?E'}i
CP02 MODULE 1
CP02 General Descriptioncovuiiininninnennns |
Module Assembly Componentsccoeiiienenn.. 2
) SCALAR REGISTERS 7
L& , (dress Registersoovvvenneii i, 7
00 i Wdpsici 9
0 : ;
13
13
ﬁ) S Register Meniory ReYeA 13
- Special Register Values ,. 4. ¥ 14
Lower/Upper Scalar Register Load ... ¢. ¥, 4
B AND T REGISTERS _ e 15
ADRESS/SCALAR ADD e 19
SCALAR LOGICAL | S 21
Address and Scalar Mask ... i oo oLl ... 23
Transmit nm to Si, Si Upper, SiLower 25
ADDRESS/SCALAR POP/PARITY AND LEADING ZERO | 27
HTM-xxx-0 o Cray Research Proprietary ' i

S

CONTENTS

December 19, 1994 Preliminary Information

INSTRUCTION ISSUE (continued)

Common Memory Requestscoiivuinnann 181
Shared Resource Requestscoooviiivnn 182
BranchRequeststtt iiiiiiiniinnennn. 182
Exchange Requestscociiiiiiiiinnan.. 182
Interrupt Requestscoiiiiiiiiiiiiiinenann. 183
Control Signal Distribution 183
Branch Instruction Control iiiieinienn. 186
Conditional Branch Instructions 186
Unconditional Branch InStructions 186
Issue Controlciiiiiiiiiiii it i, 187
EXCHANGE 201
Exchange Processcvviiiiiiiniiniininnnanenens 201
Deadstart ettt 202
Interrupt Flag Set ..., 203
Program Exito iiiiuiiiiiiiiiiiniennanns 203
Exchange Sequenceciiiiriunneennnnnnnennns 203
Exchange Package Descriptionsccociiivnennn. 204
REAL-TIME CLOCK, PROGRAMMABLE CLOCK INTERRUPT,
STATUS REGISTER, PERFORMANCE MONITOR 213
REAIHNE CIOCK .« + - e e e e e e e e 213
Programmable CIOCKveveeenenasernenasenennns 214
RTC and PC INSIUCHORSveeeeeenenennnannnss. 215
Performance Monitor 215
Performance Monitor Instructions, 217
Clearing the Performance COURErscoeeueuenn... 217
Reading the Performance Monitorcovvun. 217
Performance Monitor Block Diagram 218
Status Register coiutiiii e iii ittt e 218
viii Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

oo W P W

SCALAR CACHE 227
Cache Hit o i i i 227
Cache MliSS . ..o v i e e 228
Cache Addressingc.oiiiiiiiiiiniii i, 229
Potential Cache Problems oLt 229
CHOPHOND ...ttt ittt iiitee e ieenaaneaenanenns 230
Scalar Cache Instructionscoevviniinninenne 230

Figures
Figure 1. CP Module Assembly Components 2
Figure 2. Option LayoutBoard 1
Figure 3. Option LayoutBoard?2
Figure 4. CPUBlockDiagram
Figure 5. Address and Scalar Register DataPaths
Figure 6. A/SControlTermsooviivn..n. 10
Figure 7. Memory to A/S-register Block Diagram 12
Figure 8. B and T Register Inputs and Outputs 15
Figure 9. B/T—register-to-memory Block Diagram 17
Figure 10. Carry Bit and Enable Bit Fanouts 20
Figure 11. Address/Scalar Logical Block Diagram (Instructions

044ijk through O51ijk)cooviiioa.... 21
Figure 12. Scalar Mask Block Diagram 24
Figure 13. A/S Population/Parity/Leading Zero Count 29
Figure 14. Address Register Shift 32
Figure 15. Shift Count Breakdown 34
Figure 16. Address Register Left Single Shift 35
Figure 17. Address Register Right Single Shift 36
Figure 18. Address Register Left Double Shift 37
Figure 19. Address Register Right Double Shift 38
Figure 20. Example of an. A Register Left Single-shift

Instruction e 39
Figure 21. Example of an Address Register Left Double-shift

Instructionottt 41
Figure 22. Example of an Address Register Right Double-shift

Instruction it 42
Figure 23. ScalarShift i, 44
Figure 24. Shift Count Breakdown 46

HTM-xxx-0 Cray Research Proprietary ix

December 19, 1994

Preliminary Information

Figures (continued)

Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.

Figure 31.

Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.

Figure 44.

Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.

Scalar Left Single Shift 47
Scalar Right Single Shift 48
Scalar Left Double Shift 49
Scalar Right Double Shift 50
Example of Scalar Left Single-shift Instruction 51
Example of a Scalar Register Left Double-shift
Instructioncciiiiiiiiiiiiiiennn. 53
Example of a Scalar Register Right Double-shift
Instructionot 54
ANOptioniviiiiiiiii ittt 56
C9 OperationModecoviiinnn.n. 60
AMOptionInputsccoviiiiiiiiin. 61
WriteDataPatht 69
Read Data Path for Pipe O (Even Elements) 71
Read Data Path for Pipe 1 (Odd Elements) 72
Vector Register Write Block Diagram (Pipe 0) 73
Vectors 0 through 3 Pipe 0/1 Read Data Path 75
Vectors 4 through 7 Pipe 0/1 Read Data Path 7T
Vectors O through 3 Pipe 0/1 Write Data Path 79
Vectors 4 through 7 Pipe 0/1 Write Data Path 81
Vector Register Decode Bit Fanout (Pipe 0 and 1
Path1Only)coiiiiiiiiiiiiiinann. 83
Vector Register Decode Bit Fanout (Pipe O and 1
Path2Only)coviiiiiiiiiiiiiiiian. 85
SRegistertoVectorsccviieiniinnn. 87
Memory Data to Vectors (Even Elements) 89
Meﬂiory Data to Vectors (Odd Elements) 91
Vector Logical Block Diagram 94
Vector Merge Operationccoounenn. 96
1750/0 InStructionscoveeeennenonnnns 98
Function of the 175ij4 Instructions 99
IotaPipe 0 e, 100
Function of the 070ij1 Instructions 101
Vector Add Block Diagram 105
Shift Count Breakdown 108
Vector Shift Block Diagram 109
Cray Research Proprietary HTM-xxx-0

Preliminary Information December 19, 1994

Figures (continued)

Figure 57. VectorRightShift
Figure 58. Vector Right Double Shift
Figure 59. Vector Transferc.ccvvunn...
Figure 60. Vector Compresscoeeeeveueenennnnn.
Figure 61. VectorExpandc.ciivennn..
Figure 62. Vector Population/Parity/Leading Zero Block
Diagramcoiiiiiiiiiiiiii i
Figure 63. Floating-point Add
Figure 64. Floating-point Add Sticky Bits
Figure 65. Floating-point Format
Figure 66. Floating-point Add Flowchart
Figure 67. Newton’s Method for Approximating Roots
Figure 68. Reciprocal Approximation Functional Unit
Figure 69. Floating-point Multiply Block Diagram
Figure 70. Floating-point Multiply First-level Summation
Figure 71. Vector Storage of Bit Matrices
Figure 72. Mathematical Representation of Matrices A and B . .
Figure 73. B Matrix and B! Matrix Relationships
Figure 74. Multiplicationof AandBt.....................
Figure 75. Bit Matrix Multiply Block Diagram Pipe 0
Figure 76. Bit Matrix Multiply Block Diagram Pipe 1
Figure 77. IC Options BitLayout
Figure 78. ICBlock Diagram
Figure 79. ICOptionTermscccvvvuenennnnn..
Figure 80. Memory-to-Instruction Buffers (Path 1)
Figure 81. Memory—to-Ihstruction Buffers (Path2)
Figure 82. Common Memory Path Code 1 Fanouts
Figure 83. Common Memory Path Code 2 Fanouts
Figure 84. Instruction Issue Block Diagram
Figure 85. Format for a 1-parcel Instruction
Figure 86. Format for a 3-parcel Instruction
Figure 87. Format for a 4-parcel Instruction
Figure 88. Bjk (Exchange P) Fan-outBits
Figure 89. JA-to-IC Parcel Data for Branches
Figure 90. Path 1 CHtoICtoJAOption
Figure 91. Path2 CHtoICtoJAOption
Figure 92. JA Option Block Diagram

HTM-xxx-0
December 19, 1994

Cray Research Proprietary
Preliminary information

Xi

Figures (Continued)

Figure 93. Instruction Data Distribution A/S/B/T Registers ... 195
Figure 94. CIPDistributionocoiiiiiiiienn.. 196
Figure 95. CIP Distribution to HF Option 197
Figure 96. Instruction Data Distribution to VA and BT Options 198
Figure 97. CIPDistributionoooiivnit. 199
Figure 98. CIP Distribution to HF Option 200
Figure 99. ExchangePackage c.at. 206
Figure 100. RTC and PCI Block Diagram 214
Figure 101. Performance Monitor Block Diagram 219
Figure 102. Status Registerscoiviiienann... 221
Figure 103. CacheLayout ciiiiiiiiant. 228
Figure 104. Memory Addressesccceeveenennnnn.. 229
Tables
Table 1. A/S Register Entry Codes 9
Table 2. B/T Register Instructions 16
Table 3. A/S AdderInstructionsciiiian.. 19
Table 4. Scalar Logical Functional Unit Instructions 22
Table 5. Address Logical Functional Unit Instructions 23
Table 6. Scalar Mask Instructions 23
Table 7. Address Mask Instructions 24
Table 8. Transmit nm to Si Instructions 25
Table 9. Scalar Pop Count/Parity and Leading Zero
Count Instructionscoiiuiiinnnn.. 28
Table 10. Address Register Shift Instructions 31
Table 11. Scalar Shift Instructions 43
Table 12. Recode Groupé 56
Table 13. Vector Register Optionsccvue.n.. 64
Table 14. VM/VRDataSteeringccovvvvenveen... 68
Table 15. Vector Logical Instructions 95
Table 16. Vector Merge Instructions 95
Table 17. Vector Mask Operations 97
Table 18. Vector Mask Test Operations 98
Table 19. Iotalmstruction...............ovvuiiennnnnn. 99
Table 20. Vector Add Instructions 103
Table 21. Vector Shift Instructions 107
xii Cray Research Proprietary HTM-xxx-0

Preliminary Information December 19, 1994

)

Tables (continued)

HTM-xxx-0
December 19, 1994

Table 22.
Table 23.
Table 24.
Table 25.

Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.

Vector Population/Parity Instructions 118
Floating-point Add Functional Unit Instructions ... 123
Reciprocal Approximation Values 135
Floating-point Reciprocal Approximation
Instructionsccooiiiiiiiiiiiinnnnn 139
Floating-point Multiply Functional Unit Instructions 146
Bit Matrix Multiply Instructions 157
ICOptionsccvviiniiiiiniiiiinnnann, 163
Read-outPathCodes 179
Interrupt Modes Register Bit Assignments 208
Flag Register Bit Assignments 209
LATFieldscoiiiuiiiiiiiiiiiiiiinn., 211
RTC and PC Instructions 215
Performance Monitoro oiaut 216
Performance Monitor Instructions 217
Status Register (SRO)ccovien... 222
Status Register 4 (SR4)o 223
DestinationCodescceiviiiennnnn. 223
Status Register 7 Bit Definitions 224
Register Parity ErrorCode 224
CHOptionBitscoiiiiiiinien... 230
Scalar Cache Instructions 230
Cray Research Proprietary Xiii

Preliminary Information

/l

CP02 MODULE

CP02 General Description

HTM-xxx-0

The CP02 module contains the central processing unit (CPU) for the
CRAY T90 series computer systems. There is one CPU per CP02 module.
The CRAY T90 series CPU is compatible with the CRAY C90 series
CPU. This means that code compiled on the CRAY C90 series system

p :; will run on a CRAY T90 series system.

odule components. Figure 2 and Figure 3 show the basic
1ons of all options on a CP module. Figure 4 shows a

tacks in the system. A CRAY T94
s four modules. A CRAY T916
& Mgy as eight modules. A

';' bsoQf as S many as 8 modules.

CRAY T94 system, or with the system intercd el
larger systems. :

Cray Research Proprietary 1

December 19, 1994 Preliminary Information

CP0O2 Module CPU

Module Assembly Components

Refer to Figure 1 for an illustration of the CP module assembly
components. This illustration is provided to show the basic components
that are part of all mainframe modules. Sizes of various components
differ between modules.

A Flow Block, Board 1 H Fiber-optic Coupler
B Optical Receiver l Flow Block, Board 2
C PC Board Edge Shim J PC Logic Board 2
D Maintenance Connector Flex Assembly K Outer Rail
E Fiber-optic Spool Assembly L Inner Rail
F Voltage Regulator Board Assembly M PC Logic Board 1
G Maintenance Connector
Figure 1. CP Module Assembly Components
2 Cray Research Proprietary HTM-xxx-0

Preliminary Information December 19, 1994

\ .

CPU CP02 Module
HBO0O0O
/o
Control
NAO00O RCO000 TZ000 HMO000 MZ000 TWO010 RCO001 NAQO1
Flt Mult Recip Clock Logic BS Fanout | NotUsed | pegip Fit Muit
Monitor
TWO000 NG000 RB000O FAQ00 TWO006 FAQO1 OA002 RB0O1 NCO001
NotUsed | FitMmult Recip Fit Add Not Used | Fit Add BMM Recip Fit Mult
Coeff Coeff and
Parity
TWO002 Y/MOO? AUO000 VM006 SS000 OA000 OA001 VMO14 VMO15
ector even A/S reg Vector even . BMM BMM Vector odd |Vector odd
NotUsed g git 60-63 R Bit 52-55 §Qg‘ and and R Bit 5255 R Bit 60-63
W Bit 56-63 Bits 48-55| W Bit48-59 | Parity Parity W Bit 48-55 W Bit 566!
HDO0O VM005 ATO000 VM004 JAOO0O VAOQGO CG000 VMO12 VMO13
Eg:l: ange Vector even| A/Sreg | Vector even| lssue Vector Checkbit | Vector odd | Vector odd
R Bit 44-47 R Bit 36-39] Control Controt | Genera- i R Bit 4447
Package |w Bit 40-47| Bits 32-39 | W Bit 323 tion B] W Bit 4041
VF000 VMO003 ASQ001 VMO002 BT000 CD000 CB000 VMO10 VMO11
Vector \éecfor even| A/Sreg [Vectoreven| B/T/Preg| Ports gons Vector odd | Vector odd
Control Bit 28-31 R Bit 20-23] . E R Bit 20—23| R Bit 28-31|
W Bit 24-31} gits 16-23 | W Bit 16-23 gl'tf: 32-127 ggghe 20231 W Bit 24-31
TWO004 VMOO1 ARO0C VMO0O00 CHO10 CHO008 CAQ000 VMO008 vMO009
Not Used Vector even| A/Steg Ivector even | Data Mux gata:]Mux Ports Vector odd | Vector odd
pBt1S o7 |RBit4-7 Sohs | GENe | A RBit4-7 | RBit12-1§
W Bit 8-15 | Bits WBIt0-7 | oo g5 48-51 WBito—7 | W Bit8-15
HAQ000 CC000 1C000 CH002 CHO14 CHO012 CH000 1C002 VF002
ifOtoMem | Ports Ianftf Data Mux | Data Mux gata Mux (D3ata Mux Ianftfers Vector
uffers Cache Cache ache ache .
SBCDBD D Bit 0-7 4_97 238—31 2407 0-3 Blt 16-23 Control
Bit 32-39 | 36-39 60-63 | 56-59 32-35 | Bit48-55
HAQ02 CF004 CF000 CK000 CHO006 CHO004 CK002 CF002 TWO008
. ; Data Data Mux | Data Mux | Data :
I/0 to Mem | Write data | Write data . . Write data
SBCDBD | conflicts | conflicts | Steenng ?gf?g %?_?qe steering | conflicts | Not Used
44-47 40-43
HGO00 Cl000 GJooo Cloo4 CJ0oo4 Clo02 CJoo2 Clo06 CJ0oo6
Maint. Section Section Section Section Section Section Se_Cﬁon Sectic_)n
Channel | Driver Receiver | Driver Receiver | Driver | Receiver | Driver Receiver
Section 0 | Section 0 | Section 4 | Section4 | Section2 | Section2 | Section6 | Section &
L_ZB008 I [ZB000 | |l ZB004 | | ZB002 | L_ZB0oo6 |
Figure 2. Option Layout Board 1
HTM-xxx-0 Cray Research Proprietary

December 19, 1994

Preliminary Information

Preliminary Information

CP02 Module CPU
HCO000
I/O relay
data
NDCO1 AMOO01 TWO11 HMO01 AMO002 NDOGO
Integer Logic Integer Fit Mult
Fit Muit Mult Not Used Monitor Mult
NBQO1 RAOO1 OAQ005 FBOO1 TWO007 FBO00O RAQQO NBG0O0O TWQO1
. BMM Fit Add .
Fit Mult Recip and E'; :ﬁd NotUsed | pyoq Recip FitMult | Not Used
Parity nent nent
VRO15 VR014 OA004 OA003 VS000 VR006 AU00D1 VR007 TWO003
Vector 7 | Vector6 | BMM BMM Vector Vector 6 A'S re Vector 7
Odd Odd and and Shift Even 9 Even Not Used
Bits 56-59 | Bits 48-51 | Parity Parity Bits 48-51 | Bits 56-63 | Bits 56-59
VR013 VR012 CG001 VAQO1 JAOO1 VR004 AT001 VR005 HDOO1
Vector5 | Vector4 | Checkbit |\, Vector4 | A/ re Vector5 | CIP
Odd Odd ?enera- C(ce)ntrol gsute | Even g Even Exchange
on .
Bits 40-43 | Bits 32-35 | ontrel 1 Bits 32-35 | Bits 40-47 | Bits 40-43 | Package
VRO11 VR010 CB001 CD001 BTOO01 VR002 AS002 VRO003 VFO001
Vector 3 | Vector2 Port B/T/P reg | Vector 2 AS reg Vector 3 Vector
Odd Odd Port E Even Even Control
_ , C Cache Bits 16—31 ,
Bits 2427 { Bits 16-19 Controi Bits 48-63 | Bits 16-19 Bits 24-31 | Bits 24-27
VR009 VRO008 CA001 CHO09 CHO11 VRO000 AS000 VR001 ANOOO
Vector 1 Vector 0 Port DataMux | DataMux | Vector0 | A/Sreg Vector 1
Odd 0Odd B,B C%asc_f;% ggfgg Even Even Q?Jclitzess
Bits 8—11 | Bits 0-3 | a8-51 52-55 Bits0-3 | Bits8-15 | Bits 8-11
VF003 1C003 CHOO01 CHO13 CHO15 CHO003 1C001 TWO005 HAOQO1
Vector Inst DataMux |Data Mux |pDataMux |DataMux |[Inst /O
Control Buffers Cache Cache Cache Cache Bufiers Not Used | SECDED
Bit 24-31 | 0-3 24-27 28-31 47 Bit 8-15
Bit 5663 | 32-35 56-59 60-63 36-39 Bit 40-47
TW009 CFQ03 CKO003 gHOOSI gHO(IJ\; CKO001 CF001 CF005 HAO003
. Data ata Mux [Data Mux Data ; .
NotUsed |Writedata | g o0nny |Cache [Cache Steering | Writedata | writedata | | .
conflicts 811 12-15 conflicts | conflicts :
Cache Cache Channel
Control 40-43 4447 ~_Control
Cioo7 CJ007 Clo03 CJoo3 Clo05 CJoos Cloo1 CJ001 HF000
Section Section Section Section Section Section Section Section Perf
Driver Receiver Driver Receiver | Driver Receiver | Driver Receiver Monitor
Section 7 | Section 7 Section 3 | Section3 | Section5 | Section5 | Section 1 | Section 1
| ZB007 I I ZB003 | | ZB005 | | ZB001 | | ZB009 |
Figure 3. Option Layout Board 2
4 Cray Research Proprietary HTM-xxx-0

December 19, 1994

“‘\“,/

CPU CP0O2 Module

| Comp/Exp | Comp/Exp
| Comp Index | Comp Index
| Int Multiply | Int Multiply
| Logical2 | Logical2

Vector Registers * o0y ontol Pop/Parity/LZ]Pop/Parity/LZ]
I—’——L Shift Shitt
Vector Mask je

- Ak
T s 1 Logical | Logical
Add Add
Vj Vector Vector

[(AQ) + (AR, [(AD) + (VK]
[(AQ) + (AR, [{AD) + (VK]

- ™ Functional | Functional
[(A0) + (AK)], [(AD) + (VK] _ v Winits it
> Pipe 0 Pipe 1
Sj Bit Matrix Multiply
o | Recip Appr | Recip Appr
_; ‘ Sj vj | Multiply | Multiply
17 Real-time Clock| Si Vk | Add Add
. Vi | Shared Shared
Status Si Si Vector/Scalar] Vector/Scalar
I/O Data to Sj Functional Functional
[———— LOSP, HlSP, programmab|e Sj /. Units Units
VHISP Channels Clock Interrupt } /] Sk ol Pipe0 Pipe 1
e
Performance Si

- Add _I

“| Scalar

Functional
Units

Log ‘ .
Pop/Parity/LZ] Ai
T77 .
Scalar Registers rl—__
(AD) si 9 Shift Ak l
T A Logical
| _S4 |

Common Exchange Al
Memory | _[(Ah) + (pnm)]_[Data Control ~ Vector Ak
- Control
Vector -
(A0) Length Muttiply
Add
Address
o] Functional
Units
P To A Registers <—u] Shared Resources
+1 : I/O Status and Controi
+3 . SB and ST Registers
+4 To S Registers <a—» Semaphores
Instruction
A
> NIP CIP
;@._.} Execution
»1 LIP1
0
37
Figure 4. CPU Block Diagram
HTM-xxx-0 Cray Research Proprietary 5

December 19, 1994 Preliminary Information

ADDRESS AND SCALAR REGISTERS

The address and scalar registers are located on the same options. The
following subsections describe the address and scalar registers.

Address Registers

The address and scalar registers are contained on eight options: one AR
option, three AS options, two AT options, and two AU options. Each
CRAY T90 series CPU contains eight address registers designated AO
through A7. Each register is 64 bits wide (32 bits in C90 mode) and
performs the following functions:

Determines addresses for memory references

Provides memory reference indexing

Provides loop control

Determines shift counts

Provides I/O channel set-up

Determines I/O channel status

Receives results from scalar leading zero and pop count
Determines vector length

Provides an exchange address (monitor mode only)

Provides an index for shared registers and B and T instructions
Provides operands and results for address add and address multiply
Transfers data to and from scalar registers

Provides integer-to-floating-point conversion

As shown in Figure 5, the AR000, AS000, AS001, AS002, AT000,
AT001, AU00O, and AUQO1 options each contain an 8-bit slice of the
address registers. Figure 5 also illustrates the input and output data paths
for the address and scalar registers.

HTM-xxx-0 Cray Research Proprietary
December 19, 1994 Preliminary Information

Address and Scalar Registers

cPU

AU001
Bits 56 — 63
AU000
Bits 48 - 55
AT001
Bits 40 — 47
AT000
Bits 32 ~ 39
AS002
Bits 24 - 31
AS001
Bits 16 - 23
AS000
Bits 8~ 15
AR000
Bits 0—7 . .
Floating-point Add
. - AA — Operand (S
AN) Address Multiply Results ~ |1AA = |AH QAA-OAH Op (S) — = (FA, FB)
_ Floating-point A
(HD) Shared Data IBA ~IBH OBA-OBH Operand (SK) .
Constant Data ICA—ICH Floating-point Multiply '
(JA) OCA—-OCH Operand (S)) - (NB)
gT) 2L Register Daia DA IDH,. Floating-point Muitiply
Floating-point Add Results IEA - IEH ODA - ODH _ Operand (k) > (NA)
(FA) o) CM Address to Vector
Floating-point OEA-OEH Pipe0 —+ (VM, VR)
(D) Multiply Resuts IFA - IFH CM Address to Vector '
OEI-QEP Pipe1 o
Floating-point Reciprocal = (VM, VR)
Approximation Results IGA —IGH - j i i
(RA) pp o OFA—-QOFH Sjto Shift, Pop/Panty/LZ/VMt (SS)
S8) Shift Data, VM IHA-- IHH OFI-OFP Ajto Shiit, Pop/Panty/LZNM> (SS)
] _ Address Multiply
(VR) Vj(Even) Data to Scalar _ 1A —1IH OGA—-OGH Operand (A i) -
Vj (Odd) Data to Scalar 1l - 1IP Address Multiply
(VR) > OHA —~OHH _Operand (AK) AN
CH Common Memory Path1 _ IJA — IJH o
CH OA-OH _AitoSharedDataPath _ .~
oy Sommon Memory Path2__IKA — IKH > (HD)
CH) > OJA-OJH__Aito B/T Registers and CM___
ony BMM ISA — ISH BT
(©A) > OMA -OMH _Ah Address to CMPorte .
ONA -ONH Constant Data to CM Port E (D)
OPA—-OPG Akto Vector Control - (VA)
OQA-OQH Akto Scalar Shift Count > (SS)
Figure 5. Address and Scalar Register Data Paths
Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

\\-//

CPU Address and Scalar Registers

Entry Codes
As part of the instruction decode on the JA option, the JA option sends an
A/S entry code to the A/S register options; this code generates the control
necessary to complete the operations. The operand data is then
transmitted to the appropriate resources, and a destination delay chain is
entered on the option. Refer to Table 1 for the address/scalar (A/S)
register entry codes and to Figure 6 for an illustration of the A/S control
terms.
Table 1. A/S Register Entry Codes
Entry Code Instruction

0 020/ Constants

1 023i0 Sj

2 023if1 VL data

3 024jjk B data

4 030,031ijk Add

5 026ij (0 — 3), 027§ (0— 1) poplpar/iz

6 032jjk A multiply

7 022jjk, 04 (2 —3) jk/mask data

10 N/A

11 073i(2-3) 0 VM data

12 N/A

13 N/A

14 04 (4 —7) ijk, 05 (0 — 1) ijk Logical

15 N/A

16 05 (2 — 5) ijk, 05 (6 — 7) ijk Shift

17 N/A

HTM-xxx-0 Cray Research Proprietary 9

December 19, 1994 Preliminary Information

Address and Scalar Registers

10

CPU

AR000
(JAOOO) A/S Register Read-out Code ILA-ILB _ ﬁggg?
(JAOOO) Enter CPU VL ILC | Asoo2
(JAOOO) Go 071/0,1,2)k ILD |
(SS000) Pop/Parity/LZ (AR00O Only) IMA-IMG_ |
(JA000) A/S Register Entry Code INA-INC
(JADOO) A/S Entry Code Valid IOA-10D
(JAOOO) A/S Entry Code Valid IOA—-10D |
(JAOQQ) Ak hData IPA—IPL _
(VR) Memory Path 1 Read Code IQA-IQE
(VR) Memory Path 2 Read Code IRA - IRE
(HD0OO) Shared Data Code IUA - IUE
(HDOO1) Enter Exchange VL (AR00O Only) IVA
(IC001) Exchange Active VB »
(AS002) Ak Negative (32-bit Mode) IvC |
(AUOO1) Ak Negative (64-bit Mode) IVD |
(VR0O4) Exchange Path 2 Select IVE
(IC000) Triton Mode 1IXA -
@ AOO 1) A/S Register Read-out Code ILA-ILB -
(WJAOO1) Enter CPU VL ILC
(JAD01) Go 071/0,1,2)k ILD _
(JACO1) AJS Register Entry Code INA — INC
(JAQO1) AJS Entry Code Valid IOA - 10D _
(JAOO1) A/S Entry Code Valid IOA—-10D
(JA0O1) i, j, k, h Data IPA —IPL

Memory Path 1 Read Code . IQA - IQE
(VR) Memoryral T Headbode WA LT)

(VR)
(HDQOO1)

(1C002)
(AS002)
(AU001)
(VR0O4)

(1C001)

Memory Path 2 Read Code IRA —IRE
Shared Data Code IUA - IUE _
Exchange Active VB

Ak Negative (32-bit Mode) IVC

Ak Negative (64-bit Mode) _IVD |
Exchange Path 2 Select \VE :
Triton Mode IXA -

Figure 6. A/S Control Terms

Cray Research Proprietary
Preliminary Information

AT000
ATOO01

AU000
AUO001

HTM-xxx-0
December 19, 1994

cPU

Address and Scalar Registers

A Register Memory References

Refer to Figure 7 for an A/S-register-to-memory block diagram. The
address registers write or read 1 word of memory per instruction. The B
registers provide intermediate storage for the address registers. B registers
perform memory block references that enable a group of operands to be
read from memory with one instruction. These operands are then used by
the A registers to generate results that are sent to the B registers and
block-stored to memory. Using the B registers as buffer storage is
advantageous because it takes fewer clock periods to do a block reference
than to issue several individual address or scalar references.

The A registers also have an access path to cache memory. This provides
access to common memory data without having to reference memory
directly. If the requested address resides in cache, a cache hit is initiated
and the data is read from cache memory instead of common memory.

Special Register Values

HTM-xxx-0
December 19, 1994

The AO register has special features that the other A registers do not have.
The AO register holds the starting address for all block transfers for the

B, T, and V registers and branch control. A0 is the only register that can
be tested for equal-to-zero, not-equal-to-zero, positive, or negative
conditions using AO conditional branch instructions. This register also has
a special feature for reading data.

If AO is specified as an operand in the 4, j, or k field of an instruction, it
will not send the actual contents of the register. Instead, the register sends
a value of 0 if AQ is used in the j or £ field, or it sends a value of 1 if AQ is
used in the & field. If AQ is used in the i field, the actual contents of the
AO register are sent.

Because the A registers in this system are now 64 bits wide, special Triton
mode instructions have been implemented. These instructions are part of
the extended instruction set (EIS). These instructions make the A registers
functionally equal to S registers and enable A registers to be shifted and
logical operations to be performed. To execute these instructions, an EIS
005400 instruction must precede the actual A register instruction. If a
Triton mode instruction is issued while the machine is in C90 mode, the
results of the operation are undefined.

Cray Research Proprietary 11
Preliminary Information

Address and Scalar Registers

itk

CPU

CG000

Memory
Write Data

CG001

Memory

Write Data

CH002
CHO000
CM Path 1
Read Data BT000
& Bits 0— 15, 32 - 47
ool ICA~ICP _ ’ OCA - OGP,
Fﬁ_ ox - 9cA—OCP,
Fm_ (-
CHO010 IDA-IDP
erose OAA - OAP,
CM Path 2 B Recist OBA — OBP
egisters
<
Read Data e Y 5
2,800
U,\ (Y \
Read Data
CM Path 1 BT001 OCA —OCP,
i - - ODA -QDP
CHO001 IEA—IEP Bits 16 — 31, 48 - 63
CHO003
! IFA—IFP
OAA - OAP,
OBA - OBP

»Read Data CM Path 2

CH009
CHO11

I

Figure 7. Memory to A/S-register Block Diagram

B/T Registers

Cray Research Proprietary
Preliminary Information

A/S Registers

HTM-xxx-0

December 19, 1994

N

L /,‘

cPU

Address and Scalar Registers

Scalar Registers

The CPU contains eight scalar registers that are designated SO through S7
and are 64 bits in length. The scalar registers are contained on the AR,
AS, AT, and AU options (refer again to Figure 5).

The scalar registers send operands to, and get results from, the scalar
functional units and the floating-point functional units. The functional
units perform integer and floating-point arithmetic as well as logical
operations. The scalar registers read and write central memory through
the T registers and also read and write the data cache. In addition, there
are paths to the vector registers, vector mask, real-time clock, status
register, programmable clock interrupt, and the performance monitor.

Instruction Issue

When an instruction issues, the scalar register receiving the data is
reserved until the result is latched in the register. If an instruction in the
current instruction parcel (CIP) register requires the reserved result
register, that CIP instruction holds issue until the register is available. The
S0 register, however, is an exception. If the SO register is reserved as a
result register and is needed as an Sj or Sk operand in a following
instruction, no hold issue occurs because the SO register has special
register values as an operand.

The issue hardware also develops scalar functional unit codes. These
codes select the input terms to be gated from the proper functional unit
into the scalar register multiplexer.

S Register Memory References

HTM-xxx-0
December 19, 1994

The scalar registers write or read 1 word of memory per instruction. The
T registers provide intermediate storage for the scalar registers. T
registers can perform memory block references, enabling a group of
operands to be read from memory with one instruction. These operands
are then used by the scalar registers to generate results that can be sent to
the T registers and block-stored to memory. Using the T registers as
buffer storage is advantageous because it takes fewer clock periods to do a
block reference than to issue several individual scalar references.

The S registers also have an access path to cache memory. This provides
access to common memory data without having to reference memory
directly. If the requested address resides in cache, a cache hit is initiated
and the data is read from cache instead of from common memory.

Cray Research Proprietary 13
Preliminary Information

Address and Scalar Registers CPU

Special Register Values

SO0 has special register values when Sj or Sk is used as an operand. When
the j field equals O, the value sent out is 0, no matter what value is stored
in SO. When the % field is 0, bit 63 is set to a 1.

Lower/Upper Scalar Register Load

It is possible to load either the lower- or upper-half of a scalar register
with a 32-bit quantity. The following four instructions load constants into
scalar registers.

e 040i00 mn Si exp: loads the quantity nm into the lower 32 bits of
register Si. The upper 32 bits are cleared.

® 04100 mn Si exp: loads the one’s complement of nm into the lower
32 bits of register Si. The upper 32 bits are all 1’s.

e 040i20 mn Si exp: loads the quantity nm into the lower 32 bits of
register Si. The upper 32 bits are unchanged.

e 040i40 mn Si exp: loads the quantity nm into the upper 32 bits of
register Si. The lower 32 bits are unchanged.

14 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

B AND T REGISTERS

HTM-xxx-0
December 19, 1994

Each CPU contains 64 (100g) B registers and 64 T registers. The B and T

registers act as intermediate registers for the address and scalar registers,
respectively. Each B and T register contains 64 bits.

Two BT options, BT000 and BT001, contain the B and T registers. Each
option contains 32 bits of each register. BTO00 contains bits 00 through
15 and 32 through 47. BTO0O0! contains bits 16 through 31 and 48 through
63. As shown in Figure 8, the B and T registers can be loaded from the
address and scalar registers, common memory, and branch control.

AiLength (BT0O1 Only) NA-IG_| BTOO1
1 Bits 16 - 31,
48 - 63
IAA - |AP,
FromAiorSi 1BA—IBp._| 21000
>1 Bits0-15,
32-47
ICA-ICP,
CM Path 1 IDA — IDP
- OAA — OAP, o
IEA - IEP, OBA-OBP ToAiorSi -
CM Path 2 IFA - IFP
OCA - OCP,
ODA-ODP Aj,SiBorTCMData
P Entry on Branch IGA - IGP.
OEA - OEP Bjk to Branch Control -

Figure 8. B and T Register Inputs and Outputs

The B and T registers are used primarily for block transfers to and from
common memory. Refer to Table 2 for a list of the B and T register
instructions. Refer also to Figure 9 for a B/T-register-to-memory block

diagram.

Cray Research Proprietary
Preliminary Information

15

B and T Registers
Table 2. B/T Register Instructions
Instruction CAL Description
0050jk J Bjk Jump to Bjk
0051k° JINV Bjk |Jump to Bjk (invalidate instruction buffers)
024ijkP Ai Bjk Transmit (Bjk) to Ai
025ijkP Bjk Ai Transmit (Aj) to Bjk
034ijkP Bjk Ai, A0 | Transmit (A) words from common memory starting at
address (A0) to B registers starting at register jk
035ijkP ,AO Bjk,Ai | Transmit (Aj) words from B registers starting at register jk to
memory starting at address (A0)
036ijkP Tjk Ai, AD | Transmit (Aj) words from memory starting at address (A0) to
T register starting at register jk
037ijkP ,AO Tjk,Ai | Transmit (Aj) words from T registers starting at register jk to
memory starting at address (AQ)
074ijk Si Tik Transmit (Tjk) to Si
075ijk Tjk Si Transmit (Si) to Tjk

16

O denotes a maintenance mode instruction only.
D denotes a difference between Triton mode and C90 mode.

CPU

Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

“ ;

e

%
ﬁ c

B and T Registers

CG000

Memory
Write Data

CG001

Memory

Write Data

CHO004
CHO02 |
CHO000
et
CM Path 1
Read Data BT000
ICA - ICP its 0 — - OCA -OCP,
P » Bits 0 15, 32-47 ODA — ODP
chrim 5 IDA-IDP |
CHO08 OAA - OAP,
CM Path 2 OBA - OBP
B/T Registers
Read Data
Read Data
CM Path 1 BTO001 OCA - OCP,
v ODA — ODP
CHO01 IEA-IEP | Bits 16-31,48-63
CHO03
! IFA—IFP
OAA - OAP,
OBA — OBP
Read Data | om path 2 B/T Registers
CHO09
! CHO11
Figure 9. B/T-register-to-memory Block Diagram

HTM-xxx-0
December 19, 1994

Cray Research Proprietary
Preliminary Information

A/S Registers

17

ADDRESS/SCALAR ADD

The address and scalar registers are contained on eight options: one AR
option, three AS options, two AT options, and two AU options. Each
option contains 8 bits of the 64-bit address registers. These options also
contain the address and scalar add functional unit. Table 3 describes the
instructions that use the address and scalar add functional unit.

Table 3. A/S Adder Instructions

Instruction CAL Description

030ijkP Ai Aj+Ak | Transmit integer sum of (Aj) and (AK) to Ai

030/0kP Ai AKS Transmit (AK) to Ai

030jj0P Ai Aj+1S Transmit integer sum of (Aj) and 1 to Aj

031jkD Ai Aj-Ak | Transmit integer difference of (Aj) and (AK) to Ai

0310kP Ai —AKS | Transmit inverse of (Ak) to Ai

031joP Ai Aj-15 Transmit integer difference of (Aj) and 1 to Ai
060ijk Si Sj+Sk | Transmit integer sum of (Sj) and (Sk) to Si
061k Si Sj-Sk | Transmit integer difference of (Sj) and (Sk) to Si
0610k Si -Sk Transmit inverse of (Sk) to Si

D denotes a difference between Triton mode and C90 mode.
S denotes a special CAL syntax.

The address add and scalar functional units perform a 64-bit add; each
option performs the add function on the bits of the operands contained on
that option. Carry and enable bits generated during the add are passed on
to the next option, as shown in Figure 10. The 64-bit result is stored in the
destination register in 4 clock periods.

HTM-xxx-0 Cray Research Proprietary ‘ 19
December 19, 1994 Preliminary Information

Address/Scalar Add CcPU
ARO OSA ISA
~1 ASO NOTE: ISA —ISG and OSA — OSC terms are
Bits adder carries. ITA-ITF and OTA-OTC
0-7 terms are adder enables.
ISA
0SB —™ ASt
L AS2
ISA
osc — ATO
| ISD_
A1 AS2 OSA ATO
ISA . OTA -
AU0 Bits
osb 2431 o | AT
AU1 >
ISD
ISB OTB >
aso B4 | Ast me, | AV
OTA >
AS2
Bits ITA_ S
8-15 — OSA ISE
AT1
osB ISE, OTA ITD_
el 328“%9]
OTB > ISE
ITA | AT1 0SB 1 AUO
_ oTB >
ISB_| AU1
0sC i ITD
oTC >
ma_| AYT
ey 0OSA ISC, r2 ISF_
OTA ITB AT OSA AUO
i o Bits >
168l_tsg3 40-47 OTA
ISC_ e | AU
0SB "| Ao >
oTB >
e | AT
AUO
isc. OSA ISG_ AUt
osc AUO Bits |oTA ITF |
> 48-55
OTC .
e | AV
Figure 10. Carry Bit and Enable Bit Fanouts
20 Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

ADDRES /
SCALAR LOGICAL

S’

HTM-xxx-0
December 19, 1994

The scalar logical functional unit performs logical operations on the
scalar registers. Logical operations include OR, AND, and XOR

operations and merges.

Refer to Figure 11 for an illustration of the address/scalar registers. The
scalar registers are contained on eight options: one AR option, three AS
options, two AT options, and two AU options. Each option contains 8 bits
of the 64-bit address registers. These options also contain the scalar
logical functional unit. The operands are latched and the logical operation
is completed in 1 clock period; the result is then entered into the proper

destination register.

