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CP02 MODULE

CPO02 General Description

HTM-003-0

The CP02 module contains the central processing unit (CPU) for the
CRAY T90 series computer systems. There is one CPU per CP02 module.
The CRAY T90 series CPU is compatible with the CRAY C90 series
CPU. This means that code compiled on the CRAY C90 series system
will run on a CRAY T90 series system.

There have been many enhancements to the CRAY T90 series CPU and
several new instructions added to increase the performance. Figure 1
illustrates CP module components. Figure 2 and Figure 3 show the basic
functions and locations of all options on a CP module. Figure 4 shows a
block diagram of the CPU.

The CP modules are arranged in stacks in the system. A CRAY T94
system contains one stack of as many as four modules. A CRAY T916
systems contains up to two stacks of as many as eight modules. A
CRAY T932 system contains up to four stacks of as many as 8 modules.

Each module in a stack is independent of the other CP modules in the
stack; there are no interconnections between modules in a stack. The CP
modules connect directly with either the memory modules, as in the
CRAY T94 system, or with the system interconnect board (SIB), as in
larger systems.
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CP02 Module cPU

Module Assembly Components

Refer to Figure 1 for an illustration of the CP module assembly
components. This illustration is provided to show the basic components
that are part of all mainframe modules. Sizes of various components
differ between modules.

A  Flow Block, Board 1 H Fiber-optic Coupler
B Optical Receiver 1 Flow Block, Board 2
C PC Board Edge Shim J  PC Logic Board 2

D Maintenance Connector Flex Assembly K Outer Rail

E Fiber-optic Spool Assembly L Inner Rail

F Voltage Regulator Board Assembly M PC Logic Board 1

G

Maintenance Connector

Figure 1. CP Module Assembly Components
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CPU CP0O2 Module
HBOOO
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Control
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Parity
TW002 VMO007 AUQ00 VMO006 SS000 OA000 OA001 VMO14 VMO15
Not Used | VectorEven] A/SReg | Vector Even Shift BMM BMM Vector Odd | Vector Odd
R Bit 60 ~ 63 RBIit52-55 Pop and and R Bit 52 — 55| R Bit 60 - 63
W Bit 56 — 63| Bits 48 - 55 |W Bit 48 - 55 Lz Parity Parity W Bit 48 — 55| W Bit 56 ~ 63
HDO0O0O VMO05 AT000 VM004 JAOOO VA000 CG000 VMO12 VMO013
cip Vector Even | A/SReg | Vector Even [ssue Vector Check-bit | Vector Odd | Vector Odd
Exchange |R Bit44 —47 R Bit 36 - 39 Control Control Generation | R Bit36-39| R Bit 44 — 47
Package |W Bit 40 —47] Bits 32 -39 {W Bit 32 - 39 W Bit 32 — 39| W Bit 40 - 47
VFO00 VMO003 AS001 VMO002 BT000 CD000 CB000 VMO10 VMO11
Vector VectorEven | a/s Reg | Vector Even BfT/P Reg Ports E Vector Odd | Vector Odd
Control R Bit 28 — 31 R Bit20-23 Bits 0— 15 Cache PortsC |[RBit20-23|RBit28-31
W Bit 24 - 31] g; - W Bit16-23 - W Bit 16 - 23] W Bit 24 - 31
Bits 16 — 23 Bits 32 — 47 HIT
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Maint Section Section Section Section Section Section Section Section
Channel Driver Receiver Driver Receiver Driver Receiver Driver Receiver
Section 0 Section 0 Section 4 Section 4 Section 2 Section 2 Section 6 Section 6
[ zBoos | | zeooo | [ zeoo4a | | zeoo2 | [ zeoos |
Figure 2. Option Layout Board 1
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CP02 Module CPU
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BMM
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QOdd Odd Port Cache Cache Even Even Address -
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Bits 8 - 11 Bits0—-3 48 - 51 52 -55 Bits0-3 Bits8—15 | Bits8-11
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Inst Data MUX Data MUX Data MUX Data MUX Inst
Vector Buffers Cache Cache Cache Cache Buffers Not Used 110
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Data Data MUX | Data MUX Data
Not Used Write Data Steering Cache Cache Steering Write Data | Write Data Maint
Conflicts Cache 8-11 12-15 Cache Conflicts Conflicts Channel
Control 40-43 44 — 47 Control
Cl007 CJ0oo7 CI003 CJ003 CI005 CJ005 Cl001 CJo01 HF000
Section Section Section Section Section Section Section Section Perf
Driver Receiver Driver Receiver Driver Receiver Driver Receiver Monitor
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Figure 3. Option Layout Board 2
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CcPU CP02 Module
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VHISP Channels Clock Interrupt | Sk ] Pipe0 Pipe 1
Performance } Si
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Common Exchange Ai
Memory | _[(Ah) + {(pnm)] [ Data Control  Vector Ak
] Cache Control
fjm $
A Vector -
(A0) Length Multiply
Add
Address
_| Functional
| Units
‘ P To A Registers <t~ Shared Resources
+1 I/O Status and Control
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] NIP CIP
L LIP } Execution
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37

Figure 4. CPU Block Diagram
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ADDRESS AND SCALAR REGISTERS

The address and scalar registers are located on the same options. The
following subsections describe the address and scalar registers.

Address Registers

The address and scalar registers are contained on eight options: one AR
option, three AS options, two AT options, and two AU options. Each
CRAY T90 series CPU contains eight address registers designated AO
through A7. Each register is 64 bits wide (32 bits in C90 mode) and
performs the following functions:

Determines addresses for memory references

Provides memory reference indexing

Provides loop control

Determines shift counts

Provides I/O channel set-up

Determines I/O channel status

Receives results from scalar leading zero and pop count
Determines vector length

Provides an exchange address (monitor mode only)

Provides an index for shared registers and B and T instructions
Provides operands and results for address add and address multiply
Transfers data to and from scalar registers

Provides integer-to-floating-point conversion

As shown in Figure 5, the AR000, AS000, AS001, AS002, AT000,
ATO001, AUO00, and AUOO1 options each contain an 8-bit slice of the
address registers. Figure 5 also illustrates the input and output data paths
for the address and scalar registers.

HTM-003-0 Cray Research Proprietary



Address and Scalar Registers CPU

AU001
Bits 56 — 63 ”)
AUQQ00 .
Bits 48 — 55
ATOO1
Bits 40 — 47
AT000
Bits 32 - 39
AS002
Bits 24 ~ 31
AS001
Bits 16 — 23
AS000
Bits 8 -~ 15
AROGOO
Bits0-7 . .
Floating-point Add
i - AA - OA Operand (S
(AN) Address Muitiply Results  IAA — IAH OAA — OAH Flp . ( .j)t — > (FA, FB)
_ oating-poin
(HD) Shared Data IBA — IBH - OBA-OBH Operand (SK) A FB)
Constant Data ICA - ICH Floating-point Multiply '
WA) OCA—OCH Operand (S - B
gT) ELBegister Data IDA - IDH, Floating-point Multiply
Floating-point Add Results IEA — IEH ODA —ODH_ Operand (SK) > (NA)
(FA) _ o CM Address to Vector
Floating-point OEA-OEH Pipe 0 » (VM, VR)
(ND) Multiply Results IFA-IFH - CM Address to Vector
OEI-OEP  Pipe 1 —
Floating-point Reciprocal »> (VM, VR)
(RA) Approximation Results IGA - IGH: OFA —OFH _ Sjto Shift, Pop/Parity/AiZ/VM (SS) 9
(sg) Shift Data, VM IHA — IHH OFI-OFP__ Ajto Shift, Pop/Parity/lZIVM,_ gy )
j - Address Multiply
(VR) Vj (Even) Data to Scalar  II1A -1IH OGA-OGH_Operand (A) _ -
VR Vj (Odd) Data to Scalar 1= 1IP Address Multiply
(VR) ) OHA - OHH _ Operand (AK) > (AN)
CH Common Memory Path1__IJA —IJH o
(CH) OlA-OIH  Aito Shared Data Path o
CH Common Memory Path2  IKA ~ IKH — (HD)
(CH) QJA-OJH _Aito BIT Registers andCM _
on) BMM ISA - ISH > (BT)
(©A) > OMA - OMH_Ah Address to CMPOtE  r
ONA-ONH Constant Data to CM Port E (D)
OPA -OPG Akto Vector Control > (VA)
OQA~-OQH Akto Scalar Shift Count (SS)

Figure 5. Address and Scalar Register Data Paths
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CPU Address and Scalar Registers

Entry Codes

j As part of the instruction decode on the JA option, the JA option sends an
A/S entry code to the A/S register options; this code generates the control
necessary to complete the operations. The operand data is then
transmitted to the appropriate resources, and a destination delay chain is
entered on the option. Refer to Table 1 for the address/scalar (A/S)
register entry codes and to Figure 6 for an illustration of the A/S control
terms.

Table 1. A/S Register Entry Codes

Entry Code Instruction
0 020/ Constants
1 023i0 Sj
2 023if1 VL data
3 024jjk B data
4 030,031jjk Add
5 026 (0 3), 027jj (0— 1) pop/par/iz
6 032ijk A multiply
| ) 7 022jjk, 04 (2-3) jk/mask data
- 10 N/A
1 073i(2—3) 0 VM data
12 N/A
13 N/A
14 04 (4 — 7) ijk, 05 (0 - 1) jk Logical
15 N/A
16 05 (2 - 5) ijk, 05 (6 - 7) ijk Shift
17 N/A

HTM-003-0 Cray Research Proprietary 9



Address and Scalar Registers CPU
AR000
(JA000) ALS Register Read-out Code ILA-ILB _ 2288‘1)
(JAOOO) Enter CPU VL ILC .| AS002
(JADOD) Go 071i(0,1,2)k ILD N
(SS000) Pop/Parity/l.Z (AR00O Only) IMA-IMG_
(JAOOD) A/S Register Entry Code INA ~INC
(JADOO) A/S Entry Code Valid 10A —10D -
(JAOOD) A/S Entry Code Valid I0A -10D _|
(JAGOO) i, j, k, hData IPA —|PL -
(VR) Memory Path 1 Read Code IQA-IQE
(VR) Memory Path 2 Read Code IRA - iRE -
(HDOOO) Shared Data Code IUA-IUE _
(HDOO1) Enter Exchange VL (AR0OO Only) IVA -
(IC001) Exchange Active VB _
(AS002) Ak Negative (32-bit Mode) \VC
(AU0OY) Ak Negative (64-bit Mode) VD .
(VR0O4) Exchange Path 2 Select IVE o
(IC000) Triton Mode IXA |
AT000
(JAOD1) A/S Register Read-out Code ILA—ILB _ 2’6%%10
(JAOOT) Enter CPU VL ILC AU0O1
(JAOD1) Go 07140,1,2)k ILD
(JACO1) A/S Register Entry Code INA — INC -
(JAOO1) A/S Entry Code Valid I0A - IOD=
(JA0O1) A/S Entry Code Valid IOA -~ 10D
(JA001) i, j, k, h Data IPA - 1PL
(VR) Memory Path 1 Read Code IQA —IQE
(VR) Memory Path 2 Read Code  IRA—IRE
(HDOD1) Shared Data Code 1UA ~ IUE -
(1C002) Exchange Active IVB
(AS002) Ak Negative (32-bit Mode) IVC
(AUOOT) Ak Negative (64-bit Mode) _IVD
(VRO04) Exchange Path 2 Select IVE
(1C001) Triton Mode IXA
Figure 6. A/S Control Terms
Cray Research Proprietary HTM-003-0
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CPU Address and Scalar Registers

A Register Memory References

g 3 Refer to Figure 7 for an A/S-register-to-memory block diagram. The
address registers write or read 1 word of memory per instruction. The B
registers provide intermediate storage for the address registers. B registers
perform memory block references that enable a group of operands to be
read from memory with one instruction. These operands are then used by
the A registers to generate results that are sent to the B registers and
block-stored to memory. Using the B registers as buffer storage is
advantageous because it takes fewer clock periods to do a block reference
than to issue several individual address or scalar references.

The A registers also have an access path to cache memory. This provides
access to common memory data without having to reference memory
directly. If the requested address resides in cache, a cache hit is initiated
and the data is read from cache memory instead of common memory.

Special Register Values

The AO register has special features that the other A registers do not have.
The AO register holds the starting address for all block transfers for the
B, T, and V registers and branch control. A0 is the only register that can
‘> be tested for equal-to-zero, not-equal-to-zero, positive, or negative
e conditions using AO conditional branch instructions. This register also has
a special feature for reading data.

If AO is specified as an operand in the 4, j, or k field of an instruction, it
will not send the actual contents of the register. Instead, the register sends
a value of 0 if A0 is used in the j or A field, or it sends a value of 1 if A0 is
used in the & field. If AO is used in the i field, the actual contents of the
AOQ register are sent.

Because the A registers in this system are now 64 bits wide, special Triton
mode instructions have been implemented. These instructions are part of
the extended instruction set (EIS). These instructions make the A registers
functionally equal to S registers and enable A registers to be shifted and
logical operations to be performed. To execute these instructions, an EIS
005400 instruction must precede the actual A register instruction. If a
Triton mode instruction is issued while the system is in C90 mode, the
results of the operation are undefined.
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Address and Scalar Registers CPU

P

7

CHO02
CHO00
CM Left
Read Data BT000
ICA-ICP 1l Bits0-15,32-47
IDA—IDP _ OAA - OAP,
ﬁm > oA — R
CHO10 IEA_IEP
FA=IFP
CHO08 >
CM Left B/T Registers
Read Data
Read Data
CM Right BT001 AJS Registers
Bits 16 — 31, 48 - 63 AR000
CHO01 ica-ice | °° 8-6 AS000
H003 AT000
! 04 0p AroD
' IDA—IDH_|
[EA—IEP |
> OAA - OAP,
IFA—IFP OBA-OBP DA-IDH_ |  As001 .
Read Data "l BTRegisters AS002 : )
AUO00 »
CM Right AU001
CHO09
CHO11

i

Figure 7. Memory to A/S-register Block Diagram

-t
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CPU

Address and Scalar Registers

Scalar Registers

The CPU contains eight scalar registers that are designated SO through S7
and are 64 bits in length. The scalar registers are contained on the AR,
AS, AT, and AU options (refer again to Figure 5).

The scalar registers send operands to, and get results from, the scalar
functional units and the floating-point functional units. The functional
units perform integer and floating-point arithmetic as well as logical
operations. The scalar registers read and write central memory through
the T registers and also read and write the data cache. In addition, there
are paths to the vector registers, vector mask, real-time clock, status
register, programmable clock interrupt, and the performance monitor.

Instruction Issue

When an instruction issues, the scalar register receiving the data is
reserved until the result is latched in the register. If an instruction in the
current instruction parcel (CIP) register requires the reserved result
register, that CIP instruction holds issue until the register is available. The
SO register, however, is an exception. If the SO register is reserved as a
result register and is needed as an Sj or Sk operand in a following
instruction, no hold issue occurs because the SO register has special
register values as an operand.

The issue hardware also develops scalar functional unit codes. These
codes select the input terms to be gated from the proper functional unit
into the scalar register multiplexer.

S Register Memory References

HTM-003-0

The scalar registers write or read 1 word of memory per instruction. The
T registers provide intermediate storage for the scalar registers. T
registers can perform memory block references, enabling a group of
operands to be read from memory with one instruction. These operands
are then used by the scalar registers to generate results that can be sent to
the T registers and block-stored to memory. Using the T registers as
buffer storage is advantageous because it takes fewer clock periods to do a
block reference than to issue several individual scalar references.

The S registers also have an access path to cache memory. This provides
access to common memory data without having to reference memory
directly. If the requested address resides in cache, a cache hit is initiated
and the data is read from cache instead of from common memory.

Cray Research Proprietary 13



Address and Scalar Registers CPU

Special Register Values

S0 has special register values when Sj or Sk is used as an operand. When /3
the j field equals 0, the value sent out is 0, no matter what value is stored
in SO. When the £ field is O, bit 63 is setto a 1.

Lower/Upper Scalar Register Load

It is possible to load either the lower- or upper-half of a scalar register
with a 32-bit quantity. The following four instructions load constants into
scalar registers.

e 040i00 nm Si exp: loads the quantity nm into the lower 32 bits of
register Si. The upper 32 bits are cleared.

e (041i00 nm Si exp: loads the one’s complement of nm into the lower
32 bits of register Si. The upper 32 bits are all 1°s.

®  040i20 nm Si exp: loads the quantity nm into the lower 32 bits of
register Si. The upper 32 bits are unchanged.

e 040i40 Si exp: loads the quantity nm into the upper 32 bits of
register Si. The lower 32 bits are unchanged. : )

S~
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B AND T REGISTERS

HTM-003-0

Each CPU contains 64 (100g) B registers and 64 T registers. The B and T

- registers act as intermediate registers for the address and scalar registers,

respectively. Each B and T register contains 64 bits.

Two BT options, BT000 and BTO001, contain the B and T registers. Each
option contains 32 bits of each register. BT000 contains bits 00 through
15 and 32 through 47. BT001 contains bits 16 through 31 and 48 through
63. As shown in Figure 8, the B and T registers can be loaded from the
address and scalar registers, common memory, and branch control.

AiLength (BT001 Only) IA-IIG_}BTO001

Bits 16 - 31,
48 - 63
IAA - IAP,
From Aior Si IBA - IBP BT000
»1 Bits0-15,
32-47
ICA-ICP,
CM Path 1 IDA—IDP_|
- OAA — OAP, o
IEA ~ IEP, OBA-0OBP ToAiorSi .
CM Path 2 IFA - IFP

OCA - OCP,
ODA - ODP Aj,Si,BorTCMData _

P Entry on Branch IGA — IGP

QEA - OEP Bjkto Branch Control

Figure 8. B and T Register Inputs and Outputs

The B and T registers are used primarily for block transfers to and from
common memory. Refer to Table 2 for a list of the B and T register
instructions. Refer also to Figure 9 for a B/T-register-to-memory block

diagram.
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B and T Registers

16

Table 2. B/T Register Instructions

Instruction CAL Description
0050/« J Bjk Jump to Bjk
0051,K° JINV Bjk {Jump to Bjk (invalidate instruction buffers)
024ijkP Ai Bjk Transmit (Bjk) to Ai
025ijkP Bjk Ai Transmit (Aj) to Bjk
034ijkP Bjk Ai, AO | Transmit (A} words from common memory starting at
address (A0) to B registers starting at register jk
035ijkP ,AO0 BjkAi | Transmit (Aj) words from B registers starting at register jk to
memory starting at address (AQ)
036ijkP Tjk Ai, AO | Transmit (Aj) words from memory starting at address (A0) to
T register starting at register jk ’
037ijkP ,AO0 TjkAi | Transmit (Aj) words from T registers starting at register jk to
memory starting at address (AQ)
074ijk Si Tjk Transmit (Tjk) to Si
075ijk Tjk Si Transmit (Si) to Tjk

O denotes a maintenance mode instruction only.
D denotes a difference between Triton mode and C30 mode.

Cray Research Proprietary HTM-003-0
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CPU B and T Registers

) i

CH000

CM Left CG000

Read Data BTOO00
ICA-ICP I Bits0-15,32-47
Memory

P IDA—1DP Write Data
Fﬂ_ A _1EP

CHO10 > OCA - OCP,
IFA — IFP _ CGOoO1
CM Left B/T Registers Memory
Read Data Wirite Data
Read Data
CM Right BT001
CH001 ICA—ICP_ Bits 16 — 31, 48 - 63
H
Sialtty IDA - 1DP OCA - OCP,
o ODA ~ODP
CHO007 IEA~IEP
IFA-IFP
) Read Data o B/T Registers
- CM Right

CHO009

Figure 9. B/T-register-to-memory Block Diagram
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ADDRESS/SCALAR ADD

The address and scalar registers are contained on eight options: one AR
option, three AS options, two AT options, and two AU options. Each
option contains 8 bits of the 64-bit address registers. These options also
contain the address and scalar add functional unit. Table 3 describes the
instructions that use the address and scalar add functional unit.

Table 3. A/S Adder Instructions

Instruction CAL Description

030ijkP Ai Aj+Ak | Transmit integer sum of (Aj) and (AK) to A/

030/0kKP Ai AKS Transmit (AK) to Ai

030i0P Ai Aj+1S | Transmit integer sum of (Aj) and 1 to Aj

031ijkP Ai A-Ak | Transmit integer difference of (Aj) and (AK) to Ai

031/0kP Ai -AKS | Transmit inverse of (Ak) to Ai

031i0° Ai Aj-15 | Transmit integer difference of (Aj) and 1 to A/
060ijk Si Sj+Sk | Transmit integer sum of (Sj) and (Sk) to Si
061ijk Si Sj-Sk |} Transmit integer difference of (Sj) and (Sk) to S
0610k Si -Sk Transmit inverse of (SK) to Si

D denotes a difference between Triton mode and C90 mode.
S denotes a special CAL syntax.

The address add and scalar functional units perform a 64-bit add; each
option performs the add function on the bits of the operands contained on
that option. Carry and enable bits generated during the add are passed on
to the next option, as shown in Figure 10. The 64-bit result is stored in the
destination register in 4 clock periods.
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Address/Scalar Add CPU

20

ARO OSA ISA =
>l ASO NOTE: ISA —ISG and OSA — OSC terms are )
Bits adder carries. ITA—ITF and OTA-OTC
0-7 terms are adder enables.
ISA
0SB —>| Ast
Ll s
ISA
0sCc —™ ATO
| S e ISD_
AT AS2 OSA ATO
0SD ISA AUO Bits |OTA >
2431 AT1
AUt TC
ISD_ -
0SB o AUO
ISB OTB >
> AU7
ASO OSA AS1 ITC_
OTA >
Bits ma_| AS2
8-15 — OSA ISE_
AT1
IS8, OTA ITD |
058 _| ATO Bits
OTB — 32-39 )
; ISE
ima_| AT OSB "1 AUO -
: OTB >
ISB AU1
> ITD
0SC AUO -
OTC >
ma_| AV
o1 OSA ISC, 2 — ISF_
OTA ITB_ OSA 1 Auo
) > Bits >
e, 40-47 | OTA >
ISC_ —
0SB o >
| Ao
OTB >
e | AT
AUO | OSA ISG_
0SC e i AUt
AUO Bits | OTA ITF
> 48-55
OTC >
me_| AV
Figure 10. Carry Bit and Enable Bit Fanouts )
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SCALAR LOGICAL

HTM-003-0

The scalar logical functional unit performs logical operations on the

operations and merges.

-scalar registers. - Logical operations include OR, AND, and XOR

Refer to Figure 11 for an illustration of the address/scalar registers. The
scalar registers are contained on eight options: one AR option, three AS
options, two AT options, and two AU options. Each option contains 8 bits
of the 64-bit address registers. These options also contain the scalar
logical functional unit. The operands are latched and the logical operation
is completed in 1 clock period; the result is then entered into the proper

~ destination register.

(JAO)

(CHO)

(CHO)

(JAO)

(JAO)

AU001 Bits 56 — 63
AU000 Bits 48 — 55
AT001 Bits 40 ~ 47
AT000 Bits 32 ~ 39
AS002 Bits 24 — 31
AS001 Bits 16 — 23
AS000 Bits 8- 15
AR000 Bits0 -7
Address/Scalar Register =

hijk Instruction Data  IPA — IPL > AISO N
A/S Register AST1 | AISI =
Data Path 1 IJA — IJH AkISk

o VY Zzz a
A/S Register 3
Data Path 2 IKA = IKH A/S4 ) |

b — AS5 || Operand

AI-E/L?’ A/SB Select |

AIS Entry Code NA-INC | | select [ LAST '

o -

)

A/S Entry Code Valid 10A —IOD

> Logical -— |

Functional Unit

Figure 11. Address/Scalar Logical Block Diagram (Instructions 044ijk

through 051ijk)
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Scalar Logical CPU

Table 4 and Table 5 list the instructions used in the address and scalar
logical functional unit. The instructions listed in Table 5 must be /w
preceded by a 005400 instruction; they are for Triton mode only.

Table 4. Scalar Logical Functional Unit Instructions

Instruction CAL Description
044ijk SiSjaSk Logical product of (Sj) and (Sk) to S/
044i0 SiSj&SB Sign bit of (S)) to Si
0440 Si SB&Sj Sign bit of (S)) to Si(Sj= 0)
045ijk Si#Sk&Sj Logical product of (Sj) and one’s complement of (Sk) to Si
045i0 Si#SB&Sj | (S)) with sign bit cleared to Sj
046ijk SiSjSk Logical difference of (Sj) and (Sk) to Si (Sj# 0)
046i0 SiSASB Transmit (Sj) with sign bit toggled to Si
046i0 SiSB\Sj Transmit (Sj) with sign bit toggled to Si (Sj= 0)
047ijk Si#SASk Logical equivalence of (Sk) and (S)) to Si
04710k Si#Sk Transmit one’s complement of (Sk) to Si
047i0 Si#SASB Logical equivalence of (Sj) and sign bit to Si
047i0 Si#SB\Sj Logical equivalence of (Sj) and sign bit to Si (Sj= 0)
047100 _ Si#SB Enter one’s complement of sign bit into S/ )
050ijk SiSjfSi&Sk |Logical product of (Si) and (Sk) complement ORed with
logical product of (Sj) and (SkK)
050i0 SiSjfSi&SB | Scalar merge of (Si) and sign bit of (Sj) to Si
051ijk SiSjSk Logical sum of (Sj) and (Sk) to Si
0510k SiSk Transmit (SK) to Si
051i0 SiSiSB Logical sum of (Sj) and sign bit to S/ (Sj = 0)
051100 SisB Enter sign bit into Si
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Scalar Logical

Table 5. Address Logical Functional Unit Instructions

Instruction CAL Description
044ijk Ai Aj&Ak Logical product of (Aj) and (Ak) to Ai
045ifk Ai #AK&AJ Logical product of (Aj) and one's complement of (AK) to Aj
046ijk Ai ApAK Logical difference of (Aj) and (Ak) to Ai (Aj=0)
047ijk Ai#ANAK Logical equivalence of (AK) and (A)) to Aj
0470k Al #Aj Transmit one’s complement of (Ak) to Ai
050ijk Ai AjAi&Ak | Logical product of (Aj) and (AK) complement ORed with

logical product of (Aj) and (AK)
051k AiAfAk Logical sum of (Aj) and (Ak) to A/
Address and Scalar Mask

HTM-003-0

Another function separate from scalar logical but included in this section,
is address mask and scalar mask. Address and scalar mask functions use
instructions 042ijk and 043ijk. Refer to Table 6 and Table 7 for the scalar
and address mask instruction formats, respectively.

Table 6. Scalar Mask Instructions

Instruction CAL Description

042ijk Skexp Form ones mask in Si exp bits from the right; jk
field = 100 — exp

042i77 Si1 Enter 1 into S/

042100 Si-1 Enter -1into S,
(Si= 177777 177777 177777 177777)

043ijk Si>exp Form ones mask in S/ exp bits from the left:
jkfield = exp

043ijk Si#<exp |Form zeroes mask in Si exp bits from the right:
Jjk field gets 100g= exp

043100 Si0 Clear Si
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Scalar Logical
Table 7. Address Mask Instructions /)
Instruction CAL Description
042ijk Ai<exp Form ones mask in Ai exp bits from the right;
jk field = 100 — exp
042i77 Ail Enter 1 into Aj
042100 A-1 Enter -1 into A
(Ai= 177777 177777 177777 177777)
043ijk Aiexp Form ones mask in A/ exp bits from the left:
Jjk field = exp
043ijk Ai#t<exp |Form zeroes mask in Ai exp bits from the right:
Jjk field gets 100g = exp
043000 AiQ Clear Aj
The address/scalar mask functional unit is located on the SS options.
When the 042ijk or 043ijk instruction issues the jk field, it is sent from the
BTO option. The jk field determines how many 1 bits are set, and the A
field bit O determines whether the 1°s should be on the left or the right.
Figure 12 is a block diagram of the scalar mask functional unit.
$S000 *9
Scalar
Shift
Sji__IAA=IDP_ Vector JAUOOT Bits 56 - 63
(AR, AS,AT, AU) | Mask |- [AUo00 Bits 48— 55
Upper MUX AT001 _Bits 40 - 47
Lower | [AT000 Bits 32 - 39
[AS002 Bits 24 - 31
AS001 Bits 16 - 23
) AS000 Bits8— 15
) E—1A-GE L I dress AROO0 Bits 0—7
(1I0) h___IEE Q.1 Scalar Mask o] ORed [™] >
Address/Scalar
Reqgisters

Figure 12. Scalar Mask Block Diagram
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Transmit nm to Si, Si Upper, Si Lower

Scalar Logical

Constant data can be transmitted to an S register by four different
instructions. Refer to Table 8 for a list of these instructions.

Table 8. Transmit nm to Si Instructions

Instruction CAL Description

040/00nm Siexp Transmit expression = nm to S, bits
0 through 31 (bits 32 through 63 = 0)

04020nm SiSiexp | Transmit expression = nmto Sj, bits 0 through
31 (bits 32 through 63 unchanged) (2 = 0)

040i40nm Siexp:Si | Transmit expression = nm to Sj, bits 32
through 63 (bits 0 through 31 unchanged)
(2=1)

04100nm Siexp Transmit expression = one’s complement of
nmto Si, bits 0 through 31 (S/bits 32 through
63=1)

HTM-003-0
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ADDRESS/SCALAR POP/PARITY AND LEADING ZERO

The address/scalar population count functional unit counts the number of
1 bits in the scalar (S) register or address (A) register of the k field of
instruction 026ijk (k=0 or 1 for S registers, and k=2 or 3 for A
registers). The maximum count could be 100g or 641¢ for the
corresponding number of 1 bits set in the A or S register, and the smallest
count could be 0 when no bits are set in the A or S register.

The £ field of the instruction determines whether or not the entire
population count is recorded in Ai. If it is a 026ij0/2 instruction, all 7 bits
of the final population count are sent to the A register. When a 026ij1/3
instruction is issued, the entire S or A register is counted for the number of
1 bits set, but then only bit 0 of the count is sent to the A register. If bit 0
of the count equals O, then the count has even parity, indicating an even
number of bits set. If bit 0 of the count equals 1, then the count has odd
parity.

Starting from bit position 63, the address/scalar leading zero count
functional unit counts the number of 0’s preceding the first bit set to a 1 in
a specified address or scalar register. The number of leading 0’s is then
transferred to the lower 7 bits of an Ai register. To use the address/scalar
leading zero count functional unit, a 0270 instruction is issued when Sj is
the operand and A is the result register. The 027ij1 is issued when Aj is
the operand and Ai is the result register.

The SS option performs scalar pop/parity and leading zero functions.
Population count/parity and leading zero functions are performed on either
a scalar or an address register operand, with the result sent to an address
register. Table 9 describes the instructions that use the pop/parity and
leading zero functional unit, and Figure 13 illustrates the A/S
population/parity/leading zero count.
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Address/Scalar Pop/Parity and Leading Zero CPU

Table 9. Scalar Pop Count/Parity and Leading Zero Count Instructions

Instruction CAL Description
026if0P Ai PSj Transmit population count of (Sj) to Ai
02610 Ai QSj Transmit population count parity of (S)) to Aj

026i2ND Ai PAj Transmit population count of (Aj) to A

0263ND Ai QAj | Transmit population count parity of (Aj) to Ai
027i0 Ai ZSj Transmit leading zero count of (Sj) to A/

027ijINT Ai ZAj Transmit leading zero count of (A)) to Ai

D denotes a difference between Triton mode and C90 mode.
N denotes new instruction (not available on CRAY C90 series systems).
T denotes Triton mode only.

28
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Address/Scalar Pop/Parity and Leading Zero

OFA - OFG Result Bits 0 -6

AR0Q0
Bits0-7
AS000
$S000
SjSiBits0—15 1AA—IAP
Bits 8 - 15 AjAiBits0-15 IJA—IJP | 4-bit Sum
AS001 SjSiBits 16~31 |BA-IBP
AJAiBits 16 —31 IKA —IKP
Sj/SiBits 32— 47 ICA-ICP \
Bits 16 ~ 23 AjAiBits 32 -47 ILA~ILP 8-bit Sum
AS002 Sj/SiBits 48—-63 IDA—IDP
AjAiBits 48 - 63 IMA — IMP )
16-bit Sum
Bits 24 — 31 7
)
AT000 Go 026ijx IED n e
(JA000) == ™. <o| |32bitsum
. t o ;
Bits 32 ~ 39 (1C000) ho Bit IEE I lrJ g
ATO01 (BT001) jData IGA - IGC . (t; 64-bit Sum
' - i
(BT000) kData IGD—IGF | _ :
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Figure 13. A/S Population/Parity/Leading Zero Count
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ADDRESS REGISTER SHIFT

HTM-003-0

The address register shift function is performed on the SS option (refer to
Figure 14 for a block diagram of address register shift). This functional
unit performs both left and right single-register shifts and left and right
double-register (also referred to as long) shifts. All shifts are end-off with
zero fill. For example, if data is shifted more than 64,¢ places in a single
shift, or more than 128¢ places in a double-register shift, the data is
shifted off the register. The data is then lost, and 0’s are moved into the
register.

