MME User Guide

(CRAY T900 Series)
HDM-102-B

Cray Research/Silicon Graphics Proprietary

e L

A Silican Graghics Company

Record of Revision

REVISION DESCRIPTION

August 1995. Original printing.
A March 1996. This revision corresponds to the MT-T2.2.0 offline diagnostic release.

B August 1997. This revision corresponds to the M2T3.0 offline diagnostic release.

Any shipment to a country outside of the United States require$ a
letter of assurance from Cray Research, Inc.

This document is the property of Cray Research, Inc. The use of this document is subject to specific license rights
extended by Cray Research, Inc. to the owner or lessee of a Cray Research, Inc. computer system or other licensed
party according to the terms and conditions of the license and for no other purpose.

Cray Research, Inc. Unpublished Proprietary Information — All Rights Reserved

Autotasking, CF77, CRAY, CRAY-1, Cray Ada, CraySoft, CRAY Y-MP, CRInform, T&idcKiva, HSX, LibSci,

MPP Apprentice, SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and
Because no workstation is an island, CCI, CCRF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS,
CRAY-2, Cray Animation Theater, CRAY APP, CRAY C90, CRAY C90D, Cray C++ Compiling System, CrayDoc,
CRAY EL, CRAY J90, CRAYJ90se, CrayLink, Cray NQS, Cray/REELIlibrarian, OR&MP, CRAY SSD-T90,

CRAY T3D, CRAY T3E, CRAY T3E-900, CRAY T90, CrayTutor, CRAY X-MP, CRAY XMS, CSIM, CVT,
Delivering the power . . ., DGauss, Docvi@&WDS, GigaRing, HEXAR, IOS, ND Series Network Distcay,

Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE, SUPERLINK,
System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc.

Silicon Graphics and the Silicon Graphics logo are registered trademarks and Origin and Origin2000 are trademarks
of Silicon Graphics, Inc.

OpenWndows is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company, Ltd.

Requests for copies of Cray Research, Inc. publications should be directed to:

CRAY RESEARCH, INC.
Customer Service Logistics
1100 Lowater Road

P.O. Box 4000

Chippewa Falls, WI 54729-0078
USA

Comments about this publication should be directed to:

CRAY RESEARCH, INC.

Service Publications and Training
890 Industrial Blvd.

P.O. Box 4000

Chippewa Falls, Wl 54729-0078
USA

MME USER GUIDE

Description of thisDocument

ENVIRONMENT 0

Starting MME in Environment Q.
FromaUNIX Prompt............

From the OpenWindows Workspace Menu.
MWS Workspace Menu Options.
SWS Workspace Menu Options.

Using Manual Mode. i
Running the Boundary Scan (BS) Communication Test. .
Running the Configuration (Basic) Test.
Runningthe Memory Test.
Running the Input and Output (I/O) Error CorrectiastT. . .
Running the Logic Monitor Test
Running the Exchange Test
Running the Instruction Buffers Test.
Running the Configuration (Advanced) Test.
Running the End-to-end Test
Running the Miscellaneous Test.

Using Compose Mode.
Modifying an Existing Sequence.
Creatinga New Sequence.
Boundary Scan Functions.

Boundary Scan Loop Controller Functions.

Boundary Scan DMA Functions.
Boundary Scan Module Functions.
Boundary Scan Channel Functions.
Boundary Scan Port Functions.

HDM-102-B Cray Research/Silicon Graphics Proprietary

MME User Guide

ENVIRONMENT 0 (continued)

Shared Functions 45
Shared Loop Controller Functions. 45
Shared Logic Monitor Functions. 47

CPUFunctionsciiiiiiiinn..... 49
CPU Loop Controller Functions 49
CPU Logic Monitor Functions. 50
CPUDMAFUNCLIONS e 52

HOFUNCLIONS. e 53
I/O Loop Controller Functions. 53
I/O Logic Monitor Functions 56
I/O Sanity Generator Functions 58

ChannelFunctions 59
OpEN. . 59
Masterclear 60
Disconnect. 61
Close ... 61
Resetl 61
LocK ... 61
unlock 61
Write . . . 62
Read. 62
Write/Read. 63

CoOmMMENES 64
QUIBL. . . e 64
Verbose. 64

Compare FUNCHION e 65

Control Functions 67
GOtO . .. e 67
Label 68
SO . 68

File Operation Functions. 69
Read. 69
Write . . . 70
Append. 70
Delete. e 71

iv Cray Research/Silicon Graphics Proprietary HDM-102-B

HDM-102-B

MME User Guide

ENVIRONMENT 0 (continued)

UtIltieS . . . 71
Delay 72
Mask. 72
MOVE . .. 73
Pattern 74
Squish. 75
ENVIRONMENT 1 77
Start MME in Environment 1. 78
Froma UNIXPrompt. 78
From the OpenWindows Workspace Menu. 80
MWS Workspace Menu Options. 80
SWS Workspace Menu Options. 82
What Happens When You Start Environment 1?2. 84
Load a Layout (Optional). 84
Allocate Resources (Optional) 85
LoadaControl Point. 85
Control Point Components. 85
Standard LocationBlock 87
Standard Code Block. 92
Diagnostic Code Block. 92
Diagnostic Data Area. 93
Assign a CPU to the Current Control Point. 94
Clickon GO 94
Monitor the Progress of Control Point Execution. 96
Diagnostic-detected Errors 97
INteImTUPES . . . 98
Tolerable Interrupts. 101
Intolerable Interrupts. 109
ClickonHalt 110
Halt—>NoDump 110
Halt —> Exchange Dump 110
Halt —> Register Dump. 110

Cray Research/Silicon Graphics Proprietary %

MME User Guide

ENVIRONMENT 2 113
Start MME in Environment 2. 113
Froma UNIXPrompt.......... 114
From the OpenWindows Workspace Menu. 115
MWS Workspace Menu Options. 115
SWS Workspace Menu Options. 117
What Happens When You Start Environment 2?2. 119
Diagnostic Controller Components. 120
Standard Locations. 121
Code Block.o 125
Block Storage Segment. 126
Diagnostic Controller Operation. 127
Controller Communication Port. 127
CPU Deadstartand Control. 128
MME-to-controller Communications. 129
Load a Layout (Optional). 129
Allocate Resources (Optional) 129
Enable the Run System (Optional). 129
Load One or More Control Points. 129
Control Point Components., 130
Control Point Addressing. 130
Viewing Memory Addresses 132
Assign CPUs to the Control Points. 137
Clickon GO ... 137
Monitor the Progress of the Control Points. 138
Diagnostic-detected Errors 139
INterruptsS . ..o 140
Tolerable Interrupts. 144
Intolerable Interrupts. 149
ClickonHalt i 154

Vi Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

HDM-102-B

Figures

Figure 1. MWS Workspace Menu Options to Start

Environment O with an FEI Channel 4
Figure 2. MWS Workspace Menu Options to Start

Environment O with the Simulator or with the

Simulator and Bugger/Debugger. 5
Figure 3. SWS Workspace Menu Options to Start

Environment O with an FEI Channel 6
Figure 4. SWS Workspace Menu Options to Start

Environment O with the Simulator or with the

Simulator and Bugger/Debugger. 7
Figure 5. Viewing the Original Sequence............... 31
Figure 6. Modifying Where the DMA Function Writes the

Data 32
Figure 7. Modifying Where the DMA Function Reads the

Data 33
Figure 8. Changing a Selected Function in the Sequence. 34
Figure 9. Mask Utility Example 72
Figure 10. Move Utility Example 73
Figure 11. Pattern Utility Example. 74
Figure 12. Squish Utility Example...................... 75
Figure 13. MWS Workspace Menu Options to Start

Environment 1 with an FEI Channel 80
Figure 14. MWS Workspace Menu Options to Start

Environment 1 with the Simulator or with the

Simulator and Bugger/Debugger. 81
Figure 15. SWS Workspace Menu Options to Start

Environment 1 with an FEI Channel 82
Figure 16. SWS Workspace Menu Options to Start

Environment 1 with the Simulator or with the

Simulator and Bugger/Debugger. 83
Figure 17. Control Point Components. 86
Figure 18. Control Point Execution Sequence (Go Clicked) 94
Figure 19. ErroriIndicator, 97
Figure 20. Interrupt Classes (Environment1)............ 98
Figure 21. Interrupt Processing in Environment 1. 99
Figure 22. Normal Exit Interrupt 102
Figure 23. Normal Exit Interrupt Processing 104
Figure 24. Interrupt Processing (Hang). 108
Figure 25. Intolerable Interrupt Processing 109
Figure 26. MWS Workspace Menu Options to Start

Environment 2 with an FEI Channel 115

Cray Research/Silicon Graphics Proprietary vii

MME User Guide

viii

Figures (continued)

Cray Research/Silicon Graphics Proprietary

Figure 27. MWS Workspace Menu Options to Start

Environment 2 with the Simulator or with the

Simulator and Bugger/Debugger.............. 116
Figure 28. SWS Workspace Menu Options to Start

Environment 2 with an FEI Channel 117
Figure 29. SWS Workspace Menu Options to Start

Environment 2 with the Simulator or with the

Simulator and Bugger/Debugger. 118
Figure 30. Diagnostic Controller Components. 121
Figure 31. Control Point Addressing. 131
Figure 32. Absolute Memory Display. 132
Figure 33. Drifting Display for the Current Control Point. . . 133
Figure 34. Drifting Display for the New Current Control Point 134
Figure 35. Anchored Memory Display for the Current

ControlPoint. 135
Figure 36. Anchored Memory Display for the New Current

Control Point. 135
Figure 37. Memory Display for the Current Control Point

Section. 136
Figure 38. Memory Display for the New Current Control

PointSection. 136
Figure 39. Errorindicator.cooii... 140
Figure 40. Environment 2 Interrupt Classes and Actions. . . 141
Figure 41. Interrupt Processing (Controller). 142
Figure 42. Normal Exit Interrupt Processing 146
Figure 43. Idle Status after an Exchange with No Flags . . . 150
Figure 44. Intolerable Interrupt with No Handler in the

Controller or Control Point 152

Tables

Table 1. Environment 0 Command Line Options. 3
Table 2. Shared Logic Monitor Command Fields 48
Table 3. CPU Logic Monitor Command Fields. 51
Table 4. I/O Logic Monitor Command Fields........... 57
Table 5. Channel Mode Options. 60
Table 6. Environment 1 Command Line Options. 79
Table 7. Standard Locations. 88
Table 8. Diagnostic Information. 90
Table 9. Status Information from an Executing Control

Point. 96

HDM-102-B

Description of this Document

MME User Guide

Tables (continued)

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.

Environment 1 Normal Exit Request Bit Fields. . 105
Environment 1 Normal Exit Routines. 105
Environment 2 Command Line Options. 114
Controller Parameters 123
RequestFunctions 127
Status Information from Executing Control Points 138
Environment 2 Normal Exit Request Bit Fields. . 148
Environment 2 Normal Exit Routines. 148

HDM-102-B

This document provides procedures that describe how to use Mainframe
Maintenance Environment (MME) environments 0, 1, and 2 to
troubleshoot CRAY T90 series mainframes.

This document is one component of the MME documentation set, which
also includes the following documents:

MME Interface Referen¢@ublication number HDM-008-A.

This document describes the interfaces used with MME environments
0, 1, and 2. It also describes all available menu button commands.

MME Diagnostic Tests and Utilitiepublication number HDM-103-B.

This document provides quick-reference information for all diagnostic
tests and utilities you can use with MME.

Cray Research/Silicon Graphics Proprietary (¢

MME User Guide

X Cray Research/Silicon Graphics Proprietary HDM-102-B

ENVIRONMENT O

HDM-102-B

Environment O is one component of the Mainframe Maintenance
Environment (MME) software package that field engineers use to
troubleshoot CRAY T90 series mainframes. Environment O provides

basic mainframe testing; use environment O to ensure that the mainframe
IS operating at a level that permits environment 1 and environment 2 based
testing.

Environment O runs in the maintenance workstation (MWS) or system
workstation (SWS) and creates maintenance channel functions that are
sent to the mainframe through the maintenance channel to test the
following areas of the mainframe:

Boundary scan communication
Configuration

Memory

I/O error correction

Logic monitor

Exchange

Instruction buffers
Miscellaneous

Environment O comprises three testing modes (automatic, manual, and
compose) for varying levels of user control:

Automatic mode runs predefined sequences of maintenance channel
functions.

Manual mode runs user-selected sequences from the predefined set
with user-selected parameters.

Compose mode runs user-defined sequences of maintenance channel
functions. This enables testing beyond the areas tested in automatic
and manual modes but requires you to create or modify the sequence
that is sent to the mainframe.

Cray Research/Silicon Graphics Proprietary 1

Environment 0 MME User Guide

Compose mode also enables you to view and modify the predefined
sequences that are used in automatic and manual modes. You can
run these modified sequences or save them for later use. Normally,
you should use compose mode to examine or modify existing
sequences rather than create new ones because creating new
sequences requires a detailed understanding of the maintenance
channel functions.

Environment O uses a 256-Kword data buffer (64-bit words) in the MWS
or SWS that is called the MME buffer. This buffer collects data coming
from the mainframe through the maintenance channel and creates data
blocks that are sent to the mainframe through the maintenance channel.
The MME buffer also stores data that is used for comparisons of actual
and expected data.

This section describes how to start environment 0 and use automatic,
manual, and compose modes to test the mainframe.

Starting MME in Environment O

You can start MME in environment 0 from a UNIXcommand prompt or
from the OpenWindows Workspace menu.

NOTE: For information about starting MME environment O from a
Service Center through a hub, refer to Remote Support
document, publication number HMM-106-A.

CAUTION

MME performs maintenance channel functions that
will hang UNICOS if UNICOS is running in the
mainframe when you start MME.

To prevent this from accidentally occurring, ensure
that the Owner setting in the SCE base window is
setto OS for the logical partition in which UNICOS
is running when UNICOS is running in the
mainframe. MME cannot access a logical partition if
the OS owns it.

2 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

From a UNIX Prompt

To start MME environment 0 from a UNIX prompt, enter one of the
following commands:

* mme-0 to use a front-end interface (FEI) channel
e mme-0-sim to use the simulator
* mme -0 —debug to use the simulator and bugger/debugger

NOTE: You may also enter any of the command line options that Table 1
lists.

Table 1. Environment 0 Command Line Options

Option Description
—client Start the MME client only
—config file Configure MME with the configuration data that is

stored in the file specified by file

—copy num Connect to maintenance software that is assigned the
copy number specified by num

NOTE: Copy numbers are necessary only when you
run multiple copies of MME on the same MWS
or SWS (for example, when you run several
MME copies with the simulator or when you
use MME to support multiple CRAY T90
series mainframes that are connected to the
same MWS or SWS).

—io num Use the CPU specified by numto perform input and
output operations

—kill Kill any running MME, SCE, or LME applications
before starting a new copy of MME

—remote host Start the MME client only and connect the client to the
MME server that is running on the remote host
specified by host

—server Start the MME server only

HDM-102-B Cray Research/Silicon Graphics Proprietary 3

Environment 0 MME User Guide

From the OpenWindows Workspace Menu

You can start environment O from the OpenWindowegkspace menu on
either an MWS or an SWS.

MWS Workspace Menu Options

Figure 1 shows the OpenWindowsrkspace menu options that you
should choose on an MWS to start environment O with an FEI channel.
Choose any copy number.

o=l Workspace |

o=l Maintenance Tools
Programs D
(Maintenance Tools > DMS2 ...
Utilities bl XCFG ...
Properties...
Exit... Assert TSM configuration...
Reboot TSM chassis...
o—0 MME
BOUNDARY SCAN g
(MME > LME >
NWACS >l SCE >l o=30 MME env 0
SMARTE >|((MME env 0 Pl copyoO...
SSDE >l MMEenv 1 D Copy 1.
XELOG >l MME env 2 D Copy 2...
YIMS > Copy 3...
MME Simulator >

Figure 1. MWSworkspace Menu Options to Start Environment O with an FEI Channel

4 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

Figure 2 shows the OpenWindowsrkspace menu options that you
should choose on an MWS to start environment O with the simulator or
with the simulator and bugger/debugger.

=00 Workspace _|

o0 Maintenance Tools
Programs D>
(Maintenance Tools D] DMS2 ...
Utilities >| XCFG ...
Properties...
Exit... Assert TSM configuration...
Reboot TSM chassis...
BOUNDARY SCAN D>
MME D>
NWACS >
SMARTE >
SSDE >
XELOG >
YIMS D>
(MME Simulator o=I0 MME Simulator
LME...
SCE... o DU MME enVO
(MME env 0 Simulator...
MME env 1 Simulator with Debugger...
MME env 2 |

Figure 2. MWSworkspace Menu Options to Start Environment 0 with the Simulator or
with the Simulator and Bugger/Debugger

HDM-102-B Cray Research/Silicon Graphics Proprietary 5

Environment 0 MME User Guide

SWS Workspace Menu Options

Figure 3 shows the OpenWindowsrkspace menu options that you
should choose on an SWS to start environment 0 with an FEI channel.
Choose any copy number.

o=l Workspace |

o=l Maintenance Tools
Programs
(Maintenance Tools D| SIO TEST >
Utilities >|(T32 TEST o=l T32TEST
Properties...
Exit NWACS CBOUNDARY SCAN >
MME o=D0 MME
XCFG ...
MME Simulator | LME >
SCE Dl o0 MME env 0
XELOG >
(MME env 0 D Copy O...
MME env 1 g Copy 1...
MME env 2 g COpy 2.
Copy 3...

Figure 3. SWS3vorkspace Menu Options to Start Environment O with an FEI Channel

6 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

Figure 4 shows the OpenWindowsrkspace menu options that you
should choose on an SWS to start environment 0 with the simulator or
with the simulator and bugger/debugger.

o0 Workspace |
o=l Maintenance Tools

Programs
(Maintenance Tod SIO TEST >
Utilities (732 TEST | o0 T32TEST
Properties... BOUNDARY SCAN —=
Exit... NWACS MME o=B0 MME Simulator
LME...
XCFG .. (MME Simulator SCE... o=00 MMEenvO
XELOG > (MME env 0 Simulator...
MME env 1 Simulator with Debugger...
MME env 2 >3 |

Figure 4. SWS3Workspace Menu Options to Start Environment O with the Simulator or
with the Simulator and Bugger/Debugger

HDM-102-B Cray Research/Silicon Graphics Proprietary 7

Environment 0

MME User Guide

What Happens When You Start Environment 0?

The following actions occur when you start MME:

1.

The MME server attempts to connect with the System Configuration
Environment (SCE) server.

If MME cannot connect with a running SCE server, MME starts a
new SCE server and tries to connect to the new SCE server. (If you
specified a configuration file with theconfig command line

option, MME sends this file to SCE through the S&lefault

command line option. SCE loads the configuration that is stored in
the file.)

Once MME establishes a connection with SCE, MME attempts to
receive a configuration from SCE:

* If a configuration is available, SCE provides MME with the
components that are available for use by the maintenance
system. MME automatically configures itself to use these
components.

» If a configuration is not available, MME displays the message
shown in the following snap:

Infarmation from the configuration server indicatas
that a rmainframe configuration is not available,

Check the current configuration,

Olkay

If MME displays this message, then you need to create a
configuration using SCE before you continue using MME.
Refer to theSsCE User Guidepublication number HDM-069-C,
for more information about creating a configuration.

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Environment 0

Using Automatic Mode

HDM-102-B

When you click orTest Mode: [(waiic |, €nvironment O runs in automatic
mode. Automatic mode enables you to run all or any combination of the
environment O tests. Perform the following procedure to run tests in
automatic mode:

1. Click onTest Mode: to indicate that you want to run the
test(s) in automatic mode.

2. Click on the modules that you want to assign to the tests. The
selected tests are run on these modules.

For information about which modules can be tested by the tests, refer
to the “Environment O Tests” section of theME Diagnostic Tests
and Utilitiesdocument, publication number HDM-102-B.

Click on (Gelectanmodules) to select all valid modules in the current
configuration. Click onesslectaimodules) t0 deselect all modules that
are currently selected.

3. Click on one or more of the test settings:

[1.8 communizatian | [&-Exhanem |
[& onlinw ation i | | 7 wwuiiion durlas |
[2. mediery | [8. Continw ation gt |
[+ voEna conetion | [2.Ena ToEma |
[5. 1aiz onite | | 10, miscellangns |

Click on(selectaiTests) to select all of the tests. Click on
to deselect all tests.

4. Specify arkrror Mode:

Click onError Mode: to stop testing when a channel

error occurs. Click oBrror Mode: to stop testing
when a sequence error occurs.

Use this option to isolate an error when it occurs. After the error
occurs, click ortest Mode: [came_|; the failing function is
highlighted in thesequence scroll box in compose mode.

5. Click on.__<cs__»=); MME executes the specified tests.

6. View theMME Log window to see any errors that occur. If kmeE
Log window is not open, chooséew —> Log to open it.

Cray Research/Silicon Graphics Proprietary 9

Environment 0

10

MME User Guide

e MME Log R
Running DMA Path test - Pattern = ZEROS =
Write CPU = 0, Read CPU =0
Running DM& Path test - Pattern = ODDS
Write CPU = 0, Read CPU =0
Running DM& Path test - Pattern = EVENS
Write CPU = 0, Read CPU =0
Running DMA Path test - Pattern = WADDR
Write CPU = 0, Read CPU =10
Running DM& Path test - Pattern COMPLIMENT WADDR
Write CPU = 0, Read CPU =0
Running DMA& Path test - Pattern = RANDOM DATA
Write CPU = 0, Read CPU =0
Running DMA Block Length Test
Running DMa Chip test - Pattern = OMES
Write CPU = 0, Read CPU =0
Running DMa Chip test - Pattern = ZERQS
Write CPU = 0, Read CPU =0
Running DMA Chip test - Pattern = QDD BITS -
Write CPU = 0, Read CPU =0]

=1
Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

Using Manual Mode

When you click orTest Mode: [*aat], €nvironment O runs in manual mode.

Manual mode enables you to select which sequences of the predefined

tests will run. This enables you to isolate certain areas for testing. In

manual mode, you can run only one test at a time. The following

procedures describe how to run each environment 0 test in manual mode.
Running the Boundary Scan (BS) Communication T est

Perform the following procedure to run the BS communication test:

1. Click onTest Mode: to enter manual mode.

2. Click on theBs module(s) that you want to test.

3. Click onTests: to select the boundary scan test. The
MME Boundary Scan Test Parameters window appears:

& MME ES Communication Test Parameters

Sequence Select:

| Module Loopback | I Port Function Register I

| Port Loophack | | Diagnostic States |

| Medule Function Eche |

| Channel Function Eche |

| Paort Function Echo |

Patterns:
|OnesXZeros | | Paddr/Cpaddr | | User Defined |
|Odds/Evens | | Randaom |

User Defined Format:
| Byte | Parcel IHaIfword| Word |

nay Befined Patfors:

Loopback Length: 00001 g,

4. Click on the sequences that you want to run. The sequences perform
the following functions:

Sequence: Description:
This sequence loops back module data.

HDM-102-B Cray Research/Silicon Graphics Proprietary 11

Environment 0 MME User Guide

Sequence: Description:

This sequence loops back port data.

This sequence echoes the module function
word.

This sequence echoes the channel function
word.

This sequence echoes the port function word.

This sequence loads the port register and reads
the value back.

This sequence checks front-end interface (FEI)

errors, such as parity errors on the channel.

5. If you are running a loop-back sequence, an echo sequence, or a port
function register sequence, click on the patterns that you want to use

for testing:
Pattern: Description:
The sequence uses 000Q@Md 177774
parcel patterns.
The sequence uses 125g%2d 05252%
parcel patterns.
The sequence uses parcel address and
complement parcel address patterns.
The sequence uses random data parcel patterns.
The sequence uses user-specified parcel

patterns.

Specify the format (click onser Defined
Format: [Ew |, [pawl |, [rultead |, OF[wud |) In
the User Defined Pattern field, enter the pattern
that you want to use.

6. IntheLoopback Length field, enter the length of the data block that
you want to loop back if you are running a loop-back sequence.

12 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

7. Click onC_c__»); MME tests the selected sequences.

8. View theMME Log window to see any errors that occur. If kmeE
Log window is not open, chooséew —> Log to open it.

Running the Configuration (Basic) T est

Performthe following procedure to run the configuration (basic) test in
manual mode:

1. Click onTest Mode: to enter manual mode.
2. Click on thecPu module(s) that you want to test.

3. Click onTests: to select the basic configuration test.
The MME Configuration (Basic) Test Parameters window appears:

& MME Configuration (Basic) Test Parameters

Sequence Select:

Sections

Subsections/Banks

Groups

256K Mode

4. Click on the sequence that you want to test:

Sequence: Description:

This sequence checks all memory section
configuration settings.

HDM-102-B Cray Research/Silicon Graphics Proprietary 13

Environment 0

14

Sequence:

Subrgitians Fanks

28EF M-Ade

MME User Guide

Description:

This sequence checks all memory subsection
and bank configuration settings.

This sequence checks all memory group
configuration settings.

This sequence checks CPU memory addressing
when a CPU is configured in upper 256-Kword
addressing mode.

Click onC__&___»); MME runs the selected test sequence(s).

View theMME Log window to see any errors that occur. If énee
Log window is not open, choos&ew —> Log to open it.

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Running the Memory Test

Environment 0

Performthe following procedure to run the memory test in manual mode:

1. Click onTest Mode: to enter manual mode.

2. Click on thecPu module(s) that you want to test.

3. Click onTests: to select the memory test. Th&E
Memory Test Parameters window appears:

o] MME Memory Test Parameters
Sequence Select:
| Path I | Block Length | | Chip | | &ddress Bit
Patterns:

|Ones I |Odd Bits | IP.ddress I |Random I

|Zeros I |Even Bits | |~P.ddress I | User |

User Defined/Compare Mask Format:

| Byte | Parcel IHaIfword| word |

ser Defined P

Error Correction:

| Disabled | Enabled

Compare Mask: Write CPU:
177777 NTiT77 AFTiva A7FTig Read = write
Starting Address: 00000000000000 Selected o
Elock Length: 00000000020000 Random

Compare Stride: 00000000000001

Block Length Eits To Test: 0177777
Last Address Bit To Test: 2A 18 [a]¢] 512K words

4. Click on the sequence(s) that you want to use:

Sequence:

HDM-102-B

Description:

This sequence writes the MME buffer with the
selected pattern, writes the MME buffer data to
memory with error correction enabled, reads
the memory data back to the MME buffer, and
compares sent and received data.

Cray Research/Silicon Graphics Proprietary 15

Environment 0

16

Sequence:

Ebsk tandgih

Addrass Eil

MME User Guide

Description:

This sequence tests the block length of DMA
write and read function words.

This sequence writes the MME buffer with the
selected pattern, writes the MME buffer data to
memory with error correction disabled, reads
the memory data back to the MME buffer, and
compares the sent and received data.

In the Starting Address field, enter the starting
address of the data block. In tBieck Length
field, enter the length of the data block.

This sequence tests the address bits in a DMA
function word.

In theLast Address Bit To Test field, specify the
number of the last address bit that you want to
test. The memory size that you have selected
to test appears to the right of the field.

If you are using thgam | or [chw | sequences, you need to
specify the data pattern(s). Click on the pattern(s) that you want to

use:

0dd Eirs

U
=
®
3

Addrass

—fhddradi

Description:

The sequence uses a 177gpdrcel pattern.
The sequence uses a 0009pAarcel pattern.
The sequence uses a 1252parcel pattern.
The sequence uses a 0525@8rcel pattern.

The sequence uses an address parcel pattern.
(Memory locations are written with their
addresses.)

The sequence uses a complement address
parcel pattern. (Memory locations are written
with the complements of their addresses.)