AU001 Bits 56 — 63
AU000 Bits 48 — 55
AT001 Bits 40 ~ 47
ATO000 Bits 32 - 39
AS002 Bits 24 — 31
AS001 Bits 16 —23
AS000 Bits8-15
AROCO Bits 07
Address/Scalar Register |

(JAD) hijk Instruction Data IPA—IPL _ A/SO N

A/S Register AS1 LASS -
(CHO) Data Path 1 WA-WH _ AlST A/S2 L AKSK

A/S Register AIS3

CHO Data Path 2 IKA—IKH A/S4 i |
(CHO) o — A/S5 | | Operand
A';/Sl A/S6 Select

AJ/S Entry Cod INA - INC as7| %

(JAD) o NCf | select [
[B

A/S Entry Code Valid I0A -10D

(JAD) 4 > Logical (= | |
Functional Unit |

Figure 11. Address/Scalar Logical Block Diagram (Instructions 044ijk

through 051ijk)

Cray Research Proprietary
Preliminary Information

21

Scalar Logical CPU

Table 4 and Table 5 list the instructions used in the address and scalar
logical functional unit. The instructions listed in Table 5 must be
preceded by a 805 400 instruction; they are for Triton mode only.
215
er JRM(» edl Wnedruckio e
Table 4. Scalar Logical Functional Unit Instructions

Instruction CAL Description
044k SiSj&Sk Logical product of (Sj) and (Sk) to Si
0440 SiSj&SB Sign bit of (Sj) to Si
044i0 SiSB&Sj Sign bit of (Sj) to Si(Sj+0)
045ijk Si#SkK&Sj Logical product of (Sj) and one’s complement of (Sk) to Si
045i0 Si#SB&Sj | (Sj) with sign bit cleared to Si
046ijk SiSASk Logical difference of (Sj) and (Sk) to Si (Sj= 0)
046i0 SiSASB Transmit (Sj) with sign bit toggled to Si
046i0 SiSB\Sj Transmit (Sj) with sign bit toggled to Si (Sj# 0)
047 ijk Si#SASk Logical equivalence of (Sk) and (S)) to Si
0470k Si#Sk Transmit one’s complement of (Sk) to Si
047i0 Si#SASB Logical equivalence of (Sj) and sign bit to Si
047if0 Si#SB\Sj Logical equivalence of (Sj) and sign bit to Si (Sj= 0)
047100 Si#SB Enter one’s complement of sign bit into Si
050ik SiSfSi&Sk |Logical product of (S/) and (Sk) complement ORed with
logical product of (Sj) and (Sk)
050i0 SiSjiSi&SB | Scalar merge of (Si) and sign bit of (Sj) to Si
051ijk SiSjiSk Logical sum of (Sj) and (Sk) to Si
0510k SiSk Transmit (Sk) to Si
051i0 SiSjiSB Logical sum of (Sj) and sign bit to Si (Sj= 0)
051100 SisB Enter sign bit into Si
22 Cray Research Proprietary HTM-xxx-0

. Preliminary Information December 19, 1994

N

CPU

Scalar Logical

Table 5. Address Logical Functional Unit Instructions

Instruction CAL Description
044 ik Ai Aj&AKk Logical product of (Aj) and (Ak) to Ai
045ijk A #AK&AS Logical product of (Aj) and one’s complement of (Ak) to Ai
046k Ai AMAK Logical difference of (Aj) and (AK) to Ai (Aj= 0)
047 ijk Ai #ANAK Logical equivalence of (AK) and (Aj) to Aj
0470k Ai#Aj Transmit one’s complement of (AK) to Ai
050ik AiAjiAi&Ak | Logical product of (Aj) and (Ak) complement ORed with
logical product of (Aj) and (Ak)
051ijk AiAfAKk Logical sum of (Aj) and (AK) to Ai

Address and Scalar Mask

Another function separate from scalar logical but included in this section,
is address mask and scalar mask. Address and scalar mask functions use
instructions 042ijk and 043ijk. Refer to Table 6 and Table 7 for the scalar
and address mask instruction formats, respectively.

Table 6. Scalar Mask Instructions

Instruction CAL Description

042ijk Skcexp Form ones mask in Si exp bits from the right; jk
field = 100 - exp

042i77 Si1 Enter 1 into Si

042100 SH Enter -1 into S,
(Si= 177777 177777 177777 177777)

043ijk Si>exp Form ones mask in S/ exp bits from the left:
jk field = exp

043ijk Si#<exp Form zeroes mask in Si exp bits from the right:
Jk field gets 100g= exp

043000 Si0 Clear Si

HTM-xxx-0 Cray Research Proprietary 23

December 19, 1994 Preliminary Information

Scalar Logical

CPU

Table 7. Address Mask Instructions

Instruction CAL Description

042ijk Ai<exp Form ones mask in Aj exp bits from the right;
Jjk field = 100 - exp

042i77 Ai1l Enter 1 into Aj

042100 A-1 Enter -1 into A,
(Ai= 177777 177777 177777 177777)

043ijk Abexp Form ones mask in Ai exp bits from the left:
Jjk field = exp

043ijk Ai#<exp Form zeroes mask in Ai exp bits from the right:
Jjk tield gets 100g = exp

04300 AiO Clear Ai

The address/scalar mask functional unit is located on the SS options.
When the 042ijk or 043ijk instruction issues the jk field, it is sent from the
BTO option. The jk field determines how many 1 bits are set, and the 2
field bit O determines whether the one’s should be on the left or the right.
Figure 12 is a block diagram of the scalar mask functional unit.

SS000
Scalar
l-' Shift
Sji __ IAA—IDP Vector |AUOO1 Bits 56 - 63
(AR, ASAT ADY 1| ek ™ [AUO00 Bits 48— 55
pper MUX AT001 Bits 40 -47
Lower |~ ATO00 Bits 32 — 39
[isooz Bits 24 - 31
AS001 Bits 16— 23
" \GA - IGE AS000 Bits8—15
(BT) L — Address/ loredb> _|AR000 Bits 0~7
h I[EE _| " | Scalar Mask >
(0 >
Address/Scalar
Registers

24

Figure 12. Scalar Mask Block Diagram

Cray Research Proprietary
Preliminary Information

HTM-xxx-0
December 19, 1994

R—

CPU Scalar Logical

Transmit nm to Si, Si Upper, SiLower

Constant data can be transmitted to an S register by four different
instructions. Refer to Table 8 for a list of these instructions.

Table 8. Transmit nm to Si Instructions

Instruction CAL Description

04000nm Siexp Transmit expression = nm to Si, bits
0 through 31 (bits 32 through 63 = Q)

040220nm SiSiexp | Transmit expression = nmto Si, bits 0 through
31 (bits 32 through 63 unchanged) (2 = 0)

040i40nm Siexp:Si | Transmit expression = nm to Sj, bits 32
through 63 (bits 0 through 31 unchanged)
(2=1)

04100nm Siexp Transmit expression = one’s complement of

| nm to Si, bits 0 through 31 (S/bits 32 through
63 =1)
HTM-xxx-0 Cray Research Proprietary 25

December 19, 1994 Preliminary Information

ADDRESS/SCALAR POP/PARITY AND LEADING ZERO

The address/scalar population count functional unit counts the number of
I bits in the scalar (S) register or address (A) register of the & field of
instruction 026ijk (k=0 or 1 for S registers, and k=2 or 3 for A
registers). The maximum count could be 100g or 64¢ for the
corresponding number of 1 bits set in the A or S register, and the smallest
count could be O when no bits are set in the A or S register.

The £ field of the instruction determines whether or not the entire
population count is recorded in Ai. If it is a 026i70/2 instruction, all 7 bits
of the final population count are sent to the A register. When a 026ij1/3
instruction is issued, the entire S or A register is counted for the number of
1 bits set, but then only bit 0 of the count is sent to the A register. If bit 0
of the count equals 0, then the count has even parity, indicating an even
number of bits set. If bit O of the count equals 1, then the count has odd
parity.

Starting from bit position 63, the address/scalar leading zero count
functional unit counts the number of 0’s preceding the first bit settoa 1 in
a specified address or scalar register. The number of leading O’s is then
transferred to the lower 7 bits of an Ai register. To use the address/scalar
leading zero count functional unit, a 027ij0 instruction is issued when Sj is
the operand and Ai is the result register. The 027ij1 is issued when Aj is
the operand and Ai is the result register.

The SS option performs scalar pop/parity and leading zero functions.
Population count/parity and leading zero functions are performed on either
a scalar or an address register operand, with the result sent to an address
register. Table 9 describes the instructions that use the pop/parity and
leading zero functional unit, and Figure 13 illustrates the A/S
population/parity/leading zero count.

HTM-xxx-0 Cray Research Proprietary 27
December 19, 1994 Preliminary Information

Address/Scalar Pop/Parity and Leading Zero CPU

Table 9. Scalar Pop Count/Parity and Leading Zero Count Instructions

Instruction CAL Description
02600 Ai PSj Transmit population count of (Sj) to Ai
026i1D Ai QSj Transmit population count parity of (S)) to Ai
026i2ND Ai PAj Transmit population count of (A)) to Ai
0263ND Ai QAj | Transmit population count parity of (Aj) to Ai

027if0 Ai ZSj Transmit leading zero count of (S)) to Ai
027ifINT Ai ZAj Transmit leading zero count of (Aj) to Ai

D denotes a difference between Triton mode and C30 mode.
N denotes new instruction (not available on CRAY C90 series systems).
T denotes Triton mode only.

28

Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU Address/Scalar Pop/Parity and Leading Zero

ARO000
Bits 0—7
AS000
SS000
SjSiBits0—15 1AA—IAP
Bits 8- 15 AJAIBits0—-15 WA—IP 4-bit Sum
AS001 Sj/SiBits 16-31 IBA~-IBP
AJjAiBits 16 —31 IKA—IKP__
Sj/SiBits 32 -47 ICA-ICP A
Bits 16 — 23 AjAiBits 32 -47 ILA-ILP 8-bit Sum
AS002 Sj/SiBits 48 -63 IDA-IDP
AJAiBits 48 -63 IMA—IMP _|)
16-bit Sum
Bits 24 — 31 I
I D
ATO000 Go 026ix IED A |0 e
(JA0DO) ===~ 0 ™s ol |32-bitsum
_ t o T
Bits 32 — 39 (coop) BBt ___IEE ol g . AR000
t
- i Bits 0—7
(BT000) k Data IGD-IGF | o
Bits 40 — 47 n
AU000
Bits 48 — 55
AU001
Bits 56 — 63
Figure 13. A/S Population/Parity/Leading Zero Count
HTM-xxx-0 Cray Research Proprietary 29

December 19, 1994 Preliminary Information

ADDRESS REGISTER SHIFT

The address register shift function is performed on the SS option (refer to

Figure 14 for a block diagram of address register shift). This functional
unit performs both left and right single-register shifts and left and right

double-register (also referred to as long) shifts. All shifts are end-off with
zero fill. For example, if data is shifted more than 64, places in a single

shift, or more than 128;¢ places in a double-register shift, the data is
shifted off the register. The data is then lost, and 0’s are moved into the
register.

The shift unit performs only left shifts. The shift count for a right shift

must be in the two’s complement form; the unit then performs a left shift.

Refer to Table 10 for a list of the address register shift instructions

NOTE: To issue A-register-shift instructions, % 05400 (EIS mstructlon

must precede the shift instruction. If an
instruction is issued in C90 mode, the results are undefined.

Table 10. Address Register Shift Instructions

instruction CAL Description
052ijk A0 Ai<exp | Shift (Aj) left exp = jk places to A0
053ijk AQ Aiexp | Shift (Ai) right exp = 100g—jk places to AO
054ijk AiAiexp | Shift (Aj) left exp = jk places to Aj
055ijk AiAexp | Shift (Aj) right exp = 100g—jk places to Aj
056k Ai Ai, Aj<Ak | Shift (Aj) and (A)) left (AK) places to Ai
0560 AiAi, A1 | Shift (Aj) and (A)) left one place to Ai
0560k Ai AicAk | Shift (Aj) left (Ak) places to Aj
057ijk AiAj, AbAk | Shift (Aj) and (Aj) right (AK) places to Aj
057i0 AiAj, A1 | Shift (Aj) and (AJ) right one place to Ai
0560k AiABAk | Shift (Aj) right (Ak) places to Aj

HTM-xxx-0 Cray Research Proprietary 31

December 19, 1994 Preliminary Information

ce

YIS 1)sibay sseippy

uoiewloju| Aeuiwa.d
Aeysudold yoreasay Aesn

AR000 AR000
Bits 07 Bits 0 — 7
AS000 , AS000
SS >
) AiResuit .
Bits 8- 15 AjJAi Bits 0= 15 JA=1JP / f. OAA —OAP AiBits 0—15 Bits 8- 15
AS001 AJAi Bits 16 — 31 KA — IKP_| OBA —OBP AiBits 16 ~ 31 _} As001
AjAi Bits 32 — 47 ILA—ILP r,/ AjData OCA —OCP AiBits 32 — 47
Bits 16— 23 _ Bits 16 - 23
AjiAi Bits 48 - 63 IMA ~ IMP /. AiData ODA-ODP AiBits 48 — 63
AS002) AS002
JAOO1 via BT
jk Shift Count IGA - IGE |
Bits 24 — 31 Bits 24 — 31
AT000 Go A Type (Gate A Data) IEF] OHA — OHG Ak Shift Count - (VS) AT000
(JAOOO) _
hO Bit (1 = Right Shift IEE
Bits 32 — 39 (1C000) =Gt S - _| onH No Ak Overllow o Bits 32 - 39
ATO01 _ . ATOO1
Ak Shift Courit IHA = IH - ||
(AROOD) u Hd 1 shift Count (AK) .
Bits 40 — 47 Bits 40 — 47
, Ak=0 HA-IIG _|
o (AR/AS/AT/AU) > (AK) 7-63=0 s
Bits 48 — 55 Bits 48 — 55
AU0O1 AU001
Bits 56 — 63 Bits 56 — 63

7661 ‘61 18quiedag
O-XxX-W1H

Figure 14. Address Register Shift

ndo

RN

CcPU

Address Register Shift

Address Register Single Shift

The address register single-shift instructions are 052ijk through 055ijk.
The first two instructions perform left single shifts (052ijk) and right
single shifts (053ijk) on the content of the Ai register and always store the
result in AQ. The shift count is obtained from the jk field of the
instruction. The value placed in the jk field for the single-shift
instructions depends on whether it is a left or right shift. For a single left
shift, the value in the jk field is the number of octal places desired to shift
Ai. This allows a shift left of 0 to 77g places. For a right shift, the jk field
is equal to the two’s complement of the actual number of places desired to
shift right. If a shift of 243 places were required, 54 would be entered in
the jk field (two’s complement of 24 is 54).

When instructions are written in machine code, this operation must be
done by the person writing the code. However, when instructions are
written in CAL, this is done by the assembler. In the CAL instruction, you
would simply enter the shift count. This allows a shift right of 1 to 100g
places. Because the two’s complement of the shift count is used for a
single shift, a shift right O places is not possible.

The 054ijk and 055ijk instructions perform single shifts left or right on the
contents of Ai. However, these instructions store the result of the shift
back in Ai. These shifts overwrite the original contents of Si with the new
results from the shifter.

Address Register Double Shift

HTM-xxx-0
December 19, 1994

Double shifts work similar to single shifts and are end-off with zero fill.
The difference is that a double shift concatenates two S registers, forming
a 128-bit register. The arrangement of the two registers is determined by
the shift direction.

Double shifts always shift data into Si. The two instructions associated
with double shifts are 056ijk (left double shift) and 057ijk (right double
shift). The double shifts use the i and j fields to specify the two operand
registers; the i field also specifies the result register. The & field of the
instructions specifies the A register used for the shift count.

Because a double shift uses a 128-bit operand and shifts are end-off with
zero fill, a shift equal to or greater than 128 (200g) produces a result of
zero. The A register bits 0 through 6 are used as a shift count, providing a
shift of 0 to 177g. Bit 7 is checked, and if this bit is set to a 1, it causes the
double shift result to equal zero. For right double shifts, the shift count
does not need to be entered into the A register in two’s complement form;
the hardware performs this function.

Cray Research Proprietary 33
Preliminary Information

Address Register Shift CPU

Address Register Shift Count Description

The AR option sends 7 bits of shift count to the SS option. For both
single and double shifts, the breakdown of the shift count is the same,
except that the double shift has 1 extra bit (bit 6). Refer to Figure 15 for a

breakdown of the shift count.
Double
Shift
Only
6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Figure 15. Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted. '

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count.

If the jk field of a left single shift equals 27g and bits 4, 2, 1, and O are set,
the shift values would be 16, 4, 2, and 1, respectively. The sum of the
shift values would be 23 (16 + 4 + 2 + 1), therefore, the instruction would
shift left 23;¢ places.

The actual hardware that performs the shifts is the same for both left and
right shifts. However, the hardware performs only left shifts. Right shifts
are accomplished by the way in which data is entered into the shifter,
hence the use of two’s complement for right shifts.

34 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

.\\“/;

CPU Address Register Shift

Address Register Left Single Shift

Figure 16 is an illustration of how a left single shift is performed for a
054220 instruction. (Ai Ai<exp), shift A2 left jk places (20g) with data bit
10 set.

_ Bit
- ©

Address Shift Functional Unit

Bit 10

Shift A2 164 places
to the left, moving bit

@ 26 to bit position 10

- Bit 26 A2 Final Results

Figure 16. Address Register Left Single Shift

HTM-xxx-0 Cray Research Proprietary 35
December 19, 1994 Preliminary Information

Address Register Shift CPU

Address Register Right Single Shift

Figure 17 is an illustration of how a right single shift is performed using
left shifts and a two’s complement shift count. This example uses a
055254 instruction (Ai>Ai exp) that shifts Ai right exp = 100 — jk places to
Ai. In this example, data bit 45 shifts to the right 24g (20,0) places.

Notice that the jk field of the instruction 055254 contains 54g, which is the
two’s complement of 24g, causing A2 to be shifted to the left 54g places to

set bit 25 of the result.
A2 = Bit 45
Address Shift Functional Unit
________ 0 63 0
Bit 45 N
Shift 545

Bit 25

> AD = Bit 25

Figure 17. Address Register Right Single Shift

NOTE: On aright shift, it is the programmer’s responsibility to perform
the two’s complement of the shift count and supply that value to
the functional unit.

36 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

N

CPU

Address Register Shift

Address Register Left Double Shift

A2 (A) = Bit 10
A1 (A) = Bit 30
A3 = 40 — Shift Control

Double shifts are the same as single shifts except that they concatenate
two 64-bit registers to form a value. Figure 18 is an illustration of a left
double shift using a 056123 instruction (Ai Al, Aj<Ak). In this example,
we shift (A7) and (Aj) left (Ak) places to Ai, with A3 = 40g (321¢), Al
having bit 30 set, and S2 having bit 10 set. When a left double shift
occurs, the content of Aj is moved into Ai, and the two registers are
positioned as shown with Ai ahead of Aj.

Address Shift Functional Unit

Ai (A1) Aj (A2) 1

Bit . Bit .
@ Bit 30 @ Bit 10

1 _shitz2_ | b shits2 |

Bit 62

HTM-xxx-0
December 19, 1994

]

Bit 62 = A1 Final Result

Figure 18. Address Register Left Double Shift

Shifting Ai and Aj to the left 32 places puts bit 30 of A1 at bit position 62
and bit 10 of A2 at bit position 41. Because bit 41 of A2 did not make it
to the result register A1, it is lost. The result bit (bit 62) is then sent to the
Ai (Al) register. The Aj (A2) register remains changed.

Cray Research Proprietary 37
Preliminary Information

Address Register Shift CPU

Address Register Right Double Shift

To perform an address register right double shift, a 057ijk [(Ai Aj, Ai
>Ak), shift (Aj) and (Ai) right (Ak) places to Ai] instruction is used.
Figure 19 illustrates a 057123 instruction with the indicated parameters.

At = Bit 20
A2 = Bit 40
A3 = 60 — Shift Control
Address Shift Functional Unit
Aj (A2) Ai (A1)
A" ' -
Bit . Bit .
I{ 56 Bit 40 { 35 Bit 20
Shift 80 Shift 80
) '
Bit 56
»i Bit 56 = A1 Final Result

Figure 19. Address Register Right Double Shift

To right shift Aj and Ai using left shifts, the two’s complement is first
performed on A3, which currently equals 60g (481¢). Because the two’s
complement is 120g (or 1010000, or 801¢), the required shift can be
accomplished through successive shifts of 641¢ and 16 for a total shift of
8010 places. A left shift of 80;9 would move bit 40 of A2 to bit position
56 inside the dotted box and bit 20 of A1 to bit position 36 of A2.

Because bit 36 did not make it into the result register (indicated by the
dotted box), it is lost, and bit 56 is sent to the final result.

38 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU Address Register Shift

Left Single-shift Instruction

Refer to Figure 20 when reading the two following examples of the
address register left single-shift instruction.

Btis{2 1 0|2 1 0 |=jkField

32 16 8 4 2 1 = Shift Values Decimal

052ijk Resulis to AQ
054ijk Results to A

Figure 20. Example of an A Register Left Single-shift Instruction

Example 1: Write the instruction to shift A2 left 20;(places, putting the
results into AOQ.
Steps: 1. 052ijk - left shift instruction result goes to A0
2. jk field — shift count 20;¢ = 24g = jk field

3. 052224 - final instruction

Example 2: Write the instruction to shift A4 left 35;¢ places, putting the
results into A4.

Steps: 1. 054ijk — left shift instruction result goes to Ai
2. jk field — shift count 35,¢ = 433

3. 054443 — final instruction

HTM-xxx-0 Cray Research Proprietary 39
December 19, 1994 Preliminary Information

Address Register Shift CPU

Right Single-shift Instruction

The right single-shift count is the jk field of the instruction, which must
either be in the two’s complement form or 100g minus the number of
places to right shift. The following two examples show an address
register right single-shift instruction.

® 053ijk results to AO
® 055ijk results to Ai

Example 1: Write the instruction to shift A5 right 10;¢ places, putting
the results into AO.

Steps: 1. 053ijk — right shift instruction results to AQ
2. jk field — shift count in two’s complement equals 665
1030 = 12§ = 001010
two’s coinplement =110101

+1

110110 =663
3. 053566 — final instruction
Example 2: Write the instruction to shift A7 right 28;¢ places.
Steps: 1. 055ijk right shift instruction results to Ai
2. jk field — shift count in two’s complement equals
2810 =343 =011100
two’s comélement = 100011

+1

100100 = 443
or 100g — 343 = 443

3. 055744 - final instruction

40 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

I\\ /,'

CPU

Left Double-shift Instruction

Address Register Shift

HTM-xxx-0
December 19, 1994

Refer to Figure 21 when reading the following example of an address

register left double-shift instruction.

056ijk Shift Ai and Ajleft by Ak places to Ai

Ai

Aj

-

Ai

Ak contains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any bits from 7 through 63 are set, the results of Aj are zeroed.

Bits | 63 7 6]5 4 3 2 1

0 =Ak

Zero Results 643216 8 4 2 1 = Valid Decimal Shifts

On a left double shift, the contents of Aj are always shifted into Ai. This shift is done

inside the address shift functional unit.

Figure 21. Example of an Address Register Left Double-shift Instruction

Example 1: Write the instruction to left double shift A2 and A3 649
places, putting the results into A2.

056234 — final instruction, where A4 — 100g

NOTE: A circular left shift cén be effected by issuing a 056 instruction

with i = j and (AK)< 64.

Cray Research Proprietary
Preliminary Information

41

Address Register Shift CPU

Right Double-shift Instruction

Refer to Figure 22 when reading the following example of a scalar right
double-shift instruction.

057ik Shift Aj and Airight by Ak places to AJ

Aj Ai
Ai
Bits | 63 76|15 4 3 2 1 0 =Ak
Zero Results
\
Two’s Complement = During Right Double Shitt
643216 8 4 2 1 = Valid Decimal Shifts

Figure 22. Example of an Address Register Right Double-shift Instruction

Ak contains the shift count, and address (A) register bits 0 through 6
contain the valid shift counts. If any bits from 7 through 63 are set, the
results of Ai are zeroed. Also, the hardware generates the two’s
complement of the shift count Ak register bits O through 6 on a right
double shift.

On a right double shift, the contents of Aj are always shifted into Ai. This
operation and the two’s complement of the shift count are done inside the
address shift functional unit.

Example 1: Write the instruction to right double shift A4 and A5
3210 places, with the results going into A4.

057454 - final instruction, where A4 = 40g
hardware generates a shift count of 140g inside
the functional unit.

NOTE: A circular right shift can be effected by issuing a 057 instruction
with i = jand (Ak)< 64.

42 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

BN

SCALAR SHIFT

HTM-xxx-0

December 19, 1994

The scalar shift function is performed on the SS option (refer to Figure 23
for a block diagram of a scalar shift). This functional unit performs both
left and right single-register shifts, and left and right double-register (also
referred to as long) shifts. All shifts are end-off with zero fill. For
example, if data is shifted more than 64,¢ places in a single shift, or more
than 128;¢ places in a double-register shift, the data is shifted off the
register. The data is then lost, and the register is filled with 0’s.

The shift unit performs only left shifts. The shift count for a right shift
has to be in the two’s complement form; the unit then performs a left shift.
Refer to Table 11 for a list of the scalar shift instructions.

Table 11. Scalar Shift Instructions

Instruction CAL Description
052ijk S0 Skexp | Shift (S)) left exp = jk places to SO
053ijk S0 Sxexp | Shift (Si) right exp = 100g — jk places to SO
054 jjk SiSicexp |Shift (Si) left exp = jk places to Si
055ijk SiSkexp | Shift (Si) right exp = 100g - jk places to Si
056ijk S1 S, Si<Ak | Shift (Si) and (S)) left (Ak) places to Si
0560 T S1 8i, Si<1 | Shift (S} and (S)) left 1 place to Si
05600k * S1SicAk | Shift (S)) left (Ak) places to Si
057jjk Si Sj, SAk | Shift (S)) and (S)) right (Ak) places to Si
0570 ¥ S1 Sj, S&>1 | Shift (Sj) and (S)) right 1 place to Si
0570k * S1 Si>Ak | Shift (Si) right (Ak) places to Si

tKj=0,then(S)=0
$lf k=0, then (Ak) =1

Cray Research Proprietary
Preliminary Information

43

147

YI4ys Jejeog

uoneuuoju] Aeulwiaid
Aejoudoid yoieesay Aesn

AR000 AR000
Bits 0 -7 Bits 0~ 7
AS000 _ AS000
SS000
SiResuilt
Bits 8 — 15 SjiSiBits 0—15 IAA=IAP | yd -~ OAA—-OAP SiBits 0— 15 Bits 8 — 15
AS0O1 SjiSiBits 16 — 31 IBA—IBP _| OBA-OBP SiBits 16 — 31 | Aso01
Sj'SiBits 32 — 47 ICA-ICP .,/ SjData OCA - OCP SiBits 32 — 47
Bits 16 - 23 , Bits 16 - 23
SjSi Bits 48 — 63 ipa-pp | |/_Sibata ODA-ODP SiBits 48 - 63
AS002 AS002
Bits 24 — 31 Bits 24 — 31
AT000 wAoo1) S0.0B8IK0571jk IED R s
10 Bit ;
1 = Right Shift
Bits 32 — 39 (icoog) L=Rignt Shift) _1EE Bits 32— 39
AT001 S . ATO0
i - OHA —OHG Ak Shift Count _
Bits 40 — 47 Bits 40 — 47
_ - - |
—— (AR, AS, AT, AU) Ak=0_ lIA-IIG (AR 7-63=0 OHH No Ak Overflow - (VS) —
Bits 48 — 55 Scalar Shift Bits 48 - 55
AUOD1 AUDO1
Bits 56 — 63 Bits 56 — 63

v661 ‘61 19qWasaq
0-XXX-\ LH

Figure 23. Scalar Shift

ndo

CcPU

Scalar Shift

Scalar Single Shift

The scalar single-shift instructions are 052ijk through 055ijk. The first
two instructions perform single shifts left (052ijk) and right (053ijk) on the
contents of the Si register and always store the result in SO. The shift
count is obtained from the jk field of the instruction. The value placed in
the jk field for the single-shift instructions depends on whether it is a left
or right shift. For a single left shift, the value in the jk field is the number
of octal places desired to shift Si. This allows a shift left of 0 to 77g
places. For a right shift, the jk field is equal to the two’s complement of
the actual number of places desired to shift right. If a shift of 24g places
were required, 54 would be entered in the jk field (two’s complement of
24 is 54).

When instructions are written in machine code, this operation must be
done by the person writing the code. However, when instructions are
written in CAL, this operation is done by the assembler. In the CAL
instruction, you would simply enter the shift count. This allows a right
shift of 1 to 100g places. Because the two’s complement of the shift count
is used for a single shift, a shift right of O places is not possible.

The 054ijk and 055ijk instructions perform single shifts left or right on the
contents of Si. However, these instructions store the result of the shift
back in Si. These shifts overwrite the original contents of Si with the new
results from the shifter.

Scalar Double Shift

HTM-xxx-0
December 19, 1994

Double shifts work similar to single shifts; all shifts are end-off with zero
fill. The difference is that a double shift concatenates two S registers,
forming a 128-bit register. The arrangement of the two registers is
determined by the shift direction.

Double shifts always shift data into Si. The two instructions associated
with double shifts are 056ijk (double left shift) and 057ijk (double right
shift). The double shifts use the i and j fields to specify the two operand
registers; the i field also specifies the result register. The k field of the
instructions specifies the A register used for the shift count.

Because a double shift uses a 128-bit operand and shifts are end-off with
zero fill, a shift equal to or greater than 128 (200g) produces a result of
zero. The A register bits 0 through 6 are used as a shift count, providing a
shift of 0 to 177g. For right double shifts, the shift count does not need to
be entered into the A register in two’s complement; the hardware performs
this function.

Cray Research Proprietary 45
Preliminary Information

Scalar Shift CPU

Scalar Shift Count Description

The AR00O option sends the shift count to the SS option. All eight
A-series options check the value of the 64-bit A register to discover
whether any bits above bit 6 have been set. If any bits have been set, the
result is lost due to overshift. If each A-series option reports that its bits
are zero, a signal called Ak = 0 is sent to the SS option and the shift count
is valid.

The AR option sends 7 bits of shift count to the SS option. For both
single and double shifts, the breakdown of the shift count is the same,
except for the fact that the double shift has 1 extra bit (bit 6). Refer to
Figure 24 for a breakdown of the shift count.

Double
Shift
Only
6 5 4 '3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shiit Value

Figure 24. Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted.

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count.

If the jk field of a left single shift equals 27g and bits 4, 2, 1, and O are set,
the shift values would be 16, 4, 2, and 1, respectively. The sum of the
shift values would be 23 (16 + 4 + 2 + 1); therefore, the instruction would
shift left 23 places.

The actual hardware that performs the shifts is the same for both left and
right shifts. However, the hardware performs only left shifts. Right shifts
are performed according to how data is entered into the shifter, hence the
use of two’s complement for right shifts. -

46 : Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU Scalar Shift

Scalar Left Single Shift

\\—-f/

R St

HTM-xxx-0
December 19, 1994

Figure 25 is an illustration of how a left single shift is performed for a
054220 instruction (Si Si<exp). In this example, we shift S2 left jk places
(20g) with data bit 10 set.

82 =

Bit 10

Scalar Shift Functional Unit

Bit 10

Shift 52 164

places to the left,

Bit moving bit 10 to
26 bit position 26
- Bit 26 S2 Final Results

Figure 25. Scalar Left Single Shift

Cray Research Proprietary
Preliminary Information

47

Scalar Shift CPU

Scalar Right Single Shift

Figure 26 is an illustration of how a right single shift is performed using
left shifts and a two’s complement shift count. This example uses a
055254 instruction (Si>Si exp) that shifts Si right exp = 100 — jk places
to Si.

In this example, we shift data bit 45 to the right 24g (20,0) places. Notice
that the jk field of the instruction 055254 contains 543, which is the two’s
complement of 24g, causing S2 to be shifted to the left 54g places to set bit

25 of the result.
S2= Bit 45
Scalar Shift Functional Unit
Bit 63 0 63 0
P — e ———— — —

} @ Bit 45 B

> S2 = Bit 25

Figure 26. Scalar Right Single Shift

NOTE: It is the programmer’s responsibility to perform the two’s
complement of the shift count and supply that value to the
functional unit.

48 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CcPU Scalar Shift

Scalar Left Double Shift

Double shifts are the same as single shifts except that they concatenate
two 64-bit registers to form a value. Figure 27 is an illustration of a left
double shift using a 056123 instruction (Si, Sj < Ak). In this example, we
shift S (Si) and (Sj)) left (Ak) places to Si, with A3 = 40g (32;0), S1 having
bit 30 set, and S2 having bit 10 set. When a left double shift occurs, the
contents of Sj move into Si, and the two registers are positioned as shown

with Si ahead of Sj.

S2(S) = Bit 10

S1(S) = Bit 30

A3 = 40 | - Shift Control

Scalar Shift Functional Unit

Si (s g Sj (52)

Bit . Bit .
62) Bit 30 QD Bit 10

t Shift 32 I ‘[Shift 32 I

Bit 62

Bit 62 = S1 Final Result

Figure 27. Scalar Left Double Shift

Shifting Si and Sj to the left 32 places puts bit 30 of S1 at bit position 62
and bit 10 of S2 at bit position 41. Because bit 41 of S2 did not make it to
the result register S1, it is lost. The result bit (bit 62) is then sent to the Si
(S1) register. The Sj (S2) register remains unchanged.

HTM-xxx-0 Cray Research Proprietary 49
December 19, 1994 Preliminary Information

Scalar Shift

Scalar Right Double Shift

CcPU

To perform a scalar right double shift, a 057ijk instruction (Si Sj, Si > Ak)

shifts (Sj) and (Si) right (Ak) places to Si. Figure 28 is an illustration of a
057123 instruction with the indicated parameters.

S1= Bit 20
S2 = Bit 40
A3 = 60 — Shift Control
Scalar Shift Functional Unit
_____ | Sj (82 Si (S1) §
r o Bit 40 | o Bit 20
~ shittao 1 snitso
Bit 56
»1 Bit 56 = S1 Final Result

50

Figure 28. Scalar Right Double Shift

To right shift Sj and Si using left shifts, the two’s complement is first
performed on A3, which currently equals 60g (481¢). Because the two’s
complement is 120g (or 1010000, or 80;¢), the required shift can be
accomplished through successive shifts of 641 and 16;¢ for a total shift of
8010 places. A left shift of 8019 would move bit 40 of S2 to bit position
56 inside the dotted box and bit 20 of S1 to bit position 36 of S2. Because
bit 36 did not make it into the result register (indicated by the dotted box),
it is lost, and bit 56 is sent to the final result.

Cray Research Proprietary
Preliminary Information

HTM-xxx-0
December 19, 1994

R

N

CPU Scalar Shift

Left Single-shift Instruction

Refer to Figure 29 when reading the two following examples of the scalar
left single-shift instruction.

Bits | 2 1 0] 2 1 0 |=jkField

32 16 8 4 2 1 = Shift Values Decimal

052ijk Results to S0
054ijk Results to Si

Figure 29. Example of Scalar Left Single-shift Instruction

Example 1: Write the instruction to shift S2 left 20;¢ places, placing
the results into SO.

Steps: 1. 052ijk — left shift instruction result goes to SO
2. jk field- shift count 20,¢ = 24g = jk field
3. 052224 - final instruction

Example 2: Write the instruction to shift S4 left 35;¢ places, placing the
results into S4.

Steps: 1. 054ijk — left shift instruction result goes to Si
2. jk field— shift count 3510 =43g

3. 054443 — final il_lstruction

HTM-xxx-0 Cray Research Proprietary 51
December 19, 1994 Preliminary Information

Scalar Shift CPU

Right Single-shift Instruction

The right single-shift count is the jk field of the instruction, which must
either be in the two’s complement form or 100g minus the number of
places to right shift. Two examples of a scalar right single-shift
instruction follow.

® 053ijk results to SO
e 055ijk results to Si

Example 1: Write the instruction to shift S5 right 10;¢ places, placing
the results into SO.
Steps: 1. 053ijk — right shift instruction results to SO
2. jk field — shift count in two’s complement equals 66
1010 = 12g = 001010
two’s complement = 110101

+1

110110 =665

3. 053566 - final instruction

Example 2: Write the instruction to shift S7 right 28 places.
Steps: 1. 055ijk right shift instruction results to Si
2. jk field — shift count in two’s complement equals
2810 = 343 =011100
two’s complement = 100011

+1

100100 = 44g

or 100g — 34g = 443
3. 055744 - final instruction

52 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU Scalar Shift

Left Double-shift Instruction

Refer to Figure 30 when reading the following example of a scalar left
double-shift instruction.

056ijk Shift Si and Sj left by Ak places to Si

Si Sj

e

Ak contains the shift count, and A register bits 0 through 6 contain the valid shift counts.
If any of bits 7 through 63 are set, the results of Si are zeroed.

Si

Bits | 63 716 .5 4 3 2 1 0]=Ak

Zero Results 64 32 16 8 4 2 1 = ValidDecimal Shifts

On a left double shift, the contents of Sj are always shifted into Si. This shift is done
inside the scalar shift functional unit.

Figure 30. Example of a Scalar Register Left Double-shift Instruction
Example 1: Write the instruction to left double shift S2 and S3 64,0
places, placing the results into S2.
056234 — final instruction, where A4 — 100g

NOTE: A circular left shift can be effected by issuing a 056 instruction
with i = j and (Ak)< 64. '

HTM-xxx-0 Cray Research Proprietary 53
December 19, 1994 Preliminary Information

Scalar Shift CPU

Right Double-shift Instruction

Refer to Figure 31 when reading the following example of a scalar right
double-shift instruction.

057jk Shift Sjand Siright by Ak places to Si

Sj Si

Si

Bits] 63 716 5 4 3 2 1 0

Zero Results

Two’s Complement = During Right Double Shift

64 32 16 8 4 2 1 =Valid Decimal Shifts

Figure 31. Example of a Scalar Register Right Double-shift Instruction

Ak contains the shift count, and address (A) register bits O through 7
contain the valid shift counts. If any of bits 7 through 63 are set, the
results of Si are zeroed. Also, the hardware generates the two’s
complement of the shift count on the Ak register bits O through 7 on a
right double shift.

On a right double shift, the contents of Sj are always shifted into Si. This
operation and the two’s complement of the shift count are done inside the
scalar shift functional unit.

Example 1: Write the instruction to right double shift S4 and S5
329 places, with the results going into S4.

057454 - final instruction, where A4 = 40g
hardware generates a shift count of 140g inside the
functional unit.

NOTE: A circular right shift can be effected by issuing a 057 instruction
with i = j and (AK)< 64.

54 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

ADDRESS MULTIPLY

The AN option performs the address multiply operation (a 032ijk
instruction). The AN option also fans out the Aj and Ak operand used for
other A register operations.

When operating in Triton mode, two 48-bit operands are presented to the
functional unit to produce a 48-bit result. The AN option then does a sign
extension to bit 63 and a leading zero count on the operands to determine
whether the results will fit within 48 bits. If the results exceed 48 bits, the
64-bit incompatibility signal sets, causing the Address Multiply Interrupt
(AMI) flag to set in the exchange package.

The AN option does not use a standard pyramid formation multiply
algorithm. Instead, it uses a variation of the Booth Recode algorithm.
This algorithm enables the address multiply unit to reside on a single
option.

Half the recode groups are formed immediately upon arrival of the data on
the AN option (those groups that are centered on bits 0, 4, 8, 12, 16, etc).
One clock period later, using the same logic, those groups centered on bits
2,6, 10, and 14 are recoded. This method allows a multiply operation to
be done on about one-fourth of the logic used in a standard pyramid
multiply. Because this method holds the Ak operand for 2 clock periods,
the AN operand can accept data only every other clock period. Refer to
Figure 32 for an illustration of the AN option.

HTM-xxx-0 Cray Research Proprietary 55
December 19, 1994 Preliminary Information

Address Multiply CPU
IHA — IHB Go 032
IAA — ICP Al OAA — OBV _A Register Data -
. o OIA-OIH _ Sign Extend Bits
A Registers Multiply >
IDA — IFP Ak
OCA - ODP,
OEA - OFP L
Fanout o
AkBits 0—7to VL
OGA - OGT,
IGF - 1GJ - g Data OHA — OHP .
Figure 32. AN Option
Multiply Algorithm

The multiplier is partitioned into 3-bit recodc groups centcred on the even
bits (0 to 46); a forced zero is added to the first recode group. The recode
groups are formed as shown in Table 12, and the following subsections
provide examples of standard and Booth Recode multiplication.

Table 12. Recode Groups

Odd Bit Even Bit i—1 Recode Value Recode Product

0 0 0 +0 0
0 0 1 +1 X47 — X0
0 1 0 +1 X47 - X0
0 1 1 +2 2(X47 - X0)
1 0 0 -2 {2(X47 — X0}y +1
1 0 1 -1 (X47 — X0)'+1
1 1 0 -1 (X47 — X0y'+1
1 1 1 -0 0

i—1 = Bit to right of recode X47 — X0 = Multiplicand

group

56 Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

TN

CPU Address Muitiply

Standard Binary Multiplication

Refer to the following example of standard binary multiplication.

000011 (3)
011101 (35)
000011
000000
000011
000011
000011
000000
0000001010111

Booth Recode Multiplication

Refer to the following example of Booth Recode multiplication.

000011 (3)
011101 (35)
000000000011
11111111010
00000110
T 000001010111

In the previous example, the multiplier is recoded into bit groups centered
on the even bit. A forced zero is appended to the first recode group.

As shown in Table 12, the first recode of the multiplier, bits 1 and O and
the forced zero, yields a recode value of 010, or +1. In this case, the
multiplicand is brought down.

The second recode, bits 3, and 2, and 1 yields a recode value of —1. In this
case, a two’s complement and a shift of 1 are done on the multiplicand.

The final recode, bits 5, 4, and 3 yields a recode value of +2. This causes
a shift of 1 on the multiplicand.

HTM-xxx-0 Cray Research Proprietary 57
December 19, 1994 Preliminary Information

INTEGER MULTIPLY

HTM-xxx-0
December 19, 1994

The AM option performs the scalar vector integer multiply operation
(166ijk). It receives Sj and Vk operands and produces a 40-bit output to
Vi for VL length when the system is in Triton mode.

In C90 mode, a 32-bit result forms, and the input operands are modified to
produce the 32-bit result. The Sj operand must be left shifted 31,, places,
and the Vk operand must be left shifted by 16,,places before executing the
166ijk instruction, as shown in Figure 33.

