
MME User Guide
(CRAY T90 Series)

HDM-102-B

Cray Research/Silicon Graphics Proprietary

Record of Revision

REVISION DESCRIPTION

August 1995. Original printing.

A March 1996. This revision corresponds to the MT-T2.2.0 offline diagnostic release.

B August 1997. This revision corresponds to the MT-T2.3.0 offline diagnostic release.

Any shipment to a country outside of the United States requires a
letter of assurance from Cray Research, Inc.

This document is the property of Cray Research, Inc. The use of this document is subject to specific license rights
extended by Cray Research, Inc. to the owner or lessee of a Cray Research, Inc. computer system or other licensed
party according to the terms and conditions of the license and for no other purpose.

Cray Research, Inc. Unpublished Proprietary Information — All Rights Reserved.

Autotasking, CF77, CRAY, CRAY-1, Cray Ada, CraySoft, CRAY Y-MP, CRInform, CRI/TurboKiva, HSX, LibSci,
MPP Apprentice, SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and
Because no workstation is an island, CCI, CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS,
CRAY-2, Cray Animation Theater, CRAY APP, CRAY C90, CRAY C90D, Cray C++ Compiling System, CrayDoc,
CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS, Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90,
CRAY T3D, CRAY T3E, CRAY T3E-900, CRAY T90, CrayTutor, CRAY X-MP, CRAY XMS, CSIM, CVT,
Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS, ND Series Network Disk Array,
Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE, SUPERLINK,
System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc.

Silicon Graphics and the Silicon Graphics logo are registered trademarks and Origin and Origin2000 are trademarks
of Silicon Graphics, Inc.

OpenWindows is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company, Ltd.

Requests for copies of Cray Research, Inc. publications should be directed to:

CRAY RESEARCH, INC.
Customer Service Logistics
1100 Lowater Road
P.O. Box 4000
Chippewa Falls, WI 54729-0078
USA

Comments about this publication should be directed to:

CRAY RESEARCH, INC.
Service Publications and Training
890 Industrial Blvd.
P.O. Box 4000
Chippewa Falls, WI 54729-0078
USA

iiiCray Research/Silicon Graphics ProprietaryHDM-102-B

MME USER GUIDE

Description of this Document ix.

ENVIRONMENT 0 1

Starting MME in Environment 0 2.

From a UNIX Prompt 3.

From the OpenWindows Workspace Menu 4.

MWS Workspace Menu Options 4.

SWS Workspace Menu Options 6.

What Happens When You Start Environment 0? 8.

Using Automatic Mode 9.

Using Manual Mode 11.

Running the Boundary Scan (BS) Communication Test 11.

Running the Configuration (Basic) Test 13.

Running the Memory Test 15.

Running the Input and Output (I/O) Error Correction Test 18. . .

Running the Logic Monitor Test 19.

Running the Exchange Test 21.

Running the Instruction Buffers Test 23.

Running the Configuration (Advanced) Test 26.

Running the End-to-end Test 27.

Running the Miscellaneous Test 29.

Using Compose Mode 30.

Modifying an Existing Sequence 31.

Creating a New Sequence 35.

Boundary Scan Functions 36.

Boundary Scan Loop Controller Functions 36.

Boundary Scan DMA Functions 38.

Boundary Scan Module Functions 39.

Boundary Scan Channel Functions 42.

Boundary Scan Port Functions 44.

MME User Guide

iv Cray Research/Silicon Graphics Proprietary HDM-102-B

ENVIRONMENT 0 (continued)

Shared Functions 45.

Shared Loop Controller Functions 45.

Shared Logic Monitor Functions 47.

CPU Functions 49.

CPU Loop Controller Functions 49.

CPU Logic Monitor Functions 50.

CPU DMA Functions 52.

I/O Functions 53.

I/O Loop Controller Functions 53.

I/O Logic Monitor Functions 56.

I/O Sanity Generator Functions 58.

Channel Functions 59.

Open 59.

Masterclear 60.

Disconnect 61.

Close 61.

Reset 61.

Lock 61.

Unlock 61.

Write 62.

Read 62.

Write/Read 63.

Comments 64.

Quiet 64.

Verbose 64.

Compare Function 65.

Control Functions 67.

Goto 67.

Label 68.

Stop 68.

File Operation Functions 69.

Read 69.

Write 70.

Append 70.

Delete 71.

MME User Guide

vCray Research/Silicon Graphics ProprietaryHDM-102-B

ENVIRONMENT 0 (continued)

Utilities 71.

Delay 72.

Mask 72.

Move 73.

Pattern 74.

Squish 75.

ENVIRONMENT 1 77

Start MME in Environment 1 78.

From a UNIX Prompt 78.

From the OpenWindows Workspace Menu 80.

MWS Workspace Menu Options 80.

SWS Workspace Menu Options 82.

What Happens When You Start Environment 1? 84.

Load a Layout (Optional) 84.

Allocate Resources (Optional) 85.

Load a Control Point 85.

Control Point Components 85.

Standard Location Block 87.

Standard Code Block 92.

Diagnostic Code Block 92.

Diagnostic Data Area 93.

Assign a CPU to the Current Control Point 94.

Click on Go 94.

Monitor the Progress of Control Point Execution 96.

Diagnostic-detected Errors 97.

Interrupts 98.

Tolerable Interrupts 101.

Intolerable Interrupts 109.

Click on Halt 110.

Halt –> No Dump 110.

Halt –> Exchange Dump 110.

Halt –> Register Dump 110.

MME User Guide

vi Cray Research/Silicon Graphics Proprietary HDM-102-B

ENVIRONMENT 2 113

Start MME in Environment 2 113.

From a UNIX Prompt 114.

From the OpenWindows Workspace Menu 115.

MWS Workspace Menu Options 115.

SWS Workspace Menu Options 117.

What Happens When You Start Environment 2? 119.

Diagnostic Controller Components 120.

Standard Locations 121.

Code Block 125.

Block Storage Segment 126.

Diagnostic Controller Operation 127.

Controller Communication Port 127.

CPU Deadstart and Control 128.

MME-to-controller Communications 129.

Load a Layout (Optional) 129.

Allocate Resources (Optional) 129.

Enable the Run System (Optional) 129.

Load One or More Control Points 129.

Control Point Components 130.

Control Point Addressing 130.

Viewing Memory Addresses 132.

Assign CPUs to the Control Points 137.

Click on Go 137.

Monitor the Progress of the Control Points 138.

Diagnostic-detected Errors 139.

Interrupts 140.

Tolerable Interrupts 144.

Intolerable Interrupts 149.

Click on Halt 154.

MME User Guide

viiCray Research/Silicon Graphics ProprietaryHDM-102-B

Figures

Figure 1. MWS Workspace Menu Options to Start
Environment 0 with an FEI Channel 4.

Figure 2. MWS Workspace Menu Options to Start
Environment 0 with the Simulator or with the
Simulator and Bugger/Debugger 5.

Figure 3. SWS Workspace Menu Options to Start
Environment 0 with an FEI Channel 6.

Figure 4. SWS Workspace Menu Options to Start
Environment 0 with the Simulator or with the
Simulator and Bugger/Debugger 7.

Figure 5. Viewing the Original Sequence 31.

Figure 6. Modifying Where the DMA Function Writes the
Data 32.

Figure 7. Modifying Where the DMA Function Reads the
Data 33.

Figure 8. Changing a Selected Function in the Sequence 34.

Figure 9. Mask Utility Example 72.

Figure 10. Move Utility Example 73.

Figure 11. Pattern Utility Example 74.

Figure 12. Squish Utility Example 75.

Figure 13. MWS Workspace Menu Options to Start
Environment 1 with an FEI Channel 80.

Figure 14. MWS Workspace Menu Options to Start
Environment 1 with the Simulator or with the
Simulator and Bugger/Debugger 81.

Figure 15. SWS Workspace Menu Options to Start
Environment 1 with an FEI Channel 82.

Figure 16. SWS Workspace Menu Options to Start
Environment 1 with the Simulator or with the
Simulator and Bugger/Debugger 83.

Figure 17. Control Point Components 86.

Figure 18. Control Point Execution Sequence (Go Clicked) 94. . .

Figure 19. Error Indicator 97.

Figure 20. Interrupt Classes (Environment 1) 98.

Figure 21. Interrupt Processing in Environment 1 99.

Figure 22. Normal Exit Interrupt 102.

Figure 23. Normal Exit Interrupt Processing 104.

Figure 24. Interrupt Processing (Hang) 108.

Figure 25. Intolerable Interrupt Processing 109.

Figure 26. MWS Workspace Menu Options to Start
Environment 2 with an FEI Channel 115.

MME User Guide

viii Cray Research/Silicon Graphics Proprietary HDM-102-B

Figures (continued)

Figure 27. MWS Workspace Menu Options to Start
Environment 2 with the Simulator or with the
Simulator and Bugger/Debugger 116.

Figure 28. SWS Workspace Menu Options to Start
Environment 2 with an FEI Channel 117.

Figure 29. SWS Workspace Menu Options to Start
Environment 2 with the Simulator or with the
Simulator and Bugger/Debugger 118.

Figure 30. Diagnostic Controller Components 121.

Figure 31. Control Point Addressing 131.

Figure 32. Absolute Memory Display 132.

Figure 33. Drifting Display for the Current Control Point 133.

Figure 34. Drifting Display for the New Current Control Point 134.

Figure 35. Anchored Memory Display for the Current
Control Point 135.

Figure 36. Anchored Memory Display for the New Current
Control Point 135.

Figure 37. Memory Display for the Current Control Point
Section 136.

Figure 38. Memory Display for the New Current Control
Point Section 136.

Figure 39. Error Indicator 140.

Figure 40. Environment 2 Interrupt Classes and Actions 141.

Figure 41. Interrupt Processing (Controller) 142.

Figure 42. Normal Exit Interrupt Processing 146.

Figure 43. Idle Status after an Exchange with No Flags 150.

Figure 44. Intolerable Interrupt with No Handler in the
Controller or Control Point 152.

Tables

Table 1. Environment 0 Command Line Options 3.

Table 2. Shared Logic Monitor Command Fields 48.

Table 3. CPU Logic Monitor Command Fields 51.

Table 4. I/O Logic Monitor Command Fields 57.

Table 5. Channel Mode Options 60.

Table 6. Environment 1 Command Line Options 79.

Table 7. Standard Locations 88.

Table 8. Diagnostic Information 90.

Table 9. Status Information from an Executing Control
Point 96.

MME User Guide

ixCray Research/Silicon Graphics ProprietaryHDM-102-B

Tables (continued)

Table 10. Environment 1 Normal Exit Request Bit Fields 105. . . .

Table 11. Environment 1 Normal Exit Routines 105.

Table 12. Environment 2 Command Line Options 114.

Table 13. Controller Parameters 123.

Table 14. Request Functions 127.

Table 15. Status Information from Executing Control Points 138.

Table 16. Environment 2 Normal Exit Request Bit Fields 148. . . .

Table 17. Environment 2 Normal Exit Routines 148.

Description of this Document

This document provides procedures that describe how to use Mainframe
Maintenance Environment (MME) environments 0, 1, and 2 to
troubleshoot CRAY T90 series mainframes.

This document is one component of the MME documentation set, which
also includes the following documents:

MME Interface Reference, publication number HDM-008-A.

This document describes the interfaces used with MME environments
0, 1, and 2. It also describes all available menu button commands.

MME Diagnostic Tests and Utilities, publication number HDM-103-B.

This document provides quick-reference information for all diagnostic
tests and utilities you can use with MME.

MME User Guide

x Cray Research/Silicon Graphics Proprietary HDM-102-B

1Cray Research/Silicon Graphics ProprietaryHDM-102-B

ENVIRONMENT 0

Environment 0 is one component of the Mainframe Maintenance
Environment (MME) software package that field engineers use to
troubleshoot CRAY T90 series mainframes. Environment 0 provides
basic mainframe testing; use environment 0 to ensure that the mainframe
is operating at a level that permits environment 1 and environment 2 based
testing.

Environment 0 runs in the maintenance workstation (MWS) or system
workstation (SWS) and creates maintenance channel functions that are
sent to the mainframe through the maintenance channel to test the
following areas of the mainframe:

• Boundary scan communication
• Configuration
• Memory
• I/O error correction
• Logic monitor
• Exchange
• Instruction buffers
• Miscellaneous

Environment 0 comprises three testing modes (automatic, manual, and
compose) for varying levels of user control:

• Automatic mode runs predefined sequences of maintenance channel
functions.

• Manual mode runs user-selected sequences from the predefined set
with user-selected parameters.

• Compose mode runs user-defined sequences of maintenance channel
functions. This enables testing beyond the areas tested in automatic
and manual modes but requires you to create or modify the sequence
that is sent to the mainframe.

Environment 0 MME User Guide

2 Cray Research/Silicon Graphics Proprietary HDM-102-B

Compose mode also enables you to view and modify the predefined
sequences that are used in automatic and manual modes. You can
run these modified sequences or save them for later use. Normally,
you should use compose mode to examine or modify existing
sequences rather than create new ones because creating new
sequences requires a detailed understanding of the maintenance
channel functions.

Environment 0 uses a 256-Kword data buffer (64-bit words) in the MWS
or SWS that is called the MME buffer. This buffer collects data coming
from the mainframe through the maintenance channel and creates data
blocks that are sent to the mainframe through the maintenance channel.
The MME buffer also stores data that is used for comparisons of actual
and expected data.

This section describes how to start environment 0 and use automatic,
manual, and compose modes to test the mainframe.

Starting MME in Environment 0

You can start MME in environment 0 from a UNIX command prompt or
from the OpenWindows Workspace menu.

NOTE: For information about starting MME environment 0 from a
Service Center through a hub, refer to the Remote Support
document, publication number HMM-106-A.

CAUTION

MME performs maintenance channel functions that
will hang UNICOS if UNICOS is running in the
mainframe when you start MME.

To prevent this from accidentally occurring, ensure
that the Owner setting in the SCE base window is
set to OS for the logical partition in which UNICOS
is running when UNICOS is running in the
mainframe. MME cannot access a logical partition if
the OS owns it.

MME User Guide Environment 0

3Cray Research/Silicon Graphics ProprietaryHDM-102-B

From a UNIX Prompt

To start MME environment 0 from a UNIX prompt, enter one of the
following commands:

• mme –0 to use a front-end interface (FEI) channel
• mme –0 –sim to use the simulator
• mme –0 –debug to use the simulator and bugger/debugger

NOTE: You may also enter any of the command line options that Table 1
lists.

Table 1. Environment 0 Command Line Options

Option Description

–client Start the MME client only

–config file Configure MME with the configuration data that is
stored in the file specified by file

–copy num Connect to maintenance software that is assigned the
copy number specified by num

NOTE: Copy numbers are necessary only when you
run multiple copies of MME on the same MWS
or SWS (for example, when you run several
MME copies with the simulator or when you
use MME to support multiple CRAY T90
series mainframes that are connected to the
same MWS or SWS).

–io num Use the CPU specified by num to perform input and
output operations

–kill Kill any running MME, SCE, or LME applications
before starting a new copy of MME

–remote host Start the MME client only and connect the client to the
MME server that is running on the remote host
specified by host

–server Start the MME server only

Environment 0 MME User Guide

4 Cray Research/Silicon Graphics Proprietary HDM-102-B

From the OpenWindows Workspace Menu

You can start environment 0 from the OpenWindows Workspace menu on
either an MWS or an SWS.

MWS Workspace Menu Options

Figure 1 shows the OpenWindows Workspace menu options that you
should choose on an MWS to start environment 0 with an FEI channel.
Choose any copy number.

 Workspace

Programs
Maintenance Tools
Utilities
Properties...
Exit...

DMS2 ...
XCFG ...

Assert TSM configuration...

Reboot TSM chassis...

BOUNDARY SCAN
MME
NWACS
SMARTE
SSDE
XELOG
YIMS

MME Simulator

 Maintenance Tools

 MME

LME
SCE
MME env 0
MME env 1
MME env 2

 MME env 0

Copy 0...
Copy 1...
Copy 2...
Copy 3...

Figure 1. MWS Workspace Menu Options to Start Environment 0 with an FEI Channel

MME User Guide Environment 0

5Cray Research/Silicon Graphics ProprietaryHDM-102-B

Figure 2 shows the OpenWindows Workspace menu options that you
should choose on an MWS to start environment 0 with the simulator or
with the simulator and bugger/debugger.

 Workspace

Programs
Maintenance Tools
Utilities
Properties...
Exit...

DMS2 ...
XCFG ...

Assert TSM configuration...

Reboot TSM chassis...

BOUNDARY SCAN
MME
NWACS
SMARTE
SSDE
XELOG
YIMS

MME Simulator

 Maintenance Tools

 MME Simulator

LME...
SCE...
MME env 0
MME env 1
MME env 2

 MME env 0

Simulator...
Simulator with Debugger...

Figure 2. MWS Workspace Menu Options to Start Environment 0 with the Simulator or
with the Simulator and Bugger/Debugger

Environment 0 MME User Guide

6 Cray Research/Silicon Graphics Proprietary HDM-102-B

SWS Workspace Menu Options

Figure 3 shows the OpenWindows Workspace menu options that you
should choose on an SWS to start environment 0 with an FEI channel.
Choose any copy number.

 Workspace

Programs
Maintenance Tools
Utilities
Properties...
Exit...

SIO TEST
T32 TEST

NWACS

XCFG ...

XELOG

 Maintenance Tools

 T32 TEST

BOUNDARY SCAN
MME

MME Simulator

 MME

LME
SCE
MME env 0
MME env 1
MME env 2

 MME env 0

Copy 0...
Copy 1...
Copy 2...
Copy 3...

Figure 3. SWS Workspace Menu Options to Start Environment 0 with an FEI Channel

MME User Guide Environment 0

7Cray Research/Silicon Graphics ProprietaryHDM-102-B

Figure 4 shows the OpenWindows Workspace menu options that you
should choose on an SWS to start environment 0 with the simulator or
with the simulator and bugger/debugger.

 Workspace

Programs
Maintenance Tools
Utilities
Properties...
Exit...

SIO TEST
T32 TEST

NWACS

XCFG ...

XELOG

 Maintenance Tools

 T32 TEST

BOUNDARY SCAN
MME

MME Simulator

 MME Simulator

LME...
SCE...
MME env 0
MME env 1
MME env 2

 MME env 0

Simulator...
Simulator with Debugger...

Figure 4. SWS Workspace Menu Options to Start Environment 0 with the Simulator or
with the Simulator and Bugger/Debugger

Environment 0 MME User Guide

8 Cray Research/Silicon Graphics Proprietary HDM-102-B

What Happens When You Start Environment 0?

The following actions occur when you start MME:

 1. The MME server attempts to connect with the System Configuration
Environment (SCE) server.

If MME cannot connect with a running SCE server, MME starts a
new SCE server and tries to connect to the new SCE server. (If you
specified a configuration file with the –config command line
option, MME sends this file to SCE through the SCE –default
command line option. SCE loads the configuration that is stored in
the file.)

 2. Once MME establishes a connection with SCE, MME attempts to
receive a configuration from SCE:

• If a configuration is available, SCE provides MME with the
components that are available for use by the maintenance
system. MME automatically configures itself to use these
components.

• If a configuration is not available, MME displays the message
shown in the following snap:

If MME displays this message, then you need to create a
configuration using SCE before you continue using MME.
Refer to the SCE User Guide, publication number HDM-069-C,
for more information about creating a configuration.

MME User Guide Environment 0

9Cray Research/Silicon Graphics ProprietaryHDM-102-B

Using Automatic Mode

When you click on Test Mode: , environment 0 runs in automatic
mode. Automatic mode enables you to run all or any combination of the
environment 0 tests. Perform the following procedure to run tests in
automatic mode:

 1. Click on Test Mode: to indicate that you want to run the
test(s) in automatic mode.

 2. Click on the modules that you want to assign to the tests. The
selected tests are run on these modules.

For information about which modules can be tested by the tests, refer
to the “Environment 0 Tests” section of the MME Diagnostic Tests
and Utilities document, publication number HDM-102-B.

Click on to select all valid modules in the current
configuration. Click on to deselect all modules that
are currently selected.

 3. Click on one or more of the test settings:

Click on to select all of the tests. Click on
 to deselect all tests.

 4. Specify an Error Mode:

Click on Error Mode: to stop testing when a channel
error occurs. Click on Error Mode: to stop testing
when a sequence error occurs.

Use this option to isolate an error when it occurs. After the error
occurs, click on Test Mode: ; the failing function is
highlighted in the Sequence scroll box in compose mode.

 5. Click on ; MME executes the specified tests.

 6. View the MME Log window to see any errors that occur. If the MME
Log window is not open, choose View –> Log to open it.

Environment 0 MME User Guide

10 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME User Guide Environment 0

11Cray Research/Silicon Graphics ProprietaryHDM-102-B

Using Manual Mode

When you click on Test Mode: , environment 0 runs in manual mode.
Manual mode enables you to select which sequences of the predefined
tests will run. This enables you to isolate certain areas for testing. In
manual mode, you can run only one test at a time. The following
procedures describe how to run each environment 0 test in manual mode.

Running the Boundary Scan (BS) Communication T est

Perform the following procedure to run the BS communication test:

 1. Click on Test Mode: to enter manual mode.

 2. Click on the BS module(s) that you want to test.

 3. Click on Tests: to select the boundary scan test. The
MME Boundary Scan Test Parameters window appears:

 4. Click on the sequences that you want to run. The sequences perform
the following functions:

Sequence: Description:

This sequence loops back module data.