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

Pattern: Description:

The sequence uses a random data parcel
pattern.

rar The sequence uses a user-defined parcel
pattern.

Click onUser Defined/Compare Mask Format:

[e], [raset], [rattwad], OF[wwd |Setting_ In
the User Defined Pattern field, enter the pattern
that you want to use.

6. IntheCompare Mask field, enter a mask to indicate the bit positions
that you want to compare4& do not compare bit position;
1, = compare bit position).

7. If you are using thEw____] sequence, specify the following items:

e Starting address: in tisarting Address field, enter the starting
address that you want to use.

* Block Length: in theslock Length field, enter the block length
that you want to use.

» Error correction mode: error correction is disabled by default.
If you want to enable error correction, click on

Error Correction: [_Enuiea .

Wirite CPU: specify the CPU that writes the data by clicking on
one of the following settings:

* Write CPU: to use the same CPU to read and write
the data,

e Write CPU: to specify which CPU writes the data
(choose the CPU from)), or

* Write CPU: to randomly choose the CPU that writes
the data.

8. Click onC__cs__=); MME tests the selected patterns.

9. View theMME Log window to see any errors that occur. If énee
Log window is not open, choostew —> Log to open it.

HDM-102-B Cray Research/Silicon Graphics Proprietary 17

Environment 0 MME User Guide

Running the Input and Output (I/O) Error Correction T est

Performthe following procedure to run the I/O error correction test in
manual mode:

1. Click onTest Mode: to enter manual mode.
2. Click on thecPu module(s) that you want to test.

3. Click onTests: to select the 1/O error correction test.
The MME Error Correction Test Parameters window appears:

& MME Error Correction Test Parameters

Sequence:
| wirite Buffer Correctable SECDED

| wirite Buffer Uncorrectable SECDED

| Read Buffer Check Bits SECDED

| SBCDBD Checkbyte Storage

| SECDED Correctable Errors

|
|
|
| SBCDBD Checkbyte Ceneration |
|
|
|

| SBECDBD Uncorrectable Errors

4. Click on the sequence(s) that you want to use:

Sequence: Description:

[Fulfar oo atable SEeED | This sequence writes data that forces a
correctable single-error correction/
double-error detection (SECDED) error
and verifies that the data error is corrected.

%8 Bulfar Gnco resralle SECLEL | This sequence writes data that forces an
uncorrectable SECDED error and verifies
that the data error is detected.

18 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

Sequence: Description:

[Herad Bultar Chech Bir: SECoED | This sequence writes different data
patterns and reads and verifies the check
bits.

SHCOED Ctachbyms Cannation | This sequence writes different data
patterns and reads and verifies the
checkbytes.

SHTOED © heck bt & 10n 7 | This sequence writes a series of

checkbytes, reads the checkbytes back, and
verifies the checkbyte storage mechanism.

TACOED Coreiabls Ereers This sequence writes data that forces a
correctable single-byte correction/
double-byte detection (SBCDBD) error
and verifies that the data error is corrected.

SELOED U eabh it | This sequence writes data that forces an
uncorrectable SBCDBD error and verifies
that the data error is detected.

5. Click onC__<cs__=); MME runs the selected sequences.
6. View theMME Log window to see any errors that occur. If knee
Log window is not open, choostew —> Log to open it.
Running the Logic Monitor Test

Performthe following procedure to run the logic monitor test in manual
mode:

1. Click onTest Mode: to enter manual mode.
2. Click on thecpu, 110, and/orsHR module(s) that you want to test.

3. Click onTests: to select the logic monitor test. The
MME Logic Monitor Parameters window appears.

HDM-102-B Cray Research/Silicon Graphics Proprietary 19

Environment 0

20

MME User Guide

)

MME Logic Monitor Test Parameters

Sequence:

| Chip Path (Testpoints) I

| Data Record

| Trigger

| Breakpoint

| Mizcellaneous

Click on the test sequence(s) that you want to run:

Sequence:

Chip Path (Tastpdntis

Description:

This sequence tests the capability of the logic
monitor(s) to read a known 0 and 1 value test
point on each chip, which verifies the chip
paths to the HM options.

This sequence tests the capability of the logic
monitor(s) to record preselected values and
compares the results with expected values.

This sequence tests the capability of the logic
monitor(s) to trigger on preselected values and
compares the results with expected values.

This sequence tests the capability of the logic
monitor(s) to perform breakpoint functions for
preselected values and compares the results
with expected values.

This sequence is not implemented.

Click on__&___»); MME runs the selected sequences.

View theMME Log window to see any errors that occur. If knee
Log window is not open, chooséew —> Log to open it.

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

Running the Exchange Test
Performthe following procedure to run the exchange test in manual mode:
1. Click onTest Mode: to enter manual mode.
2. Click on thecPu module(s) that you want to test.

3. Click onTests: to select the exchange test. MmeE
Exchange Test Parameters window appears:

& MME Exchange Test Parameters

Pattern Select:
| Feras | | Randam I

|Ones | | User |

User Defined Format:
| Byte | Parcel IHaIfword word

ner Defined Palters

i S S S

\\\\\\\\\\\\\\\\\\\\\\\\

NOTE: Compare mask is a multi-work mask,
use compose made if modification is necessary,

4. Click on the pattern(s) that you want to test:

Pattern: Description:

This sequence sendsg@ords of a 0's pattern
to the MME buffer, performs a DMA transfer
to memory, exchanges in to the CPU,
exchanges out to memory, performs a DMA
transfer from memory to the MME buffer, and
compares the sent and received data.

HDM-102-B Cray Research/Silicon Graphics Proprietary 21

Environment 0

Pattern:

Aandan

MME User Guide

Description:

This sequence sendsgA@ords of a 1's pattern
to the MME buffer, performs a DMA transfer
to memory, exchanges in to the CPU,
exchanges out to memory, performs a DMA
transfer from memory to the MME buffer, and
compares the sent and received data.

This sequence sendsgA@ords of a random
pattern to the MME buffer, performs a DMA
transfer to memory, exchanges in to the CPU,
exchanges out to memory, performs a DMA
transfer from memory to the MME buffer, and
compares the sent and received data.

This sequence sendsgMords of a
user-defined pattern to the MME buffer,
performs a DMA transfer to memory,
exchanges in to the CPU, exchanges out to
memory, performs a DMA transfer from
memory to the MME buffer, and compares the
sent and received data.

To specify the user-defined pattern format,
click on User Defined/Compare Mask Format:

[y |, [Faewt |, [ralfwad], OF[wad . IN theUser
Defined Pattern field, enter the pattern that you
want to test.

5. Click onC__c__»=); MME tests the selected patterns.

6. View theMME Log window to see any errors that occur. If énee
Log window is not open, choostew —> Log to open it.

22 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Running the Instruction Buffers T est

Environment 0

Perform the following procedure to run the instruction buffers test in
manual mode:

1.

2.

4. Click onMode: to test all instruction buffers, or click on

HDM-102-B

Click onTest Mode: to enter manual mode.

Click on thecPu module(s) that you want to test.

Click onTests: to select the instruction buffers test.

TheMME Instruction Buffer Test Parameters window appears:

™ MME Instruction Buffer Test Parameters

Mode:
| &l Buffers | Select Buffers I

Euffer Select:

[o] [0 2] [31 [+] 51 5] [2]

Pattern Select:
|Zeros I |Odd Bits | IP.ddress I |Random I

|Ones I |E\-'en Bits | |~P.ddress I | Usaer |

uUser Defined/Compare Mask Format:
| Byte | Parcel IHaIfword| word |

\\\\\\\\

#ser Defined Patte

Compare Mask:
Q00000 QROQQQ V17777777777,

Mode: to test specific instruction buffers.

To select specific instruction buffers to test, click onatiger Select
numbers that you want (any or all[®f, [, [z], Z].[5].[5] [£], and[F]).

You can toggle your selections with button.

Cray Research/Silicon Graphics Proprietary

23

Environment 0

MME User Guide

5. Click on the pattern(s) that you want to use:

Pattern:

Description:

This sequence writes the MME buffer with a
0’s pattern, writes the MME buffer contents to
memory, loads the instruction buffers from
memory, stores selected instruction buffers to
memory, reads the data back to the MME
buffer, and compares the expected and actual
data.

This sequence writes the MME buffer with a
1's pattern, writes the MME buffer contents to
memory, loads the instruction buffers from
memory, stores selected instruction buffers to
memory, reads the data back to the MME
buffer, and compares the expected and actual
data.

This sequence writes the MME buffer with an
odd bits pattern, writes the MME buffer
contents to memory, loads the instruction
buffers from memory, stores selected
instruction buffers to memory, reads the data
back to the MME buffer, and compares the
expected and actual data.

This sequence writes the MME buffer with an
even bits pattern, writes the MME buffer
contents to memory, loads the instruction
buffers from memory, stores selected
instruction buffers to memory, reads the data
back to the MME buffer, and compares the
expected and actual data.

This sequence writes the MME buffer with an
address pattern, writes the MME buffer
contents to memory, loads the instruction
buffers from memory, stores selected
instruction buffers to memory, reads the data
back to the MME buffer, and compares the
expected and actual data.

24 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Pattern:

Aandan

Environment 0

Description:

This sequence writes the MME buffer with a
complement address pattern, writes the MME
buffer contents to memory, loads the

instruction buffers from memory, stores
selected instruction buffers to memory, reads
the data back to the MME buffer, and compares
the expected and actual data.

This sequence writes the MME buffer with a
random pattern, writes the MME buffer
contents to memory, loads the instruction
buffers from memory, stores selected
instruction buffers to memory, reads the data
back to the MME buffer, and compares the
expected and actual data.

This sequence writes the MME buffer with a
user-defined pattern, writes the MME buffer
contents to memory, loads the instruction
buffers from memory, stores selected
instruction buffers to memory, reads the data
back to the MME buffer, and compares the
expected and actual data.

To specify the user-defined pattern format,
click on User Defined/Compare Mask Format:

[e, [pawl |, [raitwaa], OF[w=a_]. In theUser
Defined Pattern field, enter the pattern that you
want to use.

6. In theCompare Mask field, enter a mask to indicate the bit positions
that you want to compare{& do not compare bit position;
1, = compare bit position).

7. Click on.__cs__»); MME tests the selected patterns.

8. View theMME Log window to see any errors that occur. If kmeE
Log window is not open, chooséew —> Log to open it.

HDM-102-B Cray Research/Silicon Graphics Proprietary 25

Environment 0 MME User Guide

Running the Configuration (Advanced) T est

Performthe following procedure to run the configuration (advanced) test
in manual mode:

1. Click onTest Mode: to enter manual mode.

2. Click on thess, cPu, I/0, and/orsHR module(s) that you want to
test.

3. Click onTests: to select the advanced configuration
test. TheMME Configuration (Advanced) Test Parameters window
appears:

& MME Configuration {(Advanced) Test Parameters

Sequence Select:

4. Click on the sequence that you want to test:

Sequence: Description:
This sequence checks 1/0 group and shared

group configuration settings and interprocessor
interrupts within shared groups for each CPU.

5. Click onC_c__»=); MME runs the selected test sequence.

6. View theMME Log window to see any errors that occur. If kmeE
Log window is not open, choos&ew —> Log to open it.

26 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

Running the End-to-end Test
1. Click onTest Mode: to enter manual mode.
2. Click on thecpu module(s) that you want to test.

3. Click onTests: to select the end-to-end test. The
MME End to End Test Parameters window appears:

o] MME End To End Test Parameters

FEI Channel: @ [a]+

Input Channel: 0000
Output Channel: 0000

Patterns:
|Ones | |Odd Bits | |P.ddress | |Random |

|Zeros | |Even Bits | | ~fddress | | User |
User Defined/Compare Mask Format:
| Byte | Parcel I Halfword | word |

User Defined Pattern:

QOO0 GOO000 Q00000 GOOO00
Compare Mask:

QOOOO0 QOOO00 QOO0Q0 QOOO00

Length: Q0000 (LIMIT: 01000 Words)

The end-to-end test starts a small program in the CPU that you are
testing. When the program receives input from the input channel, it
returns the same data on the output channel. The end-to-end test
then reads the final data and compares it to the original data.

4. In theFEl Channel field, specify the logical FEI channel that you
want to use. This channel defaults to the FEI channel that SCE
assigned to the support channel.

5. In thelnput Channel field, specify the input channel that you want to
use.

6. In theOutput Channel field, specify the output channel that you want
to use.

HDM-102-B Cray Research/Silicon Graphics Proprietary 27

Environment 0 MME User Guide

7. Click on the data pattern that you want to use:

Pattern: Description:

The test uses a 177 7/@Farcel pattern.

The test uses a 000QPParcel pattern.

The test uses a 1252p@arcel pattern.

The test uses a 05252parcel pattern.

The test uses an address parcel pattern.

The test uses a complement address parcel
pattern.

The test uses a random data parcel pattern.

et The test uses a user-defined parcel pattern.

Click onUser Defined/Compare Mask Format:

[|, [Fauwl |, [mairend], OF[w=a_] Setting. In
the User Defined Pattern field, enter the pattern
that you want to use.

8. In theCompare Mask field, enter a mask to indicate the bit positions
that you want to compare{& do not compare bit position;
1, = compare bit position).

9. IntheLength field, specify the size of the data block that the test
should use.

10. Click on_c_»); MME runs the end-to-end test with the
specified parameters.

11. View theMME Log window to see any errors that occur. If kmeE
Log window is not open, choos&ew —> Log to open it.

28 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Environment 0

Running the Miscellaneous Test

Perform the following procedure to run the miscellaneous test in manual
mode:

1.

2.

HDM-102-B

Click onTest Mode: to enter manual mode.

Click on thecPu module(s) that you want to test.

Click onTests: to select the miscellaneous test. The
MME Miscellaneous Test Parameters window appears:

o] MME Miscellaneous Test Parameters

Sequence:

Sparechip

Click on the sequence that you want to test:

Sequence: Description:
This sequence tests the spare memory chips.

Click onC__G___»); MME tests the selected sequence.

View theMME Log window to see any errors that occur. If knee
Log window is not open, choos&ew —> Log to open it.

Cray Research/Silicon Graphics Proprietary 29

Environment 0 MME User Guide

Using Compose Mode

When you click orTest Mode: [camss_], €nvironment O runs in compose
mode. Compose mode enables you to create sequences of maintenance
channel functions to test specific areas of the mainframe. Using the
graphic interface in the compose mode base window, you can easily create
or modify a sequence of functions that MME converts into the commands
that are necessary to perform the functions.

This subsection describes modifying and creating sequences. Normally,
you should modify an existing sequence rather than create a new one.

Use theMME Compose Sequence Entry window to create sequences of the
following maintenance channel functions that run in the mainframe:

* Boundary scan loop controller functions
* Boundary scan module functions

* Boundary scan channel functions

e Boundary scan port functions

e Shared loop controller functions

e Shared logic monitor functions

* CPU loop controller functions

* CPU logic monitor functions

 CPU DMA functions

* Input/output loop controller functions

* Input/output logic monitor functions

* Input/output sanity generator functions

Use thevME Compose Sequence Entry window to create sequences of the
following functions and utilities that run in the MWS or SWS:

* Channel functions: close, disconnect, lock, masterclear, open, read,
reset, unlock, write, and write/read

* Comment functions: quiet and verbose

e Compare function

* Control functions: goto, label, and stop

* File operation functions: read, write, append, and delete

» Utilities: delay, mask, move, pattern, and squish

30 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

Modifying an Existing Sequence

The following example shows how to modify an existing sequence. This
example modifies the memory test sequence to test data starting at
mainframe address 40060

1. Run a sequence in automatic or manual mode and click on
C_Halt).

2. Click onTest Mode: to switch to compose mode. The
memory test sequence is shown in$kguence scroll box; refer to
Figure 5. Notice that the last running function is highlighted.

Mainframe Maintenance Environment (MME 0.0.32) — SIM [illusion]
(File vy (view w) (Properties v) (Utilities w)
Sequence:
L —
1l BS Module Reset M
BS Channel SMC enable |
CPU Loop Controller CPU MC On i
Functions and Utilities CPU Loop Controller CPU MC On
in the Memory Test << CPU Loop Controller CPU MC On ; B
Sequence CPU Loop Controller CPU MC On
CPU DM& Write
[CPU DM& Read } Last
L COMPARE - AOE Module =) Running
Function

Figure 5. Viewing the Original Sequence

3. Click on thecpu DMA write function that is displayed in the
Sequence scroll box. MME displays theIME Compose Sequence
Entry window for the function.

4. Change where the direct memory access (DMA) function starts
writing data by changing the value stored in Kaenory Address
field. For example, Figure 6 shows how to change the write address
from Og to 4000@.

HDM-102-B Cray Research/Silicon Graphics Proprietary 31

Environment 0 MME User Guide

) MME Compose Sequence Entry

Entry Type 7 (Apply) (Reset) ((Next) (Prev)
CPU DMA Function: 00 00 00 00 25 20 23 35 02 00 020000

CPUs:

oo | 10 |20 | 30 Function: @ 02 Write Commaon Memaory

o1 111 121 |31 Option: [¥) 00 Read/Write Use Default (CPU) Partiticn

02112 |22 | 32
03 |13 (23|33
04 |14 [24 | 34
05 |15 [25|35

Memory Address: 00000000000000 - The original DMA
Buffer Address: 00000000000 function writes data

starting at mainframe
EBlock Length (words): 00000020000
06 | 15 | 28 | 36 gth (): 00000020000 address Og
Q7 |17 | 27 | 37
User Defined
& MME Compose Sequence Entry
Entry Type + (apply) (Reset) (Mext) (Prev)
CPU DMA Function: 00 Q0 00 00 25 20 23 35 02 00 020000
CPUs:
00 |10 | 20 | 30 | Function: [g] 02 write Common Memory
o1 111 121 | 31 Option: [¥] 00 Read/write Use Default (CPU) Partition

0z |12 |22 | 22
o3 |13 |23 |33
o4 |14 | 24 | 24

Memory Address: Q0000000040000 <
Buffer Address: 00000000000

This modified DMA

00000000004, function writes data
05|15 |25 |35 i i
starting at mainframe
Elock Length {(words): Q0000020000
06 |16 |26 |36 gth (): 00000020000 address 40000g

OF |17 | 27 | 37

User Defined

Figure 6. Modifying Where the DMA Function Writes the Data

5. Click on(&eely) to send the function change to the sequence.

NOTE: If IS not present in thkkME Compose Sequence Entry
window, MME has been configured to enable the auto
apply function with theroperties —> Enable Auto Apply
command. Move the cursor to the MME base window,
and the function changes are automatically applied.

32 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

6. Click on thecPU DMA Read function that is displayed in the
Sequence scroll box. MME displays theIME Compose Sequence
Entry window for the function.

7. Change where the DMA function starts reading data by changing the
value stored in th®lemory Address field. For example, Figure 7
shows how to change the read address frgto @000@.

I MME Compose Sequence Entry
Entry Type = (apply) (Resst) ((Mext) (Prev)
CPU DMA Function: Q0 00 Q0 Q0 25 20 23 35 01 00 020000
CPUs:
o0 |10 |20 | 20 Function: @ 01 Read Common Memaory
o1 111 121 131 Option: [¥]) 00 Read/write Use Default (CPUY Partition
02 11222 |32
0313|2333 Memory Address: 00000000000000), - The original DMA function
04 114 |24 | 34 Buffer Address: 00000020000 reads data starting at
05 |15 |25 |2s mainframe address Og
o5 116 |26 | 36 Block Length {words): 00000020000
QF |17 | 27 | 37
User Defined
] MME Compose Sequence Entry
Entry Type ¥ {(Apply) (Reset) (Mext) (Prev)
CPU DMA Function: 00 00 00 00 25 20 23 35 01 00 020000
CPUs:
oo |10 | 20 | 20 Function: E] 01 Read Common Memaory
o1 111 121 |21 Option: (] 00 Read/write Use Default (CPUY Partition

02 |12 (22|32
03 |13 (23|33

Memory Address: 0000000040000, « This modified DMA
04 114 |24 |34 Buffer Address: 00000020000 function reads data
05 |15 [25 |25 starting at mainframe

o8 118 | 25 |35 Elock Length {words): 00000020000

07 |17 [27 | 37

User Defined

address 40000g

Figure 7. Modifying Where the DMA Function Reads the Data

HDM-102-B Cray Research/Silicon Graphics Proprietary 33

Environment 0

MME User Guide

8. Click on(zeely) to send the function change to the sequence.

NOTE: If IS not present in thkkME Compose Sequence Entry

window, MME has been configured to enable the auto
apply function with theroperties —> Enable Auto Apply
command. Move the cursor to the MME base window,
and the function changes are automatically applied.

9. Save or run the sequence:

To run the modified sequence, click@n_cs___»).

To save the sequence, choeie—> Save —> Sequence . You
should also save the data to use with the sequence; choose
File — Save —> Data .

When you want to reuse the sequence, load the sequence with
theFile —> Load —> Sequence command and load the data with
theFile —> Load —> Data command.

For more information, refer to the “File —> Save —> Sequence,”
“File —> Save —> Data,” “File —> Load —> Sequence,” and

“File —> Load—> Data” subsections of tHdME Interface
Referencepublication number HDM-008-A.

You can also change the functions in the current sequence. Figure 8
shows an example of how to change a selected function.

-
Ml Mol ki B IFasking it (HHE 141E) - STM M UkI] (M) l'ﬂ T S8 NPT e ARULa LaArY
| Fik 57 [iew 57 | Propntias 57 | Ulilitks 57 Agat) m Apply p| Asecy - 0 L
[)
senmences | Eniris Shared g I‘Iu-_un 0000 00 20 70 77 35 01 00 020000
=
i e [—— |)
(e B (] Leats Hemuibor Fungken wad C~mmon Hem ey
—_— C'HA Furehan Aeadwribe e Cefaglt #7PLD Farliben
w Channel ER
e - Crmmenl =
— compae P T T
L conrel Rl A s Q000020000
Ex
- Fikeiip ExE -
i Hodnls Rlock Length b=k gogogazonog
 Hodule &) ™ 6 —_—
= 117
Tasr Ml Evvie’ M [e Ll M. PaEids. 0
Autcanatic | [S1op CnChanml B] [Enable Soom mede] Erviws. 1
Ml [1op 7 srauereas Erees | | Eranie shep Mg | Y) |
Coanpiria

Tnalivg = 100 CPy Q0

_hal___)

Evevivaanmient EHWY = Ta4 = PO BEATEESES

34

Figure 8. Changing a Selected Function in the Sequence

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

HDM-102-B

Creating a New Sequence

Environment 0

Perform the following procedure to create a new sequence of maintenance

channel functions or utilities:

1.

In theMainframe Maintenance Environment base window, choose

Create —> Before , Create —> After , Create —> Top , Or Create —> Bottom
to specify where in theequence scroll box you want to create the
new entry. TheMME Compose Sequence Entry window appears:

) MME Compose Sequence Entry

o) Get)

vy prav

BS Module Function: 177700 000000 000000 000000

Module Function:
| 2452 Soft Master Clear |

Status Addrewy

| 2451 Reset Foba Adidress

Losn Saurre Address

|
| 250 Read Status |
| Laan Leanath fwords)
|

| 2449 Serial Mode Lopy Destination Addresy

| 2448 Internal Loop Sequence Number: 0
Diagnostic State:

| 2447 Cs Nibble PE Nibble 3 | | 2439 Cs Nibble PE Nibble 1|
| 2446 CS SeqERR when Cs Rdy | | 2437 CR SeqERR when CR Rsm |

[2443 CS Nibble PE Nibble 2 | | 2436 TM=TDO On Select Forts |

| 2442 SMC Data Prepend 34/35 | | 2435 CS Nibble PE Nibble 0|

| 2441 SMC Data Prepend 34/35 | | 2432 Toggle All CR Parity bits |

(alx

2. Choose a different entry type framiy 7vre 7) if you want a function
or utility other than the default. Refer to the descriptions of the
individual functions and utilities later in this subsection for more
information about the functions and utilities available.

3. Modify the information in th&ME Compose Sequence Entry window
to create the specific function or utility that you need.
4. Click on(zeriy) to place the entry in the sequencéreEr) to reset

the MME Compose Sequence Entry window.

NOTE:
window, MME has been configured to

If IS not present in thME Compose Sequence Entry

enable the auto

apply function with theroperties —> Enable Auto Apply
command. Move the cursor to the MME base window,
and the function changes are automatically applied.

Cray Research/Silicon Graphics Proprietary

35

Environment 0

MME User Guide

When there is more than one entry in saquence scroll box, use
the(rext) button to move forward one entry in the sequence and the
button to move backward one entry in the sequence.

5. Repeat Steps 1 through 4 to create more entries in the sequence.

6. Choose a module fromedue =) if you want to assign the sequence
to a specific module.

7. Clickon(__c___»). MME sends the commands to the mainframe

through the maintenance channel to perform the functions that you
have requested.

Boundary Scan Functions

The boundary scan functions are used to manipulate the boundary scan
module, channel, port, and loop controller components.

Boundary Scan Loop Controller Functions

36

The boundary scan loop controller functions enable you to send functions
to any of the chips on a boundary scan or I0O02 module. ClEpoge
Type —> BS —> Loop Controller Function ~ to access the boundary scan loop

controller functions. The followin§IME Compose Sequence Entry window
appears:

o] MME Compose Sequence Entry
Entry Type v (Applyy (Reset) ¢ Wani Vi fray)
BS Loop Controller Function: 00 00 Q0 00 Q0 00 00 30 77 1573 000
Route Code: (%] 30 (BS Module)
Loop Address: (%] 77 Broadcast
Chip Type: [¥) 33 23 Universal
Function Code: (%] 000 ?

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

HDM-102-B

Environment 0

Notice that the maintenance channel command data for the current
function is generated and displayed in B$eLoop Controller Function field.
This data is updated as you select different loop controller functions. To
modify the boundary scan loop controller function, perform the following
procedure:

1. FromRoute Code:[¥), choose the route code of the module to which
you want to send the loop controller functions (boundary scan
module or I002 module).

2. FromLoop Address: [], choose the loop address to which you want
the function to go. Currentlsil Loops is the only option, which
corresponds to a broadcast functiog.77

3. Specify the chip type(s) where you want the function to go. From
Chip Type: [¥], choose the chip type(s) to which you want the function
to go.

4. FromFunction Code: [7], choose the function that you want to run.

For more information about the function codes, refer to the
Boundary Scan Modul@S02)document, publication number
HTM-005-A, and theTriton Maintenance System Engineering Note
publication number PRN-0957.

5. Click on(aeely) to place the function in th&equence scroll box.
When execution reaches the boundary scan loop controller function in the

Sequence scroll box, the maintenance channel command data that was
displayed in the&s Loop Controller Function field is executed.

Cray Research/Silicon Graphics Proprietary 37

Environment 0 MME User Guide

Boundary Scan DMA Functions

Theboundary scan DMA functions enable you to perform direct memory
access (DMA) reads and writes. Choasty Type —> BS —> DMA t0

access the boundary scan DMA functions. The followingg Compose
Sequence Entry window appears:

9] MME Compose Sequence Entry

{Apply) (Reset) (Mext)¢ Frov 3

BS DMA Function: 00 00 00 00 00 00 00 33 00 0 000000

Function:

Loop Address: [¢] 00 ?

Gourne Adidress:

Bastination Addrevs: :
Block Length (Words): 00000000000

Notice that the maintenance channel command parcels for the current
function are generated and displayed inBR®MA Function field. These
parcels are updated as you select different module functions or diagnostic
states. To create an entry with boundary scan DMA functions, perform
the following procedure:

1. Click on the type of DMA function that you want to create
(Function: Of [Awad).

2. From the.oop Address: [¥], choose the loop address to which you
want the function to go.

3. If the function is a write function, enter the address of the source
data in thesource Address field. If the function is a read function,
enter the address that you want to read irbtsgnation address
field.