The AM option, like the AN option, also uses the Booth Recode algorithm
for the multiply operation. The AN option also does a leading zero count
on the operands to determine whether the results will fit within 40 bit
positions. The input operands are passed through the floating-point
multiply unit before they arrive at the AM option, as shown in Figure 34.

Cray Research Proprietary 59
Preliminary Information

Integer Multiply CPU
Bits 63 48 47 32 31 16 15 0
C90 32-bit Mode
Bits 63 48 47 32 31 16 15 0
Sjbits 0 through 31 are gated into bit
positions 32 through 63 for C90 mode.
Bits 63 48 47 32 3 16 15 0
C90 32-bit Mode
Bits 63 48 47 32 31 16 15 0
Vkbits 0 through 31 are gated into bit
positions 15 through 47 for C90 mode.
Figure 33. C90 Operation Mode
60 Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

N

CPU Integer Multiply

AM

OGA-OGT SjBits0-19 IAA—IAT
NB OGU-OHN SjBits20-39 IBA—IBT

OIA-OIF VKBits 42—-47 IGC—IGH |

OJA Go V 166 EC ViBits 0— 25 to

OAA, OAZ Result Register

NA ODA-ODH SjBits40—-47 IFA-IFH Vi Bits 26 - 51 to

OEA-OET VKBits0—19 ICA—ICT OBA, OBZ Result Register |

OEU -OFT VkBits20—-39 IDA-IDT_

OHQ, OHR 40-bitMode
OFO-OFP VkBits40—41 IGA~-IGB >

NC OGA-0GO SjBits48—-62 IFI—IFW _
OHA Valid IED _
IC
oYQ Triton Mode IEA -
Figure 34. AM Option Inputs
HTM-xxx-0 Cray Research Proprietary 61

December 19, 1994 Preliminary Information

Ry

VECTOR REGISTERS

HTM-xxx-0
December 19, 1994

A CRAY T90 series computer system contains eight vector (V) registers,
which are designated VO through V7. Each register contains 12819
elements; each element is 64;¢ bits wide. The 128;¢ elements are divided
into two pipes of even and odd elements.

The vector registers have their own integer functional units, which include
vector add, vector logical 1, vector logical 2, vector shift, vector
population, vector leading zero count, and 32-bit integer multiply. The
vector registers share the floating-point functional units with the scalar
registers. The floating-point functional units include floating-point add,
floating-point multiply, floating-point reciprocal and bit matrix multiply.

The vector registers can send data to memory or load data from memory.
The number of elements sent to a functional unit (including memory)
depends on the value of the vector length (VL) register. Any element of a
vector register can be loaded into a scalar register, and any scalar register
can bc loaded into any element of a vector register by using the 076ijk and
077ijk instructions.

The vector registers use 1-parcel instructions. In a 1-parcel instruction,
the gh field contains the instruction decode, and the ijk field contains the
operands and destination. The gh field of the instruction indicates the
functional unit needed, and the ijk field indicates the vector registers used.
Generally, the k field of the instruction contains the vector operand
registers VO through V7. The j field of the instruction can be either Sj or
Vj, depending on the instruction. The i field of the instruction is used as
the destination or result register.

Some vector instructions, when preceded by a 005400 instruction, cause
the instruction to execute in Triton mode as opposed to C90 mode of
operation. If, for example, an instruction sequence of 005400 150ij0
issues, a left shift of V;j VO places to Vi is performed. If the 005400
instruction had not preceded the 150i;0 instruction, a left shift of Vj AO
places to Vi would have occurred.

Cray Research Proprietary 63
Preliminary Information

Vector Registers

64

CPU

The vector registers in the Triton system contain a dual set of functional
unit pipes. Each functional unit has another identical functional unit. For
example, the vector add functional unit is duplicated so that all the even
elements go to one of the vector add functional units, while all the odd
elements go to the other vector add functional unit. The even and odd
elements are sent to the functional unit simultaneously, and the two results
are loaded back into the result vector register simultaneously.

If the vector add functional unit fails in the even elements, the cause of the
failure is the pipe O vector add. Pipe 1 handles the odd vector elements. If
the vector length register is an even value, the results are written into the
vector register simultaneously using pipe O and pipe 1, until the last
element specified by the vector length is used. Refer to Table 13 for a list
of the vector register options.

Table 13. Vector Register Options

Option Type | Number Used Description
Provide read/write address and control
(VAO pipe 0)
VA 2 (VA1 pipe 1)

Vector length register
Functional unit release

Pipe control
VF 4 (VFO,VF1 for pipe 0)
(VF2,VF3 for pipe 1)

Data multiplexing (VMO — VM7 pipe 0)
(VM8 — VM15 pipe 1)

Vector add functional unit

Vector logical functional unit

VM 16

Data multiplexing and storage
VR 16 (VRO - VR7 pipe 0)
(VR8 — VR15 pipe 1)

Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

‘\.__,/

CPU

VA Option

Vector Registers

The VA option provides vector read and write control. There are two VA
options on a CPU: VAO provides address and control for the even
elements of the vectors, and VA1 provides the address and control for the
odd elements. The VA options have the following common functions:

e Vector read and write address
e Read and write vector length
e Vector chaining control

The VA options also have the following unique features:
e VAO
e Release vectors for write operations

e Functional unit release for:
Vector logical #1 -
Vector shift
Vector floating-point multiply
Vector reciprocal

e Even-element addressing

e Release vectors for read operations

e Functional unit release for:
Vector logical #2
Vector adder
Vector floating-point add
Vector matrix multiply -

e Odd-clement addressing

Vector Length Register

HTM-xxx-0
December 19, 1994

The vector length register is located on the VA option. There are two VA
options, one for each pipe. Both vector length registers are loaded with
Ak data bits 00 through 06 from the AR0OO option. These bits are needed
to achieve values from O to 177g. If a value of all O’s is entered, the VL
register is forced to a value of 200g.

Cray Research Proprietary 65
Preliminary Information

Vector Registers

Chaining

VF Option

CPU

When the vector length value is entered, it is entered into a countdown
register. VL bit 0 is removed so a VL value of 200 will be a value of 100
in the active register (a pseudo right shift). This is done because each pipe
handles only 100 elements. Every time VL decrements, it generates

the Advance Address signal. The VA option also checks VL bit O to
determine whether the vector length is odd or even. This enables either
pipe O for odd vector lengths, or pipe 1 for even vector lengths, on the last
operation.

If Vi, j, or k is reserved as a destination and the next instruction wants to
use the same vector register as an operand, the next instruction is allowed
to issue. This is referred to as chaining.

Chain slot time is the time required for the result of a previous instruction
to be presented to the inputs on the VR options. If another instruction is
waiting for these results or is addressing the same element, the VR option
passes the results directly to the read-out register. The VA option controls
the vector chaining by controlling the issuing of the Go Write signal.

Chaining to common memory read operations occurs on 8-word
boundaries. Vector control waits for 8 contiguous words to become valid
before the read of that group is allowed.

66

There are four VF options on the CP module. VF0 and VF1 control
fanout for pipe 0; VF2 and VF3 control fanout for pipe 1. The VF options
perform the following functions.

Instruction parcel data fanout to VR options

Vector add carry and enable summations and bit toggles
Vector register parity error information

Vector functional unit delay chains.

Vector functional unit data valids

Vk address buffering for common memory

Release of Vi for write operations

Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU Vector Registers

VM Option

The VM options perform write data multiplexing on an 8-bit slice of all
functional unit data. There are 16 VM options. VMO000 to VMO007 are for
even-element steering, and VMO008 to VMO15 are for odd-element
steering.

The VM option performs the following functions:

Read and write data steering
Vector read-out control

Vector add functional unit

Both vector logical functional units

VR Option

A total of 16 VM and VR options reside on the CP module as shown in
Table 14. Each option performs read data steering and also vector data
storage. The contents of the selected vector register are gated to one of
the following destinations; the read data steering is done on 4-bit slices.

Floating-point add
Floating-point multiply
Reciprocal, pop, parity, LZ

- Shift
Common memory port A
Common memory port B
Common memory port C
Common memory write data
V data to scalar
Bit matrix multiply

The VM and VR options contain four high-speed register (HSR) storage
arrays that are 18 bits wide by 64 elements deep. Sixteen of the bits are
data and 2 bits are for parity. VR0O0O through VR007 store vector data for
the even elements (pipe 0), and VR008 through VRO15 store data for the
odd elements (pipe 1).

NOTE: VM/VR options 12 through 15 do not handle exchange data.

HTM-xxx-0 Cray Research Proprietary 67
December 19, 1994 Preliminary Information

Vector Registers

CPU

Table 14. VM/VR Data Steering
Option Pipe 0/Pipe 1 | VM3/11 | VR3/11 | VM2/10 | VR2/10 | VM1/9 | VR1/9 | VM0/8 | VRO0/8
Read Bits 28-31 |1 24-27 120-23 |16-19112-15} 8~-11 4-7 6-3
Write Bits 24 - 31 - 16 —23 - 8-15 - 0-7 -
Exchange Bits 60-63 | 55-59 | 6255 {48 —-51|44-47 |40-43| 36-39 |32-35
—_— e ————————————————— ettt e ———————————
Option Pipe 0/Pipe 1 | VM7/15 | VR7/15 | VM6/14 | VR6/14 | VM5/13 | VR5/13 | VM4/12 | VR4/12
Read Bits 60-63 | 56 -59 | 52—-55 [48-51|44-47 |40-43| 36—-39 |32-35
Write Bits 56 - 63 - 48 —55 - 40 - 47 - 32 -39 -
Exchange Bits 28-31 | 24-27 | 20-23 |16-19{12-15 | 8-11 4-7 0-3

Each VR option has an input that is used to force parity errors into the
HSR arrays. The maintenance channel provides the following two
features: force RAM parity error internal (code 100) and force RAM
parity error external (code 140). Through the use of the maintenance
channel, a specific loop controller and a specific chip can be given a
maintenance function such as force parity error.

Write Data Steering

68

The VM options receive the i instruction field from the VF options; this
field performs internal gating of data to the correct register. The i field
and the instruction decode enable separate write paths for each vector.
This path stays selected until a new instruction issue changes it. All the
write paths are separate and all can be active at the same time. Refer to
Figure 35 for an illustration of the write data path.

HTM-xxx-0
December 19, 1994

Cray Research Proprietary
Preliminary Information

\
J
\..,-»‘/

CPU
VMO000 VMO004
Bits Bits
0-7 32-39
VMOO1 VMO005
Bits Bits
8-15 40-47
VMO002 VMO006
Bits Bits
16-23 48 -55
VMO003 VM007
Bits Bits
24-3 56— 63
VMO008 vM012
Bits Bits
- 0=7 32-39
VMO009 VMO13
Bits Bits
8-15 40-47
VM010 VM014
Bits Bits
16-23 48 - 55
VMO11 VMO15
Bits Bits
24-31 56 - 63
HTM-xxx-0

December 19, 1994

J

Vector Registers

V7 VR007
V6 VR006
Even Element
Storage V5 VR00S
V4 VR004
V3 VR003
V2 VR002
Vi VR001
Vo VR000
RAM O RAM 1
Bits Bits
0-15 16 - 31
Element Elements
0-63 0-63
RAM 2 RAM 3
Bits Bits
32-47 48 ~63
Elements Elem ents vr VRO15
0-63] [0-83 V6 VRO14
V5 VR013
v4 VR012
V3 VRO11
V2 VRO010
vi VRO009
Vo VRO008
RAMO RAM 1
Bits Bits
0-15 16-31
Elementd |Elements
0-63 0-63
RAM 2 RAM 3
Bits Bits
32-471 | 48-63 Odd Element
Elements| | Element Storage
0-63 0- 631

Figure 35. Write Data Path

Cray Research Proprietary
Preliminary Information

69

Vector Registers CPU

Read Data Steering

Both the VM and the VR options are responsible for read data steering.
Each VM and VR option steers 4 bits for all eight vector registers to one
of the following destinations:

Floating-point add

Floating-point multiply

Reciprocal, pop, parity, leading zero
Shift

Common memory port A, B, C

V data to scalar

The VM and VR options receive the j and & fields of the instruction from
the VF option along with the instruction; this enables one of eight vector
paths to which data is steered. These paths stay selected until another
instruction changes them. All the read paths are separate and all can be
active at the same time. Figure 36 shows the read data path for pipe O and
pipe 1 (even elements), and Figure 37 shows the read data path for pipe O
and pipe 1 (odd elements). Refer also to the following diagrams for
additional related vector register information:

Figure 38 — vector register write block diagram (pipe 0)

Figure 39 — vectors 0 through 3 pipe 0/1 read data path

Figure 40 — vectors 4 through 7 pipe 0/1 read data path

Figure 41 — vectors 0 through 3 pipe 0/1 write data path

Figure 42 — vectors 4 through 7 pipe 0/1 write data path

Figure 43 — vector register decode bit fanout (pipe 0 and 1 path 1)
Figure 44 — vector register decode bit fanout (pipe O and 1 path 2)
Figure 45 — S register to vectors

Figure 46 — memory data to vectors (even elements)

Figure 47 — memory data to vectors (odd elements)

70 , Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU Vector Registers
VR007 Bits 56 -~ 59
VRO06 Bits 48 — 51
VR007 Vector 7
VR006 Vector 6 VR0O05 Bits 40-43
VRO005 Vector 5 -
VR004 Bits 32 ~ 35 -
VR004 Vector 4 |
VR003 Vector 3 VR003 Bits24-27 -
VR002 Vector 2 VRODZ Bits 16— 19 ||
VRO001 Vector 1
VROO1 Bits 8- 11
VR000 Vector 0 [
VROOO Bits0-3 -
Array 0 Array 1 o
Bits Bits
0-15 16-31
Etements 0 — 63
Array 2 Array 3
Bits Bits |
32-47 48 -63
VMOO0 Bits4-7 |
Elements 0 - 63
VMO0O1 Bits 12—~ 15]
VMO02 Bits 20 —23]
VM003 Bits 28 — 31 |
VM004 Bits 36 — 39
VM0O05 Bits 44 — 47
VMOO0B Bits 52 — 55
VMO007 Bits 60 - 63
Figure 36. Read Data Path for Pipe 0 (Even Elements)
HTM-xxx-0 Cray Research Proprietary

December 19, 1994

Preliminary Information

Vector Registers - CPU

VRO15 Bits 56 —59

VR014 Bits 48 ~ 51
VR015 Vector 7
VRO14 Vector 6 VR013 Bits 40—43
VR013 Vector 5
VR012 Bits32-35 -
VR012 Vector 4 |
VRO11 Vector 3 VRO11 Bits 24 -27 -
VRO10 Vector 2 VRO10 Bits 16— 19 u
VR009 Vector 1
VR0O09 Bits8-11
VR008 Vector 0 —
VRO08 Bits 0-3 n
Array 0 Array 1 o
Bits Bits
0-15 16-31

Elements 0 - 63

Array 2 Array 3
Bits Bits _—
32-47 48-63

VM0O08 Bits4-7]

Elements 0 - 63

VM009 Bits 1215

VMO010 Bits20-23

VMO11 Bits 28 - 31

VM012 Bits 36 -39

VMO13 Bits 44 —47

VM014 Bits 52 ~ 55

VMO015 Bits 60 - 63

Figure 37. Read Data Path for Pipe 1 (Odd Elements)

72 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU ’ Vector Registers

Functional Units VMO04
Floating-point Add VMgi?g Bits
Floating-point 0-7 3239
Multiply V Write Data IAA, IBX
Reciprocal VMOO1 VMO05
Vector Shift |GA, IGH‘ Bits Bits
BMM _ 8-15 40 - 47
Integer Multiply A NH OAA - ODP V Write Data |AA -~ IDP
gl VMO002 VMO06 .
AR, AS, AT, AU A, IIH Bits Bits
Scalar Data IMA, IMH VMO003 VM007
IMA. IMD Bits Bits . [~
CHO00 — CHO14 : 24 -3 5663 =
Common Memory JOIA, OIH IME, IMH) -
Data Path 1 > —
CHO01 - CHO15 v VAOQ1 |
Common Memory {O!A, OIH VA000
Data Path 2
ARO000 OPA,OPG AkData HA, IHG [VL Re gisterl O_1-0O_N V Write Address IJA - I1JF_
VR000 - VR007 > .
. l IJH
Vector Select JOYI, OYP OAQ Go Write -
Code (Fanout Instruction
from CK) JA000 OCA, OCP___ Parcel IAA, IAP .
VR1, VR3, VR5, [_.
VR6 Katl 1A}
Common Memory $OY1 OYL ODA, ODC __Issue IBA, BB IBD| IKP
Path 1 Code
(Fanout from CK)
OAA - OAP
VR1, VR3 VRS, VFo01 OMA, OMH _ Release ICA, ICH | OBA-OBP
VR6 o VF000 OCA-0OCP
Common Memory OYM, OYP OWA - OWP Instruction Fields IKA—IKP] ODA - ODP
Path 2 Code OAQ Parcel 0
(Fanout from CK) 0OBQ Parcel 1
CK000 OCQ Parcel 2
OGA, OGJ Path 1 Code DA, iDJ > owa Issue Ao 0DQ Parcel 3
IXA - IXH Go Write OMA - OMH
CK002 OGA,0GJ Path2Code IEAIEJ
Pipe 0
INJ > ONE
Advance Vi Write Address (Expand)
Figure 38. Vector Register Write Block Diagram (Pipe 0)
HTM-xxx-0 Cray Research Proprietary : 73

December 19, 1994 Preliminary Information

CPU Vector Registers

Vector 0 Vector 1 Vector 2 Vector 3
VRO0O IEA _{ VR000/8 VROO1 iee | vroooss VROO02 ‘ iei _| vroooss v IEM_} VR000/8
ROO03 >
VR008 _ iED VR009 e VRO10 TEC ™ VRO12 eP
OAA- Bits0-3 | ica|VMO00/8 OAA- Bits0-3 | ce = | vM000/8 OAA—- Bits0-3 | o . |vmoo0/8 OAA- Bits0-3 | icm_|VM000/8
o ‘P Tomooors OAD TIcH™ OAD IcL ™ oAb S
825 - Bis4-7 |EAZ OAE~ Bits4—7 g _| MO0 OAE— Bitsa-7 g | VMO0 OAE—- Bitsd—7 IEM
IED OAH ER OAH e OAH TEP
IEA—
[E>] YRO01/9 IEE T'vRoo1/9 EL o[vRo01/S 1M »f VROO1/9
OAl— Bits8-11] icA- OAl— Bits 811 I OAl— Bits8-11 OAl— Bits8-11
VM001/9 iCE its IC ICM 1 VM001/9
BAL e SAL IGE 51 vM001/9 BAL = VMO01/9 DAL P
B Bits 12— 15 IEA VM001/9 loam- Bits12-15 1EE |VMO01/9 OAM— Bits12-15 g _|YMOO1/9 oam— Bits 1215 IEM JVMOO1/S
OAP 1ER OAP IEL OAP TEP
IEA -
| TE5>] VRO02/10 IEE,.f vR002/10 {E-»] VR002110 —EM o VRO02/10
OBA- Bits16-19} ICA= - Bi - — Bi - l OBA-~__Bits 16-19
OBD iGD "] YMoo2/10 gbA- Blole-19 ICE-a- VMO02/10 S B LA S 1CM wf yM002/10
835 - Bits20-23 :ES - | VM002/10 ; OBE- Bits20-23 |gg_|vMo02/10 OBE— Bits20-23 g _|VM002/10 OoBe- Bits20-23 gum _|VM002/10
OBH IER" | OBH TEL OBH iEP .
IEA -
IEAS] VRooa1 IEE 'vRooarti =] VROO3/M1 : iEM o VRO03/11
OBl - Bits 24 —27 - _ Bits24— | _ Bits24— — Bits24-27 I
OBL] VMooa/tt Qpj D242 IGE 3] vMO03/11 Q8- Sho2t 27l Bre{ vmocan e 1CM o vM003/11
Bm __ Bits28-31 |Ea_JVMO03/11 OBM Bits28-31 ¢ | VM003/11 OBM __ Bits28-31 IEI _}VMO03/11 oM Bits28-31 IEM | VMO03/11
OBP IED oBP \EH OBP TEC OBP IEP
:Eg— VR004/12 :EE VR004/12 :EL VRO004/12 :E'g‘ VR004/12
_ _Bits32—35 - its 32 — | its 30 — — Bits 32 ¢ l
JCA IGA5 vi004/12 QCA- Bio32-351 io5.a] VMOO4/12 QCA~ Biode- 3 10Lpf VM0O4/12 S op Tl yMo04/12
ICH
OCE- Bits36-39 |EA- |VYMO04/12 OCE- Bits36-39 g |VYMO004/12 OCE - Bits36—39 IEL, VM004/12 loce-_ Bits36-39 |EM VM004/12
OCH IED OCH IEH OCH IEL OCH IEP
IEA [EE IEI
TEG™] VR005/13] VR005/13 . Er™] VRo0s/13 : i=M»{ VROD5/13
OCl- Bits40—-43| |ca OCl— Bits 40-43] icE OCl— Bits40-43] c1 OCl—_ Bits40-43] ~m
ocL ICD] YM005/13 OCL ICH | VMO005/13 ocL 1o vMo05/13 OCL . iop JVM005/13
%’%_ - Bits 44 — 47 : Eg___ VMO05/13 OCM~ Bits44-47 1EE |vM005/13 OCM— Bits44—47 IEl _JVM005/13 OCM—_Bits 44 —47__IEM_VMO05/13
OCP TEH OCP TEC OoCP
IEA—
TED ™| VR006/14 :EE »| VRO06/14 :;:_: VR006/14 . {=le-1 VRO06/14
lopA—_ Bits48-51] ICA— QDA — Bits 48 — 51 _ Bits 48 —-51 | QDA — Bits 48 — 51
VMO06/14 = L QDA et GM
oDD ICD ODD IEHE- VMO006/14 ODD ter VMO06/14 ODD 1=h—*] vMo06/14
QpE. Bits52-55 g JVMO0G/14 QDE- Bits52-55 IEE _|VMO0G/14 QpE- Bitss2-55 _1E1_|VMO0G/4 ope_ Bitss2-55 IEM _|VMO0G/14
ODH IED ODH TEH ODH 1EC ODH 1eF :
=5+ vRoo7/15 IEE oI vR007/15 E->] VR007/15 I-J-EM-—IEP VR007/15
ODI- Bits56-59] icA- ODi -~ Bits 56— 59| e ' ODl- _Bits56-59] : ODI —__ Bits 56 —59] oy
ODL ICD | VMO007/15 ODL ST YM007/15 ODL o= VM007/15 OoDbL ' VM007/15
ICH ICL ICP
QDM - Bits60-63] VMOO7/15 OpM— Bits 60— 63 _IEE | VMO007/15 |ODM - Bits60-63 _IEI | YM007/15 | OpM - Bits 60-63 1EM__JVM007/15
ODP IED ODP [EH ODP TEC oDP IEF
Figure 39. Vectors O through 3 Pipe 0/1 Read Data Path
HTM-xxx-0 Cray Research Proprietary 75

December 19, 1994 Preliminary Information

\\“//

CPU Vector Registers
Vector 4 Vector 5 Vector 6 Vector 7
VRO04 IDA__| VRO0O/8 VR005 iDE _| VROOO/8 VRO06 i1 _| vrooors VROO7 IDM | VROOO/8
VR0O12 . DD VR0O13 T ™ VRO14 |») N VR015 . 1P
OAA- Bits0-3 | |Fa - VMO000/8 OAA- Bits0-3 | ge | vMO00/8 OAA— Bits0-3 | 15 _ |vMOCO/8 OAA- Bits0-3 | M | VYMO000/8
b "0 Tmooors OAD IFH 1 OAD IFL ™ " P Tumooors
OAE- Bis4-7 |pa onE- Bitsa-7 pe | VMO0 OAE— Bits4—7 |p | ™MO00R OAE- Bits4-7 IDM_
CAR DD OAH DA OAR oC > AH DP
:8’3 VRO01/9 :g; »| VR001/9 :B:_ VR001/9 IR of VROO1/S
OAl- Bits8-11] -5 OAl~ Bits 8- 11 OAl~ Bits 8—11 ' QAl~ _ Bits8-11
VMO001/9 IFE Al its IEL IEM o VMO0O1/9
OAL e SA LEE»{ vMO01/9 SAL LEL—p) VMO1/9 SAL =
AM— Bits 12—15 |pa | VMO01/9 oam- Bits12-15 _pg |YM001/9 OAM— Bits12-15 pj _|VYM001/9 OAM - Bits 12—-15 pm | VM001/9
OAP IDD OAP IDH OAP TOC OAP DP
IDA
VR002/10 IDE ! VRoo2A —IDM .1 vR002/10
OBA- Bits 16 19| o G iDL e Bits 16 — 19 o
= =ts 1o - IEA o, OBA-—__ Bits 16— 19 OBA—_Bits 16—19 OBA-__ Bits 16 — =M
VM IRE o Hefp >
OBD \FD 002/10 oI -1 vM002110 OBD i VM002/10 OBD =] vM002/10
OBe - Bits20-23 |pa _JVM002/10 OBE- Bits20-23 pg _|vM002/10 OBE- Bits20-23 ;o _|VMO002/10 OBE-_Bits20-23 pm |VMO002/10
OBH IDD OBH IDH OBH oL OBH IDP
IDA IDM
1oo-+ VRO03/11 B> VRO03/11 D] VRO03/11 oe->] VRO03/11
OBI— Bits24-27{ IFA OBl- Bits24-27| IFE oBl— Bits24-27] g OBI- Bits24-27| IFM
OBL D] VMO03/11 oL TFR->| VMO003/11 oL IEL o} vh003/11 oy e VM003/11
OBM Bits28-31 DA _|VMO003/11 oM Bits28-31 pg _|vM003/11 OBM Bits28-31 jp; _JVM003/11 lopM _ Bits28-31 IDM _}VMO003/11
0OBP IDD OBP IDH OBP iDL OBP IDP
:gg VR004/12 jlgﬁ VR004/12 :8:_ VR004/12 Loy VR004/12
QCA- Bte32-3 e VII004/12 QcA- Bis32-35 o Rt OcA- Bito32-35 L ooz OCA- 85205 ey wf vio04/12
IFP
OCE—_Bits36-39 - na] VM004/12 OCE— Bits36—39 |pg _|YM004/12 OCE- Bits36-39 oI _|vM004112 loce— Bits36-39 | VM004/12
OCH IDD OCH IDH OCH IDL OCH IDP
IDA IDE IDI IDM
| DD | VRO05/13 TDH™] VR005/13 O™ VR005/13 ipp "] VR005/13
OCI- Bits40-43| |z OCl— Bits 40—43] IFE OCI~ Bits40-43] 5 OCl - Bits40-43] ,
ocL iFp | YM005/13 oCL TFH "] VM005/13 OCL LT vM005/13 oCL IE-*1VMo05/13
OCM-— Bits44-47 DA JVMO005/13 OCM- Bits44-47 IDE _|VM005/13 OCM - _Bits44-47 1D _|vM005/13 OCM - Bits44—47 DM _JVMO05/13
ocp IDD ocP TOH ocP TOC OCP IDP
D
i VRose4 ADE-»-{ VROOG/14 1B .['VRo0G/14 iope] VRo06/14
QDA Bits 48 -51] lopa- Bits48-51] lopa-— Bits48-51] ODA- Bits48 —51] \en
ODD #A»] VM006/14 oDD ii=+E|_. VMO006/14 o0 =+ vMo06/14 ODD iEp] VMO06/14
QDE- Bito52-55 IDA VMOo06/14 lope - Bits52_55 1DE_|VMOOBI14 ope_ Bits52-55 IDI _|VMO0S/14 opE. Bits52-55 oM | VMO06/14
ODH ODH TOH ODH IOC ODH IDP
IDA
»{ VR007/1 IDE IDI |
. o5 007/15 |—||3—H-- VR007/15 ™ VR007/15 l—}ggﬂ- VR007/15
ODi— Bits56-59 ,c, OD| - Bits56-59 e ODI—_ Bits56—-59] o ODI~ Bits56-59] |FM |
ODL IFD] YM007/15 ODL TIEH T]VM007/15 ODL P JYM007/15 ODL “IEP TJVM007/15
_ Bits60-63 IDA JVMO0O07/15 __Bits60-63 IDE_|VMO07/15 | oDV~ Bits 60-63 1Dl | VMO007/15 ODM-_Bits60-63 _ipm |} VMO007/15
oopP 1bb ODP ToH ODP 0T oDP IDP
Figure 40. Vectors 4 through 7 Pipe 0/1 Read Data Path
HTM-xxx-0 Cray Research Proprietary 77

December 19, 1994

Preliminary Information

-

Vector 1
VROO1
VR009
VMO000 OAl - 1AA —
VMO08 OAP Bits0-7 IAH
VMOO1
OAl - 1Al -
VMO09 OAP _ Bits8—15 AP
Wg?g OAl - IBA-
OAP Bits16-23 IBH
VM
VMg?ia OAl - 1Bl ~
OAP Bits24-31 IBP
mg?;_‘ OAl— ICA-
OAP Bits32-39 ICH
VMO05
VMO13 OAIl - IClI -
. OAP Bits40-47 ICP
VMO006
VMO14 OAl - IDA-
OAP Bits48—-55 IDH_|
VMO007
VMO15 OAl - IDI -
OAP _ Bits56-63 _ IDP

CPU
Vector 0
VR000
VR008
VMO000 OAA — IAA—
VMO08 OAH __ Bits0—7 __ IAH |
mgg; OAA -~ IAI -
OAH Bits8-15 AP _|
VM002
VM8(1)0 OAA - IBA—
OAH Bits16~23 IBH _
VMO003
VMO11 OAA - 1Bl ~
OAH Bits24—31 IBP
My OAA- ICA—
OAH Bits32-39 ICH
VM005
VMO13 OAA - ICI—-
OAH - Bits40—47 ICP_
VMO06
VMO014 OAA-— IDA—
OAH Bits48—55 IDH
VMO07
VMO15 OAA- IDI—
OAH Bits56-63 IDP
HTM-xxx-0

December 19, 1994

Vector 2
VR002
VRO10

VMO000 OBA -~ IAA -
vM008 OBH Bits0-7 IAH
VMO001

OBA -~ 1Al -
VMO09 OBH Bits8—15 IAP _
ez OBA- IBA~

OBH Bits16-23 [BH _
mgﬂ’f OBA- 1Bl -

OBH Bits24—31 IBP _
VNo04 oBA- icA-

OBH Bits32-39 ICH ;
VMO005
VMO13 OBA- - ICl-

OBH Bits40-47 ICP |
VMO006
VM014 OBA - IDA-

OBH Bits 48 -55 IDH
VMO07
VMO15 OBA- IDI -

OBH Bits56-63 IDP

Figure 41. Vectors O through 3 Pipe 0/1 Write Data Path

Cray Research Proprietary
Preliminary Information

Vector Registers

Vector 3
VR003
VRO11
VMOO00 oBI- IAA-
VMO008 OBP BitsO-7 IAH
VMOO1
OBI - Al =
VMO09 OBP Bits8-15 IAP
VMO02
oBI- IBA—
VMO10 OBP Bits16-23 IBH
s o8- al-
OBP Bits24-31 I8P
oo o8I - ICA—
OBP Bits32-39 ICH
VMO05
VMO13 OBl — ICl -
OBP Bits40-47 ICP
VMO06
VMO14 OBI- IDA—
OBP Bits48—-55 IDH
VMOO07
VMO15 oBI- DI -
OBP Bits 56 —63 IDP

79

Vector 5
VRO05
VRO13
VMO000 OCt - 1AA—
VMO008 OCP Bits0~7 1AH
VMOO1 ocI- 1Al -
VMO09 OCP Bits8—15 IAP
VMO002
ocl- IBA—
VM010 OCP Bits16-23 IBH
ods ocI- 18I
OCP Bits24-31 IBP
o oCI - ICA-
OCP Bits32-39 ICH
v
Lncos o1~ o1-
OCP Bitls40-47 ICP
VMO06
VMO14 OCl - IDA-
OCP Bits48-55 IDH
VMO007
VMO15 ocl- IDi—
OCP Bits56—63 IDP

CPU
Vector 4
VR004
VR012
VMO00 OCA- IAA -
VMO8 OCH Bits 07 IAH
VMOO1
OCA- 1Al —
VMO09 OCH Bits8—15 IAP
b2 OCA- IBA—
OCH Bits16-23 IBH
Mo0g ocA- i
OCH Bits24—31 IBP
Mo0s ocA- oA
OCH Bits32-39 ICH
VMO005
OCH Bits40—47 ICP
VMO006
VMO14 OCA- IDA—
OCH Bits48—55 IDH
VMO007
VMO15 OCA- IDI -
OCH Bits56—-63 IDP _|
HTM-xxx-0

December 19, 1994

Vector 6
VR006
VRO14

VMO000 ODA - IAA -
VMO008 ODH Bits0-7 IAH
VMO01 ODA- Al -
VMO09 ODH Bits8—15 AP
VMO002

ODA- IBA—
vMo10 ODH Bits16-23 IBH .
mg?? ODA- Bl -

ODH Bits24-31 IBP
e ODA- ICA-

ODH Bits32-39 ICH
oo opA- o1~

ODH Bits40-47 ICP
VMO06
VMO14 ODA- IDA-

ODH Bits48—-55 IDH
VMO07
VMO15 ODA- IDI -

ODH Bits56-63 IDP

Figure 42. Vectors 4 through 7 Pipe 0/1 Write Data Path

Cray Research Proprietary
Preliminary Information

Vector Registers

Vector 7
VR007
VRO15

VMO0 oDI - IAA —
VMO08 ODP Bits0-7 IAH
VMOO01 ODi - 1Al —
VMO009 ODP Biis8—15 IAP |
vMO002 oDI - IBA -
VMO010 ODP Bits16-23 IBH
003 oDI- 1Bl -

ODP Bits24-31 IBP
mg% oD} - ICA-

ODP Bits32-39 ICH
voos opi- i

ODP Bits40-47 ICP
VMO06
VMO14 oDl - IDA~

ODP Bits48-55 IDH
VMO07
VMO15 oDI - IDI -

ODP Bits56-63 IDP _

81

\\.u.._,/

CPU Vector Registers
8§ggg OFD iy8 _[VRoo5 ovl IMC__[Vio00 Vector Register Decode Bits
VRO13 ovJ VM08
VRO01 oyl IMA__T'vmo00 ovK IMD* IMC IMB IMA
OFB Iys _ JVR009 VMO008
- oYJ oYL IMC _| VMO002 1 0 0 0 VO
OYK VMO010
OFC oYL IMA VMO002
. 1 0 0 1 Vi
VMO10 IMC _ | vM004
VM012 R
OFA IMA _ | VM004 roo
VMO12 mc | vMoos 1 0 1 1 V3
VMO14
IMA _ | VMO006 1 1 0 O V4
VMO014 IMC VMO0O1
VMO09 1 1 0 1 V5
IMA | VMOO1
VMO09 mc [VM003 11 1 0 Vv
VMO11
ima | vmo03 1 1 1 1 v7
VMO11 e [vmoos
VMO13 * Path 1 Valid
IMA _ | VMO005
VMO013 Mc | vmo07
VMO15
IMA VMOO7 NOTES: The top option number represents pipe 0.
»> The bottom number represents pipe 1.
VMO15 VRO06 ovi IMD VM0G0 P PP
VRO15 VMO008
(¢) ¢/ IMB ovJ
VR003 VMO000
I8 _|vrot1 oYJ VMO08 ovk mp _[vmoo2
OYK oYL VMO010
OYL iMB VM002 VROOO
VMO10 oYM MD__ [vMmo04 e
OYN VM012
IMB _ | VMO004 IYB INA VROO2
VMO12 - oYo imp [vmoo6 VRO10
IYC OYP VMO14
iMB | VMO06
VMO14 mp [vmoos INA__ 333?3
VMO009
IMB VMOO1
VMO009 wo [Vmoos INA__ \\;28?2
1 YMO11
IMB__ | VMOO3 VR001
VMot mp__[VM005 INA_ o} VR009
VMO13
iMB _ | VMO005
VMO13 wmp _[Vmoo7 LW Maress
VMO15
iMB _ | VMO07 -
Myied Path 1 Valid INA \‘;ggg’g
Path 1 Valid
Path 1 Valid VRO007
Path 1 Valid INA] VRO15
Figure 43. Vector Register Decode Bit Fanout (Pipe 0 and 1 Path 1 Only)
HTM-xxx-0 Cray Research Proprietary 83

December 19, 1994

Preliminary information

CPU

Vector Registers

CKO000 OFD Iyc Vector Register Decode Bits
CK002 VR0 oYM MG, [VMooo
VROO1 oYM IME_I'vM000 OvN VMO8 IMH* IMG_IMF_IME
OFB IYC _ | VRO09 OYN VMO008 oYO
oYo oYpP IMG_ VMO002 1 0 0 0 Vo
OFC oYP e | vmo02 > VM010
> VMO10 1 0 0 1 Vi
IMG_] VMO004
== IME _ | VMO004 VMO12 1 0 1 0 V2
*1 vM012
ma [vmo06 1 0 1 1 V3
= VM014
e, WS?Z' it 0 0 v4
VMOO01
IMGV VMOO09 1 1 o 1 V5
IME | VMOO1
VMO009 1 1 1 0 V6
MG | VM003
VMO11
IME_ | VM003 1 1 1 1 v7
> VMO11
MG, | YMOOS * Path 2 Valid
IME { VMO005
1 VM013
MG, | YMO007
iMe_ | vmoo7 VMO15 NOTES: The top option number represents pipe 0.
™1 VMO15 ovI IMH The bottom number represents pipe 1.
VR003 =1 YM000 VR015 | OYJ
1YB I vRO11 oYJ vMO008 OYK '
IMH | VM002
OvK oYL =1 yM010
oYL IMF_# VMO002 IYB
=1 VM010 OYM iNB__ | VROOO
IYC IMH \\;mg% 1 VR008
IMF_ | VM004 OYN
*1 VM012 VRO002
e N e e Lo
ime | vmoos oYP
VMO14 i (Vw00 Ne__ ylgg?;
™1 VM009
IMF | VMOO1
VMO009
ars_[VR003 B ol VRosa
1 vMO11
IMF_ | VMO003
VMO11
imH_[vmoos INB__J VRO
e [Vvioos VMO13
>1 VM013 VR003
IMH mg% B _od VRt
IMF_ | vM007
> YMO15 Path 2 Valid INB xgg?g
Path 2 Valid
Path 2 Valid VR007
Path 2 Valid ins | VvRo1s
Figure 44. Vector Register Decode Bit Fanout (Pipe 0 and 1 Path 2 Only)
HTM-xxx-0 Cray Research Proprietary

December 19, 1994

Preliminary Information

85

CPU
ARO000
VM000
OEA - IGA -
OEH Bits 0—7 IGH
Pipe 0
Pipe 1
VM008
OEIl - IGA—
OEP Bits 0—7 IGH _|
AT000
OEA- IGA - VMoo4
OEH Bits 32 -39 IGH
Pipe 0
Pipe 1
VM012
OEl - IGA -
OEP Bits32-39 IGH
HTM-xxx-0

December 19, 1994

AS001

S Register to Vector

AS000
VMOO1
OEA- IGA—
OEH _Bits8-15___ IGH _
VMO009
OFI - IGA -
OEP Bits8-15 IGH
ATO01
OEA- iga- | VMO0
OEH Bits40—47 IGH
VMO13
OEI - IGA -
OEP Bits40-47 IGH

AU000

Vector Registers

VMO02
OEA- IGA-
OEH Bits16-23 IGH

VMO10
OEl - IGA —
OEP Bits16-23 IGH |

VMO06
OEA- IGA~
OEH _ Bits48-55 IGH

VMO14
OEI - IGA-
OEP Bits48-55 IGH

Figure 45. S Register to Vectors

Cray Research Proprietary
Preliminary Information

AS002
VMO003
OEA- IGA -
OEH Bits24-31_IGH
VMO11
OEI - IGA —
OEP Bits24-31 IGH | .
AU001
VMO07
OEA- iGa- | VMO0
OEH Bits56-63 IGH
VMO15
OEil — IGA—
OEP Bits56—-63 IGH _

87

CPU
Path 1
CHO00
OIA-OID IlA- 11D _J VMOQO
OlA- lIE-
CHOO2 OID IH
OE- IlE~
OIH HH | vM004
OIE ~ OIH A= 1D
Path 2
CHO001
OIA-0ID IJA— 1, | YMO000
OIA- WE-
CHO03 oD WH
OIE- MWNE-
OH WH |VM004
OIE - OIH IIA-IID
HHTM-xxx-0

December 19, 1994

Vector Registers

CHO004 CH008
OIA-0ID NA—1D _J YMO001 OIA—-0ID IA-1p _| VM002
OlA- IIE- OlA- IIE-
CHoos |20 H cHolo 2R HH
OE- lE- OE~- lIE-
OH 1H _|vM005 OlH IH | vM006
OIE - OIH BA-IID OIE - OiH A ~IID
Common Memory Data to Vector Paths 1 and 2 Even Elements
CHO05 CHO09
VMOO1 VMO002
OlA-OID IJA—IJD OlA—OID WA~ 1JD
OlA- WE- OA- WNE-
CHO007 QID IJH CHO11 QID IJH
OlE- IE- OE-~ WE-
OH WH_|VMO05 OH H_]VYMO06
OIE - OIH HA-IID _| OIE — OIH

IIA-1ID

Figure 46. Memory Data to Vectors (Even Elements)

Cray Research Proprietary
Preliminary information

CHO12
OIA-0ID IIA~1D__ | VMO03
OIA- HE~
cHoia 2 H
OE- IE-
OH IH _]vmoo7
OIE-OH IIA = 1ID
CHO13
VMO003
OlA-OID IJA - WD
OlA- IE-
CHO15 |JOID _ IWH_
OIE- WWE-
OH WH _]VMo07
OIE-OH HA = 1ID

89

CPU

Path 1
CHO000
OQJA— OJD na-np _| vmoos
OlA- IIE-
CHOO? oD IH
OIE-~ HE-
OIH IIH _|VYMO012
OJE — OJH HA - 1ID
Path 2
CHO01
0QJA-0JD IJA—iJD | YMO08
OlA- IE-
CHoos OID__WH
OIE- WNE-
OH WWH |} VMO12
OJE — OJH A - lID
HTM-xxx-0

December 19, 1994

CH004 CHO008
OJA-0OJD A 1ip__f YMO09 OJA—0JD tA—up |vMO10
OlA- IE~ OlA- IE-
cHoos |20 1H ShoTo oD iH
OE- IE- OE- lE-
OH__IH | VMO13 oH iH_[vmoia
OJE — O A - IID OJE - OJH lIA — 11D
Common Memory Data to Vector Paths 1 and 2 Odd Elements
CHO05 CHO09
- _ VMO10
OJA-0JD WA= 1JD_ VMOO09 OJA-0QJD 1JA IJDV
OlA- NE- 8:3' :jf,‘
Croor12I0___MH CHO11 >
OE- WE-
OIE- WNE- v
o 1A _|[vvoi3 OH WH_|vmo14
OJE - OH OJE — OJH IA=ID

HA—IID _

Figure 47. Memory Data to Vectors (Odd Elements)

Cray Research Proprietary
Preliminary Information

Vector Registers
CHO12
OJA-0JD A-1np _ | YMo11
OlA- lIE-
crota joliD____H
OIE- lIE-
OH IH | VMO15
OJE - OJH lIA={ID _|
CHO013
OJA-0JD WA—1JD_| YMOT
OlA- WE-
S0 191D WH
OIE- WE-
OH IJH | VMO15
OJE - OJH A —IID
91

VECTOR LOGICAL

Refer to Figure 48 for a vector logical block diagram. There are two
vector logical units in a CRAY T90 series system; each unit operates
independently. These functional units reside on 16 VM options. VMO000
through VMOO7 handle pipe O (the even elements), and VMO008 through
VMO15 handle pipe 1 (the odd elements). Each VM option operates on a
4-bit slice of all eight vector registers.