Environment 0 MME User Guide

12 Cray Research/Silicon Graphics Proprietary HDM-102-B

Sequence: Description:

This sequence loops back port data.

This sequence echoes the module function
word.

This sequence echoes the channel function
word.

This sequence echoes the port function word.

This sequence loads the port register and reads
the value back.

This sequence checks front-end interface (FEI)
errors, such as parity errors on the channel.

 5. If you are running a loop-back sequence, an echo sequence, or a port
function register sequence, click on the patterns that you want to use
for testing:

Pattern: Description:

The sequence uses 0000008 and 1777778
parcel patterns.

The sequence uses 1252528 and 0525258
parcel patterns.

The sequence uses parcel address and
complement parcel address patterns.

The sequence uses random data parcel patterns.

The sequence uses user-specified parcel
patterns.

Specify the format (click on User Defined
Format: , , , or). In
the User Defined Pattern field, enter the pattern
that you want to use.

 6. In the Loopback Length field, enter the length of the data block that
you want to loop back if you are running a loop-back sequence.

MME User Guide Environment 0

13Cray Research/Silicon Graphics ProprietaryHDM-102-B

 7. Click on ; MME tests the selected sequences.

 8. View the MME Log window to see any errors that occur. If the MME
Log window is not open, choose View –> Log to open it.

Running the Configuration (Basic) T est

Perform the following procedure to run the configuration (basic) test in
manual mode:

 1. Click on Test Mode: to enter manual mode.

 2. Click on the CPU module(s) that you want to test.

 3. Click on Tests: to select the basic configuration test.
The MME Configuration (Basic) Test Parameters window appears:

 4. Click on the sequence that you want to test:

Sequence: Description:

This sequence checks all memory section
configuration settings.

Environment 0 MME User Guide

14 Cray Research/Silicon Graphics Proprietary HDM-102-B

Sequence: Description:

This sequence checks all memory subsection
and bank configuration settings.

This sequence checks all memory group
configuration settings.

This sequence checks CPU memory addressing
when a CPU is configured in upper 256-Kword
addressing mode.

 5. Click on ; MME runs the selected test sequence(s).

 6. View the MME Log window to see any errors that occur. If the MME
Log window is not open, choose View –> Log to open it.

MME User Guide Environment 0

15Cray Research/Silicon Graphics ProprietaryHDM-102-B

Running the Memory Test

Perform the following procedure to run the memory test in manual mode:

 1. Click on Test Mode: to enter manual mode.

 2. Click on the CPU module(s) that you want to test.

 3. Click on Tests: to select the memory test. The MME

Memory Test Parameters window appears:

 4. Click on the sequence(s) that you want to use:

Sequence: Description:

This sequence writes the MME buffer with the
selected pattern, writes the MME buffer data to
memory with error correction enabled, reads
the memory data back to the MME buffer, and
compares sent and received data.

Environment 0 MME User Guide

16 Cray Research/Silicon Graphics Proprietary HDM-102-B

Sequence: Description:

This sequence tests the block length of DMA
write and read function words.

This sequence writes the MME buffer with the
selected pattern, writes the MME buffer data to
memory with error correction disabled, reads
the memory data back to the MME buffer, and
compares the sent and received data.

In the Starting Address field, enter the starting
address of the data block. In the Block Length
field, enter the length of the data block.

This sequence tests the address bits in a DMA
function word.

In the Last Address Bit To Test field, specify the
number of the last address bit that you want to
test. The memory size that you have selected
to test appears to the right of the field.

 5. If you are using the or sequences, you need to
specify the data pattern(s). Click on the pattern(s) that you want to
use:

Pattern: Description:

The sequence uses a 1777778 parcel pattern.

The sequence uses a 0000008 parcel pattern.

The sequence uses a 1252528 parcel pattern.

The sequence uses a 0525258 parcel pattern.

The sequence uses an address parcel pattern.
(Memory locations are written with their
addresses.)

The sequence uses a complement address
parcel pattern. (Memory locations are written
with the complements of their addresses.)

MME User Guide Environment 0

17Cray Research/Silicon Graphics ProprietaryHDM-102-B

Pattern: Description:

The sequence uses a random data parcel
pattern.

The sequence uses a user-defined parcel
pattern.

Click on User Defined/Compare Mask Format:
, , , or setting. In

the User Defined Pattern field, enter the pattern
that you want to use.

 6. In the Compare Mask field, enter a mask to indicate the bit positions
that you want to compare (02 = do not compare bit position;
12 = compare bit position).

 7. If you are using the sequence, specify the following items:

• Starting address: in the Starting Address field, enter the starting
address that you want to use.

• Block Length: in the Block Length field, enter the block length
that you want to use.

• Error correction mode: error correction is disabled by default.
If you want to enable error correction, click on
Error Correction: .

• Write CPU: specify the CPU that writes the data by clicking on
one of the following settings:

• Write CPU: to use the same CPU to read and write
the data,

• Write CPU: to specify which CPU writes the data
(choose the CPU from), or

• Write CPU: to randomly choose the CPU that writes
the data.

 8. Click on ; MME tests the selected patterns.

 9. View the MME Log window to see any errors that occur. If the MME
Log window is not open, choose View –> Log to open it.

Environment 0 MME User Guide

18 Cray Research/Silicon Graphics Proprietary HDM-102-B

Running the Input and Output (I/O) Error Correction T est

Perform the following procedure to run the I/O error correction test in
manual mode:

 1. Click on Test Mode: to enter manual mode.

 2. Click on the CPU module(s) that you want to test.

 3. Click on Tests: to select the I/O error correction test.
The MME Error Correction Test Parameters window appears:

 4. Click on the sequence(s) that you want to use:

Sequence: Description:

This sequence writes data that forces a
correctable single-error correction/
double-error detection (SECDED) error
and verifies that the data error is corrected.

This sequence writes data that forces an
uncorrectable SECDED error and verifies
that the data error is detected.

MME User Guide Environment 0

19Cray Research/Silicon Graphics ProprietaryHDM-102-B

Sequence: Description:

This sequence writes different data
patterns and reads and verifies the check
bits.

This sequence writes different data
patterns and reads and verifies the
checkbytes.

This sequence writes a series of
checkbytes, reads the checkbytes back, and
verifies the checkbyte storage mechanism.

This sequence writes data that forces a
correctable single-byte correction/
double-byte detection (SBCDBD) error
and verifies that the data error is corrected.

This sequence writes data that forces an
uncorrectable SBCDBD error and verifies
that the data error is detected.

 5. Click on ; MME runs the selected sequences.

 6. View the MME Log window to see any errors that occur. If the MME
Log window is not open, choose View –> Log to open it.

Running the Logic Monitor Test

Perform the following procedure to run the logic monitor test in manual
mode:

 1. Click on Test Mode: to enter manual mode.

 2. Click on the CPU, I/O, and/or SHR module(s) that you want to test.

 3. Click on Tests: to select the logic monitor test. The
MME Logic Monitor Parameters window appears.

Environment 0 MME User Guide

20 Cray Research/Silicon Graphics Proprietary HDM-102-B

 4. Click on the test sequence(s) that you want to run:

Sequence: Description:

This sequence tests the capability of the logic
monitor(s) to read a known 0 and 1 value test
point on each chip, which verifies the chip
paths to the HM options.

This sequence tests the capability of the logic
monitor(s) to record preselected values and
compares the results with expected values.

This sequence tests the capability of the logic
monitor(s) to trigger on preselected values and
compares the results with expected values.

This sequence tests the capability of the logic
monitor(s) to perform breakpoint functions for
preselected values and compares the results
with expected values.

This sequence is not implemented.

 5. Click on ; MME runs the selected sequences.

 6. View the MME Log window to see any errors that occur. If the MME
Log window is not open, choose View –> Log to open it.

MME User Guide Environment 0

21Cray Research/Silicon Graphics ProprietaryHDM-102-B

Running the Exchange Test

Perform the following procedure to run the exchange test in manual mode:

 1. Click on Test Mode: to enter manual mode.

 2. Click on the CPU module(s) that you want to test.

 3. Click on Tests: to select the exchange test. The MME

Exchange Test Parameters window appears:

 4. Click on the pattern(s) that you want to test:

Pattern: Description:

This sequence sends 408 words of a 0’s pattern
to the MME buffer, performs a DMA transfer
to memory, exchanges in to the CPU,
exchanges out to memory, performs a DMA
transfer from memory to the MME buffer, and
compares the sent and received data.

Environment 0 MME User Guide

22 Cray Research/Silicon Graphics Proprietary HDM-102-B

Pattern: Description:

This sequence sends 408 words of a 1’s pattern
to the MME buffer, performs a DMA transfer
to memory, exchanges in to the CPU,
exchanges out to memory, performs a DMA
transfer from memory to the MME buffer, and
compares the sent and received data.

This sequence sends 408 words of a random
pattern to the MME buffer, performs a DMA
transfer to memory, exchanges in to the CPU,
exchanges out to memory, performs a DMA
transfer from memory to the MME buffer, and
compares the sent and received data.

This sequence sends 408 words of a
user-defined pattern to the MME buffer,
performs a DMA transfer to memory,
exchanges in to the CPU, exchanges out to
memory, performs a DMA transfer from
memory to the MME buffer, and compares the
sent and received data.

To specify the user-defined pattern format,
click on User Defined/Compare Mask Format:

, , , or . In the User

Defined Pattern field, enter the pattern that you
want to test.

 5. Click on ; MME tests the selected patterns.

 6. View the MME Log window to see any errors that occur. If the MME
Log window is not open, choose View –> Log to open it.

MME User Guide Environment 0

23Cray Research/Silicon Graphics ProprietaryHDM-102-B

Running the Instruction Buffers T est

Perform the following procedure to run the instruction buffers test in
manual mode:

 1. Click on Test Mode: to enter manual mode.

 2. Click on the CPU module(s) that you want to test.

 3. Click on Tests: to select the instruction buffers test.
The MME Instruction Buffer Test Parameters window appears:

 4. Click on Mode: to test all instruction buffers, or click on
Mode: to test specific instruction buffers.

To select specific instruction buffers to test, click on the Buffer Select
numbers that you want (any or all of , , , , , , , and).
You can toggle your selections with the button.

Environment 0 MME User Guide

24 Cray Research/Silicon Graphics Proprietary HDM-102-B

 5. Click on the pattern(s) that you want to use:

Pattern: Description:

This sequence writes the MME buffer with a
0’s pattern, writes the MME buffer contents to
memory, loads the instruction buffers from
memory, stores selected instruction buffers to
memory, reads the data back to the MME
buffer, and compares the expected and actual
data.

This sequence writes the MME buffer with a
1’s pattern, writes the MME buffer contents to
memory, loads the instruction buffers from
memory, stores selected instruction buffers to
memory, reads the data back to the MME
buffer, and compares the expected and actual
data.

This sequence writes the MME buffer with an
odd bits pattern, writes the MME buffer
contents to memory, loads the instruction
buffers from memory, stores selected
instruction buffers to memory, reads the data
back to the MME buffer, and compares the
expected and actual data.

This sequence writes the MME buffer with an
even bits pattern, writes the MME buffer
contents to memory, loads the instruction
buffers from memory, stores selected
instruction buffers to memory, reads the data
back to the MME buffer, and compares the
expected and actual data.

This sequence writes the MME buffer with an
address pattern, writes the MME buffer
contents to memory, loads the instruction
buffers from memory, stores selected
instruction buffers to memory, reads the data
back to the MME buffer, and compares the
expected and actual data.

MME User Guide Environment 0

25Cray Research/Silicon Graphics ProprietaryHDM-102-B

Pattern: Description:

This sequence writes the MME buffer with a
complement address pattern, writes the MME
buffer contents to memory, loads the
instruction buffers from memory, stores
selected instruction buffers to memory, reads
the data back to the MME buffer, and compares
the expected and actual data.

This sequence writes the MME buffer with a
random pattern, writes the MME buffer
contents to memory, loads the instruction
buffers from memory, stores selected
instruction buffers to memory, reads the data
back to the MME buffer, and compares the
expected and actual data.

This sequence writes the MME buffer with a
user-defined pattern, writes the MME buffer
contents to memory, loads the instruction
buffers from memory, stores selected
instruction buffers to memory, reads the data
back to the MME buffer, and compares the
expected and actual data.

To specify the user-defined pattern format,
click on User Defined/Compare Mask Format:

, , , or . In the User

Defined Pattern field, enter the pattern that you
want to use.

 6. In the Compare Mask field, enter a mask to indicate the bit positions
that you want to compare (02 = do not compare bit position;
12 = compare bit position).

 7. Click on ; MME tests the selected patterns.

 8. View the MME Log window to see any errors that occur. If the MME
Log window is not open, choose View –> Log to open it.

Environment 0 MME User Guide

26 Cray Research/Silicon Graphics Proprietary HDM-102-B

Running the Configuration (Advanced) T est

Perform the following procedure to run the configuration (advanced) test
in manual mode:

 1. Click on Test Mode: to enter manual mode.

 2. Click on the BS, CPU, I/O, and/or SHR module(s) that you want to
test.

 3. Click on Tests: to select the advanced configuration
test. The MME Configuration (Advanced) Test Parameters window
appears:

 4. Click on the sequence that you want to test:

Sequence: Description:

This sequence checks I/O group and shared
group configuration settings and interprocessor
interrupts within shared groups for each CPU.

 5. Click on ; MME runs the selected test sequence.

 6. View the MME Log window to see any errors that occur. If the MME
Log window is not open, choose View –> Log to open it.

MME User Guide Environment 0

27Cray Research/Silicon Graphics ProprietaryHDM-102-B

Running the End-to-end Test

 1. Click on Test Mode: to enter manual mode.

 2. Click on the CPU module(s) that you want to test.

 3. Click on Tests: to select the end-to-end test. The
MME End to End Test Parameters window appears:

The end-to-end test starts a small program in the CPU that you are
testing. When the program receives input from the input channel, it
returns the same data on the output channel. The end-to-end test
then reads the final data and compares it to the original data.

 4. In the FEI Channel field, specify the logical FEI channel that you
want to use. This channel defaults to the FEI channel that SCE
assigned to the support channel.

 5. In the Input Channel field, specify the input channel that you want to
use.

 6. In the Output Channel field, specify the output channel that you want
to use.

Environment 0 MME User Guide

28 Cray Research/Silicon Graphics Proprietary HDM-102-B

 7. Click on the data pattern that you want to use:

Pattern: Description:

The test uses a 1777778 parcel pattern.

The test uses a 0000008 parcel pattern.

The test uses a 1252528 parcel pattern.

The test uses a 0525258 parcel pattern.

The test uses an address parcel pattern.

The test uses a complement address parcel
pattern.

The test uses a random data parcel pattern.

The test uses a user-defined parcel pattern.

Click on User Defined/Compare Mask Format:
, , , or setting. In

the User Defined Pattern field, enter the pattern
that you want to use.

 8. In the Compare Mask field, enter a mask to indicate the bit positions
that you want to compare (02 = do not compare bit position;
12 = compare bit position).

 9. In the Length field, specify the size of the data block that the test
should use.

 10. Click on ; MME runs the end-to-end test with the
specified parameters.

 11. View the MME Log window to see any errors that occur. If the MME
Log window is not open, choose View –> Log to open it.

MME User Guide Environment 0

29Cray Research/Silicon Graphics ProprietaryHDM-102-B

Running the Miscellaneous Test

Perform the following procedure to run the miscellaneous test in manual
mode:

 1. Click on Test Mode: to enter manual mode.

 2. Click on the CPU module(s) that you want to test.

 3. Click on Tests: to select the miscellaneous test. The
MME Miscellaneous Test Parameters window appears:

 4. Click on the sequence that you want to test:

Sequence: Description:

This sequence tests the spare memory chips.

 5. Click on ; MME tests the selected sequence.

 6. View the MME Log window to see any errors that occur. If the MME
Log window is not open, choose View –> Log to open it.

Environment 0 MME User Guide

30 Cray Research/Silicon Graphics Proprietary HDM-102-B

Using Compose Mode

When you click on Test Mode: , environment 0 runs in compose
mode. Compose mode enables you to create sequences of maintenance
channel functions to test specific areas of the mainframe. Using the
graphic interface in the compose mode base window, you can easily create
or modify a sequence of functions that MME converts into the commands
that are necessary to perform the functions.

This subsection describes modifying and creating sequences. Normally,
you should modify an existing sequence rather than create a new one.

Use the MME Compose Sequence Entry window to create sequences of the
following maintenance channel functions that run in the mainframe:

• Boundary scan loop controller functions
• Boundary scan module functions
• Boundary scan channel functions
• Boundary scan port functions
• Shared loop controller functions
• Shared logic monitor functions
• CPU loop controller functions
• CPU logic monitor functions
• CPU DMA functions
• Input/output loop controller functions
• Input/output logic monitor functions
• Input/output sanity generator functions

Use the MME Compose Sequence Entry window to create sequences of the
following functions and utilities that run in the MWS or SWS:

• Channel functions: close, disconnect, lock, masterclear, open, read,
reset, unlock, write, and write/read

• Comment functions: quiet and verbose

• Compare function

• Control functions: goto, label, and stop

• File operation functions: read, write, append, and delete

• Utilities: delay, mask, move, pattern, and squish

MME User Guide Environment 0

31Cray Research/Silicon Graphics ProprietaryHDM-102-B

Modifying an Existing Sequence

The following example shows how to modify an existing sequence. This
example modifies the memory test sequence to test data starting at
mainframe address 400008.

 1. Run a sequence in automatic or manual mode and click on
.

 2. Click on Test Mode: to switch to compose mode. The
memory test sequence is shown in the Sequence scroll box; refer to
Figure 5. Notice that the last running function is highlighted.

Functions and Utilities
in the Memory Test

Sequence

Last
Running
Function

Figure 5. Viewing the Original Sequence

 3. Click on the CPU DMA Write function that is displayed in the
Sequence scroll box. MME displays the MME Compose Sequence
Entry window for the function.

 4. Change where the direct memory access (DMA) function starts
writing data by changing the value stored in the Memory Address
field. For example, Figure 6 shows how to change the write address
from 08 to 400008.

Environment 0 MME User Guide

32 Cray Research/Silicon Graphics Proprietary HDM-102-B

This modified DMA
function writes data
starting at mainframe
address 400008

The original DMA
function writes data
starting at mainframe
address 08

Figure 6. Modifying Where the DMA Function Writes the Data

 5. Click on to send the function change to the sequence.

NOTE: If is not present in the MME Compose Sequence Entry

window, MME has been configured to enable the auto
apply function with the Properties –> Enable Auto Apply
command. Move the cursor to the MME base window,
and the function changes are automatically applied.

MME User Guide Environment 0

33Cray Research/Silicon Graphics ProprietaryHDM-102-B

 6. Click on the CPU DMA Read function that is displayed in the
Sequence scroll box. MME displays the MME Compose Sequence
Entry window for the function.

 7. Change where the DMA function starts reading data by changing the
value stored in the Memory Address field. For example, Figure 7
shows how to change the read address from 08 to 400008.

The original DMA function
reads data starting at
mainframe address 08

This modified DMA
function reads data
starting at mainframe
address 400008

Figure 7. Modifying Where the DMA Function Reads the Data

Environment 0 MME User Guide

34 Cray Research/Silicon Graphics Proprietary HDM-102-B

 8. Click on to send the function change to the sequence.

NOTE: If is not present in the MME Compose Sequence Entry

window, MME has been configured to enable the auto
apply function with the Properties –> Enable Auto Apply
command. Move the cursor to the MME base window,
and the function changes are automatically applied.

 9. Save or run the sequence:

• To run the modified sequence, click on .

• To save the sequence, choose File –> Save –> Sequence . You
should also save the data to use with the sequence; choose
File –> Save –> Data .

When you want to reuse the sequence, load the sequence with
the File –> Load –> Sequence command and load the data with
the File –> Load –> Data command.

For more information, refer to the “File –> Save –> Sequence,”
“File –> Save –> Data,” “File –> Load –> Sequence,” and
“File –> Load –> Data” subsections of the MME Interface
Reference, publication number HDM-008-A.

You can also change the functions in the current sequence. Figure 8
shows an example of how to change a selected function.

Figure 8. Changing a Selected Function in the Sequence

MME User Guide Environment 0

35Cray Research/Silicon Graphics ProprietaryHDM-102-B

Creating a New Sequence

Perform the following procedure to create a new sequence of maintenance
channel functions or utilities:

 1. In the Mainframe Maintenance Environment base window, choose
Create –> Before , Create –> After , Create –> Top , or Create –> Bottom
to specify where in the Sequence scroll box you want to create the
new entry. The MME Compose Sequence Entry window appears:

 2. Choose a different entry type from if you want a function
or utility other than the default. Refer to the descriptions of the
individual functions and utilities later in this subsection for more
information about the functions and utilities available.

 3. Modify the information in the MME Compose Sequence Entry window
to create the specific function or utility that you need.

 4. Click on to place the entry in the sequence or to reset
the MME Compose Sequence Entry window.

NOTE: If is not present in the MME Compose Sequence Entry

window, MME has been configured to enable the auto
apply function with the Properties –> Enable Auto Apply
command. Move the cursor to the MME base window,
and the function changes are automatically applied.

Environment 0 MME User Guide

36 Cray Research/Silicon Graphics Proprietary HDM-102-B

When there is more than one entry in the Sequence scroll box, use
the button to move forward one entry in the sequence and the

 button to move backward one entry in the sequence.

 5. Repeat Steps 1 through 4 to create more entries in the sequence.

 6. Choose a module from if you want to assign the sequence
to a specific module.

 7. Click on . MME sends the commands to the mainframe
through the maintenance channel to perform the functions that you
have requested.