4. In theBlock Length (Words) field, enter the number of words that you
want to read or write.

38 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

Boundary Scan Module Functions

The boundary scan module functions enable you to access the
functionality of the module and to modify the diagnostic state of the
module. ChoosEntry Type —> BS —> Module Function to access the
boundary scan module functions. The followNigE Compose Sequence
Entry window appears:

NOTE: Always run a disconnect function before you run a boundary
scan module function.

) MME Compose Sequence Entry
Entry Type 7 (apply) (Reset) ¢ mant i Prav)

BS Module Function: 177700 000000 000000 000000

Module Function:
| 2452 Soft Master Clear | Status Address:

| 2451 Reset Foba Address:

Losp Saurre Addreys
Laap Lenoth fwards)

| 250 Read Status |
| 2449 Serial Mode | Lopy Destinatien Addrey

| 2448 Internal Loop

Diagnostic State:

| 2047 Cs Nibble PE Nibble 3 | [2433 Cs Nibble PE Nibble 1]
| 2446 CS SeqERR when Cs Rdy | | 2437 CR SeqERR when CR Rsm |
[2443 CS Nibble PE Nibble 2 | | 2436 TM=TDO On Select Forts |

| 2442 SMC Data Prepend 34/35 | | 2435 CS Nibble PE Nibble 0|

| 2441 SMC Data Prepend 34/35 | | 2432 Toggle All CR Parity bits |

Notice that the maintenance channel command parcels for the current
function are generated and displayed inBRe/odule Function field.

These parcels are updated as you select different module functions or
diagnostic states. To create an entry with boundary scan module
functions, perform the following procedure.

HDM-102-B Cray Research/Silicon Graphics Proprietary 39

Environment 0

MME User Guide

1. Click on the module functions that you want to use:

Module Function:

FRLFRE NN, FH TR

250 Akad Slatas

249 Sarial Mode

248 il Lo

40

Description:

This function performs a soft master clear,
which sends a disconnect signal through the
control channel to the VME support system to
force the control channel to a known state. The
soft master clear function also turns off the
sanity code generator, clears any entries in the
error logger, and disables the SMC by ignoring
SMC and error logger inputs.

This function performs a reset, which sends a
disconnect signal through the control channel
to the VME support system to force the control
channel to a known state.

This function returns 4 parcels of module status
and clears error status (for serial mode).
Specify the address to which the status is
returned in thestatus Address field.

This function causes the boundary scan module
to enter serial mode. If this setting is not
selected, passon mode is used.

This function loops source parcels back to the
return channel (for serial mode).

In theEcho Address field, enter the address to
which you want to echo the loop-back function
word.

In theLoop Source Address field, enter the
address of the data block in the MME buffer
that you want to loop back.

In theLoop Length (words) field, enter the length
of the data block that you want to loop back.

In the Loop Destination Address field, enter the
address in the MME buffer that will receive the
returned data.

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Environment 0

2. Click on the diagnostic states that you want to modify:

Diagnostic State:

[247 €3 mibbke PE mibble 3 |

246 T8 SAgEAR w b C5 Ady

2+43 C% Mibbk PE Hibkle =

242 SMC Dala Pégand 34735

241 SRC Oata Pepand 34736

239 C5 Mibbk PE Hilikle 1

2+37 CEEnERE when R Asm

236 TH=TOD On Saleor fovrs

2+38 C% Mibbk PE Hillile o

232 Toqak All CF Parity bils

Description:

This diagnostic state forces CS_NibblePE
for nibble 3.

This diagnostic state forces CS_SeqErr
when CS_Rady.

This diagnostic state forces CS_NibblePE
for nibble 2.

This diagnostic state forces the serial
maintenance channel (SMC) data prepend
to equal 34 or 35.

This diagnostic state forces the SMC data
prepend to equal 34r 36s.

This diagnostic state forces CS_NibblePE
for nibble 1.

This diagnostic state forces CS_SeqErr
when CS_Rsm.

This diagnostic state forces TM = TDO on
all selected ports.

This diagnostic state forces CS_NibblePE
for nibble 0.

This diagnostic state toggles all CR_parity
bits.

3. In theSequence Number field, specify the sequence number.

4. Click on(zeriy)y to place the function in th&equence scroll box.

HDM-102-B

Cray Research/Silicon Graphics Proprietary 41

Environment 0

Boundary Scan Channel Functions

ChooseEntry Type —> BS —> Channel Function

MME User Guide

to access the boundary scan

channel functions. The followingME Compose Sequence Entry window

appears:

)

MME Compose Sequence Entry

Entry Type ¥

(apply) (Reset) ¢ mant i Prav)

BS Channel Function: 154000 000000 000000 000000

Function:

| 2458 Function Echo

| [2#53:50 1001 Enable SMC |

| 245755 111 Module Status

| [2753:50 1110 Disable Burn Xmitters |

| 2457135 110 PF Reqister

| [2753:50 1111 Enable Burn Xmitters |

| 2457:55 101 Burn Lines

| | 249 Load Burn Mask |

[245755 100 Burn Mask

| [2048 Burn MaskBit |

| 245350 1000 Disable SMC

ol ddidreyyr
Status Addess

Hars Mask gis

Notice that the maintenance channel command parcels for the current
function are generated and displayed inBBehannel Function field.

These parcels are updated as you select different channel functions. To
create an entry with boundary scan channel functions, perform the

following procedure.

1. Click on the channel functions that you want to run:

Channel Function:

[2-58 FuncienEcne |

Description:

This function returns the 4 parcels of the
channel function command word to the
MME buffer. In theEcho Address field,
enter the address in the MME buffer that
you want to echo.

NOTE: You can use only one of the following four functions at a

time: [2-57:25 111 Meduk S1ans

|, [257:25 110 PF Regisear B

| 25755 101 Burn Livas

|, OF| 25755 1 Burn Mk |.

42

Cray Research/Silicon Graphics Proprietary

HDM-102-B

MME User Guide

HDM-102-B

Channel Function:

[25722 111 Meduk S1ais |

2~ET 35 110 PF Registar |

256755 1ol Burn Lils |

26755 Tus Burn M b |

Environment 0

Description:

This function returns 4 parcels of module
status to the MME buffer. In th®&atus
Address field, enter the address in the
MME buffer that will receive the data.

This function returns 4 parcels of the PF
register to the MME buffer. In th&atus
Address field, enter the address in the
MME buffer that will receive the data.

This function returns 4 parcels of
continuity line status to the MME buffer.
In the Status Address field, enter the
address in the MME buffer that will
receive the data.

This function returns 4 parcels of the burn
mask to the MME buffer. In th&atus
Address field, enter the address in the
MME buffer that will receive the data.

NOTE: You can use only one of thg-sszo e tisabk nc l,

[25350 11 Enabk S

|, [2*5350 1110 Disabk Bun Zmitias | and

[2+5a5w 1111 Enabk Bun titias | functions at a time. (When you

click on a setting, the previously selected setting

deselects.)

[25350 1unns Disabk SAC |

[25350 11 Enabk 21 |

[25350 1110 Disabk Bun swittas |

26350 1111 Enabki Eun xwitlas |

2448 Load Bun Mash |

2%d8 Ewn Mash Bt |

This function disables the SMC.
This function enables the SMC.

This function disables the continuity line
transmitters.

This function enables the continuity line
transmitters.

This function loads the bits specified in the
Burn Mask Bits field into the burn mask.

This function disables detection by the
WACS for this boundary scan module.

Click onzerly) to place the function in th&equence scroll box.

Cray Research/Silicon Graphics Proprietary 43

Environment 0 MME User Guide

Boundary Scan Port Functions

Chooseentry Type —> BS —> Port Function to access the boundary scan
port functions. The followin@IME Compose Sequence Entry window

appears:
) MME Compose Sequence Entry
Entry Type 7 (apply) (Reset) ¢ mant i Prav)
BS Port Function: 174000 Q00000 000000 Q00000
Function:
| 2458 Function Echo | | 2455 Request Dutput |

| 2456 Request TM Cy<le | | 2454 Request Input |

Eoba Addressr ©

Outnat Address:
Output Leaath {wordsy:
SGutpal Saivey

Papat Addre vy
fnput Leanath fword:

inpat Salery

Notice that the maintenance channel command parcels for the current
function are generated and displayed ingReort Function field. These
parcels are updated as you select different port functions. To create an
entry with boundary scan port functions, perform the following procedure:

1. Click on the channel functions that you want to run:

Channel Function: Description:

This function returns the 4 parcels of the
function command word to the MME buffer.

In theEcho Address field, enter the address of
the MME buffer data you want to use.

This function performs the test_mode cycle.

44 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

Channel Function: Description:

This function sends output to the specified
output ports. In theutput Address field, enter
the MME buffer address of the data that you
want to send as output. In tbetput Length
(words) field, enter the length of the output data
block. In theOutput Select field, enter a bit
mask to select to which of the 48 ports the
output is sent.

This function returns parcels from the specified
input ports or asserts a test mode and leaves it
active. In thenput Address field, enter the
MME buffer address that you want to receive
the data. In thewput Length (words) field, enter
the length of the input data block. In theut
Select field, enter a bit mask to select the input
ports from which the data is received.

2. Click on(zeelv) to place the function in th&equence scroll box.

Shared Functions

The shared functions enable you to perform shared maintenance and
configuration functions and shared logic monitor functions.

Shared Loop Controller Functions

Theshared loop controller functions are configuration and maintenance
functions that you can send to a shared module through a shared module
loop controller. Choosentry Type —> Shared —> Loop Controller Function

to access the 1/0O loop controller functions. The followiME Compose
Sequence Entry window appears.

HDM-102-B Cray Research/Silicon Graphics Proprietary 45

Environment 0

MME User Guide
fie) MME Compose Sequence Entry
Entry Type 7 (apply) (Reset) ¢ mant i Prav)
Shared Loop Controller Func: 00 Q0 00 Q0 00 Q0 20 20 77 1573 000,
Shareds:
m Loop Address: 77 Broadeast
Chip Type: 33 33 Universal

Function Code: 000 Auto BCD On

Testpoints can be selected by using
functions codes 0200 thru 0377,

User Defined

Notice that the maintenance channel command data for the current
function is generated and displayed in $ihared Loop Controller Function

field. This data is updated as you select different functions. To create an
entry with 1/O loop controller functions, perform the following procedure:

1. Click on the shared module that you want to use.

NOTE: Based on the current configuration data and the shared
module that you select, MME automatically generates a
route code for the function. If you want to force the route
code to a specific value, you must click[@Rao«wea | and

change the route code information in #tared Loop
Controller Func field.

2. FromLoop Address: [¥], choose the loop address to which you want
the function to go.

3. Fromchip Type: [5], choose the chip type(s) to which you want the
function to go.

4. FromFunction Code: [5], choose a configuration or maintenance
function.

Refer to theMaintenance Channelocument, publication number
HTM-006-B; and thelriton Maintenance System Engineering Note

publication number PRN-0957; for more information about the
function codes.

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

5. Click on(zeely) to place the function in th&equence scroll box.

Shared Logic Monitor Functions

The shared logic monitor functions enable you to control the activity of
the logic monitors on the shared modules. Ch&oase Type —> Shared

—> Logic Monitor Function to access the shared logic monitor functions.
The followingMME Compose Sequence Entry window appears:

& MME Compose Sequence Entry

{(Apply) (Reset) ¢ msii 3 Prav)
Shared Logic Monitor Function: 00 00 00 00 00 00 00 00 00 Q000000
Shareds:

m Command: 00 Continue Mode

Dpday Afay Trigaam

G Ward Trigass:

Reoprd Masle: [¥
Source Address: 00000000000
Source Length: 00000000000

feadnut dddrasar

Reatdout Lengtin

User Defined Readaut Artian O

Note: Route code Roadeut Label
for the selected Shared
is nat known,

Notice that the maintenance channel command data for the current
function is generated and displayed in $ihared Logic Monitor Function

field. This data is updated as you select different functions. To create an
entry with shared logic monitor functions, perform the following
procedure:

1. Click on the shared module that you want to use.

NOTE: Based on the current configuration data and the shared
module that you select, MME automatically generates a
route code for the function. If you want to force the route
code to a specific value, you must click[GRawwea | and
change the route code information in 8tared Logic
Monitor Function field.

2. FromcCommand: 5], choose a shared logic monitor function.

HDM-102-B Cray Research/Silicon Graphics Proprietary 47

Environment 0

48

MME User Guide

Refer to theMaintenance Channelocument, publication number
HTM-006-B; and thelriton Maintenance System Engineering Note
publication number PRN-0957; for more information about these
commands.

3. Update any fields that activate. Table 2 describes the fields.

Table 2. Shared Logic Monitor Command Fields

Field Description
Delay After Trigger Number of clock periods the logic monitor continues
recording after a trigger condition occurs
One Word/Trigger Record 1 word per trigger condition option (enabled or
disabled)
Record Mode Type of recording the logic monitor should do (number

of clock periods to record and number of test points to
record per clock period)

Source Address MME buffer address of data to write to the logic
monitor

Source Length Length of data block to write to the logic monitor

Readout Address MME buffer address to receive data from a logic
monitor readout buffer command

Readout Length Length of data block for data received from logic
monitor readout buffer command

Readout Action Action to perform based on results of data from logic
monitor readout buffer command

Readout Label Label to jump to if the readout action is a goto label
command

4. Click on(zeriy)y to place the function in th&equence scroll box.

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

CPU Functions

The CPU functions enable you to perform maintenance and configuration
functions, diagnostic monitor functions, and DMA functions.

CPU Loop Controller Functions

The CPU loop controller functions are configuration or maintenance
functions that you can send through the CPU module loop controllers to
any chip or loop of chips on the CPU modules. Ch&osg Type —> CPU

—> Loop Controller Function to access the CPU loop controller functions.
The followingMME Compose Sequence Entry window appears.

fie) MME Compose Sequence Entry
Entry Type ¥ (Apply) (Reset’) ¢ ment i frev)

CPU Loop Controller Function: 00 00 00 00 20 20 22 30 77 1573 000

CPUs:

oo | 10 |20 |30 | Loop Address: (7] 77 Broadcast

o1 |11 {21 |21 chip Type: [¥] 33 33 Universal
Function Code: E] Q00 Set 4 Sections

02112 |22 | 32

03 |13 |23 |33 Testpoints can be selected by using
04 | 14 | 24 | 29 functions codes 0200 thru 0377,

05 |15 [25|35
OB | 16 | 26 | 36
07 |17 | 27 | 37

User Defined

Notice that the maintenance channel command data for the current
function is generated and displayed in @& Loop Controller Function

field. This data is updated as you select different functions. To create an
entry with CPU loop controller functions, perform the following
procedure:

1. Click on the CPU that you want to use.

NOTE: Based on the current configuration data and the CPU that
you select, MME automatically generates a route code for
the function. If you want to force the route code to a
specific value, you must click and change the
route code information in th&PU Loop Controller Function
field.

HDM-102-B Cray Research/Silicon Graphics Proprietary 49

Environment 0 MME User Guide

2. FromLoop Address: [7], choose the loop address to which you want
the function to go.

3. Fromchip Type: [5], choose the chip type(s) to which you want the
function to go.

4. FromFunction Code: [¥], choose a configuration or maintenance
function.

Refer to theMaintenance Channelocument, publication number
HTM-006-B; and thelriton Maintenance System Engineering Note
publication number PRN-0957; for more information about the
function codes.

5. Click on(arely) to place the function in th&equence scroll box.

CPU Logic Monitor Functions

The CPU logic monitor functions enable you to control the activity of the
logic monitors on the CPUs. Chodaery Type —> CPU —> Logic Monitor
Function to access the CPU logic monitor functions. The following
Compose Sequence Entry window appears:

o] MME Compose Sequence Entry
Entry Type ¥ (Applyy (Reset) ¢ wani Y frav)

CPU Logic Monitor Function: 00 00 00 00 20 20 22 34 00 0000000

CPUs:
oo |10 [20 [30 | Command: 00 Continue Mode
o1 (11 21|31 Brefay After Triggern

02 (12|22 |32
03 (13| 23 | 33
o4 (14 | 24 | 34

G Ward Tringss

Ravned Mader 5

05 |15 |25 | 35 St Hraak Palnt [F] Pargel Dabs
0B |16 | 26 | 3B Source Address: Q0000000000
OF |17 | 27 | 37 Source Length: 00000000000

gpasdowt sddrass

User Defined geadeut Leagtin

Readeut Avtlon: [

Readaut Labeh

Notice that the maintenance channel command data for the current
function is generated and displayed in ¢ Logic Monitor Function field.

This data is updated as you select different functions. To create an entry
with CPU logic monitor functions, perform the following procedure.

50 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

HDM-102-B

Environment 0

1. Click on the CPU that you want to use.

NOTE: Based on the current configuration data and the CPU that
you select, MME automatically generates a route code for
the function. If you want to force the route code to a
specific value, you must click and change the
route code information in thePU Logic Monitor Function
field.

2. FromCommand: 5], choose a CPU logic monitor function.

Refer to theMaintenance Channelocument, publication number
HTM-006-B; and thelriton Maintenance System Engineering Note
publication number PRN-0957; for more information about these
commands.

3. Update any fields that activate. Table 3 describes the fields.

Table 3. CPU Logic Monitor Command Fields

Field Description
Delay After Trigger Number of clock periods the logic monitor continues
recording after a trigger condition occurs
One Word/Trigger Record 1 word per trigger condition option (enabled or
disabled)
Record Mode Type of recording the logic monitor should do (number

of clock periods to record and number of test points to
record per clock period)

Set Break Point Breakpoint used to stop CPU execution

Source Address MME buffer address of data to write to the logic
monitor

Source Length Length of data block to write to the logic monitor

Readout Address MME buffer address to receive data from a logic
monitor readout buffer command

Readout Length Length of data block for data received from logic
monitor readout buffer command

Readout Action Action to perform based on results of data from logic
monitor readout buffer command

Readout Label Label to jump to if the readout action is a goto label
command

4. Click on(zeriy)y to place the function in th&equence scroll box.

Cray Research/Silicon Graphics Proprietary 51

Environment 0

CPU DMA Functions

52

MME User Guide

The CPU DMA functions enable you to control the direct memory access
(DMA) activity that can be performed. Choaaery Type —> CPU —> DMA
Function to access the CPU DMA functions. The followmgiE

Compose Sequence Entry window appears:

)

MME Compose Sequence Entry

Entry Type w

{Apply) (Reset) ¢ msii 3 frov 3

CPUs:

CPU DMA Function: 00 00 00 00 00 00 20 35 01 00 000001

00

10

20

30

01

11

21

21

0z

12

22

3z

03

13

23

33

04

14

29

24

05

15

25

35

0B

16

2B

2B

o7

17

27

37

User Defined

Function: 01 Read Commaon Memaory
Option: 00 Read/write Use Default (CPU) Partition

Memory Address: Q0000000000000
Euffer Address: 00000000000

Block Length (words): 00000000001

Notice that the maintenance channel command data for the current
function is generated and displayed in & DMA Function field. This
data is updated as you select different functions. Perform the following
procedure to create an entry with CPU DMA functions:

1. Click on the CPU that you want to use.

NOTE: Based on the current configuration data and the CPU that
you select, MME automatically generates a route code for
the function. If you want to force the route code to a
specific value, you must click and change the
route code information in thePu DMA Function field.

2. FromFunction: [¥), choose a DMA function.

Refer to theMaintenance Channelocument, publication number
HTM-006-B; and thelriton Maintenance System Engineering Note
number PRN-0957; for more information about the DMA functions.

3. Fromoption: 7], choose an option.

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

I/0O Functions

Environment 0

Refer to theMaintenance Channelocument, publication number
HTM-006-B; and thelriton Maintenance System Engineering Note
publication number PRN-0957; for more information about the
available options.

4. In theMemory Address field, enter the starting address of the data
block in mainframe memory that you want to manipulate.

5. In theBuffer Address field, enter the starting address of the data block
in the MME buffer that you want to manipulate.

6. In theBlock Length (words) field, enter the size of the data block (in
words) that you want manipulate.

7. Click on(aeely) to place the function in th&equence scroll box.

The 1/O functions enable you to perform I/O maintenance and
configuration functions and 1/0O logic monitor functions.

I/O Loop Controller Functions

HDM-102-B

Thel/O loop controller functions are configuration and maintenance
functions that you can send to an 10 module through an IO module loop
controller. Choose€ntry Type —> /0 —> Loop Controller Function t0 access
the I/O loop controller functions. The followingME Compose Sequence

Entry window appears:

Cray Research/Silicon Graphics Proprietary 53

Environment 0

54

MME User Guide
1o} MME Compose Sequence Entry
Entry Type v (Apply) CReset) (Mext)¢ #rav

170 Loop Controller Function: Q0 Q0 Q0 Q0 Q0 Q0 Q0 30 77 1573 Q00
170:
m Loop Address: 77 Broadcast
I/0 1 Chip Type: 33 33 Universal
10 2 Chip Type: 33 33 Universal
170 1 Function Code: 000 ?

170 2 Function Code: 000 ?

Testpoints can be selected by using
functions codes 0200 thru 0377,

User Defined

Notice that the maintenance channel command data for the current
function is generated and displayed in itkheLoop Controller Function field.

This data is updated as you select different functions. To create an entry
with 1/0 loop controller functions, perform the following procedure:

1.

Click on the 10 module that you want to use.

NOTE: Based on the current configuration data and the IO module
that you select, MME automatically generates a route code
for the function. If you want to force the route code to a
specific value, you must click and change the
route code information in th&d Loop Controller Function
field.

FromLoop Address: 7], choose the loop address to which you want
the function to go.

If the 10 module that you want to use is an |I001 module: from
I/0 1 Chip Type: 5], choose the chip type(s) to which you want the
function to go.

If the 10 module that you want to use is an 1002 module: from
I/0 2 Chip Type: [7], choose the chip type(s) to which you want the
function to go.

If the 10 module that you want to use is an |001 module: from

I/0 1 Function Code: [¥], choose a configuration or maintenance
function.

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

Refer to theMaintenance Channelocument, publication number
HTM-006-B; and thelriton Maintenance System Engineering Note
publication number PRN-0957; for more information about the 1001
module functions.

6. If the IO module that you want to use is an 1002 module: from
I/0 2 Function Code: 5], choose a configuration or maintenance
function.

7. Click on(arely) to place the function in th&equence scroll box.

HDM-102-B Cray Research/Silicon Graphics Proprietary 55

Environment 0 MME User Guide

I/0 Logic Monitor Functions

Thel/O logic monitor functions enable you to control the activity of the
logic monitors on the IO modules. Cho@sery Type —> 1/0 —> Logic

Monitor Function to access the I/O logic monitor functions. The following
MME Compose Sequence Entry window appears:

& MME Compose Sequence Entry
Entry Type = {Apply) (Reset) ¢ msii 3 frov 3
170 Logic Monitor Function: 00 00 00 00 00 00 00 00 00 0000000
170
m Command: 00 Continue Mode
Delay After Trigger
Gue Ward/ Trigeen
Hooned Mader V] 2580
Source Address: Q0000000000
Source Length: 00000000000
gendoul sddrassy
geadout Lenatin
User Defined
Readaot Artlanr 1T
Nute: ROUtE COdE x{ﬁ&{é{?%%‘% g{{?}?‘;:
for the selected 1/0
is not known,

Notice that the maintenance channel command data for the current
function is generated and displayed in tttbeLogic Monitor Function field.
This data is updated as you select different functions. Perform the
following procedure to create an entry with I/O logic monitor functions:

1. Click on the 10 module that you want to use.

NOTE: Based on the current configuration data and the IO module
that you select, MME automatically generates a route code
for the function. If you want to force the route code to a
specific value, you must click and change the
route code information in the Logic Monitor Function
field.

2. FromCommand: [5], choose an I/O logic monitor function.

Refer to theMaintenance Channelocument, publication number
HTM-006-B; and thelriton Maintenance System Engineering Note
publication number PRN-0957; for more information about these
commands.

56 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

3. Update any fields that activate. Table 4 describes the fields.

Table 4. 1/0 Logic Monitor Command Fields

Field Description
Delay After Trigger Number of clock periods the logic monitor continues
recording after a trigger condition occurs
One Word/Trigger Record 1 word per trigger condition option (enabled or
disabled)
Record Mode Type of recording the logic monitor should do (number

of clock periods to record and number of test points to
record per clock period)

Source Address MME buffer address of data to write to the logic
monitor

Source Length Length of data block to write to the logic monitor

Readout Address MME buffer address to receive data from a logic
monitor readout buffer command

Readout Length Length of data block for data received from logic
monitor readout buffer command

Readout Action Action to perform based on results of data from logic
monitor readout buffer command

Readout Label Label to jump to if the readout action is a goto label
command

4. Click on(zeriy)y to place the function in th&equence scroll box.

HDM-102-B Cray Research/Silicon Graphics Proprietary 57

Environment 0 MME User Guide

I/0 Sanity Generator Functions

The I/O sanity generator functions enable you to start and stop the sanity
generator. Choosntry Type —> I/0O —> Sanity Generator to access the 1/O
sanity generator functions. The followiNE Compose Sequence Entry
window appears:

& MME Compose Sequence Entry
Entry Type = {Apply) (Reset) ¢ msii 3 frov 3

Sanity Function: 00 00 00 00 00 00 00 36 464646486,

Function: | Sanity On | Sanity Off | Other |

Sanity On
The sanity On function starts the sanity generator. Perform the following
procedure to createSanity On function:
1. Click onFunction: [Zai ou].
2. Click on(zery) to place the function in th&equence scroll box.
Sanity Off

The sanity Off function stops the sanity generator. Perform the following
procedure to createSanity Off function:

1. Click onFunction: [Eamiron].
2. Click on(zeriy)y to place the function in th&equence scroll box.

58 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

Other

Currently, this function is not implemented.

Channel Functions

The channel functions enable you to control a front-end interface channel.
Chooseentry Type — Channel to access the channel functions. The
following MME Compose Sequence Entry window appears:

o] MME Compose Sequence Entry
Entry Type ¥ (Apply) (Reset) ¢ mzii ji Frav)
Channel.
Operation: | Open Masterclear | Disconnect | Close
Reset Lock Unlock write
Read write/Read

Mode: [F] BSIM

Channeh 91 3
Hostname:

Port: O]t

Saures Addrewy
Sauree Longth
Dasntinatien Addres

pustination Lenuth:

Open

The open channel function opens an FEI channel. Perform the following
procedure to create an open channel function:

1. Click onOperation: to select the open channel function.

2. Clickchannel: [5], [, &, 3], (1. 51, 1, G [+, =1, 0, O, =],
[#], [=], or[i5] to specify the channel that you want to open.

3. FromMode: [g], choose the channel mode that you want to use.
Refer to Table 5 for descriptions of the options.

HDM-102-B Cray Research/Silicon Graphics Proprietary 59

Environment 0

MME User Guide

Table 5. Channel Mode Options

Option Description
BSIM Used for Boolean simulation mode
ISIM Used for instruction simulation mode

Sun4 Boundary Scan (fymt_bs)

Used for boundary scan mode functions with a device driver for
a boundary scan module in the IO module slot (tester only)

Sun4 Maintenance (fymt_mc)

Used for maintenance channel functions other than boundary
scan mode functions with a device driver for a boundary scan
module in the 10 module slot (tester only)

Sun5 Maintenance (fymtm_bs)

Used for boundary scan mode functions with a device driver for
a boundary scan module in the normal operating location

Sun5 Maintenance (fymtm_mc)

Used for maintenance channel functions other than boundary
scan mode functions with a device driver for a boundary scan
module in the normal operating location

SPV BS/Maintenance (SIM)

This option is no longer valid and will be removed from future
versions of MME. Do not use this option.