The vector logical units receive data from the VR options and send the
results back to the vector registers. The second vector logical unit is
enabled by setting mode bit 2 (ESL) in the mode field of the exchange
package. When both logical units are enabled, data is first processed in
the second unit. This is done because only the first unit can process the
146 and 147 (vector merge) instructions. For example, if a 140 instruction
(logical product) issues, the second unit processes the instruction in case a
146 or 147 issues next. If the first unit processed the 140 instruction, it
would be busy and the 146 instruction would have to hold issue.

The vector logical unit performs the logical product (AND), logical sum
(OR), and logical difference [XOR (exclusive OR)] functions using either
scalar or vector registers.

HTM-xxx-0 Cray Research Proprietary 93
December 19, 1994 Preliminary Information

Vector Logical CcPU
VF000 — 001 Vector Logical 1 and 2
Vectqrs 0-7 VMO00
Pipe 0 VM007
OAA - OAP Unit 1
IKA -
Instruction Parcel IKP I |]
VR000 - 007
» Result Vector
Even Elements
V Data
Unit 2
IGA — _—
IGH
ILC
=l >
L OVA, Vj= Neg INA,
- Vi= Ne P VF000 -
VM =1 </j=Og OVB Vj=10 IOH: 001
oYu
1C000 - 1C003 I0A
Enable Vector
Logical 2
OEA — OEH OEA -OEH
SS000 Pipe O
————— AR, AS, AT, AU SjData ——— Vector Mask Register F———————————
OEI - OEP Pipe 1
VF002 - 003 OEl - OEP
Vectqrs 0-7
Pipe 1 OAA - OAP I0A
VMO008
) VMO15
Instruction 1KA — v)
Parcel IKP , OVA, Vj=Neg INA, Fursm—
| vm=1 Vj=Pos | |OVB Vj=0 ~ IOH | o'
VR008 - 015 Vj=0 -
IGA - P
IGH i Unit 1
. * Result Vector
— Qdd Elements
Y V Data Unit2
1C000 — 1C003} —
Enable Vector ovy Lo >
Logical 2
Vector Logical 1 and 2
Figure 48. Vector Logical Block Diagram
94 Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

CcPU

Vector Logical Instructions

Vector Logical

Refer to Table 15 for a list of the vector logical instructions.

Table 15. Vector Logical Instructions

instruction CAL Description

140ik ViSj&Vk | Transmit logical product of (Sj) and (Vk elements) to Vi
elements :

141jjk ViVj&Vk Transmit logical product of (Vj elements) and (Vk elements)
to Vielements

142ijk ViSiVk Transmit logical sum of (Sj) and (Vk elements) to Vi
elements

143ijk ViViVk Transmit logical sum of (Vjelements) and (Vk elements) to
Vielements

144jjk ViSj\Vk Transmit logical differences of (Sj) and (Vk elements) to Vi
elements

145ijk ViVAVK Transmit logical differences of (Vj elements) and (Vk
elements) to Vielements

Vector Merge

The 146 and 147 instructions merge the contents of the registers using the
vector mask register for control. The 146 instruction merges the contents
of Sj with the contents of Vk; the 147 instruction merges the contents of
Vjand Vk. If the vector mask bit is a 1, the Vj or Sj data is used; if the
vector mask bit is a 0, the Vk data is used.

The vector logical functional unit holds a copy of the S-register value.
Therefore, a subsequent instruction can change the S-register value and
not affect the results. These instructions are confined to the second logical
unit. Refer to Table 16 for the vector merge instructions, and refer to
Figure 49 for an example of a vector merge operation.

Table 16. Vector Merge Instructions

Instruction CAL Description
146ijk ViSjVK&VM | Merge (S)) and (Vk elements) to Vi elements using (VM) as
mask
1460k Vi#VM&Vk |Merge 0 and (Vk elements) to Vielements using (VM) as
mask
147ijk ViVAVK&VM {Merge (V) elements) and (Vk elements) to Vielements
using (VM) as mask

HTM-xxx-0
December 19, 1994

Cray Research Proprietary 95
Preliminary Information

Vector Logical

CPU

147jjk Merge Sjand Vk elements to Vielements using VM as mask

Vector Mask (SS) j

0001100

Vi Elements (VM/VR)
»! Vi Element O | Element0

Vk Element 1 | Element 1

VL=5

Vk Elements (VR/VM)

Element0} 0 ~————— 0
Element1] 0 1
Element2] 0 2
Element3}] O 3
Element4] 0 4
S2 0 ——7

Vk Element 2 | Element 2

> Sj Element 3

» Sj Element 4

NOTE: Elements 5 through
127 are unchanged.

146jjk Merge Vjelements and Vk elements to Vi elements using VM as mask

Vector Mask (SS) R
VL=5 0001100 0 '

Vk Elements (VR/VM) ViElements (VM/VR)
Element0] 0 0 »1 VkElement 0 | Element 0
Element1l 0 1 Vk Element 1 | Element 1
Element2] 0 2 Vk Element 2 | Element 2
Element3] 0 3 VjElement0 | Element3
Element4} 0 4 »1 VjElement1 | Element 4

Vj Elements (VR/VM)
ElementO| 0 7
Element1] 0 7
Element2] 0 7
Element3| 0 —m———-7

NOTE: Elements 5 through
Element4} 0 7 127 are unchanged.
Figure 49. Vector Merge Operation)
96 Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

CcPU

Vector Mask

Vector Logical

There are two vector mask registers: VMO and VM1. Each register is 64
bits wide, and the two registers are aligned to create a 128-bit register.
Each bit in the register corresponds to an element in a vector register.

The vector mask register stores the results of a test condition of an
element in a vector. For example, a bit can be set in the mask register for
all elements in the test vector that are positive values.

The vector mask register receives data from the scalar registers or from
the result of comparing a condition within the elements of a vector. The
vector mask register is arranged so that mask bit 127 corresponds to
element O of the vector.

Refer to Table 17 and Table 18 for a list of the vector mask and vector
mask test operations, respectively. Refer also to Figure 50 for an
illustration of the 17500 instructions.

Table 17. Vector Mask Operations

Instruction CAL Description

00300 VMO Sj Transmit (S) to VMO
00301 VM1 Sj Transmit (S)) to VM1

*00302 VMO Aj Transmit (Aj) to VMO
*0030,3 VM1 Aj Transmit (Aj) to VM1

070ift ViCl,Sj&VM | Transmit compressed index of (S)) controlled by (VM) to Vi
073100 SiVMO Transmit (VMO0) to Si
073i10 SiVM1 Transmit (VM1) to Si
*07320 AiVMO Transmit (VMO0) to Aj
*07330 AiVM1 Transmit (VM1) to Aj

* These instructions must be preceded by a 005400 (EIS) instruction.

HTM-xxx-0
December 19, 1994

Cray Research Proprietary 97
Preliminary Information

Vector Logical CPU
Table 18. Vector Mask Test Operations
Instruction CAL Description
175000 VM VjZ Set VM bit if (Vj element) =0
17501 VM VN Set VM bit if (Vjelement) =0
175072 VM VjP Set VM bit if (Vjelement)=0
17503 VM VM Set VM bit if (Vjelement) <0
175if4 ViVM VjZ | Set VM bit if (Vj element) = 0 and store compressed
A indices of Vjelements = 0 in Vi
175ip ViVM VjN | Set VM bit if (Vjelement) = 0 and store compressed
indices of Vjelements = 0in Vi
175i6 ViVM VjP |Set VM bitif (Vjelement) = 0 and store compressed
indices of Vjelements = 0in Vi
175ij7 ViVM VjM |Set VM bitif (Vjelement) < 0 and store compressed
indices of Vjelements < 0in Vj
175000 Set VM bit if Vj element = 0
V0L =
Compare VF
: Vector Mask Register (SS
Vector Register (Vj) (VRVM) TestVj=0 eotor Mask Register (SS)
Element0 | 00000000000000000 .- > 0 Bit 127
Element 1 00000001110000001 - > 1 Bit 126
Element 2 1111111111111 > » 0 Bit 125
Element 3 00000000000000000 > > 1 Bit 124
Element 4 1111111111111000000 > ' > 0 Bit 123
0 Bit 122
0 Bit 0
Figure 50. 17500 Instructions
98 Cray Research Proprietary HTM-xxx-0

Preliminary Information December 19, 1994

CPU

Element 0
Element 1
Element 2

Element 3

Element 4

Vector Logical

Figure 51 illustrates the function of the 175ij4 instructions that use the
vector mask to create a compressed vector.

175ii4 Set VM bit if Vj element = 0 and store compressed indices of Vj elements = 0 in Vi

VM Reg Index

Vj Elements (VR/VM) VF (SS) Bits Address (VF) ViElements (VM/VR)

0 0o |— 1 @- o b= o Element 0
Test

0 1 e » 0 126 1 —[" 2 Element 1

0 0 1 @" 2 3 Element 2

0 0 . 1 124 3 4 Element 3
Vj=0 : .

0 0 1 e Unchanged | Element4

0 177
VL=5

Figure 51. Function of the 175ij4 Instructions

Compressed lota

HTM-xxx-0

The Iota function is performed on the RA, RB, and RC options; these
options also make up the floating-point reciprocal approximation unit and
the vector pop functional unit. Table 19 lists the instruction used in iota
operations, and Figure 52 is a block diagram of iota pipe 0.

Table 19. Iota Instruction

Instruction CAL

Description

070ift

ViCl,Sj&vM

Transmit compressed index of (S)) controlled by (VM) to Vi

December 19, 1994

The 070ij1 instruction forms multiples of the contents of register Sj
starting with 0 (0, Sj, 2 x Sj, 3 X Sj, and so on). It stores multiples
corresponding to each 1 bit set in the vector mask register in successive
elements of register Vi (beginning at element 0). The instruction stops
when all unused bits of the vector mask are O or are used.

Cray Research Proprietary
Preliminary Information

99

Vector Logical CPU
Go lota Pipe 0 i
Select lota, Gate A, Hold A, Gate lota RC000 j
RACO0 OP- IMC, IME, IMI, IMK__
SjBit47 ICP
o OPA IMA
SjBits OBA —
48-63 IDA—IDE OBQ__ViBits 47 — 63 Results _
INA, INC, OEA - -
INE, ING OEO ViBits 0 — 14 Results
_ - OAA- VjBits 15~ 40
:88 OAZ Results -
OBA- ViBits41—46
OPI OBF Results -

Gate lota Pipe 0

ONA - Carries/Enables

ONC toRA _
Vilota 0 —14 -
RB00O OFA-
IME_ OFO
MG ODA- Shared lota Vi DA -
> ODL Bits 15 — 26 iDL)
IMA_ OPA Sj Bit 26 Relay IQA
OO0A, IPA, IPB
1QA ~ 00C, Carries/Enables IPH
SjBits0—15 1QP ONA to RC/RA IOA, I0B_
IRA - IRA -
SjBits 16—26 IRK SjBits 27 =42 IRP
- ISA -
SjBits 43-46 ISD
Figure 52. Iota Pipe 0
100 Cray Research Proprietary HTM-xxx-0

Preliminary Information December 19, 1994

CPU Vector Logical

Figure 53 illustrates the function of the 070ij1 instructions that use the
vector mask to create a compressed vector.

070if1 Transmit compressed index of (S)) controlled by (VM) to Vi

Vector Mask (SS)

1001110100 ——————ee (
Vi Elements (VM/VR)

Furﬁ:;(:gnal 0 Element O
Sj x VM Bit 6 Element 1

2
2 ;((g > 8 Element 2
i g X g 10 Element 3
2x7 14 Element 4

Sj 0 ———————— 2

Figure 53. Function of thc 070ij1 Instructions

RA Option

The RA option generates the iota results for bits 47 through 63. It
receives iota result bits O through 14 from the RB option and outputs bits O
through 14, and 47 through 63 to the result vector. The RA00O option also
generates the control for the iota function for both pipes.

RB Option

The RB option generates the iota result for bits O through 26. Bits 0
through 14 are sent to the RA option, and bits 15 through 26 are sent to
the RC option.

The RB option receives two control signals: Select Iota0 and Gate Iota.
Select Iota0 selects the correct iota results from Iota0/Iotal; Gate Iota
multiplexes (muxes) the iota results to the RA and RC options.

HTM-xxx-0 Cray Research Proprietary 101
December 19, 1994 Preliminary Information

Vector Logical CPU

RC Option

The RC option receives bits 15 through 26 from the RB option and
generates result bits 27 through 46 to be sent to the result vectors.

The RC option receives four control signals from the RA option: Select
Iota0, Hold A, Gate A, and Gate Iota. Select Iota0 selects from
IotaO/Iotal the correct iota results. Hold A and Gate A control the
first-in-first-out (FIFO) buffers, and Gate Iota disables
reciprocal/pop/parity/leading zero and enables iota results to be sent to the
result vectors. ’

102 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

VECTOR ADD

Refer to Figure 54 for a block diagram of vector add. The vector add
functional unit is located on the VM and VF options. The VM options
perform the actual addition of the input operands and then pass the group
carries and group enables to the VF for summation. These bit toggles are
then returned to the VM option for final summation. The functional unit
uses two’s complement arithmetic and does not detect any overflow
conditions.

Refer to Table 20 for a list of the vector add instructions and to Figure 54
for a vector add block diagram.

Table 20. Vector Add Instructions

Instruction CAL Description

154 ik ViSj+Vk Transmit integer sum of (S)) and (Vk elements) to Vi elements

155ijk ViViVk Transmit integer sum of (Vj elements) and (Vk elements) to
Vi elements

156ijk ViSi-Vk Transmit integer difference of (Sj) and (Vk elements) to Vi
elements

1560k Vi-Vk Transmit two’s complement of (Vk elements) to Vi elements

157ijk ViVi-Vk Transmit integer difference of (Vj elements) and (Vk elements)
to Vielements

The 154 and 156 instructions use the Sj register as the second operand.
The VM option holds a copy of the S register so if a subsequent
instruction wants to use Sj, that instruction can be changed without
affecting the vector instruction.

HTM-xxx-0
December 19, 1994

Cray Research Proprietary 103

Preliminary Information

N’

CPU

VF000

OlA Adder Bit Toggles INA

(VROOO Vector Data

VR007)

OIB Adder Bit Toggles INA

(VRO0O Vector Data

VR007)

Summation
ILA
Adder VF000
VMO0 Bits 0~ 7 IMA
OWA
Carry
owcC
Enable VFOOT
ILA
IMA
—> Result Data to Vectors
L8 __IVF000
VMO0 Bits 8~ 15 IMB
Carry OWA
Enable OwcC
i VFO01
ILB
IMB

OIC Adder Bit Joggles INA

(VROOO Vector Data
—_—

VMO002 Bits 16 —23
Carry
Enable

—= Result Data to Vectors

VR007)

OID Adder Bit Toggles INA

(VROOO Vector Data

VMO003 Bits 24 — 31
Carry

Enable

ILC _IVF000
IMC
OWA
owe
VFOO1
ILC
IMC

L— Result Data to Vectors

VRO007)

HTM-xxx-0
December 19, 1994

LD __Ivrooo
iIMD
OWA
oWC
VF001
ILD
iIMD

— Result Data to Vectors

Figure 54. Vector Add Block Diagram

VF001

OIA Adder Bit Toggles INA

(VR0O0O Vector Data

VR007)

Summation

Adder ILE _FVF000
VMOO4 Bits 32 — 39 IME
Carry OWA
Enable JOWC
VF001
ILE |
IME

OIB _ Adder Bit Toggles INA

(VR0OO Vector Data

VMO05 Bits 40 — 47
Carry

Enable

- Result Data to Vectors

VR007)

OIC Adder Bit Toggles INA

Cray Research Proprietary
Preliminary Information

(VROOO Vector Data

VMO006 Bits 48 —55
Carry

Enable

ILF__{VF000
IMF _
OWA
owe
VF001
ILF
IMF _

P

—— Result Data to Vectors

VR007)

ILG _I'VF000
IMG_
OWA
OWC
VF001
ILG
IMG

OID Adder Bit Toggles INA
e ———————————

(VRO0O Vector Data .

VMO007 Bits 56 —63
Carry
Enable

——p= Resuit Data to Vectors

e Resullt Data to Vectors

VR007)

Vector Add

105

e

VECTOR SHIFT

The vector shift functional unit is contained within the VS option. Vector
shift is a dual-pipe functional unit; it accepts a pair of elements and
generates a pair of results. If the vector length is odd, the last operand
generates a single result. There is only one VS option used per CPU.

The vector shift functional unit is also responsible for vector transfer
operations. For example, it moves the contents of one vector register to
another vector register; then the functional unit uses the Ak value as a
starting element number for the block move.

This unit also performs the vector compress and expand operations. The
compress operation writes the elements of V;j to Vi if a corresponding bit
in the vector mask register sets. The expand operation reads the elements
of Vj to Vi if a corresponding bit in the vector mask register sets. These
operations are illustrated later in this section.

The 150 to 153 instructions use Ak as the shift count. The 150 to 151
instructions, when preceded by a 005400 (EIS) instruction, use VO for the
shift count. In either case, if bit 7 or above is set, the result is 0’s.

Vector Shift Instructions

Refer to Table 21 for a list of the vector shift instructions.

Table 21. Vector Shift Instructions

instruction CAL : Description
150ik ViViAk Shift (Vj elements) left (AK) places to Vielements
*150i0 ViVi<v0 Shift (Vjelements) left (VO elements) places to Vielements

"~ 151k ViVEAk Shift (Vj elements) right (Ak) places to Vielements
*151j0 ViviVvo Shift (Vj elements) right (VO elements) places to Vielements
152ijk ViVjVj<Ak | Double shift (Vjelements) left (Ak) places to Vielements
*162ijk ViVjAk Transfer (Vj elements) starting at element (Ak) to Vi elements
163ijk ViVjViAk | Double shift (Vjelements) right (Ak) places to Vielements

* These instructions must be preceded by a 005400 (EIS) instruction.

HTM-xxx-0
December 19, 1994

Cray Research Proprietary 107
Preliminary Information

Vector Shift CPU

Table 21. Vector Shift Instructions (continued)

Instruction CAL Description
*153j0 ViVj{VM] [Compress Vjby (VM) to Vi
*153if1 Vi[VM] Vj | Expand Vjby (VM) to Vi

* These instructions must be preceded by a 005400 (EIS) instruction.

Vector Shift Count Description

The Ak shift count is sent to the VS option by the AR00O option, and all
eight A series options check the value of the 64-bit A register. This
determines if any bits above bit 6 have been set. If any bits have been set,
the result is lost due to overshift. If no overflow is detected, a No Ak
Overflow signal is sent from the SS to the VS. ARO000 sends bits 0
through 6 for the shift count.

To understand this, the breakdown of the shift count must be examined.
For both single and double shifts, the breakdown is the same, except for
the fact that the double shift has 1 extra bit (bit 6). Refer to Figure 55 for
a breakdown of the shift count, and to Figure 56 for a block diagram of
vector shift.

Double

Shift

Only

6 5 4 3 2 1 0 Bit Position
64 32 16 8 4 2 1 Shift Value

Figure 55. Shift Count Breakdown

Each bit position of the shift count represents a shift value, and the sum of
the shift value for each bit set in the shift count equals the total number of
places shifted. The maximum shift count that could be generated is 127;¢
or 177g. v :

NOTE: The shift value is shown as a decimal value; all references to
shift counts in the documentation refer to a decimal count. Also,
a shift of 0 generates a maximum shift of 177g places; this
zeroes out the result register.

108 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

O-XXX-W.1H

7661 ‘61 4oqwedag

uonewuo| Aleuileld
fiejoudold yoressay Aein

60}

VS000
VM/VR Vector Shift Data Pipe 0 IAA, IDP
Vector Shift Data Pipe 1 IEA, IHP_|
OHA, OHG Ak Shift Count 0 — 6 A, 1l
SS000 ift Coun G -
OHH No Ak Overflow iM _
OID Vector Mask Bit =1 (Even) IMM |
QIE Vector Mask Bit =1 (Odd) IMN |
VRO00 OMA, OMH Vector Shift Count (V0) Pipe 0 IKA, IKH:
OMI VO Overflow IKM o
VR008 OMA, OMH Vector Shift Count (V0) Pipe 1 ILA, ILH
OMI VO Overflow ILM |
VFOO1 : INA
ONB Pipe 0 Valid INB
VF003 ONB Pipe 1 Valid N
IND
VAOCO 0QB End Vector Shiftor KOField ~ INM
BT000 0SG EIS Bit IMC -
ORA Go Vector Shift IME

OAA, ODP Vector Shift Result Data Pipe 0

»] VM/VR
OEA, OHP Vector Shift Result Data Pipe 1
OMA Shift Result Valid Pipe 0 INE _ I vao00
INF
OMC End Vector Shift
INF
| VAOO1
OMB Shift Result Valid Pipe 1 INE

Figure 56. Vector Shift Block Diagram

Y

ndo

HIYS 10108/

Vector Shift

CPU

If the jk field of a left single shift equals 27g and bits 4, 2, 1, and O are set,
the shift values are 16, 4, 2, and 1, respectively. The sum of the shift
values is 23 (16 + 4 + 2 + 1); therefore, the instruction shifts left 231g
places.

The actual hardware that performs the shifts is the same for both left and
right shifts. However, the hardware performs only left shifts. Right shifts
are accomplished according to the way data is entered into the shifter,
hence the use of two’s complement for right shifts.

The vector shift unit also receives a shift count from VO when performing
the 150 and 151 EIS instructions. The shift count is sent to the VS option
from VRO for pipe 0 and from VRS for pipe 1.

Vector Right Shift 005400 151ij0

Refer to Figure 57 for an example of a vector right shift using VO for the
shift count. Note that the shift count for element O is 0; this results in an
end-off shift for that element. This instruction must be preceded by the
054100 instruction in order to function as illustrated. This process
continues for vector length.

Vk Elements (VR/VM) Pipe 0/1

Element 0 0 0
Element 1 0 1
VO Shift Count
Element 2 0 2
Element 3 0 3
Element4 | O 4 VL=5
Vj Elements (VR/VM) Pipe 0/1 VS ¢ ' Vi Elements (VM/VR) Pipe 0/1
Element0 | 1 0 > » - O 0 | Element0
Element 1 0 10 »f Vector Shift 0] 1] Element 1
Functional
Element2 | O 100 > Unit > 0 1 | Element2
Element3 | O 1000 > > 0 1 | Element3
Element4 | 0 10000 > » 0 1 | Element 4
VL=5
Figure 57. Vector Right Shift
110 Cray Research Proprietary HTM-xxx-0

Preliminary Information December 19, 1994

CcPU

Vector Right Double Shift 153ijk

Vector Shift

Element 0
Element 2
Element 4

Element 6

Element 8

Element 1
Element 3
Element 5

Element7

Element 9

HTM-xxx-0

December 19, 1994

Refer to Figure 58 for an example of a vector right double shift using Ak
for the shift count. This instruction concatenates two successive elements
of register V;j and right shifts the lower 64 bits to Vi. The first operation
combines element O with a word of all 0°s. Element 0 becomes the lower
64 bits, and this value is then shifted right Ak places to Vi.

The next operation combines element O and element 1 of Vj, with element
1 being the least significant bits, and shifts this value right to Vi. This
operation continues for vector length. Note that the shift count for
element 0 is O; this results in an end-off shift for that element.

Vk Elements (VR/VM) Pipe 0
0 17 VL=3
1 6 Shift count from Ak
0 0 VS Vector Shift Functional Unit
0 0 Word of 0’s Element 0
0 0 Element 0 Element 1
- Etement 1 Element 2
Vj Elements (VR/VM) Pipe 1
Element 2 Element 3
° . 8 Element 3 Element 4
16 0
0 o
0 0
0 0 Vi Elements (VR/VM) Pipe 0/1
0 —————— 1 | Element0
166 0 | Element 1
»| 15 0 | Element2
156 O | Element3
0 0 | Element 4
Figure 58. Vector Right Double Shift
Cray Research Proprietary 111

Preliminary Information

Vector Shift

Vector Transfer 005400 152ijk

cPU

Element 0
Element 1
Element 2

Element 3

Element 4

This instruction moves the contents of Vj to Vi starting with element Ak as
shown in Figure 59. Note that this is an EIS instruction.

Ak=2
VL=5
Vj Elements (VR/VM) Pipe 0/1 VS Vi Elements (VM/VR) Pipe 0/1
1 0 > » O 100] Element0
1] 10 Vector Shift o 0 1000 | Element 1
Functional
0 100 Unit = 0 10000 [Element 2
0 1000 = 0 0 [Element3
0 10000 » 0 0 | Element4

Figure 59. Vector Transfer

Vector Compress 005400 153ij0

This instruction compresses a vector register using a vector mask and

transmits the results to Vi as shown in Figure 60.

Two element counters are initialized to 0, one for Vj and the other for Vi.

The vector mask is then scanned from right to left, and for every 1 bit set,
an element of Vj is written to Vi. The element counters internal to the VS
option determine the element position within each register.

SS Vector Mask Register
IT 0011 0 : VL=5
Vj Elements (VR/VM) Pipe 0/1 VS Vi Elements (VM/VR) Pipe 0/1
Element0 | O 0 > o 0 0 | Element 0
Element1 | O 10 Vector Shift 0 1000 { Element 1
Functional :
Element2 | O 100 Unit ™ 0 10000 | Element 2
Element3 | 0 1000 > 0 0 | Element 3
Element4 | O 10000 > 0 0 | Element 4
Figure 60. Vector Compress
112 Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

CPU

Vector Expand 005400 153ij1

Vector Shift

This instruction expands a vector register using a vector mask and
transmits the results to Vi as shown in Figure 61.

Two element counters are initialized to 0, one for V; and the other for Vi.
The vector mask is then scanned from right to left, and for every 1 bit set,
an element of Vjis written to Vi. The element counters internal to the VS
option determine the element position within each register. In this
instruction, the element counter for Vj falls behind the counter for Vi by
one position for each 0 bit in the vector mask register.

SS Vector Mask Register
[10011 o} VL=5

Vj Elements (VR/VM) Pipe 0/1 VS Vi Elements (VM/VR) Pipe 0/1
Element0 | 0 0 > ' > 0 0 |Element0
Elementt | 0 10 »] Vector Shift Unchanged Element 1

Functional
Element2 §| 0 100 Unit Unchanged Element 2
Element3 | O 1000 >0 10 | Element 3
Element4 | 0 10000 » 0 100 | Element 4
Figure 61. Vector Expand

HTM-xxx-0 Cray Research Proprietary 113

December 19, 1994

Preliminary Information

VECTOR POP/ POP PARITY AND LEADING ZERO

The vector population/parity functional unit performs population counts
and parity for vector operations and executes instructions 174ij1 vector
population count and 174ij2 vector parity.

Refer to Figure 62 for a vector population/parity/leading zero block
diagram. This functional unit shares logic with the floating-point
reciprocal approximation functional unit. The % field of the instruction
determines the type of operation to be performed.

Because the vector population/parity functional unit shares logic with the
floating-point reciprocal approximation functional unit, all vector
operations reserve the associated functional unit. The floating-point
reciprocal approximation functional unit is reserved when the vector
population/parity functional unit is reserved and vice versa.

Both scalar and vector register operations share the floating-point
reciprocal functional unit. Therefore, when vector reciprocal or vector
population/parity instructions are executed, any scalar reciprocal
instruction holds issue until the vector operation is finished.

The 174ij1 instruction counts the number of 1 bits in each element of a
vector register specified by Vi. Each element is counted individually, and
the result is stored in the respective element of Vi. For example, the count
of 1 bits in element 0 of Vj is stored in element 0 of Vi; the count of 1 bits
in element 1 of Vj is stored in element 1 of Vi; and so on. This process
continues for the number of elements equal to the VL.

The 174ij2 instruction counts the number of 1 bits in each element of a
vector register specified by Vj and stores a 1-bit parity result in a vector
register specified by Vi. The 174ij2 instruction uses the same logic as the
174ij1 but outputs only bit O of the result. Bits 1 through 6 are forced to
0’s. This instruction determines whether an odd or even number of bits
are set in each element of a vector register. If the result equals O, there is
an even number of bits. If the result equals 1, there is an odd number of
bits.

HTM-xxx-0 Cray Research Proprietary 115
December 19, 1994 Preliminary Information

Vector Pop/Pop Parity and Leading Zero CPU
VMO11 Bits 28 ~ 31
VRO11 Bits 24 — 27 \
VMO10 Bits 20 - 23] -\-
VRO10 Bits 16— 19
VMO09 Bits 12— 15
VRO09 Bits§—11 |
VMO08 Bits4—7 |
VR008 Bits 0 -3 RACO1
Vector Registers BA-BE
Pipe 1
VMO15 Bits 60 — 63 AP
[Vrot5 Bits 56-59 | \ IDA - IDP OFA — OFG
VMO14 Bits 5255 | ICA—ICP
VR014 Bits 48 - 51 |—l
VMO013 Bits 44 —47 Go Scalar IEA
[VRo13 Bits 4043 | Force O = g _
[vmo12 Bits 36 -39 | teooa” = "7 Fipe’
VR012 Bits 32 - 35 (1C002) m‘
Vector Registers (BT000) WL.
Pipe 1 (VFoop) D2t Vaiid IEE
VROO7 Bits 56 — 59 I—ﬁ
VRO06 Bits 48 — 51
VR005 Bits 40 — 43
VR004 Bits 32 — 35
VR003 Bits 24 — 27
VROO2 Bits 16—19 |
- |vroot Bitss-11 | RADO0
1. [vrooo Bits0-3
Vector Registers IBA 18P
_ Pipe0
VMOO7 Bits 60 - 63 |-—\ IAA=IAP OEA - OEG
VMOO06 Bits 5255 | IDA — IDP
VMOO5 Bits 44 - 47 | CA_ICP
VMO04 Bits 36 — 39
VMO03 Bits 28 - 31 JAOD0) GoS Recip IEA
VMO0O02 Bits 2.0 -23 | 1C000) X0 IEB Pipe 0
VMO01 Bits 1? -15 | o0 X! IEC
VMO0O Bits4 -7 Go Reci IED
(BT000) P
Vector Registers Recip
> Pipe 0 (VF000) Data Valid 1EE
Figure 62. Vector Population/Parity/Leading Zero Block Diagram
116 Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

CPU Vector Pop/Pop Parity and Leading Zero

Pop/Parity/Leading Zero Functional Units

The RA options contain part of the reciprocal approximation unit; these
options also contain the logic for vector pop, vector pop parity, and vector
leading zero. There are two RA options per CPU: RA000 handles pipe O,
or the even elements; and RAOO1 handles pipe 1, or the odd elements.

The RA options receive data from the VM and VR options; 4 bits come
from each VR and VM. Data is sent on the same wires and terms that the
reciprocal data uses. The data is then sent to VMO00O and VMOOS on the
same terms that the reciprocal output data uses. Data is sent to only those
two options because the pop functional unit returns only a 7-bit value to
the result register.

Vector Popdlat' t 174ij1

Ce its in the element set). The functional unit sends
pgult vector; the remaining bits are zeroed

'5%

Vector Population/Parity 1741]2 @

This instruction counts the numb
" and then determines whether this num

number. If the result is an even number of Bi

e? of a vector
S . 4 2%, y
vector. If the number of bits is odd, a 1 is writte Y

Only bit O is written to the result vector; the rest of the
are set to 0’s.

Vector Leading Zero Count 174ij3

This instruction counts the number of 0’s that precede the first bit set in
each element of a vector. The count will be from 0 (bit 63 of the element
set) to 100 (no bits in the element set).

HTM-xxx-0 Cray Research Proprietary 117
December 19, 1994 Preliminary Information

Vector Pop/Pop Parity and Leading Zero CPU

Vector Population/Parity Instructions

118

Refer to Table 22 for a list of the vector population/parity instructions.

Table 22. Vector Population/Parity Instructions

Instruction CAL Description
174if1 ViPVj Population count (Vj) to Vi
174i2 ViQVj Parity of (V)) to Vi
175i3 ViZVj Transmit leading zero count of (V)) to Vi

Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

RN

R

GATHER/SCATTER INSTRUCTIONS

The 176ilk and 1771k instructions transfer blocks of data between
common memory and the vector registers. The 176 invokes the gather, or
read function; the 177 invokes the scatter, or write function. When the
176i1k instruction is preceded by a 005400 instruction parcel, it performs
a double gather function, which utilizes the dual-pipe capability of the
computer system. The contents of the vector length (VL) register
determine the number of words transferred.

Gather Instructions

HTM-xxx-0
December 19, 1994

The 1761k instruction transfers data from common memory to the Vi
register. Register AQ contains the initial (base) address; the Vk register
contains the address indices.

For each element transferred to Vi, the memory address is the sum of (A0)
and the corresponding element of register Vk. For example, during a
176213 instruction, V2[0] is loaded from address (A0) + (V3[0]); V2[1] is
loaded from address (AQ) + (V3[1]); etc.

The 005400 176ijk instruction performs the double gather operation. Data
is transferred from common memory to Vi and Vj in two separate data
transfers that occur simultaneously. The AO register contains the base
address for the transfer to Vi. The Ak register contains the base address
for the transfer to Vj. The Vk register contains the address indices for
both transfers.

For each element transferred to Vi, the memory address is the sum of (A0)
and the corresponding element of Vk. For example, during a 005400
176213 instruction, V2[0] is loaded from address (A0) + (V3[0]); V2[1] is
loaded from address (AQ) + (V3[1]); etc. Simultaneously, V1[0] is loaded
from address (A3) + (V3[0]); V1[1] is loaded from address (A3) +
(V3[1)); etc.

Cray Research Proprietary 119
Preliminary Information

Gather/Scatter Instructions CPU

Scatter Instructions

The 1771k instruction transfers data from V; to common memory. The
AQ register contains the initial address. Vk contains the address indices.

For each element transferred from register Vi, the memory address is the
sum of (A0) and the corresponding element of register Vk. For example,
element 0 of Vi is stored to address (AO) + (VK[0]); element 1 of Vi is
stored to address (A0) + (V&[1]); etc.

120 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

N

FLOATING-POINT ADD

HTM-xxx-0
December 19, 1994

Refer to Figure 63 for a block diagram of floating-point add. The
floating-point add unit consists of two option types: the FA and the FB
options. Each pipe has one FA option and one FB option. FA0OO and
FBO000 represent pipe 0, and FAOO1 and FBOO1 represent pipe 1. The use
of dual pipes allows two floating-point add functions to occur at the same
time. The even elements of the vector go to pipe 0; the odd elements go to
pipe 1. This feature helps in troubleshooting; if you identify which
element is failing, you can identify which pipe and associated options are
failing. For scalar floating-point add instructions, only pipe O is used.

The floating-point add unit must do several things to produce a result.
First, the exponents of the input operands must be compared to determine
which is larger. Then, the coefficient of the smaller must be right shifted
until the exponents become equal.. When this is done, the coefficient is
then added. If the sign bits are different, or if the sign bits are the same
and a subtract instruction is decoded, then a two’s complement addition is
performed.

Next, the results have to be normalized and the exponent adjusted. The
results are then sent to the result registers (either scalar or vector
registers). Finally, if the resulting exponent is greater than 60000g or less
than 17777g the results are checked for overflow and underflow
conditions. If an overflow condition exists, the exponent is forced to
600003, the coefficient is left intact, and an error flag is set in the
exchange package. If an underflow condition exists, the exponent and the
coefficient are forced to 0 and no flag is set. The result coefficient is also
checked for a zero value. Ifit is O, both the result exponent and
coefficient are zeroed out. .

The issuing of a 005400 extended instruction set (EIS) instruction just
before a floating-point add instruction enables the extended accuracy
mode. This adds a rounding bit if all the necessary conditions are
satisfied. This is accomplished with the use of sticky bits. When the
operand of the smaller exponent number is right shifted to equalize the
exponents, the coefficient may be shifted more than 473 places, resulting
in a coefficient of 0. What actually takes place is the bits are shifted right
into another register as bit —1 to —15, as shown in Figure 64. If any of
these bits set and EIS sets, a rounding bit is added to the result coefficient
at bit position 0.

Cray Research Proprietary 121
Preliminary Information

ccl

uoneunoju) Aeununaid
Aeyoudolg yoseasay Aein

¥661 ‘61 Joquade(Q
0 XXX-IN1H

FA
(AR, AS, AT, AU) $10.253, 63 IAA - ICC
(AR, AS, AT, AUy k053,68 IDA - IFC Exponent Sivi
; i - Bits 0 -5
(VM, vR) SLCopy/Vj0 - 53,63 1GA - IIC Coefficient
(VM, VR) Vj0-53,63 IJA - WJC OAA — OBV Results
() S Scalar FA IXA — IXB_| v
(AT) 101 Field IXC = IXD
Go Vector FA IXE —»| Coefficient
BD 15 Mode IXG Adjustment
(BT >
| Leading Zero Count|
FB Coefficient Add
(AR, AS, AT, AU) —L0=63 _1AA-ICL > OMA = OMC Exp j= Exp k6 — 14 IMA — IMF |
(AR, AS, AT, AU) Sk0-63 1DA-IFL |k Exponent ONA—ONB Exp k>Exp j6—14 INA - IND 7Cootiorent
(M, vR) SLCopy/VjO-63 IGA—IIL Calculation OOA-O0B_Expj+1=Expk6-14 10A-I0D |
(VM, VR) k0 =63 WA-ILL | | Ot Exponent L ol JoPA-OPB Expj=Expk+1 6—14 IPA=IPD Lk Coefficlent |
WA) Go Scalar FA IXA - IXB OCA Exponent Underflow IMW
(aT) SO Field __IXC - IXD
S Adjusted
(8T Go Vector FA IXE > Exponent OAA-OAQ SiViExponent
(VF) S0 Resultvalid IXF > (JA)
(BT) E1S Mode IXG .
FPE Mode IXH
Early Sign OAP SiViSignBit
Bit > (JA)
Calculation
Figure 63. Floating-point Add
J

ppy juiod-buneol4

ndo

J
/
p——

CPU

Bits 63

48

Floating-point Add

Exponent

Coefficient Sticky Bits

Sign Bit

Figure 64. Floating-point Add Sticky Bits

Floating-point Add Functional Unit Instructions

Refer to Table 23 for a list of the floating-point add functional unit
instructions.

Table 23. Floating-point Add Functional Unit Instructions

Instruction CAL Description
062ijk Si Sj+ FSk | Scalar floating-point sum of (Sj) and (Sk) to Si

0620k Si+ FSk | Transmit normalized (Sk) to Si

063ijk SiSj— FSk | Scalar floating-point difference of (Sj) minus (Sk) to Si

06310k Si—-FSk Transmit normalized negative of (SK) to S/, normalize the
coefficient and toggie the sign bit

170ifk ViSj+ FVk | Vector fioating-point sum of (Sj) and (Vk elements) to Vi

171ik ViVj+ FVk | Vector floating-point sum of (Vi elements) and (Vk elements) to

: Vi

172ijk ViSj—FVk |Transmit normalized negatives of (Vk elements) to Vi,
normalize the coefficient and toggle the sign bit

173ijk ViVj—-FVk | Vector floating-point difference of (Vjelements) minus (Vk
elements) to Vi

Floating-point Format

Refer to Figure 65 for an illustration of floating-point format. A number
is referred to as normalized if the upper bit of the coefficient (bit 47) is set.