The shift unit performs only left shifts. The shift count for a right shift
must be in the two’s complement form; the unit then performs a left shift.
Refer to Table 10 for a list of the address register shift instructions.

NOTE: To issue A-register-shift instructions, a 005400 (EIS) instruction
must precede the shift instruction. If an A-register-shift
instruction is issued in C90 mode, the results are undefined.

Table 10. Address Register Shift Instructions

Instruction CAL Description
052k AO Aexp | Shift (Aj) left exp = jk places to AO
053ijk A0 Ai>exp | Shift (Aj) right exp = 100g—jk places to AO
054jjk AiAicexp | Shift (A)) left exp = jk places to Ai
055ijk AiAi>exp | Shift (A)) right exp = 100g—jk places to Ai
056ijk Ai Ai, Aj<Ak | Shift (Aj) and (Aj) left (Ak) places to Ai
056i0 AiAi, A1 | Shift (A) and (A)) left one place to Ai
0560k AiAkAk | Shift (Aj) left (AK) places to Ai
057 ijk AiAj, AbAK | Shift (Aj) and (Aj) right (AK) places to Ai
057if0 AiAj, A>1 | Shift (Aj) and (A)) right one place to Ai
05600k AiABAk | Shift (Aj) right (Ak) places to Aj
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Figure 14. Address Register Shift
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Address Register Shift

Address Register Single Shift

The address register single-shift instructions are 052ijk through 055ijk.
The first two instructions perform left single shifts (052ijk) and right
single shifts (053ijk) on the content of the Ai register and always store the
result in AQ. The shift count is obtained from the jk field of the
instruction. The value placed in the jk field for the single-shift
instructions depends on whether it is a left or right shift. For a single left
shift, the value in the jk field is the number of octal places desired to shift
Ai. This allows a shift left of O to 77g places. For a right shift, the jk field
is equal to the two’s complement of the actual number of places desired to
shift right. If a shift of 243 places were required, 54 would be entered in
the jk field (two’s complement of 24 is 54).

When instructions are written in machine code, this operation must be
done by the person writing the code. However, when instructions are
written in CAL, this is done by the assembler. In the CAL instruction, you
would simply enter the shift count. This allows a shift right of 1 to 100g
places. Because the two’s complement of the shift count is used for a
single shift, a shift right O places is not possible.

The 054ijk and 055ijk instructions perform single shifts left or right on the
contents of Ai. However, these instructions store the result of the shift
back in Ai. These shifts overwrite the original contents of Si with the new
results from the shifter.

‘Address Register Double Shift

HTM-003-0

Double shifts work similarly to single shifts and are end-off with zero fill.
The difference is that a double shift concatenates two S registers, forming
a 128-bit register. The arrangement of the two registers is determined by
the shift direction.

Double shifts always shift data into Si. The two instructions associated
with double shifts are 056ijk (left double shift) and 057ijk (right double
shift). The double shifts use the i and j fields to specify the two operand
registers; the i field also specifies the result register. The £ field of the
instructions specifies the A register used for the shift count.

Because a double shift uses a 128-bit operand and shifts are end-off with
zero fill, a shift equal to or greater than 128;¢ (200g) produces a result of
zero. The A register bits O through 6 are used as a shift count, providing a
shift of 0 to 177g. Bit 7 is checked, and if this bit is set to a 1, it causes the
double shift result to equal zero. For right double shifts, the shift count
does not need to be entered into the A register in two’s complement form,;
the hardware performs this function.
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Address Register Shift Count Description

The AR option sends 7 bits of shift count to the SS option. For both
single and double shifts, the breakdown of the shift count is the same,
except that the double shift has 1 extra bit (bit 6). Refer to Figure 15 for a
breakdown of the shift count.

Double

Shift

Only

6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1  Shift Value

Figure 15. Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count.

If the jk field of a left single shift equals 27g and bits 4, 2, 1, and O are set,
the shift values would be 16, 4, 2, and 1, respectively. The sum of the
shift values would be 23 (16 + 4 + 2 + 1); therefore, the instruction would
shift left 239 places.

The actual hardware that performs the shifts is the same for both left and
right shifts. However, the hardware performs only left shifts. Right shifts
are accomplished by the way in which data is entered into the shifter,
hence the use of two’s complement for right shifts.
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Address Register Left Single Shift

Address Register Shift

Figure 16 is an illustration of how a left single shift is performed for a
054220 instruction. (Ai Ai<exp), shift A2 left jk places (20g) with data bit

10 set.

_ Bit
- ©)

Address Shift Functional Unit

Bit 10

&)

Bit 26

Shift A2 164¢ places
to the left, moving bit
26 to bit position 10

A2 Final Results

Figure 16. Address Register Left Single Shift

HTM-003-0 Cray Research Proprietary
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Address Register Right Single Shift

Figure 17 is an illustration of how a right single shift is performed using
left shifts and a two’s complement shift count. This example uses a
055254 instruction (Ai>Ai exp) that shifts Ai right exp = 100 — jk places to
Ai. In this example, data bit 45 shifts to the right 243 (20,0) places.

Notice that the jk field of the instruction 055254 contains 54g, which is the
two’s complement of 24g, causing A2 to be shifted to the left 543 places to
set bit 25 of the result.

A2 = Bit 45
Address Shift Functional Unit
—— _0 63 0
Bit 45 N
Shift 545
Bit 25
> A2 = Bit 25

Figure 17. Address Register Right Single Shift

NOTE: On aright shift, it is the programmer’s responsibility to perform
the two’s complement of the shift count and supply that value to
the functional unit. '
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Address Register Left Double Shift
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A2 (Aj) = Bit 10
Al (A) = Bit 30
A3 = 40 — Shift Control

Double shifts are the same as single shifts except that they concatenate
two 64-bit registers to form a value. Figure 18 is an illustration of a left
double shift using a 056123 instruction (Ai A1, Aj<Ak). In this example,
we shift (A7) and (Aj) left (Ak) places to Ai, with A3 = 40g (32;0), Al
having bit 30 set, and S2 having bit 10 set. When a left double shift
occurs, the content of Aj is moved into Ai, and the two registers are
positioned as shown with Ai ahead of Aj.

Address Shift Functional Unit

Ai (A1) Aj (A2) \

Bit . Bit .

b Shift 32 | b Shift 32 |
y

Bit 62

Y

Bit 62 = A1 Final Result

Figure 18. Address Register Left Double Shift

Shifting Ai and Aj to the left 32 places puts bit 30 of A1 at bit position 62
and bit 10 of A2 at bit position 41. Because bit 41 of A2 did not make it
to the result register A1, it is lost. The result bit (bit 62) is then sent to the
Ai (Al) register. The Aj (A2) register remains changed. A
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Address Register Right Double Shift

To perform an address register right double shift, a 057k [(Ai Aj, Ai
>Ak), shift (Aj) and (Ai) right (Ak) places to Ai] instruction is used.
Figure 19 illustrates a 057123 instruction with the indicated parameters.

Al= Bit 20
A2 = Bit 40
A3 = 60 — Shift Control

Address Shift Functional Unit

< —————= y A (A2 Ai (A1) o
( Bit> .0 (B )
I{ 56 Bit40 | 35 Bit 20
[ N
T Shift 80 1__ shitso

~-»1 Bit 56 = A1 Final Result

Figure 19. Address Register Right Double Shift

To right shift Aj and Ai using left shifts, the two’s complement is first
performed on A3, which currently equals 60g (4810). Because the two’s
complement is 120g (or 1010000, or 80;¢), the required shift can be
accomplished through successive shifts of 641 and 16;¢ for a total shift of
8010 places. A left shift of 8019 would move bit 40 of A2 to bit position
56 inside the dotted box and bit 20 of A1 to bit position 36 of A2.

Because bit 36 did not make it into the result register (indicated by the
dotted box), it is lost, and bit 56 is sent to the final result.
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Left Single-shift Instruction

Refer to Figure 20 when reading the two following examples of the
address register left single-shift instruction.

Bits | 2 1 0l 2 1 0 |]=jkField

32 16 8 4 2 1 = Shift Values Decimal

052ijk Results to A0
054ijk Results to Ai

Figure 20. Example of an A Register Left Single-shift Instruction

Example 1: Write the instruction to shift A2 left 20,¢ places, putting the
results into AQ.

Steps: 1. 052ijk - left shift instruction result goes to AQ
2. jk field — shift count 201 = 24g = jk field
3. 052224 — final instruction

Example 2: Write the instruction to shift A4 left 35;¢ places, putting the
results into A4.

Steps: 1. 054ijk — left shift instruction result goes to Ai
2. jk field — shift count 35,9 = 433

3. 054443 - final instruction

HTM-003-0 Cray Research Proprietary 39



Address Register Shift CPU

Right Single-shift Instruction

The right single-shift count is the jk field of the instruction, which must
either be in the two’s complement form or 100g minus the number of
places to right shift. The following two examples show an address
register right single-shift instruction.

e  053ijk results to AO
e  (055ijk results to Ai

Example 1: Write the instruction to shift AS right 10, places, putting
the results into AQ.

Steps: 1. 053ijk — right shift instruction results to AQ
2. jk field — shift count in two’s complement equals 665
1010 = 12g = 001010
two’s complement = 110101

+1

110110 =663
3. 053566 — final instruction
Example 2: Write the instruction to shift A7 right 28;( places.
Steps: 1. 055ijk right shift instruction results to Ai
2. jk field — shift count in two’s complement equals
2810 =345 =011100
two’s complement = 100011

+1

100100 = 44g
or 100g — 343 = 443

3. 055744 - final instruction

40 Cray Research Proprietary : HTM-003-0



CcPU Address Register Shift

Left Double-shift Instruction

Refer to Figure 21 when reading the following example of an address
register left double-shift instruction.

056ijk Shift Ajand Ajleft by Ak places to Ai
Ai Aj
Ai

Ak contains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any bits from 7 through 63 are set, the results of Ajare zeroed.

Bits | 63 76|15 4 3 2 1 0 =Ak

- Zero Results 643216 8 4 2 1 = Valid Decimal Shifts

On a left double shift, the contents of Aj are always shifted into Ai. This shift is done
inside the address shift functional unit.

Figure 21. Example of an Address Register Left Double-shift Instruction

Example 1: Write the instruction to left double shift A2 and A3 649
places, putting the results into A2.

056234 - final instruction, where A4 — 100g

NOTE: A circular left shift can be effected by issuing a 056 instruction
with i = j and (Ak)< 64.
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Right Double-shift Instruction

42

Bits

Refer to Figure 22 when reading the following example of a scalar right
double-shift instruction.

057ijk  Shift Ajand Airight by Ak places to Ai

Aj Ai
Ai
63 7 6|5 4 3 21 0 =Ak
Zero Results
Two’s Complement = During Right Double Shift
643216 8 4 2 1 = Valid Decimal Shifts

Figure 22. Example of an Address Register Right Double-shift Instruction

Ak contains the shift count, and address (A) register bits 0 through 6
contain the valid shift counts. If any bits from 7 through 63 are set, the
results of Ai are zeroed. Also, the hardware generates the two’s
complement of the shift count Ak register bits 0 through 6 on a right
double shift.

On a right double shift, the contents of Aj are always shifted into Ai. This
operation and the two’s complement of the shift count are done inside the
address shift functional unit.

Example 1:  Write the instruction to right double shift A4 and AS
3210 places, with the results going into A4.

057454 — final instruction, where A4 = 40g
hardware generates a shift count of 140g inside
the functional unit.

NOTE: A circular right shift can be effected by issuing a 057 instruction
with i = j and (Ak)< 64.
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The scalar shift function is performed on the SS option (refer to Figure 23
for a block diagram of a scalar shift). This functional unit performs both
left and right single-register shifts, and left and right double-register (also
referred to as long) shifts. All shifts are end-off with zero fill. For
example, if data is shifted more than 641 places in a single shift, or more
than 128, places in a double-register shift, the data is shifted off the
register. The data is then lost, and the register is filled with 0’s.

The shift unit performs only left shifts. The shift count for a right shift
has to be in the two’s complement form; the unit then performs a left shift.
Refer to Table 11 for a list of the scalar shift instructions.

Table 11. Scalar Shift Instructions

Instruction CAL Description
052ijic S0 Sexp | Shift (Si) left exp = jk places to SO
053ijk S0 Skexp | Shift (Si) right exp = 100g — jk places to SO
054ijk SiSi<exp |Shift (S)) left exp = jk places to Si
055ijk SiSiexp | Shift (S)) right exp = 100g— jk places to Si
056ijk S1 Sj, Si<Ak | Shift (S) and (S)) left (Ak) places to Si
056i0 S1 8i, St | Shift (Si) and (S)) left 1 place to Si
0560k * S1 SikAk | Shift (S)) left (Ak) places to Si
057ijk SiSj, S>Ak | Shift (S)) and (Si) right (Ak) places to Si
0570 ¥ 81 8j, S&>1 | Shift (S)) and (S)) right 1 place to Si
0570k * S18SiAk | Shift (S)) right (Ak) places to Si

T If j=0,then (Sj) =0.
i If k=0, then (Ak) = 1.
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Scalar Shift

Scalar Single Shift

The scalar single-shift instructions are 052ijk through 055ijk. The first
two instructions perform single shifts left (052ijk) and right (053ijk) on the
contents of the Si register and always store the result in SO. The shift
count is obtained from the jk field of the instruction. The value placed in
the jk field for the single-shift instructions depends on whether it is a left
or right shift. For a single left shift, the value in the jk field is the number
of octal places desired to shift Si. This allows a shift left of O to 77g
places. For a right shift, the jk field is equal to the two’s complement of
the actual number of places desired to shift right. If a shift of 243 places
were required, 54 would be entered in the jk field (two’s complement of
24 is 54).

When instructions are written in machine code, this operation must be
done by the person writing the code. However, when instructions are
written in CAL, this operation is done by the assembler. In the CAL
instruction, you would simply enter the shift count. This allows a right
shift of 1 to 100g places. Because the two’s complement of the shift count
is used for a single shift, a shift right of 0 places is not possible.

The 054ijk and 055ijk instructions perform single shifts left or right on the
contents of Si. However, these instructions store the result of the shift
back in Si. These shifts overwrite the original contents of Si with the new
results from the shifter.

Scalar Double Shift

HTM-003-0

Double shifts work similar to single shifts; all shifts are end-off with zero
fill. The difference is that a double shift concatenates two S registers,
forming a 128-bit register. The arrangement of the two registers is
determined by the shift direction.

Double shifts aiways shift data into Si. The two instructions associated
with double shifts are 056ijk (double left shift) and 057ijk (double right
shift). The double shifts use the i and j fields to specify the two operand
registers; the i field also specifies the result register. The % field of the
instructions specifies the A register used for the shift count.

Because a double shift uses a 128-bit operand and shifts are end-off with
zero fill, a shift equal to or greater than 128;¢ (200g) produces a result of
zero. The A register bits O through 6 are used as a shift count, providing a
shift of 0 to 177g. For right double shifts, the shift count does not need to
be entered into the A register in two’s complement; the hardware performs
this function.
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Scalar Shift Count Description

The AROOO option sends the shift count to the SS option. All eight

A-series options check the value of the 64-bit A register to discover

whether any bits above bit 6 have been set. If any bits have been set, the

result is lost due to overshift. If each A-series option reports that its bits

are zero, a signal called Ak = 0 is sent to the SS option and the shift count
is valid.

The AR option sends 7 bits of shift count to the SS option. For both
single and double shifts, the breakdown of the shift count is the same,
except for the fact that the double shift has 1 extra bit (bit 6). Refer to
Figure 24 for a breakdown of the shift count.

Double
Shift
Only
6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Figure 24. Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count.

If the jk field of a left single shift equals 27g and bits 4, 2, 1, and O are set,
the shift values would be 16, 4, 2, and 1, respectively. The sum of the
shift values would be 23 (16 + 4 + 2 + 1); therefore, the instruction would
shift left 23 ¢ places.

The actual hardware that performs the shifts is the same for both left and
right shifts. However, the hardware performs only left shifts. Right shifts
are performed according to how data is entered into the shifter, hence the
use of two’s complement for right shifts.
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Scalar Left Single Shift

Figure 25 is an illustration of how a left single shift is performed for a
054220 instruction (Si Si<exp). In this example, we shift S2 left jk places
(20g) with data bit 10 set.

82 Bit 10

Scalar Shift Functional Unit

Bit 10
Shift S2 1649
places to the left,
Bit moving bit 10 to
26 bit position 26
— Bit 26 S2 Final Results

Figure 25. Scalar Left Single Shift
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Scalar Right Single Shift

48

Figure 26 is an illustration of how a right single shift is performed using
left shifts and a two’s complement shift count. This example uses a
055254 instruction (Si>Si exp) that shifts Si right exp = 100 — jk places
to Si.

In this example, we shift data bit 45 to the right 243 (20;¢) places. Notice
that the jk field of the instruction 055254 contains 54g, which is the two’s
complement of 24g, causing S2 to be shifted to the left 54g places to set bit
25 of the result.

S2= Bit 45
Scalar Shift Functional Unit
Bit 63 0 63 0
P — e —— — —— —
= @ Bit 45 -
[ . PR S —
_[ Shift 544
Bit 25
— S2 = Bit 25

Figure 26. Scalar Right Single Shift

NOTE: It is the programmer’s responsibility to perform the two’s
complement of the shift count and supply that value to the
functional unit.
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Double shifts are the same as single shifts except that they concatenate
two 64-bit registers to form a value. Figure 27 is an illustration of a left
double shift using a 056123 instruction (Si, Sj < Ak). In this example, we
shift S (Si) and (Sj) left (Ak) places to Si, with A3 = 40g (32¢), S1 having
bit 30 set, and S2 having bit 10 set. When a left double shift occurs, the
contents of Sj move into Si, and the two registers are positioned as shown
with Si ahead of Sj.

S2 (S)) = Bit 10
S1(Sh) = Bit 30
A3 = 40 | - Shift Control

Scalar Shift Functional Unit

Si (81) v S] (S2)

Bit . Bit .
& on |G -

t Shift 32 l tShift32 I
y

Bit 62

-1 Bit 62 = §1 Final Result

Figure 27. Scalar Left Double Shift

Shifting Si and Sj to the left 32 places puts bit 30 of S1 at bit position 62
and bit 10 of S2 at bit position 41. Because bit 41 of S2 did not make it to
the result register S1, it is lost. The result bit (bit 62) is then sent to the Si
(81) register. The Sj (S2) register remains unchanged.
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Scalar Right Double Shift

To perform a scalar right double shift, a 057ijk instruction (Si Sj, Si > Ak)
shifts (Sj) and (Si) right (Ak) places to Si. Figure 28 is an illustration of a
057123 instruction with the indicated parameters.

S1= Bit 20
S2 = Bit 40
A3 = 60 — Shift Control
Scalar Shift Functional Unit
o Sj (582) Si (81)
r o Bit40 ( oo Bit 20
T Shift80 | shift80
Bit 56
»| Bit56 = 81 Final Resuit

Figure 28. Scalar Right Double Shift

To right shift Sj and Si using left shifts, the two’s complement is first
performed on A3, which currently equals 60g (481¢). Because the two’s
complement is 120g (or 1010000, or 801¢), the required shift can be
accomplished through successive shifts of 6419 and 16;¢ for a total shift of
8010 places. A left shift of 80;¢ would move bit 40 of S2 to bit position
56 inside the dotted box and bit 20 of S1 to bit position 36 of S2. Because
bit 36 did not make it into the result register (indicated by the dotted box),
it is lost, and bit 56 is sent to the final result.
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Left Single-shift Instruction

Refer to Figure 29 when reading the two following examples of the scalar
left single-shift instruction.

Bits | 2 1 0l 2 1 0 | = jkField

32 16 8 4 2 1 = Shift Values Decimal

052ijjk Results to SO
054ijk Results to S/

Figure 29. Example of Scalar Left Single-shift Instruction

Example 1: Write the instruction to shift S2 left 201¢ places, placing
the results into SO.

Steps: 1. 052ijk — left shift instruction result goes to SO
2. jk field— shift count 20,g = 24g = jk field
3. 052224 - final instruction

Example 2: Write the instruction to shift S4 left 35, places, placing the
results into S4.

Steps: 1. 054ijk — left shift instruction result goes to Si
2. jk field- shift count 3510 = 43g

3. 054443 — final instruction
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Right Single-shift Instruction

The right single-shift count is the jk field of the instruction, which must
either be in the two’s complement form or 100g minus the number of
places to right shift. Two examples of a scalar right single-shift
instruction follow.

e 053ijk results to SO
e  055ijk results to Si

Example 1: Write the instruction to shift S5 right 10;¢ places, placing
the results into SO.

Steps: 1. 053ijk — right shift instruction results to SO

o2 Jjk field — shift count in two’s complement equals 66
1019= 123 = 001010

two’s complement = 110101

+1

110110 = 66g

3. 053566 — final instruction

Example 2: Write the instruction to shift S7 right 28;¢ places.
Steps: 1. 055ijk right shift instruction results to Si
2. jk field — shift count in two’s complement equals
2810=343 =011100
two’s complement = 100011

+1

100100 =443
or 100g — 34g = 443

3. 055744 — final instruction
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Left Double-shift Instruction

Refer to Figure 30 when reading the following example of a scalar left
double-shift instruction.

056ijk Shift Si and Sjleft by Ak places to Si

Si ' Sj

=

Ak contains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any of bits 7 through 63 are set, the results of Siare zeroed.

Si

Bits | 63 716 5§ 4 3 2 1 0]=Ak

Zero Results 64 32 16 8 4 2 1 =Valid Decimal Shifts

On a left double shift, the contents of Sj are always shifted into Si. This shift is done
inside the scalar shift functional unit.

Figure 30. Example of a Scalar Register Left Double-shift Instruction
Example 1: Write the instruction to left double shift S2 and S3 64,
places, placing the results into S2.
056234 — final instruction, where A4 — 100g

NOTE: A circular left shift can be effected by issuing a 056 instruction
with i = j and (Ak) < 64.
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Scalar Shift CPU

Right Double-shift Instruction

Refer to Figure 31 when reading the following example of a scalar right
double-shift instruction.

057jjk  Shift Sjand Siright by Ak places to Si

Sj Si

Si

Bits | 63 716 5 4 3 2 1 0

Zero Restits

Two’s Complement = During Right Double Shift

64 32 16 8 4 2 1 =Valid Decimal Shifts

Figure 31. Example of a Scalar Register Right Double-shift Instruction

Ak contains the shift count, and address (A) register bits O through 7
contain the valid shift counts. If any of bits 7 through 63 are set, the
results of Si are zeroed. Also, the hardware generates the two’s
complement of the shift count on the Ak register bits O through 7 on a
right double shift.

On a right double shift, the contents of Sj are always shifted into Si. This
operation and the two’s complement of the shift count are done inside the
scalar shift functional unit.

Example 1: Write the instruction to right double shift S4 and S5
3210 places, with the results going into S4.

057454 — final instruction, where A4 = 40g
hardware generates a shift count of 140g inside the
functional unit.

NOTE: A circular right shift can be effected by issuing a 057 instruction
with i = j and (Ak) < 64.
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ADDRESS MULTIPLY

The AN option performs the address multiply operation (a 032ijk

- instruction). The AN option also fans out the Aj and Ak operand used for

other A register operations.

When operating in Triton mode, two 48-bit operands are presented to the
functional unit to produce a 48-bit result. The AN option then does a sign
extension to bit 63 and a leading zero count on the operands to determine
whether the results will fit within 48 bits. If the results exceed 48 bits, the
64-bit incompatibility signal sets, causing the Address Multiply Interrupt
(AMI) flag to set in the exchange package.

The AN option does not use a standard pyramid formation multiply
algorithm. Instead, it uses a variation of the Booth Recode algorithm.
This algorithm enables the address multiply unit to reside on a single
option.

Half the recode groups are formed immediately upon arrival of the data on
the AN option (those groups that are centered on bits 0, 4, 8, 12, 16, etc).
One clock period later, using the same logic, those groups centered on bits
2, 6, 10, and 14 are recoded. This method allows a multiply operation to
be done on about one-fourth of the logic used in a standard pyramid
multiply. Because this method holds the Ak operand for 2 clock periods,
the AN operand can accept data only every other clock period. Refer to
Figure 32 for an illustration of the AN option.
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Address Multiply cPU
IHA — IHB Go 032
— OBV A Regist It
IAA-ICP  Aj g;:‘\ 00 : e}éls er D; a_
— OlH i xt it
A Registers Multiply ign Extend Bits _
IDA-IFP__ Ak_
OCA - ODP,
OEA - OFP -
Fanout >
AkBits0-7to VL
OGA - OGT,
IGF - 1GJ g Data OHA — OHP .
Figure 32. AN Option
Multiply Algorithm

The multiplier is partitioned into 3-bit recode groups centered on the even

bits (0 to 46); a forced zero is added to the first recode group. The recode

groups are formed as shown in Table 12, and the following subsections "li:)
provide examples of standard and Booth Recode multiplication.

Table 12. Recode Groups

Odd Bit Even Bit i—1 Recode Value Recode Product

0 0 0 +0 0
0 0 1 +1 X47 - X0
0 1 0 +1 X47 - X0
0 1 1 +2 2(X47 — X0)
1 0 0 -2 {2(X47 — X0y +1
1 0 1 -1 (X47 — X0)'+1
1 1 0 -1 (X47 — X0)'+1
1 1 1 -0 0

i— 1 = Bit to right of recode X47 - X0 = Multiplicand

group

56

Cray Research Proprietary

HTM-003-0



CPU Address Multiply

Standard Binary Multiplication

j Refer to the following example of standard binary multiplication.

000011 (3)
011101 (35)
000011
000000
000011
000011
000011
000000
0000001010111

Booth Recode Multiplication

Refer to the following example of Booth Recode multiplication.

000011 (3)
011101 (35)
000000000011
11111111010
) 00000110
T 000001010111

In the previous example, the multiplier is recoded into bit groups centered
on the even bit. A forced zero is appended to the first recode group.

As shown in Table 12, the first recode of the multiplier, bits 1 and O and
the forced zero, yields a recode value of 010, or +1. In this case, the
multiplicand is brought down.

The second recode, bits 3, and 2, and 1 yields a recode value of —1. In this
case, a two’s complement and a shift of 1 are done on the multiplicand.

The final recode, bits 5, 4, and 3 yields a recode value of +2. This causes
a shift of 1 on the multiplicand.
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INTEGER MULTIPLY

HTM-003-0

The AM option performs the scalar vector integer multiply operation

-(166ijk). It receives-Sj and Vk operands and produces a 40-bit output to

Vi for VL length when the system is in Triton mode.

In C90 mode, a 32-bit result forms, and the input operands are modified to
produce the 32-bit result. The Sj operand must be left shifted 31,, places,
and the V& operand must be left shifted by 16,, places before executing the
166ijk instruction, as shown in Figure 33.

The AM option, like the AN option, also uses the Booth Recode algorithm
for the multiply operation. The AN option also does a leading zero count
on the operands to determine whether the results will fit within 40 bit
positions. The input operands are passed through the floating-point
multiply unit before they arrive at the AM option, as shown in Figure 34.
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Integer Multiply CPU
Bits 63 48 47 32 31 16 15 0 j
C90 32-bit Mode "
Bits 63 48 47 32 31 16 15 0
Sjbits 0 through 31 are gated into bit
positions 32 through 63 for C90 mode.
Bits 63 48 47 32 31 16 15 0
C90 32-bit Mode . }
Bits 63 48 47 32 31 16 15 0
Vk bits 0 through 31 are gated into bit
positions 15 through 47 for C90 mode.
Figure 33. C90 Operation Mode
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CPU

AM
OGA~OGT SjBits0-19 IAA — IAT
NB OGU-OHN SjBits20—-39 IBA—IBT
OlA - OIF VkBits 42— 47 IGC -IGH |
OJA Go V 166 IEC |
NA ODA—-ODH SjBits40—-47 IFA—IFH
OEA-OET VkBits0-19 ICA-ICT
OEU-OFT VkBits20-39 IDA-IDT
OFO-OFP VkBits40—41 IGA-IGB |
NC o
OGA-0GO SjBits48—-62 IFI—-IFW _
OHA Valid IED _
IC
oYQ Triton Mode 1IEA
Figure 34. AM Option Inputs
HTM-003-0 Cray Research Proprietary

Integer Multiply

ViBits 0 -25 to

OAA, OAZ Result Register

ViBits 26 — 51 to
OBA, OBZ Result Register

OHQ, OHR 40-bit Mode
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VECTOR REGISTERS

HTM-003-0

A CRAY T90 series computer system contains eight vector (V) registers,

- which are designated VO through V7. Each register contains 128;¢

elements; each element is 641¢ bits wide. The 1281 elements are divided
into two pipes of even and odd elements.

The vector registers have their own integer functional units, which include
vector add, vector logical 1, vector logical 2, vector shift, vector
population, vector leading zero count, and 32-bit integer multiply. The
vector registers share the floating-point functional units with the scalar
registers. The floating-point functional units include floating-point add,
floating-point multiply, floating-point reciprocal and bit matrix multiply.

The vector registers can send data to memory or load data from memory.
The number of elements sent to a functional unit (including memory)
depends on the value of the vector length (VL) register. Any element of a
vector register can be loaded into a scalar register, and any scalar register
can be loaded into any element of a vector register by using the 076ijk and
077ijk instructions.

The vector registers use 1-parcel instructions. In a 1-parcel instruction,
the gh field contains the instruction decode, and the ijk field contains the
operands and destination. The gk field of the instruction indicates the
functional unit needed, and the ijk field indicates the vector registers used.
Generally, the & field of the instruction contains the vector operand
registers VO through V7. The j field of the instruction can be either Sj or
Vj, depending on the instruction. The i field of the instruction is used as
the destination or result register.

Some vector instructions, when preceded by a 005400 instruction, cause
the instruction to execute in Triton mode as opposed to C90 mode of
operation. If, for example, an instruction sequence of 005400 150i;0
issues, a left shift of Vj VO places to Vi is performed. If the 005400
instruction had not preceded the 150ij0 instruction, a left shift of Vj AO
places to Vi would have occurred.
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Vector Registers

64

CPU

The vector registers in the Triton system contain a dual set of functional
unit pipes. Each functional unit has another identical functional unit. For
example, the vector add functional unit is duplicated so that all the even
elements go to one of the vector add functional units, while all the odd
elements go to the other vector add functional unit. The even and odd
elements are sent to the functional unit simultaneously, and the two results
are loaded back into the result vector register simultaneously.

If the vector add functional unit fails in the even elements, the cause of the
failure is the pipe O vector add. Pipe 1 handles the odd vector elements. If
the vector length register is an even value, the results are written into the

‘vector register simultaneously using pipe 0 and pipe 1, until the last

element specified by the vector length is used. Refer to Table 13 for a list
of the vector register options.

Table 13. Vector Register Options

Option Type | Number Used Description
Provide read/write address and control
(VAO pipe 0)
VA 2 (VA1 pipe 1)

Vector length register
Functional unit release

Pipe control
VF 4 (VFO,VF1 for pipe 0)
(VF2,VF3 for pipe 1)

Data multiplexing (VMO0 — VM7 pipe 0)
(VM8 — VM15 pipe 1)

Vector add functional unit

Vector logical functional unit

VM 16

Data multiplexing and storage
VR 16 (VRO — VRY7 pipe 0)

(VR8 - VR15 pipe 1)
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CPU

VA Option

Vector Registers

The VA option provides vector read and write control. There are two VA
options on a CPU: VAO provides address and control for the even
elements of the vectors, and VA1 provides the address and control for the
odd elements. The VA options have the following common functions:

e  Vector read and write address
e Read and write vector length
e  Vector chaining control

The VA options also have the following unique features:
e VA0
e Release vectors for write operations

®  Functional unit release for:
Vector logical #1
Vector shift
Vector floating-point multiply
Vector reciprocal

e Even-element addressing

e Release vectors for read operations

¢  Functional unit release for:
Vector logical #2
Vector adder
Vector floating-point add
Vector matrix multiply

e  (Odd-element addressing

Vector Length Register

HTM-003-0

The vector length register is located on the VA option. There are two VA
options, one for each pipe. Both vector length registers are loaded with
Ak data bits 00 through 06 from the AROOO option. These bits are needed
to achieve values from O to 177g. If a value of all O’s is entered, the VL
register is forced to a value of 200g.
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Vector Registers

Chaining

VF Option

CPU

When the vector length value is entered, it is entered into a countdown
register. VL bit O is removed so a VL value of 200 will be a value of 100
in the active register (a pseudo right shift). This is done because each pipe
handles only 100 elements. Every time VL decrements, it generates

the Advance Address signal. The VA option also checks VL bit 0 to
determine whether the vector length is odd or even. This enables either
pipe O for odd vector lengths, or pipe 1 for even vector lengths, on the last
operation.