SPV BS/Maintenance

Used with the boundary scan/maintenance channel
subchannel of the supervisory channel

SPV Loopback

Used with the loopback subchannel of the supervisory channel

Data Channel (fymc)

Used for the special driver needed to run the end-to-end test
on a LOSP channel

4. Click on(zeey) to place the function in th&equence scroll box.

Masterclear

The masterclear channel function master clears the FEI channel. Perform

the following procedure to create a masterclear function:

1. Click onOperation: to select the masterclear function.
2. Click on(zeriy)y to place the function in th&equence scroll box.

60 Cray Research/Silicon Graphics Proprietary

HDM-102-B

MME User Guide

Disconnect

Close

Reset

Lock

Unlock

HDM-102-B

Environment 0

The disconnect channel function disconnects the FEI channel. Perform
the following procedure to create a disconnect channel function:

1. Click onOperation: to select the disconnect function.
2. Click on(zeriy)y to place the function in th&equence scroll box.

The close channel function closes the open FEI channel. Perform the
following procedure to create a close channel function:

1. Click onOperation: to select the close function.
2. Click on(zrsiy)y to place the function in th&equence scroll box.

The reset channel function resets the FEI channel. Perform the following
procedure to create a reset channel function:

1. Click onOperation: to select the reset function.
2. Click on(zeriy) to place the function in th&equence scroll box.

The lock channel function locks the FEI channel. Perform the following
procedure to create a lock channel function:

1. Click onOperation: to select the lock function.
2. Click on(zeriy)y to place the function in th&equence scroll box.

The unlock channel function unlocks the FEI channel. Perform the
following procedure to create an unlock channel function:

1. Click onOperation: to select the unlock function.
2. Click on(zrsiy)y to place the function in th&equence scroll box.

Cray Research/Silicon Graphics Proprietary 61

Environment 0

Write

Read

62

MME User Guide

NOTE: You must open a channel with the open command before you

initiate a write command. If you do not open a channel, MME
displaysCan’t do raw write on current channel in theMME Log

window. This message indicates that you tried to write data to
the maintenance channel.

The write channel function writes data to the FEI channel; MME gets the
data from the MME buffer. Perform the following procedure to create a
write channel function:

1.

2.

Click onOperation: to select the write function.

In theSource Address field, enter the starting address of the block of
data (in the MME buffer) that you want to write to the FEI channel.

In theSource Length field, enter the length of the block of data that
you want to write to the channel.

Click onaenly) to place the function in th&equence scroll box.

NOTE: You must open a channel with the open command before you

initiate a read command. If you do not open a channel, MME
displaysCan't do raw read on current channel in theMME Log

window. This message indicates that you tried to read data from
the maintenance channel.

The read channel function reads data from the FEI channel; MME puts the
data into the MME buffer. Perform the following procedure to create a
read channel function:

1.

2.

Click onOperation: to select the read function.

In theDestination Address field, enter the first address in the MME
buffer that should receive the data that is read from the FEI channel.

In theDestination Length field, enter the length of the block of data
that you want to read from the channel.

Click on(aerly) to place the function in th&equence scroll box.

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Write/Read

HDM-102-B

Environment 0

NOTE: You must open a channel with the open command before you

initiate a write or read command. If you do not open a channel,
MME displaysCan’t do raw write on current channel in theMME

Log window. This message indicates that you tried to write data
to the maintenance channel. (The message is for the write
function because the write function executes first.)

The write/read channel function writes data to the FEI channel and then
reads data from the FEI channel. MME gets the data to be written from
the MME buffer, and MME puts the data that is read from the channel into
the MME buffer Perform the following procedure to create a write/read
channel function:

1.

2.

o

Click onOperation: to select the write/read function.

In theSource Address field, enter the starting address of the block of
data (in the MME buffer) that you want to write to the FEI channel.

In theSource Length field, enter the length of the block of data that
you want to write to the channel.

In theDestination Address field, enter the first address in the MME
buffer that should receive the data that is read from the FEI channel.

In theDestination Length field, enter the length of the block of data
that you want to read from the channel.

Click on(zenly) to place the function in th&quence scroll box.

Cray Research/Silicon Graphics Proprietary 63

Environment 0

Comments

Quiet

Verbose

64

MME User Guide

You can enter comments into a sequence to document what the sequence
does. There are two types of comments: quiet and verbose. Choose
Entry Type —> Comment t0 access the comment functions. The following
MME Compose Sequence Entry window appears:

o MME Compose Sequence Entry
{Apply) (Reset) [Mext)¢ Frov

Comment:

String:

Quiet comments are not displayed in kN@E Log window as the sequence
executes. Perform the following procedure to create a quiet comment:

1. Click onMode: to select a quiet comment.
2. Inthestring field, type the comment and press the Return key.
3. Click onaerly) to place the comment in tisequence scroll box.

Verbose comments are displayed in MéE Log window as the sequence
executes. Perform the following procedure to create a verbose comment:

1. Click onMode: to select a verbose comment.
2. Inthestring field, type the comment and press the Return key.
3. Click on(zerly) to place the comment in tisequence scroll box.

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

Compare Function

The compare function compares data in the MME buffer. This function is
used to compare actual values with expected values. Choose

Entry Type —> Compare t0 access the compare function. The following
MME Compose Sequence Entry window appears:

el MME Compose Sequence Entry
Entry Type ¥ {(Apply) (Reset) ¢ seni 3o frav
Compare:

Expected Address: 00000000004

Actual Address: 00000000001
Difference Address: Q0000000002

Length {words): 00000000001
Stride (words): 00000000007

Mask Type: | Single word I Multi wWord |

Mask Format: | Byte I Parcel I Halfword | Word |
Mask Value: 177777 177777 177777 177777
stask Addresy: &

Action: [¥] AOE on Miscompare Labak

Perform the following procedure to create a compare function:

1. In theExpected Address field, enter the MME buffer address that
contains the expected data and press the Return key.

2. IntheActual Address field, enter the MME buffer address that
contains the actual data and press the Return key.

3. In thebDifference Address field, enter the MME buffer address where
you want to store the difference between the expected and actual
values and press the Return key.

4. In theLength (words) field, enter the length of the data block (in
words) that you want to compare and press the Return key.

5. In thestride (words) field, enter the stride that you want to use and
press the Return key. The stride specifies which words you want to
compare. For example, a stride of 1 compares every word, and a
stride of 2 compares every other word.

HDM-102-B Cray Research/Silicon Graphics Proprietary 65

Environment 0

66

MME User Guide

6. Click on the mask type that you want to use. The mask indicates

which bits are compared. Click &fask Type: to use the
1-word mask that is specified in thask Vvalue field (the format of
this word is specified by theask Format settings). Click omask
Type: to use a multiple-word mask that is located at the
memory location specified in theask Address field.

Specify the action that MME should perform based on the results of
the comparison:

¢ Chooseaction: [F] AOE on Miscompare to have MME stop
sequence execution when the function detects a difference
between the actual and expected data.

» ChooseAction: [F) Branch on Miscompare to have MME jump
to a label in the sequence (specify the label in_thel field)
when the function detects a difference between the actual and
expected data.

* ChooseAction: () AOE on Compare to have MME stop
seguence execution when the actual data matches the expected
data.

* Choosexaction: [F] Branch on Compare to have MME jump to a
label in the sequence (specify the label inLtie field) when
the actual data matches the expected data.

Click onReport: or [z to specify that you want a report
when a difference is detected. To view the report, chvese->
Report. For example, the following report might be generated.

)

MME Report Display

View: | Differences Only [Clear Report)

offset Expected (+000000) Actual (+000050) Difference (+000100)
00000000000 A77@77 197777 AP9797 177777 000000 000000 000000 000000 AF?7P? AFPPes A7eeey 177777

00000000004 V77777 VF7F77 NFVEEY ON7VEEY 000000 000000 000000 000000 AFVFEE 177TEE AVIVEY AVEVIY
00000000010 77777 AZ7777 A77777 A77777 000000 000000 000000 000000 A77777 177777 A7?777 A7¢777
00000000014 177777 177777 177777 177777 000000 000000 000000 000000 177777 177777 177777 177777

9. Click on(zeely) to place the function in th&equence scroll box.

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

Control Functions

The control functions are used to direct the flow of function execution
within a sequence. These functions change the program flow from the
normal top-to-bottom execution within the scroll box. This enables
conditional execution of functions in a sequence. ChaoggType —>
Control to access the control functions. The followMgE Compose
Sequence Entry window appears:

) MME Compose Sequence Entry

(Apply) (Resst) ¢ mest 3 (Prev)
Control:

Operation:

Name:

Goto

The goto function transfers sequence execution to the command that
follows the label specified in the goto function; the label is defined with

the label function. Perform the following procedure to create a goto
function:

1. Click onOperation: [&=-].

2. In theName field, enter the name of the label to which you want to
go (for examplel.abell).

3. Click onzeely) to place the function in th&equence scroll box.

When execution reaches the goto function in a sequence, execution

transfers to the command that follows the label that is specified in the goto
function.

HDM-102-B Cray Research/Silicon Graphics Proprietary 67

Environment 0 MME User Guide

Label
The label function creates a label in the sequence that acts as a marker to
which execution can be transferred by a goto or compare function.
Perform the following procedure to create a label:
1. Click onOperation: [tat].
2. In theName field, enter the name of the label (for exampliell).
3. Click on(zeely) to place the function in th&equence scroll box.
Stop

The stop function stops execution of the sequence. Perform the following
procedure to create a stop function:

1. Click onOperation: [Zes].
2. Click on(zeriy)y to place the function in th&equence scroll box.

When execution reaches the stop function in the sequence, execution of
the sequence stops.

68 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

File Operation Functions

Thefile operation functions enable you to read, write, append, and delete
data files. Choosentry Type —> FileOp to access the file operation
functions. The followingMME Compose Sequence Entry window appears:

& MME Compose Sequence Entry
Entry Type w {(Apply) (Reset) (Mext)¢ Frav
FileOp:

Operation: | Read I Write | sppend | Delete |

Directory: usr/data

Filename: scratch

Address: 00000000000
Length: 00000000000 [Use File Length

Read
The read file operation function enables you to read data from a file into
the MME buffer Perform the following procedure to create a read file
operation function:
1. Click onOperation: [aw1].
2. In theDirectory field, enter the directory where the data file is
located.
3. IntheFilename field, enter the name of the file that you want to read.
4. In theAddress field, enter the MME buffer address where you want
to store the data that is read.
5. IntheLength field, enter the size of the data block that you want to
read.
NOTE: Click on theUse File Length check box to read the entire
file.
HDM-102-B

Cray Research/Silicon Graphics Proprietary 69

Environment 0 MME User Guide

6. Click on(zeely) to place the function in th&equence scroll box.

Write
The write file operation function enables you to write data from the MME
buffer to a file. Perform the following procedure to create a write file
operation function:
1. Click onOperation: [wi].
2. In theDirectory field, enter the directory where the data file is
located.
3. In theFilename field, enter the name of the file that you want to
write.
4. In theAddress field, enter the MME buffer address of the data that
you want to write.
5. IntheLength field, enter the size of the data block that you want to
write.
6. Click on(aeely) to place the function in th&equence scroll box.
Append

The append file operation function enables you to append data from the
MME buffer to a file that you previously created. Perform the following
procedure to create an append file operation function:

1. Click onOperation: [fusend].

2. In theDirectory field, enter the directory where the data file is
located.

3. In theFilename field, enter the name of the file that you want to
append.

4. In theAddress field, enter the MME buffer address of the data that
you want to append to the file.

5. IntheLength field, enter the size of the data block that you want to
append to the file.

6. Click on(arely) to place the function in th&equence scroll box.

70 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

Delete
The delete file operation function enables you to delete a data file that you
no longer need. Perform the following procedure to create a delete file
operation function:
1. Click onOperation: [t].
2. In theDirectory field, enter the directory where the data file is
located.
3. In theFilename field, enter the name of the file that you want to
delete.
4. Click on(zery) to place the function in th&equence scroll box.
Utilities

Several utilities can be added to sequences that you execute in compose

mode. ChoosEntry Type —> Utility to access the utilities. The following
MME Compose Sequence Entry window appears:

& MME Compose Sequence Entry
Entry Type @ {(Apply) (Reset) ¢ ®aoi 3 Frav)
Utility:

Operation: | Mask | M o I Pattern | Squish | Delay | R cH

Pattern:

Zaros Odd Bits word Address User Defined
Ones Parcel Address | ~word Address | 256K Address
Even Bits ~Parcel Address | Random

tusr Defined Paltern/Mash Parmalb

Euffer Address: 00000000000
Starting Addrass
Length: 00000000001

Belayi

HDM-102-B Cray Research/Silicon Graphics Proprietary 71

Environment 0 MME User Guide

Delay
The delay utility creates a pause (in seconds) in the execution of a
sequence of functions. Perform the following procedure to create a delay
utility:
1. Click onOperation: [ttx].
2. Specify the delay by entering a value in ey field or by moving
the slider until the desired value is displayed in the field.
3. Click on(zeely) to place the utility in th&equence scroll box.
Mask

The mask utility applies a mask to an area in the MME buffer. If a bit in
the mask is set topQthe data value in that bit position in an MME buffer
word is set to & If a bit in the mask is set t@,lthe data value in that bit
position in an MME buffer word retains its value; for example, a mask
value of 00000900000@ 17777¢ 17777 masks off the top half of

each word, as shown in Figure 9.

Before After
I Buffer & Buffer
Qooooo00a00 ﬂ????? AFTTIT ATFITT ATITTT [ulululu]uln/u]u]u]uln} EDDDDU Q00000 A7FFET ATEIEE
Q0000000001 177777 ATIFET ATIIIT ATIIET Q0000000001 000000 000000 177777 177777
00000000002 177777 177777 177777 177777 00000000002 000000 000000 177777 177777
O00O0O0O00S 177777 177777 177777 177777 0000000000E 000000 000000 177777 177777
Q0000000004 17FFTT ATFFFET ATEFTT ATVPPPT Q0000000004 000000 000000 177777 177777
00000000008 177777 177777 1FF777 177777 Mask is Applied 00000000005 000000 000000 177777 177777
Q0000000008 177777 ATFFFT ATIITIT ATIPET 4| 0000000000 Q00000 000000 177777 177777
00000000007 177777 177777 177777 177777 00000000007 000000 000000 177777 177777
O0NO000O010 125252 125252 125252 125252 00000000010 OO0000 000000 125252 125252
aoooooooo11 - 125252 125252 125252 125252 Q0000000011 000000 000000 125252 125252
aoooooooo1z2 125252 125252 125252 125252 Q0000000012 000000 000000 125252 125252
00000000013 125252 125252 125252 125252 00000000013 000000 000000 125252 125252
00000000014 125252 125252 125252 125252 00000000014 OO0000 000000 125252 125252
Qoooooo001s 125252 125252 125252 125252 Q0000000015 000000 000000 125252 125252
Qoooooo001E 125252 125252 125252 125252 Q000000001 & 000000 000000 125252 125252
Qoooo000017 125252 125252 125252 125252 00000000017 000000 000000 125252 125252

Figure 9. Mask Utility Example

Perform the following procedure to create a mask utility:

1. Click onOperation: [].

2. Click onpPattern: [em |, [Fawl |, [mirwad], OF[_wa_] to specify the
mask format.

3. In theUser Defined Pattern/Mask field, enter the mask that you want to
use.

72 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

4. In theSource Address field, specify the starting address of the data
block in the MME buffer that you want to mask.

5. IntheLength field, specify the length of the data block that you want
to mask.

6. Click on(aeely) to place the utility in th&equence scroll box.

When execution reaches the mask utility in the scroll box, the specified
mask is applied to the specified data in the MME buffer. Use this utility to
mask out (set to zero) specific bits in a word.

Move

The move utility copies a block of data from one location in the MME
buffer to another location. Figure 10 shows an example of the move

utility.
Before After
& BEuffer & Buffer
[u]u Iu]ulu]u[un/n/n]1] ﬂ????? AFFFFT ATFTFFT ATTFFT 00000000000 1FFFFT ATFTFFT ATTEIT ATITET
00000000009 177777 A77FFF7 AFFTEF ATIEVT 00000000009 177777 ATFTIET ATEEVT ATIIIT
QOO00000a02 ATTEEY ATVEET ATVIVET ATVEET QOOQoOOQO0Z2 APFFYT ATVTEITE ATEEET AVIEETY
00000000003 A777FF ATPeTT AT777TF ATPEIT Q000000000S 177777 ATTITTF ATVEVT AVIEIT
00000000004 177777 ATFFTT AFTITTITP ATTFIT 00000000004 1FFFFT ATFTEET ATEEIT ATITET
0000000000 177777 ATFFTT AFTITTITP ATFFFT 00000000005 1FFFFT ATFTFFT ATFFEIT ATITET
0000000000 177777 A77F777 AFFFF7 ATFFVT 00000000008 177777 AFTIFT ATEEVT ATITIT
QOO00000a07 ATTEEY ATEEET ATIVET ATVIVE . QOOQ0000007 A7FF7T ATTET? ATPEET AVIEETY
Q0000000010 000000 Q00000 000000 000005 | Data is MOVed BO0000000M 0 1FFFFT ATFFFF ATFRET AFTTIT
0000000011 000000 Q00000 Q00000 000000 00000000011 AFFFTT ATTFFT ATTEIT ATITET
0000000092 000000 Q00000 Q00000 000000 0000000001 2 AFFFF7 ATFTIET ATIEVT ATITIT
0OO0000001:3 000000 Q00000 00oQ00 Qoooo0 QOOQo0OQ01 2 APFFFT ATTITE ATEEEY AVIEETY
00000000014 000030 000000 Q00000 Q00000 Q000000001 4 A7FFTT ATTITT ATVEVT AVIEIT
0000000015 000000 Q00000 Q00000 000000 0000000001 S AFFFTT ATTTEFT ATTEIT ATITET
0000000016 000000 Q00000 Q00000 000000 0000000001 & AFFTTT ATFTTEFT ATTEIT ATITET
000000000497 000000 000000 000000 000000 0000000004 7 177777 AFTFF7 ATFEIE A 7777ﬁ

Figure 10. Move Utility Example

Perform the following procedure to create a move utility:

1. Click onOperation: [m=s].

2. Click on[rawi] or[«a_] to specify the type of data that you want
to move.

3. IntheSource Address field, enter the starting MME buffer address of
the data block that you want to move.

4. |n theDestination Address field, enter the MME buffer address to
which you want to move the data.

5. IntheLength field, enter the length of the data block.

HDM-102-B Cray Research/Silicon Graphics Proprietary 73

Environment 0 MME User Guide

6. Click on(zeely) to place the utility in theequence scroll box.

Pattern

The pattern utility patterns a block of MME buffer memory with 0's, 1's,
even bits, odd bits, address, complement address, random, or user data.
Figure 11 shows an example of the pattern utility.

Before After

i Buffer & Buffer

[ulululululu]ulnlu]u]u} EDUUDD 000000 000000 Qooaoo [ulululu]uln/u]u]u]uln} ﬂ????? AFTFP? ATTFTT ATFTTTT
Q0000000001 000000 000000 000000 000000 Patterned Q0000000001 AFFFTT ATTITT ATEEIT AVIEIT
Q0000000002 000000 000000 000000 000000 anh 115 Q0000000002 177777 ATTITT ATIEIT ATIEIT
00000000003 000000 000000 000000 000000 00000000003 177777 177777 177777 177777
Q0000000004 000000 000000 000000 000000 Q0000000004 A7FFFT ATFITT ATEEFT ATITIT
Q0000000005 000000 000000 000000 000000 Q0000000005 A7FFFT ATFITT ATEEFT ATITTT
Q0000000008 000000 000000 000000 000000 Q0000000008 177777 ATTITT ATIETT ATIIT

00000000007 000000 000000 000000 000000 |pO000O00007 477777 ATTTEY ATEEET ATIIIT
00000000010 AGO000 000 00000q A0000D |) d with E 00000000010 052525 052525 052525 052525
00000000014 000000 DO0DD0 000000 000000 atterned with Even 00000000011 052525 052525 052525 052525

00000000012 Q00000 Q00000 000000 000000 Bits 00000000012 0EZEZE OSZE2E OGZEZE QEZEZE
00000000042 Q00000 Q00000 000000 000000 0000000004 2 0E2E2ZE OE2E2E OLZEZE DEZEZE
00000000014 000000 000000 000000 Q00000 00000000014 052525 052525 052525 052525
00000000015 000000 000000 000000 000000 00000000015 052525 052525 052525 052525
00000000016 Q00000 Q00000 000000 000000 00000000016 052525 0OS2525 0S2525 052525
00000000017 Q00000 000000 000000 000000 00000000017 OEZEZE OS2E2E OGEEZE DEZEZE

Figure 11. Pattern Utility Example

Perform the following procedure to create a pattern utility:

1. Click onOperation: [Famm].

2. Click onPattern: [za=], [Enes |, [Eeentin], [odd Eis l,

[Addrass wacel |, [-dddrass wacel |, | Addvss words |, | -dddrass iward |, | Randon |, or

to specify the pattern that you want to use.

If you clicked o=], click onUser Defined Pattern/Mask Format:
e], [Fawt |, [m=ad], OF[w=a_]. Then, enter the pattern that you
want to use in th&ser Defined Pattern/Mask field.

3. In theBuffer Address field, enter the starting address of the data block
you want to pattern.

4. In theLength field, enter the length of the data block that you want to
pattern.

5. Click onaeeiy) to place the utility in th&equence scroll box.

74 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Environment 0

Squish
The squish utility manipulates data that is returned from a logic monitor
read-out buffer function when a logic monitor is ik 8024 mode. In &
1024 mode, valid data bits are contained in half a word. The squish utility
reads the validity flags (bits 63 and 31) to determine which halfword
contains the valid data; the valid data is placed in the lower halfword of
the destination location, and the upper halfword is filled with zeroes.
Figure 12 shows an example of the squish utility.
Before After
w Buffer © Buffer
00000002000 E77777 A7FFF7 100000 000001 00000006000 [£D0000 000000 100000 000001
00000002001 OFFFFF ATFFF7S 100000 000003 QOo0000E001 QOO000 QoO000 400000 000002
00000002002 OFFFFF ATFF73 100000 000005 00000306002 Q00000 Q00000 100000 000005
00000002002 OFFFFF 477771 100000 000007 00000006003 000000 Q00000 400000 000007
Q0000002004 OFFFF7 A7FFET 100000 000011 . . 00000006004 Q00000 Q00000 100000 000011
00000002005 OFFFFF A7FPES 100000 000013 Data is Squished 0O00000E005 000000 000000 400000 000013
00000002006 OFFFFF 17FFE3 100000 000015 QOO0000E00s QOO000 QOO000 400000 000015
00000002007 OFFFFF 17FFE1 100000 000017 00000306007 Q00000 Q00000 100000 000017
00000002010 OFFFFF A7FFET 100000 000021 0000000E01 0 000000 Q00000 100000 000021
Q0000002014 OF7FFF7 17FFEE 100000 000022 00000006041 Q00000 Q00000 100000 000023
00000002012 OFFFFF AFFFE3 100000 000025 0OO0000E0M 2 Q00000 QoO000 400000 000025
00000002013 OFFFF7 177751 100000 000027 00000306043 000000 Q00000 100000 000027
00000002014 OFFFFF 177747 100000 000031 00000006014 000000 Q00000 100000 000031
Q0000002015 OF7FFF7 177745 100000 00003232 00000006015 Q00000 Q00000 100000 000033
00000002016 OFFFFF 177743 100000 000035 0000000604 & Q00000 Q00000 100000 000035
00000002017 OFF7FF7 177741 100000 000037 QOOQ0Q0EMM 7 Q00000 Q00000 100000 DO00Z7
Figure 12. Squish Utility Example
Perform the following procedure to create a squish utility:
1. Click onOperation: [zauizn].
2. In theSource Address field, specify the starting address of the data
block of 8x 1024 mode data.
3. In theDestination Address field, enter the starting address of the
destination data block.
4. In theLength field, enter the length of the data block that you want to
squish.
5. Click onaeeiy) to place the utility in th&equence scroll box.
HDM-102-B Cray Research/Silicon Graphics Proprietary 75

Environment 0

76

Cray Research/Silicon Graphics Proprietary

MME User Guide

HDM-102-B

ENVIRONMENT 1

HDM-102-B

Environment 1 is a component of the Mainframe Maintenance
Environment (MME) software package that field engineers use to
troubleshoot CRAY T90 series mainframes. Typically, in environment 1,
only one diagnostic program, utility, or loop is loaded into mainframe
memory at a time. Once this program is loaded into mainframe memory
it is called a control point. Because only one control point is usually
loaded in mainframe memory at a time, control points used in
environment 1 have access to the entire mainframe or portion of the
mainframe that MME is using. Control points can be single- or
multiple-CPU control points. To test multiple CPUs, you can assign
multiple CPUs to one control point, and each CPU runs the same code that
is stored once in memory.

MME still runs in the maintenance workstation (MWS) or system
workstation (SWS), but all testing occurs in the mainframe. Information
passes through the maintenance channel to MME. MME monitors the
performance of the control point that is active in mainframe memory and
updates information that is available through the MME runtime
information displays. When only one control point is loaded (which is the
normal use of environment 1), all mainframe memory addresses are
absolute, which means that they are based on a starting address of zero.

Control point sections are stored as individual files. All sections for a
control point are stored in a common directory. Only one section is
actually loaded in mainframe memory at a time. That section is called the
current section. MME loads and removes the test sections from
mainframe memory according to the minimum and maximum pass counts
that the code for that section specifies. The minimum value specifies the
minimum number of passes that must occur before MME can load a
different section into memory. The maximum value specifies the number
of passes necessary before a section is no longer loaded into memory and
run. Diagnostic programmers define these values in the program code;
however, you can customize the values by saving a new version of a
control point. Refer to “File —> Save —> Control Point” in the

MME Interface Refereng¢gublication number HDM-008-A, for more
information.

The following procedure provides a general overview of the process for
using MME environment 1. This section includes related information for
each of the following steps of the process.

Cray Research/Silicon Graphics Proprietary 77

Environment 1 MME User Guide

Start MME in environment 1.

Load a layout (optional).

Allocate resources (optional).

Load a control point.

Assign a CPU to the current control point.
Clickon{_c_ .

Monitor the progress of control point execution.
Click on(__#ait_&).

ONOOORAWNE

Start MME in Environment 1

You can start MME in environment 1 from a UNIX command prompt or
from the OpenWindow®/orkspace menu.

NOTE: For information about starting MME environment 1 from a
Service Center through a hub, refer to Remote Support
document, publication number HMM-106-A.

CAUTION

MME performs maintenance channel functions that
will hang UNICOS if UNICOS is running in the
mainframe when you start MME.

To prevent this from accidentally occurring, ensure
that the Owner setting in the SCE base window is
setto OS for the logical partition in which UNICOS
is running when UNICOS is running in the
mainframe. MME cannot access a logical partition if
the OS owns it.

From a UNIX Prompt

To start MME environment 1 from a UNIX prompt, enter one of the
following commands:

e mme-1 to use a front-end interface (FEI) channel
* mme-1-sim to use the simulator
e mme -1 —debug to use the simulator and bugger/debugger

NOTE: You may also enter any of the command line options that Table 6
lists.

78 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

HDM-102-B

Table 6.

Environment 1

Environment 1 Command Line Options

Option

Description

—client

Start the MME client only

—config file

Configure MME with the configuration data stored in
the file specified by file.

—copy num

Connect to maintenance software assigned the copy
number specified by num

NOTE: Copy numbers are necessary only when you
run multiple copies of MME on the same MWS
or SWS (for example, when you run several
MME copies with the simulator or when you
use MME to support multiple CRAY T90
series mainframes connected to the same
MWS or SWS).