Boundary Scan Functions

The boundary scan functions are used to manipulate the boundary scan
module, channel, port, and loop controller components.

Boundary Scan Loop Controller Functions

The boundary scan loop controller functions enable you to send functions
to any of the chips on a boundary scan or IO02 module. Choose Entry
Type –> BS –> Loop Controller Function to access the boundary scan loop
controller functions. The following MME Compose Sequence Entry window
appears:

MME User Guide Environment 0

37Cray Research/Silicon Graphics ProprietaryHDM-102-B

Notice that the maintenance channel command data for the current
function is generated and displayed in the BS Loop Controller Function field.
This data is updated as you select different loop controller functions. To
modify the boundary scan loop controller function, perform the following
procedure:

 1. From Route Code: , choose the route code of the module to which
you want to send the loop controller functions (boundary scan
module or IO02 module).

 2. From Loop Address: , choose the loop address to which you want
the function to go. Currently All Loops is the only option, which
corresponds to a broadcast function 778.

 3. Specify the chip type(s) where you want the function to go. From
Chip Type: , choose the chip type(s) to which you want the function
to go.

 4. From Function Code: , choose the function that you want to run.

For more information about the function codes, refer to the
Boundary Scan Module (BS02) document, publication number
HTM-005-A, and the Triton Maintenance System Engineering Note,
publication number PRN-0957.

 5. Click on to place the function in the Sequence scroll box.

When execution reaches the boundary scan loop controller function in the
Sequence scroll box, the maintenance channel command data that was
displayed in the BS Loop Controller Function field is executed.

Environment 0 MME User Guide

38 Cray Research/Silicon Graphics Proprietary HDM-102-B

Boundary Scan DMA Functions

The boundary scan DMA functions enable you to perform direct memory
access (DMA) reads and writes. Choose Entry Type –> BS –> DMA to
access the boundary scan DMA functions. The following MME Compose
Sequence Entry window appears:

Notice that the maintenance channel command parcels for the current
function are generated and displayed in the BS DMA Function field. These
parcels are updated as you select different module functions or diagnostic
states. To create an entry with boundary scan DMA functions, perform
the following procedure:

 1. Click on the type of DMA function that you want to create
(Function: or).

 2. From the Loop Address: , choose the loop address to which you
want the function to go.

 3. If the function is a write function, enter the address of the source
data in the Source Address field. If the function is a read function,
enter the address that you want to read in the Destination address
field.

 4. In the Block Length (Words) field, enter the number of words that you
want to read or write.

MME User Guide Environment 0

39Cray Research/Silicon Graphics ProprietaryHDM-102-B

Boundary Scan Module Functions

The boundary scan module functions enable you to access the
functionality of the module and to modify the diagnostic state of the
module. Choose Entry Type –> BS –> Module Function to access the
boundary scan module functions. The following MME Compose Sequence
Entry window appears:

NOTE: Always run a disconnect function before you run a boundary
scan module function.

Notice that the maintenance channel command parcels for the current
function are generated and displayed in the BS Module Function field.
These parcels are updated as you select different module functions or
diagnostic states. To create an entry with boundary scan module
functions, perform the following procedure.

Environment 0 MME User Guide

40 Cray Research/Silicon Graphics Proprietary HDM-102-B

 1. Click on the module functions that you want to use:

Module Function: Description:

This function performs a soft master clear,
which sends a disconnect signal through the
control channel to the VME support system to
force the control channel to a known state. The
soft master clear function also turns off the
sanity code generator, clears any entries in the
error logger, and disables the SMC by ignoring
SMC and error logger inputs.

This function performs a reset, which sends a
disconnect signal through the control channel
to the VME support system to force the control
channel to a known state.

This function returns 4 parcels of module status
and clears error status (for serial mode).
Specify the address to which the status is
returned in the Status Address field.

This function causes the boundary scan module
to enter serial mode. If this setting is not
selected, passon mode is used.

This function loops source parcels back to the
return channel (for serial mode).

In the Echo Address field, enter the address to
which you want to echo the loop-back function
word.

In the Loop Source Address field, enter the
address of the data block in the MME buffer
that you want to loop back.

In the Loop Length (words) field, enter the length
of the data block that you want to loop back.

In the Loop Destination Address field, enter the
address in the MME buffer that will receive the
returned data.

MME User Guide Environment 0

41Cray Research/Silicon Graphics ProprietaryHDM-102-B

 2. Click on the diagnostic states that you want to modify:

Diagnostic State: Description:

This diagnostic state forces CS_NibblePE
for nibble 3.

This diagnostic state forces CS_SeqErr
when CS_Rdy.

This diagnostic state forces CS_NibblePE
for nibble 2.

This diagnostic state forces the serial
maintenance channel (SMC) data prepend
to equal 348 or 358.

This diagnostic state forces the SMC data
prepend to equal 348 or 368.

This diagnostic state forces CS_NibblePE
for nibble 1.

This diagnostic state forces CS_SeqErr
when CS_Rsm.

This diagnostic state forces TM = TDO on
all selected ports.

This diagnostic state forces CS_NibblePE
for nibble 0.

This diagnostic state toggles all CR_parity
bits.

 3. In the Sequence Number field, specify the sequence number.

 4. Click on to place the function in the Sequence scroll box.

Environment 0 MME User Guide

42 Cray Research/Silicon Graphics Proprietary HDM-102-B

Boundary Scan Channel Functions

Choose Entry Type –> BS –> Channel Function to access the boundary scan
channel functions. The following MME Compose Sequence Entry window
appears:

Notice that the maintenance channel command parcels for the current
function are generated and displayed in the BS Channel Function field.
These parcels are updated as you select different channel functions. To
create an entry with boundary scan channel functions, perform the
following procedure.

 1. Click on the channel functions that you want to run:

Channel Function: Description:

This function returns the 4 parcels of the
channel function command word to the
MME buffer. In the Echo Address field,
enter the address in the MME buffer that
you want to echo.

NOTE: You can use only one of the following four functions at a
time: , ,

, or .

MME User Guide Environment 0

43Cray Research/Silicon Graphics ProprietaryHDM-102-B

Channel Function: Description:

This function returns 4 parcels of module
status to the MME buffer. In the Status
Address field, enter the address in the
MME buffer that will receive the data.

This function returns 4 parcels of the PF
register to the MME buffer. In the Status
Address field, enter the address in the
MME buffer that will receive the data.

This function returns 4 parcels of
continuity line status to the MME buffer.
In the Status Address field, enter the
address in the MME buffer that will
receive the data.

This function returns 4 parcels of the burn
mask to the MME buffer. In the Status
Address field, enter the address in the
MME buffer that will receive the data.

NOTE: You can use only one of the ,
, , and
 functions at a time. (When you

click on a setting, the previously selected setting
deselects.)

This function disables the SMC.

This function enables the SMC.

This function disables the continuity line
transmitters.

This function enables the continuity line
transmitters.

This function loads the bits specified in the
Burn Mask Bits field into the burn mask.

This function disables detection by the
WACS for this boundary scan module.

 2. Click on to place the function in the Sequence scroll box.

Environment 0 MME User Guide

44 Cray Research/Silicon Graphics Proprietary HDM-102-B

Boundary Scan Port Functions

Choose Entry Type –> BS –> Port Function to access the boundary scan
port functions. The following MME Compose Sequence Entry window
appears:

Notice that the maintenance channel command parcels for the current
function are generated and displayed in the BS Port Function field. These
parcels are updated as you select different port functions. To create an
entry with boundary scan port functions, perform the following procedure:

 1. Click on the channel functions that you want to run:

Channel Function: Description:

This function returns the 4 parcels of the
function command word to the MME buffer.

In the Echo Address field, enter the address of
the MME buffer data you want to use.

This function performs the test_mode cycle.

MME User Guide Environment 0

45Cray Research/Silicon Graphics ProprietaryHDM-102-B

Channel Function: Description:

This function sends output to the specified
output ports. In the Output Address field, enter
the MME buffer address of the data that you
want to send as output. In the Output Length
(words) field, enter the length of the output data
block. In the Output Select field, enter a bit
mask to select to which of the 48 ports the
output is sent.

This function returns parcels from the specified
input ports or asserts a test mode and leaves it
active. In the Input Address field, enter the
MME buffer address that you want to receive
the data. In the Input Length (words) field, enter
the length of the input data block. In the Input
Select field, enter a bit mask to select the input
ports from which the data is received.

 2. Click on to place the function in the Sequence scroll box.

Shared Functions

The shared functions enable you to perform shared maintenance and
configuration functions and shared logic monitor functions.

Shared Loop Controller Functions

The shared loop controller functions are configuration and maintenance
functions that you can send to a shared module through a shared module
loop controller. Choose Entry Type –> Shared –> Loop Controller Function
to access the I/O loop controller functions. The following MME Compose
Sequence Entry window appears.

Environment 0 MME User Guide

46 Cray Research/Silicon Graphics Proprietary HDM-102-B

Notice that the maintenance channel command data for the current
function is generated and displayed in the Shared Loop Controller Function
field. This data is updated as you select different functions. To create an
entry with I/O loop controller functions, perform the following procedure:

 1. Click on the shared module that you want to use.

NOTE: Based on the current configuration data and the shared
module that you select, MME automatically generates a
route code for the function. If you want to force the route
code to a specific value, you must click on and
change the route code information in the Shared Loop
Controller Func field.

 2. From Loop Address: , choose the loop address to which you want
the function to go.

 3. From Chip Type: , choose the chip type(s) to which you want the
function to go.

 4. From Function Code: , choose a configuration or maintenance
function.

Refer to the Maintenance Channel document, publication number
HTM-006-B; and the Triton Maintenance System Engineering Note,
publication number PRN-0957; for more information about the
function codes.

MME User Guide Environment 0

47Cray Research/Silicon Graphics ProprietaryHDM-102-B

 5. Click on to place the function in the Sequence scroll box.

Shared Logic Monitor Functions

The shared logic monitor functions enable you to control the activity of
the logic monitors on the shared modules. Choose Entry Type –> Shared
–> Logic Monitor Function to access the shared logic monitor functions.
The following MME Compose Sequence Entry window appears:

Notice that the maintenance channel command data for the current
function is generated and displayed in the Shared Logic Monitor Function
field. This data is updated as you select different functions. To create an
entry with shared logic monitor functions, perform the following
procedure:

 1. Click on the shared module that you want to use.

NOTE: Based on the current configuration data and the shared
module that you select, MME automatically generates a
route code for the function. If you want to force the route
code to a specific value, you must click on and
change the route code information in the Shared Logic
Monitor Function field.

 2. From Command: , choose a shared logic monitor function.

Environment 0 MME User Guide

48 Cray Research/Silicon Graphics Proprietary HDM-102-B

Refer to the Maintenance Channel document, publication number
HTM-006-B; and the Triton Maintenance System Engineering Note,
publication number PRN-0957; for more information about these
commands.

 3. Update any fields that activate. Table 2 describes the fields.

Table 2. Shared Logic Monitor Command Fields

Field Description

Delay After Trigger Number of clock periods the logic monitor continues
recording after a trigger condition occurs

One Word/Trigger Record 1 word per trigger condition option (enabled or
disabled)

Record Mode Type of recording the logic monitor should do (number
of clock periods to record and number of test points to
record per clock period)

Source Address MME buffer address of data to write to the logic
monitor

Source Length Length of data block to write to the logic monitor

Readout Address MME buffer address to receive data from a logic
monitor readout buffer command

Readout Length Length of data block for data received from logic
monitor readout buffer command

Readout Action Action to perform based on results of data from logic
monitor readout buffer command

Readout Label Label to jump to if the readout action is a goto label
command

 4. Click on to place the function in the Sequence scroll box.

MME User Guide Environment 0

49Cray Research/Silicon Graphics ProprietaryHDM-102-B

CPU Functions

The CPU functions enable you to perform maintenance and configuration
functions, diagnostic monitor functions, and DMA functions.

CPU Loop Controller Functions

The CPU loop controller functions are configuration or maintenance
functions that you can send through the CPU module loop controllers to
any chip or loop of chips on the CPU modules. Choose Entry Type –> CPU
–> Loop Controller Function to access the CPU loop controller functions.
The following MME Compose Sequence Entry window appears.

Notice that the maintenance channel command data for the current
function is generated and displayed in the CPU Loop Controller Function
field. This data is updated as you select different functions. To create an
entry with CPU loop controller functions, perform the following
procedure:

 1. Click on the CPU that you want to use.

NOTE: Based on the current configuration data and the CPU that
you select, MME automatically generates a route code for
the function. If you want to force the route code to a
specific value, you must click on and change the
route code information in the CPU Loop Controller Function
field.

Environment 0 MME User Guide

50 Cray Research/Silicon Graphics Proprietary HDM-102-B

 2. From Loop Address: , choose the loop address to which you want
the function to go.

 3. From Chip Type: , choose the chip type(s) to which you want the
function to go.

 4. From Function Code: , choose a configuration or maintenance
function.

Refer to the Maintenance Channel document, publication number
HTM-006-B; and the Triton Maintenance System Engineering Note,
publication number PRN-0957; for more information about the
function codes.

 5. Click on to place the function in the Sequence scroll box.

CPU Logic Monitor Functions

The CPU logic monitor functions enable you to control the activity of the
logic monitors on the CPUs. Choose Entry Type –> CPU –> Logic Monitor
Function to access the CPU logic monitor functions. The following MME
Compose Sequence Entry window appears:

Notice that the maintenance channel command data for the current
function is generated and displayed in the CPU Logic Monitor Function field.
This data is updated as you select different functions. To create an entry
with CPU logic monitor functions, perform the following procedure.

MME User Guide Environment 0

51Cray Research/Silicon Graphics ProprietaryHDM-102-B

 1. Click on the CPU that you want to use.

NOTE: Based on the current configuration data and the CPU that
you select, MME automatically generates a route code for
the function. If you want to force the route code to a
specific value, you must click on and change the
route code information in the CPU Logic Monitor Function
field.

 2. From Command: , choose a CPU logic monitor function.

Refer to the Maintenance Channel document, publication number
HTM-006-B; and the Triton Maintenance System Engineering Note,
publication number PRN-0957; for more information about these
commands.

 3. Update any fields that activate. Table 3 describes the fields.

Table 3. CPU Logic Monitor Command Fields

Field Description

Delay After Trigger Number of clock periods the logic monitor continues
recording after a trigger condition occurs

One Word/Trigger Record 1 word per trigger condition option (enabled or
disabled)

Record Mode Type of recording the logic monitor should do (number
of clock periods to record and number of test points to
record per clock period)

Set Break Point Breakpoint used to stop CPU execution

Source Address MME buffer address of data to write to the logic
monitor

Source Length Length of data block to write to the logic monitor

Readout Address MME buffer address to receive data from a logic
monitor readout buffer command

Readout Length Length of data block for data received from logic
monitor readout buffer command

Readout Action Action to perform based on results of data from logic
monitor readout buffer command

Readout Label Label to jump to if the readout action is a goto label
command

 4. Click on to place the function in the Sequence scroll box.

Environment 0 MME User Guide

52 Cray Research/Silicon Graphics Proprietary HDM-102-B

CPU DMA Functions

The CPU DMA functions enable you to control the direct memory access
(DMA) activity that can be performed. Choose Entry Type –> CPU –> DMA
Function to access the CPU DMA functions. The following MME
Compose Sequence Entry window appears:

Notice that the maintenance channel command data for the current
function is generated and displayed in the CPU DMA Function field. This
data is updated as you select different functions. Perform the following
procedure to create an entry with CPU DMA functions:

 1. Click on the CPU that you want to use.

NOTE: Based on the current configuration data and the CPU that
you select, MME automatically generates a route code for
the function. If you want to force the route code to a
specific value, you must click on and change the
route code information in the CPU DMA Function field.

 2. From Function: , choose a DMA function.

Refer to the Maintenance Channel document, publication number
HTM-006-B; and the Triton Maintenance System Engineering Note,
number PRN-0957; for more information about the DMA functions.

 3. From Option: , choose an option.

MME User Guide Environment 0

53Cray Research/Silicon Graphics ProprietaryHDM-102-B

Refer to the Maintenance Channel document, publication number
HTM-006-B; and the Triton Maintenance System Engineering Note,
publication number PRN-0957; for more information about the
available options.

 4. In the Memory Address field, enter the starting address of the data
block in mainframe memory that you want to manipulate.

 5. In the Buffer Address field, enter the starting address of the data block
in the MME buffer that you want to manipulate.

 6. In the Block Length (words) field, enter the size of the data block (in
words) that you want manipulate.

 7. Click on to place the function in the Sequence scroll box.

I/O Functions

The I/O functions enable you to perform I/O maintenance and
configuration functions and I/O logic monitor functions.

I/O Loop Controller Functions

The I/O loop controller functions are configuration and maintenance
functions that you can send to an IO module through an IO module loop
controller. Choose Entry Type –> I/O –> Loop Controller Function to access
the I/O loop controller functions. The following MME Compose Sequence
Entry window appears:

Environment 0 MME User Guide

54 Cray Research/Silicon Graphics Proprietary HDM-102-B

Notice that the maintenance channel command data for the current
function is generated and displayed in the I/O Loop Controller Function field.
This data is updated as you select different functions. To create an entry
with I/O loop controller functions, perform the following procedure:

 1. Click on the IO module that you want to use.

NOTE: Based on the current configuration data and the IO module
that you select, MME automatically generates a route code
for the function. If you want to force the route code to a
specific value, you must click on and change the
route code information in the I/O Loop Controller Function
field.

 2. From Loop Address: , choose the loop address to which you want
the function to go.

 3. If the IO module that you want to use is an IO01 module: from
I/O 1 Chip Type: , choose the chip type(s) to which you want the
function to go.

 4. If the IO module that you want to use is an IO02 module: from
I/O 2 Chip Type: , choose the chip type(s) to which you want the
function to go.

 5. If the IO module that you want to use is an IO01 module: from
I/O 1 Function Code: , choose a configuration or maintenance
function.

MME User Guide Environment 0

55Cray Research/Silicon Graphics ProprietaryHDM-102-B

Refer to the Maintenance Channel document, publication number
HTM-006-B; and the Triton Maintenance System Engineering Note,
publication number PRN-0957; for more information about the IO01
module functions.

 6. If the IO module that you want to use is an IO02 module: from
I/O 2 Function Code: , choose a configuration or maintenance
function.

 7. Click on to place the function in the Sequence scroll box.

Environment 0 MME User Guide

56 Cray Research/Silicon Graphics Proprietary HDM-102-B

I/O Logic Monitor Functions

The I/O logic monitor functions enable you to control the activity of the
logic monitors on the IO modules. Choose Entry Type –> I/O –> Logic
Monitor Function to access the I/O logic monitor functions. The following
MME Compose Sequence Entry window appears:

Notice that the maintenance channel command data for the current
function is generated and displayed in the I/O Logic Monitor Function field.
This data is updated as you select different functions. Perform the
following procedure to create an entry with I/O logic monitor functions:

 1. Click on the IO module that you want to use.

NOTE: Based on the current configuration data and the IO module
that you select, MME automatically generates a route code
for the function. If you want to force the route code to a
specific value, you must click on and change the
route code information in the I/O Logic Monitor Function
field.

 2. From Command: , choose an I/O logic monitor function.

Refer to the Maintenance Channel document, publication number
HTM-006-B; and the Triton Maintenance System Engineering Note,
publication number PRN-0957; for more information about these
commands.

MME User Guide Environment 0

57Cray Research/Silicon Graphics ProprietaryHDM-102-B

 3. Update any fields that activate. Table 4 describes the fields.

Table 4. I/O Logic Monitor Command Fields

Field Description

Delay After Trigger Number of clock periods the logic monitor continues
recording after a trigger condition occurs

One Word/Trigger Record 1 word per trigger condition option (enabled or
disabled)

Record Mode Type of recording the logic monitor should do (number
of clock periods to record and number of test points to
record per clock period)

Source Address MME buffer address of data to write to the logic
monitor

Source Length Length of data block to write to the logic monitor

Readout Address MME buffer address to receive data from a logic
monitor readout buffer command

Readout Length Length of data block for data received from logic
monitor readout buffer command

Readout Action Action to perform based on results of data from logic
monitor readout buffer command

Readout Label Label to jump to if the readout action is a goto label
command

 4. Click on to place the function in the Sequence scroll box.

Environment 0 MME User Guide

58 Cray Research/Silicon Graphics Proprietary HDM-102-B

I/O Sanity Generator Functions

The I/O sanity generator functions enable you to start and stop the sanity
generator. Choose Entry Type –> I/O –> Sanity Generator to access the I/O
sanity generator functions. The following MME Compose Sequence Entry
window appears:

Sanity On

The Sanity On function starts the sanity generator. Perform the following
procedure to create a Sanity On function:

 1. Click on Function: .
2. Click on to place the function in the Sequence scroll box.

Sanity Off

The Sanity Off function stops the sanity generator. Perform the following
procedure to create a Sanity Off function:

 1. Click on Function: .
2. Click on to place the function in the Sequence scroll box.

MME User Guide Environment 0

59Cray Research/Silicon Graphics ProprietaryHDM-102-B

Other

Currently, this function is not implemented.