If Vi, j, or k is reserved as a destination and the next instruction tries to use
the same vector register as an operand, the next instruction is allowed to
issue. This is referred to as chaining.

Chain slot time is the time required for the result of a previous instruction
to be presented to the inputs on the VR options. If another instruction is
waiting for these results or is addressing the same element, the VR option
passes the results directly to the read-out register. The VA option controls
the vector chaining by controlling the issuing of the Go Write signal.

Chaining to common memory read operations occurs on 8-word
boundaries. Vector control waits for 8 contiguous words to become valid
before the read of that group is allowed.

66

There are four VF options on the CP module. VFO and VF1 control
fanout for pipe 0; VF2 and VF3 control fanout for pipe 1. The VF options
perform the following functions.

Instruction parcel data fanout to VR options

Vector add carry and enable summations and bit toggles
Vector register parity error information

Vector functional unit delay chains

Vector functional unit data valids

Vk address buffering for common memory

Release of Vi for write operations
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CPU Vector Registers

VM Option

N > The VM options perform write data multiplexing on an 8-bit slice of all
functional unit data. There are 16 VM options. VMO000 to VMO0O07 are for
even-element steering, and VMOO8 to VMOL15 are for odd-element
steering. '

The VM option performs the following functions:

Read and write data steering
Vector read-out control

Vector add functional unit

Both vector logical functional units

VR Option

A total of 16 VM and VR options reside on the CP module as shown in
Table 14. Each option performs read data steering and also vector data
storage. The contents of the selected vector register are gated to one of
the following destinations; the read data steering is done on 4-bit slices.

Floating-point add
Floating-point multiply
Reciprocal, pop, parity, LZ
Shift

Common memory port A
Common memory port B
Common memory port C
Common memory write data
V data to scalar

Bit matrix multiply

The VM and VR options contain four high-speed register (HSR) storage
arrays that are 18 bits wide by 64 elements deep. Sixteen of the bits are
data and 2 bits are for parity. VR00O through VR0O07 store vector data for
the even elements (pipe 0), and VR008 through VRO1S5 store data for the
odd elements (pipe 1).

NOTE: VM/VR options 12 through 15 do not handle exchange data.
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Vector Registers

Table 14. VM/VR Data Steering

CPU

Option Pipe 0/Pipe 1 | VM3/11 | VR3/11 | VM2/10 | VR2/10 | VM1/9 | VR1/9 | VMO0/8 | VRO/8
Read Bits 28-31 | 24-27 |20-23 }16—-19}| 12-15 | 8- 11 4-7 0-3
Write Bits 24 - 31 - 16 -23 - 8-15 - 0-7 -

Exchange Bits 60-63 | 56—-59 | 52565 |48-51|44-47 |40-43 | 36-39 |32-35

Option Pipe 0/Pipe 1 | VM7/15 | VR7/15 | VM6/14 | VR6/14 { VM5/13 | VR5/13 | VM4/12 | VR4/12
Read Bits 60-63 | 56-59 | 52—-55 [48-51 | 44-47 |40-43 | 36—-39 |{32-35
Write Bits 56 — 63 - 48 - 55 - 40 - 47 - 32 -39 -

Exchange Bits 28-31 | 24-27 | 20-23 |16—-19 | 12-15 | 8—-11 4-7 0-3

Each VR option has an input that is used to force parity errors into the

HSR arrays. The maintenance channel provides the following two

features: force RAM parity error internal (code 100) and force RAM
parity error external (code 140). Through the use of the maintenance
channel, a specific loop controller and a specific chip can be given a

maintenance function such as force parity error.

Write Data Steering

68

The VM options receive the i instruction field from the VF options; this
field performs internal gating of data to the correct register. The i field
and the instruction decode enable separate write paths for each vector.

This path stays selected until a new instruction issue changes it. All the
write paths are separate and all can be active at the same time. Refer to
Figure 35 for an illustration of the write data path.
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CPU

VM000 VMO004
Bits Bits
0-7 32-39

VMO001 VMO005
Bits Bits

8-15 40 - 47
VM002 VMO06
Bits Bits
1623 48 -55
vMO003 VMO007
Bits Bits
24-31 56 — 63
; ) VM008B VMO12
Bits Bits
0-7 32 -39

VM009 VMO013

Bits Bits
8~-15 40 - 47

VMO010 VM0O14

Bits Bits
16-23 48 - 55

VMO11 VvM015

Bits Bits
24 - 31 56 — 63
HTM-003-0

Vector Registers
V7 VR007
V6 VR006
Even Element
Storage V5 VR005
V4 VR004
V3 VR003
V2 VR002
Vi VRO001
Vo VR000
RAM O RAM 1
Bits Bits
0-15 16 — 31
Elements|{ ]Elements
0-62 0-62
RAM 2 RAM 3
Bits Bits
3247 48 - 63
Elements] |Elements V7 VRO15
0_62 062 V6 VRO14
V5 VR013
V4 VRO12
V3 VRO
V2 VRO10
V1 VRO009
VO VR008
RAM O RAM 1
Bits Bits
0-15 16— 31
Elements] JElements
1-63 1-63
RAM 2 RAM 3
Bits Bits
82-47| | 48-863 Odd Element
Elements| [Elements Storage
1-63 1-63
Figure 35. Write Data Path
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Vector Registers

CcPU

Read Data Steering

Both the VM and the VR options are responsible for read data steering.
Each VM and VR option steers 4 bits for all eight vector registers to one
of the following destinations:

Floating-point add

Floating-point multiply

Reciprocal, pop, parity, leading zero
Shift

Common memory port A, B, C

V data to scalar

- The VM and VR options receive the j and £ fields of the instruction from
the VF option along with the instruction; this enables one of eight vector
paths to which data is steered. These paths stay selected until another
instruction changes them. All the read paths are separate and all can be
active at the same time. Figure 36 shows the read data path for pipe 0 and
pipe 1 (even elements), and Figure 37 shows the read data path for pipe O
and pipe 1 (odd elements). Refer also to the following diagrams for
additional related vector register information:

Figure 38 — vector register write block diagram (pipe 0)

Figure 39 — vectors 0 through 3 pipe 0/1 read data path

Figure 40 — vectors 4 through 7 pipe 0/1 read data path

Figure 41 — vectors O through 3 pipe 0/1 write data path

Figure 42 — vectors 4 through 7 pipe 0/1 write data path

Figure 43 — vector register decode bit fanout (pipe O and 1 path 1)
Figure 44 — vector register decode bit fanout (pipe 0 and 1 path 2)
Figure 45 — S register to vectors

Figure 46 — memory data to vectors (even elements)

Figure 47 — memory data to vectors (odd elements)

Cray Research Proprietary HTM-003-0



CPU Vector Registers
VR007 Bits 56 - 59
VR0O06  Bits 48 ~ 51
VR007 Vector 7
VR006 Vector 6 VR005 Bits40-43
Vect
VRO ector 5 VRO04 Bits 3235 .
VR004 Vector 4
VR002 Vector 2 VR002 Bits 16— 19 ]
VROO1 Vector 1
VR0OO1 Bits 8— 11
VRO00 Vector 0 =
VROOO  Bits0-3 |
Array 0 Array 1 -
Bits Bits
0-15 16— 31
Elements 0 - 62
Array 2 Array 3
Bits Bits -
32-47 48 -63
VMO0O  Bits4-7 ]
Elements 0 - 62
VM0O1 Bits 1215 |
VMO002 Bits 20 - 23 ""
VM003  Bits 28 — 31 ]
VMO0O4 Bits 36 — 39 |
VMOO05  Bits 44 — 47
VMO06 Bits 52 - 55
VM007 Bits 60 — 63
Figure 36. Read Data Path for Pipe O (Even Elements)
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Vector Registers CPU
VRO15  Bits 56 — 59 /3
VR0O14  Bits 48— 51 o
VRO15 Vector 7
VRO14 Vector 6 VR013  Bits 40-43
VR013 Vector 5
VR012 Bits 32-35 ]
VRO012 Vector 4 l
VRO11 Vector 3 VRO11 Bits 24 - 27 -
VRO10 Vector 2 VRO10 Bits 16— 19 -
VR009 Vector 1
VRO09 Bits 8~ 11
VR008 Vector 0 -
VROO8  Bits 0-3 |
Array 0 Array 1 -
Bits Bits
0-15 16— 31
Elements 1 - 63 e~
Array 2 Array 3 ‘)
Bits Bits -
32-47 48 -63
VM008  Bits4-~7 ]
Elements 1 — 63
VMO09 Bits 12— 15 |
VMO010 Bits 20 — 23 1
VMO11  Bits 28 - 31 |
VMO012 Bits 36 — 39
VMO013 Bits 44 — 47
VMO14 Bits 52 - 55
VMO15  Bits 60 — 63
Figure 37. Read Data Path for Pipe 1 (Odd Elements) -
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CPU
Functional Units VMO00 VMO004
Floating-point Add Bits Bits
Floating-point 0~7 3239
Multiply V Write Data 1AA, IBX -
Reciproca.l VMO0O01 VMO005
Vector Shift IGA, IGH Bits Bits
BMM ) 8-15 40 - 47
Integer Multiply IA, IIH OAA - ODP V Write Data 1AA - IDP
> VMO002 VMO06
AR, AS, AT, AU A, IIH Bits Bits
Scalar Data IMA, IMH_ VMOO03 VMOO7
IMA. IMD Bits Bits
CHO00 — CHO14 L 24-31 } | S6-68
Common Memory |OIA, OIH IME, IMH_
Data Path 1
CHOO01 - CHO15 VAQO1 ]
Common Memory JOIA, OlH VAO0O
Data Path 2
AR000 OPA,OPG  AkData HA, IHG =:|V" Register] |01 =ON V Write Address WA — F_
VR000 - VROO7 > .
Writ WH
Vector Select  JOYI, OYP 0AQ Go Write |
Code (Fanout Instruction
from CK) JAOOO OCA, OCP___ Parcel IAA, IAP o
VR1, VR3, VR5, L.
VR6 ‘ KA LA
Common Memory |OYL OYL ODA,ODC __Issue iBA, BB, IBD| IKP
Path 1 Code
(Fanout from CK)
OAA - OAP
VR1, VR3 ,VR5, VF001 OMA, OMH _ Release ICA, ICH _ 83?\ - 8?;
VR6 VF000 -
Common Memory JOYM. OYP > OWA —OWP _Instruction Fields IKA-IKP |} ~ " ODA - ODP
Path 2 Code OAQ Parcel 0
(Fanout from CK) 828 I;arcelI 12
CKO000 arcel
OGA,0GJ _ Path1Code  IDA, IDJ _ owa Issue d _ | opQ parcel 3
IXA—IXH  Go Write OMA — OMH
CKoo2 OGA,OGJ _ Path2Code _ IEA,IEJ
Pipe 0
NG ONE
Advance Vi Write Address (Expand)
Figure 38. Vector Register Write Block Diagram (Pipe 0)
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CPU Vector Registers
Vector 0
C |EA— Vector 1 e Vector 2 Bl Vector 3 IEM
VRO000 IED _ } VR000/8 VROO1 IEH | VR000/8 VRO02 IEL _ | VR00O0/8 VR003 IEP__| VR000/8
VR008 OAA- ICA— VR009 OAA - ICE — VRO10 OAA - Icr VRO012 OAA- ICM
OAD  Bits0-3 | ICD _} vMmoo0/8 OAD _ Bits0-3 | ICH | vMo000/8 OAD  Bits0-3 ] ICL _]vmooo/8 OAD __ Bits0-3 | ICP | vM000/8
OAE - IEA— OAE - IEE | OAE - Bl OAE - IEM 3
OAH _ Bits4—7 IED | YMO0O® OAH _ Bitsa—7_1EH | YMO0OB OAH _ Bits4—7 IEL | VMO0OB OAH _ Bitsa—7__1EP | YMOOO!
IEA- IEE IEI IEM
IED _{ VR001/9 IEH _| VR001/9 IEL__ | vROO1/9 IEP | VR001/9
OAI - ICA~ OAl - ICE - OAI - ICl OAl- ICM
OAL Bits8-11 ] ICD | vMm001/9 OAL Bits8-11 | ICH {vmo01/9 OAL Bits8-11 ] ICL _]vmMmo01/9 OAL Bits8-11 ] ICP o] vMo01/9
OAM - IEA— OAM -~ IEE OAM — B OAM — IEM
OAP_ Bits12-15 IED [ VMOO19 OAP  Bits12—15 IEH | VYMO01/ OAP _ Bits12~15 IEL _|VMOO01/® OAP  Bits12-15 IEP | YMOO1
IEA— IEE IEI IEM
IED _I'vRoo2/10 IEH Y VR002/10 lEL__}VR002/10 EP__I vRoo2/10
OBA- ICA— OBA- ICE— OBA- ICI OBA- ICM
gzg Bits 16-19) 1CD _|\/\002/10 OBD _ Bits 16—-19] ICH _I\ao02/10 OBD _ Bits16-19] 1L |\ 00010 OBE Bits 16— 19 :(E:; o vmoozri0
- IEA- OBE- IEE OBE - IEI OBE -
OBH _ Bits20-23 IED | VM002/10 OBH _ Bits20-23 IEH _[VM002/10 OBH  Bits20-23 IEL _|VM002/10 OBH _ Bits20-23 IEP _| VM002/10
IEA— IEE IEl IEM
IED _ ['VRoO3/11 IEH _['VR003/11 lEL__'VRooa/11 IEP__['vRoO03/11
0Bl - ICA— OBl - ICE — OBl - ICI OBl - ICM
B its 24 — e o Cooa .
OBL__Bits24-27) 16D |, 0o OBL__ Bits24-27f ICH |\ 0o, OBL _ Bits24-27) ICL | \\0oos OBL__ Bits24-27] 1OP | \\ooy
OBM IEA- OBM IEE OBM IEI OBM IEM
OBP _ Bits28-31 |ED _ | VMOO3/11 OBP  Bits28—-31 IEH | VMO03/11 OBP  Bits28-31 IEL _ | VM003/11 OBP  Bits28—31 IEP | VM0OO3/11
IEA— IEE IEI IEM
IED _{ VR004/12 IEH__ | VR004/12 IEL__] VR004/12 IEP__ | VR004/12
OCA- ICA— OCA- ICE — OCA- IC OCA- ICM
OCD__ Bits 32-35] ICD _ | vmo04/12 OCD  Bits32-35] ICH _|vmo04/12 OCD  Bits32-35) ICL _|vMo04/12 OCD  Bits32-35} ICP | vmo04/12
OCE - IEA— OCE - IEE OCE - El OCE- IEM |
OCH Bits36—39 IED | YMO04/12 OCH  Bits 3639 IEH | YM004/12 OCH Bits36-39 IEL | VYMO04/12 OCH  Bits36-39 IEP | YM004/12
IEA— IEE IEI IEM
IED _I"VR005/13 IEH _I'VR005/13 IEL__I'VR005/13 IEP__['VR005/13
oci- ICA— oci - ICE — ocl - ICl ocli - ICM
OCL__ Bits40-43] 10D {1001 OCL _ Bits40-43] ICH I \\oor ocL _ Bits40-43] IOL |\ 0ors OCL__Bits40-43] ICP | \\ocia
OCM - IEA- OCM - IEE OCM- IEI OoCM - IEM
OCP__ Bits44—-47 IED _| VMO005/13 OCP__ Bits44—47 |EH | VMO005/13 OCP  Bits44-47 IEL _|VM005/13 OCP__ Bits44-47 EP | VM005/13
IEA- IEE IEl IEM
IED _ | vRooS/14 IEH | VR0O6/14 IEL | VROO6/14 IEP | VR0OO6/14
ODA- ICA— ODA- ICE— ODA- IC ODA- ICM
ODD  Bits48-51} ICD | vMo06/14 ODD Bits48-51] ICH | vm006/14 ODD Bits 48 =51} ICL _ | vm006/14 ODD Bits 48 —51] ICP _ | vM006/14
ODE - IEA- ODE - IEE ODE - El | ODE - IEM
ODH__ Bits52-55 IED _J YMOOG/14 ODH__ Bitss2-55 IEH _| YMOOG/14 ODH _ pits52-55_iEL | VMOOG/14 ODH__Bits52-55 igp__| VMOO08/14
IEA- L IEE IE) IEM
IED _| VR007/15 IEH I vROO7/15 lEL__|VR007/15 IEP__| VRO07/15
obi- ICA— oDI- ICE — oDI - ICI oDI - ICM
ODM- IEA- ODM - IEE ODM - IEI ODM- IEM
ODP  Bits60-63 IED | YMO007/15 ODP  Bits 6063 IEH | YMO07/15 ODP  Bits60-63 IEL | VMO07/15 ODP  Bits60-63 IEP | VMOO07/15
Figure 39. Vectors 0 through 3 Pipe 0/1 Read Data Path
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CPU Vector Registers
Vector 4
DA Vector 5 IDE Vector 6 DI Vector 7 DM
VR004 IDD _ | VR000/8 VROO05 IDH _ | vROOO/8 VRO06 IDL | VROOO/8 VR007 IDP__} VR000/8
VRO12 OAA- IFA VR013 OAA- IFE VRO14 OAA- IFl VRO15 OAA- IFM
OAD  Bis0-3 | IFD | vMo00/8 OAD  Bitso—3 | 1FH |vmoo0/8 OAD  Bits0-3 | IFL _|VMO000/8 OAD  Bits0-3 | IFP | VM000/8
OAE - IDA OAE - IDE OAE - DI OAE - M [
OAH _ Bits4—7__ipp_| VMO0 OAH __ Bits4—7 _IDH_|YM0008 OAH _ Bits4—7 iDL | YMOOO® OAH _ Bits4-7 _iDp | VM000
IDA IDE DI IDM
IDD I VR001/9 iDH 1 VR001/9 IDL__| VR001/9 IDP__| VR001/9
OAl - IFA OAI - IFE OAl - IFl OAl - IFM
OAL Bits 8 — 11 IFD | vmo01/9 OAL Bits 8 — 11 IFH | vmoo01/9 OAL Bits 8 - 11 IFL | vmoo01/0 OAL Bits8-11 ] IFP »| YMo01/9
OAM - DA OAM - IDE OAM - Dl OAM- IDM
OAP__Bits12-15 DD | YMOOY® OAP __ Bits 1215 IDH _| YMOO1S OAP  Bits 1215 DL _| VMO0V OAP  Bits12-15 pp | VMO0
IDA IDE IDI IDM
DD _Ivroo2/10 IDH _FVR002/10 IDL__I'VR002/10 IDP__I VR002/10
OBA- IFA OBA- IFE OBA- IFI OBA- IFM
8:2 Bits 16-19 | 1FD |\ 100010 OBD _ Bits 16-19] IFH |\ 00210 oBD _ Bits 16-19] IFL | \\o02r10 gBD Bits 16 - 19 :;’; | VM002/10
- IDA OBE - IDE OBE - DI BE—
OBH Bits20—-23 IDD | VM002/10 OBH  Bits20-23 IDH _|VYMO002/10 OBH  Bits20-23 DL _| VYM002/10 OBH  Bits20-23 IDP | VMO002/10
IDA IDE IDI IDM
IDD _f'VRooa/ 11 IDH _fVRoo3/11 IDL__I'vRooa/11 IDP _I'VRoO03/11
OBI - IFA OBI - IFE OBI- IFI OBI - IFM
OBL Bits24-27] IFD | 0000, OBL__ Bits24-27] IFH |\ /oo, OBL__ Bits24-27] IFL |\ OBL _Bits24-27] IFP | 0o,
OBM IDA OBM IDE OBM IDI OBM IDM
OBP  Bits28-31 IDD ] VMOO03/11 OBP  Bits28-31 IDH | VMO003/11 OBP  Bits28-31 IDL | VMOO03/11 OBP  Bits28-31 IDP | VMOO3/11
IDA IDE IDI IDM
IDD | VR004/12 IDH _ | VR004/12 IDL__ | VR004/12 IDP__] VR004/12
OCA- IFA OCA- IFE OCA- IFI OCA- IFM
OCD _ Bits32-35) IFD _{ vymoo4/12 OCD  Bits32-35] IFH _|vmoo4/12 OCD  Bits32-35] IFL _|vmoo4/12 OCD  Bits 32-35] IFP | yM004/12
OCE - IDA OCE- IDE OCE - DI OCE - IDM
OCH_Bits36-39 _IDD_|VMOO4/12 OCH  Bits36-39 IDH _|VMO04/12 OCH  Bits 3639 IDL | VM004/12 OCH  Bits36-39 IDP | YM004/12
IDA IDE IDI IDM
IDD _['VRo05/13 IDH _[VRO05/13 IDL__I'VR005/13 IDP__I'VR005/13
OCl - IFA ocl- IFE ocCl- IF1 ocl - IFM
OCL__Bits40-43] IFD f, \ 1o OCL__ Bitsd40-43] IFH | 0.0 OCL_ Bits40-43] WFL |\ \ioeiio OCL__ Bits40-43] IFP |\ oria
OCM - IDA OCM - IDE OCM - IDI OCM - IDM
OCP__ Bits44—-47 _ IDD | yM005/13 OCP__ Bits44-47 IDH _|vymo05/13 OCP  Bits44~47 IDL _|yMmo005/13 OCP__ Bits44-47 IDP | vM005/13
IDA IDE DI IDM
IDD | VRO06/14 IDH | vR0O6/14 ioL _ | VRoO6/14 0P _ | vRoo6/14
ODA- IFA ODA- IFE ODA- IF ODA- IFM
ODD Bits48—-51 ] IFD | vM006/14 ODD  Bits48—-511 IFH _|vMm006/14 ODD  Bits48-51] IFL _ 1 vM006/14 ODD  Bits48-51] IFP _{ vMO006/14
ODE - IDA ODE - IDE ODE - Dl ODE - IDM
ODH _Bits52-55 _ibp_| YMOOB/14 ODH__ Bits52—55 IDH | VM006/14 ODH _ Bits52-55 IpL | VM006/14 ODH__ Bits52—55_Ipp__| YMO0O/14
DA L IDE D! IDM
IDD I VR007/15 IDH _{VR007/15 IbL__{ vROO7/15 IDP__I VR007/15
oDI~- IFA oDI - IFE ODI - IFl oDl - IFM
ODL Bits 56 — 59 IFD > VM007/15 ODL Bits 56 — 59 IFH; VM007/15 ODL Bits 56 — 59 IFL > VM007/15 ODL Bits 56 -~ 591 IFP > VM007/15
ODM - IDA ODM - IDE ODM ~ Dl ODM - IDM
ODP  Bits60—-63 IDD ] YMOO7/15 ODP  Bits60-63 IDH | VYM007/15 ODP  Bits60-63 DL _}VYMO07/15 ODP  Bits60~63 IDp _| YMOO7/15
Figure 40. Vectors 4 through 7 Pipe 0/1 Read Data Path
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CPU

Vector 1
VROO01
VR009
VMO00 OAl — IAA —
vMO008 OAP  Bits0-7 IAH
VMO0O01
QAl - 1Al -
VM009 OAP  Bits8—15 IAP _
o0z oI~ A~
OAP  Bits16-23 IBH _
VMO003
VMO11 OAIl - 1Bl -
OAP Bits 24 — 31 IBP
My OAI- ICA—
OAP Bits 32~39 ICH
vM005
VMO013 OAl - IClI -
OAP Bits 40—-47 ICP
VM006
vM014 OAl - IDA-
OAP  Bits48~55 IDH
VMO007
VMO15 OAl - IDI =
: OAP Bits 56 -63 IDP

Vector 0
VR000
VR008
VM008 OAH _ Bits0—7 IAH
VMOO1
OAA- IAl—
VMO09 OAH  Bits8—15 AP _
oo OAA- IBA—
OAH  Bits16-23 IBH _
VMO
VMO?‘? OAA- 1Bl -
OAH  Bits24—31 IBP
s OAA- ICA—-
OAH  Bits32-39 ICH
VMOO05
VMO13 OAA - ICl -
OAH  Bits40—47 ICP_
VMO06
VMO14 OAA- IDA~-
OAH Bits48-55 IDH
VMOO7
VMO15 OAA- IDI -
OAH  Bits56-63 IDP
HTM-003-0

Vector 2
VR002
VRO10
VMO00 OBA — IAA —
vMmo08 OBH  Bits0-7  IAH
VMO01
OBA- 1Al -
VMO09 OBH _ Bits8=15__IAP |
Va2 OBA- IBA—
OBH  Bits 16-23 IBH |
VMO03
VMg" OBA- 1Bl -
OBH  Bits24—31 IBP _
mg?‘z‘ OBA- ICA-
OBH  Bits32-39 ICH_
VMO005
VMO13 OBA - ICl -
OBH  Bits40-47 ICP |
VMO006
VMO14 OBA- _ IDA—
OBH  Bits48-55 IDH
VMO007
VMO15 OBA- IDI -
OBH _ Bits56~63 IDP

Figure 41. Vectors O through 3 Pipe 0/1 Write Data Path
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Vector Registers
Vector 3
VR003
VRO11

VMO000 OBl - IAA -
VMO008 OBP Bits0-7 IAH
VMOO1

OBl - IAl =
VMO09 OBP__ Bits8—15__ IAP

OBP Bits16—-23 IBH

OBP  Bits24-31 IBP
Myres OBI - ICA-

OBP  Bits32-39 ICH
VMO05
VMO13 OBl - ICl -

OBP  Bits40-47 ICP _
VMO06
VMO14 OBl - IDA-

OBP Bits48-55 IDH
VMO007
VMO15 OBl - DI~

OBP  Bits56-63 IDP
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CPU

Vector 5
VR005
VRO13

VMO000 oCl- 1AA =
VM008 OCP  Bits0-7 IAH
VMOO1 ocI - IAl=
VMO09 OCP__ Bits8—-15__ AP _
VMO02

ocl- IBA -
vMO10 OCP  Bits16~23 IBH _
VMoo ocl- 18I -

OCP  Bits24—-31 IBP _
e 00l - ICA~

OCP  Bits32-39 ICH
oo 001~ -

OCP  Bits40—47 ICP
VMO006
VMO14 oCI - IDA-

OCP  Bits48—55  IDH
VMO07
VMO15 ocCi - IDI -

OCP  Bits56-63  IDP

Vector 4
VR004
VR012
VMO000 OCA- IAA —
VMO08 OCH Bits0-7 IAH
VMOO1
OCA- 1Al -
VMO09 OCH Bits8—15 IAP
VMO002
OCA- IBA -
VMO010 OCH  Bits16-23 IBH
mo0g ocA- Bi-
OCH Bits24—31 IBP
‘\;“,J,g?; OCA- ICA—
OCH Bits32-39 ICH
VMO005
VMO013 OCA- ICl -
OCH Bits40—-47 ICP
vmoos
VMO14 OCA- IDA -
OCH Bits48-55 IDH
VM007
VMO15 OCA- IDI -
OCH  Bits56-63 IDP _|
HTM-003-0

Vector 6
VRO06
VRO14
VMO00 ODA- IAA —
VMO08 ODH Bits0-7 IAH
VMOO01 ODA- 1Al -
VMO09 ODH  Bits8—15 AP
VMO02
ODA- IBA —
VMO010 ODH Bits16-23 IBH
ODH Bits24-31 IBP
Wg?‘z‘ ODA - ICA-
ODH Bits32-39 ICH
ODH Bits40-47 ICP
VMO06
VMO14 ODA-— IDA -
ODH Bits48-55 IDH
VMO007
VMO15 ODA- IDI -
ODH Bits56-63 IDP

Figure 42. Vectors 4 through 7 Pipe 0/1 Write Data Path
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Vector Registers
Vector 7
VR007
VRO15
VM000 oDl - IAA—
VM008 ODP Bits0-7 IAH |
VMOO1 ODI - 1Al -
VM009 ODP  Bits8—-15 AP
VMO002
oDI - IBA-
VMO10 ODP  Bits16-23 IBH _
VM003
oDl - 1Bl -
Mot ODP Bits24-31 IBP _
M oDl - ICA-
ODP  Bits32—-39 ICH
mg?g oDi - ICl—
ODP  Bits40-47 ICP
VMO06
VMO14 oDl - IDA-
ODP  Bits48-55 IDH
VMO007
VMO15 oDl - IDI -
ODP _ Bits56-63 IDP _
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CPU

CK000 OFD 1IYB _ | VROO5 ovi IMC__[Vvo00 Vector Register Decode Bits
CK002 VRO13 ovJ VM008
VR001 ovi IMA__I'vM000 oYK IMD* IMC IMB IMA
OFB IyB _JVRO09 ovYJ VMO08
> imMc | vmo02
oYK ovL =] VMO10 1. 0 0 0 VO
OFC oYL IMA VM002
> 0 0 1 Vi
»| vMo10 imc | vmo04 !
™ vmo12
OFA wa _[Varoos 1 0 1 0 V2
T VMo12 mc  [vmoos 1 0 1 1 v3
VM014
IMA _ | VMOO6 1 1 0 o0 V4
1 VM014 IMC VMOO1
VMO009 1 1 0 1 V5
IMA _ | VMO0O1
> VM009 v [VAM003 1 1 1 0 V6
»{ VMO11
IMA VM0O03 1 1 1 1 v7
»1 VMO11 mc | vmoos
— "1 VM013 * Path 1 Valid
iMA | VM0O5
*| vm013 mc | vmoo7
VMO15
ma [vmoo7 NOTES: The top option number represents pi;1)e 0.
- - The bottom number represents pipe 1.
> vMo15 VR006 MD . [VM00D P PP
VRO15 | ovy VMO008
VR003 ovi IMB o /M000
I¥B_|vRo11 ovJ VM008B QYK mp _fvmoo2
OYK oYL ~VMO010
oYL IMB VM002 VRO
»1 vMo10 oYM iMp _fvmoos A . vno%
OYN T1VM012
iMB _ | VM004 IYB INA VR002
> VM012 » - |OYO iMp _ [ vMo06 VRO010
IYC _ ovP VMO014
M _ | vMo08
> VMO14 IMD__| VMOO1 2 . 328?3
»{ VM009
B | VMOO1
VMO009 mp | vmo03 INA \\528?2
1 VMO11
M _ | VM003 VR001
1 vMoTt1 imp__[VMmoo5 INA | VRO
VM013
imMB _ | vM005
VMO13 mp _ | vmoo7 A, 328??
VMO015
iMB _ | VMOQ7 :
VMoar Path 1 Valid INA 328?2
Path 1 Valid
Path 1 Valid VRO007
Path 1 Valid INA _JVRO15
Figure 43. Vector Register Decode Bit Fanout (Pipe 0 and 1 Path 1 Only)
HTM-003-0
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Vector Registers
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CcPU Vector Registers