—i0 num

Use the CPU specified by numto perform input and
output operations

—kill

Kill any running MME, SCE, or LME applications
before starting a new copy of MME

—remote host

Start the MME client only and connect the client to the
MME server that is running on the remote host
specified by host

—server

Start the MME server only

Cray Research/Silicon Graphics Proprietary 79

Environment 1 MME User Guide

From the OpenWindows Workspace Menu

You can start environment 1 from the OpenWindowegkspace menu on
either an MWS or an SWS.

MWS Workspace Menu Options

Figure 13 shows the OpenWindowsrkspace menu options that you
should choose on an MWS to start environment 1 with an FEI channel.
Choose any copy number.

o=l Workspace |
o= Maintenance Tools

Programs D
(Maintenance Tools > DMS2 ...
Utilities Dl XCFG ...
Properties...
Exit... Assert TSM configuration...

Reboot TSM chassis...

o—0 MME
BOUNDARY SCAN >
(MME > LME >

NWACS > SCE > =30 MME env 1
SMARTE > _MME env 0 Pl CopyO...

SSDE > (MME env 1 D> Copy 1...
XELOG > MMEenv2 Pl copy2..

YIMS > Copy 3...

MME Simulator >

Figure 13. MWSnorkspace Menu Options to Start Environment 1 with an FEI Channel

80 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 1

Figure 14 shows the OpenWindowsrkspace menu options that you
should choose on an MWS to start environment 1 with the simulator or
with the simulator and bugger/debugger.

=00 Workspace _|

o0 Maintenance Tools
Programs D>
(Maintenance Tools D] DMS2 ...
Utilities >| XCFG ...
Properties...
Exit... Assert TSM configuration...
Reboot TSM chassis...
BOUNDARY SCAN D>
MME D>
NWACS >
SMARTE >
SSDE >
XELOG >
YIMS D>
(MME Simulator o=I0 MME Simulator
LME...
SCE... o DU MME enVl
MME env O Simulator...
(MME env 1 Simulator with Debugger...
MME env 2 |

Figure 14. MWSworkspace Menu Options to Start Environment 1 with the Simulator or
with the Simulator and Bugger/Debugger

HDM-102-B Cray Research/Silicon Graphics Proprietary 81

Environment 1 MME User Guide

SWS Workspace Menu Options

Figure 15 shows the OpenWindowsrkspace menu options that you
should choose on an SWS to start environment 1 with an FEI channel.
Choose any copy number.

o=l Workspace |

o=l Maintenance Tools
Programs
(Maintenance Tools D| SIO TEST >
Utilities >|(T32 TEST o=l T32TEST
Properties...
Exit NWACS CBOUNDARY SCAN >
MME o=D0 MME
XCFG ...
MME Simulator | LME >
SCE D o0 MME env 1
XELOG >
MME env O D Copy O...
(MME env 1 Pl copy1..
MME env 2 g COpy 2.
Copy 3...

Figure 15. SWSvorkspace Menu Options to Start Environment 1 with an FEI Channel

82 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 1

Figure 16 shows the OpenWindowsrkspace menu options that you
should choose on an SWS to start environment 1 with the simulator or
with the simulator and bugger/debugger.

o0 Workspace |
o= Maintenance Tools
—

Programs
(Maintenance Todq SO TEST >
Utilities (82 TEST | o0 T32TEST
Properties... BOUNDARY SCAN —=
Exit... NWACS MME o=B0 MME Simulator
LME...
XCFG - |(MME simulator SCE.. o=D0 MME env1
XELOG > MME env O Simulator...
(MME env 1 Simulator with Debugger...
MME env 2 >3 |

Figure 16. SW3Vorkspace Menu Options to Start Environment 1 with the Simulator or
with the Simulator and Bugger/Debugger

HDM-102-B Cray Research/Silicon Graphics Proprietary 83

Environment 1 MME User Guide

What Happens When You Start Environment 1?
The following actions occur when you start MME:

1. The MME server attempts to connect with the System Configuration
Environment (SCE) server.

If MME cannot connect with a running SCE server, MME starts a
new SCE server and tries to connect to the new SCE server. (If you
specified a configuration file with theconfig command line

option, MME sends this file to SCE through the S&lefault

command line option. SCE loads the configuration stored in the
file.)

2. Once MME establishes a connection with SCE, MME attempts to
receive a configuration from SCE:

* If a configuration is available, SCE provides MME with the
components that are available for use by the maintenance
system. MME automatically configures itself to use these
components.

» If a configuration is not available, MME displays the message
shown in the following snap:

Infarmation from the configuration server indicatas
that a rmainframe configuration is not available,

Check the current configuration,

Olkay

If MME displays this message, then you need to create a
configuration using SCE before you continue using MME.
Refer to theSsCE User Guidepublication number HDM-069-C,
for more information about creating a configuration.

Load a Layout (Optional)

Layouts are not implemented yet.

84 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 1

Allocate Resources (Optional)

MME enables you to change the CPU automatic assignment options and
CPU modes, the CPU-to-memory delays, and the section swap interval.
Refer to the “Properties —> Resource Allocation” description ifvihie
Interface Referenggublication number HDM-008-A, for more

information.

Load a Control Point

To perform testing with MME, you need to load a diagnostic program,
utility, or loop into mainframe memory. When you load one of these Cray
Assembly Language (CAL) programs into memory, it is called a control
point. Because you load only one control point into mainframe memory at
a time in environment 1, the control point has access to the entire
mainframe or portion of the mainframe that MME is using.

MME performs the following functions to load a control point:

1. MME loads the code located in addresses 0 through the end of the
standard location block into an MME data buffer.

2. MME configures the diagnostic or utility code in the MME buffer
based on the data stored in the standard locations. For example,
MME configures the memory configuration and CPU select standard
locations.

3. MME writes the code in the MME data buffer into mainframe
memory.

4. MME writes the code from the end of the standard locations to the
end of the initialized data into mainframe memory.

5. Optionally, MME clears the dump area.
6. MME overlays any global user changes to the control point sections.

7. MME overlays any section user changes.

Control Point Components

Figure 17 shows the control point components that are loaded into
mainframe memory.

NOTE: All memory addresses in Figure 17 are octal numbers.

HDM-102-B Cray Research/Silicon Graphics Proprietary 85

Environment 1

Location Block

40
100

140
200

300

Standard < 1000

Standard Code
Block '<

Diagnostic
Code Block <

Diagnostic Data
Area <

1600

2000

4000

6000

—

(10000

10105¢c
10300a

10400a
_
(~ 12000a

A4

DEXP

SEXP

IEXP

FEXP

STDLOC

DIAGINFO

PARAM

ELOG

WEXP

CEXP

TEXP

STDCODE

iTRAP

iIROUTER

NROUTER

LIB

MAIN

CODESUB

iHANDLER

NHANDLER

IDATA

dumpAREA

UDATA

MME User Guide

Deadstart Exchange Package

Starting Exchange Package

Interrupt Exchange Package

Flush Exchange Package

Standard Locations

Diagnostic Information

Control Point-specific Parameters

Error Log Table
Working Exchange Package Table

Current Exchange Package Table
Trap Exchange Package Table

Start of Standard Code Block
Interrupt Trap Table

Interrupt Router Code

Normal Exit Router Code
Library Interrupt Handlers

Control Point Main Code

Control Point Subroutines

Interrupt Handlers
Normal Exit Handlers

Initialized Data

Register Dump Area

Uninitialized Data

Figure 17. Control Point Components

Control points have four main parts: a standard location block, a standard
code block, a diagnostic code block, and a diagnostic data area.

86 Cray Research/Silicon Graphics Proprietary

HDM-102-B

MME User Guide

Environment 1

Standard Location Block

The standard location block contains parameters at fixed locations for all
control points. This block includes the deadstart exchange package,
starting exchange package, interrupt exchange package, flush exchange
package, standard locations, diagnostic information, parameters, error log,
working exchange package table, current exchange package table, and trap
exchange package table.

Deadstart Exchange Package

The deadstart exchange package (DEXP) is located at adgregd/E

uses the DEXP to deadstart a CPU whern(thes) button is clicked.

MME reads and modifies the starting exchange package and writes this
data into the DEXP. MME exchanges the DEXP into the CPU to deadstart
the CPU.

Starting Exchange Package

The starting exchange package (SEXP) is located at addgesMME
reads the SEXP through the maintenance channel and modifies the data to
build the DEXP that is used to deadstart a CPU.

Interrupt Exchange Package

The interrupt exchange package (IEXP) is located at addregs [EXP
Is not used in environment 1.

Flush Exchange Package

Standard Locations

HDM-102-B

The flush exchange package (FEXP) is stored at addregs A4DPU
uses the FEXP to perform a dummy exchange to clear any pending
interrupts.

The standard locations are diagnostic parameters that are the same for all
diagnostic test and utility programs. Table 7 describes the standard
locations, which start at address gQ@beled STDLOC).

Cray Research/Silicon Graphics Proprietary 87

Environment 1

MME User Guide

Table 7. Standard Locations

Address Label Description
0200 LPASS Last pass to be executed (0 = forever)
0201 SECS Section select bit mask
0202 CONDS Conditions select bit mask
0203 MRMASK Error log mask (mask of significant bits to compare when repeated
errors are logged)
0204 STOP Stop flag bit mask:
00 = Continue (update CPU information and continue processing)
01 = Stop (update CPU information and stop processing)
02 = Not available
10 = Isolate (restart and isolate the error)
20 = Wait on error
0205 MRSTOP Memory and register error bit mask (stop and log):
000001 = Log correctable memory errors
000002 = Log uncorrectable memory errors
000004 = Log register parity errors
000010 = Stop on a correctable memory error
000020 = Stop on an uncorrectable memory error
000040 = Stop on a register parity error
200000 = Disable error correction
0206 PCITIME Programmable-clock interrupt time interval
0207 PCILOG Programmable-clock interrupt counter
0210 CPUN Number of CPUs
0211 CPUM Master CPU number
0212 CPUS Bit mask of CPUs to test
0214 CLNN Number of clusters
0215 CLNU Bit mask of clusters being tested
0216 CLNS Bit mask of the clusters to be tested
0217 CLNB Bit mask of background clusters
0220 DPB Diagnostic physical bias
0221 DLL Diagnostic logical base
0224 MFRST First memory word to test (BSS)
0225 MLIMT Memory limit address (similar to data limit address)
0226 BANKS Number of bank bits and number of memory banks
0227 MCFG Memory configuration (cache enable, number of memory banks,
number of memory subsections, and number of memory sections)
0230 SSDBA SSD base (starting) address
0231 SSDL SSD limit address
0233 TIFM Trigger interrupt flag mask

88

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Table 7. Standard Locations (continued)

Environment 1

Address Label Description
0234 DIFM Diagnostic program interrupt-handled flag mask
0235 SIFM System interrupt flag mask
0236 SIFR System interrupt flag return
0237 ENV Current diagnostic environment
0240 DMPMASK Dump register for hIDLE:

00001 =V registers
00002 = B registers
00004 =T registers
00010 = BMM registers
00020 = Shared B registers
00040 = Shared T registers
00100 = Semaphore registers
00200 = A registers (WEXP)
00400 = S registers (WEXP)
01000 = Status registers
02000 = VM registers
04000 = VL register
10000 = Channel CA and status register
0241 DMPAREA Starting address of the dump area
0242 DMPJUMP Dump and idle routine address
0244 LASTREQ Copy of the last diagnostic-to-controller request
0245 LASTRET Copy of controller return status
0246 HARDware Hardware configuration information
0250 MMEREQO CPU-to-MME request 0
0251 MMEREQ1 CPU-to-MME request 1
0252 MMEREQ2 CPU-to-MME request 2
0253 MMEREQ3 CPU-to-MME request 3
0254 MMERESPO | MME-to-CPU response 0
0255 MMERESP1 [|MME-to-CPU response 1
0256 MMERESP2 | MME-to-CPU response 2
0257 MMERESP3 | MME-to-CPU response 3

Diagnostic Information

HDM-102-B

Diagnosticinformation is standardized status information for an executing
diagnostic test or utility program. The diagnostic information is located at
addresses 3@Q@hrough 374, as shown in Table 8. These memory
locations are the same for all diagnostic test and utility programs. The
current executing control point updates these locations.

Cray Research/Silicon Graphics Proprietary 89

Environment 1

Table 8. Diagnostic Information

MME User Guide

Address Label Description
0300 DIF Difference between expected and actual diagnostic information
0301 ACT Actual information
0302 EXP Expected information
0303 ERROR Number of errors
0304 PASS Number of passes
0305 ERA Error return address
0306 INFOa Diagnostic program specific information A
0307 INFOb Diagnostic program specific information B
0310 SUT Section being tested
0311 CuT Condition being tested
0312 SCUT Subcondition being tested
0313 TSUT Test sequence being tested
0314 CLOOP Remaining condition loop count
0315 SLOOP Remaining subcondition loop count
0316 TLOOP Remaining test sequence loop count
0332 LOSPT LOSP table length and table address
0333 VHISPT VHISP table length and table address
0334 CRMASK Channel 077 to 000 reserve mask
0335 CRMASKu Channel 177 to 100 reserve mask
0336 CIMASK Channel 077 to 000 interrupt mask
0337 CIMASKu Channel 177 to 100 interrupt mask
0340 CPUREQO MME-to-CPU request 0
0341 CPUREQ1 MME-to-CPU request 1
0342 CPUREQ2 MME-to-CPU request 2
0342 CPUREQ3 MME-to-CPU request 3
0344 CPURESPO CPU-to-MME response 0
0345 CPURESP1 CPU-to-MME response 1
0346 CPURESP2 CPU-to-MME response 2
0347 CPURESP3 CPU-to-MME response 3
Parameters

90

The control point-specific parameters start at addressg{eled
PARAM).

Cray Research/Silicon Graphics Proprietary

HDM-102-B

MME User Guide

Error Log Table

Environment 1

The error log table organizes all memory and register parity errors from
the running control point into one area of memory. The error log table
begins at address 1600

Refer to the “View —> Error Log” description in tMME Interface
Referencepublication number HDM-008-A, for information on how to
view the error log table.

Working Exchange Package Table

The working exchange package (WEXP) table starts at addresg 2000
This table contains one WEXP for each CPU (32 total). The WEXPs are
located on 49word boundaries (for example, the WEXP for CPU 0 is at
address 200Qf) the WEXP for CPU 1 is at address 2848hd the WEXP

for CPU 2 is at address 2140

When a control point receives an interrupt, it exchanges to the WEXP for
the CPU to which the control point is assigned.

Current Exchange Package Table

The current exchange package (CEXP) table starts at addregs 400%)

table contains one CEXP for each CPU (32 total). The CEXPs are located
on 4 word boundaries (for example, the CEXP for CPU 0 is at address
400@Q;, the CEXP for CPU 1 is at address 4§4hd the CEXP for CPU 2

is at address 41@p

The CEXP is empty when a control point is loaded. When a control point
receives an interrupt and exchanges to WEXP, WEXP is copied to CEXP
for the CPU to which the control point is assigned. This process stores the
address in the control point code where the exchange occurred in the P
register and saves the interrupt flags that caused the exchange.

Trap Exchange Package Table

HDM-102-B

The trap exchange package (TEXP) table starts at address 60408

table contains one TEXP for each CPU (32 total). The TEXPs are located
on 4@ word boundaries (for example, the TEXP for CPU 0 is at address
600@, the TEXP for CPU 1 is at address 68944nd the TEXP for CPU 2

is at address 61@p

Cray Research/Silicon Graphics Proprietary 91

Environment 1

Standard Code Block

Interrupt Trap Table

Interrupt Router Code

MME User Guide

The TEXP for the CPU exchanges into the CPU when the interrupt routers
or handlers receive an intolerable interrupt. This causes the iTRAP code
at address 110@Q@o execute.

The standard code block contains library code that is common to all
diagnostics. The standard code block includes the interrupt trap table, the
interrupt router (IROUTER) code, the normal exit router (nROUTER)
code, and the library interrupt handlers (LIB). The standard code
exchanges into the CPU when an interrupt occurs.

The interrupt trap table contains a table of hang addresses. Currently,
there is only one hang address in the table.

Theinterrupt router IROUTER) code is the first level of interrupt
processing. This code determines what interrupts exist and passes the
interrupts to the appropriate handler routines.

Normal Exit Router Code

Thenormal exit router (NROUTER) code receives normal exit interrupts
from the interrupt router code and passes the interrupts to the appropriate
normal exit handler code.

Library Interrupt Handlers

Diagnostic Code Block

92

Thelibrary interrupt handlers are standardized handlers that are used for
interrupt processing. These handlers are the same for all diagnostic tests
and utilities.

The diagnostic code block contains all code for the current diagnostic test
or utility program. This block includes the control point main code, the
control point subroutines, the interrupt handlers, and the normal exit
handlers. The size of this block varies for the different diagnostic test and
utility programs.

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Environment 1

Control Point Main Code

The control point main code contains the actual diagnostic test or utility
program code that performs the testing or utility functions.

Control Point Subroutines

Interrupt Handlers

Normal Exit Handlers

Diagnostic Data Area

Initialized Data

Register Dump Area

HDM-102-B

Any subroutines that the control point main code uses are stored starting at
the memory location labeled CODESUB.

The interrupt handlers contain the code used that processes the interrupts
that occur while a control point is executing.

The normal exit handlers contain the code that processes the normal exit
calls that occur while a control point is executing.

The diagnostic data area is memory that is reserved for data that is used or
created by the current diagnostic test or utility program. This area

includes the error information block, initialized data, register dump area,
and uninitialized data.

The initialized data is preset data that is used by the diagnostic test or
utility program. This data includes constants and predetermined
(sometimes calledanned answers.

Theregister dump area is a block of memory that is reserved for any
register data that is dumped by the diagnostic test or utility program or by
the Halt — Register Dump option.

Cray Research/Silicon Graphics Proprietary 93

Environment 1

Uninitialized Data

MME User Guide

The uninitialized data is a data area in which the diagnostic test or utility
program stores the data that it uses. This data is not initialized or stored
on the MWS or SWS hard disk with the diagnostic test or utility program.
The diagnostic test or utility program must initialize this data.

Assign a CPU to the Current Control Point

Click on Go

You must assign a CPU to the current control point to perform any
troubleshooting for the CPU. To assign a CPU to the current control

point, click on the CPU in the CPU selection, control point, and status area
in the MME base window. Refer to “CPU Selection, Control Point, and
Status Area” in th&MME Interface Referen¢publication number
HDM-008-A, for more information.

94

®

Click on(__ce___) to start control point execution; the control point
executes through the sequence of events that Figure 18 illustrates and the
text following the figure describes. (The circled numbers in the figure
correspond to the numbered steps in the text that follows.)

MWS/SWS

DEXP @ -
@ SEXP

®

CPU

IEXP

FEXP ®

Figure 18. Control Point Execution Sequence (Go Clicked)

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 1

1. MME reads SEXP from mainframe memory through the
maintenance channel into MWS or SWS memory.

2. MME modifies the copied SEXP to create exchange packages that
will be written into DEXP and FEXP. MME modifies the exchange
packages as follows:

For the DEXP copy, MME performs the following steps.
a. MME sets A7 to the physical CPU number.

b. Depending on the values set in kM@E Resource Allocation
window, MME modifies the interrupt on correctable memory
error (ICM) mode bit, interrupt on uncorrectable memory error
(IUM) mode bit, interrupt on register parity error (IRP) mode
bit, and the cache LAT bits.

For more information about théVE Resource Allocation
window, refer to “Properties —> Resource Allocation” in the
MME Interface Referen¢e@ublication number HDM-008-A.

NOTE: The XA and EA registers are left at the defaults, which
point to FEXP.

For the FEXP copy, MME performs the following steps:
a. MME sets A7 to the physical CPU number.

b. Depending on the values set in B@E Resource Allocation
window, MME modifies the ICM, IUM, and IRP mode bits.

c. MME sets the exchange address (XA) parameter to its original
value plus A7 multiplied by 4JXA = XA + (A7 * 40g)]; this
makes XA point to the WEXP for the CPU.

MME also sets exit address 0 (EAO) through EA4 to the
original value plus A7 multiplied by 40

EAO = EAO + (A7 * 4@Q)
EAL = EAL + (A7 * 4Q)
EA2 = EA2 + (A7 * 4Q)
EA3 = EA3 + (A7 * 4Q)
EA4 = EA4 + (A7 * 4Q)

d. Depending on the values set in theE Resource Allocation
window, MME modifies the cache LAT bits.

HDM-102-B Cray Research/Silicon Graphics Proprietary 95

Environment 1 MME User Guide

3. MME writes the exchange packages to DEXP and FEXP.

4. The DEXP exchanges into the CPU. The DEXP P register points to
the cpuFLUSH routine in the standard code.

5. The CPU executes the cpuFLUSH code, which clears out any
interrupts and then exchanges out to EAO, which is FEXP. The
FEXP P register points to MAIN, so the CPU starts executing the
control point code.

NOTE: If the control point is a multi-CPU control point, this sequence

of events repeats until all CPUs that are assigned to the control
point are deadstarted.

Monitor the Progress of Control Point Execution

As a control point executes, you should monitor the information MME
displays to determine the progress of the control point. It is important to
understand what happens during control point execution so that you can
determine whether everything is operating properly. Table 9 shows the
status information that you need to monitor while a control point executes.

Table 9. Status Information from an Executing Control Point

Status Description

“ERROR COUNT” flashing next to a CPU The control point detected an error. Refer to
“Diagnostic-detected Errors” for more information.

“Holding” appears next to a CPU Control point execution is paused. Check the
runtime information display for a prompt for the
control point.

Indicator (MEM, RPE, SHR, LAT, or UKN) appears | MME detected a memory, register parity, shared,
in the menu bar LAT, or unknown error. MME logs these errors in
the error log. Choose View —> Error Log to view
the error log.

Interrupt flag An interrupt occurred. Refer to “Interrupts” for
more information.

P register is incrementing Everything is operating correctly.

P register is not incrementing The P register is hung. Check the WEXP and

TEXP for the CPU to see if a flag is set. Check the
listing to see if hang code is causing the hung P
register.

“Waiting” appears next to a CPU The CPU is waiting to execute a multiple-CPU
control point.

96 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 1
Diagnostic-detected Errors

Control point diagnostic test code that is running in a CPU detects and
reports an error through the following sequence of events:

1. The control point test code detects a data comparison error for the
hardware values being tested.

2. The control point test code logs the error in the standard locations.

3. The control point test code performs a dump and wait normal exit
request. The handler for this normal exit increments the error count
and activates the hold flag in the STOP standard location.

4. MME checks the minimum and maximum error counts that are
assigned to the control point.

NOTE: The CPU does not stop for an error.

When a control point increments the error COBRROR COUNT flashes
next to the CPU in the CPU status area. Figure 19 shovERH@R
COUNT indicator highlighted.

HDM-102-B

[e]4]

ERROR COUWT

01

02

03

Figure 19. Error Indicator

When you see an error indicator, refer to the error return address (ERA) in
the diagnostic information block. The ERA, which is located at address
030%, indicates an area in the listing near the location of the failing code.
View the ERA in address mode to determine the address. Look at the
code in the listing that is adjacent to the ERA to determine the code that
actually failed.

NOTE: The ERA is shown on thBIAGINFO runtime information
display, which is currently available for most diagnostic tests
and utilities.

Cray Research/Silicon Graphics Proprietary 97

Environment 1

Interrupts

98

MME User Guide

For information on how to view a listing, refer toiéw —> Listing —>
Current” and “View —> Listing —> Other” in thdME Interface
Referencepublication number HDM-008-A.

Interrupts are either tolerable or intolerable. Tolerable interrupts are
interrupts that occur while the CPU is processing the main diagnostic
code. Dlerable interrupts can be ignored or routed, depending on the
code of the diagnostic program. Intolerable interrupts are interrupts that
occur while the CPU is processing code from the standard code block.
Intolerable interrupts are trapped by hanging the CPU.

Figure 20 shows the two interrupt classes and the actions performed when
interrupts occur.

Tolerable Intolerable
Ignore Route Trap
Use SIFM Use TEXP
Hang Handler

Use Inline Hang Code

Use Library Handlers Use Program-specific Handlers

Figure 20. Interrupt Classes (Environment 1)

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 1

When interrupts occur, the control point code exchanges to the interrupt
router (IROUTER) code in the standard code block of the control point.
The IROUTER code routes all interrupts in the current interrupt list
through the sequence that Figure 21 shows and the text following the
figure describes. (The circled numbers in the figure correspond to the
numbered steps in the text that follows.)

Exchange into iROUTER
code by using WEXP

@ I Issue EMI instruction I

@) |_copy wexptocexe |

Any
interrupt flags
set?

No
(Hangs CPU)

(@ |[Move SIFM flags to SIFR|
iCONT _

Any
interrupt flags
set?

Clear ! Exchange out of
flags in IROUTER code
WEXP by using WEXP

Route interrupts

\ LIB, iHANDLER,
' and
» NHANDLER

Figure 21. Interrupt Processing in Environment 1

HDM-102-B Cray Research/Silicon Graphics Proprietary 99

Environment 1

100

MME User Guide

The iIROUTER code issues an EMI instruction to enable monitor
mode interrupts.

The IROUTER code copies the WEXP to the CEXP.

The IROUTER code verifies that there are interrupt flags in the
current interrupt list to process.

« If there are interrupt flags to process, the IROUTER code
continues with Step 4.

« If there are no interrupt flags to process, the IROUTER code
hangs in the CPU.

The IROUTER code checks the system interrupt flag mask (SIFM)
parameter to determine whether the interrupt should be ignored.

If the flag for an interrupt is set in the SIFM paramgttes

IROUTER code removes the flag from the current list of interrupt
flags and places it in the system interrupt return mask (SIFR)
parameter. (Refer to the “Ignore” discussion on page 101 for more
information.)

The IROUTER code checks to determine whether any interrupt flags
are still set.

« Ifinterrupt flags are still set, the IROUTER code continues with
Step 6.

« If no interrupts flags are set, the IROUTER code exchanges out
of the CPU, and the CPU resumes main diagnostic code
execution.

The IROUTER code routes one interrupt in the current interrupt list
and clears the interrupt flag in the list.

« If a handler exists for the interrupt, the IROUTER code routes
the interrupt to the handler code. (Refer to the “Route to a
Handler” discussion on page 101 for more information.)

* If no handler exists for the interrupt, the IROUTER code routes
the interrupt to hang code, which hangs in the CPU. (Refer to
the “Route to a Hang” discussion on page 108 for more
information.)

The handler routine processes the interrupt.

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Tolerable Interrupts

Ignore

Route to a Handler

HDM-102-B

Environment 1

8. After the current interrupt is processed by a handler, control returns
to Step 5 at the label ICONT.

Tolerable interrupts occur while the diagnostic test or utility code is
executing in a CPU. The IROUTER ignores tolerable interrupts or routes
them to a hang or handler.

The IROUTER code can remove interrupts from the current list of

pending interrupts to be processed to prevent the interrupts from being
processed. If a diagnostic test or utility program sets the corresponding bit
for an interrupt in the system interrupt flag mask (SIFM) paranisier
IROUTER code removes the interrupt from the current list of interrupts to
be processed. The iIROUTER code places the flag in the system interrupt
return mask (SIFR) parameter. The interrupt is ignored.

Ignored interrupts are typically used so the diagnostic test code can force
an interrupt condition. When control returns to the test code, the test code
checks the SIFR parameter to verify that the interrupt occurred.

The diagnostic code handles interrupts through special code sections
called handlers. Handlers contain the code that is necessary to process
interrupts. Three types of handlers may be available in a control point:
library interrupt handlers, interrupt handlers, and normal exit handlers. If
a handler is available for an interrupt, the IROUTER code routes the
interrupt to the handler.

