Clock periods for references (ports A, B, C) +2047
6 1/0 memory references (port D, I/O only) +2
7 Cache misses +1
Holding issue on:
10 A registers and access conflicts +1
11 S registers and access conflicts +1
12 V registers +1
13 B/T registers +1
14 Functional units +1
15 Shared registers +1
16 Memory ports +1
17 Number of cache hits +1
Number of instructions:
20 Instructions 000000 through 004000 000 - 004 +1
21 |Branches 005-017 1 : )
22 Address instructions 02x, 030 — 033, EIS 042 — 057, +1 o
073120, 07330
23 B/T memory instructions 034-037 +1
24 Scalar instructions 040 — 043, 071 — 077 except +1
073120, 073/30
25 Scalar integer instructions 044 - 061, 070/ +1
26 Scalar floating-point instructions 062 - 070 +1
27 S/A memory instructions 10x - 13x +1
Number of operations:
30 Vector logical 070ijt, 140 — 147, +VL
17404 — 17406, 175
31 Vector shifts, pop., leading zero 150 —- 163, 174xx (1 — 3) +VL
32 Vector integer adds 154 - 167 _+VL
33 Vector floating-point multiplies 160, 161, 165, 166 +VL
34 Vector floating-point add/compare/converts 167 -173 +VL
35 Vector floating-point divide/square root 162, 163, 174x/0 +VL
36 Vector memory reads 176 +VL
37 Vector memory writes 177 +VL
222 Cray Research Proprietary HTM-300-0



CPU Module (CPE1)

RTC, PCI, Status Register, Performance Monitor

Performance Monitor Instructions

Table 53 lists all the instructions associated with the performance monitor.

Table 53. Performance Monitor Instructions

Instruction CAL Description
001500 Clear all performance counters
073if1 SiSRj | Transmit (SRj) to Si(monitor mode only for
j=2-7)
073105 SRO Si | Transmit (Si) bits 48 — 52 to SRO
073i25 SR2 S | Advance performance monitor pointer
073i75 7 SR7 Si | Transmit (SJ) to maintenance channel

Clearing the Performance Counters

Instruction 001500 clears all performance counters. This instruction must
be issued while the CPU is in monitor mode in order for the instruction to
operate correctly.

Reading the Performance Monitor

HTM-300-0

The 073i21 and 073i31 instructions read the performance monitor. Each
instruction reads half of the counters at a time, which requires that two
instructions be issued to read all the counters. The 48 bits of the counter
read are stored in the Si register. When the 073i21 instruction is issued,
counters 0 through 17 are sent to Si. The 073i31 instruction, when issued,
reads counters 20 through 37 and sends the bits to Si.

The system hardware requires an interval of at least 3 clock periods
between 073ix1 instructions, and the PM Busy Status (PMBY) bit (bit 47
of SRO) must be cleared before reading the counters. If the 3-CP wait is
not written into the program, an indeterminable corruption of performance
monitor data occurs.
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Performance Monitor Block Diagram

Refer to Figure 102 for the performance monitor block diagram. The
performance monitor is composed of the HI000, HHO00, and HHO001
options. The HIO00 option contains the lower bits (0 through 31) and the
HHO000 and HHOO1 options contain the upper bits (32 through 47) for all
32 counters. There is one counter for each event tracked by the

--performance monitor. These 48-bit counters increment as each event
occurs, as long as the CPU is not in monitor mode.

Status Register

A CRAY T90 series computer system has eight status registers, which are
located on the HH and HI options. The status register is not part of the
exchange package in CRAY 'TY0 series systems. Figure 103 shows the
status register format and bit assignments of each register. The status
registers are read by the 073ij1 instruction.
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S Register

Yy

Vector Length Performance Monitor to S/ Bits 0 — 31

Go Increment

HHO00 oMQ HHOO1
OMA - .
OMH OAA - Performance Monitor
IAA — OBF to SiBits 32 — 47 -
Vector Length IBE _ OAA — -
OBF ’
Performance Performance
Counter Counter
Registers 0 — 37 :
A Registers 0 — 37
CA Bits 32 - 47 Bits 32 — 47
Shared Data Path IDF IMi Allow Read
o ONB of HPM 1JQ
IKO
KL Hiooo
ILA - IKP OFA  CarryOut  IKM
ILH Performance
Counter OAA ~ KM
OBF "
IKH ~
Registers 0 — 37 IKL -
IAA - Bits 0 — 31 OFI
Shared Data ICL |
Performance Monitor OFO Busy IKP
Increment Terms IKA - i
(Registers 10 ~ 16) IKG OFK Carry Hold IKO
Cache Miss (Register 17) _ IKH OFA — IKH —
Gache Hit (Register 7) IKK OFE Select Pointers IKL
OBG - ‘ ICA -
/O Reference Requests IKL - OCL Shared Data Path IDF
(Register 6) IKM

Figure 102. Performance Monitor Block Diagram
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The eight status registers are further defined in Table 54 through Table 57.

CPU Module (CPE1)

Status register 0 (SR0) shows the status of several bits in the active

exchange package.