CKO000 OFD IYe Vector Register Decode Bits
,/»3 CK002 g Vs oYM MG, fmo00
- VROO1 ovMm IME _I'VM000 OYN VMOo8 IMH* IMG_IMF_IME
- OFB ivc | vroo9 OYN VM008 oYo
OYo OYP imG_ | YMo02 1 0 0 0 VO
OFC oYP IME VM002 1 VM010
»1 VM010 1 0 0 1 Vi
OFA IMG_ ] VMO004
IME_ | VM004 > VM012 i 0 1 0 V2
VMO012
IMG_ | VMO0 i 0 1 1 V3
IME_ ] YM006 ™1 VM014
*1 vM014 1 1 0 0 V4
VMO01
IMG VMO009 1 1 c 1 \'
IME { VMOO1
VMO009 i 1 1 0 V6
MG, | YMO003
IME_| YM003 . T yMon 1 1 1 1 v
™1 VMO11
IMG mg?g * Path 2 Valid
IME_ ] VM005
=1 VM013
IMG_ | VMOO07
IME | VMOO7 ) VMO15 NOTES: The top option number represents pipe 0.
1 VMO15 ovI IMH The bottom number represents pipe 1.
VR007 »1 VM000
VROO3 ovi IMF VN0 vRO15 |OVJ VMO008
IYB ] vRot oYJ VM008 oYK
OYK IMH xMO?Z
- oYL IMF_ | VM002 IYB oYL 010
IYc IMH _ | VMO04 VR008
: IMF_ | vMO004 OYN VMO012
VMO012 oYo mn [Vvioos INB _| ¥gg?g
e[ vmoos oYP VMD14
VMO14
IMH_ | VMO0O1 INB \\5R004
> VMO0O09 R012
IMF | VMOO1
1 VM009
K fvmoos INB - VR006
> VMO11 VR014
IMF | vmo03
VMO11
iMH_ fvmo05 INB_, x:%;
we [Vhoos VM013
=1 VM013
mu [vmoo7 . INB :,'gg??
1 VMO015
IMF | VM007
7| VMO15 Path 2 Valid INB _| zgg?g
Path 2 Valid -
Path 2 Valid VR007
Path 2 Valid INB | VRO15

Figure 44. Vector Register Decode Bit Fanout (Pipe 0 and 1 Path 2 Only)
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CPU
AR000
VMO000
OEA - IGA -
OEH Bits 0~ 7 IGH
Pipe 0
Pipe 1
VMO008
OEIl - IGA -
QEP Bits 0~ 7 IGH
AT000
OEA- IGA -~ VMoo4
OEH Bits 32-39 IGH |
Pipe 0
Pipe 1
VMO012
OEl - IGA -
OEP Bits 32-39 IGH
HTM-003-0

AS000 AS001
VMO01 VMO02
OEA- IGA- OEA- IGA~
OEH _ Bits8-15  IGH OEH _ Bits16-23  IGH
VMO009 VMO010
OEI - IGA - OFEl - IGA -
OEP  Bits8-15  IGH | OEP  Bits16-23 IGH
S Register to Vector
AT001 AU000
VMO005 VM
OEA - iGa- | VMO0 OEA- IGA— 006
OEH  Bits40-47 IGH OEH  Bits48-55  IGH
VM013 VMO14
OEI- IGA - OEl - IGA-
OEP__ Bits40-47 _IGH QEP  Bits48-55 IGH

Vector Registers

Figure 45. S Register to Vectors

Cray Research Proprietary

AS002
VMO003
OEA- IGA -
OEH _ Bits24-31__IGH
VMO11
OEI - IGA -
QEP  Bits24—31 IGH
AU001
VM
OEA- G | VMO0
OEH  Bits56-63 IGH
VMO15
OEl - IGA-
OEP  Bits56-63 IGH _
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CPU

Path 1
CHO000
OlA-0OID lIA- 1D ] VMO00
OlA- IE-
Crooz120__IH
OIE- [IE-
OH__ IIH_}vmo04
OIE ~OIH lIA—1ID
Path 2
CHOO1
OlA-0ID 1A - yp_| YMO00
OlA- IJE-
CHoos |92 WH
OIE- ME-
OH  IJH ] VvM004
OIE-OIH IA-1ID
HTM-003-0

CH004 CH008
QIA-QID A 11D ] VMO0t OIA—OID IIA— D _ | VMO002
OA- IlIE- OlA- lIE-
Croos1210___IH CHO10 oID H
OE- IE- OIE- lE-
OiH  HH _}JvMoos OIH iH | vmoos
OIE - OIH HA-ID _| OIE - OIH HA—=IID
Common Memory Data to Vector Paths 1 and 2 Even Elements
CHO05 CHO09
VMO001 VMO002
OlA-OID IJA—1JD OlA-OID IJA—-1JD
OlA- WE- OIA- WE-
CHO007 QID IJH CHO11 OID IJH
OlE- WE- OIE- WE-
OH  WH_|YMOO05 OIH  1JH_|VYMO06
OIE - OIH A -ID OIE —OIH IIA—IID

Figure 46. Memory Data to Vectors (Even Elements)
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Vector Registers
CHO12
OIA-0ID A~ 1D _} VMO03
OlA- [IE-
CHo14 OID IH
OIE- 1E-
OlIH 5 | vM007
OIE - OIH IA-1ID
CHO13
VMO03
OIA-0ID IJA—IJD
OA- WE-
CHO15 OID  WH_
OIE- MNE-
OH  lH _|VMo07
OIE-OIH 1A= 1D
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CPU

Path 1

/3 CHo00

' ) Path 2
~ CHOO1

OJA-0JD IA-np _J vmo008
OA- IIE-
Chooe—10ID__HiH
OE- IlE-
OH IIH | VMO12
OJE - OJH A=1ID |
QJA-0QJD WA-1JD | VMO008
OlA- WE-
cHO03 |22 WH
OIE- WE-
OH WH [ VMO12
OJE — OJH HA-1D

p—

HTM-003-0

CHO004 s
OJA-0JD IA—uD | YMO09 OJA—0JD NA—UD _ | VMO10
OlA- HE- OA—  IE—
cHooe  1QD___IH ——==—10ID i
OE- IlE- OF- IE—
O _IH JVMO13 OIH i+ |vmot4
OJE —OJH HA-ID OUE — OUH A - 1D
Common Memory Data to Vector Paths 1 and 2 Odd Elements
CH005 CHO09
- ~ VMO010
OJA—0JD 1A= 1JD_ | YMO0O9 OJA-0JD A~ 1JD
3t
cHoor |0 WH CHOT1 -
OIE- WE-
OIE- WE- e
OIH  IJH_{VMO013 OIH IWH |
OJE — OJH OJE - OJH NA-IID

IIA-1ID

Figure 47. Memory Data to Vectors (Odd Elements)
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Vector Registers
CHO12
0OJA-0OJD fA-1p _j YMO11
OlA- lIE-
chola  Jole____iH
OE- IE~
OH IIH | vmo15
OJE- OJH HA=IID _
CHO13
OJA-0JD WA-1p_| VMO
OlA- NE-
Chos 12D WH |
OIE- WE-
OH WH | VMO15
OJE- OUH ItA—IID
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VECTOR LOGICAL

HTM-003-0

Refer to Figure 48 for a vector logical block diagram. There are two

- vector logical units in a CRAY ‘T90 series system; each unit operates

independently. These functional units reside on 16 VM options. VMO000
through VMOO7 handle pipe O (the even elements), and VMOOS8 through
VMO15 handle pipe 1 (the odd elements). Each VM option operates on a
4-bit slice of all eight vector registers.

The vector logical units receive data from the VR options and send the
results back to the vector registers. The second vector logical unit is
enabled by setting mode bit 2 (ESL) in the mode field of the exchange
package. When both logical units are enabled, data is first processed in
the second unit. This is done because only the first unit can process the
146 and 147 (vector merge) instructions. For example, if a 140 instruction
(logical product) issues, the second unit processes the instruction in case a
146 or 147 issues next. If the first unit processed the 140 instruction, it
would be busy and the 146 instruction would have to hold issue.

The vector logical unit performs the logical product (AND), logical sum

(OR), and logical difference [XOR (exclusive OR)] functions using either
scalar or vector registers.
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Vector Logical CPU
VF000 - 001 Vector Logical 1 and 2 B
Vectors 07 VMO000 : \
Pipe 0 VMO007 S
—‘E:_'I_I OAA - OAP Unit 1
KA -
'E_I Instruction Parcel IKP__f | —
VR000 - 007
» Result Vector
Even Elements
V Data
1 Unit2
IGA - _—
IGH
ILC -
—"L.L OVA, Vj= Neg INA,
Vi=Ne i H VF000 —
VM =1 </j=Og OVB Vj=0 10 »| 001
oYu
IC000 — C003 I0A
Enable Vector
Logical 2
OEA - OEH
OEA - OEH .
S$S000 Pipe 0
————— AR, AS! AT, AU S] Data e e Vector Mask Register [ o e s e . e e e e v
OEI - OEP Pipe 1
VF002 - 003 OEI—OEP )
Vectors 0—7 )
Pipe 1 OAA - OAP I0A
VMO008
VMO15
Instruction IKA - ] OVA, Vj= Neg INA
Parcel IKP , V)= , -
- > vj=pPos | JovB vj-0  1oH_ ] YFO02
VM =1 Vie s 003
VR008 - 015 ]=
IGA - :
IGH A Unit 1
oL = Result Vector
gy ™ QOdd Elements
~L V Data Unit 2
1C000 - IC003 "
Enable Vector ovy ILC
Logical 2
Vector Logical 1 and 2
Figure 48. Vector Logical Block Diagram
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CPU

Vector Logical

Vector Logical Instructions

Refer to Table 15 for a list of the vector logical instructions.

Table 15. Vector Logical Instructions

Instruction CAL ' Description

140ik ViSj&Vk | Transmit logical product of (Sj) and (Vk elements) to Vi
elements

141ijk ViVj&Vk | Transmit logical product of (Vjelements) and (Vk elements)
to Vielements

142ijk ViSjVk Transmit logical sum of (Sj} and (Vk elements) to Vi
elements

143ijk ViViVk Transmit logical sum of (Vj elements) and (Vk elements) to
Vielements

144ijk ViSAVk Transmit logical differences of (Sj) and (Vk elements) to Vi
elements

145ijk ViVAVK Transmit logical differences of (Vjelements) and (Vk
elements) to Vi elements

Vector Merge

HTM-003-0

The 146 and 147 instructions merge the contents of the registers using the
vector mask register for control. The 146 instruction merges the contents
of Sj with the contents of Vk; the 147 instruction merges the contents of
Vjand Vk. If the vector mask bit is a 1, the Vj or Sj data is used; if the
vector mask bit is a 0, the Vk data is used.

The vector logical functional unit holds a copy of the S-register value.
Therefore, a subsequent instruction can change the S-register value and
not affect the results. These instructions are confined to the second logical
unit. Refer to Table 16 for the vector merge instructions, and refer to
Figure 49 for an example of a vector merge operation.
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Vector Logical

CPU

Table 16. Vector Merge Instructions

Instruction CAL Description
146ijk ViSHVK&VM | Merge (S)) and (Vk elements) to Vi elements using (VM) as
mask
14610k Vi#VM&Vk |Merge 0 and (Vk elements) to Vielements using (VM) as
mask
147ijk ViVAVK&VM | Merge (Vjelements) and (Vk elements) to Vielements
using (VM) as mask

96
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CPU Vector Logical

147ik Merge Sjand Vk elements to Vielements using VM as mask

Vector Mask (SS)
VL=5 0001100 ——— 0
Vk Elements (VR/VM) ViElements (VM/VR)
Element0} 0 —————— 0 »} Vk Element 0 | Element 0
Element1] O 1 »{ Vk Element 1 | Element 1
Element2] 0 2 Vk Element 2 | Element 2
Element3] O 3 - Sj Element 3
Element4} 0 ———— 4 - Sj Element 4
82 0O —— 7 NOTE: Elements 5 through
127 are unchanged.

146ik Merge Vjelements and Vk elements to Vi elements using VM as mask

Vector Mask (SS)
VL=5 0001100 ——————— 0
Vk Elements (VR/VM) Vi Elements (VM/VR)
Element0] 0 0 =1 Vk Element 0 | Element0
Elementil 0© 1 Vk Element 1 | Element 1
Element2) 0 2 VkElement 2 | Element?2
Element3} 0 3 »1 VjElement0 | Element 3
Element4}] 0 4 »] VjElement1 | Element4
VjElements (VR/VM)
Element0] O 7
Element1} O 7
Element2] O 7
Element3] O 7
NOTE: Elements 5 through
_Element4} 0 7 127 are unchanged.

Figure 49. Vector Merge Operation
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Vector Mask

CPU

There are two vector mask registers: VMO and VMI1. Each register is 64
bits wide, and the two registers are aligned to create a 128-bit register.
Each bit in the register corresponds to an element in a vector register.

The vector mask register stores the results of a test condition of an
element in a vector. For example, a bit can be set in the mask register for -
all elements in the test vector that are positive values.

The vector mask register receives data from the scalar registers or from
the result of comparing a condition within the elements of a vector. The
vector mask register is arranged so that mask bit 127 corresponds to
element O of the vector.

Refer to Table 17 and Table 18 for a list of the vector mask and vector
mask test operations, respectively. Refer also to Figure 50 for an
illustration of the 175050 instructions.

Table 17. Vector Mask Operations

Instruction CAL Description

00300 VMO Sj Transmit (S)) to VMO
0030;1 VM1 S§j Transmit (S)) to VM1

*0030,2 VMO Aj Transmit (Aj) to VMO
*0030/3 VM1 Aj Transmit (Aj) to VM1

070if1 ViCl,Sj&VM | Transmit compressed index of (Sj) controlled by (VM) to Vi
073100 SivMO Transmit (VMO) to Si
073/10 SiVM1 Transmit (VM1) to Si
*073120 AiVMO Transmit (VMO) to Aj
*07330 Ai VM1 Transmit (VM1) to Aj

* These instructions must be preceded by a 005400 (EIS) instruction.
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Vector Logical

Table 18. Vector Mask Test Operations

Instruction CAL Description
175000 VM VjZ Set VM bit if (Vjelement) = 0
1750/1 VM V)N Set VM bit if (Vjelement) =0
17502 VM V)P Set VM bit if (Vjelement)=0
175043 VM ViM SetVM bit if (Vjelement) <0
175ii4 ViVM Vj,Z |Set VM bit if (Vjelement) = 0 and store compressed
indices of Vjelements = 0 in Vi
175ip ViVM VjN | Set VM bit if (Vjelement) =0 and store compressed
' indices of Vjelements = 0in Vi
17506 VIiVM VjP  [Set VM bit if (Vj element) =0 and store compressed
indices of Vjelements 2 0in Vi
175ij7 ViVM VjM | Set VM bit if (Vjelement) < 0 and store compressed
indices of Vjelements < 0in Vi
17500 Set VM bit if Vjelement =0
VL=5
Compare VF
: Vector Mask Register (SS
Vector Register (Vj) (VR/VM) TestVj=0 ector Mask Register (SS)
Elemento [ 00000000000000000 - 0 Bit 127
Element 1 00000001110000001 » 1 Bit 126
Element 2 EARRRRRERRRRRRRREREI > > 0 Bit 125
Element 3 00000000000000000 > - 1 Bit 124
Element 4 1111111111111000000 0 Bit 123
0 Bit 122
0 Bit0
Figure 50. 1750;0 Instructions
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Figure 51 illustrates the function of the 175ij4 instructions that use the
vector mask to create a compressed vector.

175i[4 Set VM bit if Vj element = 0 and store compressed indices of Vj elements = OinVi

VM Reg Index
Vj Elements (VR/VM) VF (8S) Bits Address (VF) ViElements (VM/VR)
Element0 | 0 0 » 1 @-— 0 > 0 Element 0
Test
Element1 | 0 1 » 0 126 1 _l" 2 Element 1
Element 2 0 0 > 1 @" 2 3 Element 2
Element3 | 0 0 ) 1 | @ 3 4 Element 3
Vj=0 : .
Element4 | 0 0 1 1;7 Unchanged | Element 4
0

VL

]
[$;]

Figure 51. Function of the 175ij4 Instructions

Compressed lota

The Iota function is performed on the RA, RB, and RC options; these
options also make up the floating-point reciprocal approximation unit and
the vector pop functional unit. Table 19 lists the instruction used in iota
operations, and Figure 52 is a block diagram of iota pipe 0.

Table 19. lota Instruction

Instruction CAL Description

070if1 ViCl,Sj&VM | Transmit compressed index of (Sj) controlled by (VM) to Vi

The 070ij1 instruction forms multiples of the contents of register Sj
starting with 0 (0, Sj, 2 x Sj, 3 X Sj, and so on). It stores multiples
corresponding to each 1 bit set in the vector mask register in successive
elements of register Vi (beginning at element 0). The instruction stops
when all unused bits of the vector mask are O or are used.
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CPU Veector Logical
Go lota Pipe 0 -
Select lota, Gate A, Hold A, Gate lota RC000
RAO0Q OoP- IMC, IME, iMI, IMK -
SjBit 47 ICP
> OPA IMA
SjBits OBA -
48-63 IDA-IDB OBQ  ViBits 47 — 63 Results
INA, INC, OEA - o
INE, ING OEO ViBits 0 - 14 Resuits _
IQA - 822/'\— \F/xiBitﬁ15—40
Q0 _ esults >
OBA - ViBits 41 —-46
oPI OBF  Results
Gate lota Pipe 0
ONA - Carries/Enables
ONC toRA -
Vilota0-14 —r
RBO0O OFA —
IME_ OFO
IMC ODA-~  Shared lota Vi IDA -
oDL Bits 15 —-26 IDL
IMA_ OPA Sj Bit 26 Relay IQA
OO0A, IPA, IPB
1QA ~ 00C, Carries/Enables IPH
SjBits0~15 1QP ONA to RC/RA 10A, 10B
IRA ~ - IRA -
SjBits 16—-26 IRK | SjBits27-42 IRP -
C ISA -
SjBits 43-46 ISD

RA Option

HTM-003-0

Figure 52. Iota Pipe 0

Figure 53 on page 102 illustrates the function of the 070ij1 instructions
that use the vector mask to create a compressed vector.

The RA option generates the iota results for bits 47 through 63. It
receives iota result bits O through 14 from the RB option and outputs bits 0
through 14, and 47 through 63 to the result vector. The RA0OQO option also
generates the control for the iota function for both pipes.
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RB Option

RC Option

102

CPU
070i71 Transmit compressed index of (Sj) controlled by (VM) to Vi
Vector Mask (SS)
1001110100 ————me 0

ViElements (VM/VR)
FunUc;t]iict)nal 0 Element 0
* Sjx VM Bit 6 Element 1

2x0

2x3 > 8 Element 2
1 2x4 10 Element 3

2%5 emel
2x7 14 Element 4

S |0 —m8 ——2

Figure 53. Function of the 070ij1 Instructions

The RB option generates the iota result for bits 0 through 26. Bits 0
through 14 are sent to the RA option, and bits 15 through 26 are sent to
the RC option.

The RB option receives two control signals: Select Iota0 and Gate Iota.
Select Iota0 selects the correct iota results from Iota0/Iotal; Gate Iota
multiplexes (muxes) the iota results to the RA and RC options.

The RC option receives bits 15 through 26 from the RB option and
generates result bits 27 through 46 to be sent to the result vectors.

The RC option receives four control signals from the RA option: Select
Iota0, Hold A, Gate A, and Gate Iota. Select Iota0 selects from
IotaO/Iotal the correct iota results. Hold A and Gate A control the
first-in-first-out (FIFO) buffers, and Gate Iota disables
reciprocal/pop/parity/leading zero and enables iota results to be sent to the
result vectors.
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VECTOR ADD

HTM-003-0

Refer to Figure 54 for a block diagram of vector add. The vector add

-functional unit is located on the-VM and VF options. The VM options
perform the actual addition of the input operands and then pass the group
carries and group enables to the VF for summation. These bit toggles are
then returned to the VM option for final summation. The functional unit
uses two’s complement arithmetic and does not detect any overflow

conditions.

Refer to Table 20 for a list of the vector add instructions and to Figure 54
for a vector add block diagram.

Table 20. Vector Add Instructions

Instruction CAL Description
154k ViSj+Vk Transmit integer sum of (Sj) and (Vk elements) to Vielements
155ijk ViVi+Vk Transmit integer sum of (Vj elements) and (Vk elements) to
Vi elements
156k ViS/Vk | Transmit integer difference of (Sj) and (Vk elements) to Vi
elements
1560k Vi—-Vk Transmit two’s complement of (Vk elements) to Vi elements
157k - ViVi-Vk Transmit integer difference of (Vj elements) and (Vk elements)

to Vielements

The 154 and 156 instructions use the Sj register as the second operand.
The VM option holds a copy of the S register so if a subsequent
instruction wants to use Sj, that instruction can be changed without
affecting the vector instruction.

Cray Research Proprietary
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CPU Vector Add

VF000 Summation
r) LA (o700 VFOO1 Summation
L Adder
IMA Add ILE _}VF00O
OIA Adder Bit Toggles INA |VMO00  Bits0-7 OWA er ME
Carry oWo OIA Adder Bit Toggles INA _|VM004 Bits 32 -39 OWA >
Carry
(VROOO Vector Data > Enable VF0O1 : OWC
VR007) ILA (VROOO Vector Data Enable VFOO1
IMA VRO007) ILE -
IME _
~—— Result Data to Vectors : o
ILB _TvFooo —» Result Data to Vectors
: IMB ILF o] VFO00
OIB  Adder Bit Toggles INA _|VMOO1 Bits8-15 OWA —> ME
Nk OIB__Adder Bit Toggles INA__|VM005 5S40 -47) i -
Enable o arry
(VROOO Vector Data - VEQO1 Enable LOQWC
VROO7) L. (VROoo Vector Data | VFOO1
IMB VR007) ILF
IMF
—— Result Data to Vectors l
ILC _IvF000 - Result Data to Vectors
: IMC ILG _I'vFooo
OIC _Adder Bit Toggles INA _|VM002 Bits 1623 OWA > MG
Camy WG OIC_Adder Bit Toggles INA__|VMOOG  Bits 480- 551 owa -
! arry
N (VROpo Yector Data ] Enable VF001 Enable JOWC
) VRO07) ILC ) (VROoO Vector Data VF001
- vectorbata
IMC VR007) LG
IMG
——# Result Data to Vectors o
ILD__[vFoo0 —» Result Data to Vectors
. - IMD
OID_Adder Bit Toggles_INa _|YMOO3 Bits24-311
Carry . VMO07 Bits 56 - 63
OWC OID Adder Bit Toggles INA o
] - ar
(VROoo Vector Data Enable o [V Enab?e,
VR007) (VROOO VectorData | & Result Data to Vectors
IMD VRO007)

— Result Data to Vectors

Figure 54. Vector Add Block Diagram
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VECTOR SHIFT

The vector shift functional unit is contained within the VS option. Vector

-shift is a dual-pipe functional unit; it accepts a pair of elements and

generates a pair of results. If the vector length is odd, the last operand
generates a single result. There is only one VS option used per CPU.

The vector shift functional unit is also responsible for vector transfer
operations. For example, it moves the contents of one vector register to
another vector register; then the functional unit uses the Ak value as a
starting element number for the block move.

This unit also performs the vector compress and expand operations. The
compress operation writes the elements of Vj to Vi if a corresponding bit
in the vector mask register sets. The expand operation reads the elements
of Vj to Vi if a corresponding bit in the vector mask register sets. These
operations are illustrated later in this section.

The 150 to 153 instructions use Ak as the shift count. The 150 to 151
instructions, when preceded by a 005400 (EIS) instruction, use VO for the
shift count. In either case, if bit 7 or above is set, the result is 0’s.

Vector Shift Instructions

Refer to Table 21 for a list of the vector shift instructions.

Table 21. Vector Shift Instructions

Instruction CAL Description
150ik ViVi<Ak | Shit (Vjelements) left (Ak) places to Vielements
*150i0 ViViVv0 Shift (Vj elements) left (VO elements) places to Vi elements
161ijk ViViAk Shift (Vj elements) right (AK) places to Vi elements
*151j0 ViviEVvo Shift (Vj elements) right (VO elements) places to Vi elements
152ijk ViVjVj<Ak | Double shift (Vjelements) left (Ak) places to Vi elements
*182ijk ViVjAk Transfer (Vj elements) starting at element (AK) to Vielements
153ijk ViVjVjAk |Double shift (Vjelements) right (Ak) places to Vielements

* These instructions must be preceded by a 005400 (EIS) instruction.

HTM-003-0

Cray Research Proprietary 107




Vector Shift CPU

Table 21. Vector Shift Instructions (continued)

Instruction CAL Description
*163i0 ViVj{VvM] | Compress Vjby (VM) to Vi
*163i1 Vi[VM] Vj |Expand Vjby (VM) to Vi

* These instructions must be preceded by a 005400 (EIS) instruction.

Vector Shift Count Description

The Ak shift count is sent to the VS option by the ARO0O option, and all
eight A series options check the value of the 64-bit A register. This
determines if any bits above bit 6 have been set. If any bits have been set,
the result is lost due to overshift. If no overflow is detected, a No Ak
Overflow signal is sent from the SS to the VS. ARO000 sends bits O
through 6 for the shift count.

To understand this, the breakdown of the shift count must be examined.
For both single and double shifts, the breakdown is the same, except for
the fact that the double shift has 1 extra bit (bit 6). Refer to Figure 55 for
a breakdown of the shift count and to Figure 56 for a block diagram of
vector shift.

Double
Shift
Only
6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Figure 55. Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted. The maximum shift count that could be generated is 1279
or 177g.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count. Also,
a shift of O generates a maximum shift of 1773 places; this
zeroes out the result register.
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0-€00-W1H

Krejoudold yoseasay Aeip

601

VM/VR Vector Shift Data Pipe 0 IAA, IDP
Vector Shift Data Pipe 1 IEA, IHP
HA, OHG Ak Shift t 0 - 1A, 1l
53000 O Shift Count 0 -6 G _
OHH No Ak Overflow M _
QiD Vector Mask Bit = 1 (Even) IMM _
OIE Vector Mask Bit = 1 (Odd) IMN N
VROOO OMA, OMH Vector Shift Count (VO) Pipe 0 1KA, IKH _|
OMI VO Overflow IKM _
VRO008 OMA, OMH_Vector Shift Count (V0) Pipe 1 ILA ILH _
OMI VO Overflow ILM _
VF001 INA
ONB Pipe 0 Valid INB
VF003 ONB Pipe 1 Valid o INC >
IND
VAQOO 0QB End Vector Shiftor KO Field ~ INM_ |
ET000 0SG EIS Bit IMC
ORA Go Vector Shift IME |

VS000

QAA, ODP Vector Shift Result Data Pipe 0

» VM/VR

OEA, OHP Vector Shift Result Data Pipe 1
OMA Shift Result Valid Pipe 0 INE [ va000

INF
oMC End Vector Shift

INF

VA001

OMB Shift Result Valid Pipe 1 INE

Figure 56. Vector Shift Block Diagram
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Vector Shift

CPU

If the jk field of a left single shift equals 27g and bits 4, 2, 1, and O are set,
the shift values are 16, 4, 2, and 1, respectively. The sum of the shift
values is 23 (16 + 4 + 2 + 1); therefore, the instruction shifts left 239
places.

The actual hardware that performs the shifts is the same for both left and
right shifts. However, the hardware performs only left shifts. Right shifts
are accomplished according to the way data is entered into the shifter,
hence the use of two’s complement for right shifts.

The vector shift unit also receives a shift count from VO when performing
the 150 and 151 EIS instructions. The shift count is sent to the VS option
from VRO for pipe 0 and from VRS for pipe 1.

Vector Right Shift 005400 151ij0

Refer to Figure 57 for an example of a vector right shift using VO for the
shift count. Note that the shift count for element O is O; this results in an
end-off shift for that element. This instruction must be preceded by the
054100 instruction in order to function as illustrated. This process
continues for vector length.

Vk Elements (VR/VM) Pipe 0/1

Element 0 0 0
Element 1 0 1
V0 Shift Count
Element 2 0 2
Element 3 0 3
Element4 | 0 4 VL=5
Vj Elements (VR/VM) Pipe 0/1 VS ViElements (VM/VR) Pipe 0/1
Element 0 1 0 > » O 0 | ElementO
Element 1 0 10 » Vector Shift » O 1 | Element 1
Functional
Element 2 0 100 > Unit > 0 1 | Element 2
Element3 | 0 1000 > = 0 1 ] Element 3
Element4 | 0 10000 > »1 0 1 [ Element 4
VL=5
Figure 57. Vector Right Shift
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Vector Right Double Shift 153ijk

Vector Shift

Element 0
Element 2
Element 4

Element 6

Element 8

Element 1
Element 3
Element 5

Element 7

Element 9

HTM-003-0

Refer to Figure 58 for an example of a vector right double shift using Ak
for the shift count. This instruction concatenates two successive elements
of register V;j and right shifts the lower 64 bits to Vi. The first operation
combines element 0 with a word of all 0’s. Element O becomes the lower
64 bits, and this value is then shifted right Ak places to Vi.

The next operation combines element O and element 1 of Vj, with element
1 being the least significant bits, and shifts this value right to Vi. This
operation continues for vector length. Note that the shift count for
element O is O; this results in an end-off shift for that element.

Vk Elements (VR/VM) Pipe 0

0 17 VL=3
1 6 Shift count from Ak
0 0 VS Vector Shift Functional Unit
0 0 Word of 0’s Element 0
0 0 Element 0 Element 1
» Element 1 Element 2
VjElements (VR/VM) Pipe 1
Element 2 - Element 3
S o Element 3 Element 4
16 0
0 0
0 0
0 0 Vi Elements (VR/VM) Pipe 0/1
¢ ——————— 1 | Element0
166 0 | Element 1
-»] 15 -——o—— 0 | Element2
166 0 | Element3
0 0 | Element 4
Figure 58. Vector Right Double Shift
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Vector Transfer 005400 152ijk

cPU

Element 0
Element 1
Element 2

Element 3

Element 4

This instruction moves the contents of Vj to Vi starting with element Ak as
shown in Figure 59. Note that this is an EIS instruction.

Ak=2
VL=5
Vj Elements (VR/VM) Pipe 0/1 ' Vi Elements (VM/VR) Pipe 0/1
1 V 0 » 0 100 § Element0
0 10 »f Vector Shift » 0 1000 | Element 1
Functional
0 100 > Unit = 0 10000 | Element2
0 1000 > 0 0 | Element3
0 10000 > » 0 0 | Element4

Figure 59. Vector Transfer

Vector Compress 005400 1530

This instruction compresses a vector register using a vector mask and

transmits the results to Vi as shown in Figure 60.

Two element counters are initialized to 0, one for Vj and the other for Vi. ’ _>
The vector mask is then scanned from right to left, and for every 1 bit set,
an element of Vjis written to Vi. The element counters internal to the VS
option determine the element position within each register.

SS Vector Mask Register
[ 10011 0 } =
Vj Elements (VR/VM) Pipe 0/1 VS ¢ Vi Elements (VM/VR) Pipe 0/1
Element0 | 0 0 - 0 0 ] Element 0
Element1 | 0 10 Vector Shift =l 0 1000 | Element 1
Functional
Element2 | 0 100 Unit >0 10000 { Element 2
Element3 | O 1000 > ™0 0 | Element 3
Element4 | 0 10000 > 0 0 | Element 4
Figure 60. Vector Compress
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Vector Expand 005400 153ij1

Vector Shift

This instruction expands a vector register using a vector mask and

transmits the results to Vi as shown in Figure 61.

Two element counters are initialized to 0, one for Vj and the other for Vi.
The vector mask is then scanned from right to left, and for every 1 bit set,
an element of Vj is written to Vi. The element counters internal to the VS
option determine the element position within each register. In this
instruction, the element counter for Vj falls behind the counter for Vi by
one position for each O bit in the vector mask register.

SS Vector Mask Register
I =
[ 10011 0 | VL=5

Vj Elements (VR/VM) Pipe 0/1 VS Vi Elements (VM/VR) Pipe 0/1
Element0 | 0 0 » > 0 0 | Element0
Element1 | 0 10 »{ Vector Shift Unchanged Element 1

Functional
Element2 | 0 100 > Unit Unchanged Element 2
Element3 | 0 1000 ™0 10 | Element 3
Element4 | O 10000 > 0 100 | Element 4
Figure 61. Vector Expand
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VECTOR POP/ POP PARITY AND LEADING ZERO

HTM-003-0

The vector population/parity functional unit performs population counts

- and parity for vector operations and-executes instructions 174ij1 vector

population count and 174ij2 vector parity.

Refer to Figure 62 for a vector population/parity/leading zero block
diagram. This functional unit shares logic with the floating-point
reciprocal approximation functional unit. The % field of the instruction
determines the type of operation to be performed.

Because the vector population/parity functional unit shares logic with the
floating-point reciprocal approximation functional unit, all vector
operations reserve the associated functional unit. The floating-point
reciprocal approximation functional unit is reserved when the vector
population/parity functional unit is reserved and vice versa.

Both scalar and vector register operations share the floating-point
reciprocal functional unit. Therefore, when vector reciprocal or vector
population/parity instructions are executed, any scalar reciprocal
instruction holds issue until the vector operation is finished.

The 174ij1 instruction counts the number of 1 bits in each element of a
vector register specified by Vi. Each element is counted individually, and
the result is stored in the respective element of Vi. For example, the count
of 1 bits in element O of Vj is stored in element O of Vi; the count of 1 bits
in element 1 of Vj is stored in element 1 of Vi; and so on. This process
continues for the number of elements equal to the VL.