Channel Functions

The channel functions enable you to control a front-end interface channel.
Choose Entry Type –> Channel to access the channel functions. The
following MME Compose Sequence Entry window appears:

Open

The open channel function opens an FEI channel. Perform the following
procedure to create an open channel function:

 1. Click on Operation: to select the open channel function.

 2. Click Channel: , , , , , , , , , , , , ,
, , or to specify the channel that you want to open.

 3. From Mode: , choose the channel mode that you want to use.
Refer to Table 5 for descriptions of the options.

Environment 0 MME User Guide

60 Cray Research/Silicon Graphics Proprietary HDM-102-B

Table 5. Channel Mode Options

Option Description

BSIM Used for Boolean simulation mode

ISIM Used for instruction simulation mode

Sun4 Boundary Scan (fymt_bs) Used for boundary scan mode functions with a device driver for
a boundary scan module in the IO module slot (tester only)

Sun4 Maintenance (fymt_mc) Used for maintenance channel functions other than boundary
scan mode functions with a device driver for a boundary scan
module in the IO module slot (tester only)

Sun5 Maintenance (fymtm_bs) Used for boundary scan mode functions with a device driver for
a boundary scan module in the normal operating location

Sun5 Maintenance (fymtm_mc) Used for maintenance channel functions other than boundary
scan mode functions with a device driver for a boundary scan
module in the normal operating location

SPV BS/Maintenance (SIM) This option is no longer valid and will be removed from future
versions of MME. Do not use this option.

SPV BS/Maintenance Used with the boundary scan/maintenance channel
subchannel of the supervisory channel

SPV Loopback Used with the loopback subchannel of the supervisory channel

Data Channel (fymc) Used for the special driver needed to run the end-to-end test
on a LOSP channel

 4. Click on to place the function in the Sequence scroll box.

Masterclear

The masterclear channel function master clears the FEI channel. Perform
the following procedure to create a masterclear function:

 1. Click on Operation: to select the masterclear function.
2. Click on to place the function in the Sequence scroll box.

MME User Guide Environment 0

61Cray Research/Silicon Graphics ProprietaryHDM-102-B

Disconnect

The disconnect channel function disconnects the FEI channel. Perform
the following procedure to create a disconnect channel function:

 1. Click on Operation: to select the disconnect function.
2. Click on to place the function in the Sequence scroll box.

Close

The close channel function closes the open FEI channel. Perform the
following procedure to create a close channel function:

 1. Click on Operation: to select the close function.
2. Click on to place the function in the Sequence scroll box.

Reset

The reset channel function resets the FEI channel. Perform the following
procedure to create a reset channel function:

 1. Click on Operation: to select the reset function.
2. Click on to place the function in the Sequence scroll box.

Lock

The lock channel function locks the FEI channel. Perform the following
procedure to create a lock channel function:

 1. Click on Operation: to select the lock function.
2. Click on to place the function in the Sequence scroll box.

Unlock

The unlock channel function unlocks the FEI channel. Perform the
following procedure to create an unlock channel function:

 1. Click on Operation: to select the unlock function.
2. Click on to place the function in the Sequence scroll box.

Environment 0 MME User Guide

62 Cray Research/Silicon Graphics Proprietary HDM-102-B

Write

NOTE: You must open a channel with the open command before you
initiate a write command. If you do not open a channel, MME
displays Can’t do raw write on current channel in the MME Log
window. This message indicates that you tried to write data to
the maintenance channel.

The write channel function writes data to the FEI channel; MME gets the
data from the MME buffer. Perform the following procedure to create a
write channel function:

 1. Click on Operation: to select the write function.

 2. In the Source Address field, enter the starting address of the block of
data (in the MME buffer) that you want to write to the FEI channel.

 3. In the Source Length field, enter the length of the block of data that
you want to write to the channel.

 4. Click on to place the function in the Sequence scroll box.

Read

NOTE: You must open a channel with the open command before you
initiate a read command. If you do not open a channel, MME
displays Can’t do raw read on current channel in the MME Log
window. This message indicates that you tried to read data from
the maintenance channel.

The read channel function reads data from the FEI channel; MME puts the
data into the MME buffer. Perform the following procedure to create a
read channel function:

 1. Click on Operation: to select the read function.

 2. In the Destination Address field, enter the first address in the MME
buffer that should receive the data that is read from the FEI channel.

 3. In the Destination Length field, enter the length of the block of data
that you want to read from the channel.

 4. Click on to place the function in the Sequence scroll box.

MME User Guide Environment 0

63Cray Research/Silicon Graphics ProprietaryHDM-102-B

Write/Read

NOTE: You must open a channel with the open command before you
initiate a write or read command. If you do not open a channel,
MME displays Can’t do raw write on current channel in the MME
Log window. This message indicates that you tried to write data
to the maintenance channel. (The message is for the write
function because the write function executes first.)

The write/read channel function writes data to the FEI channel and then
reads data from the FEI channel. MME gets the data to be written from
the MME buffer, and MME puts the data that is read from the channel into
the MME buffer. Perform the following procedure to create a write/read
channel function:

 1. Click on Operation: to select the write/read function.

 2. In the Source Address field, enter the starting address of the block of
data (in the MME buffer) that you want to write to the FEI channel.

 3. In the Source Length field, enter the length of the block of data that
you want to write to the channel.

 4. In the Destination Address field, enter the first address in the MME
buffer that should receive the data that is read from the FEI channel.

 5. In the Destination Length field, enter the length of the block of data
that you want to read from the channel.

 6. Click on to place the function in the Sequence scroll box.

Environment 0 MME User Guide

64 Cray Research/Silicon Graphics Proprietary HDM-102-B

Comments

You can enter comments into a sequence to document what the sequence
does. There are two types of comments: quiet and verbose. Choose
Entry Type –> Comment to access the comment functions. The following
MME Compose Sequence Entry window appears:

Quiet

Quiet comments are not displayed in the MME Log window as the sequence
executes. Perform the following procedure to create a quiet comment:

 1. Click on Mode: to select a quiet comment.
2. In the String field, type the comment and press the Return key.
3. Click on to place the comment in the Sequence scroll box.

Verbose

Verbose comments are displayed in the MME Log window as the sequence
executes. Perform the following procedure to create a verbose comment:

 1. Click on Mode: to select a verbose comment.
2. In the String field, type the comment and press the Return key.
3. Click on to place the comment in the Sequence scroll box.

MME User Guide Environment 0

65Cray Research/Silicon Graphics ProprietaryHDM-102-B

Compare Function

The compare function compares data in the MME buffer. This function is
used to compare actual values with expected values. Choose
Entry Type –> Compare to access the compare function. The following
MME Compose Sequence Entry window appears:

Perform the following procedure to create a compare function:

 1. In the Expected Address field, enter the MME buffer address that
contains the expected data and press the Return key.

 2. In the Actual Address field, enter the MME buffer address that
contains the actual data and press the Return key.

 3. In the Difference Address field, enter the MME buffer address where
you want to store the difference between the expected and actual
values and press the Return key.

 4. In the Length (words) field, enter the length of the data block (in
words) that you want to compare and press the Return key.

 5. In the Stride (words) field, enter the stride that you want to use and
press the Return key. The stride specifies which words you want to
compare. For example, a stride of 1 compares every word, and a
stride of 2 compares every other word.

Environment 0 MME User Guide

66 Cray Research/Silicon Graphics Proprietary HDM-102-B

 6. Click on the mask type that you want to use. The mask indicates
which bits are compared. Click on Mask Type: to use the
1-word mask that is specified in the Mask Value field (the format of
this word is specified by the Mask Format settings). Click on Mask
Type: to use a multiple-word mask that is located at the
memory location specified in the Mask Address field.

 7. Specify the action that MME should perform based on the results of
the comparison:

• Choose Action: AOE on Miscompare to have MME stop
sequence execution when the function detects a difference
between the actual and expected data.

• Choose Action: Branch on Miscompare to have MME jump
to a label in the sequence (specify the label in the Label field)
when the function detects a difference between the actual and
expected data.

• Choose Action: AOE on Compare to have MME stop
sequence execution when the actual data matches the expected
data.

• Choose Action: Branch on Compare to have MME jump to a
label in the sequence (specify the label in the Label field) when
the actual data matches the expected data.

 8. Click on Report: or to specify that you want a report
when a difference is detected. To view the report, choose View –>
Report . For example, the following report might be generated.

 9. Click on to place the function in the Sequence scroll box.

MME User Guide Environment 0

67Cray Research/Silicon Graphics ProprietaryHDM-102-B

Control Functions

The control functions are used to direct the flow of function execution
within a sequence. These functions change the program flow from the
normal top-to-bottom execution within the scroll box. This enables
conditional execution of functions in a sequence. Choose Entry Type –>
Control to access the control functions. The following MME Compose
Sequence Entry window appears:

Goto

The goto function transfers sequence execution to the command that
follows the label specified in the goto function; the label is defined with
the label function. Perform the following procedure to create a goto
function:

 1. Click on Operation: .

 2. In the Name field, enter the name of the label to which you want to
go (for example, Label1).

 3. Click on to place the function in the Sequence scroll box.

When execution reaches the goto function in a sequence, execution
transfers to the command that follows the label that is specified in the goto
function.

Environment 0 MME User Guide

68 Cray Research/Silicon Graphics Proprietary HDM-102-B

Label

The label function creates a label in the sequence that acts as a marker to
which execution can be transferred by a goto or compare function.
Perform the following procedure to create a label:

 1. Click on Operation: .

 2. In the Name field, enter the name of the label (for example, Label1).

 3. Click on to place the function in the Sequence scroll box.

Stop

The stop function stops execution of the sequence. Perform the following
procedure to create a stop function:

 1. Click on Operation: .
2. Click on to place the function in the Sequence scroll box.

When execution reaches the stop function in the sequence, execution of
the sequence stops.

MME User Guide Environment 0

69Cray Research/Silicon Graphics ProprietaryHDM-102-B

File Operation Functions

The file operation functions enable you to read, write, append, and delete
data files. Choose Entry Type –> FileOp to access the file operation
functions. The following MME Compose Sequence Entry window appears:

Read

The read file operation function enables you to read data from a file into
the MME buffer. Perform the following procedure to create a read file
operation function:

 1. Click on Operation: .

 2. In the Directory field, enter the directory where the data file is
located.

 3. In the Filename field, enter the name of the file that you want to read.

 4. In the Address field, enter the MME buffer address where you want
to store the data that is read.

 5. In the Length field, enter the size of the data block that you want to
read.

NOTE: Click on the Use File Length check box to read the entire
file.

Environment 0 MME User Guide

70 Cray Research/Silicon Graphics Proprietary HDM-102-B

 6. Click on to place the function in the Sequence scroll box.

Write

The write file operation function enables you to write data from the MME
buffer to a file. Perform the following procedure to create a write file
operation function:

 1. Click on Operation: .

 2. In the Directory field, enter the directory where the data file is
located.

 3. In the Filename field, enter the name of the file that you want to
write.

 4. In the Address field, enter the MME buffer address of the data that
you want to write.

 5. In the Length field, enter the size of the data block that you want to
write.

 6. Click on to place the function in the Sequence scroll box.

Append

The append file operation function enables you to append data from the
MME buffer to a file that you previously created. Perform the following
procedure to create an append file operation function:

 1. Click on Operation: .

 2. In the Directory field, enter the directory where the data file is
located.

 3. In the Filename field, enter the name of the file that you want to
append.

 4. In the Address field, enter the MME buffer address of the data that
you want to append to the file.

 5. In the Length field, enter the size of the data block that you want to
append to the file.

 6. Click on to place the function in the Sequence scroll box.

MME User Guide Environment 0

71Cray Research/Silicon Graphics ProprietaryHDM-102-B

Delete

The delete file operation function enables you to delete a data file that you
no longer need. Perform the following procedure to create a delete file
operation function:

 1. Click on Operation: .

 2. In the Directory field, enter the directory where the data file is
located.

 3. In the Filename field, enter the name of the file that you want to
delete.

 4. Click on to place the function in the Sequence scroll box.

Utilities

Several utilities can be added to sequences that you execute in compose
mode. Choose Entry Type –> Utility to access the utilities. The following
MME Compose Sequence Entry window appears:

Environment 0 MME User Guide

72 Cray Research/Silicon Graphics Proprietary HDM-102-B

Delay

The delay utility creates a pause (in seconds) in the execution of a
sequence of functions. Perform the following procedure to create a delay
utility:

 1. Click on Operation: .

 2. Specify the delay by entering a value in the Delay field or by moving
the slider until the desired value is displayed in the field.

 3. Click on to place the utility in the Sequence scroll box.

Mask

The mask utility applies a mask to an area in the MME buffer. If a bit in
the mask is set to 02, the data value in that bit position in an MME buffer
word is set to 02. If a bit in the mask is set to 12, the data value in that bit
position in an MME buffer word retains its value; for example, a mask
value of 0000008 0000008 1777778 1777778 masks off the top half of
each word, as shown in Figure 9.

Mask is Applied

Before After

Figure 9. Mask Utility Example

Perform the following procedure to create a mask utility:

 1. Click on Operation: .

 2. Click on Pattern: , , , or to specify the
mask format.

 3. In the User Defined Pattern/Mask field, enter the mask that you want to
use.

MME User Guide Environment 0

73Cray Research/Silicon Graphics ProprietaryHDM-102-B

 4. In the Source Address field, specify the starting address of the data
block in the MME buffer that you want to mask.

 5. In the Length field, specify the length of the data block that you want
to mask.

 6. Click on to place the utility in the Sequence scroll box.

When execution reaches the mask utility in the scroll box, the specified
mask is applied to the specified data in the MME buffer. Use this utility to
mask out (set to zero) specific bits in a word.

Move

The move utility copies a block of data from one location in the MME
buffer to another location. Figure 10 shows an example of the move
utility.

Before After

Data is Moved

Figure 10. Move Utility Example

Perform the following procedure to create a move utility:

 1. Click on Operation: .

 2. Click on or to specify the type of data that you want
to move.

 3. In the Source Address field, enter the starting MME buffer address of
the data block that you want to move.

 4. In the Destination Address field, enter the MME buffer address to
which you want to move the data.

 5. In the Length field, enter the length of the data block.

Environment 0 MME User Guide

74 Cray Research/Silicon Graphics Proprietary HDM-102-B

 6. Click on to place the utility in the Sequence scroll box.

Pattern

The pattern utility patterns a block of MME buffer memory with 0’s, 1’s,
even bits, odd bits, address, complement address, random, or user data.
Figure 11 shows an example of the pattern utility.

Before After

Patterned
with 1’s

Patterned with Even
Bits

Figure 11. Pattern Utility Example

Perform the following procedure to create a pattern utility:

 1. Click on Operation: .

 2. Click on Pattern: , , , ,
, , , , , or
 to specify the pattern that you want to use.

If you clicked on , click on User Defined Pattern/Mask Format:

, , , or . Then, enter the pattern that you
want to use in the User Defined Pattern/Mask field.

 3. In the Buffer Address field, enter the starting address of the data block
you want to pattern.

 4. In the Length field, enter the length of the data block that you want to
pattern.

 5. Click on to place the utility in the Sequence scroll box.

MME User Guide Environment 0

75Cray Research/Silicon Graphics ProprietaryHDM-102-B

Squish

The squish utility manipulates data that is returned from a logic monitor
read-out buffer function when a logic monitor is in 8 x 1024 mode. In 8 x
1024 mode, valid data bits are contained in half a word. The squish utility
reads the validity flags (bits 63 and 31) to determine which halfword
contains the valid data; the valid data is placed in the lower halfword of
the destination location, and the upper halfword is filled with zeroes.
Figure 12 shows an example of the squish utility.

Before After

Data is Squished

Figure 12. Squish Utility Example

Perform the following procedure to create a squish utility:

 1. Click on Operation: .

 2. In the Source Address field, specify the starting address of the data
block of 8 x 1024 mode data.

 3. In the Destination Address field, enter the starting address of the
destination data block.

 4. In the Length field, enter the length of the data block that you want to
squish.

 5. Click on to place the utility in the Sequence scroll box.

Environment 0 MME User Guide

76 Cray Research/Silicon Graphics Proprietary HDM-102-B

77Cray Research/Silicon Graphics ProprietaryHDM-102-B

ENVIRONMENT 1

Environment 1 is a component of the Mainframe Maintenance
Environment (MME) software package that field engineers use to
troubleshoot CRAY T90 series mainframes. Typically, in environment 1,
only one diagnostic program, utility, or loop is loaded into mainframe
memory at a time. Once this program is loaded into mainframe memory,
it is called a control point. Because only one control point is usually
loaded in mainframe memory at a time, control points used in
environment 1 have access to the entire mainframe or portion of the
mainframe that MME is using. Control points can be single- or
multiple-CPU control points. To test multiple CPUs, you can assign
multiple CPUs to one control point, and each CPU runs the same code that
is stored once in memory.

MME still runs in the maintenance workstation (MWS) or system
workstation (SWS), but all testing occurs in the mainframe. Information
passes through the maintenance channel to MME. MME monitors the
performance of the control point that is active in mainframe memory and
updates information that is available through the MME runtime
information displays. When only one control point is loaded (which is the
normal use of environment 1), all mainframe memory addresses are
absolute, which means that they are based on a starting address of zero.

Control point sections are stored as individual files. All sections for a
control point are stored in a common directory. Only one section is
actually loaded in mainframe memory at a time. That section is called the
current section. MME loads and removes the test sections from
mainframe memory according to the minimum and maximum pass counts
that the code for that section specifies. The minimum value specifies the
minimum number of passes that must occur before MME can load a
different section into memory. The maximum value specifies the number
of passes necessary before a section is no longer loaded into memory and
run. Diagnostic programmers define these values in the program code;
however, you can customize the values by saving a new version of a
control point. Refer to “File –> Save –> Control Point” in the
MME Interface Reference, publication number HDM-008-A, for more
information.

The following procedure provides a general overview of the process for
using MME environment 1. This section includes related information for
each of the following steps of the process.

Environment 1 MME User Guide

78 Cray Research/Silicon Graphics Proprietary HDM-102-B

 1. Start MME in environment 1.
2. Load a layout (optional).
3. Allocate resources (optional).
4. Load a control point.
5. Assign a CPU to the current control point.
6. Click on .
7. Monitor the progress of control point execution.
8. Click on .

Start MME in Environment 1

You can start MME in environment 1 from a UNIX command prompt or
from the OpenWindows Workspace menu.

NOTE: For information about starting MME environment 1 from a
Service Center through a hub, refer to the Remote Support
document, publication number HMM-106-A.

CAUTION

MME performs maintenance channel functions that
will hang UNICOS if UNICOS is running in the
mainframe when you start MME.

To prevent this from accidentally occurring, ensure
that the Owner setting in the SCE base window is
set to OS for the logical partition in which UNICOS
is running when UNICOS is running in the
mainframe. MME cannot access a logical partition if
the OS owns it.

From a UNIX Prompt

To start MME environment 1 from a UNIX prompt, enter one of the
following commands:

• mme –1 to use a front-end interface (FEI) channel
• mme –1 –sim to use the simulator
• mme –1 –debug to use the simulator and bugger/debugger

NOTE: You may also enter any of the command line options that Table 6
lists.

MME User Guide Environment 1

79Cray Research/Silicon Graphics ProprietaryHDM-102-B

Table 6. Environment 1 Command Line Options

Option Description

–client Start the MME client only

–config file Configure MME with the configuration data stored in
the file specified by file.

–copy num Connect to maintenance software assigned the copy
number specified by num.

NOTE: Copy numbers are necessary only when you
run multiple copies of MME on the same MWS
or SWS (for example, when you run several
MME copies with the simulator or when you
use MME to support multiple CRAY T90
series mainframes connected to the same
MWS or SWS).

–io num Use the CPU specified by num to perform input and
output operations

–kill Kill any running MME, SCE, or LME applications
before starting a new copy of MME

–remote host Start the MME client only and connect the client to the
MME server that is running on the remote host
specified by host

–server Start the MME server only

Environment 1 MME User Guide

80 Cray Research/Silicon Graphics Proprietary HDM-102-B

From the OpenWindows Workspace Menu

You can start environment 1 from the OpenWindows Workspace menu on
either an MWS or an SWS.

MWS Workspace Menu Options

Figure 13 shows the OpenWindows Workspace menu options that you
should choose on an MWS to start environment 1 with an FEI channel.
Choose any copy number.

 Workspace

Programs
Maintenance Tools
Utilities
Properties...
Exit...

DMS2 ...
XCFG ...

Assert TSM configuration...

Reboot TSM chassis...

BOUNDARY SCAN
MME
NWACS
SMARTE
SSDE
XELOG
YIMS

MME Simulator

 Maintenance Tools

 MME

LME
SCE
MME env 0
MME env 1
MME env 2

 MME env 1

Copy 0...
Copy 1...
Copy 2...
Copy 3...

Figure 13. MWS Workspace Menu Options to Start Environment 1 with an FEI Channel

MME User Guide Environment 1

81Cray Research/Silicon Graphics ProprietaryHDM-102-B

Figure 14 shows the OpenWindows Workspace menu options that you
should choose on an MWS to start environment 1 with the simulator or
with the simulator and bugger/debugger.

 Workspace

Programs
Maintenance Tools
Utilities
Properties...
Exit...

DMS2 ...
XCFG ...

Assert TSM configuration...

Reboot TSM chassis...

BOUNDARY SCAN
MME
NWACS
SMARTE
SSDE
XELOG
YIMS

MME Simulator

 Maintenance Tools

 MME Simulator

LME...
SCE...
MME env 0
MME env 1
MME env 2

 MME env 1

Simulator...
Simulator with Debugger...

Figure 14. MWS Workspace Menu Options to Start Environment 1 with the Simulator or
with the Simulator and Bugger/Debugger

Environment 1 MME User Guide

82 Cray Research/Silicon Graphics Proprietary HDM-102-B

SWS Workspace Menu Options

Figure 15 shows the OpenWindows Workspace menu options that you
should choose on an SWS to start environment 1 with an FEI channel.
Choose any copy number.