NOTE: Some handlers are just inline hangs.
Library Interrupt Handlers

Someinterrupts are routed to library interrupt handlers, which are general
handlers included in all control points. These handlers contain code that
processes common interrupts.

Interrupt Handlers

Someinterrupts are routed to interrupt handlers that are located in the
diagnostic code area of a control point. These handlers are specific to a
control point and contain code that processes special-case interrupts.

Cray Research/Silicon Graphics Proprietary 101

Environment 1

102

MME User Guide

Normal Exit Handler

Severalcontrol points use normal exit (NEX) interrupts to perform tasks

in monitor mode instead of the usual user mode that the control point code
runs in. A special router is used to route NEX interrupts. The NEX router
(nROUTER) routes a normal interrupt based on the value stored in the S1
register. Figure 22 shows the sequence of events that occur to route and
handle a normal exit interrupt. (The circled numbers in the figure
correspond to the numbered steps in the text that follows.)

C)

A
Y

CPU WEXP

©

A
Y

iIROUTER @

LIB -

® NHANDLER

dmpAREA

Figure 22. Normal Exit Interrupt

1. An interrupt occurs that causes an exchange between the CPU and
WEXP (the WEXP P register points to the IROUTER code). This
causes the CPU to execute the IROUTER code.

2. The iROUTER code checks the system interrupt flag mask (SIFM).

3. The iROUTER code routes to the appropriate handler for processing.
For a normal exit (NEX) interrupt, control is passed to the normal
exit router (NnROUTER).

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 1

4. The nROUTER code examines the function code in the S1 register
and sends control to the corresponding handler, which is a library
handler or normal exit handler (h(HANDLER). The nROUTER code
performs the following actions, as shown in Figure 23.

The circled letters in Figure 23 correspond to the lettered steps that follow
this figure.

HDM-102-B Cray Research/Silicon Graphics Proprietary 103

Environment 1 MME User Guide

IROUTER :

Any
interrupt flags
set?

No y IEXDIAG C}
> Done

Route interrupts

NROUTER

No (Hangs at nROUTER1)

SO bit 63 set?

Route functions

S1=1 No Handler is
Available for S1
(Hangs at NnROUTER1)

! nHANDLER
1+ routines

NnROUTER1

Y

Error

Hangs at NROUTER1

Figure 23. Normal Exit Interrupt Processing

104 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

a.

Environment 1

The nROUTER code verifies that bit 63 (the sign bit) of SO is
setto 1. This diagnostic code must set this bit to indicate that
a normal exit interrupt is actually occurring. If this bit is not
set, the CPU hangs at the address labeled nROUTERI.

The nROUTER code routes the interrupt to the corresponding
handler in the LIB or nHANDLER code. If no handler
corresponds to the value in S1, the CPU hangs at the address
labeled NnROUTERL.

Table 10 shows the normal exit request bit fields. Table 11
shows the normal exit routines that correspond to the bits that
are setin S1.

Table 10. Environment 1 Normal Exit Request Bit Fields

Register Contents
SO Valid Request Flag, Bit 63 =1
S1 Function Mask for Function Mask for Function Mask for Function Mask for
the Controller Only |the Controller and the Router Only the Program-defined
Handlers, Handlers, Handlers, Handlers,
Bits 63 — 48 Bits 47 — 32 Bits 31 — 16 Bits 15-0
S2 Parameter 1
S3 Parameter 2
S4 Parameter 3
AO Parameter 4
Al Parameter 5
A2 Parameter 6
A3 Parameter 7
Table 11. Environment 1 Normal Exit Routines
Octal Bit Name Description
66 hNOP Perform no operation
57 hIDLE Dump registers and idle the CPU
56 hIDLE Dump registers and wait for the hold bit to clear
46 hHOLD Hold until the user clicks the Resume button in the MME base window
HDM-102-B Cray Research/Silicon Graphics Proprietary 105

Environment 1

MME User Guide

Table 11. Environment 1 Normal Exit Routines (continued)

Octal Bit Name Description
44 hsrLOCK Set shared register cluster
Parameters:
S2: Cluster or cluster mask
S3: 0 = Release the specified cluster
1 = Reserve the specified cluster
1000 = Release the specified clusters in cluster mask
1001 = Reserve the specified clusters in cluster mask
When this routine sets a single cluster number (S3 = 1), the CLN
register is set in the exchange package.
When this routine sets a group of clusters (S3 = 1001), S2 returns a
mask of reserved clusters.
SO0 returns —22 if another control point controls the requested cluster.
43 hSETPCI Set up PCI if it is selected in PCITIME
41 hSETM Set or clear mode flags in WEXP
Parameters:
S2: Bit mask of flags relative to the register that you are using
S3: 0 = Clear flags
1 = Set flags
40 hSETIM Set or clear interrupt mode bits in WEXP
Parameters:
S2: Bit mask of mode bits relative to the register that you are using
S3: 0 = Clear bits
1 = Set bits
26 hMAINTS Set maintenance mode
S2: 1 = CPU maintenance mode
2 = 1/O maintenance mode
3 = SHR maintenance mode
S3: Loop controller function code
S4: Destination (CPU, channel, or module number)
106 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Environment 1

Table 11. Environment 1 Normal Exit Routines (continued)

Octal Bit

Name

Description

25

hLOG

Enable or disable the error logger
Parameter:

S2: 0 = Disable
1 = Enable

24

hLOGQ

Start or stop the error logger queue
Parameters:

S2: Bit0: 0 = Stop logging
1 = Start logging

Bit1: 0= Allow I/O activity
1 = Temporarily disable 1/O activity

Bit 2: 0= Do not delay before performing reads
1 = Delay before performing reads

S3: Time-out value in microseconds (1 — 15000)
S4. Number of errors to record (1 — 10000)

S5: Queue destination (mainframe address)

23

hQUIET

Temporarily disable MME maintenance channel I/O activity

22

hQWAIT

Resume MME maintenance channel I/O activity

HDM-102-B

Control passes to the code at the memory address labeled IEXDIAG.

The IROUTER code exits through an exchange between WEXP and
the CPU. The CPU continues control point execution unless the
normal exit (NEX) performed an hIDLE routine. If an hIDLE

routine was performed, the CPU hangs in STDCODE after the
registers are dumped to dmpAREA.

Cray Research/Silicon Graphics Proprietary 107

Environment 1 MME User Guide

Route to a Hang

If no handler routine exists for an interrupt, the IROUTER code routes the
interrupt to inline hang code in the IROUTER code. The hang code
causes the CPU to hang in the IROUTER code. Figure 24 shows the
sequence of events for a hang and the text following describes it. (The
circled numbers in Figure 24 correspond to the numbered steps that
follow.)

CPU @

- WEXP

@ iROUTER

Figure 24. Interrupt Processing (Hang)

1. Aninterrupt occurs that causes an exchange between the CPU and
WEXP. The CPU begins to execute the IROUTER code.

2. When the IROUTER code attempts to route the interrupt to the
handler, no handler code is available. The IROUTER code hangs the
CPU at the code that tests for the interrupt flag (P register = trap).

NOTE: If memory and register parity errors are detected, these errors are
usually logged. Then, the standard code exchanges out of the
CPU, and the control point code exchanges back into the CPU.

As tolerable interrupts are processed, various interrupts appear in the CPU
status area, which is normal; you may want to monitor the pass count and

SIFR.

108 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Intolerable Interrupts

HDM-102-B

Environment 1

If the CPU stops executing instructions in the standard code during NEX
interrupt processing, look at the WEXP for the CPU. Check the P register
SO0 register, and S1 register to determine what was running in the CPU.
Click on halt and look at the WEXP to determine where the CPU stopped
executing code.

If the P register does not increment in the CPU status area, this indicates
that the CPU is hung. Look at the code in the listing where the P register
IS hung.

Intolerable interrupts occur while the IROUTER code is processing an
interrupt. Because the standard code is already running, there is no way to
process these new interrupts. MME traps intolerable interrupts by
exchanging a trap exchange package (TEXP) into the CPU, which

Figure 25 shows and the text following the figure describes.

CPU - > TEXP

Figure 25. Intolerable Interrupt Processing

The standard code exchanges out of the CPU to the TEXP, and the TEXP
exchanges into the CPU. This causes the CPU to hang in a hang
instruction at iTRAP. The flag that caused the interrupt is trapped in the
TEXP.

For intolerable interrupts, you should notice that the TEXP P register is
not pointing to iITRAP (address 10)®r that interrupt flags are set in
TEXP. This indicates that an intolerable interrupt occurred in the standard
code while the interrupts from the diagnostic code were being processed.

Cray Research/Silicon Graphics Proprietary 109

Environment 1

Click on Halt

MME User Guide

Look at the TEXP for the CPU to see the intolerable interrupt(s) that
occurred. The WEXP and CEXP P registers show where the interrupt
occurred in the diagnostic code.

Halt —> No Dump

ChooseHalt —> No Dump , Halt — Exchange Dump , Or Halt —> Register
Dump from to stop control point execution.

TheHalt — No Dump option halts control point execution by setting
Master Clear on the CPU(s). This option does not dump register or
exchange information.

Halt —> Exchange Dump

TheHalt —> Exchange Dump option halts the executing control point and
dumps exchange information. After this dump, the exchange package for
whatever was executing when you clickedr=t_») is stored in the

DEXP and in the WEXP for the CPU. MME performs an exchange using
a maintenance channel function.

For multiple-CPU control points, MME performs an exchange for each
CPU. DEXP contains the exchange package for the last CPU halted. The
WEXP table contains the exchange packages for the CPUs.

NOTE: The CPUs never issue instructions for this command.

Halt —> Register Dump

110

The Halt — Register Dump option halts the executing control point and

dumps registers into mainframe memory at the address that is assigned to
label dmMpAREA. You can specify which registers you want to dump by
changing the DMPMASK parameter at addressg2d4@he standard

locations. MME performs the following sequence of events for a register
dump.

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

HDM-102-B

Environment 1

1. MME builds a DEXP, where:

Modes = 016

Logical base =0

Physical base = base address of the control point (usually 0)
Logical limit = size of the control point

2. MME writes the DEXP to mainframe memory.

3. MME performs a maintenance channel function that causes an
exchange, which starts the CPU.

4. MME waits for a flag to set in the dump area. This signals that the
register dump is complete.

5. MME performs a maintenance channel function that causes an
exchange, which stops the CPU.

For multiple-CPU control points, MME performs this sequence for each
CPU. DEXP contains the exchange package for the last CPU halted. The
WEXP table contains the exchange packages for the CPUs.

NOTE: If you select a register dump and no dump area (dAMpAREA) is
available, MME performs an exchange dump.

Cray Research/Silicon Graphics Proprietary 111

Environment 1 MME User Guide

112 Cray Research/Silicon Graphics Proprietary HDM-102-B

ENVIRONMENT 2

Environment 2 is one component of the Mainframe Maintenance
Environment (MME) software package that field engineers use to
troubleshoot CRAY T90 series mainframes. Environment 2 includes
many of the features that are available in environment 1 but also enables
you to load several diagnostic programs, utilities, or loops into mainframe
memory at a time. A special program called the diagnostic controller
(DC) resides in lower mainframe memory and controls the mainframe
resources that the control points use.

The run system property in environment 2 enables you to perform
confidence testing of the mainframe by creating an environment for
hardware system evaluation similar to an operating system. The operating
system environment is simulated by swapping jobs (control points)
between active CPUs.

The following procedure gives a general overview of the process for using
MME environment 2. This section provides related information for each
step of the process.

Start MME in environment 2.

Load a layout (optional).

Allocate resources (optional).

Enable the run system (optional).

Load one or more control points.

Assign CPU(s) to the control point(s).

Click on{__co .

Monitor the progress of control point execution.
Click on{__#ait_&).

OCONoTRrWOWNE

Start MME in Environment 2

HDM-102-B

You can start MME in environment 2 from a UNIX prompt or from the
OpenWindowsNorkspace menu.

NOTE: For information about starting MME environment 2 from a
Service Center through a hub, refer to Remote Support
document, publication number HMM-106-A.

Cray Research/Silicon Graphics Proprietary 113

Environment 2 MME User Guide

CAUTION

MME performs maintenance channel functions that
will hang UNICOS if UNICOS is running in the
mainframe when you start MME.

To prevent this from accidentally occurring, ensure
that the Owner setting in the SCE base window is
set to OS for the logical partition in which UNICOS
is running when UNICOS is running in the
mainframe. MME cannot access a logical partition if
the OS owns it.

From a UNIX Prompt

To start MME environment 2 from a UNIX prompt, enter one of the
following commands:

* mme-2 to use a front-end interface (FEI) channel
* mme-2-sim to use the simulator
* mme -2 —debug to use the simulator and bugger/debugger

NOTE: You can also enter any of the command line options that
Table 12 lists.

Table 12. Environment 2 Command Line Options

Option Description
—client Start the MME client only
—config file Configure MME with the configuration data stored in

the file specified by file

—copy nhum Connect to maintenance software assigned the copy
number specified by num

NOTE: Copy numbers are necessary only when you
run multiple copies of MME on the same MWS
or SWS (for example, when you run several
MME copies with the simulator or when you
use MME to support multiple CRAY T90
series mainframes that are connected to the
same MWS or SWS).

—io num Use the CPU specified by numto perform input and
output operations

114 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 2

Table 12. Environment 2 Command Line Options (continued)

Option Description

—kill Kill any running MME, SCE, or LME applications
before you start a new copy of MME

—remote host Start the MME client only and connect the client to the
MME server that is running on the remote host
specified by host

—server Start the MME server only

From the OpenWindows Workspace Menu
You can start environment 2 from the OpenWind@wvegkspace menu on
either an MWS or an SWS.

MWS Workspace Menu Options

Figure 26 shows the OpenWindowsrkspace menu options that you
should choose on an MWS to start environment 2 with an FEI channel.
Choose any copy number.

o= Workspace _|
o310 Maintenance Tools

Programs D
(Maintenance Tools >| DMS2 ...
Utilities Dl XCFG ..
Properties...
Exit... Assert TSM configuration...

Reboot TSM chassis...

o0 MME
BOUNDARY SCAN D
(MME > LME >

NWACS >| SCE > o= MME env 2
SMARTE > MMEenv0 Pl copyo..

SSDE Pl MME env 1 >l Copyi..
XELOG >{(MME env 2 Ml copy2..

YIMS > Copy 3...

MME Simulator >

Figure 26. MWSnorkspace Menu Options to Start Environment 2 with an FEI Channel

HDM-102-B Cray Research/Silicon Graphics Proprietary 115

Environment 2 MME User Guide

Figure 27 shows the OpenWindowsrkspace menu options that you
should choose on an MWS to start environment 2 with the simulator or
with the simulator and bugger/debugger.

=00 Workspace _|

o—10 Maintenance Tools
Programs D
(Maintenance Tools D| DMS2 ...
Utilities >l XCFG ..
Properties...
Exit... Assert TSM configuration...
Reboot TSM chassis...
BOUNDARY SCAN g
MME g
NWACS D>
SMARTE >
SSDE >
XELOG >
YIMS g
(MME Simulator o= MME Simulator
;I\CA:E o—l0 MME env 2
MME env 0 Simulator...
MME env 1 Simulator with Debugger...
(MME env 2]

Figure 27. MWSnorkspace Menu Options to Start Environment 2 with the Simulator or
with the Simulator and Bugger/Debugger

116 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 2

SWS Workspace Menu Options

Figure 28 shows the OpenWindowsrkspace menu options that you
should choose on an SWS to start environment 2 with an FEI channel.
Choose any copy number.

o=l Workspace |

o=l Maintenance Tools
Programs
(Maintenance Tools D| SIO TEST >
Utilities >|(T32 TEST o=l T32TEST
Properties...
Exit NWACS CBOUNDARY SCAN >
MME o=D0 MME
XCFG ...
MME Simulator | LME >
SCE D o0 MME env 2
XELOG >
MME env O D Copy O...
MME env 1 g Copy 1...
(MME env 2 M copy2..
Copy 3...

Figure 28. SWSvorkspace Menu Options to Start Environment 2 with an FEI Channel

HDM-102-B Cray Research/Silicon Graphics Proprietary 117

Environment 2

MME User Guide

Figure 29 shows the OpenWindowsrkspace menu options that you
should choose on an SWS to start environment 2 with the simulator or

with the simulator and bugger/debugger.

o—TH0 Worksp

ce I

o=l Maintenance Tools

o=l00 MMEenv?2

Programs
(Maintenance Tod SIO TEST >
Utilities (732 TEST | o0 T32TEST
Properties... BOUNDARY SCAN —=
Exit... NWACS MME o=B0 MME Simulator
LME...
XCFG .. CMME Simulator SCE...
XELOG > MME env O
MME env 1
(MME env 2

Simulator...
Simulator with Debugger...

l>)|

Figure 29. SW3Vorkspace Menu Options to Start Environment 2 with the Simulator or
with the Simulator and Bugger/Debugger

118

Cray Research/Silicon Graphics Proprietary

HDM-102-B

MME User Guide Environment 2

What Happens When You Start Environment 27?
The following actions occur when you start MME:

1. The MME server attempts to connect with the System Configuration
Environment (SCE) server.

If MME cannot connect with a running SCE server, MME starts a
new SCE server and tries to connect to the new SCE server. (If you
specified a configuration file with theconfig command line

option, MME sends this file to SCE through the S&lefault

command line option. SCE loads the configuration that is stored in
the file.)

2. Once MME establishes a connection with SCE, MME attempts to
receive a configuration from SCE:

* If a configuration is available, SCE provides MME with the
components that are available for use by the maintenance
system. MME automatically configures itself to use these
components.

» If a configuration is not available, MME displays the message
shown in the following snap:

Infarmation from the configuration server indicatas
that a rmainframe configuration is not available,

Check the current configuration,

Olkay

IF MME displays this message, than you need to create a
configuration using SCE before you continue using MME.
Refer to theSsCE User Guidepublication number HDM-069-C,
for more information about creating a configuration.

HDM-102-B Cray Research/Silicon Graphics Proprietary 119

Environment 2 MME User Guide

Diagnostic Controller Components

Once MME establishes a configuration, a special Cray Assembly
Language (CAL) program, called the diagnostic controller (DC) or
controller, automatically loads into the lower 1409@@rds of mainframe
memory. The DC acts as an interface between MME in the MWS or SWS
and the control points in the mainframe. The controller performs the
following actions:

* Manages multiple control points

* Handles memory display updates

* Logs memory and register parity errors
* Routes and handles interrupts

* Handles diagnostic program requests

CAUTION

If UNICOS is running in the mainframe when MME
loads the diagnostic controller, the diagnostic
controller will overwrite UNICOS in mainframe
memory, which will hang the operating system.

To prevent this from accidentally occurring, ensure
that the Owner setting in the SCE base window is
setto OS for the logical partition in which UNICOS
is running when UNICOS is running in the
mainframe. MME cannot access a logical partition if
the OS owns it.

Figure 30 shows the three main areas of the controller: the standard
locations, the code block, and the block storage segment.

Notice that diagnostic controller components begin with a lowercase letter
Remember that control point components begin with an uppercase letter
(for example, DEXP, SEXP, and WEXP).

120 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 2

e 0 dEXP Deadstart Exchange Package
40 sEXP Starting Exchange Package
100 iIEXP Interrupt Exchange Package Area (Trap Filled)
140 fEXP Flush Exchange Package
2000 WEXP Working Exchange Package Table
4000 cEXP Current Exchange Package Table
Standard Locations < 6000 tEXP Trap Exchange Package Table
10000 .
XEXP Exchange Area (Trap Filled)
20000
PARAM Parameter Block
32000 bEXP Buffer Exchange Package Table
_ 36000 ELOG Error Log Table
/40000 STDCODE Start of the Standard Code Block
40110d iROUTER Interrupt Router Code
403002 NROUTER Normal Exit Router Code
LIB Library Interrupt Handlers
Code Block <
42000a MAIN Diagnostic Controller Main Code
43000 iHANDLER Interrupt Handlers
43100a nNHANDLER Normal Exit Handlers
140000 CODEEND End of the Controller Code

Block Storage Segment

Figure 30. Diagnostic Controller Components

Standard Locations

The standard locations block contains the parameters that the controller
uses to operate. The standard locations block includes the deadstart
exchange package, the starting exchange package, the interrupt exchange
package, the flush exchange package, the working exchange package
table, the current exchange package table, the trap exchange package
table, the exchange area, the parameter block, the buffer exchange
package table, and the error log table.

HDM-102-B Cray Research/Silicon Graphics Proprietary 121

Environment 2 MME User Guide

Deadstart Exchange Package

The deadstart exchange package (dEXP) begins at addrels8VE uses
this exchange package to exchange the modified copy of SEXP into the
CPU when a deadstart occurs.

Starting Exchange Package

The starting exchange package (seXP) begins at addrgs8MIE uses
this exchange package to build the dEXP used to deadstart the CPU.
When MME loads the controller, the sEXP includes the following values:

* P register = controller MAIN (42000a)
e XA=wEXP

Interrupt Exchange Package Area

The interrupt exchange package (IEXP) area begins at addressTi0€

area contains exchange packages that have P registers set to iTRAPXA.
These exchange packages trap invalid exchanges that occur. Therg are 76
IEXPs in this area.

Flush Exchange Package

The flush exchange package (fEXP) begins at addregs P4CGPU uses
the fEXP to perform a dummy exchange to clear any pending interrupts.

Working Exchange Package Table

The working exchange package (WEXP) table is a group géxthange
packages that start at address 2006itially, these exchange packages
are identical to iIEXP and XEXP, except for the XA and Al registers.
When you click on”_c___), MME copies the SEXP for a control point
into the wEXP for the CPU that is assigned to the control point. The
WEXP includes the following values:

* P register = control point MAIN
e XA=wEXP

122 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 2

Current Exchange Package Table

The current exchange package (CEXP) table is a groups@x¢fange
packages that start at address 300lhese exchange packages have P
registers set to ITRAPXA. These exchange packages trap invalid
exchanges that occur.

Exchange Area

The exchange area (XEXP) begins at 1@00rhis area contains exchange
packages that have P registers set to ITRAPXA. These exchange
packages trap invalid exchanges that occur.

Parameters
The parameter block, which starts at address Z0EWRAM), contains
several tables of parameters that the controller uses to manage control
point execution. Refer to Table 13.
Table 13. Controller Parameters
Address Label Description

MME updates several tables of base and limit values that the controller uses to access the control
points in memory. MME loads these tables, which begin at address 20000g, before MME makes a
request. There are four tables for each CPU:

Table 0: Diagnostic LAT logical bases and limits (exchange package format)
Table 1: Diagnostic LAT physical (exchange package format)

Table 2: Diagnostic absolute base (full address)

Table 3: Diagnostic absolute limit (full address)

20000 mmeLIM CPU 0 LAT modes, base, limits table

20010 mmePB CPU 0 LAT physical bias

20020 mmeAB CPU 0 absolute base

20030 mmeAL CPU 0 absolute limit

22000 mmeBASE Control point base address table

22040 mmeCIFM Clear interrupt flag (1 word per CPU)

22100 diagBASE Diagnostic base address table

22140 dcCIFM Copy of actual interrupt mode (IM) (1 word per CPU)

HDM-102-B Cray Research/Silicon Graphics Proprietary 123

Environment 2

MME User Guide

Table 13. Controller Parameters (continued)

Address

Label

Description

The memory allocation tables begin at address 24000g. These tables contain the currently executing
base and limit values. There are four tables for each CPU:

Table 0: Diagnostic LAT logical bases and limits (exchange package format)
Table 1: Diagnostic LAT physical (exchange package format)
Table 2: Diagnostic absolute base (full address)
Table 3: Diagnostic absolute limit (full address)
24000 dcLIM CPU 0 LAT logical base and limit
24010 dcPB CPU 0 LAT physical bias
24020 dcAB CPU 0 absolute base
24030 dcAL CPU 0 absolute limit
The MME request port contains the requests and responses for communication between the CPU and
MME.
26000 mwsTOcpu MWS (or SWS)-to-CPU request
26040 mwsACK CPU-to-MWS (or SWS) response (generated by a CPU)
26100 cpuTOmws CPU-to-MWS (or SWS) request
26140 CpuACK MWS (or SWS)-to-CPU response (generated by the MWS

or SWS)

The CPU data tables contain data from the CPUs (1 word per CPU for each table).

26400 hartBEAT Hartbeat table

26440 idleSTAT Idle status table

26500 pPASS Diagnostic pass count

26540 eRROR Diagnostic error count

26600 WEXPP WEXP P register

26640 WEXPIF WEXP IF register

26700 INTFLAGS Temporary WEXP IF register

26740 suUT Diagnostic section being tested

27000 cuT Diagnostic condition being tested
27040 ioLOCKUP Count of retries in 1/O reservation table
27100 srLOCKUP Count of retries in cluster reservation table
27140 dIFLAGS Pending diagnostic-handled interrupts
27400 WEXPADDR WEXP address table

27440 CEXPADDR CEXP address table

27500 TEXPADDR TEXP address table

27540 bEXPADDR bEXP address table

A data block that contains several program variables begins at 27600g

27600

idleHALT

Halt on idle parameter

124

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 2
Table 13. Controller Parameters (continued)
Address Label Description

27601 dcHALT Halt on error active

27602 noRANGE No base/limit range check parameter:
0 = Check base and limit range
1 = Do not check base and limit range

27603 clrSYS System (real-time clock [RTC] and I/O channels) clear
status parameter:
0 = System was not cleared
1 = System was cleared

27604 cRESBUSY I/O channel reservation table busy flag

27605 SRESBUSY Cluster reservation table busy flag

27606 trapSTAT Save trap status

27607 trapADDR Save trap address

Exchange Package Swap Buffer

Error Log Table

Code Block

HDM-102-B

The buffer exchange package table (bEXP) begins at address 32060
controller code uses the bEXP as an exchange package swap buffer.

The error log table organizes all memory and register parity errors from
running control points into one area of memory. The error log table
begins at or after address 3690@onsult the listing at label ELOG for
the actual address.

Refer to the “View —> Error Log” description in théME Interface
Referencepublication number HDM-008-A, for information on how to
view the error log table.

The code block contains all the code necessary for the controller to
function. The code block includes the interrupt router code, the normal
exit router code, the library handlers, the interrupt handlers, and the
normal exit handlers.

Cray Research/Silicon Graphics Proprietary 125

Environment 2 MME User Guide

Interrupt Router Code

The interrupt router (IROUTER) code begins at address 4@1 Itk
IROUTER code is the first level of interrupt processing. This code
determines which interrupts exist and passes the interrupts to the
appropriate handler routines.

Normal Exit Router Code

The normal exit router (hnROUTER) code begins at address 49300a
normal router code passes a normal exit to the appropriate normal exit
handler code.

Library Interrupt Handlers
Thelibrary handlers are standardized handlers that are used for interrupt
processing.

Interrupt Handlers

Theinterrupt handler ((HANDLER) code begins at address 4g00bis
code contains additional handlers that are used to process interrupts.

Normal Exit Handlers

The normal exit handler (hnHANDLER) code begins at address 43100a
This code handles normal exit calls.

Block Storage Segment

The block storage segment contains memory that the controller uses to
store data as the controller executes. The block storage segment includes
the uninitialized data.

126 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Environment 2

Diagnostic Controller Operation

The controller works with MME to control the CPUs. This control ranges
from single-CPU diagnostics to multiple CPUs running multiple
diagnostics with concurrent I/O activity.

Controller Communication Port

The controller code includes a software bidirectional communication port
that is located in mainframe memory. This port consists of an MWS (or
SWS)-to-CPU request buffer, an MWS (or SWS)-to-CPU request
acknowledge buffer, a CPU-to-MWS (or SWS) request buffer, and a
CPU-to-MWS (or SWS) request acknowledge buffer. MME uses this port
to make a CPU request by writing a function code into the communication
port area of memory. Refer to Table 14 for descriptions of the request
function codes. Through this communication port, MME makes requests
to the controller, and the controller acknowledges the requests. The
controller also uses this port to make requests to MME, and MME uses the

port to acknowledge the controller requests.