The 174ij2 instruction counts the number of 1 bits in each element of a
vector register specified by Vj and stores a 1-bit parity result in a vector
register specified by Vi. The 174ij2 instruction uses the same logic as the
174ij1 but outputs only bit O of the result. Bits 1 through 6 are forced to
0’s. This instruction determines whether an odd or even number of bits
are set in each element of a vector register. If the result equals O, there is
an even number of bits. If the result equals 1, there is an odd number of
bits.
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Vector Pop/Pop Parity and Leading Zero

CPU

VMO11 Bits 28 ~ 31
VRO011 Bits 24 ~ 27

VMO10 Bits 20 ~ 23 | E

VRO10 Bits 1619
VMO09 Bits 12— 15
VRO09 Bits8-11 |

vMmo08 Bits4-7 |

VRO0O08 Bits 0-3

Vector Registers

Pipe 1

[UMo15 Bits 60— 63
VRO15 Bits 56—59 |

IBA - IBP

IAA — IAP

IDA - IDP

VM014 Bits 52-55 |

VR014 Bits 48 - 51 J——A
VMO13 Bits 44 — 47
VRO13 Bits 40-43 |

VMO12 Bits 36 -39 |
VRO12 Bits 32 - 35

Vector Registers
Pipe 1

VR007 Bits 56 — 59

VR006 Bits 48 — 51 \

ICA—ICP_

Go Scalar [EA

(Force 0) >
IEB

(1C002) KO >
IEC

(cooz) & >

(BT000) Go Recip IED

Recip
Data Valid |IEE

(VF002) >

RACO1

Pipe 1

OEA ~ OEG

VR005 Bits 40 — 43 |
VR004 Bits 32 - 35
VRO03 Bits 24 — 27
VRO02 Bits 1619 |
VROO1 Bitsg-11 |

VR000 Bits 0-3

|} Vector Registers
Pipe 0

VMOO07 Bits 60 — 63
VMO06 Bits 52 -55 |

IBA - 1BP

IAA - |AP

IDA - IDP

VMOO5 Bits44-47 |
VMOO4 Bits 36 — 39
VMO03 Bits 28 - 31
VMO02 Bits 20-23 |
VMO01 Bits 12-15 |

ICA—ICP

VMO00 Bits 4-7

Vector Registers
o) Pipe 0

(JAOOO) Go S Recip IEA

(1co00)~&——1EB |

(1c000) S———1EC

(BT000) Go Recip IED

Recip

Data Valid
(VE000) ata Valid IEE

RA00O

Pipe 0

OEA-OEG

Figure 62. Vector Population/Parity/Leading Zero Block Diagram
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Vector Pop/Pop Parity and Leading Zero

Pop/Parity/Leading Zero Functional Units

The RA options contain part of the reciprocal approximation unit; these
options also contain the logic for vector pop, vector pop parity, and vector
leading zero. There are two RA options per CPU: RAQ0OO handles pipe O,
or the even elements; and RAOO1 handles pipe 1, or the odd elements.

The RA options receive data from the VM and VR options; 4 bits come
from each VR and VM. Data is sent on the same wires and terms that the
reciprocal data uses. The data is then sent to VMO00O and VMO008 on the
same terms that the reciprocal output data uses. Data is sent to only those
two options because the pop functional unit returns only a 7-bit value to
the result register.

Vector Population Count 174ij1

Vector pop counts the number of bits set in an element and reports that
count to a result vector. The count ranges anywhere from O (no bits in the
element set) to 100 (all bits in the element set). The functional unit sends
only bits 0 through 6 to the result vector; the remaining bits are zeroed
out.

Vector Population/Parity 174ij2

This instruction counts the number of bits set in each element of a vector
and then determines whether this number of bits is an even or an odd
number. If the result is an even number of bits, a 0 is written to the result
vector. If the number of bits is odd, a 1 is written to the result vector.
Only bit 0 is written to the result vector; the rest of the bits in the element
are set to 0’s.

Vector Leading Zero Count 1743

HTM-003-0

This instruction counts the number of 0’s that precede the first bit set in
each element of a vector. The count will be from O (bit 63 of the element
set) to 100 (no bits in the element set).
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Vector Pop/Pop Parity and Leading Zero CPU

Vector Population/Parity Instructions

Refer to Table 22 for a list of the vector population/parity instructions.

)

Table 22. Vector Population/Parity Instructions

instruction CAL Description
174if1 ViPVj Population count (V)) to Vi
174iR ViQVj Parity of (V)) to Vi
175i3 ViZzZVj Transmit leading zero count of (V) to Vi

118
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GATHER/SCATTER INSTRUCTIONS

)

The 176i1k and 1771k instructions transfer blocks of data between

-.common memory and the vector registers. The 176 instruction invokes

the gather, or read function; the 177 instruction invokes the scatter, or
write function. When the 176i1k instruction is preceded by a 005400
instruction parcel, it performs a double gather function, which utilizes the
dual-pipe capability of the computer system. The contents of the vector
length (VL) register determine the number of words transferred.

Gather Instructions

HTM-003-0

The 176i1k instruction transfers data from common memory to the Vi
register. Register AQ contains the initial (base) address; the Vk register
contains the address indices.

For each element transferred to Vi, the memory address is the sum of (AO)
and the corresponding element of register Vk. For example, during a
176213 instruction, V2[0] is loaded from address (AQ) + (V3[0]); V2[1] is
loaded from address (AO) + (V3[1]); etc.

The 005400 176ijk instruction performs the double gather operation. Data
is transferred from common memory to Vi and Vj in two separate data
transfers that occur simultaneously. The AO register contains the base
address for the transfer to Vi. The Ak register contains the base address
for the transfer to Vj. The Vk register contains the address indices for
both transfers.

For each element transferred to Vi, the memory address is the sum of (A0O)
and the corresponding element of Vk. For example, during a 005400
176213 instruction, V2[0] is loaded from address (AO) + (V3[0]); V2[1] is
loaded from address (AO) + (V3[1]); etc. Simultaneously, V1[0] is loaded
from address (A3) + (V3[0]); V1[1] is loaded from address (A3) +
(V3[1]); etc.
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Scatter Instructions

120

The 1771k instruction transfers data from Vjto common memory. The
AOQ register contains the initial address. Vk contains the address indices.

For each element transferred from register Vi, the memory address is the
sum of (A0) and the corresponding element of register Vk. For example,
element O of Vi is stored to address (AO) + (Vk[0]); element 1 of Vi is
stored to address (AQ) + (VE[1]); etc.
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FLOATING-POINT ADD
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Refer to Figure 63 for a block diagram of floating-point add. The

-floating-point add unit consists-of two option types: the FA and the FB

options. Each pipe has one FA option and one FB option. FA0OO and
FBO0O represent pipe 0, and FAOO1 and FBOO1 represent pipe 1. The use
of dual pipes allows two floating-point add functions to occur at the same
time. The even elements of the vector go to pipe 0; the odd elements go to
pipe 1. This feature helps in troubleshooting; if you identify which
element is failing, you can identify which pipe and associated options are
failing. For scalar floating-point add instructions, only pipe 0 is used.

The floating-point add unit must do several things to produce a result.
First, the exponents of the input operands must be compared to determine
which is larger. Then, the coefficient of the smaller must be right shifted
until the exponents become equal. When this is done, the coefficient is
then added. If the sign bits are different, or if the sign bits are the same
and a subtract instruction is decoded, then a two’s complement addition is
performed.

Next, the results have to be normalized and the exponent adjusted. The
results are then sent to the result registers (either scalar or vector
registers). Finally, if the resulting exponent is greater than 60000g or less
than 177773, the results are checked for overflow and underflow
conditions. If an overflow condition exists, the exponent is forced to
60000g, the coefficient is left intact, and an error flag is set in the
exchange package. If an underflow condition exists, the exponent and the
coefficient are forced to 0 and no flag is set. The result coefficient is also
checked for a zero value. If it is 0, both the result exponent and
coefficient are zeroed out.

The issuing of a 005400 extended instruction set (EIS) instruction just
before a floating-point add instruction enables the extended accuracy
mode. This adds a rounding bit if all the necessary conditions are
satisfied. This is accomplished with the use of sticky bits. When the
operand of the smaller exponent number is right shifted to equalize the
exponents, the coefficient may be shifted more than 47g places, resulting
in a coefficient of 0. What actually takes place is the bits are shifted right
into another register as bit —1 to —15, as shown in Figure 64. If any of
these bits set and EIS sets, a rounding bit is added to the result coefficient
at bit position 0. '
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CPU Floating-point Add

Bits 63 48 0 -35

' ) Exponent Coefficient Sticky Bits

Sign Bit

Figure 64. Floating-point Add Sticky Bits

Floating-point Add Functional Unit Instructions

Refer to Table 23 for a list of the floating-point add functional unit
instructions.

Table 23. Floating-point Add Functional Unit Instructions

Instruction CAL Description
062jjk Si Sj+ FSk | Scalar floating-point sum of (Sj) and (Sk) to Si
0620k Si+ FSk Transmit normalized (Sk) to Si
063ijk SiSj— FSk | Scalar floating-point difference of (Sj) minus (Sk) to Si
0630k Si-FSk Transmit normalized negative of (Sk) to S/, normalize the
coefficient and toggle the sign bit
’ ) 170ijk ViSj+ FVk | Vector floating-point sum of (Sj) and (Vk elements) to Vi
e 171ijk ViVj+ FVk }Vector floating-point sum of (Vi elements) and (Vk elements) to
Vi
172ijk ViSj—FVk | Transmit normalized negatives of (Vk elements) to Vi,
normalize the coefficient and toggle the sign bit
173ifk ViVj— FVk |Vector fioating-point difference of (Vj elements) minus (Vk
elements) to Vi

Floating-point Format

Refer to Figure 65 for an illustration of floating-point format. A number
is referred to as normalized if the upper bit of the coefficient (bit 47) is set.

Bits 63} 62 48 0

Exponent Coefficient

Sign Bit

Figure 65. Floating-point Format

HTM-003-0 Cray Research Proprietary 123



Floating-point Add

Floating-point Add Examples

CPU

Refer to the following subsections for some examples of floating-point

add.

Add Instruction (Subtract Operation)

124

J = 040002 140000 000000 000000+ 3g
k= 140003 140000 000000 000000+ —6g

—3g

Subtract Operation
Shift j 040003 060000 000000 000000
Retain £ 040003 060000 000000 000000
Toggle k 140003 037777 177777 - 177777
Add
coefficients 140003 117777 17777 177777
CBP (carry across binary point)
Retain exponent and sign of larger
Toggle result 140003 0600000 00000 000000
Normalize 140002 140000 000000 000000

Cray Research Proprietary
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CPU

Subtract Instruction (Add Operation)

Floating-point Add
Jj = 040003 140000 000000 000000 63
k= 140002 140000 000000 000000 - —3g
11g

Add Operation
J operand 040003 140000 000000 000000
Complement k
sign bit 040002 140000 000000 000000
Retain j 040003 140000 000000 000000
Shift k 040003 060000 000000 000000
Add
coefficients 040003 1.020000 000000 000000
CBP

040004 110000 000000 000000
Shift right to normalize; adjust exponents

Add Instruction (Subtract Operation with Carry across Binary Point)
j = 040004 004000 000000 000000 4g
k= 140003 140000 000000 000000 + —6.0g
-5.4g

Subtract Operation
Retain j 040004 004000 000000 000000
Shift & 140004 060000 000000 000000
Toggle j 040004 173777 177777 177777

140004 060000 000000 000000
Add
coefficients 040004 1.053777 177777 177777
CBP
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HTM-003-0



Floating-point Add

CPU

Retain exponent and sign of larger

040004 053777 177777 177777
+1 End-around carry
Toggle sign bit 140004 054000 000000 000000

Normalize 140003 130000 000000 000000

Add Instruction (Add Operation)

FA Option

Jj = 040003 140000 000000 000000 63
k= 040002 140000 000000 000000+ 3g

11g
Add Operation
Retain j 040003 140000 000000 000000
Shift k 040003 060000 000000 000000
Add

coefficients 040003  1.020000 000000 000000
040004 110000 000000 000000
CBP

Normalize result

126

The FA option operates on the coefficient portion of the floating-point add
operation. The FA does the actual addition of the j and k operands. It also
determines from the sign bit and the instruction issued whether to perform
an add or subtract operation.

If the extended accuracy mode is set by an EIS instruction, a rounding bit
is inserted into the result coefficient if all the necessary conditions are
satisfied.

The FA option also uses the lower 6 bits of the exponent (48 through 53)
and control signals sent from the FB option to make the final
determination of the right shift, which aligns the coefficient.
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FB Option

) The FB option operates on the exponent portion of the floating-point add
operation. The FB also receives the coefficient bits so it can compute the
final exponent.

The FB option also does a calculation based on the state of the initial
operand as to the sign of the final results. If the result sign bit can be
determined, a valid signal is sent and the sign bit is sent to the JA option.
This information can be used if the JA is processing a jump on a sign bit
instruction. This calculation can be done only for a scalar floating-point
add instruction.

The FB option does the initial calculation to determine which exponent is
larger. To detect the number of right shifts, the exponent is divided into
bits 0 through 5 and 6 through 14. This way, the FA can start shifting
using bits 0 through 5, and the full shift count can be sent from the FB
option. This is done by comparing the following five conditions:

exponent j = exponent k
exponent k£ > exponent j
exponent j > exponent k
exponent j + 1 = exponent k
exponent k + 1 = exponent j

Determining Exponent Size

If the upper bits are equal, the lower 6 bits determine the shift count of the
coefficient.

o j=k(14-6)andj>k (0 - 5) then right shift k by j— & (0 - 5)

e j 040012
k 040001 Right shift coefficient kby 12-1 =11
Increase k exponent by 11

e j=k(l4-6)and k> j(0-5) then right shift jby k—j (0—5)

e j 040001
k 040012 Right shift j coefficient by 12 -1 =11
Increase k exponent by 11

If the upper bits (6 through 14) differ by 1, the lower bits can still be used
to determine the full shift count. '
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o j=k+1(14-6);thatisj>k(14—6)by 1 andj<k (0 - 5) then
right shift k by j— k£ (0-5)

e j 040100
k 040077  Right shift & coefficient by 1
‘ Increase k exponent by 1

® j=k+1(14-6);thatisj>k(14-6)by1andj>k (0-5) then
overshift occurs.

e j 040177
k 040076  Right shift k coefficient by 101 places
(overshift)

® j+1=k(14-6);thatisk>j(14-6)by 1 and k<;j(0-5) then
right shift j by k—j (0-5)

e j 040077
k 040100  Right shift j coefficient by 1
Increase j exponent by 1

® j+1=k(14-6);thatisk>j(14-6)by 1 and k> j(0-5) then
overshift will occur

e j 040000
k 040177  Right shift & coefficient by 177 places
(overshift)

If the upper bits differ by more than 1, the lower bits can be ignored
because the effect is to zero out the coefficient of the smaller exponent.
This is why only the +1 case needs to be determined for the upper bits.

e j 040200
k 040077  Right shift k coefficient by 177
Increase k exponent by 177

Refer to Figure 66 for a floating-point add flowchart.
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Subtract

{FA) instruction?

Sign bit of j= k+ add instruction = add operation
Sign bit of j# k. add instruction = subtract operation
Sign bit of j = j« subtract instruction = subtract operation

Complement
FA ¥ Ksign bit

Sign bit of j# & » subtract instruction = add operation

(F/y

: Signs :

A_dd operation No W Subtract operation
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|

\ | |
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Figure 66. Floating-point Add Flowchart
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FLOATING-POINT RECIPROCAL APPROXIMATION

Refer to the following subsections for information about floating-point
reciprocal approximation.

Floating-point Division Algorithm

HTM-003-0

A CRAY T90 series computer system does not have a single functional
unit dedicated to the division operation; rather, the floating-point multiply
and reciprocal approximation functional units together carry out the
algorithm. The following paragraphs explain the algorithm and how it is
used in the functional units.

Finding the quotient of two floating-point numbers involves two steps, as
shown below in the example of finding the quotient A/B.

Step  Operation

1 The B operand is sent through the reciprocal
approximation functional unit to obtain its reciprocal,
1/B.

2 The result from Step 1 along with the A operand is
sent to the floating-point multiply functional unit to
obtain the product A x 1/B.

The reciprocal approximation functional unit uses an application of
Newton’s method for approximating the real root of an arbitrary equation,
F(x) =0, to find reciprocals.

To find the reciprocal, the equation F(x) = 1/x — B = 0 must be solved. To
do this, A must be found so that F(A) = 1/A — B = 0. That is, the number
A is the root of the equation 1/x — B = 0. The method requires an initial
approximation or guess (shown as xg in Figure 67), sufficiently close to
the true root (shown as x; in Figure 67). Xg is then used to obtain a better
approximation; this is done by drawing a tangent line (line 1 in Figure 67)
to the graph of y = F(x) at the point [xg, F(xg)]. The x-intercept of this
tangent line becomes the second approximation, x;. This process is
repeated using tangent line 2 to obtain x5, and so on.
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[x1, F(x4)]

CcPU

y=F(x)

[x0, F(xo)l

— Tangent Line 1

/ Tangent Line 2

Figure 67. Newton’s Method for Approximating Roots

1 x

Xt

X

X4 Xo

The following iteration equation is derived from the above process:

X(i+1) = 2Xj — xi?B =x; (2 — x;B)

In the equation, X+1) is the next iteration, x; is the current iteration, and B
is the divisor. Each x(j;1) is a better approximation than x; to the true
value, x;. The exact answer is generally not obtained at once because the
correction term is not exact. The operation is repeated until the answer
becomes sufficiently close for practical use.

132
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Floating-point Reciprocal Approximation

The mainframe uses this approximation technique based on Newton’s
method. A hardware look-up table provides an initial guess, Xo, which is
accurate to 8 bits. The following iterations are then calculated.

Iteration Operation Description

1 X1 =X0(2~-x0B)  The first approximation is done
in the reciprocal approximation
functional unit and is accurate to
16 bits.

2 X9 =X1(2-x1B) The second approximation is
done in the reciprocal
approximation functional unit
and is accurate to 30 bits.

3 x3=X2(2-x3B)  The third approximation is done
in the floating-point multiply functional
unit to calculate the correction term.

The reciprocal approximation functional unit calculates the first two
iterations, while the floating-point multiply functional unit calculates the
third iteration. The third iteration uses a special instruction within the
floating-point multiply functional unit to calculate the correction term.
This iteration is used to increase accuracy of the reciprocal approximation
functional unit’s answer to full precision (the floating-point multiply
functional unit can provide both full- and half-precision results).

The reciprocal iteration is designed for use once with each half-precision
reciprocal generated. If the third iteration (the iteration performed by the
floating-point multiply functional unit) results in an exact reciprocal, or if
an exact reciprocal is generated by some other method, performing
another iteration results in an incorrect final reciprocal. A fourth iteration
should not be done.
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CcPU

An example of calculating the reciprocal of 2 is provided below. Values
from the look-up table in Table 24 are used.

B
Ag

Aq

134
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2, start with
0.2

2(0.2) - (0.2)%,
2(0.491602) — (0.491602)%,

0.4-0.08
0.983204 — 0.483345

0.32
0.499859

2(0.32) - (0.32)2,
2(0.499859) — (0.499859)2,

0.64 - 0.2048
0.999718 - 0.499718

0.4352
0.50000

2(0.4352) — (0.4352)%,
2(0.5) - (0.5) 2,

0.8704 - 0.378798
1.0-0.5

0.491602
0.5
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Floating-point Reciprocal Approximation

Table 24. Reciprocal Approximation Values

B Ag Ag? —2Ag
1.000 0.776 0.774004 0.000
1.004 0.772 0.764044 0.010
1.010 0.766 0.754144 0.020
1.014 0.762 0.744304 0.030
1.020 0.756 0.734504 0.040
1.024 0.752 0.724744 0.050
1.030 0.750 0.721100 0.054
1.034 0.744 0.711420 0.064
1.040 0.740 0.702000 0.074
1.044 0.734 0.672420 0.104
1.050 0.732 0.666644 0.110
1.054 0.726 0.657344 0.120
1.060 0.722 0.650104 0.130
1.064 0.720 0.644400 0.134
1.070 0.714 0.635220 0.144
1.074 0.710 0.626100 0.154
1.100 0.706 0.622444 0.160
1.104 0.702 0.613404 0.170
1.110 0.700 0.610000 0.174
1.114 0.674 0.601020 0.204
1.120 0.672 0.575444 0.210
1.124 0.666 0.566544 0.220
1.130 0.664 0.563220 0.224
1.134 0.660 0.554400 0.234
1.140 0.656 0.5561104 0.240
1.144 0.652 0.542344 0.250
1.150 0.650 0.537100 0.254
1.154 0.646 0.533644 0.260
1.160 0.642 0.525204 0.270
1.164 0.640 0.522000 0.274
1.170 0.636 0.516604 0.300
1.174 0.632 0.510244 0.310
1.200 0.630 0.505100 0.314
1.204 0.626 0.501744 0.320
1.210 0.624 0.476620 0.324
1.214 0.620 0.470400 0.334
1.220 0.616 0.465304 0.340
1.224 0.614 0.462220 0.344
1.230 0.612 0.457144 0.350
1.234 0.610 0.454100 0.354
1.240 0.604 0.446020 0.364
1.244 0.602 0.443004 0.370
1.250 0.600 0.440000 0.374
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Table 24. Reciprocal Approximation Values (continued)

B Ag Ag? —2Ag
1.254 0.576 0.435004 0.400
1.260 0.574 0.432020 0.404
1.264 0.572 0.427044 0.410
1.270 0.570 0.424100 0.414
1.274 0.566 0.421144 0.420
1.300 0.564 0.416220 0.424
1.304 0.562 0.413304 0.430
1.310 0.560 0.410400 0.434
1.314 0.556 0.405504 0.440
1.320 0.554 0.402620 0.444
1.324 0.552 0.377744 0.450
1.330 0.550 0.375100 0.454
1.334 0.546 0.372244 0.460
1.340 0.544 0.367420 0.464
1.344 0.542 0.364604 0.470
1.350 0.540 0.362000 0.474
1.354 0.536 0.357204 0.500
1.360 0.534 0.354420 0.504
1.364 0.532 0.351644 0.510
1.370 0.530 0.347100 0.514
1.374 0.526 0.344344 0.520
1.400 0.524 0.341620 0.524
1.404 0.522 0.337104 0.530
1.410 0.520 0.334400 0.534
1.414 0.520 0.334400 0.534
1.420 0.516 0.331704 0.540
1.424 0.514 0.327220 0.544
1.430 0.512 0.324544 0.550
1.434 0.510 0.322100 0.554
1.440 0.506 0.317444 0.560
1.444 0.506 0.317444 0.560
1.450 0.504 0.315020 0.564
1.454 0.502 0.312404 0.570
1.460 0.500 0.310000 0.574
1.464 0.476 0.305404 0.600
1.470 0.476 0.305404 0.600
1.474 0.474 0.303020 0.604
1.500 0.472 0.300444 0.610
1.504 0.470 0.276100 0.614
1.510 0.470 0.276100 0.614
1.514 0.466 0.273544 0.620
1.520 0.464 0.271220 0.624
1.524 0.462 0.266704 0.630
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Table 24. Reciprocal Approximation Values (continued)

Floating-point Reciprocal Approximation

B Ag Ag? ~2Ag
1.530 0.462 0.266704 0.630
1.534 0.460 0.264400 0.634
1.540 0.456 0.262104 0.640
1.544 0.456 0.262104 0.640
1.550 0.454 0.257620 0.644
1.554 0.452 0.255344 0.650
1.560 0.452 0.255344 0.650
1.564 0.450 0.253100 0.654
1.570 0.446 0.250644 0.660
1.574 0.446 0.250644 0.660
1.600 0.444 0.246420 0.664
1.604 0.442 0.244204 0.670
1.610 0.442 0.244204 0.670
1.614 0.440 0.242000 0.674
1.620 0.436 0.237604 0.700
1.624 0.436 0.237604 0.700
1.630 0.434 0.235420 0.704
1.634 0.434 0.235420 0.704
1.640 0.432 0.233244 0.710
1.644 0.430 0.231100 0.714
1.650 0.430 0.231100 0.714
1.654 0.426 0.226744 0.720
1.660 0.426 0.226744 0.720
1.664 0.424 0.224620 0.724
1.670 0.422 0.222504 0.730
1.674 0.422 0.222504 0.730
1.700 0.420 0.220400 0.734
1.704 0.420 0.220400 0.734
1.710 0.416 0.216304 0.740
1.714 0.416 0.216304 0.740
1.720 0.414 0.214220 0.744
1.724 0.412 0.212144 0.750
1.730 0.412 0.212144 0.750
1.734 0.410 0.210100 0.754
1.740 0.410 0.210100 0.754
1.744 0.406 0.206044 0.760
1.750 0.406 0.206044 0.760
1.754 0.404 0.204020 0.764
1.760 0.404 0.204020 0.764
1.764 0.402 0.202004 0.770
1.770 0.402 0.202004 0.770
1.774 0.400 0.200000 0.774
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Handling of B Exponent

The following example shows how the floating-point reciprocal
approximation unit handles the B exponent:

B= 40000 + E IXXXXX XXXXXX XXXXXX

Exponent Coefficient
Value of B =2E x 0.1XXX —— X Normalize floating-point number
B=2E1x1.XXX—X Left shift by 1
Letb=1.XXX——X

then B=2E-1xb

B 2E—1 pre b 2]3—1 b
Letn=E-1

1 _ 2 1 2-E-1) 2-E+1

» = T Rz =57~ =55

1 _ 2-E+l 1

B~-"1 *b%

The following method is used in the CRAY T90 series system:
51132  Exponent

Perform 1’s complement 26645
1 Add one for normalization

1  Add one for two’s complement
26647
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Floating-point Reciprocal Approximation

Floating-point Reciprocal Approximation Instructions

Refer to Table 25 for a list of the floating-point reciprocal approximation
instructions. Figure 68 is an illustration of the reciprocal approximation
functional unit. ~

Table 25. Floating-point Reciprocal Approximation Instructions

Instruction CAL Description
070ip Si/HSj Floating-point reciprocal approximation of (Sj) to S/
174i0 Vi/HVj Floating-point reciprocal approximation (V) to Vi
030i0k AiAk Transmit Ak to Ai

RA Option

RB Option

RC Option

HTM-003-0

One RA option is used,; it is the first option in the reciprocal
approximation functional unit. It performs all of the vector pop operations
as well as the exponent, floating-point range error, look-up table and first
iteration of the reciprocal function. The RA receives and decodes the
control necessary to gate the data to the correct unit and generates the
control for the rest of the reciprocal approximation functional unit.

One RB option is used; it is the second option in the reciprocal
approximation functional unit. The RB option gets the Al iteration data
from the RA option and performs the A12 function to send it to the RC
option final iteration pyramid. The B2 operand data is also delayed on the
RB option before being sent to the RC.

When the A12 and the B2 data is aVailable, the RB option generates the .

" jagged portion of the A2 pyramid. After a couple of levels of adds, those

bits are sent to the RC option to be included in the rest of the pyramid.

The RC option is the last option in the unit. It performs the final iteration
of the reciprocal approximation function. It receives the A12, Al, and B2
data from the RB option; forms the pyramid; and adds all the data to get
A2. The outputs of the RC option are all forced to 0’s by the input control
during any operation of the vector pop unit.

Cray Research Proprietary 139




ovi

fAejoudoid yoressay Aein

0-€00-W1H

RA
By (Sj/Vj24 —47)
B (SiVj0-23)
RB
B | By (24 - 47) I A1l
Bo (SIVj - ! B2 Data ——
40 — 46) Look-up Al A12
Sjvj Table Pyramid A Pyramid
Operand] Ag?
. A1 Data
2A0 + A1 Pyramid
Exponent, Sign 47 — 63
Go S Recip IEA A12
k0 IEB] Control | OFA A12Data
K IEC B2 Data__
Recip Data Valid |ED
- A2 A12
Go Recip IEE Pyramid
Enable Range Error |EF
Exponent, Sign 47 - 63

Gate Recip Results |

Floating-point Range Errorto HD

RC

——————182

A2
" Pyramid

LA2 Pyramid Results|
[ -2A1 + A2 Pyramid |

| Final Summation §

)

Result Data to
Vectors and Scalars

Figure 68. Reciprocal Approximation Functional Unit

uonewxoiddy reooidioay juiod-Buireol4

ndo



CPU Floating-point Reciprocal Approximation

Multiply Algorithm

) The reciprocal approximation functional unit uses a recode multiply
algorithm known as Booth Recode algorithm. It is used on several parts
of the various pyramids. This algorithm was used instead of the standard
pyramid formations to save space on the options and make them easier to
route.
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The scalar and vector registers share the floating-point multiply functional
unit. Two floating-point operands are sent to the multiply functional unit
by either the scalar or the vector registers. The signs of the two operands
are combined through an exclusive OR operation, the exponents are added
together, and the two 48-bit coefficients are multiplied. Multiplying two
48-bit numbers produces a 96-bit result. Because the result register (either
a scalar or a vector register) can hold only 48 bits in the coefficient, only
the upper 48 bits of the 96-bit result are kept. The lower 48 bits are lost;
in fact, most are not generated.

The floating-point multiply functional unit also passes operands to the AM
option for the integer multiply operation. Sj and Vk data are relayed
through the NA and NB options for use by the AM option during integer
multiply operations. The floating-point multiply functional unit no longer
performs integer multiply.

The floating-point multiply functional unit can also be used to generate a
third iteration in conjunction with the reciprocal approximation functional
unit. Generating the third iteration creates a full-precision coefficient,
utilizing all 48 bits of the coefficient. The full-precision reciprocal
number can then be multiplied by the multiplier to finish the division. If
full precision is not needed, then there is no need to generate a third
iteration. Instead, the results from the reciprocal approximation functional
unit are multiplied by the multiplier using a multiply instruction. The
following multiply instructions add 2 rounding bits and truncate the lower
19 bits of the coefficient: 065ijk, 162ijk, or 163ijk.

The floating-point multiply functional unit has the same range error
conditions as the floating-point add. If an overflow condition exists, the
floating-point number has exceeded the limits of the computer system.
When an overflow condition occurs, the result register receives the
calculated coefficient with an exponent forced to 60000g. An overflow
condition also causes a flag to be set in the exchange package if the
interrupt on floating-point error mode bit is set. An underflow condition
exists when the result exponent is equal to or less than 17777g. When an
underflow condition exists, both the final exponent and the coefficient are
forced to 0’s, but no flag sets in the exchange package.
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The floating-point multiply functional unit performs the 064ijk through
067ijk instructions for the scalar registers and performs the 160ijk through
167ijk instructions for the vector registers. Because the multiply unit is
shared by both the scalar and vector registers, a functional unit reservation
must be checked before one of these instructions can issue.

The floating-point multiply unit is controlled by the mode bits, which are
taken-from # field bits- 1 and O for the 064ijk through 067ijk instructions,
or from £ field bits 2 and 1 for the 160ijk through 167ijk instructions. The
064ijk instruction, which is the scalar equivalent of the 160ijk and 161ijk
instructions for the vector registers, performs a floating-point multiply of
two scalar registers.

The 065ijk instruction, which is the equivalent of the 162ijk or 163ijk
instruction for vector registers, is used with the reciprocal approximation
functional unit to complete a divide sequence. In other words, a 065ijk

instruction would be issued after a 070ijk instruction. The 065ijk instruction

adds 2 bits into the final summation in bit positions 16 and 17. These 2 bits
are called strong rounding bits because they have a major effect on the
answer. When the final summation is completed, the 065ijk instruction also
causes the lower 19 bits to be truncated; the control term that enables this is
called strong round.

The 066ijk instruction, which is the equivalent of the 164ijk through
165ijk instruction for the vector register, is used only after the third
iteration has been completed within the floating-point multiply functional
unit. The 066ijk instruction generates 2 weak rounding bits. These 2 bits
are called weak rounding bits because they are added into the lower
portion of the summation, having only a minimal effect on the final
summation.

The 067ijk instruction, which is the equivalent of the 167ijk instruction for
the vector registers, forms part of the third iteration as follows.

The third iteration is equal to Az = (2A; — A2B). The 067ijk instruction
solves for (-2 + A * B) by first multiplying A; times B, and then adding
-2 to the product. The -2 addition is accomplished by adding 1 to each
sum in bit position O through 46 during the summation of (A, * B). These
1 bits actually comprise 49 1 bits and are generated by the control terms,
which are decoded from a 067ijk or a 167ijk instruction.