 Workspace

Programs
Maintenance Tools
Utilities
Properties...
Exit...

SIO TEST
T32 TEST

NWACS

XCFG ...

XELOG

 Maintenance Tools

 T32 TEST

BOUNDARY SCAN
MME

MME Simulator

 MME

LME
SCE
MME env 0
MME env 1
MME env 2

 MME env 1

Copy 0...
Copy 1...
Copy 2...
Copy 3...

Figure 15. SWS Workspace Menu Options to Start Environment 1 with an FEI Channel

MME User Guide Environment 1

83Cray Research/Silicon Graphics ProprietaryHDM-102-B

Figure 16 shows the OpenWindows Workspace menu options that you
should choose on an SWS to start environment 1 with the simulator or
with the simulator and bugger/debugger.

 Workspace

Programs
Maintenance Tools
Utilities
Properties...
Exit...

SIO TEST
T32 TEST

NWACS

XCFG ...

XELOG

 Maintenance Tools

 T32 TEST

BOUNDARY SCAN
MME

MME Simulator

 MME Simulator

LME...
SCE...
MME env 0
MME env 1
MME env 2

 MME env 1

Simulator...
Simulator with Debugger...

Figure 16. SWS Workspace Menu Options to Start Environment 1 with the Simulator or
with the Simulator and Bugger/Debugger

Environment 1 MME User Guide

84 Cray Research/Silicon Graphics Proprietary HDM-102-B

What Happens When You Start Environment 1?

The following actions occur when you start MME:

 1. The MME server attempts to connect with the System Configuration
Environment (SCE) server.

If MME cannot connect with a running SCE server, MME starts a
new SCE server and tries to connect to the new SCE server. (If you
specified a configuration file with the –config command line
option, MME sends this file to SCE through the SCE –default
command line option. SCE loads the configuration stored in the
file.)

 2. Once MME establishes a connection with SCE, MME attempts to
receive a configuration from SCE:

• If a configuration is available, SCE provides MME with the
components that are available for use by the maintenance
system. MME automatically configures itself to use these
components.

• If a configuration is not available, MME displays the message
shown in the following snap:

If MME displays this message, then you need to create a
configuration using SCE before you continue using MME.
Refer to the SCE User Guide, publication number HDM-069-C,
for more information about creating a configuration.

Load a Layout (Optional)

Layouts are not implemented yet.

MME User Guide Environment 1

85Cray Research/Silicon Graphics ProprietaryHDM-102-B

Allocate Resources (Optional)

MME enables you to change the CPU automatic assignment options and
CPU modes, the CPU-to-memory delays, and the section swap interval.
Refer to the “Properties –> Resource Allocation” description in the MME
Interface Reference, publication number HDM-008-A, for more
information.

Load a Control Point

To perform testing with MME, you need to load a diagnostic program,
utility, or loop into mainframe memory. When you load one of these Cray
Assembly Language (CAL) programs into memory, it is called a control
point. Because you load only one control point into mainframe memory at
a time in environment 1, the control point has access to the entire
mainframe or portion of the mainframe that MME is using.

MME performs the following functions to load a control point:

 1. MME loads the code located in addresses 0 through the end of the
standard location block into an MME data buffer.

 2. MME configures the diagnostic or utility code in the MME buffer
based on the data stored in the standard locations. For example,
MME configures the memory configuration and CPU select standard
locations.

 3. MME writes the code in the MME data buffer into mainframe
memory.

 4. MME writes the code from the end of the standard locations to the
end of the initialized data into mainframe memory.

 5. Optionally, MME clears the dump area.

 6. MME overlays any global user changes to the control point sections.

 7. MME overlays any section user changes.

Control Point Components

Figure 17 shows the control point components that are loaded into
mainframe memory.

NOTE: All memory addresses in Figure 17 are octal numbers.

Environment 1 MME User Guide

86 Cray Research/Silicon Graphics Proprietary HDM-102-B

DEXP

SEXP

IEXP

STDLOC

DIAGINFO

PARAM

WEXP

CEXP

TEXP

iROUTER

STDCODE

nROUTER

MAIN

CODESUB

iHANDLER

nHANDLER

dumpAREA

IDATA

UDATA

0

40

100

200

300

1000

2000

4000

6000

10000

10105c

10300a

12000a

Diagnostic Data
Area

Diagnostic
Code Block

Standard Code
 Block

Standard
Location Block

Standard Locations

Interrupt Exchange Package

Starting Exchange Package

Deadstart Exchange Package

Diagnostic Information

Control Point-specific Parameters

Working Exchange Package Table

Current Exchange Package Table

Trap Exchange Package Table

Start of Standard Code Block

Interrupt Router Code

Normal Exit Router Code

Control Point Main Code

Control Point Subroutines

Interrupt Handlers

Normal Exit Handlers

Initialized Data

Register Dump Area

Uninitialized Data

FEXP140 Flush Exchange Package

ELOG
1600

Error Log Table

LIB10400a Library Interrupt Handlers

iTRAP Interrupt Trap Table

Figure 17. Control Point Components

Control points have four main parts: a standard location block, a standard
code block, a diagnostic code block, and a diagnostic data area.

MME User Guide Environment 1

87Cray Research/Silicon Graphics ProprietaryHDM-102-B

Standard Location Block

The standard location block contains parameters at fixed locations for all
control points. This block includes the deadstart exchange package,
starting exchange package, interrupt exchange package, flush exchange
package, standard locations, diagnostic information, parameters, error log,
working exchange package table, current exchange package table, and trap
exchange package table.

Deadstart Exchange Package

The deadstart exchange package (DEXP) is located at address 08. MME
uses the DEXP to deadstart a CPU when the button is clicked.
MME reads and modifies the starting exchange package and writes this
data into the DEXP. MME exchanges the DEXP into the CPU to deadstart
the CPU.

Starting Exchange Package

The starting exchange package (SEXP) is located at address 408. MME
reads the SEXP through the maintenance channel and modifies the data to
build the DEXP that is used to deadstart a CPU.

Interrupt Exchange Package

The interrupt exchange package (IEXP) is located at address 1008. IEXP
is not used in environment 1.

Flush Exchange Package

The flush exchange package (FEXP) is stored at address 1408. A CPU
uses the FEXP to perform a dummy exchange to clear any pending
interrupts.

Standard Locations

The standard locations are diagnostic parameters that are the same for all
diagnostic test and utility programs. Table 7 describes the standard
locations, which start at address 2008 (labeled STDLOC).

Environment 1 MME User Guide

88 Cray Research/Silicon Graphics Proprietary HDM-102-B

Table 7. Standard Locations

Address Label Description

0200 LPASS Last pass to be executed (0 = forever)

0201 SECS Section select bit mask

0202 CONDS Conditions select bit mask

0203 MRMASK Error log mask (mask of significant bits to compare when repeated
errors are logged)

0204 STOP Stop flag bit mask:
00 = Continue (update CPU information and continue processing)
01 = Stop (update CPU information and stop processing)
02 = Not available
10 = Isolate (restart and isolate the error)
20 = Wait on error

0205 MRSTOP Memory and register error bit mask (stop and log):
000001 = Log correctable memory errors
000002 = Log uncorrectable memory errors
000004 = Log register parity errors
000010 = Stop on a correctable memory error
000020 = Stop on an uncorrectable memory error
000040 = Stop on a register parity error
200000 = Disable error correction

0206 PCITIME Programmable-clock interrupt time interval

0207 PCILOG Programmable-clock interrupt counter

0210 CPUN Number of CPUs

0211 CPUM Master CPU number

0212 CPUS Bit mask of CPUs to test

0214 CLNN Number of clusters

0215 CLNU Bit mask of clusters being tested

0216 CLNS Bit mask of the clusters to be tested

0217 CLNB Bit mask of background clusters

0220 DPB Diagnostic physical bias

0221 DLL Diagnostic logical base

0224 MFRST First memory word to test (BSS)

0225 MLIMT Memory limit address (similar to data limit address)

0226 BANKS Number of bank bits and number of memory banks

0227 MCFG Memory configuration (cache enable, number of memory banks,
number of memory subsections, and number of memory sections)

0230 SSDBA SSD base (starting) address

0231 SSDL SSD limit address

0233 TIFM Trigger interrupt flag mask

MME User Guide Environment 1

89Cray Research/Silicon Graphics ProprietaryHDM-102-B

Table 7. Standard Locations (continued)

Address DescriptionLabel

0234 DIFM Diagnostic program interrupt-handled flag mask

0235 SIFM System interrupt flag mask

0236 SIFR System interrupt flag return

0237 ENV Current diagnostic environment

0240 DMPMASK Dump register for hIDLE:
00001 = V registers
00002 = B registers
00004 = T registers
00010 = BMM registers
00020 = Shared B registers
00040 = Shared T registers
00100 = Semaphore registers
00200 = A registers (WEXP)
00400 = S registers (WEXP)
01000 = Status registers
02000 = VM registers
04000 = VL register
10000 = Channel CA and status register

0241 DMPAREA Starting address of the dump area

0242 DMPJUMP Dump and idle routine address

0244 LASTREQ Copy of the last diagnostic-to-controller request

0245 LASTRET Copy of controller return status

0246 HARDware Hardware configuration information

0250 MMEREQ0 CPU-to-MME request 0

0251 MMEREQ1 CPU-to-MME request 1

0252 MMEREQ2 CPU-to-MME request 2

0253 MMEREQ3 CPU-to-MME request 3

0254 MMERESP0 MME-to-CPU response 0

0255 MMERESP1 MME-to-CPU response 1

0256 MMERESP2 MME-to-CPU response 2

0257 MMERESP3 MME-to-CPU response 3

Diagnostic Information

Diagnostic information is standardized status information for an executing
diagnostic test or utility program. The diagnostic information is located at
addresses 3008 through 3778, as shown in Table 8. These memory
locations are the same for all diagnostic test and utility programs. The
current executing control point updates these locations.

Environment 1 MME User Guide

90 Cray Research/Silicon Graphics Proprietary HDM-102-B

Table 8. Diagnostic Information

Address Label Description

0300 DIF Difference between expected and actual diagnostic information

0301 ACT Actual information

0302 EXP Expected information

0303 ERROR Number of errors

0304 PASS Number of passes

0305 ERA Error return address

0306 INFOa Diagnostic program specific information A

0307 INFOb Diagnostic program specific information B

0310 SUT Section being tested

0311 CUT Condition being tested

0312 SCUT Subcondition being tested

0313 TSUT Test sequence being tested

0314 CLOOP Remaining condition loop count

0315 SLOOP Remaining subcondition loop count

0316 TLOOP Remaining test sequence loop count

0332 LOSPT LOSP table length and table address

0333 VHISPT VHISP table length and table address

0334 CRMASK Channel 077 to 000 reserve mask

0335 CRMASKu Channel 177 to 100 reserve mask

0336 CIMASK Channel 077 to 000 interrupt mask

0337 CIMASKu Channel 177 to 100 interrupt mask

0340 CPUREQ0 MME-to-CPU request 0

0341 CPUREQ1 MME-to-CPU request 1

0342 CPUREQ2 MME-to-CPU request 2

0342 CPUREQ3 MME-to-CPU request 3

0344 CPURESP0 CPU-to-MME response 0

0345 CPURESP1 CPU-to-MME response 1

0346 CPURESP2 CPU-to-MME response 2

0347 CPURESP3 CPU-to-MME response 3

Parameters

The control point-specific parameters start at address 10008 (labeled
PARAM).

MME User Guide Environment 1

91Cray Research/Silicon Graphics ProprietaryHDM-102-B

Error Log Table

The error log table organizes all memory and register parity errors from
the running control point into one area of memory. The error log table
begins at address 16008.

Refer to the “View –> Error Log” description in the MME Interface
Reference, publication number HDM-008-A, for information on how to
view the error log table.

Working Exchange Package Table

The working exchange package (WEXP) table starts at address 20008.
This table contains one WEXP for each CPU (32 total). The WEXPs are
located on 408 word boundaries (for example, the WEXP for CPU 0 is at
address 20008, the WEXP for CPU 1 is at address 20408, and the WEXP
for CPU 2 is at address 21008).

When a control point receives an interrupt, it exchanges to the WEXP for
the CPU to which the control point is assigned.

Current Exchange Package Table

The current exchange package (CEXP) table starts at address 40008. This
table contains one CEXP for each CPU (32 total). The CEXPs are located
on 408 word boundaries (for example, the CEXP for CPU 0 is at address
40008, the CEXP for CPU 1 is at address 40408, and the CEXP for CPU 2
is at address 41008).

The CEXP is empty when a control point is loaded. When a control point
receives an interrupt and exchanges to WEXP, WEXP is copied to CEXP
for the CPU to which the control point is assigned. This process stores the
address in the control point code where the exchange occurred in the P
register and saves the interrupt flags that caused the exchange.

Trap Exchange Package Table

The trap exchange package (TEXP) table starts at address 60008. This
table contains one TEXP for each CPU (32 total). The TEXPs are located
on 408 word boundaries (for example, the TEXP for CPU 0 is at address
60008, the TEXP for CPU 1 is at address 60408, and the TEXP for CPU 2
is at address 61008).

Environment 1 MME User Guide

92 Cray Research/Silicon Graphics Proprietary HDM-102-B

The TEXP for the CPU exchanges into the CPU when the interrupt routers
or handlers receive an intolerable interrupt. This causes the iTRAP code
at address 110008 to execute.

Standard Code Block

The standard code block contains library code that is common to all
diagnostics. The standard code block includes the interrupt trap table, the
interrupt router (iROUTER) code, the normal exit router (nROUTER)
code, and the library interrupt handlers (LIB). The standard code
exchanges into the CPU when an interrupt occurs.

Interrupt Trap Table

The interrupt trap table contains a table of hang addresses. Currently,
there is only one hang address in the table.

Interrupt Router Code

The interrupt router (iROUTER) code is the first level of interrupt
processing. This code determines what interrupts exist and passes the
interrupts to the appropriate handler routines.

Normal Exit Router Code

The normal exit router (nROUTER) code receives normal exit interrupts
from the interrupt router code and passes the interrupts to the appropriate
normal exit handler code.

Library Interrupt Handlers

The library interrupt handlers are standardized handlers that are used for
interrupt processing. These handlers are the same for all diagnostic tests
and utilities.

Diagnostic Code Block

The diagnostic code block contains all code for the current diagnostic test
or utility program. This block includes the control point main code, the
control point subroutines, the interrupt handlers, and the normal exit
handlers. The size of this block varies for the different diagnostic test and
utility programs.

MME User Guide Environment 1

93Cray Research/Silicon Graphics ProprietaryHDM-102-B

Control Point Main Code

The control point main code contains the actual diagnostic test or utility
program code that performs the testing or utility functions.

Control Point Subroutines

Any subroutines that the control point main code uses are stored starting at
the memory location labeled CODESUB.

Interrupt Handlers

The interrupt handlers contain the code used that processes the interrupts
that occur while a control point is executing.

Normal Exit Handlers

The normal exit handlers contain the code that processes the normal exit
calls that occur while a control point is executing.

Diagnostic Data Area

The diagnostic data area is memory that is reserved for data that is used or
created by the current diagnostic test or utility program. This area
includes the error information block, initialized data, register dump area,
and uninitialized data.

Initialized Data

The initialized data is preset data that is used by the diagnostic test or
utility program. This data includes constants and predetermined
(sometimes called canned) answers.

Register Dump Area

The register dump area is a block of memory that is reserved for any
register data that is dumped by the diagnostic test or utility program or by
the Halt –> Register Dump option.

Environment 1 MME User Guide

94 Cray Research/Silicon Graphics Proprietary HDM-102-B

Uninitialized Data

The uninitialized data is a data area in which the diagnostic test or utility
program stores the data that it uses. This data is not initialized or stored
on the MWS or SWS hard disk with the diagnostic test or utility program.
The diagnostic test or utility program must initialize this data.

Assign a CPU to the Current Control Point

You must assign a CPU to the current control point to perform any
troubleshooting for the CPU. To assign a CPU to the current control
point, click on the CPU in the CPU selection, control point, and status area
in the MME base window. Refer to “CPU Selection, Control Point, and
Status Area” in the MME Interface Reference, publication number
HDM-008-A, for more information.

Click on Go

Click on to start control point execution; the control point
executes through the sequence of events that Figure 18 illustrates and the
text following the figure describes. (The circled numbers in the figure
correspond to the numbered steps in the text that follows.)

DEXP

SEXP
1

5

2

3

CPUMWS/SWS

IEXP

FEXP

4
3

Figure 18. Control Point Execution Sequence (Go Clicked)

MME User Guide Environment 1

95Cray Research/Silicon Graphics ProprietaryHDM-102-B

 1. MME reads SEXP from mainframe memory through the
maintenance channel into MWS or SWS memory.

 2. MME modifies the copied SEXP to create exchange packages that
will be written into DEXP and FEXP. MME modifies the exchange
packages as follows:

For the DEXP copy, MME performs the following steps.

 a. MME sets A7 to the physical CPU number.

 b. Depending on the values set in the MME Resource Allocation
window, MME modifies the interrupt on correctable memory
error (ICM) mode bit, interrupt on uncorrectable memory error
(IUM) mode bit, interrupt on register parity error (IRP) mode
bit, and the cache LAT bits.

For more information about the MME Resource Allocation
window, refer to “Properties –> Resource Allocation” in the
MME Interface Reference, publication number HDM-008-A.

NOTE: The XA and EA registers are left at the defaults, which
point to FEXP.

For the FEXP copy, MME performs the following steps:

 a. MME sets A7 to the physical CPU number.

 b. Depending on the values set in the MME Resource Allocation
window, MME modifies the ICM, IUM, and IRP mode bits.

 c. MME sets the exchange address (XA) parameter to its original
value plus A7 multiplied by 408 [XA = XA + (A7 * 408)]; this
makes XA point to the WEXP for the CPU.

MME also sets exit address 0 (EA0) through EA4 to the
original value plus A7 multiplied by 408:

EA0 = EA0 + (A7 * 408)
EA1 = EA1 + (A7 * 408)
EA2 = EA2 + (A7 * 408)
EA3 = EA3 + (A7 * 408)
EA4 = EA4 + (A7 * 408)

 d. Depending on the values set in the MME Resource Allocation
window, MME modifies the cache LAT bits.

Environment 1 MME User Guide

96 Cray Research/Silicon Graphics Proprietary HDM-102-B

 3. MME writes the exchange packages to DEXP and FEXP.

 4. The DEXP exchanges into the CPU. The DEXP P register points to
the cpuFLUSH routine in the standard code.

 5. The CPU executes the cpuFLUSH code, which clears out any
interrupts and then exchanges out to EA0, which is FEXP. The
FEXP P register points to MAIN, so the CPU starts executing the
control point code.

NOTE: If the control point is a multi-CPU control point, this sequence
of events repeats until all CPUs that are assigned to the control
point are deadstarted.

Monitor the Progress of Control Point Execution

As a control point executes, you should monitor the information MME
displays to determine the progress of the control point. It is important to
understand what happens during control point execution so that you can
determine whether everything is operating properly. Table 9 shows the
status information that you need to monitor while a control point executes.

Table 9. Status Information from an Executing Control Point

Status Description

“ERROR COUNT” flashing next to a CPU The control point detected an error. Refer to
“Diagnostic-detected Errors” for more information.

“Holding” appears next to a CPU Control point execution is paused. Check the
runtime information display for a prompt for the
control point.

Indicator (MEM, RPE, SHR, LAT, or UKN) appears
in the menu bar

MME detected a memory, register parity, shared,
LAT, or unknown error. MME logs these errors in
the error log. Choose View –> Error Log to view
the error log.

Interrupt flag An interrupt occurred. Refer to “Interrupts” for
more information.

P register is incrementing Everything is operating correctly.

P register is not incrementing The P register is hung. Check the WEXP and
TEXP for the CPU to see if a flag is set. Check the
listing to see if hang code is causing the hung P
register.

“Waiting” appears next to a CPU The CPU is waiting to execute a multiple-CPU
control point.

MME User Guide Environment 1

97Cray Research/Silicon Graphics ProprietaryHDM-102-B

Diagnostic-detected Errors

Control point diagnostic test code that is running in a CPU detects and
reports an error through the following sequence of events:

 1. The control point test code detects a data comparison error for the
hardware values being tested.

 2. The control point test code logs the error in the standard locations.

 3. The control point test code performs a dump and wait normal exit
request. The handler for this normal exit increments the error count
and activates the hold flag in the STOP standard location.

 4. MME checks the minimum and maximum error counts that are
assigned to the control point.

NOTE: The CPU does not stop for an error.

When a control point increments the error count, ERROR COUNT flashes
next to the CPU in the CPU status area. Figure 19 shows the ERROR
COUNT indicator highlighted.

Figure 19. Error Indicator

When you see an error indicator, refer to the error return address (ERA) in
the diagnostic information block. The ERA, which is located at address
03058, indicates an area in the listing near the location of the failing code.
View the ERA in address mode to determine the address. Look at the
code in the listing that is adjacent to the ERA to determine the code that
actually failed.

NOTE: The ERA is shown on the DIAGINFO runtime information
display, which is currently available for most diagnostic tests
and utilities.

Environment 1 MME User Guide

98 Cray Research/Silicon Graphics Proprietary HDM-102-B

For information on how to view a listing, refer to “View –> Listing –>
Current” and “View –> Listing –> Other” in the MME Interface
Reference, publication number HDM-008-A.