Table 14. Request Functions

Code [Name Description Action
1 START Start the diagnostic MME issues a START@SEXP CPU request
(single CPU) (A7 is unchanged) for any or all usable CPUs. Upon receipt of
the request, a CPU copies the SEXP from its
- - diagnostic data area to the wEXP; the CPU
2 [START Start the diagnostic puts the correct instruction base, data base,
(multiple CPUs) | (A7 = CPU number) instruction base limit, and data base limit in the
WEXP area and exchanges to the diagnostic.
3 HALT Copy exchange package at | The CPU writes the contents of its registers to
0 to WEXP, dump the CPU | a specified dump buffer located in the
registers, and idle diagnostic data area. MME reads the dump
2 SUSPEND Dump the CPU registers buffer and provides a formatted dump display.
and idle These requests are also used to rotate control
points in the run system.
5 UPDATE Dump the CPU registers
and continue diagnostic
execution
6 RESTART Load registers from the The CPU loads its register and the WEXP
(single CPU) diagnostic dump area and | from the dump buffer of the control point and
restart then exchanges to the diagnostic code. The
(A7 is unchanged) CPU continues execution of the diagnostic
7 RESTART Load registers from the where the previous CPU left off. These _
(multiple CPUs) | diagnostic dump area and requests are also used to rotate control points
restart in the run system.
(A7 = CPU number)
HDM-102-B Cray Research/Silicon Graphics Proprietary 127

Environment 2 MME User Guide

Using this communication port requires significantly less code execution

in the mainframe CPU when the MWS (or SWS) is working through the
maintenance channel, as opposed to the MWS (or SWS) working through
a LOSP channel. Also, the controller will support diagnostic requests that
use the maintenance features of the maintenance channel (individual CPU
master clear, individual CPU idle, maintenance modes, and the diagnostic
monitor).

There are 49function request locations in memory, one for each CPU.
They are mwsTOcpu for CPU 0, mwsTOcpu+1 for CPU 1, and so on.
When the controller is in the idle loop of the main code block, it monitors
the location for the CPU in which it is running. Once that location

becomes nonzero, the function code is decoded and acted upon; then the
location is zeroed out, which MME reads as an acknowledgement. After a
set period of time, MME reads that same location. If the location is zero,
the function has been acted upon. If the location remains nonzero, there is
a CPU error, and MME prints the appropriate error message.

If, for example, the MWS (or SWS) function is a GO, the controller copies
the SEXP of the control point to the wEXP of the controller and then the
controller does a normal exchange, which starts the diagnostic program.
The control point runs until it receives a halt or an interrupt. If an
interrupt occurs, the control point exchanges out to the wEXP, which
points to the controller interrupt router.

CPU Deadstart and Control

The controller does not deadstart any CPUs. MME uses the direct
memory access (DMA) and the individual CPU control capabilities of the
maintenance channel to deadstart the CPUs. Because MME is able to
master clear and deadstart CPUs individually through the maintenance
channel, you can easily move any CPU into or out of controller code
execution. The active CPU handles MME requests through the individual
CPU request ports, which are memory locations that are organized by
CPU number. MME uses the DMA capacity of the maintenance channel
to load diagnostics into memory and to read memory to update all
displays, which does not interrupt any CPU that is executing either the
controller or diagnostic programs.

128 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 2

MME-to-controller Communications

MME uses the software bidirectional communication port in the controller
to control the CPUs. MME writes a start request, dump request, or restart
request directly to the MWS (or SWS)-to-CPU requestebufThere are

no MCU I/O requests from MME because MCU 1/O is done through the
DMA of the maintenance channel.

Load a Layout (Optional)

Layouts are not implemented yet.

Allocate Resources (Optional)

MME enables you to change the memory allocation options, the CPU
automatic assignment options and CPU modes, the CPU-to-memory
delays, and the section swap interval. Refer to the “Properties —>
Resource Allocation” description in thME Interface Reference
publication number HDM-008-A, for more information.

Enable the Run System (Optional)

The run system enables you to perform confidence testing of the
mainframe by creating an environment for hardware system evaluation
that is similar to an operating system. The operating system environment
Is simulated by swapping jobs (control points) between active CPUs.

ChooseProperties —> Run System to access thBME Run System window.

Use this window to enable the run system and set the properties of the run
system parameters. Refer to the “Properties —> Run System
(Environment 2 Only)” description in tfdME Interface Reference
publication number HDM-008-A, for more information about e

Run System window.

Load One or More Control Points

To perform testing with environment 2, you need to load one or more
diagnostic programs, utilities, or loops into mainframe memuven

you load one of these CAL programs into memory, it is called a control
point. Because you typically load more than one control point into
mainframe memory at a time in environment 2, the control points share
the resources of the mainframe; the controller coordinates the resource
sharing.

HDM-102-B Cray Research/Silicon Graphics Proprietary 129

Environment 2 MME User Guide

MME performs the following functions to load each control point:

1. MME loads the code that is located in addresses 0 through the end of
the standard location block into an MME data buffer.

2. MME configures the diagnostic or utility code in the MME buffer
based on the data that is stored in the standard locations. For
example, MME configures the memory configuration and CPU
select standard locations.

3. MME writes the code that is in the MME data buffer into mainframe
memory.

4. MME writes the code from the end of the standard locations to the
end of the initialized data into mainframe memory.

5. Optionally, MME clears the dump area.
6. MME overlays any global user changes to the control point sections.

7. MME overlays any section user changes.

Control Point Components

The control point components in environment 2 are similar to the control
point components in environment 1, with the following differences:

* Environment 2 control point addressing is relative to the instruction
base address of the control point. This occurs because MME does
not load the control points at addregswhich is where the
controller resides. For more information, refer to the following
“Control Point Addressing” discussion.

* Environment 2 control points use the interrupt exchange package
(IEXP). The IEXP starts at address 3§0dypically, the controller
code uses IEXP to exchange control to the IROUTER code in the
control point.

Control Point Addressing

Because the controller starts at addresn@ you usually load more than
one control point in mainframe memory at a time, control point addressing
Is not based on addresg(Bometimes called absolute addressing) as it is

in environment 1. Instead, environment 2 uses relative control point
addressing, which bases the addressing of the control point code on the
instruction base address (IBA) of the control point. For example, if the

130 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 2

control point has an IBA of 24009(the actual addresses of the control
point components in memory are the addresses in the control point plus
the IBA (24000@). Refer to Figure 31.

Control Point 2 Addressing IBA + Location = Relative Address

0
Controller DEXP 240000g + Og = 240000g
BA SEXP 2400005 + 405 = 240040g
140000 IEXP 2400005 + 100g = 2401005
Control Point 0
Section FEXP 240000g + 140g = 2401405
STDLOC 240000g + 200g = 240200g
IBA
200000g DIAGINFO 240000g + 300g = 240300g
Control Point 1
Section PARAM 240000g + 1000g = 241000g
IBA _
5400005 ELOG 240000g + 1600g = 2416005
Control Point 2 _
Section WEXP 240000g + 2000g = 2420004
CEXP 240000g + 4000g = 2440004
Max TEXP 240000g + 6000g = 246000g
Memory
STDCODE 240000g + 10000g = 250000g
iROUTER 240000g + 10105cg = 250105cg
NROUTER 240000g + 10300ag = 250300ag
LIB 240000g + 10400ag = 250400ag
MAIN 240000g + 12000ag = 252000ag
CODESUB
iHANDLER
NHANDLER
IDATA
dumpAREA
UDATA
Figure 31. Control Point Addressing
HDM-102-B Cray Research/Silicon Graphics Proprietary 131

Environment 2

Viewing Memory Addres

Controller Addresses

Control Point Addresses

132

MME User Guide

Ses

Because addressing in environment 2 is absolute for the controller and
relative for the control points, theévE View Memory Setup window enables
you to display memory both ways. The following examples illustrate how
you can use the settings in th®E View Memory Setup window. Refer to

the “View —> Memory” discussion in tfdME Interface Reference
publication number HDM-008-A, for more information about e

View Memory Setup window.

Absolute addressing uses a base addresg d€Ontroller component
addresses in memory locatiogt@rough 140008are absolute because the
controller code starts at addregs 0o view these absolute addresses,
click on theBase: setting and enter the address in Akeress:
field. When you click om_view.), aMemory — Absolute window appears,
which shows the exact address that you entered. Figure 32 shows a
Memory — Absolute window that displays the first g@vords of the sEXP

for the controller, which is located at absolute addregs 40

) Memory — Absolute

nooooooon4o g@ls1777 177777 000000 000000
00000000041 000000 000000 000000 000000
00000000042 000000 000000 000000 000000
00000000043 000000 000000 000000 000000
00000000044 000000 000000 000000 000000
00000000045 000000 000000 000000 000000
00000000046 000000 000000 000000 000000
00000000047 000000 000000 000000 000000
00000000030 160000 000000 000001 010000
00000000051 000000 000000 046000 000013
00000000052 000000 000000 000000 000000
00000000053 000000 000000 000000 000000
00000000054 000000 000000 000000 000000
00000000035 000000 000000 000140 000140
00000000056 000000 000000 000140 000140
00000000057 000000 000000 000140 000040

Figure 32. Absolute Memory Display

Relative addressing uses a base address othergh&woftrol point
component addresses are relative because the control point code starts at
an instruction base address (IBA), which typically is npt 0o view

relative addresses, click on thase: setting and enter the value
that you want in theaddress: field (for example, enter 40or the SEXP).

MME reads the appropriate address based on the IBA for the current
control point and displays the data iMemory (####4#) window.

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Environment 2

MME includes two options for viewing relative addresses: drifting and
anchored modes.

NOTE: In the following examples, all of the exchange packages are for
CPUs that use the Cray Research, Inc. (CRI) floating-point
number format. If you view an exchange package for a CPU
that uses the IEEE floating-point number format, the format of
the exchange package will be different from the format of the
exchange packages shown in these examples.

Using Drifting Mode

Drifting mode displays memory for the current control point as you
change control points. The memory window “drifts” to the base address
for the current control point. Figure 33 and Figure 34 provide an example
of using drifting mode.

In the following example, MME has two loaded control points. Control
point O isasb.t , which has an IBA of 1400@0 Control point 1 isvb.t ,
which has an IBA of 5000@0 When you first view the memory window,
the window displays memory relative to the IBAagb.t , as shown in
Figure 33.

The Initial Base Address is the IBA of Control Point 0 (140000g)

l

& Memory (0140000}

apy Bo000000000000
P 0000011100a AD 000000 000000 000000 000000 S0 000000 000000 000000 000000

PM 000 #1 000000 000000 000000 000100 ST 177877 177777 177777 177777
KA 0000140 #2 000000 000000 000000 000100 S2 000000 000000 000000 000000
EAD 0000140 #3 000000 000000 000000 000000 S3 000000 000000 000000 000000

Control Points:

[« 00 ash.t

0000000140000

& 00 svb.t

0oo0oooosoogon

EA1
Ea2
EA3
Edd

0ooon140
ooao14n
0ooon140
oooo140

s
A5
A6
a7

000000 000000
000000 000000
000000 0aoooo
000000 000000

Qooooo
oooooo
ogoooo
oooooo

ooaooo
ooaooo
ooaooo
ooaooo

Qooooo
oooooo
ogoooo
oooooo

Qoaooo
ooaooo
noaooo
oooooo

nooooo
nooooo
nooooo
nooooo

nooooo
nooooo
nooooa
nooooo

VL 200 DM MC RU FOP EBC MRI IPD MNA #NU ODN

CH 000 MODES 015 BR RSi fﬁ IM 00000000 IT IID FIT IIT III IFI III III
RS
D1 OEM [PM PRR KPM CTP QUL IXM I¥K VWY

[[=—C T

HDM-102-B

STATUS 00 ¥WU ODN 000 55 *#y FwWB IF 00000000 RM FOP EBM MRI IPD MNA& XHU ODN
THN Wy BE **N P5M PE PRR EPE CTC QUL IEM IXM VIV
555 555 MU =05 L EU EEE XIC UIP IT IXI F FWI

LATO Rw@c 02 RW@D 02 PE 0000000140000 LB 00000000000000 LL 00000000340000
LAT1 RWXC 00 RWXD 00 PB 0000000000000 LB 00000000000000 LL 00000000000000
LATZ RWKC 00 RWHD 00 PB 0000000000000 LB 00000000000000 LL 00000000000000
LAT3 RWXC 00 RWXD 00 PE 0000000000000 LE 00000000000000 LL 00000000000000
LAT4 RWXC 00 RWXD 00 PB 0000000000000 LB 00000000000000 LL 00000000000000
LATS RWKC 00 RWHD 00 PB 0000000000000 LB 00000000000000 LL 00000000000000
LATE RWXC 00 RWXD 00 PB 0000000000000 LB 00000000000000 LL 00000000000000
LAT? RWHC 00 RWHD 00 PB 0000000000000 LB 00000000000000 LL 00000000000000

Figure 33. Drifting Display for the Current Control Point

When you click on control point 1 in ti@ntrol Points scroll box, the
memory window drifts to the new current control point, which displays
memory based on the IBA efb.t , as shown in Figure 34.

Cray Research/Silicon Graphics Proprietary 133

Environment 2 MME User Guide

The Base Address Drifts to the IBA of Control Point 1 (500000g)

& Memory (0500000}

ADy 0000000000000
P 0000011100a AO 000000 000000 000000 000000 S0 000000 000000 000000 000000

PN 00D A1 DODDOO 000000 DDOOOO 000100 §1 177777 177777 177777 177777
XA 0000140 A2 000000 000000 0DDOOO 000100 S2 000000 000000 000000 000000
Control Points: EAD DDOD140 A3 DODDDO 000000 DODDOO 000000 53 DOOOOO 000000 DODDOO 00000
EAT DDDD140 A4 00DDOO 000000 DDODOO 000000 S4 000000 000000 00DOO0 000000
EAZ DDOD140 A5 DODDOO 000000 00ODO0 000000 55 DOOOOO 000000 0ODOO0 000000

& 00 ash.t 00000OOO140000
[00 svb.t oooDDOODOSOODOD |

EA3 0000140 A6 000000 000000 000000 000000 S6 000000 000000 000000 000000
Efd 0000140 #7 000000 000000 000000 000000 57 000000 000000 000000 000000

VL 200 DM MO RU FOP EBC MRI IPD MMA XML QDM

CN 000 HMODES 015 BR RSi fﬁ IM 00000000 IT IIT FIT IIT III IFI III III
RIS
01 OEN PM PRR XPM CTP OCL IXM IXK WY

(L T=10

STATUS 00 XWU ODN 000 55 ** FWE IF 00000000 RM FOP EEM MRI IPD MWA XHU CDN
THN Wi BE **N P&M PE PRR EPE CTC OCL IEM IXN VIV
555 555 MU #=#1 0§ L EU EEE XIC UIP II IXI F FVI

LATO RWfc 02 RW@ED 02 PE 00O00O0OS00000 LE 00000O00000000 LL Q0000000340000
LAT1 RWXC 00 RWXD 00 PE 0000000000000 LB 00000000000000 LL 00000000000000
LAT2 RWXC 00 RWXD 00 PE 0000000000000 LB 00000000000000 LL 00000000000000
LAT3 RWKC 00 RWHD 00 PE 0000000000000 LB 00000000000000 LL 00000000000000
LAT4 RWXC 00 RWHD 00 PE 0000000000000 LB 00000000000000 LL 00000000000000
LATS RWXC 00 RWHD 00 PE 0000000000000 LB 00000000000000 LL 00000000000000
LATE RWXC 00 RWXD 00 PE 0000000000000 LE 00000000000000 LL 00000000000000
LAT? RWHC 00 RWHD 00 PE 0000000000000 LB 00000000000000 LL 00000000000000

Figure 34. Drifting Display for the New Current Control Point

Using Anchored Mode

Anchored mode always displays memory for the control point that was
current when the memory window was first displayed. The memory
window becomes “anchored” to the base address window and always
displays memory for that control point, as shown in Figure 35 and
Figure 36.

Although the window stays anchored to one control point, the window
data changes for the section of the control point that you select, as shown
in Figure 37 and Figure 38. The window data changes because individual
sections are loaded into mainframe memory and removed from mainframe
memory as the current section changes.

134 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 2

The Initial Base Address is the IBA of Control Point 0 (140000g)

& Memory (D140000) 00 asb.t -0

ADy 0000000000000
P 0000011100a A
PN 000 a1
¥A 0000140 a2
EAD 0000140 A3
EA1 0000140 e
EAZ 0000140 A5
EA3 0000140 Ak
Efd 0000140 A7

oooooo
oooooo
Qooooo
oooooo
oooooo
oooooo
oooooo
0ooooo

oooooo
ogoooo
Qooooo
oooooo
ogoooo
oooooo
000000 000000 000000
000000 000000 000000

& IM 000o00oo
S
i

000 55+ FWB IF 00000000
BE **N P&M
MU #=#1 0§ L

oooooo
ogoooo
Qooooo
oooooo
ogoooo
oooooo

ooaooo
ooo100
ooo100
ooaooo
noaooo
oooooo

ooaooo
177777
Qoaooo
ooaooo
noaooo
oooooo
noaooo
ooaooo

noaooo
177777
noaooo
noaooo
noaooo
nooooo
noaooo
noaooo

noaooo
177777
nooooo
nooooo
nooooa
nooooo
nooooa
nooooo

000000
177777
gooooo
n0ooooo
gooooo
oooooo
gooooo
oooooo

control Points: (5]

[00 ash.t
& 00 svb.t

0000000140000 |
000000a0s00000

MODES 015 BR RS[)
DM MC[E
D1 OEN

CN 000
VLo 200

III
FOP
PRR

FIT
EBC
KPM

ITI
HMRI
TP

ITI
IPD
ocL

IFI
MM
I¥M

III
KNU
T¥x

III
ODN
Wi

[J=—C T

STATUS 00 XN CODM
THN Wi

S55 555

D
RWHD
RWHD
RWHD
RWHD
RWHD
RWKD
RWHD

FOP
PRR
EEE

EEM
EPE
KIC

HRI
CTe
UIp

IFD
ocL
II

Mg HNL
IEM TN
IXI F

ODN
VIV
FVI

LATO
LAT1
LAT2
LAT3
LAT4
LATS
LATE
LAT?

RegC
R C
R C
RWKC
R C
RWxC
R C
R C

0000000140000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
000000000000

0000000000000
Q0000000000000
0000000000000
0000000000000
Q0000000000000
0000000000000
Q0000000000000
0000000000000

Q0000000340000
no0o0o00000000
nonoooooooooon
Qoooooooooooon
no0o0o00000000
nonoooooooooon
no0ooo0o0oo00o0
0on0gaoooaoaan

Figure 35. Anchored Memory Display for the Current Control Point

When you switch control points, the window remains anchored to the IBA
of the first control point, as shown in Figure 36.

The Window Remains Anchored to the IBA of Control Point O

l

Memory (0140000) 00 asbht -0

]

Apy Bo000000000000
P 00o0011100a A0
PM 000 a1
K& 0000140 a2
EAD 0000140 A3
EAT 0000140 e
EAZ 0000140 A5
EAZ 0000140 Ak
Ef4 0000140 a7

MODES 015 BR RS EE
DM HCH S
D1 OEM [

KMU ODN 000 S5 *#*Y FWB

THN Wy BE **N P5M
555 555 MU =05 L

gooooo
gooooo
n0ooooo
gooooo
oooooo
gooooo
gooooo
n0oooao

oooooo
Qooooo
oooooo
oooooo
oooooo
oooooo
Qooooo
0ooooo

ogoooo
Qooooo
oooooo
ogoooo
oooooo
ogoooo
Qooooo
oooooo

ooaooo
ooo100
ooo10o
noaooo
oooooo
noaooo
Qoaooo
ooaooo

0ooooo
177777
oooooo
ogoooo
oooooo
ogoooo
Qooooo
oooooo

0oaooo
177777
ooaooo
noaooo
oooooo
noaooo
Qoaooo
ooaooo

nooooa
177777
nooooo
nooooa
nooooo
nooooa
nooooo
noaooo

oonaon
177777
0oooan
oonaon
ooooon
oonaon
ooooon
oooaan

Control Points: (5]

& 00 ash.t
[« 00 svb.t

00000000140000
00000000500000

CH 000
VL 200

IM 00000000 III
FOP

PRR

FII III
EBC MRI
KPM TP

III
IFD
ocL

IFI III
Mg KN
I¥M IHX

III
ODN
WY
STATUS 00 IF 0oooogoo FOP
PRR

EEE

EBM MRI
EPE CTC
KIC UIP

IPD
oCL
II

MN& KNL
IEM TN
IXKI F

ODN
VIV
FWI

| CINEY |

HDM-102-B

LATO
LAT1
LATZ
LAT3
LAT4
LATS
LATE
LAT?

Refic
R C
R C
R C
R
R C
R
R

RwfiD
RiD
RWKD
RWHD
RWKD
RWKD
RsD
RWKD

0000000140000
0000000000000
000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000go00aooao

Q0000000000000
00o00o0oooooon
0oooooooooooon
Q0000000000000
00o00o0oooooon
Q0000000000000
00o00o0oooooon
0000000000000

00000000340000
noooooonooonog
noaoooooooonoo
Q0000000000000
noooooonooonog
n00o0oo0000000
noooooonooonog
00ao00ao0aooog

Cray Research/Silicon Graphics Proprietary

Figure 36. Anchored Memory Display for the New Current Control Point

135

Environment 2

MME User Guide

Control Points: [T) Sections:
= =
[00 asb.t oooooooorooon | (#]| W 00 askon.t s 1/2)Fd
& 00 svb.t 00000000500000 S| « 01 asbote s 472 H
« 02 ash0z.t S 12
& 03 ash03.t 5 1/2
« 04 ashO4.t S 1/2
— —
i) Mty (-] 00 gzl -8
[T To T
00111008 AL OOOG00 QDGDGD MO0 GeIeI0 S0 AOdodn OUDdid QaeI0 (0
PH [ile] Al [0 QD m0]red Qo ian S0 178797 13F8F8 170007 13FeEy
L TCTIED A DODGDD QOO0 PO Q100 £ QOO000 DADADG ADII0 (00
Efa] Q00140 A% DODODd ananan D QD 51 Qongn ponang anaman (0
E&l Q001410 Ad DODGDD QOO0 POO0N Q000 4 QOO0AD DADADG ADA0I0 (00
ER? Amni4n A% DADDd anaan DI a0 55 anan panang animan
EA1 Q00140 A DUDGDD QDADAD MO0 Q000D S QOO0OD DADADD ADA0I0 (000
Efd 000140 A7 DODDd Ananan D QD 57 Qanan ponand ananan (0
TH N WYL DY Bﬂ n IH Quanann 10 [0 FIC CIC CIC CFC [0 [0
T Pu FIP EBC PREL LPD Mea 5WI ol
r"l I:IE FH PFA %FH TR <L [¥H [¥¢ W
STATYS D0 W) OfH 000 S5 <Y FYE TF QDODODOD B FOR ERH HRL [PO HHR H) o4
LA wer BE M FSH FE PFROEPE CTC oiL [EM oA wlv
S35 555 HI =5 L EU EEE ®17 UIP [1 [¥[F FY[
LATD Pl 0z Poliy 0 PO QDODODD (0000 LE DODO 0000 LI, (000 =i
LATT Fyeel 00 Fyel 00 P8 QOOOOOO0O0000 LE DOOOO0 000000 LL 0o 0o o COaieieain
LATZ B a0 BT 00 P8 QDODODOoongnd LE DODa 0 LI, (0o
LATE Fyeel 00 Faedd 00 P8 QOOOOOOOO000) LE QOO0 LL 0ol 0o o COaeaieai
LATA By 0 BT 00 P8 QDODODODangnd LE DODa 0 LI, (0o
LATE Pyl 00 Faoud 00 PH QDODOOGOGDG00 LE (X000 0 0 LU £ Oxd Oxl X inding
LATE B a0 BT 00 P8 QDODODODO0gDd LE DODQ 0 LI, (0o
LAT? Fyeel 00 Faedd O0 P8 Q000000000000 LE (OO0 00000000 LL 0o 0ol O i

Figure 37. Memory Display for the Current Control Point Section

When you switch control point sections, the memory window displays
data for the new current section, as shown in Figure 38.

Control Points: (5] Sections: [¥)
= | —
[« 00 ash.t 00DODDOOM40000 | |[#]| & 00 ashoo.t 5 172 ||#
& 00 svb.t 000000003500000 & 01 ash0i.t N P
- -
& 02 ash02. t 5172 |5
[03 ashid.t 5 1/2]
« 04 ash04.t 5142
| —
)
ey Moty (ien-piekiel) 00 gzt - F
A FWWWWWD
(007171005 A0 gog0) QoD (opgo) Qoo S0 goopop oo Qoo g
[ile] Al [ad0ad0] QUadfedfy Cad0adfe] QO3 IQn S0 1725987 185900 1798907 199997
a0 40 A (o0 Qom0 po0g0d Qg aD L2 QogodD (g0 g0 (0o
amani4g A% [000] QDaman D0 QD &1 QD 0] Q00D [fe] e
a0 40 Ad (o0 Qom0 po0g0d QgedD S QogodD (g0 o0 (0o
2 amaniAq A% [0 Q0D 0] Qen 55 Q00 (] QoD a0]
a0 40 AL (o0 Qom0 po0g0d QmgedD S5 QogodD (g0 OO0 (0o
amani4g A5 [000] Qmaman oanand QD &P QgD i) QoD o
“H N WPEL DIY Bﬂ H IH Qoamamn 10 [IC FIC CIC [0 CFL CI0 1L
W Fu Fie EE. PRL [P0 rws W0 ol
[\-I |;|E FH PRA ®FH TR 7L [¥H [W
STATUL o] ®HI OpH O 5T Y FwE JF Q0dmah kA FOR EEH HRL [FD HHA YHI ©fH
[en v BE "M FEH FE PFA EFE LT oL [EM [an wlw
G55 RER HI L EN EEE %17 WIP [1 [¥L F FYL
LATD Folf 07 Foln 0z FA QD000 10000 LE 000000000 L1 0000 3= 0
LATT Pl OO0 Pl 00 PA Q00000000 0x) LB (o0 o oo Cod (o0ed Lo 0oy o) O (o) o) o))
LATz Fwwe Q0 B2 00 FA QMDD LE [0l a) D 0aie] L, Co) Do x] (a1 (a] (] Co]
LATE Pl OO0 Pl 00 PA Q00000000 0x) LB (o0 O oo O (e0ed Lo 0oy o) () (o) o) o))
LATA Eww Q0 B2 00 FA QMDD LE (0] D 0aie] L, Co) Do x] (a1 0a] (] Co]
LATE %ol G0 Paed 00 PE OOOOOOOOO000) LB (o) (o e OO O00e) Lo 0oy 0o o) 0o O £)
LATE Fwv Q0 B> 00 FA QMDD LE (0] 0] L, Co) Do x] (a1][] Co]
LATZ Pl OO0 Pt 00 Pe oy edoo) (e Cecw) cn) o E: (o) o) o) oy Co O Lo 0oy o)) o)) ()
Figure 38. Memory Display for the New Current Control Point Section
136 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 2

Assign CPUs to the Control Points

You must assign a CPU to a control point to perform any troubleshooting
for the CPU. To assign a CPU to the current control point, click on the
CPU in the CPU selection, control point, and status area in the MME base
window. Refer to “CPU Selection, Control Point, and Status Area” in the
MME Interface Referen¢g@ublication number HDM-008-A, for more
information.