The 067ijk instructions also complement or toggle their final result to
convert —A3 = (-2 + A; * B) to A3 = (2 — Ay * B). At this point, the
064ijk instruction completes the third iteration by multiplying A, times
the result of the 067ijk instruction. In other words,

Ay * (2— Ay * B) = (2A5 — Ay?B). In conclusion, the 067ijk instruction,
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along with the 064ijk instruction, generates the third iteration equation

Az = (2A; — Ay?B).

Divide Sequence

Floating-point Multiply

A divide sequence produces an answer accurate to 29 places. The

instructions used to perform this divide sequence are shown below. If an

answer accurate to 48 places is required, a software algorithm (shown

below) produces the desired results.

S6 = S1/S2
Accurate to 29 Bits:
| #1 070320
#2 065613
Accurate to 48 Bits:
S6 =S1/S2
#1 070320
#2 067432
#3 064543
#4 066651
#1 A1 =2A0-A¢’B
Ay =2A;-A4’B

S3=1/S2
S6 =S1 *FS3
S3=1/52

S4 = (2 - [S3*S2])
S5 = S4*83

S6 = S5*S1

First Iteration

Second Iteration

HTM-003-0 Cray Research Proprietary
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#3

#4
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S4=2-(A*B)) Third Iteration

A3 = Ay(2-(A2*B))

or

A3 =2A,-A,?B

S6 = A3*S1 Third Iteration * S1

Floating-point Multiply Functional Unit Instructions

Refer to Table 26 for a list of the floating-point multiply functional unit
instructions.

Table 26. Floating-point Multiply Functional Unit Instructions

Instruction CAL Description

064ijk Si5j*FSk | Scalar floating-point product of (Sj) times (Sk) to (S))

065ijk Si5j'HSk | Scalar floating-point product, half precision, (S)) times (Sk) to
(Sh

066ijk S5/RSk Ssc)alar floating-point product, full precision, (Sj) times (SK) to
(Si

067ijk S8 ISk Scalar floating-point product, 2 minus the product of (Sj) times
(SK) to (S))

160ijk ViSj*FVk Vector floating-point product (Sj) times (Vk elements) to Vi

161ijk ViVj*FVk \\;c'actor floating-point product (Vj elements) times (elements) to

i

162ijk ViSj*HVk Half precision, (S)) times (Vk elements) to Vi

163ijk VVjHVk Half precision, (Vj elements) times (Vk elements) to Vi

164ijk ViSj*RVk |Full precision, (Sj) times (Vk elements) to Vi

165ijk VNfRVk Full precision, (Vj elements) times (Vk elements) to Vi

166ijk ViSj*Vk 32-bit integer products of (Sj) and (VK) to Vi (C90 mode)

167 ijk VNjVk lteration, two minus (Vj elements) times (Vk elements) to Vi

146
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NA Option

NB Option

NC Option

HTM-003-0

Floating-point Multiply

Because this is a dual-pipe functional unit, there are two options. The
even elements are processed by pipe 0, which is option number 000; and
the odd elements are processed by pipe 1, which is option number 001.

The NA option forms the upper right portion of the pyramid. The
pyramid is 24 bits deep from sum bits 40 to 65. It is generated from j
operand bits 17 through 47, and k operand bits 0 through 41. The scalar
J/k and vector j/k operands are multiplexed (muxed) before the pyramid is
formed.

The NA option relays a copy of Sj bits 40 through 47 and V& bits 0
through 41 to the AM option for the 166 instruction (integer multiply).

The NB option forms the lower right portion of the pyramid. The pyramid
increments from 17 bits deep at sum bit 40, to 24 bits deep at sum bit 47,
and then tapers down to 6 bits deep at sum bit 65. It remains at 9 bits
from sum bit 65 to sum bit 78.

It is generated from j operand bits O through 39 and & operand bits 24
through 47. The scalar j/k and vector j/k operands are muxed before the
pyramid is formed.

The NB option also forms rounding bits for all floating-point multiply
instructions at sum bits 78 through 40. The first two-level results are then
sent to the ND option for final summation.

The NB option relays a copy of Sj bits O through 39 and V& bits 42
through 47 to the AM option for the 166 instruction (integer multiply).
The NB option also sends the control signal Go V 166 to the AM option.

The NC option forms the lower left portion of the pyramid. The pyramid
decrements from 20 bits deep at sum bit 66, to 8 bits deep at sum bit 78.
The pyramid then starts from 16 bits deep at sum bit 79 and tapers to 1 bit
deep at sum bit 94.
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The pyramid is generated from j operand bits 28 through 62 and k operand p
bits 16 through 47. The scalar j/k and vector j/k operands are muxed 3
before the pyramid is formed. The NC option also forms rounding bits for

all floating-point multiply instructions at sum bits 79 through 94. The first

two-level results are then sent to the ND option for final summation.

The NC option also computes the exponent, underflow, and range error.
The exponent value is sent to the ND option to compute the exponent —1
and to multiplex the correct exponent. The NC option also computes the
final sign bit and sends it to the result register. The NC sends the sign bit
back to the JA for possible early branch determination.

The NC option relays a copy of Sj bits 48 through 62 to the AM option
for the 166 instruction (integer multiply).

The ND option does the final summation for the floating-point multiply
pyramid. The ND sends the final coefficient and exponent to the result
registers. The NC also transmits the range error signal to the HD option.

Refer to Figure 69 for a block diagram of floating-point multiply and to .
Figure 70 for an illustration of the floating-point multiply first-level >
summation. h
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SjBits 17 — 47 IAA - IBE
»{ NA00O

SkBits0-41  ICA-IDP_ OCA - OCD 15t Pyramid Results IDA—IDF _
Vk Bits 0 — 41 IGA~ IHP
SjVk Copy
Bits 17 — 47 IEA—IFE
ho IXA _

Go Scalar FM IXC, IXD
Go Vector FM IXE _

SjBits 0 — 39 IAA -~ IBN —— OAA - 0BQ 18t Pyramid Results IGA-IHQ
SkBits24-47  ICA-ICX OCA - ODK 15! Pyramid Results IAA—IBK _|
VjBits 0 - 39 IEA - IFN OED Address Multiply IXC -
VkBits24-47  IGA-IGX_ OEE Iteration IXB -
hBits0—2 IXA—-IXC OEF Strong Round IXF -
Go Scalar FM IXD, IXE _

OEC
Go Vector FM IXF _ OEA, OEB
OEG
OFA
Use Vjdata
Go Vector FM
Mode 0, 1
Address Multiply
IXC, IXD__[Ncooo
IXA, IXB OAA - OBZ 15t Pyramid Results IIA - JZ
IXK ODA — ODM 15t Pyramid Results ICA—ICM
IXG | >
SLBitS 28 — 63 IAA - IBJ R OEA - OEO Exponent Results IKA - IKO -
Sk Bits 16— 63 ICA-IDV_ OFA Underflow IXE
VjBits 28-63  IEA—IFG_ Or8 Range Error IXG___..
OFC integer Multipl IXD
VKBits 16— 63 IGA— IHV g Ty >
> OFD Go FM IXA _
Go Scalar FM IX1, IXJ OFE FPE Mode IXH T
Go Vector FM XK OEP  Sign Bitto V*/A*
FPE Mode IXM -

OFF Jump Sign Bit to JA
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OAA, OBV Si/ ViCoeff Results to V*/A*

OCA, OCO Si/ Vi Exponent Resultsto V*/A*

ODA

Si/ Vi Range Error to HD

Figure 69. Floating-point Multiply Block Diagram
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NA
NC
NB
NC NB
r!
. Sum Bits
94193192191190189183187186 185184183 [82|81/80)79|78)77)76|75|74|73|72]71]|70)69]|68]|67 |66]|65]|64]63]62]61]60]50]58]5756]56[54]53]52]51]50]40]a8] a7 a6]as[44]a3[a2]a1]40]}
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Figure 70. Floating-point Multiply First-level Summation
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The OA option performs the bit matrix multiply operation. The functional
unit consists of six OA options.

The OA option performs two functions related to bit matrix multiply. The
first function is to load the B array with the Vj operand. The second
function is to perform the A x BT operation where A is either the Sj or Vj
operand and BT is the B array transposed. The scalar operation produces a
scalar result, and the vector operation produces a vector result.

Each OA option receives 22 bits of the operand. OA002 and OA005
receive 20 bits, and the last two inputs are forced to zero. Each OA option
holds 32 elements X 22 bits. When performing the A x BT operation,
each OA produces a partial result for each of the 32 elements. The partial
results are then sent the appropriate OA option to complete the final
results. There is only one copy of each control bit coming into the
functional unit, so OA001 and OAQ04 relay the control bits to the other
options.

Bit Matrix Multiply Theory of Operation

HTM-003-0

The bit matrix multiply (BMM) functional unit performs a logical
multiplication of two matrices, designated A and B, resulting in a
single-bit result for each pair of elements multiplied. The matrices, which
are held in vector registers, may vary in size from 1 bit x 1 bit (1 x 1) to
64 x 64 bits. The size of the matrix is specified by the vector length (VL)
register (example: VL = 20 specifies 20 X 20 matrices).

The following conditions are necessary to obtain valid results:
e  The two matrices must be square and of equal size.

e The two matrices must be left-justified in the vector registers to
element 0, bit 63.

e  Unused bits of each element that contain part of the matrix must be
zeroed.

¢ Elements not containing parts of a matrix are unaffected.
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Result matrix C is the product of matrix A and matrix B transposed (B).
Btis formed from matrix B by interchanging its rows and columns.

In addition to performing full 64 x 64 matrix multiply operations, the
BMM functional unit performs a scalar-vector multiply operation and
stores the result in an S register.

Figure 71 is an illustration of 20 X 20 and 50 x 50 matrices as stored in
vector registers.

Bits 63 44 43 0 Bits 63 14 13 0
Element 0 Element 0
) Valid '
Data Zeroes
Element 19 )
Element 20 Valid Data Zeroes
Don't Care Element 49
Element 50
Don't Care
Element 63 Element 63
VL =204 VL =5010

Figure 71. Vector Storage of Bit Matrices

In this section, the notation used to represent individual bits of a matrix
consists of a lower-case letter followed by a subscripted numeric field.
The letter represents the name of the matrix; the numerics denote,
respectively, the element and bit of the vector register data. Elements and
bits numbered from 1 to 9 are represented as a 2-digit number; elements
and bits numbered upward from 10 are separated by a comma. For
example:

a3 7 represents matrix A, element 3, bit 7

by 5,43 represents matrix B, element 15, bit 43

a3 7 represents matrix A, element 3, bit 12

Mathematically, matrices A and B can then be represented as shown in
Figure 72. Note that the ultimate degree of both element and bit can be
represented by n because these must be square matrices. Each row of a
matrix corresponds to an element of a vector register.
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a1 a2 a3
a1 a2 ax

anl 4p2 an3

aln
azp

ann

b1 bya bis
by by bos

bat brz bug

Bit Matrix Multiply

bln
b2n

by

Figure 72. Mathematical Representation of Matrices A and B

The BMM functional unit transposes matrix B as it is loaded into the
BMM storage area. The elements (rows) of the B matrix data are
interchanged with the bit positions (columns) as shown in Figure 73.

b1y bz bis
b1 ba by
b3; b3y b3

bat brz bus ..

bln

bon
b3n

-

B!=

by bz bsg
b1z by b3
b1z bzz bss

bln b2n b3n

bnt
bn2
b3

ban

Figure 73. B Matrix and B! Matrix Relationships
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aii
a2
a3g
ABt=|,
anl
156

a2
a2
a3)

a2

The product C = AB! is defined as shown in Figure 74.

413 ad]n
a3 azn
a33 azp
an3 ann
where:

b1
b1z
b3

bln

by
b2
by3

ban

Bt

b3
b3y
b33

bnl

bn2
bn3

Cii1=ajib11Paj2b12PaizbizP .

Ci3=a11b31PazbsPaisb;sP . . .

Ca1=az1b11Pazbi2Parsbi3P . . .

Csz=a31bz1Pa3zbrnPaz3brid .

T @ indicates an exclusive OR operation.

C11
€21
€31

Cnl

€12
€22
€32

Cn2

.. @abin T
Cia=a;1bz16Pa2brnPay3b3P . . .

Dainboy
@ainbsn

Dagpbin

Figure 74. Multiplication of A and Bt
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. Instructions
Refer to Table 27 for a list of the bit matrix multiply instructions.
Table 27. Bit Matrix Multiply Instructions
Instruction CAL Description
1740/4 BMM LVj |Transmit Vjelements O — 63 to B matrix
*1740/5 BMM UVj |Transmit Vjelements 64 — 127 to B matrix
174i6 Vi Vj*BT |Transmit the value of Vjmultiplied by the transposed B matrix
to Vi
070i6 Si §j*BT | Transmit the value of Sjmultiplied by the transposed B matrix
to Si
002210 CBL Clear the bit matrix loaded (BML) flag

* New instruction

Refer to Figure 75 for a BMM block diagram for pipe 0 and to Figure 76
for a BMM block diagram for pipe 1.
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VRO00 Bits0-3
VM000 Bits4—7
VRO01 Bits 8- 11

1 VM001 Bits 12— 15
| vRoo2 Bits 16-19

VM002 Bits 20— 21

IAA— AV

IAA— AV

OAOQ00 Bits 0 - 21

VM002  Bits 22 - 23
VR003  Bits24-27

VMO003  Bits 28 — 31
VR004  Bits 32-35

| vM004  Bits 36 — 39

VR0O05 Bits 4043

OA001 Bits 22 - 43

OAQ00

Bits 42, 44 - 62

Partial Results

IAA — IAU_

] VMQ06  Bits 52 - 55

VMO005  Bits 44— 47
VR0O06  Bits 48 — 5;J_

| VROO7  Bits 56 — 59
VM007  Bits 60-63

OA002 Bits 44 - 63

OA001

Bits 20, 22 - 40

Partial Results

IAA = IAV_

OA003 Bits 0 - 21

OA002

Bits0,2-18

Partial Results

IAA - AV

OA004 Bits 22 - 43

0OA003

Bits 43, 45 - 63

Partial Results

/

IAA - 1AU_

OAQ05 Bits 44 — 63

OA004

Bits 21, 23 - 41

Partial Results

OCK —0CU IDA—IDK
OCV - ODF ICA—ICK
OCK — 0CU IDA—IDK
OCV — ODF ICA-ICK,,
0CA— OGS IEA~IEK _
GV — ODF IDA~IDJ |
OCK - OCU CA 16
OCA - 0CJ IEA—IEJ
OCK —0CU DA DK

IEA - IEK
OCA-0CJ >
OCV — ODF ICA—ICK
OCK - OCU IDA—IDK _|
OCV — ODF CA—ICK_
OCA -0CJ IEA—IEK
OCV — ODF

IDA—1DJ
OCK - OCU

ICA-1CJ _
OCA -0CJ

IEA-IEJ

OA005

Bits 1,319

Partial Results

Bit Matrix Multiply
VMO000/AR000

OAA - OAK Final Resuit Bits _ ]

oo Bt =51 7 VM001/AS000

»/ | VM002/AS001

QAA - OAK Final Result Bits

Odd Bits 23 - 43
QAA - OAJ Final Result Bits

Odd Bits 45 - 63

VMO002/AS001 J
VMO003/AS002
VMO04/AT000
VMO005/AT001

OAA - OAK Final Result Bits

Even Bits 0~ 20
QAA — OAK Final Result Bits

Even Bits 22 - 42 /] YM0OS/ATOO1

7 VMOOG/AU000
Z VMO007/AU001

QAA - QAJ Final Result Bits

Figure 75. Bit Matrix Multiply Block Diagram Pipe 0
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| VROO8 Bits0-3

| VM008  Bits4-7
JVR00S  Bits8—11

f vM009  Bits 12— 15
| VRO10  Bits 16— 19

VM010 Bits 20 - 21

IBA-IBV _

/

IBA - IBV

OA000 Bits 021

| vM010 Bits 2223

OAOQ01 Bits 22-43

OA000

Bits 42, 44 - 62

Partial Results

Bit Matrix Multiply

IBA — IBU

JvRO11  Bits24-27
| vMo11  Bits 28 - 31
| VRO12  Bits 32 - 35
| vM012  Bits 36 -39

VRO013 Bits 40-43

OA002 Bits 44 - 63

OA001

Bits 20, 22 — 40

Partial Results

IBA—IBV _

[ VM013  Bits 44~ 47
| VRO14  Bits 48 - 51
| vM014  Bits 52 - 55

| VRO15  Bits 56 — 59
VMO015  Bits 60 — 63

OA003 Bits 0-21

0OA002

Bits 0,2-18

Partial Results

IBA — 1BV

OA004 Bits 22 - 43

OA003

Bits 43, 45 -63

Partial Results

IBA-IBU _

/

OA005 Bits 44 - 63

OA004

Bits 21, 23 — 41

Partial Results

OEK — OEU IGA - 1GK
OEA - OEJ IHA — IHK
OEV — OEF IFA—IFK |
OEK — OEU IGA - IGK_|
OEV — OEF IFAZIFK )
OEA - OEJ IHA - IHK
OEV - OEF IGA-IG)
OEK - OEU IFA — IF
OEA — OEJ IHA — 1HJ
OEK — OEU IGA-IGK_

IHA — IHK
OEA - OEJ -
OEV — OEF IFA — IFK
OEK — OEU IGA — IGK
OEV — OEF IFA - IFK
OEA-OEJ IHA — IHK _|
OEV — OEF

IGA—IGJ |
OEK — OEU

IFA—IFJ _|
OEA - OEJ

IHA - IHJ

OA005

Bits 1,3~ 19

Partial Results

Figure 76. Bit Matrix Multiply Block Diagram Pipe 1

Cray Research Proprietary

Even Bits 44 — 62

‘OBA-OBK Final Result Bits /1 VMo008
Odd Bits 1 - 21 / VMO009
Z VMO10
OBA - 0BK Final Result Bits
Odd Bits 23 — 43
OBA - OBJ Final Result Bits
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2 INSTRUCTION BUFFERS

The instruction buffers are located on four IC options; Table 28 shows
how the four IC options are partitioned. Each IC option contains 8
buffers, and each buffer holds 32 16-bit words. The IC options also hold
data for functions other than instructions.

Table 28. IC Options

Bit Type 1C000 1C001 1C002 1C003
Instruction data bits 0-7and 8 —15 and 16 —23 and 24 -31 and
32-39 40 — 47 48 - 55 56 — 63
B address bits 0-7 8-15 16 -23 24 - 31
Fetch address bits 0-7 8-15 16 -23 24 -31
Logical address translation 0-7and 8-15and 16 ~23 and 24 - 31 and
(LAT) address bits 32-39 40 - 47 48 — 55 56 — 63
A) Exchange P address bits 0-7and 8-15and 16-23 and 24 - 31 and
, 32-39 40 - 47 48 -55 56 - 63
Fetch destination code 0,1 2,3 4,5 6,7
fan-out bits

Fetch

The IC options generate a deadstart fetch after the first 20g words have
been received; this is the number of words in the exchange package. The
IC option counts the number of common memory valid codes received,
and this count enables the deadstart fetch signal to be generated.

When data is fetched from memory, it is requested as a block of 32 words
(4 blocks of 8 words with the first word of this block being the first word
that is needed). For example, if a branch is made to address 1005, that
address is requested first, followed by addresses 1006 to 1037, then 1000
to 1004.

When the common memory data arrives, the IC compares the incoming
code with the expected code. This code tells the IC option where to put
the data in the buffer. Data can arrive at the IC from memory in any
'\) order; it is reordered inside the buffer. The memory code enables this to
happen. Along with every 16 bits of memory data, a 9-bit code is also
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CPU

sent. This code specifies the buffer and the element in the buffer into
which the word is to be loaded. The following illustration shows a
breakdown of the code.

Valid Buffer Element

81765143210

The data arrives at the IC options 2 words at a time. When the data starts
arriving, the IC options look for the first 4 words. These words go
through a bypass path, to the read-out registers, and then to the JA options
for issue.

Two pointers are associated with bypass: a read pointer and a write
pointer. As long as the write pointer stays ahead of read issue, the first 4
words will issue. The buffers will continue to fill while the first 4 words
are issuing. If the first 4 words issue and the buffers are not full, then
issue stops until the buffers fill and the buffer valid bit is set. The
instruction parcels will then start leaving the buffers for the JA options.

164

A prefetch is initiated when the buffer read-out pointer reaches address
30g in the buffer or a branch occurs to addresses 30 to 37g.

The prefetch checks to determine whether the next sequential buffer is
already in-stack. If it is not, a fetch is initiated to the next sequential
common memory address. When the count in the buffer reaches 373, the
IC advances the buffer pointer and checks to ensure that the read data
valid bit is set. If the read data valid bit is not set, the IC option enables
the wait first word flag and waits for the first word to be received from
common memory.

NOTE: The prefetch will always occur, but it can be blocked or aborted
by any branch sequence in progress.

Prefetch can, in some cases, cause a decrease in performance. For
example, if the first word of the next sequential instruction block is
needed while the current instruction block is being fetched, a delay occurs.
In this case, issue stops until the last word of the next block is fetched.
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If an out-of-stack branch occurs while the next sequential block is waiting
to be prefetched, the prefetch is aborted and the block containing the
branch address is fetched instead. Issue of instructions at the branch
address are delayed until the fetch of the current block is completed and a
fetch of the current block containing the branch address begins.

Another problem with prefetch occurs when executing an instruction at
the top of logical address translation (LAT) space. The code may execute
a branch to lower memory but the prefetch may try to initiate a fetch from
the next sequential memory location. If the next sequential memory
location is out of the LAT range, a range error may occur. This will
happen if the branch is within 8 words of the last valid LAT address.

Refer to Figure 77 for the IC options bit layout, to Figure 78 for an IC
block diagram, and to Figure 79 for the IC option terms.

Figure 80 is a block diagram of the memory-to-instruction buffers for
path 1, and Figure 81 is a block diagram of the memory-to-instruction
buffers for path 2. Figure 82 is a block diagram of the common memory
path code 1 fanouts, and Figure 83 is a block diagram of the common
memory path code 2 fanouts.
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IC003

Instruction Data Bits 24 — 31 and 56 — 63
B Bits 24 — 31

Fetch Bits 24 — 31

LAT Address Bits 24 ~ 31 and 56 — 63
Exchange P Data Bits 24 — 31 and 56 — 63

1C002

Instruction Data Bits 16 — 23 and 48 — 55

B Bits 16 —23
Fetch Bits 16 - 23

LAT Address Bits 16 — 23 and 48 — 55
Exchange P Data Bits 16 — 23 and 48 — 5§

IC001
Instruction Data Bits 8 — 15 and 40 — 47
BBits 8 — 15
Fetch Bits 8 — 15
LAT Address Bits 8 - 15 and 40 — 47
Exchange P Data Bits 8 - 15 and 40 — 47

1C000

Instruction Data Bits 0 — 7 and 32 - 39
BBits0-7

Fetch Bits 0 -7

LAT Address Bits 0 — 7 and 32 — 39
Exchange P Data Bits 0 — 7 and 32 — 39
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RAM Array 0| RAM Array 2
Buffer0— 3 Buffer 0 -3
Even Words Odd Words

0-30 0-30

RAM Array 1| RAM Array 3
Buffer4 -7 Buffer 4 -7
Even Words Odd Words

0-30 0-30

Figure 77. IC Options Bit Layout
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IC OWA -0OWC
forod—— (SN
I OWI -0OWK
IPA — IPP Coincidence Buffer OWQ - OWS HM)
(JA) -»|  Parcel Data OXA - OXC HR) NB)
> P Reg Data h, i, j, k Bits } OXD — OXF - (VS: FA, FB)
Buffer Match Branch Address
OEA ~OEH )
| Branch or LAT #(CC)
- Address LAT Address OEI - OEP__
- »(CC)
zfnh 1 v(\)/ode7 » Array 0
rray Write =1  Buffer Parity Error to OUA o
{c) Read Address) |AQ —1AX »|0 -3 Even —(0A)
Words
F"Aalﬂ_] 1é/alid IAX “1 0-15
() (Write Enable) Array 1 R
e
(o Pah10ata 1A -1AP g Duter a
o] Words d
0-15 - Inst Data to OAA - OAP
> o > (JA)
Array 2 u
_ Buffer t
(CH) Path 2 Dat.a IBA - IBP ol 0—3 0Odd
Path 1 Valid Words R
(10) (F:I\Ir:]te1 ina:le) IBX _ o 0-15 e
at ode
(Array Write/ g’:;‘fi r3 g
IBQ - IBX
(1c) Read Address) IBQ -1 4-70dd
Words
0-15
-»| Bypass
PBits0—- 15 IDA - IDP
(IC) p its 16—31 IEA-IEP [ Fetch Address New Pto OAA—OAH
=) Register > BN
OCA -OCH
- — OCP Bjk/P Fanout
&N ICA - ICH o Famout Data OCI - OCP BjifP Fanaut,_
Figure 78. IC Block Diagram
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IAA | IC OAA
Path 1 Dat IAP OAP Instruction Data
(CH) CM Path 1 Data > (JA)
IAQ
1 IAY OAQ Instruction D
(10) CM Path 1 Code - Q Instruction Data Ready - (JA)
IvC OCA
CM Path 1 Code to Fanout IVD OCH Bjk Exchange P to Fanout
(CK) » e > (B7)
IBA OcCl
CM Path 2 Data IBP OCP Bjk Exchange P to Fanout
(CH) > s g > (BT)
1BQ ODA
CM Path 2 Code IBY ODH NewP
(IC) > »(BT)
IVE
IVF OD!  Enter New P/D
(CK) CM Path 2 Code to Fanout — - nter New P/Dump Mode > (BT)
BT Bjk Exchange P to Fanout ICH | ODJ Go Branch/Exchange Enable WA
IDA OEA
i it0— ID OEH
(BT) Bjk Exchange P Bit0—15 P - Branch Address > (CC)
IEA OEl
j it16 -31 IEH OEP E
(&) Bjk Exchange P Bit 16 — 31 - xchange LAT > (CC)
OEQ Fetch Requests > (CC)
OER Go Dump > (CB)
IPA .
Parcel Data PP ODJ Buffer Load Pointers - (JA)
A >
8 A; Enter Rank 1 IQA 8&"\
o Enter Rank 2 QE OVE CM Path 1 Read Code Fanout: (10)
lear Rank 2
(JA) Clear Ran e OVH CM Path 2 Read Code Fanout
Data Resume QM > (IC)
(A Branch Issue 1QQ owaA
(JA) GoBravch OWC K0, k1, k2 at Phase 3 - (HM)
(JA) 2 2rane QR OWD
AN T QWE_jg. i1 ot Phase -
(JA) L eq » OowWK 5
OWI jjat Phase 3 > (HM)
owaQ
(HA) CPU MC to Fanout IRA | gyAs Ijat Phase 2 = (HF)
Exchange Active to Fanout IRB
CC > OXC
EHD; Triton Mode to Fanout __IRC .. h0, m, h2 at Phase 2 > (NA, N)
(VA) VL#2 or CM B to Fanout IRD
(HA) CM MC to Fanout IRE
(CC) Fetch Done ISA
(HA) Maint Mode ITA
1UA
(Force) I;)tse?l;i::han P :3:
(CO) e
Figure 79. IC Option Terms
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OMA — IAA - - -

CHO00 |omp  Bits0-3  1aD_|'C000 CHo08 gmg Bits 16 — 19 :ﬁg IC002
OME — 1Al ME — 1Al -
OMH  Bits32-35 IAL CO)MH Bits 4851 IAL
OMA — IAE -

CHO02 ] -1cHoio | OMA- IAE —

002 JoMD__ Bits4-7  IAH__ OMD  Bits20-23  IAH _

OME — 1AM - OME — 1AM —
OMH Bits36-39 IAP OMH Bits 52 — 55 IAP
OMA — IAA - - -

CHOO4 fomp  Bitss—11___1ap |00 cHo12 | SMA=  Licoa_or  an|ic008
OME - 1Al - - -
OMH  Bits40-43 1AL _| 8?25 Bits 56 — 59 :ﬁIL
OMA ~ IAE - - -

CHO06 |omp  Bits12-15  1AH CHO14 8&3 Bits28-31  Inn
OME- 1AM - OME — IAM ~
OMH __ Bits44~47__IAP__ OMH _ Bits60-63 __ IAP

Figure 80. Memory-to-instruction Buffers (Path 1)
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CH001 | OMA- IBA- I'co00 CHO0S | OMA - IBA - | 1C002 p
OMD Bits0-3 IBD OMD Bits 16 —19  IBD r)
OME - 1Bl ~ OME - 1Bl -
OMH Bits 32-35 IBL - OMH Bits 48 ~ 51 IBL
CHo03 | OMA- IBE - JcHo11 | oma- IBE -
OMD Bits 4—7 IBH - OMD Bits20-23 iBH
OME - IBM - OME — IBM -
OMH  Bits36—-39 IBP OMH Bits 52-55 IBP
CHoos | OMA- 192~ {icoos CHO13 | OMA - IBA | 1003
OMD  Bits 8—11 IBD _ OMD Bits24-27 IBD
OME - iBl - OME - 1] -
OMH _ Bits40-43 IBL _ OMH Bits 56 -59  IBL
cHoo7 |OMA- IBE - CHO15 | OMA - IBE -
OMD Bits12-15 [BH - OMD Bits 28 - 31 IBH
OME - IBM - OME - IBM —
OMH  Bits44-~47 IBP | OMH Bits60~-63 IBP

Figure 81. Memory-to-instruction Buffers (Path 2)
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1C000 OVA IC000
IVC ovB
IVD ovC
> . OvVD
IC001
1IC003
CK000 1C000 1C002
Element Bit 0 | ONF JAQ I Element Bit 0 IAQ
1C001 »1 Element Bit 0
IC001
. ONG
Element Bit 1 IAR Element Bit 1 IAR .
»1 Element Bit 1
Element Bit 2 |- ONH Ve,
OVA IAS .
Element Bit 2 OVB IAS Bl ¢ Bit 2
™1 Element Bi
Element Bit 3 ONI VD ove AT
»1 Element Bit 3 OVD IAT | .
Element Bit 3
1C002 002
OVA IAU .
ONJ IVC Element Bit 4 OVB AU .
Element Bit 4 *] Element Bit4
OVC 1AV .
»] Buffer Bit 0
ovD IAV 1 Butter Bit 0
. ONC VD
Buffer Bit 0 - IAW Buffer Bit 1 IAW
Buffer Bit 1
Buffer Bit 1 OND IAX Buffer Bit 2 1AX
»1 Buffer Bit 2
. ONE
Buffer Bit 2 1C003 ay —
OVA
IAY
ONB ONA IVC ovB
OovC
OovD
VD
Valid
Valid
Figure 82. Common Memory Path Code 1 Fanouts
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1C000
. IC000
) ) e QVE OVF
IVD ovG OVH
/ 1C001 10003
CKO001 o IC000 IC002
B .
Element Bito | ONF »| Element Bit 0 1BQ I tiement Bit 0
1C001 IC001
. ONG
Element Bit 1 IBR »! Element Bit 1 IBR Element Bit 1
.~ | ONH IVC
Element Bit 2
OVE 1BS o] Etement Bit 2 OVF IBS .1 Element Bit 2
Element Bit 3 ONI IVD_ IBT
ovG »| Element Bit 3 OVH BT | Eioment Bit 3
1C002 10002
OVE IBU ) :
-~ |on VG *| Etement Bit4 OVF 1BU 1 Element Bit 4
Element Bit 4 G BV
(0} .
o - Buﬁer BItO OVH IBV » Buffer Bit0 -
' J Buffer Bito |ONC VD BWo! Bufter Bit 1 BW_I Butfer Bit 1
IBX . .
Buffer Bit 1 |OND *! Buffer Bit 2 IBX o Buffer Bit 2
Buffer Bit 2 ONE A
1C003
0 OVE IBY IC003 OvE IBY
ONB | ONA IVC_
ovG OVH
IVD_|
Valid Valid
Figure 83. Common Memory Path Code 2 Fanouts
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INSTRUCTION ISSUE

A CRAY T90 series computer system uses a process called instruction
issue to introduce instructions into the central processing unit (CPU).

The first instruction parcel is read from of one of eight instruction buffers

(IBs) and sent to the next instruction parcel (NIP) register where it is

partially decoded to determine whether it is a 1-, 3- or 4-parcel instruction.