Interrupts

Interrupts are either tolerable or intolerable. Tolerable interrupts are
interrupts that occur while the CPU is processing the main diagnostic
code. Tolerable interrupts can be ignored or routed, depending on the
code of the diagnostic program. Intolerable interrupts are interrupts that
occur while the CPU is processing code from the standard code block.
Intolerable interrupts are trapped by hanging the CPU.

Figure 20 shows the two interrupt classes and the actions performed when
interrupts occur.

Tolerable

Ignore Route

Hang Handler

Use Library Handlers Use Program-specific Handlers

Intolerable

Trap

Use TEXPUse SIFM

Use Inline Hang Code

Figure 20. Interrupt Classes (Environment 1)

MME User Guide Environment 1

99Cray Research/Silicon Graphics ProprietaryHDM-102-B

When interrupts occur, the control point code exchanges to the interrupt
router (iROUTER) code in the standard code block of the control point.
The iROUTER code routes all interrupts in the current interrupt list
through the sequence that Figure 21 shows and the text following the
figure describes. (The circled numbers in the figure correspond to the
numbered steps in the text that follows.)

iROUTER

NEX RPE MEC Other

LIB, iHANDLER,
and
nHANDLER
routines

No

Yes

Exchange out of
iROUTER code
by using WEXP

Exchange into iROUTER
 code by using WEXP

Copy WEXP to CEXP

Any
 interrupt flags

set?

Move SIFM flags to SIFR

Yes

No
(Hangs CPU)

Issue EMI instruction

iCONT

Other

Route interrupts

Any
interrupt flags

set?

6

4

1

3

5

2

7

8

Clear
flags in
WEXP

Figure 21. Interrupt Processing in Environment 1

Environment 1 MME User Guide

100 Cray Research/Silicon Graphics Proprietary HDM-102-B

 1. The iROUTER code issues an EMI instruction to enable monitor
mode interrupts.

 2. The iROUTER code copies the WEXP to the CEXP.

 3. The iROUTER code verifies that there are interrupt flags in the
current interrupt list to process.

• If there are interrupt flags to process, the iROUTER code
continues with Step 4.

• If there are no interrupt flags to process, the iROUTER code
hangs in the CPU.

 4. The iROUTER code checks the system interrupt flag mask (SIFM)
parameter to determine whether the interrupt should be ignored.

If the flag for an interrupt is set in the SIFM parameter, the
iROUTER code removes the flag from the current list of interrupt
flags and places it in the system interrupt return mask (SIFR)
parameter. (Refer to the “Ignore” discussion on page 101 for more
information.)

 5. The iROUTER code checks to determine whether any interrupt flags
are still set.

• If interrupt flags are still set, the iROUTER code continues with
Step 6.

• If no interrupts flags are set, the iROUTER code exchanges out
of the CPU, and the CPU resumes main diagnostic code
execution.

 6. The iROUTER code routes one interrupt in the current interrupt list
and clears the interrupt flag in the list.

• If a handler exists for the interrupt, the iROUTER code routes
the interrupt to the handler code. (Refer to the “Route to a
Handler” discussion on page 101 for more information.)

• If no handler exists for the interrupt, the iROUTER code routes
the interrupt to hang code, which hangs in the CPU. (Refer to
the “Route to a Hang” discussion on page 108 for more
information.)

 7. The handler routine processes the interrupt.

MME User Guide Environment 1

101Cray Research/Silicon Graphics ProprietaryHDM-102-B

 8. After the current interrupt is processed by a handler, control returns
to Step 5 at the label iCONT.

Tolerable Interrupts

Tolerable interrupts occur while the diagnostic test or utility code is
executing in a CPU. The iROUTER ignores tolerable interrupts or routes
them to a hang or handler.

Ignore

The iROUTER code can remove interrupts from the current list of
pending interrupts to be processed to prevent the interrupts from being
processed. If a diagnostic test or utility program sets the corresponding bit
for an interrupt in the system interrupt flag mask (SIFM) parameter, the
iROUTER code removes the interrupt from the current list of interrupts to
be processed. The iROUTER code places the flag in the system interrupt
return mask (SIFR) parameter. The interrupt is ignored.

Ignored interrupts are typically used so the diagnostic test code can force
an interrupt condition. When control returns to the test code, the test code
checks the SIFR parameter to verify that the interrupt occurred.

Route to a Handler

The diagnostic code handles interrupts through special code sections
called handlers. Handlers contain the code that is necessary to process
interrupts. Three types of handlers may be available in a control point:
library interrupt handlers, interrupt handlers, and normal exit handlers. If
a handler is available for an interrupt, the iROUTER code routes the
interrupt to the handler.

NOTE: Some handlers are just inline hangs.

Library Interrupt Handlers

Some interrupts are routed to library interrupt handlers, which are general
handlers included in all control points. These handlers contain code that
processes common interrupts.

Interrupt Handlers

Some interrupts are routed to interrupt handlers that are located in the
diagnostic code area of a control point. These handlers are specific to a
control point and contain code that processes special-case interrupts.

Environment 1 MME User Guide

102 Cray Research/Silicon Graphics Proprietary HDM-102-B

Normal Exit Handler

Several control points use normal exit (NEX) interrupts to perform tasks
in monitor mode instead of the usual user mode that the control point code
runs in. A special router is used to route NEX interrupts. The NEX router
(nROUTER) routes a normal interrupt based on the value stored in the S1
register. Figure 22 shows the sequence of events that occur to route and
handle a normal exit interrupt. (The circled numbers in the figure
correspond to the numbered steps in the text that follows.)

WEXP

iROUTER

nHANDLER

dmpAREA

6

4

1

3

5

2

LIB

or

CPU

Figure 22. Normal Exit Interrupt

 1. An interrupt occurs that causes an exchange between the CPU and
WEXP (the WEXP P register points to the iROUTER code). This
causes the CPU to execute the iROUTER code.

 2. The iROUTER code checks the system interrupt flag mask (SIFM).

 3. The iROUTER code routes to the appropriate handler for processing.
For a normal exit (NEX) interrupt, control is passed to the normal
exit router (nROUTER).

MME User Guide Environment 1

103Cray Research/Silicon Graphics ProprietaryHDM-102-B

 4. The nROUTER code examines the function code in the S1 register
and sends control to the corresponding handler, which is a library
handler or normal exit handler (nHANDLER). The nROUTER code
performs the following actions, as shown in Figure 23.

The circled letters in Figure 23 correspond to the lettered steps that follow
this figure.

Environment 1 MME User Guide

104 Cray Research/Silicon Graphics Proprietary HDM-102-B

NEX

No

Yes

Done

iCONT

Route interrupts

Any
interrupt flags

set?

iROUTER

nROUTER

S1=1 S1=2 S1=3

Route functions

Error

No Handler is
Available for S1
(Hangs at nROUTER1)

S0 bit 63 set?

nROUTER1

Yes

No (Hangs at nROUTER1)

b

a

nHANDLER
routines

iEXDIAG

Hangs at nROUTER1

Figure 23. Normal Exit Interrupt Processing

MME User Guide Environment 1

105Cray Research/Silicon Graphics ProprietaryHDM-102-B

 a. The nROUTER code verifies that bit 63 (the sign bit) of S0 is
set to 1. This diagnostic code must set this bit to indicate that
a normal exit interrupt is actually occurring. If this bit is not
set, the CPU hangs at the address labeled nROUTER1.

 b. The nROUTER code routes the interrupt to the corresponding
handler in the LIB or nHANDLER code. If no handler
corresponds to the value in S1, the CPU hangs at the address
labeled nROUTER1.

Table 10 shows the normal exit request bit fields. Table 11
shows the normal exit routines that correspond to the bits that
are set in S1.

Table 10. Environment 1 Normal Exit Request Bit Fields

Register Contents

S0 Valid Request Flag, Bit 63 = 1

S1 Function Mask for
the Controller Only
Handlers,
Bits 63 – 48

Function Mask for
the Controller and
Handlers,
Bits 47 – 32

Function Mask for
the Router Only
Handlers,
Bits 31 – 16

Function Mask for
the Program-defined
Handlers,
Bits 15 – 0

S2 Parameter 1

S3 Parameter 2

S4 Parameter 3

A0 Parameter 4

A1 Parameter 5

A2 Parameter 6

A3 Parameter 7

Table 11. Environment 1 Normal Exit Routines

Octal Bit Name Description

66 hNOP Perform no operation

57 hIDLE Dump registers and idle the CPU

56 hIDLE Dump registers and wait for the hold bit to clear

46 hHOLD Hold until the user clicks the Resume button in the MME base window

Environment 1 MME User Guide

106 Cray Research/Silicon Graphics Proprietary HDM-102-B

Table 11. Environment 1 Normal Exit Routines (continued)

Octal Bit DescriptionName

44 hsrLOCK Set shared register cluster

Parameters:

S2: Cluster or cluster mask

S3: 0 = Release the specified cluster
1 = Reserve the specified cluster
1000 = Release the specified clusters in cluster mask
1001 = Reserve the specified clusters in cluster mask

When this routine sets a single cluster number (S3 = 1), the CLN
register is set in the exchange package.

When this routine sets a group of clusters (S3 = 1001), S2 returns a
mask of reserved clusters.

S0 returns –22 if another control point controls the requested cluster.

43 hSETPCI Set up PCI if it is selected in PCITIME

41 hSETM Set or clear mode flags in WEXP

Parameters:

S2: Bit mask of flags relative to the register that you are using

S3: 0 = Clear flags
1 = Set flags

40 hSETIM Set or clear interrupt mode bits in WEXP

Parameters:

S2: Bit mask of mode bits relative to the register that you are using

S3: 0 = Clear bits
1 = Set bits

26 hMAINTS Set maintenance mode

S2: 1 = CPU maintenance mode
2 = I/O maintenance mode
3 = SHR maintenance mode

S3: Loop controller function code

S4: Destination (CPU, channel, or module number)

MME User Guide Environment 1

107Cray Research/Silicon Graphics ProprietaryHDM-102-B

Table 11. Environment 1 Normal Exit Routines (continued)

Octal Bit DescriptionName

25 hLOG Enable or disable the error logger

Parameter:

S2: 0 = Disable
1 = Enable

24 hLOGQ Start or stop the error logger queue

Parameters:

S2: Bit 0: 0 = Stop logging
1 = Start logging

Bit 1: 0 = Allow I/O activity
1 = Temporarily disable I/O activity

Bit 2: 0 = Do not delay before performing reads
1 = Delay before performing reads

S3: Time-out value in microseconds (1 – 15000)

S4: Number of errors to record (1 – 10000)

S5: Queue destination (mainframe address)

23 hQUIET Temporarily disable MME maintenance channel I/O activity

22 hQWAIT Resume MME maintenance channel I/O activity

 5. Control passes to the code at the memory address labeled iEXDIAG.

 6. The iROUTER code exits through an exchange between WEXP and
the CPU. The CPU continues control point execution unless the
normal exit (NEX) performed an hIDLE routine. If an hIDLE
routine was performed, the CPU hangs in STDCODE after the
registers are dumped to dmpAREA.

Environment 1 MME User Guide

108 Cray Research/Silicon Graphics Proprietary HDM-102-B

Route to a Hang

If no handler routine exists for an interrupt, the iROUTER code routes the
interrupt to inline hang code in the IROUTER code. The hang code
causes the CPU to hang in the iROUTER code. Figure 24 shows the
sequence of events for a hang and the text following describes it. (The
circled numbers in Figure 24 correspond to the numbered steps that
follow.)

WEXP

iROUTER

CPU
1

2

Figure 24. Interrupt Processing (Hang)

 1. An interrupt occurs that causes an exchange between the CPU and
WEXP. The CPU begins to execute the iROUTER code.

 2. When the iROUTER code attempts to route the interrupt to the
handler, no handler code is available. The iROUTER code hangs the
CPU at the code that tests for the interrupt flag (P register = trap).

NOTE: If memory and register parity errors are detected, these errors are
usually logged. Then, the standard code exchanges out of the
CPU, and the control point code exchanges back into the CPU.

As tolerable interrupts are processed, various interrupts appear in the CPU
status area, which is normal; you may want to monitor the pass count and
SIFR.

MME User Guide Environment 1

109Cray Research/Silicon Graphics ProprietaryHDM-102-B

If the CPU stops executing instructions in the standard code during NEX
interrupt processing, look at the WEXP for the CPU. Check the P register,
S0 register, and S1 register to determine what was running in the CPU.
Click on halt and look at the WEXP to determine where the CPU stopped
executing code.

If the P register does not increment in the CPU status area, this indicates
that the CPU is hung. Look at the code in the listing where the P register
is hung.

Intolerable Interrupts

Intolerable interrupts occur while the iROUTER code is processing an
interrupt. Because the standard code is already running, there is no way to
process these new interrupts. MME traps intolerable interrupts by
exchanging a trap exchange package (TEXP) into the CPU, which
Figure 25 shows and the text following the figure describes.

TEXPCPU

Figure 25. Intolerable Interrupt Processing

The standard code exchanges out of the CPU to the TEXP, and the TEXP
exchanges into the CPU. This causes the CPU to hang in a hang
instruction at iTRAP. The flag that caused the interrupt is trapped in the
TEXP.

For intolerable interrupts, you should notice that the TEXP P register is
not pointing to iTRAP (address 100008) or that interrupt flags are set in
TEXP. This indicates that an intolerable interrupt occurred in the standard
code while the interrupts from the diagnostic code were being processed.

Environment 1 MME User Guide

110 Cray Research/Silicon Graphics Proprietary HDM-102-B

Look at the TEXP for the CPU to see the intolerable interrupt(s) that
occurred. The WEXP and CEXP P registers show where the interrupt
occurred in the diagnostic code.

Click on Halt

Choose Halt –> No Dump , Halt –> Exchange Dump , or Halt –> Register
Dump from to stop control point execution.

Halt –> No Dump

The Halt –> No Dump option halts control point execution by setting
Master Clear on the CPU(s). This option does not dump register or
exchange information.

Halt –> Exchange Dump

The Halt –> Exchange Dump option halts the executing control point and
dumps exchange information. After this dump, the exchange package for
whatever was executing when you clicked is stored in the
DEXP and in the WEXP for the CPU. MME performs an exchange using
a maintenance channel function.

For multiple-CPU control points, MME performs an exchange for each
CPU. DEXP contains the exchange package for the last CPU halted. The
WEXP table contains the exchange packages for the CPUs.

NOTE: The CPUs never issue instructions for this command.

Halt –> Register Dump

The Halt –> Register Dump option halts the executing control point and
dumps registers into mainframe memory at the address that is assigned to
label dmpAREA. You can specify which registers you want to dump by
changing the DMPMASK parameter at address 2408 in the standard
locations. MME performs the following sequence of events for a register
dump.

MME User Guide Environment 1

111Cray Research/Silicon Graphics ProprietaryHDM-102-B

 1. MME builds a DEXP, where:

Modes = 016
Logical base = 0
Physical base = base address of the control point (usually 0)
Logical limit = size of the control point

 2. MME writes the DEXP to mainframe memory.

 3. MME performs a maintenance channel function that causes an
exchange, which starts the CPU.

 4. MME waits for a flag to set in the dump area. This signals that the
register dump is complete.

 5. MME performs a maintenance channel function that causes an
exchange, which stops the CPU.

For multiple-CPU control points, MME performs this sequence for each
CPU. DEXP contains the exchange package for the last CPU halted. The
WEXP table contains the exchange packages for the CPUs.

NOTE: If you select a register dump and no dump area (dmpAREA) is
available, MME performs an exchange dump.

Environment 1 MME User Guide

112 Cray Research/Silicon Graphics Proprietary HDM-102-B

113Cray Research/Silicon Graphics ProprietaryHDM-102-B

ENVIRONMENT 2

Environment 2 is one component of the Mainframe Maintenance
Environment (MME) software package that field engineers use to
troubleshoot CRAY T90 series mainframes. Environment 2 includes
many of the features that are available in environment 1 but also enables
you to load several diagnostic programs, utilities, or loops into mainframe
memory at a time. A special program called the diagnostic controller
(DC) resides in lower mainframe memory and controls the mainframe
resources that the control points use.

The run system property in environment 2 enables you to perform
confidence testing of the mainframe by creating an environment for
hardware system evaluation similar to an operating system. The operating
system environment is simulated by swapping jobs (control points)
between active CPUs.

The following procedure gives a general overview of the process for using
MME environment 2. This section provides related information for each
step of the process.

 1. Start MME in environment 2.
2. Load a layout (optional).
3. Allocate resources (optional).
4. Enable the run system (optional).
5. Load one or more control points.
6. Assign CPU(s) to the control point(s).
7. Click on .
8. Monitor the progress of control point execution.
9. Click on .

Start MME in Environment 2

You can start MME in environment 2 from a UNIX prompt or from the
OpenWindows Workspace menu.

NOTE: For information about starting MME environment 2 from a
Service Center through a hub, refer to the Remote Support
document, publication number HMM-106-A.

Environment 2 MME User Guide

114 Cray Research/Silicon Graphics Proprietary HDM-102-B

CAUTION

MME performs maintenance channel functions that
will hang UNICOS if UNICOS is running in the
mainframe when you start MME.

To prevent this from accidentally occurring, ensure
that the Owner setting in the SCE base window is
set to OS for the logical partition in which UNICOS
is running when UNICOS is running in the
mainframe. MME cannot access a logical partition if
the OS owns it.

From a UNIX Prompt

To start MME environment 2 from a UNIX prompt, enter one of the
following commands:

• mme –2 to use a front-end interface (FEI) channel
• mme –2 –sim to use the simulator
• mme –2 –debug to use the simulator and bugger/debugger

NOTE: You can also enter any of the command line options that
Table 12 lists.

Table 12. Environment 2 Command Line Options

Option Description

–client Start the MME client only

–config file Configure MME with the configuration data stored in
the file specified by file

–copy num Connect to maintenance software assigned the copy
number specified by num

NOTE: Copy numbers are necessary only when you
run multiple copies of MME on the same MWS
or SWS (for example, when you run several
MME copies with the simulator or when you
use MME to support multiple CRAY T90
series mainframes that are connected to the
same MWS or SWS).

–io num Use the CPU specified by num to perform input and
output operations

Environment 2MME User Guide

115Cray Research/Silicon Graphics ProprietaryHDM-102-B

Table 12. Environment 2 Command Line Options (continued)

Option Description

–kill Kill any running MME, SCE, or LME applications
before you start a new copy of MME

–remote host Start the MME client only and connect the client to the
MME server that is running on the remote host
specified by host

–server Start the MME server only

From the OpenWindows Workspace Menu

You can start environment 2 from the OpenWindows Workspace menu on
either an MWS or an SWS.

MWS Workspace Menu Options

Figure 26 shows the OpenWindows Workspace menu options that you
should choose on an MWS to start environment 2 with an FEI channel.
Choose any copy number.

 Workspace

Programs
Maintenance Tools
Utilities
Properties...
Exit...

DMS2 ...
XCFG ...

Assert TSM configuration...

Reboot TSM chassis...

BOUNDARY SCAN
MME
NWACS
SMARTE
SSDE
XELOG
YIMS

MME Simulator

 Maintenance Tools

 MME

LME
SCE
MME env 0
MME env 1
MME env 2

 MME env 2

Copy 0...
Copy 1...
Copy 2...
Copy 3...

Figure 26. MWS Workspace Menu Options to Start Environment 2 with an FEI Channel

Environment 2 MME User Guide

116 Cray Research/Silicon Graphics Proprietary HDM-102-B

Figure 27 shows the OpenWindows Workspace menu options that you
should choose on an MWS to start environment 2 with the simulator or
with the simulator and bugger/debugger.

 Workspace

Programs
Maintenance Tools
Utilities
Properties...
Exit...

DMS2 ...
XCFG ...

Assert TSM configuration...

Reboot TSM chassis...

BOUNDARY SCAN
MME
NWACS
SMARTE
SSDE
XELOG
YIMS

MME Simulator

 Maintenance Tools

 MME Simulator

LME...
SCE...
MME env 0
MME env 1
MME env 2

 MME env 2

Simulator...
Simulator with Debugger...

Figure 27. MWS Workspace Menu Options to Start Environment 2 with the Simulator or

with the Simulator and Bugger/Debugger

Environment 2MME User Guide

117Cray Research/Silicon Graphics ProprietaryHDM-102-B

SWS Workspace Menu Options

Figure 28 shows the OpenWindows Workspace menu options that you
should choose on an SWS to start environment 2 with an FEI channel.
Choose any copy number.

 Workspace

Programs
Maintenance Tools
Utilities
Properties...
Exit...

SIO TEST
T32 TEST

NWACS

XCFG ...

XELOG

 Maintenance Tools

 T32 TEST

BOUNDARY SCAN
MME

MME Simulator

 MME

LME
SCE
MME env 0
MME env 1
MME env 2

 MME env 2

Copy 0...
Copy 1...
Copy 2...
Copy 3...

Figure 28. SWS Workspace Menu Options to Start Environment 2 with an FEI Channel

Environment 2 MME User Guide

118 Cray Research/Silicon Graphics Proprietary HDM-102-B

Figure 29 shows the OpenWindows Workspace menu options that you
should choose on an SWS to start environment 2 with the simulator or
with the simulator and bugger/debugger.

 Workspace

Programs
Maintenance Tools
Utilities
Properties...
Exit...

SIO TEST
T32 TEST

NWACS

XCFG ...

XELOG

 Maintenance Tools

 T32 TEST

BOUNDARY SCAN
MME

MME Simulator

 MME Simulator

LME...
SCE...
MME env 0
MME env 1
MME env 2

 MME env 2

Simulator...
Simulator with Debugger...