Bits 63] 62 48 0
Exponent Coefficient
Sign Bit
Figure 65. Floating-point Format
HTM-xxx-0 Cray Research Proprietary 123

December 19, 1994

Preliminary Information

Floating-point Add

Floating-point Add Examples

CPU

Refer to the following subsections for some examples of floating-point

add.

Add Instruction (Subtract Operation)

J = 040002 140000 000000 000000+ 3g
k= 140003 140000 000000 000000+ —6g

—3g

Subtract Operation

Shift j 040003 060000 000000 000000

Retain k£ 040003 060000 000000 000000

Toggle k 140003 037777 177777 177777

Add |

coefficients 140003 117777 177777 177777

CBP (carry across binary point)

Retain exponent and sign of larger

Toggle résult 140003 0600000 00000 000000

Normalize 140002 140000 000000 000000
124 Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

cPU

Subtract Instruction (Add Operation)

Floating-point Add
Jj = 040003 140000 000000 000000 63
k= 140002 140000 000000 000000- -3g
11g

Add Operation
J operand 040003 140000 000000 000000
Complement k
sign bit 040002 140000 000000 000000
Retain j 040003 140000 000000 000000
Shift k 040003 060000 000000 000000
Add
coefficients 040003 1.020000 000000 000000
CBP

040004 110000 000000 000000

Shift right to normalize; adjust exponents

Add Instruction (Subtract Operation with Carry across Binary Point)

HTM-xxx-0
December 19, 1994

Cray Research Proprietary
Preliminary Information

J = 040004 004000 000000 000000 Ag
k= 140003 140000 000000 000000 + —6.0g
-5.4g

Subtract Operation _
Retain j 040004 004000 000000 000000
Shift & 140004 060000 000000 000000
Toggle j 040004 173777 177777 177777

140004 060000 000000 000000
Add
-coefficients 040004 1.053777 177777 177777
CBP

125

Floating-point Add

CcPU

Retain exponent and sign of larger

040004 053777 177777 177777
+1 End-around carry
Toggle sign bit 140004 054000 000000 000000

Normalize 140003 130000 000000 000000

Add Instruction (Add Operation)

FA Option

j = 040003 140000 000000 000000 63
k= 040002 140000 000000 000000+ 3g

11g
Add Operation
Retain j 040003 140000 000000 000000
Shift & 040003 060000 000000 000000
Add

coefficients 040003 1.020000 000000 000000
040004 110000 000000 000000
CBP

Normalize result

126

The FA option operates on the coefficient portion of the floating-point add
operation. The FA does the actual addition of the j and k operands. It also
determines from the sign bit and the instruction issued whether to perform
an add or subtract operation.

If the extended accuracy mode is set by an EIS instruction, a rounding bit
is inserted into the result coefficient if all the necessary conditions are
satisfied.

The FA option also uses the lower 6 bits of the exponent (48 through 53)
and control signals sent from the FB option to make the final
determination of the right shift, which aligns the coefficient.

Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU

FB Option

Floating-point Add

The FB option operates on the exponent portion of the floating-point add
operation. The FB also receives the coefficient bits so it can compute the
final exponent.

The FB option also does a calculation based on the state of the initial
operand as to the sign of the final results. If the result sign bit can be
determined, a valid signal is sent and the sign bit is sent to the JA option.
This information can be used if the JA is processing a jump on a sign bit
instruction. This calculation can be done only for a scalar floating-point
add instruction.

The FB option does the initial calculation to determine which exponent is
larger. To detect the number of right shifts, the exponent is divided into
bits 0 through 5 and 6 through 14. This way, the FA can start shifting
using bits O through 5, and the full shift count can be sent from the FB
option. This is done by comparing the following five conditions:

exponent j = exponent k
exponent k > exponent j
exponent j > exponent k
exponent j +1 = exponent k
exponent k+1 = exponent j

Determining Exponent .Size

HTM-xxx-0
December 19, 1994

If the upper bits are equal, the lower 6 bits determine the shift count of the
coefficient.

e j=k(14-6)andj> k(0 - 5) then right shift k by j— k (0 5)

e j 040012
k 040001 Right shift coefficient kby 12-1=11
Increase k exponent by 11

® j=k(14-6)and k>j(0~5) then right shift jby k—j (0-5)

e j 040001
k 040012 Right shift j coefficient by 12— 1 =11
Increase k exponent by 11

If the upper bits (6 through 14) differ by 1, the lower bits can still be used
to determine the full shift count.

Cray Research Proprietary 127
Preliminary Information

Floating-point Add CPU

e j=k+1(14-6); thatisj>k (14— 6) by 1 and j < k (0 — 5) then right
shift k by j— k (0-5)

e j 040100
k 040077 Right shift k coefficient by 1
Increase k exponent by 1

® j=k+1(14-6);thatisj>k(14—6) by 1 and j>k (0—5) then
overshift occurs.

o j 040177
k 040076 Right shift k coefficient by 101 places
(overshift)

e j+l=k(14-6); thatisk>j(14—6) by I and k <j (0 - 5) then right
shift j by k—j (0-5)

e j 040077
k 040100 Right shift j coefficient by 1
Increase j exponent by 1

® j+1=k(14-6); thatisk>j(14—6) by 1 and k> j (0 - 5) then
overshift will occur

e j 040000
k 040177 Right shift k coefficient by 177 places
' (overshift)

If the upper bits differ by more than 1, the lower bits can be ignored
because the effect is to zero out the coefficient of the smaller exponent.
This is why only the +1 case needs to be determined for the upper bits.

e j 040200
k 040077 Right shift k coefficient by 177
Increase k exponent by 177

Refer to Figure 66 for a floating-point add flowchart.

128 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

. ;

CPU Floating-point Add
Subtract
(FA) instruction?
Sign bit of j = k+ add instruction = add operation
Sign bit of j# k« add instruction = subtract operation (FA) 2235‘;’;‘“‘
Sign bit of j = k+ subtract instruction = subiract operation
8ign bit of j# k- subtract instruction = add operation \ -
"
" Signs .
Add operation No unequal bit Yes Subtract operation
v
k>j
exponent?
[! \ '
Retain j Retain k Retain k Retain j
(F8) exponent (FB) exponent (F8) exponent (FB) exponent
Right shift & Right shift / Right shift j Right shift k
(FA, FB) coefficient (FA, FBIY coefficient (FA, FB) coefficient (FA, FB) coefficient
' —l [} Y
1 Toggle k Toggle j
(FA) coefficient (FA) coefficient
Add
(FA) § Coefficient L {
(FA) Add
Carry (FA) | Coefficients
No across Yes
binary point
A A
Left shift Right shift
(FA) | coefficient for (FA) | coefficient by
normalization one (shift -1)
+ ‘ / \
End-around
s it
Decrease Increase (FA) carry/carry in (FA) gt;rlr:lri’lemen
(FB) | exponent for (FB) } exponentby 1 lower
normalization ‘
‘ ‘ Toggle sign
(FA) | pit
NOTE: Both options are involved in most aspects]
of this unit. This diagram shows the option
that does most of the work. L
Normalize
(FA) | result
(FA, FB)
Ye Decrease
- Result e exponent for -
ocoefficient = 0 normalization
(FA, FB) >
| J
Coefficient
underflow To result
zero result regrsier
exponent and
cosflicient
Figure 66. Floating-point Add Flowchart
HTM-xxx-0 Cray Research Proprietary 129

December 19, 1994

Preliminary Information

FLOATING-POINT RECIPROCAL APPROXIMATION

Refer to the following subsections for information about floating-point
reciprocal approximation.

Floating-point Division Algorithm

HTM-

Dece

XxX-0
mber 19, 1994

A CRAY T90 series computer system does not have a single functional
unit dedicated to the division operation; rather, the floating-point multiply
and reciprocal approximation functional units together carry out the
algorithm. The following paragraphs explain the algorithm and how it is
used in the functional units.

Finding the quotient of two floating-point numbers involves two steps, as
shown below in the example of finding the quotient A/B.

Step Operation

| The B operand is sent through the reciprocal
approximation functional unit to obtain its reciprocal,
" 1/B.

2 The result from Step 1 along with the A operand is
sent to the floating-point multiply functional unit to
obtain the product A x 1/B.

The reciprocal approximation functional unit uses an application of
Newton’s method for approximating the real root of an arbitrary equation,
F(x) =0, to find reciprocals.

To find the reciprocal, the equation F(x) = 1/x — B = 0 must be solved. To
do this, A must be found so that F(A) = 1/A — B = 0. That is, the number
A is the root of the equation 1/x — B = 0. The method requires an initial
approximation or guess (shown as xg in Figure 67), sufficiently close to
the true root (shown as x; in Figure 67). Xg is then used to obtain a better
approximation; this is done by drawing a tangent line (line 1 in Figure 67)
to the graph of y = F(x) at the point [xq, F(xp)]. The x-intercept of this
tangent line becomes the second approximation, x;. This process is
repeated using tangent line 2 to obtain x5, and so on.

Cray Research Proprietary 131
Preliminary Information

Floating-point Reciprocal Approximation CPU

y = F(x)

[x0, F(xo)}

[x1, F(x1)1 — Tangent Line 1

“ 7 Tangent Line 2
,/' X2 Xq Xg M

Xt

Figure 67. Newton’s Method for Approximating Roots

The following iteration equation is derived from the above process:
X(i+1) = 2Xj — Xi?B = X; (2 - x;B)

In the equation, X(j+1) is the next iteration, x; is the current iteration, and B
is the divisor. Each X(j;1) is a better approximation than x; to the true
value, x;. The exact answer is generally not obtained at once because the
correction term is not exact. The operation is repeated until the answer
becomes sufficiently close for practical use.

132 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

N

\\‘\.../’/

CcPU

HTM-

Dece!

Xxx-0
mber 19, 1994

Floating-point Reciprocal Approximation

The mainframe uses this approximation technique based on Newton’s
method. A hardware look-up table provides an initial guess, xg, which is
accurate to 8 bits. The following iterations are then calculated.

Iteration Operation Description

1 X1 =X0(2-x0B) The first approximation is done
in the reciprocal approximation
functional unit and is accurate to
16 bits.

2 x3=X1(2-x;B) The second approximation is
done in the reciprocal
approximation functional unit
and is accurate to 30 bits.

3 X3 =X2(2 -x7B) The third approximation is done
in the floating-point multiply functional
unit to calculate the correction term.

The reciprocal approximation functional unit calculates the first two
iterations, while the floating-point multiply functional unit calculates the
third iteration. The third iteration uses a special instruction within the
floating-point multiply functional unit to calculate the correction term.
This iteration is used to increase accuracy of the reciprocal approximation
functional unit’s answer to full precision (the floating-point multiply
functional unit can provide both full- and half-precision results).

The reciprocal iteration is designed for use once with each half-precision
reciprocal generated. If the third iteration (the iteration performed by the
floating-point multiply functional unit) results in an exact reciprocal, or if
an exact reciprocal is generated by some other method, performing
another iteration results in an incorrect final reciprocal. A fourth iteration
should not be done.

Cray Research Proprietary 133
Preliminary Information

Floating-point Reciprocal Approximation CPU

An example of calculating the reciprocal of 2 is provided below. Values
from the look-up table in Table 24 are used.

B = 2, start with
Ag = 0.2
A = 2(0.2)-(0.2)%
= 2(0.491602) — (0.491602)%,
0.4-0.08
0.983204 — 0.483345
= 032
= 0.499859
A, = 2(0.32)-(0.32)%
= 2(0.499859) — (0.499859)2,
0.64 - 0.2048
0.999718 — 0.499718
0.4352
0.50000

Az = 2(0.4352) — (0.4352)%,
= 2(0.5)-(0.5)2

0.8704 - 0.378798
10-05

0.491602
0.5

134 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU

HTM-xxx-0
December 19, 1994

Floating-point Reciprocal Approximation

Table 24. Reciprocal Approximation Values

B Ag Ag? —2A¢
1.000 0.776 0.774004 0.000
1.004 0.772 0.764044 0.010
1.010 0.766 0.754144 0.020
1.014 0.762 0.744304 0.030
1.020 0.756 0.734504 0.040
1.024 0.752 0.724744 0.050
1.030 0.750 0.721100 0.054
1.034 0.744 0.711420 0.064
1.040 0.740 0.702000 0.074
1.044 0.734 0.672420 0.104
1.050 0.732 0.666644 0.110
1.054 0.726 0.657344 0.120
1.060 0.722 0.650104 0.130
1.064 0.720 0.644400 0.134
1.070 0.714 0.635220 0.144
1.074 0.710 0.626100 0.154
1.100 0.706 -0.622444 0.160
1.104 0.702 0.613404 0.170
1.110 0.700 0.610000 0.174
1.114 0.674 0.601020 0.204
1.120 0.672 0.575444 0.210
1.124 0.666 0.566544 0.220
1.130 0.664 0.563220 0.224
1.134 0.660 0.554400 0.234
1.140 0.656 0.551104 0.240
1.144 0.652 0.542344 0.250
1.150 0.650 0.537100 0.254
1.154 0.646 0.533644 0.260
1.160 0.642 0.525204 0.270
1.164 0.640 0.522000 0.274
1.170 0.636 0.516604 0.300
1.174 0.632 - 0.510244 0.310
1.200 0.630 0.505100 0.314
1.204 0.626 0.501744 0.320
1.210 0.624 0.476620 0.324
1.214 0.620 0.470400 0.334
1.220 0.616 0.465304 0.340
1.224 0.614 0.462220 0.344
1.230 0.612 0.457144 0.350
1.234 0.610 0.454100 0.354
1.240 0.604 0.446020 0.364
1.244 0.602 0.443004 0.370
1.250 0.600 0.440000 0.374

Cray Research Proprietary
Preliminary Information

135

Floating-point Reciprocal Approximation

136

CPU

Table 24. Reciprocal Approximation Values (continued)

B Ag Ag? —2Ag
1.254 0.576 0.435004 0.400
1.260 0.574 0.432020 0.404
1.264 0.572 0.427044 0.410
1.270 0.570 0.424100 0.414
1.274 0.566 0.421144 0.420
1.300 0.564 0.416220 0.424
1.304 0.562 0.413304 0.430
1.310 0.560 0.410400 0.434
1.314 0.556 0.405504 0.440
1.320 0.554 0.402620 0.444
1.324 0.552 0.377744 0.450
1.330 0.550 0.375100 0.454
1.334 0.546 0.372244 0.460
1.340 0.544 0.367420 0.464
1.344 0.542 0.364604 0.470
1.350 0.540 0.362000 0.474
1.354 0.536 - 0.357204 0.500
1.360 0.534 0.354420 0.504
1.364 0.532 0.351644 0.510
1.370 0.530 0.347100 0514
1.374 0.526 0.344344 0.520
1.400 0.524 0.341620 0.524
1.404 0.522 0.337104 0.530
1.410 0.520 0.334400 0.534
1.414 0.520 0.334400 0.534
1.420 0.516 0.331704 0.540
1.424 0.514 0.327220 0544
1.430 0.512 0.324544 0.550
1.434 0.510 0.322100 0.554
1.440 0.506 0.317444 0.560
1.444 0.506 0.317444 0.560
1.450 0.504 © 0.315020 0.564
1.454 0.502 0.312404 0.570
1.460 0.500 0.310000 0574
1.464 0.476 0.305404 0.600
1.470 0.476 0.305404 0.600
1.474 0.474 0.303020 0.604
1.500 0.472 0.300444 0.610
1.504 0.470 0.276100 0.614
1.510 0.470 0.276100 0.614
1.514 0.466 0.273544 0.620
1.520 0.464 0.271220 0.624
1.524 0.462 0.266704 0.630

Cray Research Proprietary
Preliminary Information

HTM-xxx-0
December 19, 1994

CPU

HTM-xxx-0
December 19, 1994

Table 24. Reciprocal Approximation Values (continued)

Floating-point Reciprocal Approximation

B Ag Ay? 27
1.530 0.462 0.266704 0.630
1.534 0.460 0.264400 0.634
1.540 0.456 0.262104 0.640
1.544 0.456 0.262104 0.640
1.550 0.454 0.257620 0.644
1.554 0.452 0.255344 0.650
1.560 0.452 0.255344 0.650
1.564 0.450 0.253100 0.654
1.570 0.446 0.250644 0.660
1.574 0.446 0.250644 0.660
1.600 0.444 0.246420 0.664
1.604 0.442 0.244204 0.670
1.610 0.442 0.244204 0.670
1.614 0.440 0.242000 0.674
1.620 0.436 0.237604 0.700
1.624 0.436 0.237604 0.700
1.630 0.434 © 0.235420 0.704
1.634 0.434 0.235420 0.704
1.640 0.432 0.233244 0.710
1.644 0.430 0.231100 0.714
1.650 0.430 0.231100 0.714
1.654 0.426 0.226744 0.720
1.660 0.426 0.226744 0.720
1.664 0.424 0.224620 0.724
1.670 0.422 0.222504 0.730
1.674 0.422 0.222504 0.730
1.700 0.420 0.220400 0.734
1.704 0.420 0.220400 0.734
1.710 0.416 0.216304 0.740
1.714 0.416 0.216304 0.740
1.720 0.414 0.214220 0.744
1.724 0.412 - 0.212144 0.750
1.730 0.412 0.212144 0.750
1.734 0.410 0.210100 0.754
1.740 0.410 0.210100 0.754
1.744 0.406 0.206044 0.760
1.750 0.406 0.206044 0.760
1.754 0.404 0.204020 0.764
1.760 0.404 0.204020 0.764
1.764 0.402 0.202004 0.770
1.770 0.402 0.202004 0.770
1.774 0.400 0.200000 0.774

Cray Research Proprietary
Preliminary Information

137

138

Floating-point Reciprocal Approximation

CPU
Handling of B Exponent

The following example show how the floating-point reciprocal

approximation unit handles the B exponent:

B= 40000 + E 1XXXXX XXXXXX XXXXXX
Exponent Coefficient '

Value of B =2E x 0.1XXX —— X Normalize floating-point number
B=2E1x1.XXX—X Left shift by 1
Letb=1XXX—X
then B = 2E-1 X b
1 _ 1 | 1
B ~ 2T xp 2E Xb

Letn=E-1
1 _ 2—n 1 2—(E-l) _ 2—E+1
7w T ORzm = 53 T
1 _ 2-E+1 1
B~"1 "%
The following method is used in the CRAY T90 series system:
51132 Exponent
Perform 1’s complement 26645
1 Add one for normalization
1 Add one for two’s complement
26647
Cray Research Proprietary HTM-xxx-0

Preliminary Information December 19, 1994

R

CcPU Floating-point Reciprocal Approximation

Floating-point Reciprocal Approximation Instructions

Refer to Table 25 for a list of the floating-point reciprocal approximation
instructions. Figure 68 is an illustration of the reciprocal approximation
functional unit.

Table 25. Floating-point Reciprocal Approximation Instructions

Instruction CAL Description
070i0 Si/HSj Floating-point reciprocal approximation of (Sj) to Si
174if0 Vi/HVj Floating-point reciprocal approximation (Vj) to Vi
030i0k AiAk Transmit Ak to Aj

RA Option

There is one RA option used; it is the first option in the reciprocal
approximation functional unit. It performs all of the vector pop operations
as well as the exponent, floating-point range error, look-up table and first
iteration of the rcciprocal function. The RA receives and decodes the
control necessary to gate the data to the correct unit and generates the
control for the rest of the reciprocal approximation functional unit.

RB Option

There is one RB option used; it is the second option in the reciprocal
approximation functional unit. The RB option gets the Al iteration data
from the RA option and performs the A12 function to send it to the RC
option final iteration pyramid. The B2 operand data is also delayed on the
RB option before being sent to the RC.

When the A12 and the B2 data is available, the RB option generates the
jagged portion of the A2 pyramid. After a couple of levels of adds, those
bits are sent to the RC option to be included in the rest of the pyramid.

RC Option

The RC option is the last option in the unit. It performs the final iteration
of the reciprocal approximation function. It receives the A12, A1, and B2
data from the RB option; forms the pyramid; and adds all the data to get
A2. The outputs of the RC option are all forced to 0’s by the input control
during any operation of the vector pop unit.

HTM-xxx-0 Cray Research Proprietary 139
December 19, 1994 Preliminary Information

orl

uonewioju| Areutuijoid
Aejoudoid yosessay Aein

¥661 ‘6| 18quiade(Q
O-XXX-\NiH

uonewixoiddy jesoudiosy jutod-bugeol4

RA
By (SiVj24 - 47)
B4 (SVj0-23)
RB
B | Bi (24 - 47) I Al
Bo (SIV/ ot 1o £ ‘ B2 Data —
40 - 46) L(_)roléiup Aq) A12
Sivj avle Pyramid Pyramid
Operand] Ag? Al
. A1 Data
2A0 + A1_Pyramid
Exponent, Sign 47 — 63

Go S Recip IEA Af2 RC

K0 IEB] Control | OFA A12 Data C——————B2

L1 IEC B2 Data _ A2

Recip Data Valid IED Pyramid

Go Recip IEE ' Az At2 ya

' Pyramid
Enable Range Error 1EF |
Exponent, Sign 47 — 63

Gate Recip Results _

I A2 Pyramid Resultsl
| -2A1 + A2 Pyramid |

| Final Summation |

Floating-point Range Errorto HD

i

Result Data to
Vectors and Scalars

Figure 68. Reciprocal Approximation Functional Unit

ndo

CPU Floating-point Reciprocal Approximation

Multiply Algorithm
The reciprocal approximation functional unit uses a recode multiply
algorithm known as Booth Recode algorithm. It is used on several pieces
of the various pyramids. This algorithm was used instead of the standard
pyramid formations to save space on the options and make them easier to
route.

HTM-xxx-0 Cray Research Proprietary 141

December 19, 1994 Preliminary Information

RS-

FLOATING-POINT MULTIPLY

HTM-xxx-0
December 19, 1994

The scalar and vector registers share the floating-point multiply functional
unit. Two floating-point operands are sent to the multiply functional unit
by either the scalar or the vector registers. The signs of the two operands
are combined through an exclusive OR operation, the exponents are added
together, and the two 48-bit coefficients are multiplied. Multiplying two
48-bit numbers produces a 96-bit result. Because the result register (either
a scalar or a vector register) can hold only 48 bits in the coefficient, only
the upper 48 bits of the 96-bit result are kept. The lower 48 bits are lost;
in fact, most are not generated.

The floating-point multiply functional unit also passes operands to the AM
option for the integer multiply operation. Sj and Vk data are relayed
through the NA and NB options for use by the AM option during integer
multiply operations. The floating-point multiply functional unit no longer
performs integer multiply.

The floating-point multiply functional unit can also be used to generate a
third iteration in conjunction with the reciprocal approximation functional
unit. Generating the third iteration creates a full-precision coefficient,
utilizing all 48 bits of the coefficient. The full-precision reciprocal
number can then be multiplied by the multiplier to finish the division. If
full precision is not needed, then there is no need to generate a third
iteration. Instead, the results from the reciprocal approximation functional
unit are multiplied by the multiplier using a multiply instruction. The
following multiply instructions add 2 rounding bits and truncate the lower
19 bits of the coefficient: 065ijk, 162ijk, or 163ijk.

The floating-point multiply functional unit has the same range error
conditions as the floating-point add. If an overflow condition exists, the
floating-point number has exceeded the limits of the computer system.
When an overflow condition occurs, the result register receives the
calculated coefficient with an exponent forced to 600003. An overflow
condition also causes a flag to be set in the exchange package if the
interrupt on floating-point error mode bit is set. An underflow condition
exists when the result exponent is equal to or less than 17777g. When an
underflow condition exists, both the final exponent and the coefficient are
forced to O’s, but no flag sets in the exchange package.

Cray Research Proprietary 143
Preliminary Information

Floating-point Multiply

144

CcPU

The floating-point multiply functional unit performs the 064ijk through
067ijk instructions for the scalar registers and performs the 160ijk through
167ijk instructions for the vector registers. Because the multiply unit is
shared by both the scalar and vector registers, a functional unit reservation
must be checked before one of these instructions can issue.

The floating-point multiply unit is controlled by the mode bits, which are
taken from # field bits 1 and O for the 064ijk through 067ijk instructions,
or from 4 field bits 2 and 1 for the 160ijk through 167ijk instructions. The
064ijk instruction, which is the scalar equivalent of the 160ijk and 161ijk
instructions for the vector registers, performs a floating-point multiply of
two scalar registers.

The 065ijk instruction, which is the equivalent of the 162ijk or 163ijk
instruction for vector registers, is used with the reciprocal approximation
functional unit to complete a divide sequence. In other words, a 065ijk

instruction would be issued after a 070ijk instruction. The 065ijk instruction

adds 2 bits into the final summation in bit positions 16 and 17. These 2 bits
are called strong rounding bits because they have a major effect on the
answer. When the final summation is completed, the 065ijk instruction also
causes the lower 19 bits to be truncated; the control term that enables this is
called strong round.

The 066ijk instruction, which is the equivalent of the 164ijk through
165ijk instruction for the vector register, is used only after the third
iteration has been completed within the floating-point multiply functional
unit. The 066ijk instruction generates 2 weak rounding bits. These 2 bits
are called weak rounding bits because they are added into the lower
portion of the summation, having only a minimal effect on the final
summation.

The 067ijk instruction, which is the equivalent of the 167ijk instruction for
the vector registers, forms part of the third iteration as follows.

The third iteration is equal to A3 = (2A — A3?B). The 067ijk instruction
solves for (-2 + A, * B) by first multiplying A, times B, and then adding
-2 to the product. The -2 addition is accomplished by adding 1 to each
sum in bit position 0 through 46 during the summation of (A * B). These
1 bits actually comprise 49 1 bits and are generated by the control terms,
which are decoded from a 067ijk or a 167ijk instruction.

The 067ijk instructions also complement or toggle their final result to
convert —A3 = (-2 + A3 * B) to A3 = (2 - A * B). At this point, the
064ijk instruction completes the third iteration by multiplying A, times
the result of the 067ijk instruction. In other words,

Ay * (2- A, * B) = (2A; — A»?B). In conclusion, the 067ijk instruction,

Cray Research Proprietary HTM-xxx-0
Preliminary information December 19, 1994

4, :
—

CPU Floating-point Multiply

along with the 064ijk instruction, generates the third iteration equation
Az = (2A; - A3?B).

Divide Sequence

A divide sequence produces an answer accurate to 29 places. The
instructions used to perform this divide sequence are shown below. If an
answer accurate to 48 places is required, a software algorithm (shown
below) produces the desired results.

S6 =S1/S2
Accurate to 29 Bits:
#1 070320 S3=1/82
#2 065613 S6 =S1 * FS3
Accurate to 48 Bits:
S6 = S1/S2
#1 070320 S3=1/82
#2 067432 S4 =(2 - [S3*S2])
| #3 064543 S5 = S4*S3
#4 066651 S6 = S5*S1
#1 A1 =2A9-A¢’B First Iteration
Ar=2A;-A;’B Second Iteration
HTM-xxx-0 Cray Research Proprietary 145

December 19, 1994 Preliminary Information

Floating-point Multiply

#3

#4

S4 =

A3 =

or

A3 =

S6 =

CPU

(2 - (Ay*B)) Third Iteration

A2 - (A2*B))

2A, - A,?B

A3*S1 Third Iteration * S1

Floating-point Multiply Functional Unit Instructions

Refer to Table 26 for a list of the floating-point multiply functional unit
instructions.

Table 26. Floating-point Multiply Functional Unit Instructions

Instruction CAL Description

064 ijk SBjFSk |Scalar floating-point product of (S)) times (SK) to (Si)

065ijk SiSHSKk | Scalar floating-point product, half precision, (S)) times (Sk) to
(S)

066ijk SiSj*RSk (Ssc;:xlar floating-point product, full precision, (S)) times (Sk) to

I

067 ijk S8 ISk Scalar floating-point product, 2 minus the product of (S)) times
(SK) to (S

160ijk ViSj*FVk Vector floating-point product (Sj) times (Vk elements) to Vi

161k VVj*FVk \\;gctor floating-point product (Vj elements) times (elements) to

i

162ijk ViSj*HVk | Half precision, (Sj) times (Vk elements) to Vi

163k ViVjHVKk | Half precision, (Vjelements) times (Vk elements) to Vi

164ijk ViS{*RVk | Full precision,' (S)) times (Vk elements) to Vi

165ijk VNj/#RVk | Full precision, (Vjelements) times (Vk elements) to Vi

166ifk ViSj*Vk 32-bit integer products of (Sj) and (Vk) to Vi (C90 mode)

167ijk VVjVk Iteration, two minus (Vj elements) times (Vk elements) to Vi

146

Cray Research Proprietary HTM-xxx-0

Preliminary Information December 19, 1994

AN

CPU Floating-point Multiply

Because this is a dual-pipe functional unit, there are two options. The
even elements are processed by pipe 0, which is option number 000; and
the odd elements are processed by pipe 1, which is option number 001.

NA Option

The NA option forms the upper right portion of the pyramid. The
pyramid is 24 bits deep from sum bits 40 to 65. It is generated from j
operand bits 17 through 47, and % operand bits O through 41. The scalar
J/k and vector j/k operands are multiplexed (muxed) before the pyramid is
formed.

The NA option relays a copy of Sj bits 40 through 47 and V£ bits 0
through 41 to the AM option for the 166 instruction (integer multiply).

NB Option

The NB option forms the lower right portion of the pyramid. The pyramid
increments from 17 bits deep at sum bit 40, to 24 bits deep at sum bit 47,
and then tapers down to 6 bits deep at sum bit 65. It remains at 9 bits

from sum bit 65 to sum bit 78.

It is generated from j operand bits 0 through 39 and k operand bits 24
through 47. The scalar j/k and vector j/k operands are muxed before the
pyramid is formed.

The NB option also forms rounding bits for all floating-point multiply
instructions at sum bits 78 through 40. The first two-level results are then
sent to the ND option for final summation.

The NB option relays a copy of Sj bits O through 39 and V& bits 42
through 47 to the AM option for the 166 instruction (integer multiply).
The NB option also sends the control signal Go V 166 to the AM option.

NC Option

The NC option forms the lower left portion of the pyramid. The pyramid
decrements from 20 bits deep at sum bit 66, to 8 bits deep at sum bit 78.
The pyramid then starts from 16 bits deep at sum bit 79 and tapers to 1 bit
deep at sum bit 94.

HTM-xxx-0 Cray Research Proprietary 147
December 19, 1994 Preliminary Information

Floating-point Multiply

ND Option

148

CPU

The pyramid is generated from j operand bits 28 through 62 and & operand
bits 16 through 47. The scalar j/k and vector j/k operands are muxed
before the pyramid is formed. The NC option also forms rounding bits for
all floating-point multiply instructions at sum bits 79 through 94. The first
two-level results are then sent to the ND option for final summation.

The NC option also computes the exponent, underflow, and range error.
The exponent value is sent to the ND option to compute the exponent —1
and to multiplex the correct exponent. The NC option also computes the
final sign bit and sends it to the result register. The NC sends the sign bit
back to the JA for possible early branch determination.

The NC option relays a copy of Sj bits 48 through 62 to the AM option
for the 166 instruction (integer multiply).

The ND option does the final summation for the floating-point multiply
pyramid. The ND sends the final coefficient and exponent to the result
registers. The NC also transmits the range error signal to the HD option.

Refer to Figure 69 for a block diagram of floating-point muliiply and to
Figure 70 for an illustration of the floating-poini multiply first-level
summation.

Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU

HTM-xxx-0
December 19, 1994

NDOOO

SjBits 17 - 47 IAA-—-IBE _

1 NACOO

SkBits0-41 __ICA_IDP_ OCA — OCD 1st Pyramid Results IDA—IDF __
Vk Bits 0 ~ 41 IGA— IHP_

Sj/Vk Copy
Bits 17 — 47 IEA-IFE _

H IXA _

Go Scalar FM IXC, IXD

Go Vector FM IXE _

SjBits 0 — 39 IAA - IBN_ — OAA - 0BQ 15t Pyramid Results IGA - IHQ
SkBits24-47 ICA-~ICX OCA - ODK 15t Pyramid Resuits IAA-IBK _|
V; Bits 0 - 39 IEA - IFN OED Address Multiply IXC .
VKBits24—-47 IGA—IGX_ OEE Iteration IXB .
hBits0—2 IXA — IXC OEF Strong Round IXF -
Go Scalar FM IXD, IXE _

OEC
Go Vector FM IXF | OEA, OEB
OEG
OFA
Use Vjdata
Go Vector FM
Mode 0, 1
Address Multiply
IXC, IXD_[Ncooo |
IXA, IXB OAA -0BZ 15t Pyramid Results 1A - 1JZ
IXK ODA — ODM 1st Pyramid Results ICA—ICM |
IXG -
Sj Bits 28 — 63 IAA = IBJ R OEA - OEO Exponent Results IKA = IKO |
Sk Bits 16 — 63 ICA-IDV_ OFA Underflow IXE _
VjBits 2863 IEA—IFG_ oFB Range Error X6
OFC Int Multipl IXD
VKBits 16-63 IGA—IHV_ reger ey >
OFD Go FM IXA o
GoVector IM____IXK OEP Sign Bitto V* / A*
IXM -

FPE Mode

OFF Jump Sign Bit to JA

Cray Research Proprietary
Preliminary Information

OAA, OBV Si/ ViCoeff Results to V* / A*

OCA, 0OCO

Si/ Vi Exponent Results to V*/A*

ODA

Si/ Vi Range Error to HD

Figure 69. Floating-point Multiply Block Diagram

Floating-point Multiply

149

Floating-point Multiply

CcPU
NA
NC
NB
NC NB
r!
Sum Bits
94193192191 19089|88| 87|86 |85|84]|83|82)81080]79]|78]77]|76)75)74|73]72]71|70]69]68]|67|66]|65|64]63]62)61]60]50[58]57 56]55[54]53[52151]50]a9 47 |46 |45 44434241]40]
47146 | 45| 44]143]142 4114039138137)36]35]34]33]32] 31| 30] 29] 28] 27] 26] 250 24|23 | 220} 21 20| 19| 18|17 |6 |15 1a|13[12|11lw0l o187 16 |5 4 |3 |2 0 jOperand
Figure 70. Floating-point Multiply First-level Summation
HTM-xxx-0 Cray Research Proprietary

December 19, 1994

Preliminary Information

Bits
0
k
(o)
P
23 e
24 r
a
n
d
40
47
1561

BIT MATRIX MULTIPLY

The OA option performs the bit matrix multiply operation. The functional
unit consists of six OA options.

The OA option performs two functions related to bit matrix multiply. The
first function is to load the B array with the Vj operand. The second
function is to perform the A x BT operation where A is either the Sj or Vj
operand and BT is the B array transposed. The scalar operation produces a
scalar result, and the vector operation produces a vector result.

Each OA option receives 22 bits of the operand. OA002 and OA005
receive 20 bits, and the last two inputs are forced to zero. Each OA option
holds 32 elements X 22 bits. When performing the A x BT operation,
each OA produces a partial result for each of the 32 elements. The partial
results are then sent the appropriate OA option to complete the final
results. There is only one copy of each control bit coming into the
functional unit, so CACG0! and GA004 relay the control bits to the other
options.

Bit Matrix Multiply Theory of Operation

HTM-xxx-0
December 19, 1994

The bit matrix multiply (BMM) functional unit performs a logical
multiplication of two matrices, designated A and B, resulting in a
single-bit result for each pair of elements multiplied. The matrices, which
are held in vector registers, may vary in size from 1 bit X 1 bit (1 x 1) to
64 x 64 bits. The size of the matrix is specified by the vector length (VL)
register (example: VL = 20 specifies 20 x 20 matrices).

The following conditions are necessary to obtain valid results:
e The two matrices must be square and of equal size.

e The two matrices must be left-justified in the vector registers to
element 0, bit 63.

e Unused bits of each element that contain part of the matrix must be
zeroed.

e Elements not containing parts of a matrix are unaffected.

Cray Research Proprietary 153
Preliminary Information

Bit Matrix Multiply

154

Element 0 Element 0

Element 19 _
Element 20 . Valid Data Zeroes

Element 63 " Element 63

CPU

Result matrix C is the product of matrix A and matrix B transposed (B).
B! is formed from matrix B by interchanging its rows and columns.

In addition to performing full 64 x 64 matrix multiply operations, the
BMM functional unit performs a scalar-vector multiply operation and
stores the result in an S register.

Figure 71 is an illustration of 20 X 20 and 50 X 50 matrices as stored in
vector registers.

Bits 63 44 43 0 Bits 63 14 13 0

Valid

Data Zeroes

Don't Care Element 49
Element 50

Don't Care

VL=2049 VL =509

Figure 71. Vector Storage of Bit Matrices

In this section, the notation used to represent individual bits of a matrix
consists of a lower-case letter followed by a subscripted numeric field.
The letter represents the name of the matrix; the numerics denote,
respectively, the element and bit of the vector register data. Elements and
bits numbered from 1 to 9 are represented as a 2-digit number; elements
and bits numbered upward from 10 are separated by a comma. For
example:

a3, 7 represents matrix A, element 3, bit 7
by 5,43 represents matrix B, element 15, bit 43
a3 12 represents matrix A, element 3, bit 12

Mathematically, matrices A and B can then be represented as shown in
Figure 72. Note that the ultimate degree of both element and bit can be
represented by n because these must be square matrices. Each row of a
matrix corresponds to an element of a vector register.

Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU

a1 a2 13
a1 a2 ax

apl an2 ap3

Ain
ao

ann

b1y bz
by b

but b

b3
b23

bag

Bit Matrix Multiply

bln
b2n

-

Figure 72. Mathematical Representation of Matrices A and B

The BMM functional unit transposes matrix B as it is loaded into the
BMM storage area. The elements (rows) of the B matrix data are
interchanged with the bit positions (columns) as shown in Figure 73.

b1 b2 bi3

by; b bos
B=|b3; b3y b33

but Bz bus -

. bin

PR b2n
. b3n

.'bnn .

Bt=

b1 b
b2 by
b1z bo3

bln b2n b3n s

b3

b33

by ...

bni
bn2
bn3

-

Figure 73. B Matrix and B! Matrix Relationships

HTM-xxx-0 Cray Research Proprietary

December 19, 1994

Preliminary information

155

Bit Matrix Multiply

a1
a2]
asg
ABt=|.
ani
156

a2
a2
az;

an2

"~ ¥ @ indicates an exclusive OR operation.

The product C = AB! is defined as shown in Figure 74.

a13 an
a3 an
a33 a3p
an3 app
where:

Ci1=a11bi1Pajabi2PaizbizP . .
Ci2=a11b21Paj2bPaizbrP . .
Ci3=aj1b31Ba12b3rPay3bssd . .

Ca1=a21b11Paxb12Parzb13P ..

Csz=a31b21Pa3z2b2Paz3b1iP . .

b1n

b1
b2
b3

b2n

Bt

b3y
b3y
b33

b3n

bni
bn2
bn3

-

C11
€21
€31

Cnl

Figure 74. Multiplication of A and B!