Refer to Figure 84 for an instruction issue block diagram. The program
address (P) register points to the next parcel to be read out of the
instruction buffer. If it is a 1-parcel instruction, the NIP moves to the
current instruction parcel (CIP), the parcel from the instruction buffer

moves to NIP, and P is incremented by 1. If it is a 3-parcel instruction, as

NIP moves to CIP, the second parcel moves into LIPO, the third parcel

moves into LIP1, and P is incremented by 3. If it is a 4-parcel instruction,

as the first parcel moves from NIP to CIP, the second and third parcels

move to LIPO and LIP1. Then, the fourth parcel goes to NIP and then to

CIP as the other three parcels are leaving. In the next clock period, the
fourth parcel leaves CIP, and P is incremented by 4.

\
P
IB 5 1
IB 4 +1, +3, +4
A
> » NIP cIP
IB 1

LIP1

J

Figure 84. Instruction Issue Block Diagram
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Instruction Formats

There are three instruction formats: 1-, 3-, or 4- parcel instructions. The
first parcel always contains the operation code. The operation code is
pre-decoded in NIP to determine whether it is an exit instruction (000000
or 004000) or a 1-, 3-, or 4- parcel instruction.

One-parcel Instructions

The gh portion generally is the operation code, although some instructions
also use the i, j, or & fields. The i field is usually the result designator, and
the jk portions are generally operand register designators. Some
instructions use the i field or bit 2 of the j field to provide additional bits
for the operation code.

Some 1-parcel instructions are part of the extended instruction set (EIS)
and perform different operations when immediately preceded by the EIS
parcel (005400).

Figure 85 shows the format of a 1-parcel instruction.

7 3 3 3 Bits
L ghn | i | i 1 k|

15-9 8-6 5-3 2-0

Figure 85. Format for a 1-parcel Instruction

Three-parcel Instructions

The 3-parcel instruction is used in both Triton mode and C90 mode. The
nm fields hold the 32-bit address or constant value. Refer to Figure 86 for
an illustration of a 3-parcel instruction format.

NOTE: The n portion holds the most significant bits, and the m portion
holds the least significant bits.

4 3 3 3 3 16 16 Bits

Lo | o | 7 [ 7 | « JL n Jf m ]

15-12 11-9 8-6 5-3 2-0 15-0 15-0

Figure 86. Format for a 3-parcel Instruction
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Four-parcel Instructions

Four-parcel instructions are used exclusively in Triton mode. The
instruction field mnemonic pmn represents a 48-bit field with the p field
being the most significant parcel. Refer to Figure 87 for an illustration of
a 4-parcel instruction format.

3 3 3 3 16 16 16 Bits
[ » 1 i t 7 1 « 3t » JL» 1L m |
15-12 1-9 8-6 5-8 2-0  15-0  15-0  15-0

Figure 87. Format for a 4-parcel Instruction

Four-parcel instructions are used for A and S register memory references
that use extended addressing. The 4 field selects an A register to be used
as an address index. The i field designates an A or S register to be used as
the source or destination of the data. For read references, j field bit 1
disables or enables cache bypass. Bit 2 of the j field must be set to a 1 to
indicate a 4-parcel instruction. The £ field is not used.

Triton-mode Instructions

Triton mode is active when the Triton mode bit (TRI) is set in the
exchange package. Some instructions execute correctly only in Triton
mode. If a Triton mode instruction is executed while the machine is in
C90 mode, the results are undefined. Refer to the instruction set for
Triton-mode only instructions.

Instruction Decode

HTM-003-0

After the instruction parcel is in NIP, it is pre-decoded to determine its
size. If it is a 1-parcel instruction, it moves to CIP for further decoding to
determine which registers, functional units, and memory ports are
required.
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Coincidence

The P register is 32 bits wide and resides on the BTO and BT1 options.
The P register points to the relative memory address of the next instruction
to be read out of the instruction buffer read-out register and sent to either
NIP or LIPO. The lower 2 bits (bits —1 and —2) point to the parcel, and the
upper 30 bits (bits 8 through 29) point to the word address. There are
three ways to load the P register:

e  Multiplex 8 bits at a time during an exchange sequence
e Load from Bjk as a result of a 005ijk instruction

e Load from the ijk or nm fields of a 006ijk, 007ijk, or Olxjk
instruction

Every time a parcel issues, the JA option sends an Advance P signal to
the BT options, which advances the P register by 1.

A condition called coincidence exists if the next parcel needed is in one of
the eight instruction buffers. A coincidence check compares the upper

25 bits of the P register to the 25-bit buffer address (A) register as well as
determines whether the buffer valid bit is set. All 25 bits must match, and
the buffer valid bit must be set in order for a coincidence condition to
exist. If there is no coincidence, a fetch operation is initiated.
Coincidence is checked only on branch instructions to determine if the
next instruction will be in the stack.

Reading the Instruction Buffer

178

When a buffer read occurs, both the even and odd words are read out of
the buffer to a read-out register. The content of the P register on the BT
options directs one of these words to NIP or LIP for decoding.
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There are two JA options on the CP module; they provide the issue control
signals for the processor. These options receive the instruction word from
the IC options, select and decode the correct parcels, and provide control
to the rest of the CPU. The JA option also has all the resource
reservations and holds issue if a resource is busy. The JA options are

- responsible for the functions described in the following subsections.

Parcel Data Distribution

HTM-003-0

The JA option transmits parcel data to the AR, AS, AT, AU, BT, and VA
options and alters the j field going to the AR, AS, AT, and AU options for
certain instruction types. This occurs on the following instructions:

o  10h, 11h, 12h, 13A; the Aj becomes the Ah field
e (00130, the Ai field becomes the Aj field

The JA option also transmits a read-out pointer code to the A and S

registers; the read-out pointer code selects the read-out path. Refer to
Table 29 for a list of these codes.

Table 29. Read-out Path Codes

Code Instruction Description
00 075, 13h Sito BT path
01 034, 036, 025, 11h Aito BT path
11 035, 037 Aito BT path
00 0013/0, 027iR2/3, 027i//7 Aito SR path
01 073if2, 073i8B, 0735, 073i6 Sito SR path
10 0010jk, 0011k Akto SR path
11 00140, 001444 Sjto SR path
00 057, 0030,0/1, 026i00/1, 027i0 |Sjto shift path
11 052 — 056 Sito shift path
00 Sjto vector pipe 0
01 176 AO0 to vector pipe 0
10 034, 036 AQ to vector pipe 0
11 035, 037, 177 AO to vector pipe 0
00 Sjto vector pipe 1
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Table 29. Read-out Path Codes (continued)

Code Instruction Description

01 176 Ak to vector pipe 1

10 034, 036 Aijto vector pipe 1

11 035, 037, 177 A0 to vector pipe 1

00 10h, 12h, 13h, 0017 jk Ah (Aj) to CM port B/E
01 00200k Akto CM port B/E

10 11h Ah (Aj) to CM port B/E
11 177 Ak to CM port B/E

A/S/V/BIT Register Requests

The JA option checks for register conflicts and receives a register release
signal from the shared resource control and from common memory for the
A and S registers. The JA option also receives a vector read/write (R/'W)
release for V registers and a B/T read/write release. The JA option also
transmits A and S register entry codes. These codes, along with the ghijk
field, the instruction, and the 2-bit register read-out code are used by the A
and S registers to define the instruction to be performed and to reserve the
needed path.

Functional Unit Requests

The JA option checks for functional unit conflicts in the following
functional units:

Logical #1: 140147/ 175

Logical #2: 140 - 145 if Logical #1 busy / Logical #2 enabled
Vector Mask: 146 — 147/ 175/ 070ij1 / EIS 153ij0,1

Vector Shift: 150 — 153

Vector Add: 154 - 157

Floating Multiply: 160 - 167

Floating Add: 17-173 '

Reciprocal (V pop, parity, leading zero, iota: 174i;(0 — 3) / 070ij1
Matrix Multiply: 174ij(4—7)/ 070ij(6 - 7)
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Constant Data Requests

The JA option checks for constant data present on multiple-parcel
instructions such as jumps, branches, and instructions using the pmn
fields. Each JA option handles 32 bits of the constant data distribution.
JAO transmits data to the AR, AS, and CD options via the A series
options, and JA1 transmits data to the AT, AU, and CD options via the A

-.series options. JAQ-also-provides the jk data on the constant path when

needed.

EIS (Extended Instruction Set) Requests

The JA option issues 005400 as a normal instruction; however, the next
parcel is decoded using the extended instruction set. If an EIS instruction
is issued without the 005400 preceding it, the instruction issues and
performs its normal function. For example:

044ijk  Transmit logical product of (Sj) and (Sk) to Si

044ijk  In EIS mode, the same instruction transmits logical
product of (Aj) and (Ak) to Ai

Common Memory Requests

HTM-003-0

The JA options receive the following external common memory control
signals:

¢ Release Port A
¢ Release Port B
e Release Port C

e Bidirectional Mode: (Mode = 1) enable block reads and writes at
the same time

e Common Memory Quiet: This signal indicates that all memory
activity in the CPU has been completed. It requires that all ports are
quiet, conflict logic is quiet, memory sections are quiet, and all read
and write operations are complete.

e Hold Common Memory Issue: No more references can issue

e  Cache Miss In Progress: Indicates a cache miss is pending
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e Read Quiet: Read references have cleared all conflict checks
o  Write Quiet: Write references have cleared all conflict checks

e Exchange Active: Indicates an exchange has not completed

Shared Resource Requests

The JA options receive the following external signals, which control the
shared resource path, from the HD option:

e A/S Register Shared Resource Release: Releases a specific A or S
register (0 — 7) path

e Release Shared Resource: Used in combination with Go
Semaphore Branch to cause issue to resume or P to advance

¢  Go Semaphore Branch: Signals that the conditions of a semaphore
branch have been satisfied

Branch Requests

The JA options check the branch test conditions to determine whether the
condition is met; if it is, the JA option issues a Go Branch signal to the IC

options.
Exchange Requests

The JA options perform the following actions during an exchange
sequence:

e 000000 (error exit) issues. Issue stops, P advances

e 0040jk (exit k) issues. Issue stops, P stops

e  The shared path is released. The state of Go Semaphore Branch
determines whether P advances on a 0040jk. Two conditions of the

0040jk instruction could occur:

1. A normal exit occurs and P advances when the shared path is
released and Go Semaphore Branch is a 0.

2. An error exit occurs, P will not advance when the shared path is
released, and Go Semaphore Branchis a 1.
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Interrupt Requests
An interrupt request can be generated in one of three ways:

e A (000000 (error exit) instruction issues
e A 0040jk (Exit k) instruction issues
e A hardware error condition occurs

Interrupt requests are processed in two phases. In phase 1, the following
conditions are checked:

e  No multiparcel instructions are in process
e  No EIS type waiting for second parcel
e No branch sequence in progress

In phase 2, the following conditions are checked, and then the Go
Exchange signal is sent to the HD, IC, and CC options.

No branch sequence in progress
Shared path available

All registers available

Common memory quiet

When a hardware interrupt request occurs, the JA option performs the
phase 1 checks and stops issue. If the phase 2 checks are all valid, the JA
option sends a Go Exchange signal to the IC options. If any of the shared
type instructions have issued during this shut-down time, the HD option
must release the shared path and the following actions must occur:

e If a 0034 (test and set semaphore) was issued, a Release signal and a
Go Branch signal must be sent before Go Exchange can occur.

e If a 000000 (error exit) or a 00405k (exit jk) was issued, a release
path must occur to clear the JA option control.

Issue will resume when Go Branch occurs.

Control Signal Distribution
The JA option transmits the following control signals:

e Issue group 0, 1, and 2: These signals are combined on the BT and
VA options to complete the issue signal.

e Issue: This signal is transmitted to the AN option for fanout.
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Enter Vector Length: This signal is sent to the AR option on the
decode of a 00200k (Ak to VL) instruction.

Read Vector Mask: This signal is sent to the SS option on a 073i
(0-3) 0 (VMO or VM1 to Si or Ai) instruction.

Enter Vector Mask: This signal is sent to the SS option on a 0030;
(0-3)(SiorAito VMO or VM1) instruction.

Go Scalar Pop/Parity/Lz: This signal is sent to the SS option on a
026ij (0 — 3) or 027ij (0 - 1).

Go Scalar Double Shift: This signal is sent to the SS option on a
056ijk Shift (Si) and (Sj) left Ak places to Si.

Go A Type: This signal is sent to the SS option when a 005400
(EIS) is issued using A register data.

Go Scalar Reciprocal: This signal is sent to the RA option on a
070ij0 instruction.

Go Scalar Floating Add: JA1 sends this signal to the FA option
when a 062ijk (sum) or 063ijk (difference) issues.

Go Scalar Floating Multiply: This signal is sent to the NA and NC
options when a 064ijk through 067ijk instruction issues.

Go Address Multiply: This signal is transmitted to the AR option
when a 032ijk issues.

Common Memory A or S Requests: This signal is sent to the CD
options when a memory load or store issues. JAO sends out an A
register request, and JA1 sends out S register requests.

Common Memory A or S Writes: This signal is sent to the CD
options when a memory write 11Aixxpnm or 13hixxpnm issues. JAO
sends out A register write requests, and JA1 sends out S register
write requests.

CM Port B Enabled: This signal is sent to the VA option via the
JAQ option and to the BT option via the JA 1 options to select the
vector read ports.

Vector Logical #2 Enabled: JAO sends this signal to the VA options
to select vector logical functional units.
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Data Resume: This signal is sent to the instruction stack (IC
options) to indicate that the JA can accept another word.

Go Exchange: This signal is sent to the IC options to indicate that
an exchange is required. Another copy is sent to the HD option and
is used by the HD’s to clear the SIE bit (taking I/O interrupt). The
Go Exchange signal is also sent to the CC option to signal the CC to
start swapping exchange packages in memory.

Go Branch: This signal is sent to the IC options to indicate that a
conditional branch has passed the test.

Branch Fall Through: This signal is sent to the IC options to
indicate that a conditional branch has failed the test.

Branch Issued: This signal is sent to the IC options to indicate that
a branch has issued.

Enter Rank 1, Enter Rank 2, or Clear Rank 2: These three
signals are sent to the IC options to move parcel data into or out of
the ranks into issue.

The following signals are transmitted to the performance (HF)
monitor to indicate a hold issue condition:

¢ Holding Issue on A Registers

e Holding Issﬁe on S Registers

e Holding Issue on B/T Registers

¢ Holding Issue on V Registers

¢ Holding Issue on Common Memory
e  Holding Issue on Functional Unit

¢ Holding Issue on Shared Resources

Advance P: This signal is sent to the P register (BT options) to
advance P by 1 as each parcel is issued.
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Branch Instruction Control

The JA options decode and control the execution of branch instructions.
When a conditional branch passes or fails a test, it returns either the Go
Branch control signal or the Branch Fall Through control signal to the
IC options. Issue is halted until the Go Branch signal is received by the
IC options. Another signal, Branch Issued, is also sent to the ICs when a
branch is in progress.

Conditional Branch Instructions

Conditional branches use instructions 010ijk through 017ijk. Once the
instruction issues, branch control logic examines either the AO or SO
register for the condition defined by the operation code. If the condition is
met, the value of the P register is replaced with the nm field, and program
flow is passed to the instruction specified by P. If the condition is not met,
program flow drops through to the instruction that follows the branch.

Another type of conditional branch instruction for a CRAY T90 series
computer system is called test and set branch (0064jkmn). If a specified
semaphore register equals 0, the bit is made a 1 and the next instruction
issues. If the semaphore is a 1, the P register is replaced with the value in
the nm field.

Unconditional Branch Instructions

186

Unconditional branches use instructions 00505k through 007ijkmn, and
each code operates differently, except that none of them depends on a
condition being met before the branch takes place. In other words, they
always take the branch in the ijkm or nm fields.

The jump to Bjk instruction (0050jk) branches to the parcel address
specified by the contents of Bjk. The unconditional jump instruction
(006000mn) branches to the nm field. A new unconditional jump
instruction is the branch to the address in nm field (006100mn). This
instruction is a Triton-mode only instruction; if executed in C90 mode, the
results are undefined.

The return jump instruction (007000mn) jumps to the address in the
address field and places P + 3 (the address of the next instruction) into
B00. The return jump allows a jump to a subroutine, the last instruction of
which must be a 005000 instruction, which is a jump to BOO.
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Another new jump instruction is the 007100nm, which is an indirect jump.
The instruction stores the address of the next sequential instruction in the
BOO register; then the instruction uses the nm field to specify a common
memory address. The lower 32 bits of the contents of that address are
transferred to the P register, causing program execution to continue at that
point. When this instruction executes, the instruction buffers are set
invalid.

HTM-003-0

The first parcel of the instruction leaves NIP and moves into all the CIPs
on options HF000, HD00O, and HDOO1. The CIP located on the HF
options is responsible for the instructions that affect the exchange package
and performance monitor.

" The HD option CIP is used for A/S path release and provides A/S i

designators and shared path release. The JA options determine whether
any register or functional unit reservations exist. If not, these options send
the Issue signal to the HD and HF options and the instruction issues,
reserving the appropriate registers and/or functional unit. If resource
conflicts do exist, the JA option does not send the Issue signal, and the
instruction remains in CIP until the conflict is resolved. This is called a
hold issue condition.

The JA options are responsible for providing issue control, and checking
and making functional unit and path reservations for the following items:

Vector registers

Vector functional units

A/S shared resource control
Memory ports

CM path/cache

A/S register entry codes
B/T register

The functional units must send a release back to the JA options to indicate
that the units are available.

The JA options also send out the 4, i, j, and £ fields to the A/S registers for
further instruction decode.

Refer to Figure 88 through Figure 95 for related instruction issue block
diagrams.
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OCA - IDA -~ ODA-
iIC000 JOCH Bits0-7 IDH_|ICc000 JODH
IDA-
IDH _['ico01
BT000 |9EH  Bits 0 oA oal ~ IDA - IGA 5o
OEH Bits0O-7 ICH its 0 — -
- OCP Bits0=7 _ IDH_F|C002 Bits 0 —7 IGH
B iGl— |
IDH -
» IC003 Bits8—15 IGP
OCA - IDI ~
OEl - ICA-]1c001 ]OCH Bits8=15 IDP _}1C000
OEP Bits8-15 ICH IDI— | ODA-
ioP_[icoor |.GBH
ocl - IDI -
OCP Bits8-15 [DP_[|C002
IDI -
IDP | 1c003
OCA- IEA-
icoo2 |OCH Bits 16—23 IEH [coo0
IEA -
1EH _I'1co01
OEA— (A~ ocl- IEA- ODA- IGA - | BTOO1
BT00! |oEN Bits 16—-23 IGH OCP_Bits 16—-23 IEH_[Goo2 | ODH  Bits 16 ~23 IGH
IEA -
IEH _1C003
Gl -
OCA- IEI - )
1Ico03 |OCH Bits24—-31 IEP _|1C000 Bits 24 — 31 IGP
OEI - ICA-
OEP Bits24-31 ICH | IEI -
IEP _[1C001
ocCt - IEl -
OCP Bits 24—31 1EP _[1C002
iEl - ODA-
IEP_{IC003 | ODH
Figure 88. Bjk (Exchange P) Fan-out Bits
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JA0O1 IC001 JAOO1 1C003
OKE ~ pa— | €000 OKM - IpA- | €002
OKH _gFieldBits0—-3 IPD OKP _gFieldBits0~3 IPD _
OKB - IPE - OKJ ~ IPE -
OKD _ hField Bits0-2 IPG _ OKL _hFieldBits0-2 IPG
OKA iField Bit2 IPd _ OKl___iField Bit2 IPJ

JAO00 |OKG - IPH - JACOD JOKO- IPH -
OKH jField Bits0—1 IPI OKP  jFieldBits0—1 Pl
OKD - IPK - OKL - IPK -
OKF  jFieldBits0~3 IPM OKN  jFieldBits0—3 IPM
OKA — IPN - OKI - IPN -
OKC  kFieldBits 0-3 IPP OKK  kField BitsO -3 IPP

Figure 89. JA-to-IC Parcel Data for Branches
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OMA - IAA -
CHO000 OMD Bits0-3 _ 1AD _1ico00 [GAco1 f)
OME - IAl - JA0OO L
OMH Bits 32-35 1AL OAA - IDA -
v OAH  Bits0-7 IDH
OMA — IAE -
OMD Bits4-7  IAH
CHoo2 - OAl - IBA ~
OME -~ IAM OAP  Bits32-39 IBH
OMH Bits36-39 IAP >
OMA — IAA -
OMD_Bits8—11__ IAD
CHO004 its »| 1C001 OAA — Dl -
OME - IAI - OAH  Bits8—-15 IDP
OMH__Bits40-43 AL
OMA IAE - OAl — Bl —
CHO006 OMD Bits12-15 IAH _ OAP  Bits40-47 IBP
OME - IAM —
OMH Bits44—47 IAP
OMA - IAA ~ )
CHOO8 OMD_Bits16-19 1AD [ ~y0) OAA = ICA— ] )
OME - 1Al - OAH  Bits 16—23 ICH -
OMH  Bits48—51 IAL
OMA - IAE -~ OAl - 1AA —
CHO10 OMD Bits20-23 IAH _ OAP __ Bits 4855 I|AH
OME — IAM —
OMH  Bits 52~55 IAP
OMA - IAA —
OME - 1Al - OAA - IC1 -
OMH  Bits 56 ~59 AL OAH _ Bits24-31 ICP
OMA — IAE -
OMD Bits28-31 |AH OAIl - IAI -
CHO14
> OAP its 56 — IAP
OME — 1AM — Bits 56 — 63
OMH Bits 60-63 IAP
Figure 90. Path 1 CH to IC to JA Option
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OMA - IBA -
CHO01 OMD _ Bits0-3  1BD _} 1cooo
OME ~ 1Bl -
OMH__ Bits32-35 IBL OAA - IDA -
” OAH  Bits0-7 IDH
OMA - IBE -
CH003 OMD __ Bits4-7  IBH _
> OAI - IBA ~
OME — IBM - OAP  Bits32-39  IBH
OMH Bits36—39 IBP >
OMA - IBA -
CHO05 OMD  Bits8—11  1BD _| 1c001
OAA — IDI -
OME - IBI - OAH  Bits8-15 bP
OMH  Bits40-43 IBL -
OMA - IBE ~ OAl - 18l —
CH007 OMD Bits 12 - 15 IBH OAP Bits 40 ~ 47 IBP
OME - IBM - o
OMH  Bits44—47 IBP
OMA — IBA -
OMD its 16—19 - IBD
CHO009 Bits 16-19 - 1BD__[iC002 OAA — ICA —
OME - 1Bl — OAH  Bits16-23 ICH _
OMH  Bits 48—51 IBL o
OMA - IBE ~ OAl — IBA —
CHoM1 OMD  Bits20-23 IBH OAP  Bits48-55  IBH _
OME - iBM —
OMH  Bits52~55 IBP _
OMA ~ IBA -
CHO13 OMD Bits24—-27 IBD 1C003
OME - 1Bl - OAA- ICl -
OMH _ Bits56-59 IBL OAH _ Bits24-31 1P _
OMA - IBE —
CHO15 OMD  Bits 28—-31 IBH OAI - IBI -
OAP  Bits56—63  IBP _
OME - IBM — >
OMH__ Bits 60~63 IBP
Figure 91. Path 2 CH to IC to JA Option
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JA000 / JAOOT ' OOA — OOD Hold Issues to Performance Monitor o
ODE JAQOO Advance P BTQ, BT1 o
ODE JA001 Go FP Multiply NB _
T Reg Read Release VA1 (8) _IEA~ IEH . ODA Issue Group 0 Valid VAQ and VAT (JAQ) KEY
IGB V:ctg: ng;ﬁ;, 2 ya1| V.RegWrite Release VA0 (8)  IFA~IFH R V Reg Reservation ' ODA Issue Group 0 Valid BT0 and BT1 (JA1) _ | Group 0 V Registers, A Registers
IGC  Vector Shift VAO | ¥ FU Release VAQ/VAT (11 GA_ IGK _ OoDB Issue Group 1 Valid VAO and VA1 (JAQ) Group 1 S Registers, B/T Registers,
IGD Vector Add VA1 eease an — > V FU Reservation anfllct | Issue oDB Issue Group 1 Valid BTO and BT1 (JA1 ¥ec';or lﬁoglgag, \r/tezgr 'Sthllaft, Reciprocal,
heck : 'ector Read Po 0
IGE Vector FP Mult  VAO ; _ OoDC Issue Group 2 Valid VAO and VA1 (JAO) .
o vector FP Add VA1 == e (Shared fesoneg) 1o > Shared Reservation oDe Issue Group 2 Valid BTO and BT1 WAY) (Ai(r)c/)gg gi S: ?';es(t’ F(‘)?ﬁg:‘src(?\bm%srg%z auet
IGG Vector Recip VAO | A/S Path (Shared Resource) IF . o exchan g eic) ’ ’
iGH BMM VA1 o OLG JA00O Issue CIP  HDO, HDA _ 9e, °C.
IGI Vector Mask vao | Release Mem PortA B, C ILA-ILC - : >
» Memory Port Reservation .
IGJ  BRegRelease BTO0 [ GM Path/Cache Release (Even) WA - IJE ODD JA000 Issue CIP HFO via ANO -
IGK T Reg Release BT1 (Odd) I — UM _{CM Path/Cache Reservation h, i, j, kField to A/S
OAA — OAL Registers AR, AS, AT, AU -
| - h, i, j, k Field to A/S
»|_Reg Translation OBA —OBL _Registers AR, AS, AT, AU _
i OCA-OCP g, h, i, j, kField to VA/BT Registers
D(er\(l:lg(;e —»{ Inst Translation A/S Read-out Code Bit 0
OPA, OPC {0 AR, AS, AT, AU _
A/S Read-out Code Bit
) OPB, OPD 1 to AR, AS, AT, AU _
A/S Entry Code Bit0, 1, 2
_ OFA - OFF to AR, AS, AT, AU o
Il 1 -
a OGA — OGH A/S Constant Bits to ARO or ATO o
> o] o r o
c OHA — OHH A/S Constant Bits to AS0 or AT1 _
- e
Instruction Data from ICs (64) 1AA—IDP_ 1] I OIA—OIH  A/S Constant Bits to AS1 or AUO R
"l 2] 2 D OJA—OJH A/S Constant Bits to AS2 or AU1 N
t
- 3| 3 a OKA — OKH Parcel Data to Stack
Instruction Data Ready IKA  IKA OKI—-OKP Parcel Data to Stack _
Parcel Pointers Bit 0 and Bit 1 IKB, IKC >
To HDs via Fanout A/S Path Release _
Interrupt from HD IKF . -
Lkt
Exchange Active from CC IPB 9. b, i.j kto CIP To HF via Fanout Shared Path Release/Exchange Data
FA (S0) Test Valid IKG _ ODF Go Exchange to iCs _
FA (S0) Sign State IKH o T o
> Go Exchange
FM (S0) Sign State IKJ _ 0 =X g
A0=0 INA — INH »| Sign Bit Test - OQAto ICs Branch Issued _
A0 Negative : INA - INJ o
S0-0 |OA - IOH > v OQB to ICs Branch Fall Th@gh -
S0 Negative 101 | 0QC to ICs _Go Branch .

Figure 92. JA Option Block Diagram

HTM-003-0 ' Cray Research Proprietary 193



CPU Instruction Issue

JA000 [As000

OAA-~OAC  kBits IPG—IPI_| AR00O
OAD —~ OAF  jBits IPD —IPF_|

OAG - OAl iBits IPA—IPC_
OAJ — OAL hBits  IPJ—-IPL p—

I AS002

OBA—OBC kBits IPG-IPI [Aso01
OBD-OBF jBits IPD-IPF

OBG - OBI iBits IPA-IPC
0OBJ - OBL hBits IPJ—IPL p—

VAOO1

OCD—-OCF  jBits  IPD—IPF .

OCG —-OCl iBits IPA—IPC_
0OCJ - OCL hBits 1PJ—IPL
OCM-OCP__gBits IPJ—IPL —

JAOO1 I AT001

OAA—-OAC  kBits IPG-IPI | AT000
OAD - OAF  jBits IPD - IPF

OAG — OAl i Bits IPA-IPC_
OAJ - OAL hBits IPJ-IPL -

I AU001

OBA-OBC kBits IPG-IPI | AU000
OBD-OBF  /jBits IPD-IPF

OBG - OBl i Bits IPA - IPC
OBJ —OBL hBits  IPJ—IPL —

BT001

OCD - OCF  jBits IPD - IPF_

OCG - OCl i Bits IPA - IPC
OCJ - 0OCL hBits IPJ-IPL
OCM-0CP gBits IPJ—IPL =

Figure 93. Instruction Data Distribution A/S/B/T/V Registers

HTM-003-0 Cray Research Proprietary 195



Instruction Issue CPU

HDOO1
JACO1 HDO00O
: AU000
OBA-OBC ___ IPG—IPI OWJ-OWL _ kBits _ IEA-IEC
IC001
OKD — OKF IPK—IPM OWQ-OWS  jBits IED — IEF
1C000
IPH ~ IPJ OWQ-OWS  iBits IEG—IEl _
AU000
0BJ - OBL IPJ — IPL OWA-OWC _ hBits _ IEJ—IEL _
OMA - OMB
JA00O IGH—1GI | ANO0O
OGI-OGL  gBits IEM-IEP
OMA-OMB  IGF-IGG :
OLG Issue IEQ -

Figure 94. CIP Distribution to HD Options
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JAO0O
JA0O1 AUQ01 HF000
JAQO1} OBA - OBC IPG - P OWJ-OWL  kBits IDA—IDC._.
1C003
JA000 KL —OKN IPK— IPM OWQ-OWS jBits  IDD—IDF
1C002
JA000 | QKO — OKP IPH _ IPI OWQ-OWS iBits  IDG—IDI
JAG01 LOK! IPJ
AU001
JAgo1 | OBJ —OBL IPJ-IPL OWA—OWC  hBits  IDJ—IDL
JAGD1 LOMA — OMB IGH —1GI _| AN0O1
OGE-OGH _ gBits _ IDM—IDP,
JA000 FOMA = OMB IGF — IGG
JAOOO ODD Issue via AN0OO IDQ
Figure 95. CIP Distribution to HF Option
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EXCHANGE

The exchange mechanism in a CRAY T90 series computer system has the
following features:

e  Means of switching execution from program to program

~ e Exchange package — Block (403 words) of program parameters that:

e  Must be present in order for any program to execute; defines
where and how the program runs

e  Must be 403 words long
e  Must reside in lower 2 MW of memory

e  Must start on a 40g word boundary

Exchange Process

The exchange sequence is the process that deactivates the current
exchange package and puts it into memory. It then loads a new exchange
package from memory and activates it.

The CRAY T90 series systems have a new feature in the exchange
package. This feature allows a process to exchange to either the address
specified by the exchange address (XA) register or to one of five different
addresses specified by one of the five exit address (EA) registers. With
this capability, a user job could exchange to another user job, or could
exchange to specific areas in the kernel, without first exchanging to the

_ monitor.

HTM-003-0

The CRAY T90 series system also includes the following feature: when
an exchange occurs, the CPU that exchanges out retains the cluster
number it was initially assigned unless the system is operating in C90
mode or unless AutoBCD (automatic broadcast cluster detach) is active.
In addition, when a CPU is master cleared and then exchanged out, the
pending interrupt bits are retained. This is done so that the maximum
amount of information about the process is available. A second exchange
sequence can retrieve this information.

Cray Research Proprietary 199



Exchange

SIPI

200

CPU

If an exchange occurs and the program is in monitor mode, the monitor
needs to save the B registers, T registers, shared registers, scalar (S)
registers, and vector (V) registers. If the vector not used (VNU) bitisa 1,
the V registers do not need to be saved. If the exchange is to another user
job, it is up to the user to save the register values.

Four conditions cause an exchange sequence:

Deadstart sequence (SIPI)

Interrupt flag set (F register)

Program exit (004000, 000000 instruction)

Hardware error causing a flag to set, which causes an exchange

A CRAY T90 series system does not use a deadstart signal or command;
instead, the system uses Set Interprocessor Interrupt (SIPI) signals, via
a 00141 instruction [send inter-CPU interrupt to CPU (Aj)] or, on an
initial deadstart, a CPU loop controller function of 76g issued by the
maintenance channel will start an exchange.

The following list describes the sequence of events that invokes the
Mainframe Maintenance Environment (MME):

e Set CPU MC.
e Ioad data to memory address O via the maintenance channel.

e  Issue a loop controller function of 176g via the maintenance channel
to allow CPU maintenance instructions.

e Issue a loop controller function of 1413 via the maintenance channel
to allow CPU instruction exchange and halt.