Click on Go

Click on(__a) to start control point execution; all control points that
are assigned CPUs execute the following sequence of events:

1. MME sets the A7 registers for the deadstart exchange package
(DEXP) of the control point and the starting exchange package
(SEXP) of the control point to the CPU number of the control point:

DEXP A7 = CPU number
SEXP A7 = CPU number

2. MME sets the SEXP exchange address to its original value plus the
CPU number (in A7) multiplied by 40SEXP XA = XA + (A7 *
40g)]. This makes the XA point to the WEXP for the CPU.

MME also sets exit address 0 (EAO) through EA4 to the original
value plus A7 multiplied by 40

EAO = EAQ + (A7 * 4Q)
EAL = EAL + (A7 * 4Q)
EA2 = EA2 + (A7 * 4Q)
EA3 = EA3 + (A7 * 4Q)
EA4 = EA4 + (A7 * 4Q)

3. MME copies SEXP to FEXP.

4. MME writes the data to mainframe addressgthfbugh 208,
which contain the first four exchange packages of the controller

5. MME writes the trap exchange package (TEXP) for the current
CPU.

6. MME writes the controller tables with base and limit information
about the control point.

HDM-102-B Cray Research/Silicon Graphics Proprietary 137

Environment 2 MME User Guide

7. MME writes a START command in the controller communications
port. The START command is either START (single CPU) or
START (multiple CPUs). Refer again to Table 14 on page 127 for
more information about the START commands.

8. The CPU starts executing the control point code.

Monitor the Progress of the Control Points

As control points execute, you should monitor the information that MME
displays to determine the progress of the control points. As in
environment 1, it is important to understand what happens during control
point execution so you can determine whether everything is operating
properly. Table 15 lists the status information that you should monitor
while the control points execute.

Table 15. Status Information from Executing Control Points

Symptom Description

“ERROR COUNT” flashing next to a CPU The control point detected an error. Refer to
“Diagnostic-detected Errors” for more information.

“Holding” appears next to a CPU Control point execution is paused. Check the
runtime information display for a prompt for the
control point.

Indicator (MEM, RPE, SHR, LAT, or UKN) appears | MME detected a memory, register parity, shared,

in the menu bar LAT, or unknown error. MME logs these errors in
the error log. Choose View —> Error Log to view
the error log.

Interrupt flag An interrupt occurred. Refer to “Interrupts” for
more information.

P register is incrementing Everything is operating correctly.

P register is not incrementing The P register is hung. Refer to “Intolerable

Interrupts” for more information.

“Waiting” appears next to a CPU The CPU is waiting to execute a multiple-CPU
control point.

138 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Environment 2

Diagnostic-detected Errors

Control point test code that is running in a CPU detects and reports an
error through the following sequence of events.

1.

The control point test code detects a data comparison error for the
hardware values that the control point is testing.

The control point test code logs the error in the standard locations for
the control point.

The control point test code performs a dump and idle normal exit
(NEX) request, which causes an interrupt.

The CPU exchanges from the control point test code into the
controller IROUTER, using wEXP.

The controller IROUTER code copies WEXP to WEXP. WEXP now
contains information about where in the control point test code the
exchange occurred.

The controller IROUTER code updates the diagnostic pass count
(pASS), diagnostic error count (eRROR), WEXP P register
(WEXPP), wEXP IF register (WEXPIF), diagnostic section under test
(sUT), and diagnostic condition under test (cUT) parameters for the
controller runtime information display.

The controller IROUTER code routes the NEX interrupt to the
appropriate handler.

MME checks the minimum and maximum error counts that are
assigned to the control point.

NOTE: The CPUs do not stop for any errors.

When a diagnostic test program increments the error cBRROR
COUNT flashes next to the CPU in the CPU status area. Figure 39 shows
the ERROR COUNT indicator highlighted.

HDM-102-B

Cray Research/Silicon Graphics Proprietary 139

Environment 2

MME User Guide

[e]4]

ERROR COUWT

01

02

03

Figure 39. Error Indicator

When you see an error indicator, refer to the error return address (ERA) in
the diagnostic information block. The ERA, which is located at address
0305, indicates an area in the listing near the location of the failing code.
Look at the code in the listing adjacent to the ERA to determine the code
that actually failed.

NOTE: The ERA is shown on thBIAGINFO runtime information
display, which is currently available for most diagnostic tests
and utilities.

For information on how to view a listing, refer toiéw —> Listing —>
Current” and “View —> Listing —> Other” in théIME Interface
Referencepublication number HDM-008-A.

Interrupts

As in environment 1, there are two classes of interrupts in environment 2:
tolerable and intolerable interrupts. Remember that tolerable interrupts
are interrupts that occur while the CPU is processing the main diagnostic
code. Dlerable interrupts can be ignored or routed, depending on the
code of the diagnostic program. Intolerable interrupts are interrupts that
occur while the CPU is processing code from the standard code block.
Intolerable interrupts are trapped by hanging the CPU.

Figure 40 shows the two interrupt classes and the actions performed when
interrupts occur.

140 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

HDM-102-B

Environment 2
Tolerable Intolerable
v
Ignore Route
Trap
Use SIFM
Use TEXP

Pass to Control Point Route to Handler Route to Hang

o

Use DIFM Use Controller Use idleSTAT
Handlers Code (idleLOOP)

Figure 40. Environment 2 Interrupt Classes and Actions

Environment 2 uses a two-tiered interrupt-processing system. When
interrupts occur, the CPU exchanges to the controller IROUTER code to
begin processing the interrupts. The first tier of processing uses the
controller IROUTER code. The second tier uses the iROUTER code from
the control points. The DIFM parameter specifies which tier processes an
interrupt.

Typically, environment 2 processes interrupts in the first tier (controller
IROUTER code). Occasionally, the control point code contains the
routines that are necessary to route and handle an interrupt, so interrupt
processing moves to the second tier (control point iROUTER code). T
move into the second tier, the controller uses the DIFM parameter, which
contains a bit for each interrupt flag. If the bit for a flag is set in the
DIFM parameter, the controller passes the interrupt to the control point
IROUTER code for processing by the control point.

Environment 2 processes interrupts using the procedure that Figure 41
shows and the text that follows the figure describes. The circled numbers
in Figure 41 correspond to the numbered steps in the text that follows the
figure.

Cray Research/Silicon Graphics Proprietary 141

Environment 2

< Exchange into controller ROUTER code using wEXP >

Controller
iROUTER

. Controller Handler

Routines

..........

Controller
iROUTER

MME User Guide

| Move SIFM flags to SIFR |

®

Any No

flags still
set?

I Remove DIFM flags I

®

Any
flags still
set?

No

®

NEX| RPE

UME| Other

Any Yes

Clear interrupt
flags in WEXP
and exchange out

of controller
IROUTER code
using wEXP

|

Idle Loop
(Hangs CPU)

A

@

flags still
set?

No *:

Any No

flags still
set?

)
)
)
1
1
1
1
)
:
)
I Replace DIFM flags | ,
1
1
1
)
'
1
)
)
1
1

Exchange to the control point code using IEXP; typically, this causes
the control point IROUTER code to execute and process remaining interrupts
as described for environment 1.

142

Figure 41. Interrupt Processing (Controller)

Cray Research/Silicon Graphics Proprietary

HDM-102-B

MME User Guide Environment 2

1. The controller IROUTER code verifies that interrupt flags are set in
the current interrupt list.

« Ifinterrupt flags are set, interrupt processing continues with
Step 2.

* If nointerrupt flags are set, the iIROUTER code causes the CPU
to execute an idle loop, which hangs the CPU.

2. The controller IROUTER code checks the SIFM parameter. The
controller IROUTER code moves the flags that the SIFM parameter
specifies from the current interrupt list to the SIFR paraméiee
controller IROUTER code does not process these moved interrupts;
the interrupts are ignored.

3. The controller iROUTER code verifies that interrupt flags are set in
the current interrupt list.

* Ifinterrupt flags are still set, more interrupts exist. Interrupt
processing continues with Step 4.

« If no interrupt flags are set, interrupt processing is complete.
The controller IROUTER code clears the interrupt flags in
wEXP, and MME exchanges the controller IROUTER code out
of the CPU and the control point code into the CPU. The CPU
continues to execute the control point code.

4. The controller IROUTER code checks the DIFM parameter. The
controller IROUTER code moves the flags that the DIFM parameter
specifies from the current interrupt list to the dcDIFM parameter
The control point IROUTER code processes these moved parameters
after the controller IROUTER code has finished processing
interrupts.

5. The controller IROUTER code verifies that interrupt flags are set in
the current interrupt list.

« Ifinterrupt flags are still set, more interrupts exist. Interrupt
processing continues with Step 6.

* If no interrupt flags are set, the controller ROUTER code has
completed processing the current list of interrupts. The
controller IROUTER code continues with Step 8.

6. The controller IROUTER code routes each interrupt in the current
interrupt list. If a handler exists for an interrupt, the controller
IROUTER code routes the interrupt to the handler code.

HDM-102-B Cray Research/Silicon Graphics Proprietary 143

Environment 2

Tolerable Interrupts

Ignore

144

MME User Guide

NOTE: The iROUTER code picks off one interrupt and sends it to
the handler code; this process (Step 6) repeats until all
interrupts are processed.

7. The controller IROUTER code verifies that interrupt flags are set in
the current interrupt list.

« Ifinterrupt flags are still set, the IROUTER code causes the
CPU to execute an idle loop, which hangs the CPU.

* If nointerrupt flags are set, the controller IROUTER code has
completed processing the current list of interrupts. The
controller IROUTER code continues with Step 8.

8. The controller iROUTER code replaces any flags that were removed
in Step 4 so the control point IROUTER code can process any
interrupts that are indicated in the DIFM parameter.

9. The controller IROUTER code verifies that interrupt flags are set in
the current interrupt list.

« Ifinterrupt flags are still set, these flags came from the DIFM
parameter. The controller ROUTER code causes an exchange
that typically exchanges the control point IROUTER code into
the CPU so the control point can process the interrupts.

« If no interrupt flags are set, interrupt processing is complete.
The controller IROUTER code clears the interrupt flags in
wEXP, and MME exchanges the controller IROUTER code out
of the CPU and the control point code into the CPU. The CPU
continues to execute the control point code.

Tolerableinterrupts are interrupts that the controller or control point
IROUTER code expect. The controller IROUTER code performs three
functions for tolerable interrupts: ignore, pass to the control point, and
route to handler.

In environment 2, the controller code determines which interrupts should
be ignored. The controller IROUTER code can remove interrupts from

the current list of interrupt flags to be processed. This prevents the
interrupts from being processed. If a diagnostic test or utility program sets
the corresponding bit for an interrupt in the system interrupt flag mask

Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Pass to a Control Point

Route to a Handler

HDM-102-B

Environment 2

(SIFM) parameter, the controller IROUTER code at cKSIFM moves the
interrupt from the current list to the system interrupt return mask (SIFR)
parameter. The interrupt is ignored.

Ignored interrupts are typically used so the diagnostic test code can force
an interrupt condition. When control returns to the test code, the test code
checks the SIFR parameter to verify that the interrupt occurred.

A control point can contain the code necessary to handle certain interrupts.
If it does, the control point code sets the bits in the DIFM parameter that
correspond to the interrupts that the control point will handle. The
controller IROUTER code checks the bits in the DIFM parameter and
moves the interrupt flags that are set in DIFM from the current interrupt

list to the dcDIFM parameter.

When the controller code finishes processing all remaining interrupts, the
controller IROUTER code returns the DIFM flags to the current interrupt
list and exchanges the CPU to the control point iIROUTER code. The
control point IROUTER code processes the interrupts as described for
environment 1.

The controller handles interrupts through special code sections called
handlers. Handlers contain the code that is necessary to process
interrupts. Three types of handlers may be available in the controller:
library interrupt handlers, interrupt handlers, and normal exit handlers. If
a handler is available in the controller code for an interrupt, the controller
IROUTER code routes the interrupt to the handler.

NOTE: Some handlers are just inline hangs.
Library Interrupt Handlers and Interrupt Handlers

Library interrupt handlers and interrupt handlers are general handlers that
are included in the controller.

Normal Exit Handlers

The controller includes normal exit handlers that enable control points to
perform tasks in monitor mode instead of user mode, in which the control
points usually execute. The control point code causes a normal exit
(NEX) interrupt to access the code that the normal exit handlers contain.

Cray Research/Silicon Graphics Proprietary 145

Environment 2 MME User Guide

Figure 42is a flowchart of normal exit interrupt processing. The circled
numbers in Figure 42 correspond to the numbered steps in the text that
follows the figure.

. Controller .
. IROUTER *

Route interrupts

. Controller
! NROUTER
. SO0 bit 63 set?
. Route functions
' Controller
' nHANDLER .
' Routines X
Controller
NROUTER .
Did INEX flag
DC handle setin Error; the CPU han@
request?

DIFM?

CDone; the controller) Execution continues at

iIROUTER resumes hDIFM, which passes the

processing interrupts interrupt to the control point
iROUTER code

Figure 42. Normal Exit Interrupt Processing

146 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 2

1. The controller IROUTER code routes the NEX interrupt to the
controller NROUTER code.

2. The controller NROUTER code verifies that bit 63 (the sign bit) of
SO is setto 1. The control point diagnostic code must set this bit to
indicate that a NEX interrupt is occurring. If this bit is not set,
processing continues with Step 6.

3. The controller NROUTER code routes the NEX interrupt to the
appropriate handler based on the value stored in S1. The handler
performs the necessary functions to process the request.

4. The controller NROUTER code verifies that the controller code
handled the NEX request.

« If the request was handled, normal exit processing is complete.
Interrupt processing resumes in the controller IROUTER code,
which Figure 42 shows.

« If the request was not handled, NEX processing continues with
Step 5.

5. The controller nROUTER code examines the DIFM parameter

« If the bit for the NEX flag is set in DIFM, the controller
NROUTER code moves the NEX flag to the DIFM copy
(dcDIFM) and routes the request back to the control point
through the DIFM handler (hDIFM).

» If the bit for the NEX flag is not set in DIFM, the CPU hangs
because an error occurred.

If the CPU cannot complete the request (requested I/O channel busy, mode
not allowed and so on), an exchange occurs with the return exchange
package that has a fail code in the SO register. The control point should
detect and handle all incomplete requests. If the request is completed by
the controller, the content of the SO register is intact.

Table 16 shows the normal exchange request bit fields. Table 17 shows
the normal exit requests that correspond to the bits that are set in the S1
register.

HDM-102-B Cray Research/Silicon Graphics Proprietary 147

Environment 2 MME User Guide
Table 16. Environment 2 Normal Exit Request Bit Fields

Register Contents

SO Valid Request Flag, Bit 63 =1

S1 Function Mask for Function Mask for Function Mask for Function Mask for
the Controller Only |the Controller and the Router Only the Program-defined
Handlers, Handlers, Handlers, Handlers,
Bits 63 — 48 Bits 47 — 32 Bits 31 — 16 Bits 15-0
S2 Parameter 1
S3 Parameter 2
S4 Parameter 3
A0 Parameter 4
Al Parameter 5
A2 Parameter 6
A3 Parameter 7
Table 17. Environment 2 Normal Exit Routines
Octal Bit Name Description
66 hNOP Perform no operation
65 hHALT Halt all CPUs in the controller
62 hioLOCK Reserve LOSP or VHISP I/O channel
Parameters:
S2: Bit mask of channels to reserve (channels 077 — 000)
S3: Bit mask of channels to reserve (channels 177 — 100)
S4. 0 = Release
1 = Reserve
2 = One shot (The channel is released after the first interrupt.)
60 hXEXP Exchange using the exchange package table
Parameters:
S2: Pointer to the exchange package table
S3: 0 = Copy from the table
1 = Swap with the table
57 hIDLE Dump registers and idle the CPU
56 hIDLE Dump registers and wait for the hold bit to clear
46 hHOLD Hold on WAIT/RESUME
148 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 2

Table 17. Environment 2 Normal Exit Routines (continued)

Octal Bit Name Description
44 hsrLOCK Set shared register cluster
Parameters:
S2: Cluster or cluster mask
S3: 0 = Release cluster

1 = Reserve cluster
1000 = Release clusters in cluster mask
1001 = Reserve clusters in cluster mask

When this routine sets a single cluster number (S3 = 1), the CLN
register is set upon return.

When this routine sets a group of clusters (S3 = 1001), S2 returns a
mask of reserved clusters.

SO0 returns —22 if another control point controls the requested cluster.

43 hSETPCI Set up PCI if it is selected in PCITIME
41 hSETM Set or clear mode flags in WEXP
Parameters:
S2: Bit mask of flags relative to the register you are using

S3: 0 = Clear flags
1 = Set flags

40 hSETIM Set or clear interrupt mode bits in WEXP

Parameters:
S2: Bit mask of mode bits relative to the register you are using

S3: 0 = Clear bits
1 = Set bits

Intolerable Interrupts

An intolerable interrupt is an interrupt that neither the controller nor the
control point are expecting. Intolerable interrupts can occur in the main
diagnostic code or standard code of the controller or control point.

HDM-102-B Cray Research/Silicon Graphics Proprietary 149

Environment 2 MME User Guide

Exchange into Controller with No Interrupt Flags

If a CPU exchanges into the controller with no interrupt flags set, the
controller IROUTER code places the value %%INF in memory location
idleSTAT, traps the CPU by jumping to an idle loop, and increments the
location hartBEAT, which MME periodically checks.

If hartBEAT is nonzero, MME reads idleSTAT, translates the value into a
controller code, displays the code next to the CPU in the MME base
window, and prints a message on HRROR runtime information display
for the controller. Refer to Figure 43.

J_' Mainframe Maintenance Environment (MME 1.0.11) - $I1M [techsun1] (76) |
{(File v} (View v) (Edit v) (Properties v) (Utilities v}
Rl ([csTeT: TnF R e e E} § mmmmmmmmmmmmmos
01 [3 TSR, Y I VRIS [TS SR
o R e el B B R
R Rl e el I B B

I [[T T £ S ——
control Points: (7] Sections: [g] Control:
= =
[¢ 00 diag.t reljutil.cpoz.4/] [*]| [00 diag.t W/s 1/2] [l | selected
C u
—

1_|Bottom Up Partition — Auto CPU — /O CPU QO Environment ENVY2 — T34 — PO EIBMSS)’EIS'_r

io) Runtime Information Display — Controller

MAIN ERROR DIAGINFD PARAMETERS CONTENTS HELP EXCHANGE
000-037 040-077 100-137 140-177 CLUSTERS LIMITS

CPU hartBEAT IF EF id]1eSTAT

00 000001 000000 00 002 IMF - Diag exchanged to DC w/o flags
01 00ooo0 oooooo oo ooo

0z Qnoooo oooooo o0 ooo

03 0ooooo gooooo o0 ooo

ERROR — Error information. {ldle status)

Figure 43. Idle Status after an Exchange with No Flags

150 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide

Environment 2

Exchange into the Controller with an Interrupt the Controller and Control Point Cannot Handle

HDM-102-B

Whenan interrupt occurs that the controller and control point cannot
handle, the controller IROUTER code moves the flag to the INTFLAGS
parameter, clears all channel and cluster reservations for the control point,
and hangs the CPU at location IDLELOOP. Figure 44 shows an example
of an interrupt that the controller and control point cannot handle. Notice
that the flag for the interrupt is shown in the MME base window CPU
status area, the controlleRROR runtime information display, the wEXP,

and the WEXP for the CPU.

Cray Research/Silicon Graphics Proprietary 151

Environment 2

MME Base Window CPU
Status Area

Controller Error Runtime

MME User Guide

Runtime Information Display — Controller

000-037 040-077 10

Information Display

CPU hartBEAT FE
00 044007 000010 O
01 000000 ogoonog 0
02 000000 000000 0
03 000000 000000 0

0-137 140-177 CLUSTE

F id1eSTAT
0 0oo
0 ooo
0 0oo
0 0oo

MAIN ERROR DIAGINFD PARAMETERS CONTENTS HELP EXCHANGE

RS LIMITS

ERROR — Errar information. {Idle status)

)

Me mory

— Absolute

AD¥ 0000000002000
P 0000012110b A0
PN 000 a1
XA 0002000 a2
EAD 0002000 A3
EA1 0006000 e
EA2 0006000 A5
EA3 0006000 Ak
Ef4 0006000 A7

CN 001
VL 200

HMODES 0

STATUS 00 ¥NU CDM
THN Wi

S55 555

L T Fuliar,

177777
177777
oooooo
oooooo
Qooooo
oooooo
oooooo
0ooooo

177777
177777
oooooo
ogoooo
0ooooo
oooooo
ogoooo
0ooooo

177777
177777
oooooo
ogoooo
Qooooo
oooooo
ogoooo
0ooooo

16 BR RS EIM
DM NCH S D[]
01 OEM [Rg
00z 55 *==y FgR IF 00
BE **N PEM
MU #=#1 SEL

0000000140000 LB

IM 03403200 II

177777 S0
177777 51
oooooo s2
00aooo S3
000000 54
000000 55
000000 SE
0ooooo s7

ooaoo
17777
ooooo
noaoo
ooaoo
ooaog
noaoo
0oaoo

F
E

003000 RM

FOP E
PE PRR E
EU EEE X

0000000000000

0 000000
¢TI
0 oooooo
0 oooooa
0 oooooo
0 oooooa
0 000000 000000 000000
0 000000 000000 000000

Thgn IRT ITI
I A KNU
IEM IHR

IR Mu& KN
IEM TN
I IXI F

LL 00000400340000

noaooo
177777
nooooo
nooooa
nooooo
nooooo

000000
177777
ooooo
goooom
gooooo
n0ooooo

II III
BC MRI
PM TP

III
ODN
Wi

BM MRI
PE CTC
IC UIP

ODN
VIV
FVI

WEXP

Y THE

RWHC 00 RWHD
RWAC 00 RWXD
RWAC 00 RWXD
RWHC 00 RWHD
RWAC 00 RWXD
RWHC 00 RWHD

T

0000000000000 LB
0000000000000 LB
0000000000000 LB
0000000000000 LB
0000000000000 LB
0000000000000 Le

T

0000000000000
Q0000000000000
0000000000000
0000000000000
Q0000000000000
0000000000000

00000000
LL 0000000000000
LL 00000000000000
LL 0000000000000
LL 0000000000000
LL 00000000000000
LL 00000a000a00a0

Memory (0140000)

ADY W0000000002000
P 0000012110b AD
PH 000 a1
¥A 0002000 a2
EAQD 0002000 A3
EA1 0006000 e
EAZ 0006000 A5
EAZ 0006000 Ak
EA4 0006000 A7

CH 001
VL 200

HMODES 0

STATUS 00

KHU QDN
THN Wi
555 555

177777
177777
oooooo
oooooo
oooooo
oooooo
oooooo
0ooooo

16 BR RS
DM NCH
T

177777
177777
oooooo
oooooo
oooooo
oooooo
oooooo
0ooooo

EE]
D[]
LM

00z 5§ #=#y FiB I

177777
177777
oooooo
ogoooo
ogoooo
oooooo
ogoooo
0ooooo

IM 03

b1 OE

by

Jali]
BB **N PEM
MU #=#1 SEL

0000000140000 LB

Fatatatatetatutatalat=Ta N <M aTeTal

177777 S0
177777 51
oooooo s2
00aooo S3
000000 54
000000 S5
000000 SE
0ooooo s7

noaoo
ooooo
noaoo
ooaoo

PM P

403200 II Iy [JIT III
Fialy (BEC MRI

003000 RM FOP E
PE PRR E
EU EEE ¥

00o00o0noooonon

Pe¥atatatalatatatstatel

ooaooo
177777
oooooo
ooaooo

ooaooo
177777
oooooo
noaooo
0 oooooa
0 oooooo

noaooo
170777 179777
nooooo 000001
nooooo 0oonot
000000 0oonoa
0ooooo 0ooonoo
0 000000 000000 000000
0 000000 000000 000000

Thgn IRT ITI
I A KNU
IEM IHR
IR Mu& KN
IEM TN
Iig IXI F

LL 00000300340000
H—EHEHHEEH0 0000000

000000

III
ODN
Wi

PM TP

BM MRI
PE CTC
IC UIP

ODN
VIV
FVI

WEXP

00 RWKD
00 RWKD
00 RWKD
00 RWKD
00 RWKD
00 RWKD

0000000000000 LB
0000000000000 LE
0000000000000 LB
0000000000000 LB
0000000000000 LB
0000000000000 Le

Q0000000000000
00o00o0noooonon
Q0000000000000
Q0000000000000
Q0000000000000
00000000000000

LL 0000000000000
LL 0000000000000
LL 00000000000000
LL 0000000000000
LL 00000000000000
LL 00000a000a00a0

Figure 44. Intolerable Interrupt with No Handler in the Controller or Control Point

152

Cray Research/Silicon Graphics Proprietary

HDM-102-B

MME User Guide Environment 2

Exchange from within the Standard Code (Controller or Control Point)

Whenan interrupt occurs while the controller or control point standard

code is executing, the CPU exchanges using tEXP. The CPU executes the
code at iTRAPDC, which writes AO (always 3) at the memory location
iIdleSTAT+CPU and writes A2 (address of the current exchange package)
at trapADDR; then, the CPU hangs in a loop. After the exchange, tEXP
contains the exchange package that was running when the exchange in the
standard code occurred.

For an exchange within the standard code, the MME base window shows
that CPU 0 has a controller error coderrp [invalid exchange (trap)].

The ERROR runtime information display for the controller indicates that

the controller had an invalid exchange. The P register in the tEXP table of
the EXCHANGE runtime information display for the controller shows the
code that was executing when the exchange occurred. View the exchange
package at the P register value to verify the interrupt flagw Yhe

trapSTAT and idleSTAT locations to verify the values.

Exchange with an Invalid Exchange Address Handler

An invalid exchange occurs when the CPU exchanges to the wrong
exchange package and that exchange package is not an exchange package
for some other control point (tEXP, dEXP or sEXP). When this happens,
the CPU exchanges to iTRAPXA, which traps the CPU.

For an invalid exchange, the MME base window indicates that the
controller has some trap condition. TERROR runtime information

display for the controller shows what caused the trap condition and
indicates that you should view tB® CHANGE runtime information

display for the controller. ThEXCHANGE runtime information display
shows that an invalid exchange took place at g70Me P register value
for this exchange package indicates which code the CPU was executing
when the exchange took place.

HDM-102-B Cray Research/Silicon Graphics Proprietary 153

Environment 2 MME User Guide
Click on Halt
Click on to issue theialt —> Register Dump option, which is the
only halt option that is available in environment 2. The following
sequence of events occurs for each executing control point:
1. MME sets the A7 registers for the deadstart exchange package
(DEXP) and the starting exchange package (SEXP) for the control
point to the CPU number of the control point:
DEXP A7 = CPU number
SEXP A7 = CPU number
2. MME sets the SEXBxchange address to its original value plus the
CPU number (in A7) multiplied by 40SEXP XA = XA + (A7 *
40g)]. This makes the XA point to the WEXP for the CPU.
MME also sets exit address 0 (EAO) through EA4 to the original
value plus A7 multiplied by 40
EAO = EAO + (A7 * 4Q)
EALl = EAL + (A7 * 4@Q)
EA2 = EA2 + (A7 * 4Q)
EA3 = EA3 + (A7 * 4@Q)
EA4 = EA4 + (A7 * 4@Q)
3. MME copies SEXP to FEXP.
4. MME writes the data to mainframe addressghfbugh 20g,
which contain the first four exchange packages for the controller
5. MME writes the TEXP for the current CPU.
6. MME writes a halt command in the controller communications port.
Refer again to Table 14 for more information about the HALT
command.
7. MME waits for the command to clear.
8. The CPU stops executing control point code.
154 Cray Research/Silicon Graphics Proprietary HDM-102-B

	MME User Guide (CRAY T90‰ Series)
	HDM-102-B