Table 54. Status Register (SRO)

Bits Name Description
63 CLN#0 | Cluster number not equal to zero
57 BML Bit matrix loaded
47 PMBY Performance monitor busy
40 through 46 PN Processor number
32 through 39 CLN Cluster number
31 SMBT {Interrupt on floating-point error
30 SMUT  |interrupt on operand range error
20 IBPT  |interrupt on breakpoint
19 IOR ¥ Interrupt on operand range error mode
18 BDM T |Bidirectional memory mode
17 SCET |Scalar cache enabled
16 XIs ¥ Floating-point exceptional input
15 NXS ¥ | Floating-point not exact
14 UNS T |Floating-point underflow
13 OvVS T |Floating-point overflow
12 DVST |Floating-point divide by zero
11 NVS ¥ | Floating-point invalid
9 Xt Interrupt on floating-point exceptional
input
8 INX T Interrupt on floating-point not exact
7 IUN T Interrupt on floating-point underflow
6 IOVt  |Interrupt on floating-point overflow
5 IDVY  |interrupt on floating-point divide by
zero
INVT  |Interrupt on floating-point invalid
RM1 T | Floating-point round mode bit 1
RMO 't |Floating-point round mode bit 0

T Designates that this was written by a 073105 instruction. Ali other bits of SRO

are read-only.

Status register 1 (SR1) is not defined.
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Status register 2 (SR2) bits 0 through 47 are bits of the performance |
monitor counters O through 17.

Status register 3 (SR3) bits 0 through 47 are bits of the performance
monitor counters 20 through 37.

Status register 4 (SR4) bits are shown in Table 55. SR4 contains the
correctable and uncorrectable memory error flags, port bits, and read
mode bits. The error information stored in SR4 is latched into the register
and held until the register is read. Once SR4 is read, the register is
cleared, and new error data can be stored in the register. If multiple errors
occur, only the first error is held in SR4. Bits 32 through 45 define the
destination code associated with the error. Table 56 is a decode of these
destination bits.

Table 55. Status Register 4 (SR4)

Bits Name Description
47 UME Uncorrectable memory error
46 CME Correctable memory error
32 through 45 CODE | Destination code (refer to Table 56)
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Table 56. Destination Codes

Bit
Destination 13121111019 |8 |7 |6 5|4 }132]|]11}0
Cache read 111 ]11]- Word
V register read 11110 Register | — Element
S register read 110]1 Register | 0 -
A register read 11011 Register 1 -
T register read 11010 - 0}|- Register
B register read 11010 - 11~ Register
Fetch read 0|11 Group Word
I/O read 01110 Type Word
Exchange read 01011 - Word
I/O write 0j]o0}o0 Type 1
Processor write ojojo|-jJjo0jy11]o A/S
Reconfigure oj0joO|-1]1 0 -
Memory error olfoJo|-|o]o}fo -

Status register 5 (SRS) bits 32 through 43 contain the syndrome code of
the memory error. The information is held until the status register is read.

Status register 6 (SR6) bits 32 through 44 contain the error address for
the memory error. These bits are latched into the SR6 on a memory error.
The information is held until the status register is read.

Status register 7 (SR7) contains information on LAT faults, register
parity errors (RPE), and shared register errors (SRRE). Bits 48 through
54 contain an LAT miss flag for each memory port. Bits 55 through 61 _
contain an LAT multiple-hit flag for each memory port. Bit 47 is the RPE
flag. If this bit sets, then bits 32 through 43 contain the chip number. Bit
46 is the SRRE flag and, if this flag is set, bits 24 through 31 contain the
chip number.
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Table 57. Status Register 7 (SR7) Bit Definitions

RTC, PCI, Status Register, Performance Monitor

Bits Name Description
48 through 54 LAT fault |{LAT miss
55 through 61 LAT fault |Multipie LAT hit
46 SRRE | Shared register read error
24 through 31 Shared register chip number
47 RPE Register parity error
32 through 43 RPE chip number
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Cache Addressing
Figure 105 shows how memory addresses are used to determine a cache
hit or miss.
Memory Address
Subsection
Word Select Bank Select Select Section Select
A A A A
4 B4 A'd A Y
39 918 71615 4138}2 01 Bits
\ A I\ J
Y Y Y
Cache Page Cache Line Cache Word
Cache Address

Figure 105. Memory Addresses

Potential Cache Problems

Because no communication occurs between caches in different CPUs, two
or more CPUs can have data in their respective caches from the same
physical address in memory, and one of the CPUs can write data to that
memory address. The CPU that writes the data will update its cache, and
the other CPUs will contain old data. This problem can be managed in
several ways:

e  There are load instructions that bypass cache. These instructions
cause the cache line to be invalidated on a cache hit.

e L ATs can be set up to define areas of memory that are not cache
- enabled.

e If the SCE (scalar cache enable) bit is not set in the exchange
package, it will prevent the use of cache for that job.

Another problem that can occur is thrashing memory with a stride value
of 128. A stride of 128 uses 1 word of 1 line from each cache page. Then
when you start replacing lines, you will get 16 words back from memory
to cache but will be using only 1 word. This problem is avoided by
redesigning user code.
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