The exchange package at location 0 goes into the CPU, and
what was in the CPU goes to location 0. There is no fetch
after this exchange.

e  Drop CPU Master Clear via the maintenance channel.
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Interrupt Flag Set

Program Exit

Exchange

e  Issue the loop controller function of 763 via the maintenance
channel.

The dropping of CPU Master Clear works as an enable; the
function 76g must be present along with the Master Clear
signal for the exchange to occur.

e Interrupted CPU exchanges to address O, a fetch is done and issue
starts. ’

In this case, because I/O is handled by the maintenance channel, the return
path for output depends on how the sanity tree was configured. From this
point, the initially started CPU could issue SIPI commands to the other
CPUs.

In the CRAY T90 series system, each interrupt flag has an enable interrupt
mode bit. The interrupt modes are enabled by the enabled interrupt mode
(EIM) flag; an exchange to non-monitor mode sets the EIM flag.

An exchange to monitor mode clears the EIM flag. While the program is
in monitor mode, a 001302 instruction sets the EIM flag, and an 001303
instruction clears the EIM flag.

Each CPU has an EIM flag. In monitor mode, the EIM flag is cleared and
all interrupt modes are disabled, except enable flag on normal exit (FNX),
enable flag on error exit (FEX), and enable interrupt on program range
error (IPR); this provides a stable environment within monitor mode
immediately following an exchange.

Program exit occurs following the decode of instructions 000000
and 004000. Instruction 000000 is an error exit instruction, and
instruction 004000 is a normal exit.

Exchange Sequence

HTM-003-0

Before a CPU can perform an exchange, the CPU must first finish all
active instructions. If a test and set instruction (0034jk) is in the next
instruction parcel (NIP) or entering the current instruction parcel (CIP),
the program (P) register is decremented by 2, or by 1 if the test and set
instruction is in the CIP or NIP. The JA option transmits a signal to the
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BT options that decrements the P register before it is loaded into memory.
The JA then waits until the condition is resolved to advance P. Memory
must also be quiet, and all memory writes must be complete.

The processor that is performing the exchange clears out the buffer valid
bits and buffer counter. Clearing the buffer valid bits causes a fetch to
occur after the exchange has completed. Clearing the instruction buffer
address register (IBAR) counter causes the data that was fetched from
memory to be loaded into instruction buffer O first. Also, issuing a 0051jk
instruction clears the buffer valid bits. The 0051jk is a maintenance
instruction that loads the P register from Bjk and invalidates the
instruction buffers if the CPU is in maintenance mode (MM).

Exchange Package Descriptions

202

Refer to Figure 96 for an illustration of the exchange package. The
exchange parameters are located on two options: HD00O and HDOO1.
HDO0O handles bits 3 through 31 for words O through 17, and HD0O1
handles bits 32 through 63 for words 0 through 17.

P register — program register, word 10 bits O through 31

The P register contains 32 bits, the lower 2 bits of which are
used for parcel selects. The P register contains bits -2 through
29, which allow 1 gigaword of memory to be addressed.

Modes — MM, BDM, ESL, TRI, SCE, BDD word 11, bits O through 7

The modes tell the program what it can or cannot do, thereby
determining what effect the instructions issued will have on
the program.

MM — monitor mode, word 11, bit O

Certain instructions are privileged to MM: controlling the
channel, setting the real-time clock, setting the programmable
clock, and so on. These instructions perform specialized
functions that are useful to the operating system. If an MM
instruction issues while the CPU is not in MV, it is treated as
a no-operation instruction. If an MM instruction issues while
the IMI flag is set, the MII flag sets, which causes an
exchange.
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BDM - bidirectional memory, word 11, bit 1

When BDM is set, block reads and writes may occur
concurrently.

ESL - enable second vector logical, word 11, bit 2

If ESL is set and any 140ijk through 145ijk instructions issue,
the instruction is routed to the second vector logical unit. If
ESL = 0, the second vector logical unit is not used. The
second vector logical unit is used before the full vector logical
unit if a choice exists.

TRI — Triton mode, word 11, bit 3

The Triton mode allows the new instruction to run in the
CRAY T90 series system. If the Triton mode bit equals a 0,
then the instruction will run only CRAY C90 instructions.

SCE - scalar cache enabled, word 11, bit 4
If SCE is set to a 1, onboard scalar cache is enabled.
BDD - bidirectional memory disable, word 11, bit 7

When BDD is set to a 1, bidirectional block reads and writes
are disabled.

Status (VNU, FPS, WS, PS), word 12, bit 0 through 3

The status register reflects the condition of the CPU at the
time of an exchange. The bits in the status field are set during
program execution and are not user selectable.

VNU - vectors not used, word 12, bit 3

After a program has been exchanged into memory, the B and
T registers must be saved as well as the SB, ST, and SM
registers of the cluster that the program is using. If the VNU
bit is equal to 1, then this indicates that the vector registers
were not used so the vector registers do not need to be saved.
However, if the VNU bit is 0, then the vector registers must be
saved as well. The VNU bit is set when a 077xxx or a 140
through 177xxx instruction issues.
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63 48 47 32 31 16 15

LAT 0 Logical Limit

T rityverrerresrredsyd

LAT 1 Logical Limit

“LAT 2 Logical Limit

0 15 16 31 .32 47,48

LAT O Logical Base

LAT 1 Logical Base

LAT 2 Logical Base

crPU
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LAT 3 Logical Limit

39
TTTTTTTRI AT T TIrrrrrr ey

LAT 4 Logical Limit

LAT 5 Logical Limit

LAT 6 Logical Limit

LAT 7 Logical Limit

10} Modes LAT O Physical Bias

UL Trrrreryreirynveveiverenrtld

111 Modes LAT 1 Physical Bias

LI rriryirvryrvrryvenyvvervagl

12 | Modes LAT 2 Physical Bias

1
FryrpryrerirverererrrviIvnTernend

13 | Modes LAT 3 Physical Bias

FTT T nerervrrererayrireiinIieg

141 Modes LAT 4 Physical Bias

L | IR BB EERE R

15| Modes LAT 5 Physical Bias Exit Address 3

RW X D}37

39
LR LR R

P Register

20

LAT 3 Logical Base

LAT 4 Logical Base

LAT 5 Logical Base

LAT 6 Logical Base

LAT 7 Logical Base

Exit Address 4

14

14

14

14

14

1
UL R AR E AR

16 | Modes LAT 6 Physical Bias Exit Address 1

20

5
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20

5
UL R R

Exit Address 2

i1 TVl irTerrrrrTrrTrIeeireadid rrrryrrrvneITrTred

h
171 Modes LAT 7 Physical Bias Exchange Address

|rwxp|a7 1

LI LR

20

Exit Address 0

Words 20 - 27: A Registers 0—-7
Words 30 —~ 37: S Registers 0—7

Figure 96. Exchange Package
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FPS - floating-point status, word 12, bit 2

A floating-point error sets the FPS flag regardless of the state
of the floating-point error flag (FPE). The FPE flag sets when
an underflow or overflow condition exists in the floating-point
functional units.

The FPS bit is cleared whenever the interrupt on floating-point
error (IFP) mode bit is set or cleared by a 002100 or 002200
instruction.

The FPS bit is also cleared when the bit matrix loaded (BML)
flag is cleared; the BML flag is cleared when a 002210
instruction issues.

WS — waiting on semaphore, word 12, bit 1

The WS bit sets when a 0034k instruction is in CIP and
holding issue.

BML - bit matrix loaded, word 12, bit O

The BML bit indicates the B! (B transposed) registers have
been successfully loaded by a 1740j4 instruction.

Interrupt modes, word 11, bits 15 through 31

Refer to Table 30 for a list of the bit assignments for the
modes field in the exchange package. All modes except IPR,
FEX, and FNX must be enabled by the EIM flag to be
effective. The EIM flag sets on an exchange to nonmonitor
mode and clears on an exchange to monitor mode. The EIM
flag enables interrupt modes if set.

The EIM bit can be set or cleared by a 001302 or a 001303
instruction, respectively.
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Table 30. Interrupt Modes Register Bit Assignments

CPU

Binary
Word | Exponent | Acronym Name
1 31 IRP Interrupt on Register Parity Error
11 30 UM Interrupt on Uncorrectable Memory Error
11 29 IFP Interrupt on Floating-point Error
1 28 IOR Interrupt on Operand Range Error
11 27 IPR Interrupt on Program Range Error
11 26 FEX Enable Flag on Error Exit (does not disable
exchange)
11 25 IBP Interrupt on Breakpoint
11 24 ICM Interrupt on Correctable Memory Error
11 23 IMC Interrupt on MCU Interrupt
11 22 IRT Interrupt on Real-time Interrupt
11 21 P Interrupt on Interprocessor Interrupt
11 20 o Interrupt on /O
11 19 IPC Interrupt on Programmable Clock
11 18 IDL Interrupt on Deadlock
11 17 IMI__| Interrupt on 001jk=0 or 033 instruction *)
11 16 FNX Enable Flag on Normal Exit (does not disable \7
exchange)
11 15 1AM Interrupt on Address Multiply Range Error
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Refer to Table 31 for a list of the bit assignments for the
interrupt flags field in the exchange package.

Table 31. Flag Register Bit Assignments

Binary
Word | Exponent | Acronym Name
12 31 RPE Register Parity Error
12 30 MEU Uncorrectable Memory Error
12 29 FPE |Floating-point Error
12 28 ORE Operand Range Error
12 27 PRE Program Range Error
12 26 EEX Error Exit (000 issued)
12 25 BPI Breakpoint Interrupt
12 24 MEC Correctable Memory Error
12 23 MCU MCU Interrupt
12 22 RTI Real-time interrupt
12 21 ICP Interrupt from Internal CPU’
12 20 To] I/O Interrupt (if 1O and SIE)T
12 19 PCI Programmable Clock Interrupt
12 18 DL Deadlock Interrupt
12 17 Mil 001jk=0 or 033 Instruction Interrupt (if IMI
and not MM)
12 16 NEX Normal Exit (004 issued)
12 15 AMI Address Multiply interrupt

T SIE = System I/O interrupt enabled.
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VL - vector length, word 13, bits O through 7

The VL register holds the content of the VL register. The
8-bit field contains the number of elements to be operated on
in the vector register. In a CRAY T90 series system, if VL =
000 or VL = 200, all 200g vector elements are used within the
vector register.

XA - exchange address, word 17, bits 16 through 31

The 16-bit field specifies the address of the first word of the
next exchange package. This exchange package is loaded
when any one of the following conditions occurs:

e  An interrupt occurs that sets any of the following flags:
RPE, MEU, FPE, OPR, BPI, MEC, MCU, RTI, ICP, IOI,
PCI, DL, MII, NEX, or AMI

e A Q000 isissued

e A 0040jk is issued with k being an illegal value (5, 6,
or7)

The XA field contains only bits 5 through 20. The lower bits
are assumed to be 0’s.

EXIT Address O through 4, words 15, 16, 17 bits 0 through 31

Each of the five 16-bit fields specifies the starting address of a
32-word exchange package. The k field of the 00405k
instruction specifies the exchange package to use. Only k
fields equal to O through 4 are valid; if an invalid value is
used, the exchange is to the XA address. Exit Address (EA) O
is expected to be used for normal exits to maintain
compatibility with existing systems.

Each EA field contains only bits S through 20. The lower bits
are assumed to be 0’s.

CLN - cluster number, word 13, bits 24 through 31

The CLN contains a 8-bit field. There are up to 36g clusters in
the system, depending on the system configuration.
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PPN - Processor number, word 13, bits 16 through 22

The contents of the 7-bit field in the exchange packages show
the logical number of the CPU in which the exchange was
executed. The maximum number is 127.

LATS — Words 0 through 17. Refer to the exchange package diagram for

bit layouts.
Each LAT has four associated fields; Table 32 identifies those
fields.
Table 32. LAT Fields
Field Name Description

Logical Base |First logical address of this LAT

Logical Limit | Last address +1 of this LAT

Physical Bias | Physical bias = Physical base address — Logical base address

Modes The controlling bits for each LAT
R(ead), W(rite), X(ecute}, C(achable), D(irty)

The use of LATs allows programs to share memory space. For example,
two user jobs could reference the same library routine in memory while
keeping their local code private.
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REAL-TIME CLOCK

PROGRAMMABLE CLOCK INTERRUPT
STATUS REGISTER

PERFORMANCE MONITOR

Real-time Clock

Refer to the following subsections for information about the real-time
clock, programmable clock interrupt, status register, and the performance
monitor.

HTM-003-0

A CRAY T90 series computer system contains one 64-bit real-time clock
(RTC) per central processing unit (CPU). The RTC is synchronized when
a CPU issues a 0014;0 instruction. The 00140 instruction causes all
CPUs in the same cluster to be loaded with the contents of Sj. The RTC is
located on two HD options, each of which handles 32 bits. The HD0OOO
option handles bits 0 through 31; the HDOO1 option handles bits 32
through 63.

HDO0O will detect a carry, out of the RTC, at a count of 37777777776
during normal operation. HD0O1 then increments the upper bits during
the next clock period, and HDOOO suppresses any toggles.

The RTC is incremented once every clock period. The RTC allows for
clock-period timing of program execution. When the machine is
deadstarted, the RTC must be loaded in order to synchronize all the CPUs.
If they are not synchronized, each CPU will have a different RTC value.

Writing to the RTC with the 001450 instruction sends a copy of the Sj
register from the CPU issuing the instruction to all RTC registers via the
issue paths of the shared registers. Reading the RTC with a 072i00
instruction copies the RTC register of the CPU that issued the 072i00
instruction into the scalar registers.

Refer to Figure 97 for an RTC and programmable clock interrupt (PCI)
block diagram.
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Programmable Clock

Sj Data from

Shared Module

CPU
HFG00 s
OAA — OCL j
Shared Data Path
(RTC Data or PCI)
HDQOO0
ICA—IDF RTC to Si
OAA-OBF Bits0—-31 _
PCI Logic Used on -
This Option Only
CIP from Issue IEA—IEP |
ONA
Carry to RTC
IKB HD0O1
RTCto Si )
OAA — OBF Bits 32—-63 i
ICA-IDF
IEA — IEP

Figure 97. RTC and PCI Block Diagram
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Each CPU has one programmable clock (PC), which is a 32-bit counter.
The programmable clock decrements every clock period; the clock is
located on the HDOOO option.

The programmable clock is loaded by the 00144 instruction when the

program is in monitor mode. When the programmable clock equals zero,

an interrupt request (PCI) is generated. To generate a PCI, the IPC mode

bit must be set. In user mode, IPC must have been set in the user’s ,
exchange package. If the CPU is in monitor mode, either IPC was set in )
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the monitor’s exchange package, or a 001406 instruction was issued. The
interrupt request remains set until a 001405 instruction clears it. If the
CPU is in monitor mode, and if the interrupt request is not desired, use a
001407 instruction to disable the IPC mode bit.

The PCI request is enabled and disabled on the HD option, which contains
the exchange parameters.

RTC and PC Instructions

Refer to Table 33 for a list of the RTC and PC instructions.

Table 33. RTC and PC Instructions

Instruction CAL Description
00140 T RT Sj Enter RTC register with Sj
07200 SiRT Transmit RTC to Si
00144 ¥ PCI Sj Transmit Sjto programmable clock
001405 T Ccl Clear PCl request
001406 T ECI Enable PCI request
001407 ¥ DCI Disable PCI request

T Monitor mode instruction.

Performance Monitor

HTM-003-0

The performance monitor (PM) is normally used to monitor software
performance. With the results of the performance monitor, a programmer
can determine how efficiently a program is running in the system. If, for
example, the program is performing too many instruction fetches or too
many hold issue conditions are occurring, the programmer can review the
program structure and modify it to minimize these occurrences.

Each CPU contains a performance monitor; because each CPU is
identical, all references in this section pertain to a single CPU. Each CPU
contains 32 performance counters and each counter is 48 bits wide.

Table 34 shows which event each counter monitors. Each counter
increments each time a particular event occurs in the CPU while the CPU
is in nonmonitor mode (IMI bit is not set). The counters related to
memory references may be incremented by as many as eight times per
clock period (CP). Counters related to vector operations are incremented
by the value in the vector length register at the time the instruction issues.
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Table 34. Performance Monitor

CPU

Counter Event Monitored Instructions Increments
Number of:
0 Clock periods monitored +1
1 Instructions issued +1
2 Clock periods holding issue +1
3 Instruction fetches +1
4 CPU memory references (ports A, B, C) +8
5 Clock periods for references (poris A, B,C) +2047
6 I/O memory references (port D, 1/O only) +2
7 Cache misses +1
Holding issue on:
10 A registers and access conflicts +1
11 S registers and access conflicts +1
12 V registers +1
13 B/T registers +1
14 Functional units +1
15 Shared registers +1
16 Memory ports +1
17 Number of cache hits +1
Number of instructions:
20 Instructions 000000 through 004000 000 - 004 +1
21 Branches 005-017 +1 a
22 Address instructions 02x, 030 — 033, EIS 042 - 057 | +1 = —)
,073720, 07330
23 B/T memory instructions 034 - 037 +1
24 Scalar instructions 040 - 043, 071 — 077 except +1
073120, 07330
25 Scalar integer instructions 044 —- 061, 0706 +1
26 Scalar floating-point instructions 062 - 070 +1
27 S/A memory instructions 10x - 13x +1
Number of operations:
30 Vector logical 070if1, 140 — 147, +VL
1740/4 — 17406, 175
31 Vector shifts, pop., leading zero 150 — 153, 174xx (1 — 3) +VL
32 Vector integer adds 154 — 157 +VL
33 Vector floating-point multiplies 160 - 167 +VL
34 Vector floating-point adds 170-173 +VL
35 Vector floating-point reciprocals 174xx0 +VL
36 Vector memory reads 176 +VL
37 Vector memory writes 177 +VL
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Performance Monitor Instructions

Table 35 lists all the instructions associated with the performance monitor.

Table 35. Performance Monitor Instructions

Instruction CAL Description
001500 Clear all performance counters
073if1 SiSRj |Transmit (SRj) to Si(monitor mode only for
| j=2-7)
073105 SR0 S/ | Transmit (Si) bits 48 — 52 to SR0O
07325 SR2 S/ | Advance performance monitor pointer
073i75 SR7 Si | Transmit (Sj) to maintenance channel

Clearing the Performance Counters

Instruction 001500 clears all performance counters. This instruction must
be issued while the CPU is in monitor mode in order for the instruction to
operate correctly.

Reading the Performance Monitor

The performance monitor is read with the 07321 and 073i31 instructions.
Each counter is read 48 bits at a time and requires that two instructions be
issued to read all the counters. The 48 bits of the counter read are stored
in the Si register. When the 073i21 instruction is issued, counters 0
through 17 are sent to Si. The 073i31 instruction, when issued, reads
counters 20 through 37 and sends the bits to Si.

The system hardware requires a minimum of 3 CPs between issuing
073ix1 instructions. Also, the PM Busy Status (PMBY) bit (bit 47 of
SRO0) must be cleared before reading the counters. If the 3-CP wait is not
written into the program, an undeterminable corruption of performance
monitor data occurs.
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Performance Monitor Block Diagram

Refer to Figure 98 for the performance monitor block diagram. The
performance monitor is composed of the HFO00, HD00O, and HD0O1
options. The HF00O option contains the lower bits (0 through 31) and the
HDO000 and HDOO! options contain the upper bits (32 through 47) for all
32 counters; there is one counter for each event tracked by the
performance monitor. These 48-bit counters are incremented as each
event occurs, as long as the CPU is not in monitor mode.

Status Register

A CRAY T90 series computer system has eight status registers, which are
located on the HD and HF options. The status register is no longer part of
the exchange package as it was in previous systems. Figure 99 shows the
status register format and bit assignments of each register. The status
registers are read by the 073ij1 instruction.
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S Register

Vector Length Performance Monitor to Si Bits 0 — 31
Go Increment
HD00O oMQ HDOO1
OMA - : .
OMH Performance Monitor
IAA — to SiBits 32 — 47
Vector Length IBF OAA ~
OBF
Performance Performance
Counter Counter
Registers 0 - 37 Redi
A gisters 0 - 37
Bits 32 - 47 A -
ICA - Bits 32 - 47
Shared Data Path IDF _ IM1 Allow Read
o ONB of HPM IJQ
IKO
IKI_ X HF000
ILA - IKP
ILH > OFA  Carry Qut IKM
I Pecr:fggr‘:f e | oma- IKM
er OBF >
IKH -
Registers 0 — 37 IKL
1AA - Bits 0 - 31 OFI
Shared Data ICL _
Performance Monitor OFO Busy IKP
Increment Terms IKA -
{Registers 10 — 16) IKG OFK Carry Hold IKO
Cache Miss (Register 17)  IKH | OFA — IKH —
Cache Hit (Register 7) IKK OFE Select Pointers IKL
OBG - ICA-
I/O Reference Requests IKL - OCL Shared Data Path IDF
{Register 6) _ IKM

Figure 98. Performance Monitor Block Diagram
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The eight status registers are further defined in Table 36 through Table 40.

Status register O (SR0) shows the status of several bits in the active
exchange package.

Table 36. Status Register (SRO)

Bits Name Description
63 CLN=z0 | Cluster number not equal to zero
57 BML Bit matrix loaded
52 IBP T |Interrupt on breakpoint
51 FPS T |Floating-point status
50 IFP T Interrupt on floating-point error
49 IOR ¥ Interrupt on operand range error
48 BDM T | Bidirectional memory
47 PMBY Performance monitor busy

40 through 43 PN Processor number

32 through 39 CLN Cluster number

T Designates that this was written by a 07305 instruction. All other bits of SR0
are read-only.

Status register 1 (SR1) is not defined.

Status register 2 (SR2) bits 0 through 47 are bits of the performance
monitor counters O through 17.

Status register 3 (SR3) bits 0 through 47 are bits of the performance
monitor counters 20 through 37.

Status register 4 (SR4) bits are shown in Table 37. SR4 contains the
correctable and uncorrectable memory error flags, port bits, and read
mode bits. The error information stored in SR4 is latched into the register
and held until the register is read. Once SR4 is read, the register is
cleared, and new error data can be stored in the register. If multiple errors
occur, only the first error is held in SR4. Bits 32 through 45 define the
destination code associated with the error. Table 37 is a decode of these
destination bits.
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Table 37. Status Register 4 (SR4)

Bits Name Description
47 UME Uncorrectable memory error
46 CME Correctable memory error
32 through 45 CODE | Destination code (refer to Table 38)

Table 38. Destination Codes

Bit
Destination 13|12/11|10]9 |87 |6 |54 ]|3(|2]|1}0
Cache read 11111 ]- Word
V register read 11140 Register | — Element
S register read 1]10]1 Register | 0 -
A register read 1101 Register 1 -
T register read 1101]0 - 0}|- Register
B register read 11010 - 1] - Register
Fetch read o111 Group Word
I/O read o0f{t1t]o Type Word
Exchange read 00 |1 - Word
/0O write 0Jojo Type 1
Processor write 0jo0ojo}-10})1110] AS
Reconfigure c|jojoj-J|1}§17j0 -
Memory error 0jojo|-|]0j01]0 -

Status register 5 (SRS) bits 32 through 43 contain the syndrome code of
the memory error. The information is held until the status register is read.

Status register 6 (SR6) bits 32 through 44 contain the error address for the
memory error. These bits are latched into the SR6 on a memory error.
The information is held until the status register is read.

Status register 7 (SR7) contains information on LAT faults, register parity
errors (RPE), and shared register errors (SRRE). Bits 48 through 54
contain an LAT miss flag for each memory port. Bits 55 through 61
contain an LAT multiple-hit flag for each memory port. Bit 47 is the RPE
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flag. If this bit sets, then bits 32 through 43 contain the chip number. Bit
46 is the SRRE flag and, if this flag is set, bits 24 through 31 contain the /j
chip number. )

Table 39. Status Register 7 Bit Definitions

Bits Name Description

48 through 54 LAT fault |LAT miss
55 through 61 LAT fault | Muitiple LAT hit

46 SRRE |Shared register read error
24 through 31 Shared register chip number
47 RPE Register parity error
32 through 43 RPE chip number

Table 40. Register Parity Error Code

Octal Option Description
001 000 VRO Vector register VO pipe 0 B
001 001 VR1 Vector register V1 pipe 0 f)
001 010 VR2 Vector register V2 pipe 0
001 011 VR3 Vector register V3 pipe 0
001 100 VR4 Vector register V4 pipe 0
001 101 VR5 Vector register V5 pipe 0
001 110 VRG6 Vector register V6 pipe 0
001 111 VR7 Vector register V7 pipe O
010 000 VR8 Vector register VO pipe 1
010 001 VRS9 Vector register V1 pipe 1
010010 VR10 Vector register V2 pipe 1
010011 VR11 Vector register V3 pipe 1
010100 VR12 Vector register V4 pipe 1
010101 VR13 Vector register V5 pipe 1
010 110 VR14 Vector register V6 pipe 1
010 111 VR15 Vector register V7 pipe 1
011 000 CHO Data cache bits 0 - 3, 32 — 35 Sect. 0,1,6,7
011 001 CH1 Data cache bits 0 — 3, 32 — 35 Sect. 2,3,4,5
011 010 CH2 Data cache bits 4 — 7, 36 — 39 Sect. 0,1,6,7 )
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Table 40. Register Parity Error Code (continued)

Octal Option Description

011 011 CH3 Data cache bits 4 — 7, 36 — 39 Sect. 2,3,4,5

011 100 CH4 Data cache bits 8 — 11, 40 — 43 Sect. 0,1,6,7

011 101 CH5 Data cache bits 8 — 11, 40 — 43 Sect. 2,3,4,5

011 110 CH6 Data cache bits 12 — 15, 44 — 47 Sect. 0,1,6,7

011 111 CH7 Data cache bits 12 — 15, 44 — 47 Sect. 2,3,4,5

100 000 CH8 Data cache bits 16 — 19, 48 — 51 Sect. 0,1,6,7
100 001 CH9 Data cache bits 16 — 19, 48 — 51 Sect. 2,3,4,5

100010 CH10 Data cache bits 20 — 23, 52 — 55 Sect. 0,1,6,7

100 011 CH11 Data cache bits 20 — 23, 52 - 55 Sect. 2,3,4,5

100100 CH12 Data cache bits 24 - 27, 56 - 59 Sect. 0,1,6,7

100 101 CH13 | Data cache bits 24 — 27, 56 - 59 Sect. 2,3,4,5

100 110 CH14  }Data cache bits 28 — 31, 60— 63 Sect. 0,1,6,7

100 111 CH15 |Data cache bits 28 — 31, 60 — 63 Sect. 2,3,4,5

101 000 1CO Instruction buffer bits 0 -7, 32 - 39

101 001 iIC1 Instruction buffer bits 8 — 15, 40 — 47

101010 IC2 Instruction buffer bits 16 — 23, 48 — 55

101 011 IC3 Instruction buffer bits 24 — 31, 56 — 63

110 000 BTO B and T register bits 0 — 15, 32 — 47

110 001 BT1 B and T register bits 16 — 31, 48 — 63

110010 HMO Test-point buffer and logic monitor

110 011 HM1 Test-point buffer and logic monitor
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SCALAR CACHE

Cache Hit

Each CPU has a scalar data cache. The cache accelerates common

- memory data access for address register and scalar register read requests.

Only address and scalar registers can access the cache.

The data cache has the following features:

The cache is organized into 8 pages of data. Each page contains 8
lines of 16 words, thus providing 1,024 words of data in the cache.
Figure 100 illustrates the logical layout of the cache.

Cache is parity protected; each 8-bit byte has an associated parity bit.
If enabled, a parity error on a cache read will cause an interrupt.

When an A or S register memory reference is made, one of two
things may occur: a cache hit or a cache miss.

A and S register store requests are write-through. The cache word
will be updated if there is a hit; if a miss occurs, no cache lines are
requested.

B, T, and'V register store requests cause corresponding cache lines to
be set invalid on a cache hit. Store requests on a cache miss have no
effect on the cache. B, T, and V register load requests also have no
effect on the cache.

HTM-003-0

A cache hit is determined using logical addresses, not physical addresses.
A cache hit occurs when the following conditions are met:

A valid page address consisting of address bits 7 through 39, held
within the cache, matches the corresponding address bits of a
memory request.

The cache line indicated by bits 4 through 6 of the requesting address
is valid within the cache.
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l Page 7
| Page 6
Page 5
| Page 4
Page 3
Page 2
Page 1
Page 0
Words 0~ 15
Line 0
Line 1
Line 2
Line 3
Line 4
Line 5
Line 6
Line 7

Cache Miss

Figure 100. Cache Layout
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A cache miss occurs when a request from an A or S register load request
does not match a page address. When this occurs, the corresponding line
is requested from memory and the previously valid page address is set to
the new page address. All lines in the new page are set invalid. As the
new requested line returns from memory, the new page address is set valid
as is the cache line that was requested.

Another type of miss occurs when a memory reference matches the page

but not any line in the page, or the page is not valid. When this occurs, 16
sequential words are requested from memory, and the line is set valid.
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Cache Addressing

)

Figure 101 shows how memory addresses are used to determine a cache

hit or miss.
Memory Address
Subsection
Word Select Bank Select Select Section Select
A _A. A A
o vV g V" N\
39 918 7165 4132 0| Bits
AL A J
Y Y Y
Cache Page Cache Line Cache Word

Cache Address

Figure 101. Memory Addresses

Potential Cache Problems

Because no communication occurs between caches in different CPUs, the
- following problem can arise: Two or more CPUs can have data in their
respective caches from the same physical address in memory, and one of
the CPUs can write data to that memory address. The CPU that wrote the
data will update its cache, and the other CPUs will contain old data. This
problem can be managed in several ways:

—

e There are load instructions that bypass cache. These instructions
cause the cache line to be invalidated on a cache hit.

e L ATs can be set up to define areas of memory that are not cache
enabled.

o If the SCE (scalar cache enable) bit is not set in the exchange
package, it will prevent the use of cache for that job.

Another problem that can occur is when you go through memory with a
stride value of 128; this causes memory to thrash. A stride of 128 will use
1 word of 1 line from each cache page; then when you start replacing
lines, you will get 16 words back from memory to cache but will be using
only 1 word. This problem can be avoided by redesigning user code.
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CH Option
There are 16 CH options; these options contain all of the cache memory
RAMs. The even-numbered CHs hold data from memory sections O, 1, 6,
and 7; the odd-numbered CHs hold data from memory sections 2, 3, 4,
and 5.
. On a memory write, each CH writes 4 bits to all memory sections.
Table 41 shows the bits per option.
Table 41. CH Option Bits
CHO00 | CHOO02 CHOo04 |CHOO6 |CHO08 |CHO10 |JCHO12 |[CHO14
Read Data 0-3 4-7 8-11 12-15 {16-19 j20-23 [24-27 |28 -31
Sect0,1,6,7 (32-35 .[36—-39 (40-43 |44-47 |48-51 |52-55 |56-569 |60—63
Write Data 0-3 4-7 8-11 12-15 |16-19 120-23 |24-27 }28-31
Sect.0-7 CB CB CB2 CB3 CB4 CB5 CB6 CB7
CHO0O01 CH003 CHO05 |CHO07 |CHO09 |CHO11 CHO13 |CHO15
Read Data 0-3 4-7 8-11 12-15 {16-19 [20-23 {24-27 |28-31
Sect2,34,5 132-35 |36-39 |40-43 |44-47 (48-51 }52-55 |56-59 |60-63
Write Data 32-35 |36-39 |40-43 |44-47 |48-51 |52-55 |56-59 |60-63
Sect. 0-7 CB8 CB9 CB 10 CB 11

Scalar Cache Instructions

Refer to Table 42 for a list of the scalar cache instructions.

Table 42. Scalar Cache Instructions

Instruction CAL Description

002501 ESC Enable scalar cache

002601 DSC Disable and invalidate scalar cache

10h20mn Ai exp,Ah,BC Load Aifrom ((Ah)+exp) bypassing data cache and invalidating
cache line

10hB60pmn Ai exp,Ah,BC Load Aifrom ((Ah)+exp) bypassing data cache and invalidating
cache line

12hi20mn Siexp,Ah,BC Load Sifrom ((Ah)+exp) bypassing data cache and invalidating
cache line

12hi60pmn Si exp,Ah,BC Load Sifrom ((Ah)+exp) bypassing data cache and invalidating
cache line

Cray Research Proprietary HTM-003-0

TN



Reader Comment Form.
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