Cray Research Proprietary

Preliminary Information

€12
€22
€32

Cn2

. @ajpbin T
. @apbyy
. Dajnbsp

. @agyby

. Paznbyy

€13
€23
€32

Cn2

CPU

Cin
Con
C3n

Cnn

HTM-xxx-0

December 19, 1994

N
\
‘-._//

CPU Bit Matrix Multiply

Instructions
Refer to Table 27 for a list of the bit matrix multiply instructions.
Table 27. Bit Matrix Multiply Instructions
Instruction CAL Description
1740/4 BMM LVj |Transmit Vjelements 0 — 63 to B matrix
17405 BMM UVj [Transmit Vjelements 64 — 127 to B matrix
174i6 Vi Vj*BT {Transmit the value of Vjmultiplied by the transposed B matrix
to Vi
070ip Si Sj*BT | Transmit the value of Sjmultiplied by the transposed B matrix
to Si
002210 CBL Clear the bit matrix loaded (BML) flag
Refer to Figure 75 for a BMM block diagram for pipe 0 and to Figure 76
for a BMM block diagram for pipe 1.
HTM-xxx-0 Cray Research Proprietary 157

December 19, 1994 Preliminary Information

Cru Bit Matrix Multiply
OAO000 Bits 0 — 21 -
its OCK - OCU IDA—IDK OAQ00
VRO00 Bits0-3 VMO00/AR0C00
VMO000 Bits4-7 IAA — JAV OCA - OCJ IEA-IEK | Bits42,44-62 | OAA—OAK _Final Result Bits .
VR0O01 Bits8~11 > o Odd Bits 1 — 21 7 VMO001/AS000
VMOO1 Bits 12-15 c . — VMO002/AS001
VRO02 Bits 16— 19 OCV - ODF ICA-ICK | Partial Results >/
VMOO02 Bits 20 - 21
OA001 Bits 22 - 43 OCK-0CU IDA = IDK OA001
. OAA - OAK Final Resuit Bits
1A~ AV OV — ODF ICA—ICK | Bits 20,2240 0dd Bits 23 — 43
IEA - EK
OCA-0CJ ™ Partial Results
OAO002 Bits 44 - 63} ocv — ODF IDA-IDJ _} OA002
[VM002_ Bits 22— 23 | IAA—1AU_ 0CK - OCU Bts0,2-18 1 GAA—OAJ Final Result Bits
 [VR003 _ Bits24-27 ICA_IC) 0dd Bits 45 — 63
VMO003 Bits 28 - 31 :
VR004 Bits32—-35 OCA-0CJ IEA-IEJ | Partial Results VMO002/AS001
] VM004 Bits 36 - 39 VMO03/AS002
VROO5 Bits 40 — 43 VMO04/AT000
OA003 Bits 0-21 | 5ok ocu IDA- IDK_| OA003 VMOO5/ATO001
IAA — 1AV IEA-TEK ! Bits43,45~63 | OAA—OAK Final Result Bits
OCA - 0OCJ Even Bits 0— 20
OCV - ODF ICA -~ ICK Partial Results
OAD04 Bits 22 — 43] OCK — OCU IDA-1DK _| OA004
: ' IAA 1AV, OCV - ODF ; OAA—OAK Final Result Bits
VMO005 Bits 44 — 47 h ICA -~ ICK | Bits 21 ,23-41 -
VRO06 __ Bits 4851 Even Bits 22 - 42 /] YMoos/AToo1
VMO06 Bits 52— 55 OCA-0CJ IEA—IEK >
] VR0OO7 Bits 56 - 59] Partial Results ;7 VMOOe/AU000
OAQQ5 Bits 44 — 63 IDA-1DJ _| OAO05
: IAA — IAU i
> OCK—0CU Bits 1,3—19 OAA-OAJ Final Result Bits
f ICA-ICJ - Even Bits 44 - 62
OCA -0OCJ IEA — IEJ Partial Results
Figure 75. Bit Matrix Multiply Block Diagram Pipe 0
HHTM-xxx-0 Cray Research Proprietal 159
prictary

December 19, 1994 Preliminary Information

CruU

w | VROO8 _ Bits0-3
| vMO08 Bits 4-7

| VR0OO9 Bits 811

{ vM009 Bits 12 - 15
| vRO10 Bits 16— 19
VMO10 Bits 20 - 21

| VM010 Bits 22— 23
|VRO11 Bits24-27
| vM011 Bits 28 - 31
| VRO12 Bits 32-35
| vMO12 Bits 36 -39

VR013 Bits 40 - 43

IBA - IBV

IBA-1BV

OAOQQ0 Bits 0-21

IBA—-IBU

OAQ01 Bits 22 - 43

OA000

Bits 42, 44 - 62

Partial Results

Bit Matrix Multiply

[vM013 Bits 4447

| VRO14 Bits 48 - 51
~JVM014 Bits 52-55

| VRO15 Bits 56 ~ 59
VMO15 Bits 60 - 63

OAQ02 Bits 44 — 63

OA001

Bits 20, 22 - 40

Partial Results

IBA— 1BV _

OA003 Bits 0-21

OA002

Bits0,2-18

Partial Results

IBA - BV

OA004 Bits 22 - 43

OA003

Bits 43, 45 - 63

Partial Results

IBA - IBU

HTM-xxx-0
December 19, 1994

OA005 Bits 44 -63

OA004

Bits 21,23 — 41

Partial Results

OEK - OEU IGA - IGK
OEA - OEJ IHA — IHK
OEV - OEF IFA — IFK
OEK — OEU IGA — IGK
OEV — OEF IFA—IFK
OFA - OEJ IHA - IHK |
OEV - OFF IGA-1GJ
OEK - OEU IFA = IFJ
OEA - OEJ IHA = 1HJ |
OEK — OEU IGA - IGK

IHA — IHK _ |
OEA - OEJ >
OEV - OEF IFA — IFK
OEK — OEU IGA—1GK_|
OEV - OEF IFA - IFK
OEA - OEJ IHA = IHK |
OEV — OEF

IGA—IGJ
OEK — OEU _

IFA-IFJ
OEA - OEJ

HA=IH)

OA005

Bits1,3-19

Partial Results

OBA—OBK __Final Result Bits /| YMoos

Odd Bits 1 —21 / VMO09

Z VMO010

OBA - OBK Final Result Bits

Odd Bits 23 — 43
OBA -0BJ Final Result Bits

Odd Bits 45 - 63

| VMO10
VMO11
VMO012
VMO013

OBA — OBK Final Result Bits

Even Bits 0 - 20
OBA - OBK Final Result Bits

Even Bits 22 — 42

VMO1
/] yMois
/ VMO14
Z VMO15

OBA —OBJ Final Result Bits

Figure 76. Bit Matrix Multiply Block Diagram Pipe 1

Cray Research Proprietary
Preliminary Information

Even Bits 44 - 62

161

INSTRUCTION BUFFERS

The instruction buffers are located on four IC options; Table 28 shows
how the four IC options are partitioned. Each IC option contains 8
buffers, and each buffer holds 32 16-bit words. The IC options also hold
data for functions other than instructions.

Table 28. IC Options

Bit Type 1C000 IC001 1IC002 1C003

Instruction data bits 0-7and 8- 15and 16 — 23 and 24 - 31 and

32-39 40 - 47 48 — 55 56 - 63
B address bits 0-7 8-15 16 -23 24 - 31
Fetch address bits 0-7 8-15 16 -23 24 - 31
lLogical address translation 0-7and 8-15and 16 - 23 and 24 — 31 and
(LAT) address bits 32-39 40-47 48 - 55 56 — 63
Exchange P address bits 0-7and 8-15and 16 — 23 and 24 -31 and

32-39 40 - 47 48 - 55 56 — 63
Fetch destination code . 0,1 2,3 4,5 6,7
fan-out bits

Fetch

HTM-xxx-0
December 19, 1994

The IC options generate a deadstart fetch after the first 203 words have
been received; this is the number of words in the exchange package. The
IC option counts the number of common memory valid codes received,
and this count enables the deadstart fetch signal to be generated.

When data is fetched from memory, it is requested as a block of 32 words
(4 blocks of 8 words with the first word of this block being the first word
that is needed). For example, if a branch is made to address 1005, that
address is requested first, followed by addresses 1006 to 1037, then 1000
to 1004.

When the common memory data arrives, the IC compares the incoming
code with the expected code. This code tells the IC option where to put
the data in the buffer. Data can arrive at the IC from memory in any
order; it is reordered inside the buffer. The memory code enables this to
happen. Along with every 16 bits of memory data, a 9-bit code is also

Cray Research Proprietary 163
Preliminary Information

Instruction Buffers

Prefetch

CPU

sent. This code specifies the buffer and the element in the buffer into
which the word is to be loaded. The following illustration shows a
breakdown of the code.

_ Valid Buffer Element

81765143210

The data arrives at the IC options 2 words at a time. When the data starts
arriving, the IC options look for the first 4 words. These words go
through a bypass path, to the read-out registers, and then to the JA options
for issue.

Two pointers are associated with bypass: a read pointer and a write
pointer. As long as the write pointer stays ahead of read issue, the first 4
words will issue. The buffers will continue to fill while the first 4 words
are issuing. If the first 4 words issue and the buffers are not full, then
issue stops until the buffers fill and the buffer valid bit is set. The
instruction parcels will then start leaving the buffers for the JA options.

164

A prefetch is initiated when the buffer read-out pointer reaches address
30g in the buffer or a branch occurs to addresses 30 to 373.

The prefetch checks to determine whether the next sequential buffer is
already in-stack. If it is not, a fetch is initiated to the next sequential
common memory address. When the count in the buffer reaches 373, the
IC advances the buffer pointer and checks to ensure that the read data
valid bit is set. If the read data valid bit is not set, the IC option enables
the wait first word flag and waits for the first word to be received from
coOmmon memory.

NOTE: The prefetch will always occur, but it can be blocked or aborted
by any branch sequence in progress.

Prefetch can, in some cases, cause a decrease in performance. For
example, if the first word of the next sequential instruction block is
needed while the current instruction block is being fetched, a delay occurs.
In this case, issue stops until the last word of the next block is fetched.

Cray Research Proprietary HTM-xxx-0
Preliminary information December 19, 1994

CcPU

HTM-xxx-0
December 19, 1994

Instruction Buffers

If an out-of-stack branch occurs while the next sequential block is waiting
to be prefetched, the prefetch is aborted and the block containing the
branch address is fetched instead. Issue of instructions at the branch
address are delayed until the fetch of the current block is completed and a
fetch of the current block containing the branch address begins.

Another problem with prefetch occurs when executing an instruction at
the top of logical address translation (LAT) space. The code may execute
a branch to lower memory but the prefetch may try to initiate a fetch from
the next sequential memory location. If the next sequential memory
location is out of the LAT range, a range error may occur. This will
happen if the branch is within 8 words of the last valid LAT address.

Refer to Figure 77 for the IC options bit layout, to Figure 78 for an IC
block diagram, and to Figure 79 for the IC option terms.

Figure 80 is a block diagram of the memory-to-instruction buffers for
path 1, and Figure 81 is a block diagram of the memory-to-instruction
buffers for path 2. Figure 82.is a block diagram of the common memory
path code 1 fanouts, and Figure 83 is a block diagram of the common
memory path code 2 fanouts.

Cray Research Proprietary 165
Preliminary Information

Instruction Buffers

166

IC003

Instruction Data Bits 24 — 31 and 56 — 63
B Bits 24 — 31

Fetch Bits 24 — 31

LAT Address Bits 24 — 31 and 56 — 63
Exchange P Data Bits 24 - 31 and 56 — 63

1C002

Instruction Data Bits 16 — 23 and 48 — 55
B Bits 16 — 23

Fetch Bits 16 — 23

LAT Address Bits 16 — 23 and 48 — 55
Exchange P Data Bits 16 — 23 and 48 — 55

1C0O01

Instruction Data Bits 8 — 15 and 40 — 47

BBits 8- 15

Fetch Bits 8 — 15

LAT Address Bits 8 — 15 and 40 — 47
Exchange P Data Bits 8 — 15 and 40 — 47

1C000

Instruction Data Bits 0 — 7 and 32 - 39
BBits0 -7

FetchBits 0 -7

LAT Address Bits 0 — 7 and 32 - 39

Exchange P Data Bits _0 —7and 32 -39

RAM Array 0| RAM Array 2
Buffer 0 -3 Buffer0—-3
Even Words Odd Words

0-30 0-30

RAM Array 1| RAM Array 3
Buffer4 -7 Buffer4 -7
Even Words Odd Words

0-30 0-30

Figure 77. IC Options Bit Layout

Cray Research Proprietary
Preliminary Information

CPU

HTM-xxx-0
December 19, 1994

CPU

IPA ~ IPP

Coincidence Bufter

»{ Fan-out Dat

Instruction Buffers

OWA -OWC

OWD - OWE (HM)
OWI - OWK (RA)
owQ-0ows HM)

(JA) # Parcel Data OXA — OXC RE) NB
» P Reg Data h,i j kBits |OXD-OXF Vs, FA)FB)
Buffer Match Branch Address
Branch or LAT OFA — OFH (co)
1 Bran >
ol o address LAT Address OEI ~OEP__ . |
?Aath 1 Vc\tlod@7 - Array 0
rray Write Buffer Parity Error to OUA o
(1) Dead Address) 1AQ - 1AX 0-3 Even (OA)
_| Words
Path 1 Valid ™ 0-15
(10 (Write Enable) Aray 1 R
Buffer e
(Ch PathiData 1AM - IAP 4—7 Even a
s Words d
0-15 - Inst Data to OAA — OAP
. » o ™ > (JA)
- Array 2 u
- Buffer t
(CH) Path 2 Dat.a IBA —- IBP 0-30dd
Path 1 Valid Words R
(10) 2Nnte ECna:Ie) IBX T o 0-15 | A
ath 1 Code
(Array Write/ 'g:z? g
(iC) Read Address) I1BQ —IBX 4-70dd
Words
0-15
i Bypass
10) PBits0-15 IDA-IDP
- - - r -
(IC) p Bits 16—31 IEA~IEP Fotch Address New P to OAA ~ OAH
(ic) . * (BT)
‘ Register
OCA - OCH
- - jkIP F t
ET) ICA - ICH »| Fan-out Data OC| - OCP Bjk/P Fanout ()
Figure 78. IC Block Diagram
HTM-xxx-0 Cray Research Proprietary 167

December 19, 1994

Preliminary Information

Instruction Buffers CPU

IAA] IC OAA
Path 1 Dat IAP OAP Instruction Data
(CH) CM Pal ata | > (JA)
1AQ
Pat IAY i
(1C) CM Path 1 Code OAQ Instruction Data Ready > (JA)
IvVC OCA
CM Path 1 Code to Fanout IVD OCH Bjk Exchange P to Fanout
(CK) d g - (B1)
IBA QOClI
CM Path 2 Data IBP OCP Bjk Exchange P to Fanout
(CH) ! d > (BT)
1BQ ODA
CM Path 2 Code IBY ODH NewP
(IC) - » (BT)
IVE
IVF Enter New P
(CK) CM Path 2 Code to Fanout — - QDI nter New P/Dump Mode >(B7)
Bjk Exchange P to Fanout ICH ODJ Go Branch/Exchange Enable
(87 = : - : -(A)
IDA OEA
Bjk Exchange P Bit0—-15 IDP OEH Branch Address
(B7) = 2 - ()
IEA OEl
Bjk Exchange P Bit 16 —31 IEH OEP Exchange LAT
(BT) 2 9 g > (CC)
OEQ Fetch Requests >(CO)
OER Go Dump > (CB)
IPA .
) Parce! Data PP 0ODJ Buifer Load Pointers - (JA)
(j) Enter Rank { IQA OVA
o Entor Rank 2 \QE : gzz CM Path 1 Read Code Fanout= (10)
lear Rank 2 -
WA) g::R;ere :g:ﬂ \ OVH CM Path 2 Read Code Fanout 10
WA) Branch Issue 1QQ OwWA
(JA) o Branch OWC 0, k1, k2 at Phase 3 - (HM)
WA 0 Branc IQR OowWD
Branch Fall Through 1QS OWE K0, k1 at Phase 2
WA) Interrupt Request QU ’ > (RA)
(JA) OWK
OW! /jat Phase 3 = (HM)
owQ
(+ay CPU MG to Fanout IRA gyAS JjatPhase 2 > (HF)
Exchange Active to Fanout IRB
CC - .
:HD; Triton Mode to Fanout __ IRC OXC_ 0, hi, 12 at Phase 2 > (NA, N)
(VA) VL#2 or CMBto Fanout IRD
(HA) CM MC to Fanout IRE
0 Fetch Done ISA
(HA) Maint Mode ITA
. IUA
(Force) ;Z?ifchan e P :3:
(CO) g
Figure 79. IC Option Terms
168 Cray Research Proprietary -0

HTM-xxx
Preliminary Information December 19, 1994

CPU

Instruction Buffers

OMA- IAA — OMA - IAA - | 1co02
CHO00 |omD Bits 0-3 IAD | 1C000 cHoos §OMA= L s—1a iap A
OME - 1Al - OME — Al -
OMH Bits32-35 IAL _ OMH Bits48—-51 IAL _
OMA — IAE —
. HO1 OMA - I1AE —
CHO02 Jomp _ Bits4-7 IAH CHOT0 1 SMD~ Bits20-23 1A
OME - IAM - OME - JAM ~
OMH Bits 36 -39 IAP OMH Bits 52 ~ 55 IAP
OMA — IAA - _ -
CHO04 |omp _ Bitss—11___1ap__| 000" cHot2 (VD™ misza—zz iap |
OME — IAl - - IAI -
OMH Bits40-43 AL 8”5 Bits 5659 IAL
OMA — IAE - _ _
CHO0B |oMD Bits12-15 I1AH CHO4 | OMA~ Lie28—31 AN
OME- IAM - OME — 1AM —
OMH _Bits44-47 _IAP OMH Bits60-63 IAP
Figure 80. Memory-to-instruction Buffers (Path 1)
HTM-xxx-0 Cray Research Proprietary 169

December 19, 1994

Preliminary Information

Instruction Buffers CPU
CHOO1 | OMA- IBA- T'cooo CHO09 | OMA - iBA- | 1C002
OMD _ Bits0-3 1BD _ OMD Bits 16-19 IBD
OME - Bl - OME - IBl=
OMH Bits32-35 IBL _ OMH Bits48—-51 IBL _
CHoo3 | OMA- IBE ~ CHO11 | OMA- IBE -
OMD Bits4-7 iBH _ OMD Bits 20—23 IBH
OME - IBM - OME — IBM —
OMH Bits36-39 IBP _ OMH Bits 52~55 IBP _
CHOO5 | OMA- IBA- 001 CHO13 | OMA- IBA - | €003
OMD _ Bits8-11 18D OMD Bits 24—-27 IBD
OME - Bl - OME - Bl —
OMH Bits40-43 IBL _ OMH Bits 56 —59 IBL
OMA - IBE -
CH007 . CHO15 | OMA - IBE —
OMD _ Bits12-15 IBH _| OMD Bits28—31 IBH _
OME - IBM - OME — IBM -~
OMH _ Bits44-47 1BP _ OMH Bits60-63 IBP
Figure 81. Memory-to-instruction Buffers (Path 2)
170 Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

\\/"‘

Instruction Buffers

1C000
OovB
OoVvD
1C003
1C002
1AQ
> Fi t Bi
10001 Element Bit 0
IAR Element Bit 1
OVB IAS .
Element Bit 2
OovD IAT
Element Bit 3
1C002
OovB I1AU
Element Bit 4
ovD AV Buffer Bit 0
IAW Buffer Bit 1
IAX Buffer Bit 2
1IC003
OVvB 1 _IAY
OovD
Valid

December 19, 1994

Preliminary Information

CPU
) IC000
\) VG OVA
IVD ovC
1C001
CKO000 IC000
Element Bit 0 LONF IAQ I Element Bit 0
IC001
. ONG
Element Bit 1 IAR Element Bit 1
Element Bit 2 J-2NH Vo OVA IAS
»1 Element Bit 2
Element Bit 3 | ONI IvD ove AT
Element Bit 3
IC002
OVA IAU
» Element Bit 4
Element Bit 4 ONJ VG
) ove IAV 1 Butfer Bit 0
.~ JONC IVD A
Buffer Bit 0 AW o1 Butrer Bit 1
Butfer Bit 1 JOND. AX o] Butter Bit 2
.~ | ONE
Buffer Bit 2 1C003
OVA JAY
ONB ONA IVC
ovC
IVD
Valid
Figure 82. Common Memory Path Code 1 Fanouts
HTM-xxx-0 Cray Research Proprietary

171

CPU

Instruction Buffers

1C000
OVF
OVH
IC003
1C002
IBQr Element Bit 0
1C001
IBR »1 Element Bit 1
OVF 1BS ! Element Bit 2
OVH IBT Element Bit 3
1C002
OVF IBU »1 Element Bit 4
OVH 1BV I Buffer Bit0
IBW Buffer Bit 1
IBX . Buffer Bit 2
[
1C003
OVF 1 IBY
OVH
Valid

1IG000
IVC OVE
IVD OovG
1C001
CKO001 IC000
. IBQ
Element Bit 0 ONF > i
1Co01 Element Bit 0
. ONG
Element Bit 1 IBR »| Element Bit 1
Element Bit2 |-ONH Ve, OVE 8BS
»{ Element Bit 2
Element Bit 3 | ONI VD
OvG IBT »1 Element Bit 3
1IC002
ONJ VG OVE 'BU: Element Bit 4
Element Bit 4 >
ova 1BV i Buffer Bit 0
Bufter Bito | 2NC WD IBW o Butter Bit 1
Buffer Bit 1 |-OND IBX .} Bufier Bit 2
. ONE [)
Buffer Bit 2 1C003
OVE | 1BY
ONB ONA IVC
ovG
IVD_
Valid
Figure 83. Common Memory Path Code 2 Fanouts
HTM-xxx-0 Cray Research Proprietary

December 19, 1994

Preliminary Information

173

INSTRUCTION ISSUE

A CRAY T90 series computer system uses a process called instruction
issue to introduce instructions into the central processing unit (CPU).

The first instruction parcel is read from of one of eight instruction buffers
(IBs) and sent to the next instruction parcel (NIP) register where it is
partially decoded to determine whether it is a 1-, 3- or 4-parcel instruction.

Refer to Figure 84 for an instruction issue block diagram. The program
address (P) register points to the next parcel to be read out of the
instruction buffer. If it is a 1-parcel instruction, the NIP moves to the
current instruction parcel (CIP), the parcel from the instruction buffer
moves to NIP, and P is incremented by 1. If it is a 3-parcel instruction, as
NIP moves to CIP, the second parcel moves into LIPO, the third parcel
moves into LIP1, and P is incremented by 3. If it is a 4-parcel instruction,
as the first parcel moves from NIP to CIP, the second and third parcels
move to LIPO and LIP1. Then, the fourth parcel goes to NIP and then to
CIP as the other three parcels are leaving. In the next clock period, the
fourth parcel leaves CIP, and P is incremented by 4.

e
\

> LIP1

Figure 84. Instruction Issue Block Diagram

HTM-xxx-0 Cray Research Proprietary 175
December 19, 1994 Preliminary Information

Instruction Issue CPU

Instruction Formats

There are three instruction formats: 1-, 3-, or 4- parcel instructions. The
first parcel always contains the operation code. The operation code is
pre-decoded in NIP to determine whether it is an exit instruction (000000
or 004000) or a 1-, 3-, or 4- parcel instruction.

One-parcel Instructions

The gh portion generally is the operation code, although some instructions
also use the i, j, or k fields. The i field is usually the result designator, and
the jk portions are generally operand register designators. Some
instructions use the i field or bit 2 of the j field to provide additional bits
for the operation code.

Some 1-parcel instructions are part of the extended instruction set (EIS)
and perform different operations when immediately preceded by the EIS
parcel (005400).

Figure 85 shows the format of a 1-parcel instruction.

7 3 3 3 Bits

L_9gn 1 7 1 7 1 « |

15-9 8-6 5-3 2-0

Figure 85. Format for a 1-parcel Instruction

Three-parcel Instructions

The 3-parcel instruction is used in both Triton mode and C90 mode. The
nm fields hold the 32-bit address or constant value. Refer to Figure 86 for
an illustration of a 3-parcel instruction format.

NOTE: The n portion holds the most significant bits, and the m portion
holds the least significant bits.

4 3 3 3 3 16 16 Bits
Lo I o 1 i | 7 1 « JLn JLm]
15-12 11-9 8-6 5-83 2-0 15-0 15-0

Figure 86. Format for a 3-parcel Instruction

176 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CcPU Instruction Issue

Four-parcel Instructions

Four-parcel instructions are used exclusively in Triton mode. The
instruction field mnemonic pmn represents a 48-bit field with the p field
being the most significant parcel. Refer to Figure 87 for an illustration of
a 4-parcel instruction format.

4 3 3 3 3 16 16 16 Bits
Lo 1 » f 7 1 7 [« Jp e Jn JLm]
15-12 11-9 8-6 5-83 2-0 15-0 15-0 15-0

Figure 87. Format for a 4-parcel Instruction

Four-parcel instructions are used for A and S register memory references
that use extended addressing. The 4 field selects an A register to be used
as an address index. The i field designates an A or S register to be used as
the source or destination of the data. For read references, j field bit 1
disables or enables cache bypass. Bit 2 of the j field must be setto a 1 to
indicate a 4-parcel instruction. The k field is not used.

Triton-mode Instructions

Triton mode is active when the Triton mode bit (TRI) is set in the
exchange package. Some instructions execute correctly only in Triton
mode. If a Triton mode instruction is executed while the machine is in
C90 mode, the results are undefined. Refer to the instruction set for
Triton-mode only instructions.

Instruction Decode

After the instruction parcel is in NIP, it is pre-decoded to determine its
size. If it is a 1-parcel instruction, it moves to CIP for further decoding to
determine which registers, functional units, and memory ports are
required. '

HTM-xxx-0 Cray Research Proprietary 177
December 19, 1994 Preliminary Information

Instruction Issue CPU

P Register

The P register is 32 bits wide and resides on the BT0 and BT1 options.
The P register points to the relative memory address of the next instruction
to be read out of the instruction buffer read-out register and sent to either
NIP or LIPO. The lower 2 bits (bits —1 and —2) point to the parcel, and the
upper 30 bits (bits 8 through 29) point to the word address. There are
three ways to load the P register:

e Multiplex 8 bits at a time during an exchange sequence
e Load from Bjk as a result of a 005ijk instruction

e Load from the ijk or nm fields of a 006ijk, 007ijk, or O1xjk
instruction

Every time a parcel issues, the JA option sends an Advance P signal to
the BT options, advancing the P register by 1.

Coincidence

A condition called coincidence exists if the next parcel needed is in one of
the eight instruction buffers. A coincidence check compares the upper

25 bits of the P register to the 25-bit buffer address (A) register as well as
determines whether the buffer valid bit is set. All 25 bits must match, and
the buffer valid bit must be set in order for a coincidence condition to
exist. If there is no coincidence, a fetch operation is initiated.
Coincidence is checked only on branch instructions to determine if the
next instruction will be in the stack.

Reading the Instruction Buffer

When a buffer read occurs, both the even and odd words are read out of
the buffer to a read-out register. The content of the P register on the BT
options directs one of these words to NIP or LIP for decoding.

178 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

1‘_’/'

CPU-- Instruction Issue

JA Option

There are two JA options on the CP module; they provide the issue control
signals for the processor. These options receive the instruction word from
the IC options, select and decode the correct parcels, and provide control
to the rest of the CPU. The JA option also has all the resource
reservations and holds issue if a resource is busy. The JA options are
responsible for the functions described in the following subsections.

Parcel Data Distribution

The JA option transmits parcel data to the AR, AS, AT, AU, BT, and VA
options and alters the j field going to the AR, AS, AT, and AU options for
certain instruction types. This occurs on the following instructions:

e 10h, 11h, 12h, 13h; the Aj becomes the A# field
00130, the Ai field becomes the Aj field

The JA option also transmits a read-out pointer code to the A and S

registers; the read-out pointer code selects the read-out path. Refer to
Table 29 for a list of these codes.

Table 29. Read-out Path Codes

Code instruction Description
00 075, 13h Sito BT path
01 034, 036, 025, 11h Aito BT path
11 035, 037 Aito BT path
00 00130, 027i2/3, 027i//7 Aito SR path
01 073i2, 073i3, 073ip, 073i6 | Sito SR path
10 0010jk, 0011k Akto SR path
11 00140, 00144 Sjto SR path
00 057, 0030/0/1, 026if0/1, 027i0 | Sjto shift path
11 052 - 056 ' Sito shift path
ao Sjto vector pipe 0
01 176 AQ to vector pipe 0
10 034, 036 AQ to vector pipe 0
11 035, 037, 177 AQ to vector pipe 0
00 Sjto vector pipe 1

HTM-xxx-0 Cray Research Proprietary 179

December 19, 1994 Preliminary Information

Instruction Issue cPU

Table 29. Read-out Path Codes (continued)

Code Instruction Description

01 176 Ak to vector pipe 1

10 034, 036 Aito vector pipe 1

11 035, 037, 177 AO to vector pipe 1

00 10h, 12h, 13h, 0017 jk Ah (A)) to CM port B/E
01 00200k Akto CM port B/E

10 11h Ah (Aj) to CM port B/E
11 177 Ak to CM port B/E

A/SIV/BIT Register Requests

The JA option checks for register conflicts and receives a register release
signal from the shared resource control and from common memory for the
A and S registers. The JA option also receives a vector read/write (R/W)
release for V registers and a B/T read/write release. The JA option also
transmits A and S register entry codes. These codes, along with the ghijk
field, the instruction, and the 2-bit register read-out code are used by the A
and S registers to define the instruction to be performed and to reserve the
needed path.

Functional Unit Requests

The JA option checks for functional unit conflicts in the following

functional units:

e Logical #1: 140- 147/ 175

e Logical #2: 140 - 145 if Logical #1 busy / Logical #2 enabled

e Vector Mask: 146 — 147/ 175/ 070ij1 / EIS 153ij0,1

e Vector Shift: 150 — 153 ‘

e Vector Add: 154-157

e Floating Multiply: 160 - 167

e Floating Add: 17173

e Reciprocal (V pop, parity, leading zero, iota: 174ij(0 — 3) / 070ij1
e Matrix Multiply: 174ij(4 - 7)/ 070ij(6 — 7)

180 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU Instruction Issue

Constant Data Requests

The JA option checks for constant data present on multiple-parcel
instructions such as jumps, branches, and instructions using the pmn
fields. Each JA option handles 32 bits of the constant data distribution.
JAQ transmits data to the AR, AS, and CD options via the A series
options, and JA1 transmits data to the AT, AU, and CD options via the A
series options. JAQ also provides the jk data on the constant path when
needed.

EIS (Extended Instruction Set) Requests

The JA option issues 005400 as a normal instruction; however, the next
parcel is decoded using the extended instruction set. If an EIS instruction
is issued without the 005400 preceding it, the instruction issues and
performs its normal function. For example:

044ijk Transmit logical product of (Sj) and (Sk) to Si

044ijk In EIS mode, the same instruction transmits logical
product of (Aj) and (Ak) to Ai

) Common Memory Requests

The JA options receive the following external common memory control
signals:

e Release Port A
¢ Release Port B
o Release Port C

e Bidirectional Mode: (Mode = 1) enable block reads and writes at
the same time

e Common Memory Quiet: This signal indicates that all memory
activity in the CPU has been completed. It requires that all ports are
quiet, conflict logic is quiet, memory sections are quiet, and allread |
and write operations are complete.

e Hold Common Memory Issue: No more references can issue

e Cache Miss In Progress: Indicates a cache miss is pending

HTM-xxx-0 Cray Research Proprietary 181
December 19, 1994 Preliminary Information

Instruction Issue cPU

e Read Quiet: Read references have cleared all conflict checks
e Write Quiet: Write references have cleared all conflict checks

e Exchange Active: Indicates an exchange has not completed

Shared Resource Requests

The JA options receive the following external signals, which control the
shared resource path, from the HD option:

e A/S Register Shared Resource Release: Releases a specific A or S
register (0 — 7) path

e Release Shared Resource: Used in combination with Go
Semaphore Branch to cause issue to resume or P to advance

e Go Semaphore Branch: Signals that the conditions of a semaphore
branch have been satisfied

Branch Requests
The JA options check the branch test conditions to determine whether the
condition is met; if it is, the JA option issues a Go Branch signal to the IC
options.

Exchange Requests

The JA options perform the following actions during an exchange
sequence:

e (000000 (error exit) issues. 'Issue stops, P advances

e 0040jk (exit k) issues. Issue.stops, P stops

® The shared path is released. The state of Go Semaphore Branch
determines whether P advances on a 0040jk. Two conditions of the

0040jk instruction could occur:

1. A normal exit occurs and P advances when the shared path is
released and Go Semaphore Branch is a 0.

2. An error exit occurs, P will not advance when the shared path is
released, and Go Semaphore Branch is a 1.

182 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU Instruction Issue

Interrupt Requests
An interrupt request can be generated in one of three ways:

e A 000000 (error exit) instruction issues
e A 0040jk (Exit k) instruction issues
e A hardware error condition occurs

Interrupt requests are processed in two phases. In phase 1, the following
conditions are checked:

e No multiparcel instructions are in process
e No EIS type waiting for second parcel
e No branch sequence in progress

In phase 2, the following conditions are checked, and then the Go
Exchange signal is sent to the HD, IC, and CC options.

No branch sequence in progress
Shared path available

All registers available

Common memory quiet

When a hardware interrupt request occurs, the JA option performs the
phase 1 checks and stops issue. If the phase 2 checks are all valid, the JA
option sends a Go Exchange signal to the IC options. If any of the shared
type instructions have issued during this shut-down time, the HD option
must release the shared path and the following actions must occur:

e If a 0034 (test and set semaphore) was issued, a Release signal and a
Go Branch signal must be sent before Go Exchange can occur.

e If a 000000 (error exit) or a 00405k (exit jk) was issued, a release
path must occur to clear the JA option control.

Issue will resume when Go Branch occurs.

Control Signal Distribution
The JA option transmits the following control signals:

e Issue group 0, 1, and 2: These signals are combined on the BT and
VA options to complete the issue signal.

e Issue: This signal is transmitted to the AN option for fanout.

HTM-xxx-0 Cray Research Proprietary 183
December 19, 1994 Preliminary Information

Instruction Issue

184

CcPU

Enter Vector Length: This signal is sent to the AR option on the
decode of a 00200k (Ak to VL) instruction.

Read Vector Mask: This signal is sent to the SS option on a 073i
(0 -3) 0 (VMO or VM1 to Si or Ai) instruction.

Enter Vector Mask: This signal is sent to the SS option on a 0030j
(0 -3) (Si or Ai to VMO or VM) instruction.

Go Scalar Pop/Parity/Lz: This signal is sent to the SS option on a
026ij (0 - 3) or 027ij (0 - 1).

Go Scalar Double Shift: This signal is sent to the SS option on a
056ijk Shift (Si) and (Sj) left Ak places to Si.

Go A Type: This signal is sent to the SS option when a 005400
(EIS) is issued using A register data.

Go Scalar Reciprocal: This signal is sent to the RA option on a
070ij0 instruction.

Go Scalar Floating Add: JA1 sends this signal to the FA option
when a 062k (sum) or 063k (difference) issues.

Go Scalar Floating Multiply: This signal is sent to the NA and NC
options when a 064ijk through 067ijk instruction issues.

Go Address Multiply: This signal is transmitted to the AR option
when a 032ijk issues.

Common Memory A or S Requests: This signal is sent to the CD
options when a memory load or store issues. JAO sends out an A
register request, and JA1 sends out S register requests.

Common Memory A or S Writes: This signal is sent to the CD
options when a memory write 11hixxpnm or 13hixxpnm issues. JAO
sends out A register write requests, and JA1 sends out S register
write requests.

CM Port B Enabled: This signal is sent to the VA option via the
JAO option and to the BT option via the JA1 options to select the
vector read ports.

Vector Logical #2 Enabled: JAO sends this signal to the VA options
to select vector logical functional units.

Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU

HTM-xxx-0
December 19, 1994

Data Resume: This signal is sent to the instruction stack (IC
options) to indicate that the JA can accept another word.

Instruction Issue

Go Exchange: This signal is sent to the IC options to indicate that
an exchange is required. Another copy is sent to the HD option and
is used by the HD’s to clear the SIE bit (taking I/O interrupt). The
Go Exchange signal is also sent to the CC option to signal the CC to

start swapping exchange packages in memory.

Go Branch: This signal is sent to the IC options to indicate that a

conditional branch has passed the test.

Branch Fall Through: This signal is sent to the IC options to
indicate that a conditional branch has failed the test.

Branch Issued: This signal is sent to the IC options to indicate that
a branch has issued.

Enter Rank 1, Enter Rank 2, or Clear Rank 2: These three

signals are sent to the IC options to move parcel data into or out of

the ranks into issue.

The following signals are transmitted to the performance (HF)

monitor to indicate a hold issue condition;

Advance P: This signal is sent to the P register (BT options) to

. Holding Issue on A Registers

Holding Issue on S Registers
Holding Issue on B/T Registers
Holding Issue on V Registers
Holding Issue on Cqmmon Memory
Holding Issue on Functional Unit

Holding Issue on Shared Resources

advance P by 1 as each parcel is issued.

Cray Research Proprietary
Preliminary Information

185

Instruction Issue CPU

Branch Instruction Control

The JA options decode and control the execution of branch instructions.
When a conditional branch passes or fails a test, it returns either the Go
Branch control signal or the Branch Fall Through control signal to the
IC options. Issue is halted until the Go Branch signal is received by the
IC options. Another signal, Branch Issued, is also sent to the ICs when a
branch is in progress.

Conditional Branch Instructions

Conditional branches use instructions 010ijk through 017ijk. Once the
instruction issues, branch control logic examines either the AQ or SO
register for the condition defined by the operation code. If the condition is
met, the value of the P register is replaced with the nm field, and program
flow is passed to the instruction specified by P. If the condition is not met,
program flow drops through to the instruction that follows the branch.

Another type of conditional branch instruction for a CRAY T90 series
computer system is called test and set branch (0064jkmn). If a specified
semaphore register equals 0, the bit is made a 1 and the next instruction
issues. If the semaphore is a 1, the P register is replaced with the value in
the nm field.

Unconditional Branch Instructions

Unconditional branches use instructions 0050jk through 007ijkmn, and
each code operates differently, except that none of them depends on a
condition being met before the branch takes place. In other words, they
always take the branch in the ijkm or nm fields.

The jump to Bjk instruction (0050jk) branches to the parcel address
specified by the contents of Bjk. The unconditional jump instruction
(006000mn) branches to the nm field. A new unconditional jump
instruction is the branch to the address in nm field (006100mn). This
instruction is a Triton-mode only instruction; if executed in C90 mode, the
results are undefined. -

The return jump instruction (007000mn) jumps to the address in the
address field and places P + 3 (the address of the next instruction) into
B00. The return jump allows a jump to a subroutine, the last instruction of
which must be a 005000 instruction, which is a jump to B0O.

186 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU

Issue Control

Instruction Issue

Another new jump instruction is the 007100nm, which is an indirect jump.
The instruction stores the address of the next sequential instruction in the
BOO register; then the instruction uses the nm field to specify a common
memory address. The lower 32 bits of the contents of that address are
transferred to the P register, causing program execution to continue at that
point. When this instruction executes, the instruction buffers are set
invalid.

HTM-xxx-0
December 19, 1994

The first parcel of the instruction leaves NIP and moves into all the CIPs
on options HF000, HD00O, and HD0O1. The CIP located on the HF
options is responsible for the instructions that affect the exchange package
and performance monitor.

The HD option CIP is used for A/S path release and provides A/S i
designators and shared path release. The JA options determine whether
any register or functional unit reservations exist. If not, these options send
the Issue signal to the HD and HF options and the instruction issues,
reserving the appropriate registers and/or functional unit. If resource
conflicts do exist, the JA option does not send the Issue signal, and the
instruction remains in CIP until the conflict is resolved. This is called a
hold issue condition.

The JA options are responsible for providing issue control, and checking
and making functional unit and path reservations for the following items:

Vector registers

Vector functional units

A/S shared resource control
Memory ports

CM path/cache

A/S register entry codes
B/T register

The functional units must send a release back to the JA options to indicate
that the units are available.

The JA options also send out the 4, i, j, and k fields to the A/S registers for
further instruction decode.

Refer to Figure 88 through NO TAG for related instruction issue block
diagrams.