Figure 29. SWS Workspace Menu Options to Start Environment 2 with the Simulator or
with the Simulator and Bugger/Debugger

Environment 2MME User Guide

119Cray Research/Silicon Graphics ProprietaryHDM-102-B

What Happens When You Start Environment 2?

The following actions occur when you start MME:

 1. The MME server attempts to connect with the System Configuration
Environment (SCE) server.

If MME cannot connect with a running SCE server, MME starts a
new SCE server and tries to connect to the new SCE server. (If you
specified a configuration file with the –config command line
option, MME sends this file to SCE through the SCE –default
command line option. SCE loads the configuration that is stored in
the file.)

 2. Once MME establishes a connection with SCE, MME attempts to
receive a configuration from SCE:

• If a configuration is available, SCE provides MME with the
components that are available for use by the maintenance
system. MME automatically configures itself to use these
components.

• If a configuration is not available, MME displays the message
shown in the following snap:

IF MME displays this message, than you need to create a
configuration using SCE before you continue using MME.
Refer to the SCE User Guide, publication number HDM-069-C,
for more information about creating a configuration.

Environment 2 MME User Guide

120 Cray Research/Silicon Graphics Proprietary HDM-102-B

Diagnostic Controller Components

Once MME establishes a configuration, a special Cray Assembly
Language (CAL) program, called the diagnostic controller (DC) or
controller, automatically loads into the lower 1400008 words of mainframe
memory. The DC acts as an interface between MME in the MWS or SWS
and the control points in the mainframe. The controller performs the
following actions:

• Manages multiple control points
• Handles memory display updates
• Logs memory and register parity errors
• Routes and handles interrupts
• Handles diagnostic program requests

CAUTION

If UNICOS is running in the mainframe when MME
loads the diagnostic controller, the diagnostic
controller will overwrite UNICOS in mainframe
memory, which will hang the operating system.

To prevent this from accidentally occurring, ensure
that the Owner setting in the SCE base window is
set to OS for the logical partition in which UNICOS
is running when UNICOS is running in the
mainframe. MME cannot access a logical partition if
the OS owns it.

Figure 30 shows the three main areas of the controller: the standard
locations, the code block, and the block storage segment.

Notice that diagnostic controller components begin with a lowercase letter.
Remember that control point components begin with an uppercase letter
(for example, DEXP, SEXP, and WEXP).

Environment 2MME User Guide

121Cray Research/Silicon Graphics ProprietaryHDM-102-B

dEXP

sEXP

iEXP

cEXP

tEXP

xEXP

bEXP

iROUTER

STDCODE

nROUTER

MAIN

iHANDLER

nHANDLER

CODEEND

0

40

100

4000

6000

10000

32000

36000

40110d

40300a

42000a

Current Exchange Package Table

Interrupt Exchange Package Area (Trap Filled)

Starting Exchange Package

Deadstart Exchange Package

Trap Exchange Package Table

Exchange Area (Trap Filled)

Buffer Exchange Package Table

Start of the Standard Code Block

Interrupt Router Code

Normal Exit Router Code

Diagnostic Controller Main Code

Interrupt Handlers

Normal Exit Handlers

End of the Controller Code

wEXP2000 Working Exchange Package Table

PARAM
20000

Parameter Block

LIB Library Interrupt Handlers

ELOG Error Log Table

40000

43000

43100a

140000

Standard Locations

Code Block

Block Storage Segment

fEXP140 Flush Exchange Package

Figure 30. Diagnostic Controller Components

Standard Locations

The standard locations block contains the parameters that the controller
uses to operate. The standard locations block includes the deadstart
exchange package, the starting exchange package, the interrupt exchange
package, the flush exchange package, the working exchange package
table, the current exchange package table, the trap exchange package
table, the exchange area, the parameter block, the buffer exchange
package table, and the error log table.

Environment 2 MME User Guide

122 Cray Research/Silicon Graphics Proprietary HDM-102-B

Deadstart Exchange Package

The deadstart exchange package (dEXP) begins at address 08. MME uses
this exchange package to exchange the modified copy of sEXP into the
CPU when a deadstart occurs.

Starting Exchange Package

The starting exchange package (sEXP) begins at address 408. MME uses
this exchange package to build the dEXP used to deadstart the CPU.
When MME loads the controller, the sEXP includes the following values:

• P register = controller MAIN (42000a)
• XA = wEXP

Interrupt Exchange Package Area

The interrupt exchange package (iEXP) area begins at address 1008. This
area contains exchange packages that have P registers set to iTRAPXA.
These exchange packages trap invalid exchanges that occur. There are 768
iEXPs in this area.

Flush Exchange Package

The flush exchange package (fEXP) begins at address 1408. A CPU uses
the fEXP to perform a dummy exchange to clear any pending interrupts.

Working Exchange Package Table

The working exchange package (wEXP) table is a group of 408 exchange
packages that start at address 20008. Initially, these exchange packages
are identical to iEXP and xEXP, except for the XA and A1 registers.
When you click on , MME copies the SEXP for a control point
into the wEXP for the CPU that is assigned to the control point. The
wEXP includes the following values:

• P register = control point MAIN
• XA = wEXP

Environment 2MME User Guide

123Cray Research/Silicon Graphics ProprietaryHDM-102-B

Current Exchange Package Table

The current exchange package (cEXP) table is a group of 408 exchange
packages that start at address 30008. These exchange packages have P
registers set to iTRAPXA. These exchange packages trap invalid
exchanges that occur.

Exchange Area

The exchange area (xEXP) begins at 100008. This area contains exchange
packages that have P registers set to iTRAPXA. These exchange
packages trap invalid exchanges that occur.

Parameters

The parameter block, which starts at address 200008 (PARAM), contains
several tables of parameters that the controller uses to manage control
point execution. Refer to Table 13.

Table 13. Controller Parameters

Address Label Description

MME updates several tables of base and limit values that the controller uses to access the control
points in memory. MME loads these tables, which begin at address 200008, before MME makes a
request. There are four tables for each CPU:

Table 0: Diagnostic LAT logical bases and limits (exchange package format)
Table 1: Diagnostic LAT physical (exchange package format)
Table 2: Diagnostic absolute base (full address)
Table 3: Diagnostic absolute limit (full address)

20000 mmeLIM CPU 0 LAT modes, base, limits table

20010 mmePB CPU 0 LAT physical bias

20020 mmeAB CPU 0 absolute base

20030 mmeAL CPU 0 absolute limit

22000 mmeBASE Control point base address table

22040 mmeCIFM Clear interrupt flag (1 word per CPU)

22100 diagBASE Diagnostic base address table

22140 dcCIFM Copy of actual interrupt mode (IM) (1 word per CPU)

Environment 2 MME User Guide

124 Cray Research/Silicon Graphics Proprietary HDM-102-B

Table 13. Controller Parameters (continued)

Address DescriptionLabel

The memory allocation tables begin at address 240008. These tables contain the currently executing
base and limit values. There are four tables for each CPU:

Table 0: Diagnostic LAT logical bases and limits (exchange package format)
Table 1: Diagnostic LAT physical (exchange package format)
Table 2: Diagnostic absolute base (full address)
Table 3: Diagnostic absolute limit (full address)

24000 dcLIM CPU 0 LAT logical base and limit

24010 dcPB CPU 0 LAT physical bias

24020 dcAB CPU 0 absolute base

24030 dcAL CPU 0 absolute limit

The MME request port contains the requests and responses for communication between the CPU and
MME.

26000 mwsTOcpu MWS (or SWS)-to-CPU request

26040 mwsACK CPU-to-MWS (or SWS) response (generated by a CPU)

26100 cpuTOmws CPU-to-MWS (or SWS) request

26140 cpuACK MWS (or SWS)-to-CPU response (generated by the MWS
or SWS)

The CPU data tables contain data from the CPUs (1 word per CPU for each table).

26400 hartBEAT Hartbeat table

26440 idleSTAT Idle status table

26500 pASS Diagnostic pass count

26540 eRROR Diagnostic error count

26600 wEXPP wEXP P register

26640 wEXPIF wEXP IF register

26700 iNTFLAGS Temporary wEXP IF register

26740 sUT Diagnostic section being tested

27000 cUT Diagnostic condition being tested

27040 ioLOCKUP Count of retries in I/O reservation table

27100 srLOCKUP Count of retries in cluster reservation table

27140 dIFLAGS Pending diagnostic-handled interrupts

27400 WEXPADDR WEXP address table

27440 CEXPADDR CEXP address table

27500 TEXPADDR TEXP address table

27540 bEXPADDR bEXP address table

A data block that contains several program variables begins at 276008.

27600 idleHALT Halt on idle parameter

Environment 2MME User Guide

125Cray Research/Silicon Graphics ProprietaryHDM-102-B

Table 13. Controller Parameters (continued)

Address DescriptionLabel

27601 dcHALT Halt on error active

27602 noRANGE No base/limit range check parameter:
0 = Check base and limit range
1 = Do not check base and limit range

27603 clrSYS System (real-time clock [RTC] and I/O channels) clear
status parameter:
0 = System was not cleared
1 = System was cleared

27604 cRESBUSY I/O channel reservation table busy flag

27605 sRESBUSY Cluster reservation table busy flag

27606 trapSTAT Save trap status

27607 trapADDR Save trap address

Exchange Package Swap Buffer

The buffer exchange package table (bEXP) begins at address 320008. The
controller code uses the bEXP as an exchange package swap buffer.

Error Log Table

The error log table organizes all memory and register parity errors from
running control points into one area of memory. The error log table
begins at or after address 360008. Consult the listing at label ELOG for
the actual address.

Refer to the “View –> Error Log” description in the MME Interface
Reference, publication number HDM-008-A, for information on how to
view the error log table.

Code Block

The code block contains all the code necessary for the controller to
function. The code block includes the interrupt router code, the normal
exit router code, the library handlers, the interrupt handlers, and the
normal exit handlers.

Environment 2 MME User Guide

126 Cray Research/Silicon Graphics Proprietary HDM-102-B

Interrupt Router Code

The interrupt router (iROUTER) code begins at address 40110d8. The
iROUTER code is the first level of interrupt processing. This code
determines which interrupts exist and passes the interrupts to the
appropriate handler routines.

Normal Exit Router Code

The normal exit router (nROUTER) code begins at address 40300a8. The
normal router code passes a normal exit to the appropriate normal exit
handler code.

Library Interrupt Handlers

The library handlers are standardized handlers that are used for interrupt
processing.

Interrupt Handlers

The interrupt handler (iHANDLER) code begins at address 430008. This
code contains additional handlers that are used to process interrupts.

Normal Exit Handlers

The normal exit handler (nHANDLER) code begins at address 43100a8.
This code handles normal exit calls.

Block Storage Segment

The block storage segment contains memory that the controller uses to
store data as the controller executes. The block storage segment includes
the uninitialized data.

Environment 2MME User Guide

127Cray Research/Silicon Graphics ProprietaryHDM-102-B

Diagnostic Controller Operation

The controller works with MME to control the CPUs. This control ranges
from single-CPU diagnostics to multiple CPUs running multiple
diagnostics with concurrent I/O activity.

Controller Communication Port

The controller code includes a software bidirectional communication port
that is located in mainframe memory. This port consists of an MWS (or
SWS)-to-CPU request buffer, an MWS (or SWS)-to-CPU request
acknowledge buffer, a CPU-to-MWS (or SWS) request buffer, and a
CPU-to-MWS (or SWS) request acknowledge buffer. MME uses this port
to make a CPU request by writing a function code into the communication
port area of memory. Refer to Table 14 for descriptions of the request
function codes. Through this communication port, MME makes requests
to the controller, and the controller acknowledges the requests. The
controller also uses this port to make requests to MME, and MME uses the
port to acknowledge the controller requests.

Table 14. Request Functions

Code Name Description Action

1 START
(single CPU)

Start the diagnostic
(A7 is unchanged)

MME issues a START@SEXP CPU request
for any or all usable CPUs. Upon receipt of
the request, a CPU copies the SEXP from its
diagnostic data area to the wEXP; the CPU
puts the correct instruction base, data base,
instruction base limit, and data base limit in the
wEXP area and exchanges to the diagnostic.

2 START
(multiple CPUs)

Start the diagnostic
(A7 = CPU number)

diagnostic data area to the wEXP; the CPU
puts the correct instruction base, data base,
instruction base limit, and data base limit in the
wEXP area and exchanges to the diagnostic.

3 HALT Copy exchange package at
0 to WEXP, dump the CPU
registers, and idle

The CPU writes the contents of its registers to
a specified dump buffer located in the
diagnostic data area. MME reads the dump
buffer and provides a formatted dump display.
These requests are also used to rotate control
points in the run system.

4 SUSPEND Dump the CPU registers
and idle

buffer and provides a formatted dump display.
These requests are also used to rotate control
points in the run system.

5 UPDATE Dump the CPU registers
and continue diagnostic
execution

points in the run system.

6 RESTART
(single CPU)

Load registers from the
diagnostic dump area and
restart
(A7 is unchanged)

The CPU loads its register and the WEXP
from the dump buffer of the control point and
then exchanges to the diagnostic code. The
CPU continues execution of the diagnostic
where the previous CPU left off. These
requests are also used to rotate control points
in the run system.

7 RESTART
(multiple CPUs)

Load registers from the
diagnostic dump area and
restart
(A7 = CPU number)

where the previous CPU left off. These
requests are also used to rotate control points
in the run system.

Environment 2 MME User Guide

128 Cray Research/Silicon Graphics Proprietary HDM-102-B

Using this communication port requires significantly less code execution
in the mainframe CPU when the MWS (or SWS) is working through the
maintenance channel, as opposed to the MWS (or SWS) working through
a LOSP channel. Also, the controller will support diagnostic requests that
use the maintenance features of the maintenance channel (individual CPU
master clear, individual CPU idle, maintenance modes, and the diagnostic
monitor).

There are 408 function request locations in memory, one for each CPU.
They are mwsTOcpu for CPU 0, mwsTOcpu+1 for CPU 1, and so on.
When the controller is in the idle loop of the main code block, it monitors
the location for the CPU in which it is running. Once that location
becomes nonzero, the function code is decoded and acted upon; then the
location is zeroed out, which MME reads as an acknowledgement. After a
set period of time, MME reads that same location. If the location is zero,
the function has been acted upon. If the location remains nonzero, there is
a CPU error, and MME prints the appropriate error message.

If, for example, the MWS (or SWS) function is a GO, the controller copies
the SEXP of the control point to the wEXP of the controller and then the
controller does a normal exchange, which starts the diagnostic program.
The control point runs until it receives a halt or an interrupt. If an
interrupt occurs, the control point exchanges out to the wEXP, which
points to the controller interrupt router.

CPU Deadstart and Control

The controller does not deadstart any CPUs. MME uses the direct
memory access (DMA) and the individual CPU control capabilities of the
maintenance channel to deadstart the CPUs. Because MME is able to
master clear and deadstart CPUs individually through the maintenance
channel, you can easily move any CPU into or out of controller code
execution. The active CPU handles MME requests through the individual
CPU request ports, which are memory locations that are organized by
CPU number. MME uses the DMA capacity of the maintenance channel
to load diagnostics into memory and to read memory to update all
displays, which does not interrupt any CPU that is executing either the
controller or diagnostic programs.

Environment 2MME User Guide

129Cray Research/Silicon Graphics ProprietaryHDM-102-B

MME-to-controller Communications

MME uses the software bidirectional communication port in the controller
to control the CPUs. MME writes a start request, dump request, or restart
request directly to the MWS (or SWS)-to-CPU request buffer. There are
no MCU I/O requests from MME because MCU I/O is done through the
DMA of the maintenance channel.

Load a Layout (Optional)

Layouts are not implemented yet.

Allocate Resources (Optional)

MME enables you to change the memory allocation options, the CPU
automatic assignment options and CPU modes, the CPU-to-memory
delays, and the section swap interval. Refer to the “Properties –>
Resource Allocation” description in the MME Interface Reference,
publication number HDM-008-A, for more information.

Enable the Run System (Optional)

The run system enables you to perform confidence testing of the
mainframe by creating an environment for hardware system evaluation
that is similar to an operating system. The operating system environment
is simulated by swapping jobs (control points) between active CPUs.

Choose Properties –> Run System to access the MME Run System window.
Use this window to enable the run system and set the properties of the run
system parameters. Refer to the “Properties –> Run System
(Environment 2 Only)” description in the MME Interface Reference,
publication number HDM-008-A, for more information about the MME
Run System window.

Load One or More Control Points

To perform testing with environment 2, you need to load one or more
diagnostic programs, utilities, or loops into mainframe memory. When
you load one of these CAL programs into memory, it is called a control
point. Because you typically load more than one control point into
mainframe memory at a time in environment 2, the control points share
the resources of the mainframe; the controller coordinates the resource
sharing.

Environment 2 MME User Guide

130 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME performs the following functions to load each control point:

 1. MME loads the code that is located in addresses 0 through the end of
the standard location block into an MME data buffer.

 2. MME configures the diagnostic or utility code in the MME buffer
based on the data that is stored in the standard locations. For
example, MME configures the memory configuration and CPU
select standard locations.

 3. MME writes the code that is in the MME data buffer into mainframe
memory.

 4. MME writes the code from the end of the standard locations to the
end of the initialized data into mainframe memory.

 5. Optionally, MME clears the dump area.

 6. MME overlays any global user changes to the control point sections.

 7. MME overlays any section user changes.

Control Point Components

The control point components in environment 2 are similar to the control
point components in environment 1, with the following differences:

• Environment 2 control point addressing is relative to the instruction
base address of the control point. This occurs because MME does
not load the control points at address 08, which is where the
controller resides. For more information, refer to the following
“Control Point Addressing” discussion.

• Environment 2 control points use the interrupt exchange package
(IEXP). The IEXP starts at address 1008. Typically, the controller
code uses IEXP to exchange control to the iROUTER code in the
control point.

Control Point Addressing

Because the controller starts at address 08 and you usually load more than
one control point in mainframe memory at a time, control point addressing
is not based on address 08 (sometimes called absolute addressing) as it is
in environment 1. Instead, environment 2 uses relative control point
addressing, which bases the addressing of the control point code on the
instruction base address (IBA) of the control point. For example, if the

Environment 2MME User Guide

131Cray Research/Silicon Graphics ProprietaryHDM-102-B

control point has an IBA of 2400008, the actual addresses of the control
point components in memory are the addresses in the control point plus
the IBA (2400008). Refer to Figure 31.

Controller

Control Point 0
Section

Max
Memory

0

IBA
2000008

IBA
2400008

DEXP

SEXP

IEXP

STDLOC

DIAGINFO

PARAM

WEXP

CEXP

TEXP

iROUTER

STDCODE

nROUTER

MAIN

CODESUB

iHANDLER

nHANDLER

dumpAREA

IDATA

UDATA

2400008 + 08 = 2400008

FEXP

ELOG

LIB

IBA
1400008

Control Point 1
Section

Control Point 2
Section

Control Point 2 Addressing

2400008 + 408 = 2400408

2400008 + 1008 = 2401008

2400008 + 1408 = 2401408

2400008 + 2008 = 2402008

2400008 + 3008 = 2403008

IBA + Location = Relative Address

2400008 + 10008 = 2410008

2400008 + 16008 = 2416008

2400008 + 20008 = 2420008

2400008 + 40008 = 2440008

2400008 + 60008 = 2460008

2400008 + 100008 = 2500008

2400008 + 10105c8 = 250105c8

2400008 + 10300a8 = 250300a8

2400008 + 10400a8 = 250400a8

2400008 + 12000a8 = 252000a8

Figure 31. Control Point Addressing

Environment 2 MME User Guide

132 Cray Research/Silicon Graphics Proprietary HDM-102-B

Viewing Memory Addresses

Because addressing in environment 2 is absolute for the controller and
relative for the control points, the MME View Memory Setup window enables
you to display memory both ways. The following examples illustrate how
you can use the settings in the MME View Memory Setup window. Refer to
the “View –> Memory” discussion in the MME Interface Reference,
publication number HDM-008-A, for more information about the MME
View Memory Setup window.

Controller Addresses

Absolute addressing uses a base address of 08. Controller component
addresses in memory location 08 through 1400008 are absolute because the
controller code starts at address 08. To view these absolute addresses,
click on the Base: setting and enter the address in the Address:

field. When you click on , a Memory — Absolute window appears,
which shows the exact address that you entered. Figure 32 shows a
Memory — Absolute window that displays the first 208 words of the sEXP
for the controller, which is located at absolute address 408.

Figure 32. Absolute Memory Display

Control Point Addresses

Relative addressing uses a base address other than 08. Control point
component addresses are relative because the control point code starts at
an instruction base address (IBA), which typically is not 08. To view
relative addresses, click on the Base: setting and enter the value
that you want in the Address: field (for example, enter 408 for the SEXP).
MME reads the appropriate address based on the IBA for the current
control point and displays the data in a Memory (######) window.

Environment 2MME User Guide

133Cray Research/Silicon Graphics ProprietaryHDM-102-B

MME includes two options for viewing relative addresses: drifting and
anchored modes.

NOTE: In the following examples, all of the exchange packages are for
CPUs that use the Cray Research, Inc. (CRI) floating-point
number format. If you view an exchange package for a CPU
that uses the IEEE floating-point number format, the format of
the exchange package will be different from the format of the
exchange packages shown in these examples.

Using Drifting Mode

Drifting mode displays memory for the current control point as you
change control points. The memory window “drifts” to the base address
for the current control point. Figure 33 and Figure 34 provide an example
of using drifting mode.