Cray Research Proprietary 187
Preliminary Information

Instruction Issue CcPU

OCA- IDA- ODA- —
IC000 JOCH Bits0—7 |pH_]IC000]ODH)
IDA-
IDH_ | 1C001
BT000 Jogh oA~ oal - IDA - IGA oo
OEH Bits0-7 ICH its 0 — -
OCP Bits0-7 IDH_T'1C002 Bits 07 IGH
IDA- IGIﬁ
IDH -
»{ 1C003 Bits8—15 IGP
OCA- IDI -
OEl - ICA-[i1coo1 |ocH Bitsg—15 1Dp_|}IC000
OEP Bits8—15 ICH IDI— ODA-
ioP_[icoor |LH
ocCl - IDI—
OocP Bits8-15 1DP_[icoo2
IDI-
IDP _11c003
OCA- IEA-
1C002 OCH Bits 16—-23 IEH _| 1C000
IEA—
IEH _I'icoo1
OEA— IGA ocl- IEA- ODA- IGA - | BT001
BTO0T |OEH Bits 16-23 1o OCP Bits 1623 IEH [1Co02 |ODH__ Bits 16-23 IGH
IEA -
IEH ¥ 1Cc003
Gl - A
OCA- IEI - .)
IC003 | OCH Bits24—31 1EP _[icooo Bits 24 - 31 IGP
OEIl - ICA-
OEP Bits24—-31 ICH _ IEl -
iEP | icoo1
ocl~ IEl -
OCP Bits 24—31. IEP _T1C002
IEl - ODA-
{EP _|1c003 | ODH
Figure 88. Bjk (Exchange P) Fan-out Bits
188 Cray Research Proprietary HTM-xxx-0

Preliminary Information December 19, 1994

CPU

Instruction Issue

JA0O1 1C001 JAQO1 1C003
OKE - ipa~ | 'C0%0 OKM~ Ipa— | 'C002
OKH _gFieldBits 0—-3 IPD OKP gField Bits0-3 IPD _
OKB - IPE - OKJ - IPE -
OKD hFieldBits 0~2 IPG OKL hField Bits0—-2 PG _
OKA__iField Bit2 Pd__ OK! __iField Bit2 [

JADDD |OKG- IPH - JAOOO JOKO- IPH -
OKH jFieldBits0—1 IPl OKP jFieldBits0-1 Pl
OKD - IPK - OKL - IPK -
OKF jFieldBits0—3 IPM OKN jField Bits0—3 IPM
OKA - IPN - OKI - IPN -
OKC kField Bits 0—3 IPP OKK kField Bits0 —3 IPP

Figure 89. JA-to-IC Parcel Data for Branches
HTM-xxx-0 Cray Research Proprietary 189

December 19, 1994

Preliminary Information

Instruction Issue

CcPU

OMA - IAA —
CHO00 OMD Bits0-3 _ 1AD I cq00 [5A007
OME — IAI - JADOO
OMH Bits32~-35 AL OAA - IDA -
OAH BitsQ~7 IDH
OMA - IAE -
OMD Bits4—-7 IAH
CHo02 OME M > OAl - IBA -
- OAP Bits32-39 IBH
OMH Bits36-39 IAP >
OMA - IAA -
OMD _Bits8—11__ IAD
CHO04 its | 1C001 OAA — Dl =
OME ~ IAI - OAH Bits8~15 IDP
OMH _Bits40-43 AL
OMA — IAE - OAIl ~ 1Bl —
CHO06 OMD Bits12-15 IAH | OAP Bits40-47 IBP
OME - IAM -
OMH Bits44—-47 IAP _
OMA — IAA -
CHO08 OMD _ Bits 1619 IAD | co02 OAA - ICA -
OME —~ 1Al - OAH Bits16-23 ICH
OMH Bits48-51 IAL _
OMA - IAE - OAl — 1AA —
CHO10 OMD Bits20—-23 IAH _ OAP_ _ Bits48-55 IAH _
OME - IAM ~
OMH Bits52-55 AP
OMA - IAA -
OME - Al - OAA - ICl -
OMH Bits56-59 AL OAH Bits 24—31 ICP
OMA ~ IAE -
CHO14 OMD Bits 2831 |AH | OAI - IAl -
OAP its 56 — IAP
OME A Bits 56 — 63 _
OMH Bits 60-63 IAP |
Figure 90. Path 1 CH to IC to JA Option
190 Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

N

CPU Instruction Issue

OMA - IBA -
CHO001 OMD Bits0-3 IBD 1C000 [
OME - 1Bl - JAQ00
OMH Bits32—-35 IBL _| OAA - IDA -
o OAH Bits0-7 IDH
OMA - IBE —
CHO003 OMD Bits4 -7 IBH
OAl - IBA -
OME - IBM - OAP Bits32-39 IBH _
OMH Bits36—-39 IBP >
OMA - IBA -
CHO005 OMD Bits 8 — 11 IBD IC001
- OAA - IDI =
OME - 1Bl ~ OAH Bits8—15 IDP
OMH Bits 40-43 IBL -
OMA - IBE— OAl - Bl -
CHO07 OMD Bits12-~15 [BH OAP Bits 40 — 47 IBP
OME - IBM — -
OMH Bits44—47 IBP
OMA - IBA —
MD i -
CHO09 O Bits 16—19 IBD 1C002 OAA— ICA —
OME - 1Bl - OAH Bits 16 —23 ICH
OMH Bits 48—-51 IBL |
OMA - IBE - OAl - IBA —
CHO11 OMD Bits20-23 IBH OAP Bits 48 — 55 BH
OME — IBM -
OMH Bits 52-55 IBP
OMA - IBA ~
CHO13 OMD Bits 24—-27 IBD 1C003
OME —~ IBI- OAA- : ICl -
OMH Bits56-59 IBL | OAH Bits 24 - 31 ICP -
OMA - IBE -
CHO15 OMD Bits28-31 IBH OAl - Bl -
OAP Bits 56 — 63 IBP
OME - IBM — -
OMH Bits60-63 IBP

Figure 91. Path 2 CH to IC to JA Option

HTM-xxx-0 Cray Research Proprietary 191
December 19, 1994 Preliminary Information

N

CPU ' Instruction Issue

JAQOO / JAOO1 OOA — OOD Hold Issues to Performance Monitor

ﬂ ' ODE JAO00 Advance P BT0, BT1 _
ODE JADO1 Go FP Multiply NB .
o KEY
GA Vector Logieal 1 VAG V Reg Read Release VA1 (8) IEA-IEH o ODA Issue Group 0 Valid VAO and VA1 (JAQ)
IGB Vector Logical 2 vA{1| VRegWrite Release VAO (8) IFA—IFH _ V Reg Reservation R ODA Issue Group O Valid BTO and BT1 (JA1) _ | Group0 V Registers, A Registers
IGC Vector Shift VAO | V FU Release VAOVAT (11 A - IGK 1 oDB Issue Group 1 Valid VAO and VA1 (JAD) Group 1 S Registers, B/T Registers,
IGD Vector Add VAT elease an - V FU Reservation Cé)rr:fllct o fssue oDB Issue Group 1 Valid BTO and BT1 (JA1) xec:or 'ﬁ°g'§a,'5 \r{te;t/gr rSthéft, Reciprocal,
IGE Vector FP Mult VAO . _ eck oDC Issue Group 2 Valid VAO and VA1 (JAO) ector Head Fort /VTo .
IGG Vector Recip VA0 | A/S Path (Shared Resource) IIF _ - | exchan g etc)) ’ ’
IGH BMM VA1 OoLG JAO0O Issue CIP HDO, HD1 . nge, e
Gl Vector Mask VAO Release Mem Port A, B, C ILA-ILC _ . - a
» Memory Port Reservation .
IGJ) BRegRelease BTO | (M Path/Cache Release (Even) NA—IE | obD JAGOQ Issue CIP HFO via ANO -
IGK T RegRelease BTt (Odd) 1JI = IJM _|CM Path/Cache Reservation ‘ h, i, j, k Field to A/S
- OAA ~ OAL Registers AR, AS, AT, AU -
T - h, i, j, k Field to A/S
> Reg Translation | OBA — OBL _Registers AR, AS, AT, AU -
- OCA—OCP_g, h, i, j, k Field to VA/BT Registers
D(el\;:lgc)ie Inst Translation A/S Read-out Gode Bit 0
QPA, OPC to AR, AS, AT, AU -
A/S Read-out Code Bit
[o OPB, OPD 1to AR, AS, AT, AU _
A/S Entry Code Bit 0, 1, 2
| OFA - QOFF to0 AR, AS, AT, AU -
[P
- a OGA - OGH A/S Gonstant Bits to ARO or AT0
N = 0 0 r -
) c OHA — OHH A/S Constant Bits to ASO or AT1 -
- 4= e bl
Instruction Data from ICs (64) 1AA - IDP 1] [OIA—OIH__A/S Constant Bits to AS1 or AUO
™1 2| 2 D OJA—OJH A/S Constant Bits to AS2 or AUT
t
> 3| 3 a OKA — OKH Parcel Data to Stack _
Instruction Data Ready IKA 1KA OKl - OKP Parcel Data to Stack
Parcel Pointers Bit 0 and Bit 1 IKB, IKC _ >
To HDs via Fanout A/S Path Release _
Interrupt from HD IKF o o
Exchange Active from CC PB g h, i j, kto CIP To HF via Fanout Shared Path Release/Exchange Data_
FA (SO) Test Valid IKG > ODF Go Exchange to ICs o
FA (S0) Sign State IKH o - o
> Go Exchange
FM (S0) Sign State IKJ _ 9
A0=0 INA — INH » Sign Bit Test OQAtoICs Branch Issued -
A0 Negative INA —~ INJ o
S0=0 10A - IOH OQB to ICs _Branch Fall Through -
S0 Negative ol : OQC to ICs _Go Branch .
Figure 92. JA Option Block Diagram
1
HTM-xxx-0 ' Cray Research Proprietary 193

December 19, 1994 Preliminary Information

CPU
JAO0O [AS000

OAA -OAC kBits IPG - 1Pl _| AROOO

OAD - OAF ;Bijts IPD —~IPF

OAG-0OAl ;pu. IPA-IPC

OAJ — OAL pBits IPJ~IPL =

| AS002

OBA - OBC kBits IPG =PI | AS001

0BD - OBF _;gjts IPD — IPF

OBG-0B! ;pu. IPA—IPC

0BJ~OBL _pBits IPJ—IPL e

I VAQO1

OCD - OCF_jgjts IPD — IPF

OCG - OCI i Rite lPA - IPC

OCJ-OCL_ ppits IPJ - 1PL

OCM - OCP ,Bits IPJ — IPL —

JAQO1 [Aroo1]
OAA - OAC_Bits IPG —IPI [AT000
OAD - OAF _gjts IPD—IPF
OAG-OAl ;pi. IPA—IPC
OAJ — OAL p Bits IPJ — IPL -
| AU001
OBA - OBC kBits IPG=IPI [AU00O
OBD — OBF_jgits IPD—IPF
OBG-0Bl ;pu. IPA—IPC
OBJ-OBL _ppits IPJ-IPL —
BT001
OCD - OCF_jBjtg IPD— IPF, |
0OCG-0C! ;pi. IPA-IPC
OCJ-OCL pits IPJ—IPL |
OCM - OCP_gpjts IPJ - IPL B
Figure 93. Instruction Data Distribution A/S/B/T Registers
HTM-xxx-0 Cray Research Proprietary

December 19, 1994

Preliminary Information

Instruction Issue

195

Instruction Issue

CPU

HDOO1
JA0O1 HDO0O
AUQ00
OBA-OBC___ IPG-IPI OWJ—OWL _ kBits IEA-IEC
IC001
OKD — OKF IPK -~ IPM_| OWQ-OWS jBits IED - IEF _
1C000
IPH-IPJ OWQ-0OWS /Bits IEG-IEl
5 AU000
OBJ—O L IPJ —lPL OWA—OWC hBitS IEJ—IEL -
OMA — OMB
JAOOO IGH-1GI | ANoOO
OGI - OGL g Bits IEM—-IEP
OMA - OMB IGF - IGG
OoLG Issue IEQ _
Figure 94. CIP Distribution.
196 Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

CPU

Instruction Issue

JAO0O
JAQO1 AUOD1
JAQ01 { OBA - OBC PG — 1PI OWJ-OWL kBits IDA—IDGC_
1C003
JA00D | 2KL - OKN IPK_IPM OWQ-OWS jBits IDD-IDF
1C002
JA000 | OKO.— OKP IPH — iPI OWQ-OWS iBits IDG—IDI
JA001 LOKI 1P -
AUQ01
JAoot | OBJ ~OBL IPJ — IPL OWA—OWC hBits IDJ—IDL
_ _ ANOO1
1A001 | OMA —OMB IGH —IGI
OGE-OGH gBits IDM—IDP
1a000|OMA = OMB IGF - IGG
JADOO OoDD Issue via ANOOO IDQ
Figure 95. CIP Distribution to HF Option
HTM-xxx- Cray Research Proprietary

Decem

x-0
ber 19, 1994

Preliminary Information

HF000

197

Instruction Issue CPU

JAQOO VAQO1 -
OCA - OCC Bits |IAN —IAP VAOOD 3

OCD - OCF ;gits |AK — IAM

0CG-0C! ;pye |AH—-1AJ
OCJ -~ OCL pBits IAA—IAC
OCM - 0OCP 4Bits |IAD —1AG

JAOO1

BTOO1
BTO0O

QCA - 0OCC kBits WK-IUM
OCD —-OCF ;Bijts MN-— P

| OCG-0OCI _;pus WH-1JJ)

0CJ — OCL _p gits ME = ING
OCM - OCP_g gits WA = 1JD

Figure 96. Instruction Data Distribution to VA and BT Options

198 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU Instruction Issue
HDOOT
JACOT HDOOO
AU000
OBA-OBC IPG-IPI OWJ-OWL _ kBits _ IEA—IEC
1C001
OKD — OKF IPK—1PM OWQ-OWS jBits IED- IEF _
1C000
IPH — 1PJ OWQ -OWS iBits IEG-IEl
AU000
OBJ-OBL IPJ-IPL OWA-OWC _ hBits __IEJ-IEL
OMA — OMB
JAOC0 IGH - IGI _| ANO0O
OGI-OGL gBits IEM—IEP _
OMA-OMB IGF-IGG
OLG Issue IEQ -
Figure 97. CIP Distribution -
HTM-xxx-0 Cray Research Proprietary 199
December 19, 1994

Preliminary Information

! i

Instruction Issue CPU
JAD0O
JADO1 AUCO1 HF000
JA001 | OBA - OBC IPG_IP1_, OWJ-OWL kBits IDA-IDC_
ico03
JAOOO OKL — OKN IPK_IPM OWQ-~0OWS jBits IDD - IDF_
1C002
JA0QD | OKO — OKP PH-IP OWQ-OWS iBits IDG-IDI
JAOO1 LOK! IPJ .
AU001
JAoo1 |OBJ —OBL IPJ_IPL OWA-OWC hBits IDJ-IDL
_ _ ANQO1
JA0D1 L OMA — OMB IGH-1GI _
OGE-OGH __ gBits __ IDM—IDP
JAOGO OMA - OMB IGF - 1GG |
JAOOO ODD Issue via ANOOO IDQ
Figure 98. CIP Distribution to HF Option
200 Cray Research Proprietary HTM-xxx-0

Preliminary Information December 19, 1994

EXCHANGE

NO V@O’LC}C—M ;
;‘S &@ n€

i) nG

Aeyef”fqﬂf xﬁ§4,cjgé?

The exchange mechanism in a CRAY T90 series computer system has the
following features:

e Means of switching execution from program to program
e Exchange package — Block (403 words) of program parameters that:

e Must be present in order for any program to execute; defines
where and how the program runs

e Must be 40g words long
e Must reside in lower 2 MW of memory

e Must start on a 40g word boundary

N Exchange Process

HTM-xxx-0

Decemb

er 19, 1994

The exchange sequence is the process that deactivates the current
exchange package and puts it into memory. It then loads a new exchange
package from memory and activates it.

The CRAY T90 series systems have a new feature in the exchange
package. This feature allows a process to exchange to either the address
specified by the exchange address (XA) register or to one of five different
addresses specified by one of the five exit address (EA) registers. With
this capability, a user job could exchange to another user job, or could
exchange to specific areas in the kernel, without first exchanging to the
monitor. '

Other features that are now implemented in the CRAY T90 series system
include the following: when an exchange occurs, the CPU that exchanges
out will retain the cluster number it was initially assigned unless the
system is operating in C90 mode or unless AutoBCD (automatic broadcast
cluster detach) is active. In addition, when a CPU is master cleared and
then exchanged out, the pending interrupt bits are retained. This is done
so that the maximum amount of information about the process is available.
A second exchange sequence can retrieve this information.

Cray Research Proprietary 201
Preliminary Information

Exchange

Deadstart

202

CPU

If an exchange occurs and the program is in monitor mode, the monitor
needs to save the B registers, T registers, shared registers, scalar (S)
registers, and vector (V) registers. If the vector not used (VNU) bitis a 1,
the V registers do not need to be saved. If the exchange is to another user
job, it is up to the user to save the register values.

Four conditions cause an exchange sequence:

Deadstart sequence (SIPI)

Interrupt flag set (F register)

Program exit (004000, 000000 instruction)

Hardware error causing a flag to set, which causes an exchange

A CRAY T90 series system does not use a deadstart signal or command;
instead, the system uses Set Interprocessor Interrupt (SIPI) signals, via
a 0014;1 instruction [send inter-CPU interrupt to CPU (Aj)] or, on an
initial deadstart, a CPU loop controller function of 76g issued by the
maintenance channel will start an exchange.

The sequence of events to start execution of MME:
o SetCPUMC
e Load data to memory address 0 via the maintenance channel.

e Issue a loop controller function of 176g via the maintenance channel
to allow CPU maintenance instructions.

e Issue a loop controller function of 141g via the maintenance channel
to allow cpu instruction exchange and halt.

The exchange package at location 0 goes into the CPU, and
what was in the CPU goes to location 0. There is no fetch
after this exchange.

¢ Drop CPU Master Clear via the maintenance channel.

Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU

Interrupt Flag Set

Program Exit

Exchange

e Issue the loop controller function of 76g via the maintenance
channel. '

The dropping of CPU Master Clear works as an enable; the
function 76g must be present along with the Master Clear
signal for the exchange to occur.

e Interrupted CPU exchanges to address 0, a fetch is done and issue
starts.

In this case, because I/O is handled by the maintenance channel, the return
path for output depends on how the sanity tree was configured. From this
point, the initially started CPU could issue SIPI commands to the other
CPUs.

In the CRAY T90 series system, each interrupt flag has an enable interrupt
mode bit. The interrupt modes are enabled by the enabled interrupt mode
(EIM) flag; an exchange to non-monitor mode sets the EIM flag.

An exchange to monitor mode clears the EIM flag. While the program is
in monitor mode, a 001302 instruction sets the EIM flag, and an 001303
instruction clears the EIM flag.

Each CPU has an EIM flag. In monitor mode, the EIM flag is cleared and
all interrupt modes are disabled, except enable flag on normal exit (FNX),
enable flag on error exit (FEX), and enable interrupt on program range
error (IPR); this provides a stable environment within monitor mode
immediately following an exchange.

Program exit occurs following the decode of instructions 000000
and 004000. Instruction 000000 is an error exit instruction, and
instruction 004000 is a normal exit.

Exchangé Sequence

HTM-xxx-0

Decemb

er 19, 1994

Before a CPU can perform an exchange, the CPU must first finish all
active instructions. If a test and set instruction (0034;k) is in the next
instruction parcel (NIP) or entering the current instruction parcel (CIP),
the program (P) register is decremented by 2, or by 1 if the test and set
instruction is in the CIP or NIP respectively. The JA option transmits a

Cray Research Proprietary 203
Preliminary Information

Exchange CPU

signal to the BT options that decrements the P register before it is loaded i
into memory. The JA then waits until the condition is resolved to advance w
P. Memory must also be quiet, and all memory writes must have
completed.

The processor performing the exchange clears out the buffer valid bits and
buffer counter. Clearing the buffer valid bits causes a fetch to occur after
the exchange has completed. Clearing the instruction buffer address
register (IBAR) counter causes the data that was fetched from memory to
be loaded into instruction buffer O first. Also, issuing a 0051k instruction
clears the buffer valid bits. The 0051jk is a maintenance instruction that
loads the P register from Bjk and invalidates the instruction buffers if the
CPU is in maintenance mode (MM).

Exchange Package Descriptions

Refer to Figure 99 for an illustration of the exchange package. The
exchange parameters are located on two options: HD00O and HD0O1.
HDO0O0O handles bits 0 through 31 for words O through 17, and HD(0O01
handles bits 32 through 63 for words 0 through 17.

P register — program register, word 10 bits O through 31

The P register contains 32 bits, the lower 2 bits of which are
used for parcel selects. The P register contains bits —2 through
29, which allow 1 gigaword of memory to be addressed.

Modes - MM, BDM, ESL, TRI, SCE, BDD word 11, bits 0 through 7

The modes tell the program what it can or cannot do, thereby
determining what effect the instructions issued will have on

the program.
MM — monitor mode, word 11, bit 0

Certain instructions are privileged to MM: controlling the
channel, setting the real-time clock, setting the programmable
clock, and so on. These instructions perform specialized
functions that are useful to the operating system. If an MM
instruction issues while the CPU is not in MM, it is treated as
a no-operation instruction. If an MM instruction issues while
the IMI flag is set, the MII flag sets, causing an exchange.

204 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU

HTM-xxx-0
December 19, 1994

Exchange

BDM - bidirectional memory, word 11, bit 1

When BDM is set, block reads and writes may occur
concurrently.

ESL - enable second vector logical, word 11, bit 2

If ESL is set and any 140ijk through 145ijk instructions issue,
the instruction is routed to the second vector logical unit. If
ESL = 0, the second vector logical unit is not used. The
second vector logical unit is used before the full vector logical
unit if a choice exists.

TRI — Triton mode, word 11, bit 3

The Triton mode allows the new instruction to run in the
CRAY T90 series system. If the Triton mode bit equals a 0,
then the instruction will run only CRAY C90 instructions.

SCE - scalar cache enabled, word 11, bit 24
If SCE is set to a 1, onboard scalar cache is enabled.
BDD - bidirectional memory disable, word 11, bit 27

When BDD is set to a 1, bidirectional block reads and writes
are disabled.

Status (VNU, FPS, WS, PS), word 12, bit 0 through 3

The status register reflects the condition of the CPU at the
time of an exchange. The bits in the status field are set during
program execution and are not user selectable.

VNU - vectors not used, word 12, bit 3

After a program has been exchanged into memory, the B and
T registers must be saved as well as the SB, ST, and SM
registers of the cluster that the program is using. If the VNU
bit is equal to 1, then this indicates that the vector registers
were not used so the vector registers do not need to be saved.
However, if the VNU bit is 0, then the vector registers must be
saved as well. The VNU bit is set when a 077xxx or a 140
through 177xxx instruction issues.

Cray Research Proprietary 205
Preliminary information

Exchange CPU
63 48 47 32 31 16 15 0
0 15.16 47,48 63
TTT I T T T T T T IIrtriiys
0 LAT 0 Logical Limit LAT 0 Logical Base
39 14
1 LAT 1 Logical Limit LAT 1 Logical Base
39 14
TTITTIT T T T T T ITIITIt
2 LAT 2 Logical Limit LAT 2 Logical Base
39 14]
3 LAT 3 Logical Limit LAT 3 Logical Base
RWXC 39 14
LAT 4 _
4] Modes LAT 4 Logical Limit LAT 4 Logical Base
RWXC 39 14
LAT5)
5| Modes LAT 5 Logical Limit LAT 5 Logical Base
RWXC 39 14 39 14
TTTIT I T T IR T T T TR]
LAT 6
6] Modes LAT 6 Logical Limit LAT 6 Logical Base
RWXC 39 14
LAT7 4 0 P
7] Modes % LAT 7 Logical Limit LAT 7 Logical Base
RWXC 39 14
LATO
10| Modes LAT O Physical Bias P Register
RWXD|37 14 -2
LI TTTrTrrrrrTvsyrerrrnreriedeld
LAT 1 . odes
1] Modes LAT 1 Physical Bias TEBM
RW X D|37 14 LM
TT T[T ST IT I T T T ITI T T IT I Y
LAT 2 Status
12] Modes LAT 2 Physical Bias x ;»g a
RW X D] 37 R 14 us L
T U0 [TTT T ittt T T Irrrr I
LAT 3 Processor
131 Modes LAT 3 Physical Bias : Length
RW X D|37 14] 6
TV T [UVTIT T TTIT Tt TItiIr ITd
LAT 4
14] Modes LAT 4 Physical Bias
RW X D|37 14
LR EREERE RS AR R
LAT S .) . .
15| Modes LAT 5 Physical Bias Exit Address 3 Exit Address 4
RW X D|37 14] 20 5 120 5
T T T JUT IV AT rrtrrrrs RN EAR AN AN
] | LAT 6 Physical Bias Exit Address 1 Exit Address 2
RW X D}37 14 20
LI L ryrsyvvedrIrTrgsyinrvrIonaognyd v irsrryrrvravrena PRI TrrTrTaryned
17 LAT 7 Exchange Address Exit Address 0
Modes LAT 7 Physical Bias 2
RWX D137 14 4 20 5 120 5
Words 20 — 27: A Registers 0~ 7
Words 30 — 37: S Registers 0—-7
Figure 99. Exchange Package
206 Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

\ :
e

CPU Exchange

FPS — floating-point status, word 12, bit 2

A floating-point error sets the FPS flag regardless of the state
of the floating-point error flag (FPE). The FPE flag sets when
an underflow or overflow condition exists in the floating-point
functional units.

The FPS bit is cleared whenever the interrupt on floating-point
error (IFP) mode bit is set or cleared by a 002100 or 002200
instruction.

The FPS bit is also cleared when the bit matrix loaded (BML)
flag is cleared; the BML flag is cleared when a 002210
instruction issues.

WS — waiting on semaphore, word 12, bit 1

The WS bit sets when a 0034,k instruction is in CIP and
holding issue.

BML - bit matrix loaded, word 12, bit 0

The BML bit indicates the B! (B transposed) registers have
been successfully loaded by a 1740j4 instruction.

Interrupt modes, word 11, bits 15 through 31

Refer to Table 30 for a list of the bit assignments for the
modes field in the exchange package. All modes except IPR,
FEX, and FNX must be enabled by the EIM flag to be
effective. The EIM flag sets on an exchange to nonmonitor
mode and clears on an exchange to monitor mode. The EIM
flag enables interrupt modes if set.

The EIM bit can be set or cleared by a 001302 or a 001303
instruction, respectively.

HTM-xxx-0 Cray Research Proprietary 207
December 19, 1994 Preliminary Information

Exchange

208

CcPU

Table 30. Interrupt Modes Register Bit Assignments

Binary
Word | Exponent | Acronym Name
1 31 IRP Interrupt on Register Parity Error
11 30 IUM Interrupt on Uncorrectable Memory Error
11 29 IFP Interrupt on Floating-point Error
11 28 IOR Interrupt on Operand Range Error
1 27 IPR Interrupt on Program Range Error
11 26 FEX Enable Flag on Error Exit (does not disable
‘ exchange)
11 25 IBP Interrupt on Breakpoint
1 24 ICM Interrupt on Correctable Memory Error
11 23 IMC Interrupt on MCU Interrupt
1 22 IRT Interrupt on Real-time Interrupt
1l 21 P Interrupt on Interprocessor Interrupt
1 20 110 Interrupt on I/O
11 19 IPC Interrupt on Programmable Clock
" 18 IDL Interrupt on Deadlock
1 17 Ml Interrupt on 001ij=0 or 033 instruction
11 16 FNX Enable Flag on Normal Exit (does not disable
exchange)
11 15 IAM Interrupt on Address Multiply Range Error
Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

CPU

HTM-xxx-0
December 19, 1994

Exchange

Refer to Table 31 for a list of the bit assignments for the
interrupt flags field in the exchange package.

Table 31. Flag Register Bit Assignments

Binary
Word | Exponent | Acronym Name
12 31 RPE Register Parity Error
12 30 MEU Uncorrectable Memory Error
12 29 FPE Floating-point Error
12 28 ORE Operand Range Error
12 27 PRE Program Range Error
12 26 EEX Error Exit (000 issued)
12 25 BPI Breakpoint Interrupt
12 24 MEC Correctable Memory Error
12 23 MCU MCU Interrupt
12 22 RTI Real-time Interrupt
12 21 iICP interrupt from Intemal CPU
12 20 1ol /O Interrupt (if 110 and SIE)T
12 19 PCI Programmable Clock Interrupt
12 18 DL Deadlock Interrupt
12 17 Ml 001ij= 0 or 033 Instruction Interrupt (if IMI
and not MM)
12 16 NEX Normal Exit (004 issued)
12 15 AMI Address Muttiply Interrupt

T SIE = System VO interrupt enabled.

Cray Research Proprietary
Preliminary Information

209

Exchange CPU

VL - vector length, word 13, bits 0 through 7

The VL register holds the content of the VL register. The
8-bit field contains the number of elements to be operated on
in the vector register. In a CRAY T90 series system, if VL =
000 or VL = 200, all 200g vector elements are used within the
vector register.

XA —exchange address, word 17, bits 16 through 31

The 16-bit field specifies the address of the first word of the
next exchange package. This exchange package is loaded
when any one of the following conditions occurs:

e An interrupt occurs that sets any of the following flags:
RPE, MEU, FPE, OPR, BPI, MEC, MCU, RTI, ICP, 10],
PCI, DL, MII, NEX, or AMI

e AQ00is issucd

e A 0040jk is issued with £ being an illegal value (5, 6,
or7) '

The XA field contains only bits 5 through 20. The lower bits
are assumed to be 0’s.

EXIT Address 0 through 4, words 15, 16, 17 bits 0 through 31

Each of the five 16-bit fields specifies the starting address of a
32-word exchange package. The & field of the 0040jk
instruction specifies the exchange package to use. Only £
fields equal to O through 4 are valid; if an invalid value is
used, the exchange is to the XA address. Exit Address (EA) 0O
is expected to be used for normal exits to maintain
compatibility with existing systems.

Each EA field contains only bits 5 through 20. The lower bits
are assumed to be 0’s.

CLN - cluster number, word 13, bits 24 through 31

The CLN contains a 8-bit field. There are up to 36g clusters in
the system, depending on the system configuration.

210 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

M

CPU Exchange

PPN - Processor number, word 13, bits 16 through 22

The contents of the 7-bit field in the exchange packages show
the logical number of the CPU in which the exchange was
executed. The maximum number is 127.

LATS - Words 0 through 17. Refer to the exchange package diagram for

bit layouts.
Each LAT has four associated fields; Table 32 identifies those
fields.
Table 32. LAT Fields
Field Name Description

Logical Base | First logical address of this LAT
Logical Limit |Last address +1 of this LAT
Physical Bias | Physical bias = Physical base address — Logical base address

Modes The controlling bits for each LAT
R(ead), W(rite), X{ecute), C(achable), D(irty)

The use of LATs allows programs to share memory space. For example,
two user jobs could reference the same library routine in memory while
keeping their local code private.

HTM-xxx-0 Cray Research Proprietary 211
December 19, 1994 Preliminary Information

REAL-TIME CLOCK

PROGRAMMABLE CLOCK INTERRUPT
STATUS REGISTER

PERFORMANCE MONITOR

Real-time Clock

Refer to the following subsections for information about the real-time
clock, programmable clock interrupt, status register, and the performance
monitor.

HTM-xxx-0
December 19, 1994

A CRAY T90 series computer system contains one 64-bit real-time clock
(RTC) per central processing unit (CPU). The RTC is synchronized when
a CPU issues a 001450 instruction. The 001450 instruction causes all
CPUs in the same cluster to be loaded with the contents of Sj. The RTC is
located on two HD options, each of which handles 32 bits. The HD00O
option handles bits 0 through 31; the HD0OO1 option handles bits 32
through 63.

HDO000 wﬂl detect a carry, out of the RTC, at a count of 37777777776
during normal operation. HD0O1 then increments the upper bits during
the next clock period, and HDOOO suppresses any toggles.

The RTC is incremented once every clock period. The RTC allows for
clock-period timing of program execution. When the machine is
deadstarted, the RTC must be loaded in order to synchronize all the CPUs.
If they are not synchronized, each CPU will have a different RTC value.

Writing to the RTC with the 00140 instruction sends a copy of the Sj
register from the CPU issuing the instruction to all RTC registers via the
issue paths of the shared registers. Reading the RTC with a 072i00
instruction copies the RTC register of the CPU that issued the 072i00
instruction into the scalar registers.

Refer to Figure 100 for an RTC and programmable clock interrupt (PCI)
block diagram.

Cray Research Proprietary 213
Preliminary Information

RTC, PCI, Status Register, Performance Monitor CPU

SjData from

Shared Module

HF000
OAA - OCL

Shared Data Path

(RTC Data or PCI)
HDOOoOo
ICA - IDF RTCto Si
OAA—OBF Bits0—-31 _
PCl Logic Used on o
This Option Only
CIP from Issue IEA - |IEP
ONA
. Carry to RTC
IKB HDOO1
> RTC to Si
OAA-OBF Bits32—-63_
ICA—IDF _
IEA — IEP

Figure 100. RTC and PCI Block Diagram

Programmable Clock

214

Each CPU has one programmable clock (PC), which is a 32-bit counter.
The programmable clock decrements every clock period; the clock is
located on the HDOOO option.

The programmable clock is loaded by the 001474 instruction when the
program is in monitor mode. When the programmable clock equals zero,
an interrupt request (PCI) is generated. To generate a PCI, the IPC mode
bit must be set. In user mode, IPC must have been set in the user’s
exchange package. If the CPU is in monitor mode, either IPC was set in

Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

- g

CPU

RTC, PCI, Status Register, Performance Monitor

the monitor’s exchange package, or a 001406 instruction was issued. The
interrupt request remains set until cleared by a 001405 instruction. If the
CPU is in monitor mode, and if the interrupt request is not desired, use a
001407 instruction to disable the IPC mode bit.

The PCI request is enabled and disabled on the HD option, which contains
the exchange parameters.

RTC and PC Instructions

Refer to Table 33 for a list of the RTC and PC instructions.

Table 33. RTC and PC Instructions

Instruction CAL Description
00140 ¥ RTS; |Enter RTC register with Sj
072100 SiRT Transmit RTC to Si
00144 PCI S Transmit Sjto programmable clock
001405 ¥ CCl Clear PCI request
001406 ' ECI Enable PCI request
001407 * DCI Disable PCl request

T Data cache is a monitor mode instruction.

Performance Monitor

HTM-xxx-0
December 19, 1994

The performance monitor (PM) is normally used to monitor software
performance. With the results of the performance monitor, a programmer
can determine how efficiently a program is running in the system. If, for
example, the program is performing too many instruction fetches or too
many hold issue conditions are occurring, the programmer can review the
program structure and modify it to minimize these occurrences.

Each CPU contains a performance monitor; because each CPU is
identical, all references in this section pertain to a single CPU. Each CPU
contains 32 performance counters and each counter is 48 bits wide.

Table 34 shows which event each counter monitors. Each counter
increments each time a particular event occurs in the CPU while the CPU
is in nonmonitor mode (IMI bit is not set). The counters related to
memory references may be incremented by as many as eight times per
clock period (CP). Counters related to vector operations are incremented
by the value in the vector length register at the time the instruction issues.

Cray Research Proprietary 215
Preliminary Information

RTC, PCI, Status Register, Performance Monitor

Table 34. Performance Monitor

cPU

Counter Event Monitored Instructions Increments
Number of:
0] Clock periods monitored +1
1 Instructions issued +1
2 Clock periods holding issue +1
3 Instruction fetches +1
4 CPU memory references (ports A, B, C) +8
5 Clock periods for references (ports A, B,C) +2047
6 I/0 memory references (port D, I/O only) +2
7 Cache misses +1
| Holding issue on:
10 A registers and access conflicts +1
11 S registers and access conflicts +1
12 V registers +1
13 B/T registers +1
14 Functional units +1
15 Shared registers +1
16 Memory ports +1
17 Number of cache hits +1
Number of instructions:
20 Instructions 000000 through 004000 000 - 004 +1
21 Branches 005 -017 +1
22 Address instructions 02x, 030 - 033, EIS 042 - 057 +1
,073120, 07330
23 B/T memory instructions 034 -037 +1
24 Scalar instructions 040 - 043, 071 — 077 except +1
073120, 07330
25 Scalar integer instructions 044 - 061, 070i6 +1
26 Scalar floating-point instructions 062 - 070 +1
27 S/A memory instructions 10x — 13x +1
Number of operations:
30 Vector logical 070if1, 140 - 147, +VL
1740/4 - 17406, 175
31 Vector shifts, pop., leading zero 150 — 163, 174xx (1 - 3) +VL
32 Vector integer adds 154 - 157 +VL
33 Vector floating-point multiplies 160 - 167 +VL
34 Vector floating-point adds 170-173 +VL
35 Vector floating-point reciprocals 174xx0 +VL
36 Vector memory reads 176 +VL
37 Vector memory writes 177 +VL
216 Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

_..w'/

CPU RTC, PCI, Status Register, Performance Monitor

Performance Monitor Instructions

Table 35 lists all the instructions associated with the performance monitor.

Table 35. Performance Monitor Instructions

Instruction CAL Description
001500 Clear all performance counters
073ift SiSRj | Transmit (SR)) to Si (monitor mode only for
j=2-17)
073105 SR0 Si | Transmit (Si) bits 48 — 52 to SRO
07325 SR2 Si | Advance performance monitor pointer
073i75 SR7 Si | Transmit (Sj) to maintenance channel

Clearing the Performance Counters

Instruction 001500 clears all performance counters. This instruction must
be issued while the CPU is in monitor mode in order for the instruction to
operate correctly.

Reading the Performance Monitor

The performance monitor is read with the 073i21 and 073i31 instructions.
Each counter is read 48 bits at a time and requires that two instructions be
issued to read all the counters. The 48 bits of the counter read are stored
in the Si register. When the 073i21 instruction is issued, counters O
through 17 are sent to Si. The 073i31 instruction, when issued, reads
counters 20 through 37 and sends the bits to Si.

The system hardware requires a minimum of 3 CPs between issuing
073ix1 instructions. Also, the PM Busy Status (PMBY) bit (bit 47 of
SRO0) must be cleared before reading the counters. If the 3-CP wait is not
written into the program, an undeterminable corruption of performance
monitor data occurs.

HTM-xxx-0 Cray Research Proprietary 217
December 19, 1994 Preliminary Information

RTC, PCI, Status Register, Performance Monitor CPU

Performance Monitor Block Diagram

Status Register

Refer to Figure 101 for the performance monitor block diagram. The
performance monitor is composed of the HF000, HD000, and HDO0O1
options. The HF00O0 option contains the lower bits (0 through 31) and the
HDO000 and HDOO1 options contain the upper bits (32 through 47) for all
32 counters; there is one counter for each event tracked by the
performance monitor. These 48-bit counters are incremented as each
event occurs, as long as the CPU is not in monitor mode.

218

A CRAY T90 series computer system has eight status registers, which are
located on the HD and HF options. The status register is no longer part of
the exchange package as it was in previous systems. Figure 102 shows the
status register format and bit assignments of each register. The status
registers are read by the 073ij1 instruction.

Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU
JAO0O [AS000

OAA -OAC kBits IPG - 1Pl _| AROOO

OAD - OAF ;Bijts IPD —~IPF

OAG-0OAl ;pu. IPA-IPC

OAJ — OAL pBits IPJ~IPL =

| AS002

OBA - OBC kBits IPG =PI | AS001

0BD - OBF _;gjts IPD — IPF

OBG-0B! ;pu. IPA—IPC

0BJ~OBL _pBits IPJ—IPL e

I VAQO1

OCD - OCF_jgjts IPD — IPF

OCG - OCI i Rite lPA - IPC

OCJ-OCL_ ppits IPJ - 1PL

OCM - OCP ,Bits IPJ — IPL —

JAQO1 [Aroo1]
OAA - OAC_Bits IPG —IPI [AT000
OAD - OAF _gjts IPD—IPF
OAG-OAl ;pi. IPA—IPC
OAJ — OAL p Bits IPJ — IPL -
| AU001
OBA - OBC kBits IPG=IPI [AU00O
OBD — OBF_jgits IPD—IPF
OBG-0Bl ;pu. IPA—IPC
OBJ-OBL _ppits IPJ-IPL —
BT001
OCD - OCF_jBjtg IPD— IPF, |
0OCG-0C! ;pi. IPA-IPC
OCJ-OCL pits IPJ—IPL |
OCM - OCP_gpjts IPJ - IPL B
Figure 93. Instruction Data Distribution A/S/B/T Registers
HTM-xxx-0 Cray Research Proprietary

December 19, 1994

Preliminary Information

Instruction Issue

195

Instruction Issue

CPU

HDOO1
JA0O1 HDO0O
AUQ00
OBA-OBC___ IPG-IPI OWJ—OWL _ kBits IEA-IEC
IC001
OKD — OKF IPK -~ IPM_| OWQ-OWS jBits IED - IEF _
1C000
IPH-IPJ OWQ-0OWS /Bits IEG-IEl
5 AU000
OBJ—O L IPJ —lPL OWA—OWC hBitS IEJ—IEL -
OMA — OMB
JAOOO IGH-1GI | ANoOO
OGI - OGL g Bits IEM—-IEP
OMA - OMB IGF - IGG
OoLG Issue IEQ _
Figure 94. CIP Distribution.
196 Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

CPU

Instruction Issue

JAO0O
JAQO1 AUOD1
JAQ01 { OBA - OBC PG — 1PI OWJ-OWL kBits IDA—IDGC_
1C003
JA00D | 2KL - OKN IPK_IPM OWQ-OWS jBits IDD-IDF
1C002
JA000 | OKO.— OKP IPH — iPI OWQ-OWS iBits IDG—IDI
JA001 LOKI 1P -
AUQ01
JAoot | OBJ ~OBL IPJ — IPL OWA—OWC hBits IDJ—IDL
_ _ ANOO1
1A001 | OMA —OMB IGH —IGI
OGE-OGH gBits IDM—IDP
1a000|OMA = OMB IGF - IGG
JADOO OoDD Issue via ANOOO IDQ
Figure 95. CIP Distribution to HF Option
HTM-xxx- Cray Research Proprietary

Decem

x-0
ber 19, 1994

Preliminary Information

HF000

197

Instruction Issue CPU

JAQOO VAQO1 -
OCA - OCC Bits |IAN —IAP VAOOD 3

OCD - OCF ;gits |AK — IAM

0CG-0C! ;pye |AH—-1AJ
OCJ -~ OCL pBits IAA—IAC
OCM - 0OCP 4Bits |IAD —1AG

JAOO1

BTOO1
BTO0O

QCA - 0OCC kBits WK-IUM
OCD —-OCF ;Bijts MN-— P

| OCG-0OCI _;pus WH-1JJ)

0CJ — OCL _p gits ME = ING
OCM - OCP_g gits WA = 1JD

Figure 96. Instruction Data Distribution to VA and BT Options

198 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU Instruction Issue
HDOOT
JACOT HDOOO
AU000
OBA-OBC IPG-IPI OWJ-OWL _ kBits _ IEA—IEC
1C001
OKD — OKF IPK—1PM OWQ-OWS jBits IED- IEF _
1C000
IPH — 1PJ OWQ -OWS iBits IEG-IEl
AU000
OBJ-OBL IPJ-IPL OWA-OWC _ hBits __IEJ-IEL
OMA — OMB
JAOC0 IGH - IGI _| ANO0O
OGI-OGL gBits IEM—IEP _
OMA-OMB IGF-IGG
OLG Issue IEQ -
Figure 97. CIP Distribution -
HTM-xxx-0 Cray Research Proprietary 199
December 19, 1994

Preliminary Information

! i

Instruction Issue CPU
JAD0O
JADO1 AUCO1 HF000
JA001 | OBA - OBC IPG_IP1_, OWJ-OWL kBits IDA-IDC_
ico03
JAOOO OKL — OKN IPK_IPM OWQ-~0OWS jBits IDD - IDF_
1C002
JA0QD | OKO — OKP PH-IP OWQ-OWS iBits IDG-IDI
JAOO1 LOK! IPJ .
AU001
JAoo1 |OBJ —OBL IPJ_IPL OWA-OWC hBits IDJ-IDL
_ _ ANQO1
JA0D1 L OMA — OMB IGH-1GI _
OGE-OGH __ gBits __ IDM—IDP
JAOGO OMA - OMB IGF - 1GG |
JAOOO ODD Issue via ANOOO IDQ
Figure 98. CIP Distribution to HF Option
200 Cray Research Proprietary HTM-xxx-0

Preliminary Information December 19, 1994

EXCHANGE

NO V@O’LC}C—M ;
;‘S &@ n€

i) nG

Aeyef”fqﬂf xﬁ§4,cjgé?

The exchange mechanism in a CRAY T90 series computer system has the
following features:

e Means of switching execution from program to program
e Exchange package — Block (403 words) of program parameters that:

e Must be present in order for any program to execute; defines
where and how the program runs

e Must be 40g words long
e Must reside in lower 2 MW of memory

e Must start on a 40g word boundary

N Exchange Process

HTM-xxx-0

Decemb

er 19, 1994

The exchange sequence is the process that deactivates the current
exchange package and puts it into memory. It then loads a new exchange
package from memory and activates it.

The CRAY T90 series systems have a new feature in the exchange
package. This feature allows a process to exchange to either the address
specified by the exchange address (XA) register or to one of five different
addresses specified by one of the five exit address (EA) registers. With
this capability, a user job could exchange to another user job, or could
exchange to specific areas in the kernel, without first exchanging to the
monitor. '

Other features that are now implemented in the CRAY T90 series system
include the following: when an exchange occurs, the CPU that exchanges
out will retain the cluster number it was initially assigned unless the
system is operating in C90 mode or unless AutoBCD (automatic broadcast
cluster detach) is active. In addition, when a CPU is master cleared and
then exchanged out, the pending interrupt bits are retained. This is done
so that the maximum amount of information about the process is available.
A second exchange sequence can retrieve this information.

Cray Research Proprietary 201
Preliminary Information

Exchange

Deadstart

202

CPU

If an exchange occurs and the program is in monitor mode, the monitor
needs to save the B registers, T registers, shared registers, scalar (S)
registers, and vector (V) registers. If the vector not used (VNU) bitis a 1,
the V registers do not need to be saved. If the exchange is to another user
job, it is up to the user to save the register values.

Four conditions cause an exchange sequence:

Deadstart sequence (SIPI)

Interrupt flag set (F register)

Program exit (004000, 000000 instruction)

Hardware error causing a flag to set, which causes an exchange

A CRAY T90 series system does not use a deadstart signal or command;
instead, the system uses Set Interprocessor Interrupt (SIPI) signals, via
a 0014;1 instruction [send inter-CPU interrupt to CPU (Aj)] or, on an
initial deadstart, a CPU loop controller function of 76g issued by the
maintenance channel will start an exchange.

The sequence of events to start execution of MME:
o SetCPUMC
e Load data to memory address 0 via the maintenance channel.

e Issue a loop controller function of 176g via the maintenance channel
to allow CPU maintenance instructions.

e Issue a loop controller function of 141g via the maintenance channel
to allow cpu instruction exchange and halt.

The exchange package at location 0 goes into the CPU, and
what was in the CPU goes to location 0. There is no fetch
after this exchange.

¢ Drop CPU Master Clear via the maintenance channel.

Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU

Interrupt Flag Set

Program Exit

Exchange

e Issue the loop controller function of 76g via the maintenance
channel. '

The dropping of CPU Master Clear works as an enable; the
function 76g must be present along with the Master Clear
signal for the exchange to occur.

e Interrupted CPU exchanges to address 0, a fetch is done and issue
starts.

In this case, because I/O is handled by the maintenance channel, the return
path for output depends on how the sanity tree was configured. From this
point, the initially started CPU could issue SIPI commands to the other
CPUs.

In the CRAY T90 series system, each interrupt flag has an enable interrupt
mode bit. The interrupt modes are enabled by the enabled interrupt mode
(EIM) flag; an exchange to non-monitor mode sets the EIM flag.

An exchange to monitor mode clears the EIM flag. While the program is
in monitor mode, a 001302 instruction sets the EIM flag, and an 001303
instruction clears the EIM flag.

Each CPU has an EIM flag. In monitor mode, the EIM flag is cleared and
all interrupt modes are disabled, except enable flag on normal exit (FNX),
enable flag on error exit (FEX), and enable interrupt on program range
error (IPR); this provides a stable environment within monitor mode
immediately following an exchange.

Program exit occurs following the decode of instructions 000000
and 004000. Instruction 000000 is an error exit instruction, and
instruction 004000 is a normal exit.

Exchangé Sequence

HTM-xxx-0

Decemb

er 19, 1994

Before a CPU can perform an exchange, the CPU must first finish all
active instructions. If a test and set instruction (0034;k) is in the next
instruction parcel (NIP) or entering the current instruction parcel (CIP),
the program (P) register is decremented by 2, or by 1 if the test and set
instruction is in the CIP or NIP respectively. The JA option transmits a

Cray Research Proprietary 203
Preliminary Information

Exchange CPU

signal to the BT options that decrements the P register before it is loaded i
into memory. The JA then waits until the condition is resolved to advance w
P. Memory must also be quiet, and all memory writes must have
completed.

The processor performing the exchange clears out the buffer valid bits and
buffer counter. Clearing the buffer valid bits causes a fetch to occur after
the exchange has completed. Clearing the instruction buffer address
register (IBAR) counter causes the data that was fetched from memory to
be loaded into instruction buffer O first. Also, issuing a 0051k instruction
clears the buffer valid bits. The 0051jk is a maintenance instruction that
loads the P register from Bjk and invalidates the instruction buffers if the
CPU is in maintenance mode (MM).

Exchange Package Descriptions

Refer to Figure 99 for an illustration of the exchange package. The
exchange parameters are located on two options: HD00O and HD0O1.
HDO0O0O handles bits 0 through 31 for words O through 17, and HD(0O01
handles bits 32 through 63 for words 0 through 17.

P register — program register, word 10 bits O through 31

The P register contains 32 bits, the lower 2 bits of which are
used for parcel selects. The P register contains bits —2 through
29, which allow 1 gigaword of memory to be addressed.

Modes - MM, BDM, ESL, TRI, SCE, BDD word 11, bits 0 through 7

The modes tell the program what it can or cannot do, thereby
determining what effect the instructions issued will have on

the program.
MM — monitor mode, word 11, bit 0

Certain instructions are privileged to MM: controlling the
channel, setting the real-time clock, setting the programmable
clock, and so on. These instructions perform specialized
functions that are useful to the operating system. If an MM
instruction issues while the CPU is not in MM, it is treated as
a no-operation instruction. If an MM instruction issues while
the IMI flag is set, the MII flag sets, causing an exchange.

204 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

CPU

HTM-xxx-0
December 19, 1994

Exchange

BDM - bidirectional memory, word 11, bit 1

When BDM is set, block reads and writes may occur
concurrently.

ESL - enable second vector logical, word 11, bit 2

If ESL is set and any 140ijk through 145ijk instructions issue,
the instruction is routed to the second vector logical unit. If
ESL = 0, the second vector logical unit is not used. The
second vector logical unit is used before the full vector logical
unit if a choice exists.

TRI — Triton mode, word 11, bit 3

The Triton mode allows the new instruction to run in the
CRAY T90 series system. If the Triton mode bit equals a 0,
then the instruction will run only CRAY C90 instructions.

SCE - scalar cache enabled, word 11, bit 24
If SCE is set to a 1, onboard scalar cache is enabled.
BDD - bidirectional memory disable, word 11, bit 27

When BDD is set to a 1, bidirectional block reads and writes
are disabled.

Status (VNU, FPS, WS, PS), word 12, bit 0 through 3

The status register reflects the condition of the CPU at the
time of an exchange. The bits in the status field are set during
program execution and are not user selectable.

VNU - vectors not used, word 12, bit 3

After a program has been exchanged into memory, the B and
T registers must be saved as well as the SB, ST, and SM
registers of the cluster that the program is using. If the VNU
bit is equal to 1, then this indicates that the vector registers
were not used so the vector registers do not need to be saved.
However, if the VNU bit is 0, then the vector registers must be
saved as well. The VNU bit is set when a 077xxx or a 140
through 177xxx instruction issues.

Cray Research Proprietary 205
Preliminary information

Exchange CPU
63 48 47 32 31 16 15 0
0 15.16 47,48 63
TTT I T T T T T T IIrtriiys
0 LAT 0 Logical Limit LAT 0 Logical Base
39 14
1 LAT 1 Logical Limit LAT 1 Logical Base
39 14
TTITTIT T T T T T ITIITIt
2 LAT 2 Logical Limit LAT 2 Logical Base
39 14]
3 LAT 3 Logical Limit LAT 3 Logical Base
RWXC 39 14
LAT 4 _
4] Modes LAT 4 Logical Limit LAT 4 Logical Base
RWXC 39 14
LAT5)
5| Modes LAT 5 Logical Limit LAT 5 Logical Base
RWXC 39 14 39 14
TTTIT I T T IR T T T TR]
LAT 6
6] Modes LAT 6 Logical Limit LAT 6 Logical Base
RWXC 39 14
LAT7 4 0 P
7] Modes % LAT 7 Logical Limit LAT 7 Logical Base
RWXC 39 14
LATO
10| Modes LAT O Physical Bias P Register
RWXD|37 14 -2
LI TTTrTrrrrrTvsyrerrrnreriedeld
LAT 1 . odes
1] Modes LAT 1 Physical Bias TEBM
RW X D|37 14 LM
TT T[T ST IT I T T T ITI T T IT I Y
LAT 2 Status
12] Modes LAT 2 Physical Bias x ;»g a
RW X D] 37 R 14 us L
T U0 [TTT T ittt T T Irrrr I
LAT 3 Processor
131 Modes LAT 3 Physical Bias : Length
RW X D|37 14] 6
TV T [UVTIT T TTIT Tt TItiIr ITd
LAT 4
14] Modes LAT 4 Physical Bias
RW X D|37 14
LR EREERE RS AR R
LAT S .) . .
15| Modes LAT 5 Physical Bias Exit Address 3 Exit Address 4
RW X D|37 14] 20 5 120 5
T T T JUT IV AT rrtrrrrs RN EAR AN AN
] | LAT 6 Physical Bias Exit Address 1 Exit Address 2
RW X D}37 14 20
LI L ryrsyvvedrIrTrgsyinrvrIonaognyd v irsrryrrvravrena PRI TrrTrTaryned
17 LAT 7 Exchange Address Exit Address 0
Modes LAT 7 Physical Bias 2
RWX D137 14 4 20 5 120 5
Words 20 — 27: A Registers 0~ 7
Words 30 — 37: S Registers 0—-7
Figure 99. Exchange Package
206 Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

\ :
e

CPU Exchange

FPS — floating-point status, word 12, bit 2

A floating-point error sets the FPS flag regardless of the state
of the floating-point error flag (FPE). The FPE flag sets when
an underflow or overflow condition exists in the floating-point
functional units.

The FPS bit is cleared whenever the interrupt on floating-point
error (IFP) mode bit is set or cleared by a 002100 or 002200
instruction.

The FPS bit is also cleared when the bit matrix loaded (BML)
flag is cleared; the BML flag is cleared when a 002210
instruction issues.

WS — waiting on semaphore, word 12, bit 1

The WS bit sets when a 0034,k instruction is in CIP and
holding issue.

BML - bit matrix loaded, word 12, bit 0

The BML bit indicates the B! (B transposed) registers have
been successfully loaded by a 1740j4 instruction.

Interrupt modes, word 11, bits 15 through 31

Refer to Table 30 for a list of the bit assignments for the
modes field in the exchange package. All modes except IPR,
FEX, and FNX must be enabled by the EIM flag to be
effective. The EIM flag sets on an exchange to nonmonitor
mode and clears on an exchange to monitor mode. The EIM
flag enables interrupt modes if set.

The EIM bit can be set or cleared by a 001302 or a 001303
instruction, respectively.

HTM-xxx-0 Cray Research Proprietary 207
December 19, 1994 Preliminary Information

Exchange

208

CcPU

Table 30. Interrupt Modes Register Bit Assignments

Binary
Word | Exponent | Acronym Name
1 31 IRP Interrupt on Register Parity Error
11 30 IUM Interrupt on Uncorrectable Memory Error
11 29 IFP Interrupt on Floating-point Error
11 28 IOR Interrupt on Operand Range Error
1 27 IPR Interrupt on Program Range Error
11 26 FEX Enable Flag on Error Exit (does not disable
‘ exchange)
11 25 IBP Interrupt on Breakpoint
1 24 ICM Interrupt on Correctable Memory Error
11 23 IMC Interrupt on MCU Interrupt
1 22 IRT Interrupt on Real-time Interrupt
1l 21 P Interrupt on Interprocessor Interrupt
1 20 110 Interrupt on I/O
11 19 IPC Interrupt on Programmable Clock
" 18 IDL Interrupt on Deadlock
1 17 Ml Interrupt on 001ij=0 or 033 instruction
11 16 FNX Enable Flag on Normal Exit (does not disable
exchange)
11 15 IAM Interrupt on Address Multiply Range Error
Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

CPU

HTM-xxx-0
December 19, 1994

Exchange

Refer to Table 31 for a list of the bit assignments for the
interrupt flags field in the exchange package.

Table 31. Flag Register Bit Assignments

Binary
Word | Exponent | Acronym Name
12 31 RPE Register Parity Error
12 30 MEU Uncorrectable Memory Error
12 29 FPE Floating-point Error
12 28 ORE Operand Range Error
12 27 PRE Program Range Error
12 26 EEX Error Exit (000 issued)
12 25 BPI Breakpoint Interrupt
12 24 MEC Correctable Memory Error
12 23 MCU MCU Interrupt
12 22 RTI Real-time Interrupt
12 21 iICP interrupt from Intemal CPU
12 20 1ol /O Interrupt (if 110 and SIE)T
12 19 PCI Programmable Clock Interrupt
12 18 DL Deadlock Interrupt
12 17 Ml 001ij= 0 or 033 Instruction Interrupt (if IMI
and not MM)
12 16 NEX Normal Exit (004 issued)
12 15 AMI Address Muttiply Interrupt

T SIE = System VO interrupt enabled.

Cray Research Proprietary
Preliminary Information

209

Exchange CPU

VL - vector length, word 13, bits 0 through 7

The VL register holds the content of the VL register. The
8-bit field contains the number of elements to be operated on
in the vector register. In a CRAY T90 series system, if VL =
000 or VL = 200, all 200g vector elements are used within the
vector register.

XA —exchange address, word 17, bits 16 through 31

The 16-bit field specifies the address of the first word of the
next exchange package. This exchange package is loaded
when any one of the following conditions occurs:

e An interrupt occurs that sets any of the following flags:
RPE, MEU, FPE, OPR, BPI, MEC, MCU, RTI, ICP, 10],
PCI, DL, MII, NEX, or AMI

e AQ00is issucd

e A 0040jk is issued with £ being an illegal value (5, 6,
or7) '

The XA field contains only bits 5 through 20. The lower bits
are assumed to be 0’s.

EXIT Address 0 through 4, words 15, 16, 17 bits 0 through 31

Each of the five 16-bit fields specifies the starting address of a
32-word exchange package. The & field of the 0040jk
instruction specifies the exchange package to use. Only £
fields equal to O through 4 are valid; if an invalid value is
used, the exchange is to the XA address. Exit Address (EA) 0O
is expected to be used for normal exits to maintain
compatibility with existing systems.

Each EA field contains only bits 5 through 20. The lower bits
are assumed to be 0’s.

CLN - cluster number, word 13, bits 24 through 31

The CLN contains a 8-bit field. There are up to 36g clusters in
the system, depending on the system configuration.

210 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

M

CPU Exchange

PPN - Processor number, word 13, bits 16 through 22

The contents of the 7-bit field in the exchange packages show
the logical number of the CPU in which the exchange was
executed. The maximum number is 127.

LATS - Words 0 through 17. Refer to the exchange package diagram for

bit layouts.
Each LAT has four associated fields; Table 32 identifies those
fields.
Table 32. LAT Fields
Field Name Description

Logical Base | First logical address of this LAT
Logical Limit |Last address +1 of this LAT
Physical Bias | Physical bias = Physical base address — Logical base address

Modes The controlling bits for each LAT
R(ead), W(rite), X{ecute), C(achable), D(irty)

The use of LATs allows programs to share memory space. For example,
two user jobs could reference the same library routine in memory while
keeping their local code private.

HTM-xxx-0 Cray Research Proprietary 211
December 19, 1994 Preliminary Information

REAL-TIME CLOCK

PROGRAMMABLE CLOCK INTERRUPT
STATUS REGISTER

PERFORMANCE MONITOR

Real-time Clock

Refer to the following subsections for information about the real-time
clock, programmable clock interrupt, status register, and the performance
monitor.

HTM-xxx-0
December 19, 1994

A CRAY T90 series computer system contains one 64-bit real-time clock
(RTC) per central processing unit (CPU). The RTC is synchronized when
a CPU issues a 001450 instruction. The 001450 instruction causes all
CPUs in the same cluster to be loaded with the contents of Sj. The RTC is
located on two HD options, each of which handles 32 bits. The HD00O
option handles bits 0 through 31; the HD0OO1 option handles bits 32
through 63.

HDO000 wﬂl detect a carry, out of the RTC, at a count of 37777777776
during normal operation. HD0O1 then increments the upper bits during
the next clock period, and HDOOO suppresses any toggles.

The RTC is incremented once every clock period. The RTC allows for
clock-period timing of program execution. When the machine is
deadstarted, the RTC must be loaded in order to synchronize all the CPUs.
If they are not synchronized, each CPU will have a different RTC value.

Writing to the RTC with the 00140 instruction sends a copy of the Sj
register from the CPU issuing the instruction to all RTC registers via the
issue paths of the shared registers. Reading the RTC with a 072i00
instruction copies the RTC register of the CPU that issued the 072i00
instruction into the scalar registers.

Refer to Figure 100 for an RTC and programmable clock interrupt (PCI)
block diagram.

Cray Research Proprietary 213
Preliminary Information

RTC, PCI, Status Register, Performance Monitor CPU

SjData from

Shared Module

HF000
OAA - OCL

Shared Data Path

(RTC Data or PCI)
HDOOoOo
ICA - IDF RTCto Si
OAA—OBF Bits0—-31 _
PCl Logic Used on o
This Option Only
CIP from Issue IEA - |IEP
ONA
. Carry to RTC
IKB HDOO1
> RTC to Si
OAA-OBF Bits32—-63_
ICA—IDF _
IEA — IEP

Figure 100. RTC and PCI Block Diagram

Programmable Clock

214

Each CPU has one programmable clock (PC), which is a 32-bit counter.
The programmable clock decrements every clock period; the clock is
located on the HDOOO option.

The programmable clock is loaded by the 001474 instruction when the
program is in monitor mode. When the programmable clock equals zero,
an interrupt request (PCI) is generated. To generate a PCI, the IPC mode
bit must be set. In user mode, IPC must have been set in the user’s
exchange package. If the CPU is in monitor mode, either IPC was set in

Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

- g

CPU

RTC, PCI, Status Register, Performance Monitor

the monitor’s exchange package, or a 001406 instruction was issued. The
interrupt request remains set until cleared by a 001405 instruction. If the
CPU is in monitor mode, and if the interrupt request is not desired, use a
001407 instruction to disable the IPC mode bit.

The PCI request is enabled and disabled on the HD option, which contains
the exchange parameters.

RTC and PC Instructions

Refer to Table 33 for a list of the RTC and PC instructions.

Table 33. RTC and PC Instructions

Instruction CAL Description
00140 ¥ RTS; |Enter RTC register with Sj
072100 SiRT Transmit RTC to Si
00144 PCI S Transmit Sjto programmable clock
001405 ¥ CCl Clear PCI request
001406 ' ECI Enable PCI request
001407 * DCI Disable PCl request

T Data cache is a monitor mode instruction.

Performance Monitor

HTM-xxx-0
December 19, 1994

The performance monitor (PM) is normally used to monitor software
performance. With the results of the performance monitor, a programmer
can determine how efficiently a program is running in the system. If, for
example, the program is performing too many instruction fetches or too
many hold issue conditions are occurring, the programmer can review the
program structure and modify it to minimize these occurrences.

Each CPU contains a performance monitor; because each CPU is
identical, all references in this section pertain to a single CPU. Each CPU
contains 32 performance counters and each counter is 48 bits wide.

Table 34 shows which event each counter monitors. Each counter
increments each time a particular event occurs in the CPU while the CPU
is in nonmonitor mode (IMI bit is not set). The counters related to
memory references may be incremented by as many as eight times per
clock period (CP). Counters related to vector operations are incremented
by the value in the vector length register at the time the instruction issues.

Cray Research Proprietary 215
Preliminary Information

RTC, PCI, Status Register, Performance Monitor

Table 34. Performance Monitor

cPU

Counter Event Monitored Instructions Increments
Number of:
0] Clock periods monitored +1
1 Instructions issued +1
2 Clock periods holding issue +1
3 Instruction fetches +1
4 CPU memory references (ports A, B, C) +8
5 Clock periods for references (ports A, B,C) +2047
6 I/0 memory references (port D, I/O only) +2
7 Cache misses +1
| Holding issue on:
10 A registers and access conflicts +1
11 S registers and access conflicts +1
12 V registers +1
13 B/T registers +1
14 Functional units +1
15 Shared registers +1
16 Memory ports +1
17 Number of cache hits +1
Number of instructions:
20 Instructions 000000 through 004000 000 - 004 +1
21 Branches 005 -017 +1
22 Address instructions 02x, 030 - 033, EIS 042 - 057 +1
,073120, 07330
23 B/T memory instructions 034 -037 +1
24 Scalar instructions 040 - 043, 071 — 077 except +1
073120, 07330
25 Scalar integer instructions 044 - 061, 070i6 +1
26 Scalar floating-point instructions 062 - 070 +1
27 S/A memory instructions 10x — 13x +1
Number of operations:
30 Vector logical 070if1, 140 - 147, +VL
1740/4 - 17406, 175
31 Vector shifts, pop., leading zero 150 — 163, 174xx (1 - 3) +VL
32 Vector integer adds 154 - 157 +VL
33 Vector floating-point multiplies 160 - 167 +VL
34 Vector floating-point adds 170-173 +VL
35 Vector floating-point reciprocals 174xx0 +VL
36 Vector memory reads 176 +VL
37 Vector memory writes 177 +VL
216 Cray Research Proprietary HTM-xxx-0

Preliminary Information

December 19, 1994

_..w'/

CPU RTC, PCI, Status Register, Performance Monitor

Performance Monitor Instructions

Table 35 lists all the instructions associated with the performance monitor.

Table 35. Performance Monitor Instructions

Instruction CAL Description
001500 Clear all performance counters
073ift SiSRj | Transmit (SR)) to Si (monitor mode only for
j=2-17)
073105 SR0 Si | Transmit (Si) bits 48 — 52 to SRO
07325 SR2 Si | Advance performance monitor pointer
073i75 SR7 Si | Transmit (Sj) to maintenance channel

Clearing the Performance Counters

Instruction 001500 clears all performance counters. This instruction must
be issued while the CPU is in monitor mode in order for the instruction to
operate correctly.

Reading the Performance Monitor

The performance monitor is read with the 073i21 and 073i31 instructions.
Each counter is read 48 bits at a time and requires that two instructions be
issued to read all the counters. The 48 bits of the counter read are stored
in the Si register. When the 073i21 instruction is issued, counters O
through 17 are sent to Si. The 073i31 instruction, when issued, reads
counters 20 through 37 and sends the bits to Si.

The system hardware requires a minimum of 3 CPs between issuing
073ix1 instructions. Also, the PM Busy Status (PMBY) bit (bit 47 of
SRO0) must be cleared before reading the counters. If the 3-CP wait is not
written into the program, an undeterminable corruption of performance
monitor data occurs.

HTM-xxx-0 Cray Research Proprietary 217
December 19, 1994 Preliminary Information

RTC, PCI, Status Register, Performance Monitor CPU

Performance Monitor Block Diagram

Status Register

Refer to Figure 101 for the performance monitor block diagram. The
performance monitor is composed of the HF000, HD000, and HDO0O1
options. The HF00O0 option contains the lower bits (0 through 31) and the
HDO000 and HDOO1 options contain the upper bits (32 through 47) for all
32 counters; there is one counter for each event tracked by the
performance monitor. These 48-bit counters are incremented as each
event occurs, as long as the CPU is not in monitor mode.

218

A CRAY T90 series computer system has eight status registers, which are
located on the HD and HF options. The status register is no longer part of
the exchange package as it was in previous systems. Figure 102 shows the
status register format and bit assignments of each register. The status
registers are read by the 073ij1 instruction.

Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

cPu : . RTC, PCI, Status Register, Performance Monitor

S Register
Vector Length Performance Monitor to S/ Bits 0 — 31 -
Go Increment
HDO0O0O omMQ HDOOM
OMA - ,
OMH OAA - Performance Monitor -
IAA - OBF to Si Bits 32 - 47
Vector Length IBF OAA - -
OBF
Performance L Performance
Counter Counter
Bits 32 - 47 gisters
ICA — Bits 32 — 47
Shared Data Path IDF _ IMI Allow Read
o ONB of HPM 1JQ
IKO
Kl T HFo00
LA — IKP
. & OFA Carry Out IKM
IH Performance
A OAA - IKM
ounter OBF
IKH -
Registers 0 ~ 37 IKL >
IAA - Bits 0 — 31 OFI
Shared Data ICL
Performance Monitor OFO Busy IKP
Increment Terms IKA - o
h Hold IKO
t -
(Registers 10 — 16) IKG OFK Carry
Cache Miss (Register 17) _ IKH OFA - ' IKH —
Cache Hit (Register 7) IKK OFE Select Pointers IKL
OBG - _ ICA-
I/O Reference Requests IKL - OCL Shared Data Path : IDF
(Register 6) IKM
Figure 101. Performance Monitor Block Diagram
HTM-xxx-0 Cray Research Proprietary 219

December 19, 1994 Preliminary Information

0-XXX-W1H

¥661 ‘61 JoquadaQ

uonewuoju| Aeuiwnaid
Areyaudold yoieesay Aeln

¥44

s

Bits 63 57 52 8 47 40 39 32 31 16 15
C B I F1IB Processor Cluster
SROJ L M BP FOD Number Number
N L PSPRM
#0 0]7 0
SR1
SR2 Performance Monitors 0 — 17
32 31 16 15
SR3 Performance Monitors 20 - 37
32 31 16 15
Error Type
SR4 Uuc Destination Code
MM
E E 0
SR5 Error Syndrome
11 0
Error Address
SR6
0
LAT Faults S RPE Chip SRRE Chip
srrl Muttiple Hit Miss R R Number Number
DC'CB'BA'A|DC'CB’'BA’AJE E 11 0] 7 0
" Bits 63 62 61 55 54 4 43 32 31 24 16 15

+ SRO bit 20 = monitor mode - maintenance mode - not (SR7 busy)

Figure 102. Status Registers

ndo

A0J)iUOy 8ourWIOLBA “gysibay smels 10d ‘014

RTC, PCI, Status Register, Performance Monitor CPU

The eight status registers are further defined in Table 36 through Table 40.

Status register 0 (SR0) shows the status of several bits in the active

3

exchange package. @&

SRy

Table 36. Status Register (SRO)

Bits " Name Description
63 CLN#0 | Cluster number not equal to zero
57 - BML. | Bit matrix loaded
52 _1BPT [Interrupt on breakpoint
‘ 51 FPSt |Floating-point status
T 50 IFFP* Interrupt on floating-point error
(‘“ e . 49 I-Eﬂ)?‘f Interrupt on operand range error
o 48 “BOM* | Bidirectional memory
e 47 "BMBY | Performance monitor busy
40through43 | PN Processor number
32 through 39 CLN Cluster number

T Designates that this was written by a 07305 instruction. All other bits of SRO
are read-only. L

Status register 1 (SRl.)x.isf:nét defined.

Status register 2 (SR2) ﬁ't;ih»t?o through 47 are bits of the performance
monitor counters O through 17.

Status register 3 (SR3) bits 0 through 47 are bits of the performance
monitor counters 20 through 37.

Status register 4 (SR4) bits are shown in Table 37. SR4 contains the
, correctable and uncorrectable memory error flags, port bits, and read
L owioso% . mode bits. The error information stored in SR4 is latched into the register
and held until the register is read. Once SR4 is read, the register is
#- 7" cleared, and new error dataif'can be stored in the register. If multiple errors
“ 1. occur, only the first error is held in SR4. Bits 32 through 45 define the
destination code associated with the error. Table 37 is a decode of these
destination bits.

222 Cray Research Proprietary HTM-xxx-0
Preliminary Information December 19, 1994

e’

CPU

RTC, PCI, Status Register, Performance Monitor

Table 37. Status Register 4 (SR4)

il

Bits Name Description
47 UME Uncorrectable memory error
46 - CME Correctable memory error
32 through 45 -.CODE | Destination code (refer to Table 38)

}

Bit
Destination 13 [12 o[s[7]6[543[2]1]0
Cache read 111 1LT].= Word
V register read 1111 Q_; ;»Begister - Element
S register read t]o[] " Register | 0 -
A register read 110 | 1] Register |1 -
T register read 110 Olw - 0}- Register
B register read 110§ 0:1 A - 11~ Register
Fetch read o111 Group Word
I/O read 0110 Type Word
Exchange read olol1 - Word
I/O write 0jl0]o0: Type 1
Processor write ojojo¥-—to]1]0| AS
Reconfigure 0j10}0, 1 0 -
Memory error 0100, 0j101]o -

HTM-xxx-0 .
December 19, 1994

g b

Status register 5 (SRS) bits 32 throﬁgh 43 contain the syndrome code of
the memory error. The 1nformat10na1s held until the status register is read.

Status register 6 (SR6) b1ts 32 through 44 contam the error address for the
memory error. These bits are latched into the SR6 on a memory error.
The information is held untllthe status register is read.

Status register 7 (SR7) contains information on LAT faults, register parity
errors (RPE), and shared register errors (SRRE). Bits 48 through 54
contain an LAT miss flag for each memory port. Bits 55 through 61
contain an LAT multiple-hit flag for each memory port. Bit 47 is the RPE

Cray Research Proprietary 223
Preliminary Information

RTC, PCI, Status Register, Performance Monitor

CPU

flag. If this bit sets, then-bits 32 through 43 contain the chip number. Bit
46 is the SRRE flag, and if this flag is set, bits 24 through 31 contain the

chip number. T
’ Table 35;2-»—Stzitus Register 7 Bit Definitions
SR . Bits "~ Name Description
Lo ST D2 aBthrough 54 | LAT fault [LAT miss
SO " 55through 61 | LAT-fault | Multiple LAT hit
. 46 _{SRRE Shared register read error
L (24 through 31 }-—~ - | Shared register chip number
‘ , 47 --RPE | Register parity error
R 32 through 43 | -+~ - | RPE chip number
g“;" N R k
,—--_ - ~ - N Tab1?40 .;fRegister Parity Error Code
; Octal Optlém Description
001 000 VRO | Vector register VO pipe 0
001 001 VRt~ | Vector register V1 pipe 0
001010 | . VR2-*-|Vector register V2 pipe 0
001 011 VRS- Vector register V3 pipe 0
001 100 VR4~ Vector register V4 pipe 0
— - [001101 | VRS~ Vector register V5 pipe 0
be o - [001110 VR6 - |Vector register V6 pipe 0
001 111 VR7 Vector register V7 pipe 0
010000 VRS Vector register VO pipe 1
010 001 VR9 Vector register V1 pipe 1
010010 VR10 | Vector register V2 pipe 1
010 011 VR11 Vector register V3 pipe 1
010100 VR12 Vector register V4 pipe 1
010101 VR13 Vector register V5 pipe 1
010 110 VR14 Vector register V6 pipe 1
010 111 VR15 Vector register V7 pipe 1
011 000 CHo Data cache bits 0 — 3, 32 - 35 Sect. 0,1,6,7
011 001 CH1 Data cache bits 0 - 3, 32 - 35 Sect. 2,3,4,5
011 010 CH2 Data cache bits 4 - 7, 36 — 39 Sect. 0,1,6,7

HTM-xxx-0
December 19, 1994

224 Cray 'Research Proprietary

Preliminary Information

CcPU

HTM-xxx-0
~ December 19, 1994

‘RTC, PCI, Status Register, Performance Monitor

Table 40. Régister Parity Error Code (continued)

o

Octal Option Deécription
011 011 CH3 I;?gta cache bits 4 -7, 36 — 39 Sect. 2,3,4,5
011 100 CH4 Data cache bits 8 — 11, 40— 43 Sect. 0,1,6,7
011 101 CH5 " | Data cache bits 8 — 11, 40— 43 Sect.2,3,4,5
011110 | -CH6-~Bata cache bits 12~ 15, 44— 47 Sect. 0,1,6,7
011 111 GH7-—-| Data cache bits 12— 15, 44— 47 Sect. 2,3,4,5
100 000 CH8 - Data cache bits 16 — 19, 48 - 51 Sect. 0,1,6,7
100001 | . CHO | Data cache bits 16 — 19, 48 — 51 Sect. 2,3,4,5
100 010 CH10. . | Data cache bits 20 — 23, 52 — 55 Sect. 0,1,6,7
700011 | CHI1—|Data cache bits 20 — 23, 52 — 55 Sect. 2,3,4,5
100 100 CH12—-{-Data cache bits 24 — 27, 56 - 59 Sect. 0,1,6,7
100 101 CH13 Data cache bits 24 ~ 27, 56 — 59 Sect. 2,3,4,5
100 110 CH14 | Data cache bits 28 — 31, 60 - 63 Sect. 0,1,6,7
100 111 CHA1 5""\'“:“ '[")ata' cache bits 28 — 31, 60 — 63 Sect. 2,3,4,5
101 000 ICO~ 7~ " [fstiuction buffer bits 0 -7, 32 — 39
101 001 IC1 . .. |instruction buffer bits 8 — 15, 40 — 47
101 010 |C2"‘.L._.,Ifwi§truction buffer bits 16 - 23, 48 - 55
101 011 IC3.. —{Instruction buffer bits 24 — 31, 56 — 63
110000 BT0_, _|Band T.register bits 0 15, 32— 47
110 001 BT1.....|B and T register bits 16 — 31, 48 — 63
110010 HMO.......] .]fé_s@-point buffer and logic monitor
110 011 M1 || Tést:point buffer and logic monitor

£

Cray Research

Proprietary

Preliminary Information

225

TN

e

SCALAR CACHE

Each CPU has a scalar data.cache. The cache accelerates common
memory data access for address register and scalar register read requests.
Only address and scalar registers can access the cache.

The data cache has the following features:

The cache is organized into 8 pages of data. Each page contains 8
lines of 16 words, thus providing 1,024 words of data in the cache.
Figure 103 illustrates the logical layout of the cache.

Cache is parity protected; each 8-bit byte has an associated parity bit.
If enabled, a parity error on a cache read will cause an interrupt.

When an A or S register memory reference is made, one of two
things may occur: a cache hit or a cache miss.

A and S register store requests are write-through. The cache word
will be updated if there is a hit; if a miss occurs, no cache lines are
requested.

B, T, and V register store requests cause corresponding cache lines to
be set invalid on a cache hit. Store requests on a cache miss have no
effect on the cache. B, T, and V register load requests also have no-
effect on the cache.

Cache Hit
A cache hit is determined using logical addresses, not physical addresses.
A cache hit occurs when the following conditions are met.
e A valid page address consisting of address bits 7 through 39, held
within the cache, matches the corresponding address bits of a
memory request.
e The cache line indicated by bits 4 through 6 of the requesting address
is valid within the cache.
HTM-xxx-0 Cray Research Proprietary 227

December 19, 1994

Preliminary Information

Scalar Cache CPU

JPage A e e
[Page 6 . }
| Page 5
| Page 4
| Page 3
l Page 2 Sasit o
Page 1
Page 0 .oz ny algn. w sl
e o e f Words.ofié“ o
Uhso |
Line 1 S LIRS i3
Line 2 :_-a'ﬁﬁ"»i‘. Gk
Line 3 RAN e
Line 4
-
Line 5
Line 6
Line 7

ERR SRV S AT Sl SIS

sutbe

Cache Miss ,
AL SR RPN ¢E N L EETYE])] [¥)
A cache miss occurs when a request from an A or S register load request
: does not match a page address. When this occurs, the corresponding line
2 oS S g fequested from membi*y ‘and the previously valid page address is set to
Ao ’éhe new page address!! Alllifiés in the new page are set invalid. As the
new requested line returns from memory, the new page address is set valid
= asis the cache 11ne 'thidt was't Tequested.

srg e BTG L e W TN L 1 BTRE) Bk

i 55” "'i"-‘ 15 ¢ Adfother %ype of ‘mls§ Ecurs$hen a memory reference matches the page

giiler : # 7 9 butnot dfy line in thé pdge; of the page is not valid. When this occurs, 16
Bt 18 sequential words are‘#euigsted from memory, and the line is set valid.
328 - Cray R&Se4rh Proprietary HTM-xxx-0

Preliminary Information December 19, 1994

CPU Scalar Cache

Cache Addressmg — R T
Flgure 104 shows how memory addresses are used to determme a cache
hit ormiss.... SR
R Memory Ad'a'i'ess o e
- - e s srmenine o= SUbs@CiON e e sy
Word Select Bank Select Select Sectlon Select !
A A —A A i
! . v DTS S R v N ;
o Tsls ———3[s]s _ 513 ?m =0 ,Bit,S_f
i : H) BRI 1
R S R T |
v . v ' r A i
Cache Page | | Cache Line) Cache Word R
T R i
CaeheAddr ss S endy
e T LI e e f
Figure 104. Mem ryAddresses A T 3 Y
SR R ; o
Potential Cache Problems l _:WJ..,._,_,“ SR

Because no. C_Qmmumcatlon_accurs between caches in different CPUs the
following problem can arises Two or more CPUs can have data in their
respective caches from the sdme, f)hysical address in memory, and one of
the CPUs can wrife H'E; o that memory address. The CPU that wrote the
data will update its cache, and.the other CPUs will contain old data. ’I‘hlsm_§

problem can be managed in séveral ways:

wowy AG
e There are load instructions that bypass cache. These instructions
cause the cache line to be invalidated on a cache hit.

D

sarfd o “‘
e LATs can be setup tO“dEﬁﬁe"’a’re“aS“of‘memOry that are fiof tache™
enabled. = rer G

D x\;b A

A.L IEJ - "F

e If the SCE (scalar eaehei enable) blt is not set m the exchange
package, it will. prevem the use of cache for thyat job.

Another problem that cag (;eéygjls when xou go through memory witha

stride value of 128; this causes memory to thrash. A stride of 128 will use

1 word of 1 line from eagh-cache:page; then,when.you start replacing

lines, you will get 16won@s bagk from memory to cache but will be using

only 1 word. This prob}emqgan ‘be avoided, by. redesigning user code.

HTM-xxx-0 Cray Research Proprietary 229
December 19, 1994 Preliminary Information Co

Scalar Cache CPU

4 T 4

CH Option

"« =1” [There are.16-CH options; these options coxtaif*all of the cache memory
#1 ran *RAMs. The even-numbered CHs hold dat@ figtn memory sections 0, 1, 6,
and 7; the odd-numbered-CHs hold data from memory sections 2, 3, 4,
and 5. . r s .

:’{;AI TR - GEadr i L i " &

ot

IO 12 Ly WY sl S S .
On a memory write, each CH writés 4 bits 10 all memory sections.
Table 41 shows the bits per. option.
esh o

Table 41. CH Option Bits =~ *

CHO00 |cHoo2 |cHoo4 |cHoos |[CHoo8 |CHO10 |CHO12 |CHO14
ReadData ~[0=3 "~ |4-7 8—11 “[12-15 |16-19 |20-23 [24-27 (2831
Sect0,1,6,7 |32-35 |36-39 |40-43 |44-47 |48-51 |52-55 |56-59 |[60-63
WiteData |08~ [4-7 8-11 [12-15.[16-19 [20-23 [24-27 [28-31
Sect o C1eB oY |'CB 1 CcB2 “ lﬁas'““ CB4 CB5 CB6 CB7

CHOO01 CHO03 |CHO005 |CHOO7 {CHO09 |CHO1t |CH013 |[CHO15

[ReadData [0=3 |4-7 8-11 12-16 |16-19 |20-23 |24-27 |28-31
Sect2,34,5 .[32-35. -|36-39 |40-43 {4447 |48=51-[52-55 |56-59 |60-63

Write Data - |32-35 36-39 |40-43 -{44-47-{48—51-52-55 |56-590 |60-63
Sect. 0-7 CB8 CB9 CB10. jGBM1 g - »~ | =

Scalar Cache Instructions

Refer to Table 42 for a list of the scalar cache instructions.

_.Table 42, Scalar Cache Instructions

Instruction CAL 1o sint s h Description
002501 |ESC Enable scalar cache
- 002601 ':ﬁ DSC . |Disableand invalidate scalar cache

2 10h20mn | Al @xp,ARBC ;. lLoad Adfrom: ({Ah){aexp) bypassing data cache and invalidating
) .cache lige ;.

weinl i ey a9 AR N,

10hB0pmn . | Ai exp,Ah,BC Load Ajfrom ((Ah)+exp) bypassing data cache and invalidating
cache line

12hi20mn Siexp,Ah,BC Load Sifrom ((Ah)+exp) bypassing data cache and invalidating
. cache line

e, ,%@gp,AJJ,B% Load Si from ((Ah)+exp) bypassing data cache and invalidating
ooy TR e 7 cache Ime

230 Cray Research Propnetary o HTM-xxx-0
Preliminary Information December 19, 1994