In the following example, MME has two loaded control points. Control
point 0 is asb.t , which has an IBA of 1400008. Control point 1 is svb.t ,
which has an IBA of 5000008. When you first view the memory window,
the window displays memory relative to the IBA of asb.t , as shown in
Figure 33.

The Initial Base Address is the IBA of Control Point 0 (1400008)

Figure 33. Drifting Display for the Current Control Point

When you click on control point 1 in the Control Points scroll box, the
memory window drifts to the new current control point, which displays
memory based on the IBA of svb.t , as shown in Figure 34.

Environment 2 MME User Guide

134 Cray Research/Silicon Graphics Proprietary HDM-102-B

The Base Address Drifts to the IBA of Control Point 1 (5000008)

Figure 34. Drifting Display for the New Current Control Point

Using Anchored Mode

Anchored mode always displays memory for the control point that was
current when the memory window was first displayed. The memory
window becomes “anchored” to the base address window and always
displays memory for that control point, as shown in Figure 35 and
Figure 36.

Although the window stays anchored to one control point, the window
data changes for the section of the control point that you select, as shown
in Figure 37 and Figure 38. The window data changes because individual
sections are loaded into mainframe memory and removed from mainframe
memory as the current section changes.

Environment 2MME User Guide

135Cray Research/Silicon Graphics ProprietaryHDM-102-B

The Initial Base Address is the IBA of Control Point 0 (1400008)

Figure 35. Anchored Memory Display for the Current Control Point

When you switch control points, the window remains anchored to the IBA
of the first control point, as shown in Figure 36.

The Window Remains Anchored to the IBA of Control Point 0

Figure 36. Anchored Memory Display for the New Current Control Point

Environment 2 MME User Guide

136 Cray Research/Silicon Graphics Proprietary HDM-102-B

Figure 37. Memory Display for the Current Control Point Section

When you switch control point sections, the memory window displays
data for the new current section, as shown in Figure 38.

Figure 38. Memory Display for the New Current Control Point Section

Environment 2MME User Guide

137Cray Research/Silicon Graphics ProprietaryHDM-102-B

Assign CPUs to the Control Points

You must assign a CPU to a control point to perform any troubleshooting
for the CPU. To assign a CPU to the current control point, click on the
CPU in the CPU selection, control point, and status area in the MME base
window. Refer to “CPU Selection, Control Point, and Status Area” in the
MME Interface Reference, publication number HDM-008-A, for more
information.

Click on Go

Click on to start control point execution; all control points that
are assigned CPUs execute the following sequence of events:

 1. MME sets the A7 registers for the deadstart exchange package
(DEXP) of the control point and the starting exchange package
(SEXP) of the control point to the CPU number of the control point:

DEXP A7 = CPU number
SEXP A7 = CPU number

 2. MME sets the SEXP exchange address to its original value plus the
CPU number (in A7) multiplied by 408 [SEXP XA = XA + (A7 *
408)]. This makes the XA point to the WEXP for the CPU.

MME also sets exit address 0 (EA0) through EA4 to the original
value plus A7 multiplied by 408:

EA0 = EA0 + (A7 * 408)
EA1 = EA1 + (A7 * 408)
EA2 = EA2 + (A7 * 408)
EA3 = EA3 + (A7 * 408)
EA4 = EA4 + (A7 * 408)

 3. MME copies SEXP to FEXP.

 4. MME writes the data to mainframe addresses 08 through 2008,
which contain the first four exchange packages of the controller.

 5. MME writes the trap exchange package (TEXP) for the current
CPU.

 6. MME writes the controller tables with base and limit information
about the control point.

Environment 2 MME User Guide

138 Cray Research/Silicon Graphics Proprietary HDM-102-B

 7. MME writes a START command in the controller communications
port. The START command is either START (single CPU) or
START (multiple CPUs). Refer again to Table 14 on page 127 for
more information about the START commands.

 8. The CPU starts executing the control point code.

Monitor the Progress of the Control Points

As control points execute, you should monitor the information that MME
displays to determine the progress of the control points. As in
environment 1, it is important to understand what happens during control
point execution so you can determine whether everything is operating
properly. Table 15 lists the status information that you should monitor
while the control points execute.

Table 15. Status Information from Executing Control Points

Symptom Description

“ERROR COUNT” flashing next to a CPU The control point detected an error. Refer to
“Diagnostic-detected Errors” for more information.

“Holding” appears next to a CPU Control point execution is paused. Check the
runtime information display for a prompt for the
control point.

Indicator (MEM, RPE, SHR, LAT, or UKN) appears
in the menu bar

MME detected a memory, register parity, shared,
LAT, or unknown error. MME logs these errors in
the error log. Choose View –> Error Log to view
the error log.

Interrupt flag An interrupt occurred. Refer to “Interrupts” for
more information.

P register is incrementing Everything is operating correctly.

P register is not incrementing The P register is hung. Refer to “Intolerable
Interrupts” for more information.

“Waiting” appears next to a CPU The CPU is waiting to execute a multiple-CPU
control point.

Environment 2MME User Guide

139Cray Research/Silicon Graphics ProprietaryHDM-102-B

Diagnostic-detected Errors

Control point test code that is running in a CPU detects and reports an
error through the following sequence of events.

 1. The control point test code detects a data comparison error for the
hardware values that the control point is testing.

 2. The control point test code logs the error in the standard locations for
the control point.

 3. The control point test code performs a dump and idle normal exit
(NEX) request, which causes an interrupt.

 4. The CPU exchanges from the control point test code into the
controller iROUTER, using wEXP.

 5. The controller iROUTER code copies wEXP to WEXP. WEXP now
contains information about where in the control point test code the
exchange occurred.

 6. The controller iROUTER code updates the diagnostic pass count
(pASS), diagnostic error count (eRROR), wEXP P register
(wEXPP), wEXP IF register (wEXPIF), diagnostic section under test
(sUT), and diagnostic condition under test (cUT) parameters for the
controller runtime information display.

 7. The controller iROUTER code routes the NEX interrupt to the
appropriate handler.

 8. MME checks the minimum and maximum error counts that are
assigned to the control point.

NOTE: The CPUs do not stop for any errors.

When a diagnostic test program increments the error count, ERROR
COUNT flashes next to the CPU in the CPU status area. Figure 39 shows
the ERROR COUNT indicator highlighted.

Environment 2 MME User Guide

140 Cray Research/Silicon Graphics Proprietary HDM-102-B

Figure 39. Error Indicator

When you see an error indicator, refer to the error return address (ERA) in
the diagnostic information block. The ERA, which is located at address
0305, indicates an area in the listing near the location of the failing code.
Look at the code in the listing adjacent to the ERA to determine the code
that actually failed.

NOTE: The ERA is shown on the DIAGINFO runtime information
display, which is currently available for most diagnostic tests
and utilities.

For information on how to view a listing, refer to “View –> Listing –>
Current” and “View –> Listing –> Other” in the MME Interface
Reference, publication number HDM-008-A.

Interrupts

As in environment 1, there are two classes of interrupts in environment 2:
tolerable and intolerable interrupts. Remember that tolerable interrupts
are interrupts that occur while the CPU is processing the main diagnostic
code. Tolerable interrupts can be ignored or routed, depending on the
code of the diagnostic program. Intolerable interrupts are interrupts that
occur while the CPU is processing code from the standard code block.
Intolerable interrupts are trapped by hanging the CPU.

Figure 40 shows the two interrupt classes and the actions performed when
interrupts occur.

Environment 2MME User Guide

141Cray Research/Silicon Graphics ProprietaryHDM-102-B

Tolerable

Ignore Route

Pass to Control Point Route to Handler

Use Controller
 Handlers

Intolerable

Trap

Use TEXP
Use SIFM

Use DIFM

Route to Hang

Use idleSTAT
Code (idleLOOP)

Figure 40. Environment 2 Interrupt Classes and Actions

Environment 2 uses a two-tiered interrupt-processing system. When
interrupts occur, the CPU exchanges to the controller iROUTER code to
begin processing the interrupts. The first tier of processing uses the
controller iROUTER code. The second tier uses the iROUTER code from
the control points. The DIFM parameter specifies which tier processes an
interrupt.

Typically, environment 2 processes interrupts in the first tier (controller
iROUTER code). Occasionally, the control point code contains the
routines that are necessary to route and handle an interrupt, so interrupt
processing moves to the second tier (control point iROUTER code). To
move into the second tier, the controller uses the DIFM parameter, which
contains a bit for each interrupt flag. If the bit for a flag is set in the
DIFM parameter, the controller passes the interrupt to the control point
iROUTER code for processing by the control point.

Environment 2 processes interrupts using the procedure that Figure 41
shows and the text that follows the figure describes. The circled numbers
in Figure 41 correspond to the numbered steps in the text that follows the
figure.

Environment 2 MME User Guide

142 Cray Research/Silicon Graphics Proprietary HDM-102-B

NEX RPE UME Other

No

Yes

Remove DIFM flags

Replace DIFM flags

No

Yes

Exchange to the control point code using IEXP; typically, this causes
the control point iROUTER code to execute and process remaining interrupts
as described for environment 1.

Controller Handler
Routines

Any
flags
set?

No

Idle Loop

Move SIFM flags to SIFR

Any
flags still

set?

Yes

Yes

Any
flags still

set?

Clear interrupt
flags in wEXP

and exchange out
of controller

iROUTER code
using wEXP

(Hangs CPU)
No

Yes

No

1

2

3

4

5

6

7

8

9

Controller
iROUTER

Exchange into controller iROUTER code using wEXP

Controller
iROUTER Any

flags still
set?

Any
flags still

set?

Other

Figure 41. Interrupt Processing (Controller)

Environment 2MME User Guide

143Cray Research/Silicon Graphics ProprietaryHDM-102-B

 1. The controller iROUTER code verifies that interrupt flags are set in
the current interrupt list.

• If interrupt flags are set, interrupt processing continues with
Step 2.

• If no interrupt flags are set, the iROUTER code causes the CPU
to execute an idle loop, which hangs the CPU.

 2. The controller iROUTER code checks the SIFM parameter. The
controller iROUTER code moves the flags that the SIFM parameter
specifies from the current interrupt list to the SIFR parameter. The
controller iROUTER code does not process these moved interrupts;
the interrupts are ignored.

 3. The controller iROUTER code verifies that interrupt flags are set in
the current interrupt list.

• If interrupt flags are still set, more interrupts exist. Interrupt
processing continues with Step 4.

• If no interrupt flags are set, interrupt processing is complete.
The controller iROUTER code clears the interrupt flags in
wEXP, and MME exchanges the controller iROUTER code out
of the CPU and the control point code into the CPU. The CPU
continues to execute the control point code.

 4. The controller iROUTER code checks the DIFM parameter. The
controller iROUTER code moves the flags that the DIFM parameter
specifies from the current interrupt list to the dcDIFM parameter.
The control point iROUTER code processes these moved parameters
after the controller iROUTER code has finished processing
interrupts.

 5. The controller iROUTER code verifies that interrupt flags are set in
the current interrupt list.

• If interrupt flags are still set, more interrupts exist. Interrupt
processing continues with Step 6.

• If no interrupt flags are set, the controller iROUTER code has
completed processing the current list of interrupts. The
controller iROUTER code continues with Step 8.

 6. The controller iROUTER code routes each interrupt in the current
interrupt list. If a handler exists for an interrupt, the controller
iROUTER code routes the interrupt to the handler code.

Environment 2 MME User Guide

144 Cray Research/Silicon Graphics Proprietary HDM-102-B

NOTE: The iROUTER code picks off one interrupt and sends it to
the handler code; this process (Step 6) repeats until all
interrupts are processed.

 7. The controller iROUTER code verifies that interrupt flags are set in
the current interrupt list.

• If interrupt flags are still set, the iROUTER code causes the
CPU to execute an idle loop, which hangs the CPU.

• If no interrupt flags are set, the controller iROUTER code has
completed processing the current list of interrupts. The
controller iROUTER code continues with Step 8.

 8. The controller iROUTER code replaces any flags that were removed
in Step 4 so the control point iROUTER code can process any
interrupts that are indicated in the DIFM parameter.

 9. The controller iROUTER code verifies that interrupt flags are set in
the current interrupt list.

• If interrupt flags are still set, these flags came from the DIFM
parameter. The controller iROUTER code causes an exchange
that typically exchanges the control point iROUTER code into
the CPU so the control point can process the interrupts.

• If no interrupt flags are set, interrupt processing is complete.
The controller iROUTER code clears the interrupt flags in
wEXP, and MME exchanges the controller iROUTER code out
of the CPU and the control point code into the CPU. The CPU
continues to execute the control point code.

Tolerable Interrupts

Tolerable interrupts are interrupts that the controller or control point
iROUTER code expect. The controller iROUTER code performs three
functions for tolerable interrupts: ignore, pass to the control point, and
route to handler.

Ignore

In environment 2, the controller code determines which interrupts should
be ignored. The controller iROUTER code can remove interrupts from
the current list of interrupt flags to be processed. This prevents the
interrupts from being processed. If a diagnostic test or utility program sets
the corresponding bit for an interrupt in the system interrupt flag mask

Environment 2MME User Guide

145Cray Research/Silicon Graphics ProprietaryHDM-102-B

(SIFM) parameter, the controller iROUTER code at cKSIFM moves the
interrupt from the current list to the system interrupt return mask (SIFR)
parameter. The interrupt is ignored.

Ignored interrupts are typically used so the diagnostic test code can force
an interrupt condition. When control returns to the test code, the test code
checks the SIFR parameter to verify that the interrupt occurred.

Pass to a Control Point

A control point can contain the code necessary to handle certain interrupts.
If it does, the control point code sets the bits in the DIFM parameter that
correspond to the interrupts that the control point will handle. The
controller iROUTER code checks the bits in the DIFM parameter and
moves the interrupt flags that are set in DIFM from the current interrupt
list to the dcDIFM parameter.

When the controller code finishes processing all remaining interrupts, the
controller iROUTER code returns the DIFM flags to the current interrupt
list and exchanges the CPU to the control point iROUTER code. The
control point iROUTER code processes the interrupts as described for
environment 1.

Route to a Handler

The controller handles interrupts through special code sections called
handlers. Handlers contain the code that is necessary to process
interrupts. Three types of handlers may be available in the controller:
library interrupt handlers, interrupt handlers, and normal exit handlers. If
a handler is available in the controller code for an interrupt, the controller
iROUTER code routes the interrupt to the handler.

NOTE: Some handlers are just inline hangs.

Library Interrupt Handlers and Interrupt Handlers

Library interrupt handlers and interrupt handlers are general handlers that
are included in the controller.

Normal Exit Handlers

The controller includes normal exit handlers that enable control points to
perform tasks in monitor mode instead of user mode, in which the control
points usually execute. The control point code causes a normal exit
(NEX) interrupt to access the code that the normal exit handlers contain.

Environment 2 MME User Guide

146 Cray Research/Silicon Graphics Proprietary HDM-102-B

Figure 42 is a flowchart of normal exit interrupt processing. The circled
numbers in Figure 42 correspond to the numbered steps in the text that
follows the figure.

S1 = 1 S1 = 2 S1 = 3

NEX

Done; the controller
iROUTER resumes
processing interrupts

Route interrupts

Controller
iROUTER

Controller
nROUTER

Route functions

Execution continues at
hDIFM, which passes the
interrupt to the control point
iROUTER code

S0 bit 63 set?

Yes

No

3

2

Controller
nHANDLER
Routines

Did
DC handle
request?

Error; the CPU hangs
No

YesYes

No INEX flag
set in

DIFM?

1

4 5
Controller
nROUTER

Figure 42. Normal Exit Interrupt Processing

Environment 2MME User Guide

147Cray Research/Silicon Graphics ProprietaryHDM-102-B

 1. The controller iROUTER code routes the NEX interrupt to the
controller nROUTER code.

 2. The controller nROUTER code verifies that bit 63 (the sign bit) of
S0 is set to 1. The control point diagnostic code must set this bit to
indicate that a NEX interrupt is occurring. If this bit is not set,
processing continues with Step 6.

 3. The controller nROUTER code routes the NEX interrupt to the
appropriate handler based on the value stored in S1. The handler
performs the necessary functions to process the request.

 4. The controller nROUTER code verifies that the controller code
handled the NEX request.

• If the request was handled, normal exit processing is complete.
Interrupt processing resumes in the controller iROUTER code,
which Figure 42 shows.

• If the request was not handled, NEX processing continues with
Step 5.

 5. The controller nROUTER code examines the DIFM parameter.

• If the bit for the NEX flag is set in DIFM, the controller
nROUTER code moves the NEX flag to the DIFM copy
(dcDIFM) and routes the request back to the control point
through the DIFM handler (hDIFM).

• If the bit for the NEX flag is not set in DIFM, the CPU hangs
because an error occurred.

If the CPU cannot complete the request (requested I/O channel busy, mode
not allowed and so on), an exchange occurs with the return exchange
package that has a fail code in the S0 register. The control point should
detect and handle all incomplete requests. If the request is completed by
the controller, the content of the S0 register is intact.

Table 16 shows the normal exchange request bit fields. Table 17 shows
the normal exit requests that correspond to the bits that are set in the S1
register.

Environment 2 MME User Guide

148 Cray Research/Silicon Graphics Proprietary HDM-102-B

Table 16. Environment 2 Normal Exit Request Bit Fields

Register Contents

S0 Valid Request Flag, Bit 63 = 1

S1 Function Mask for
the Controller Only
Handlers,
Bits 63 – 48

Function Mask for
the Controller and
Handlers,
Bits 47 – 32

Function Mask for
the Router Only
Handlers,
Bits 31 – 16

Function Mask for
the Program-defined
Handlers,
Bits 15 – 0

S2 Parameter 1

S3 Parameter 2

S4 Parameter 3

A0 Parameter 4

A1 Parameter 5

A2 Parameter 6

A3 Parameter 7

Table 17. Environment 2 Normal Exit Routines

Octal Bit Name Description

66 hNOP Perform no operation

65 hHALT Halt all CPUs in the controller

62 hioLOCK Reserve LOSP or VHISP I/O channel

Parameters:

S2: Bit mask of channels to reserve (channels 077 – 000)

S3: Bit mask of channels to reserve (channels 177 – 100)

S4: 0 = Release
1 = Reserve
2 = One shot (The channel is released after the first interrupt.)

60 hXEXP Exchange using the exchange package table

Parameters:

S2: Pointer to the exchange package table
S3: 0 = Copy from the table

1 = Swap with the table

57 hIDLE Dump registers and idle the CPU

56 hIDLE Dump registers and wait for the hold bit to clear

46 hHOLD Hold on WAIT/RESUME

Environment 2MME User Guide

149Cray Research/Silicon Graphics ProprietaryHDM-102-B

Table 17. Environment 2 Normal Exit Routines (continued)

Octal Bit DescriptionName

44 hsrLOCK Set shared register cluster

Parameters:

S2: Cluster or cluster mask

S3: 0 = Release cluster
1 = Reserve cluster
1000 = Release clusters in cluster mask
1001 = Reserve clusters in cluster mask

When this routine sets a single cluster number (S3 = 1), the CLN
register is set upon return.

When this routine sets a group of clusters (S3 = 1001), S2 returns a
mask of reserved clusters.

S0 returns –22 if another control point controls the requested cluster.

43 hSETPCI Set up PCI if it is selected in PCITIME

41 hSETM Set or clear mode flags in WEXP

Parameters:

S2: Bit mask of flags relative to the register you are using

S3: 0 = Clear flags
1 = Set flags

40 hSETIM Set or clear interrupt mode bits in WEXP

Parameters:

S2: Bit mask of mode bits relative to the register you are using

S3: 0 = Clear bits
1 = Set bits

Intolerable Interrupts

An intolerable interrupt is an interrupt that neither the controller nor the
control point are expecting. Intolerable interrupts can occur in the main
diagnostic code or standard code of the controller or control point.

Environment 2 MME User Guide

150 Cray Research/Silicon Graphics Proprietary HDM-102-B

Exchange into Controller with No Interrupt Flags

If a CPU exchanges into the controller with no interrupt flags set, the
controller iROUTER code places the value %%INF in memory location
idleSTAT, traps the CPU by jumping to an idle loop, and increments the
location hartBEAT, which MME periodically checks.

If hartBEAT is nonzero, MME reads idleSTAT, translates the value into a
controller code, displays the code next to the CPU in the MME base
window, and prints a message on the ERROR runtime information display
for the controller. Refer to Figure 43.

Figure 43. Idle Status after an Exchange with No Flags

Environment 2MME User Guide

151Cray Research/Silicon Graphics ProprietaryHDM-102-B

Exchange into the Controller with an Interrupt the Controller and Control Point Cannot Handle

When an interrupt occurs that the controller and control point cannot
handle, the controller iROUTER code moves the flag to the iNTFLAGS
parameter, clears all channel and cluster reservations for the control point,
and hangs the CPU at location iDLELOOP. Figure 44 shows an example
of an interrupt that the controller and control point cannot handle. Notice
that the flag for the interrupt is shown in the MME base window CPU
status area, the controller ERROR runtime information display, the wEXP,
and the WEXP for the CPU.

Environment 2 MME User Guide

152 Cray Research/Silicon Graphics Proprietary HDM-102-B

MME Base Window CPU
Status Area

Controller Error Runtime
Information Display

wEXP

WEXP

Figure 44. Intolerable Interrupt with No Handler in the Controller or Control Point

Environment 2MME User Guide

153Cray Research/Silicon Graphics ProprietaryHDM-102-B

Exchange from within the Standard Code (Controller or Control Point)

When an interrupt occurs while the controller or control point standard
code is executing, the CPU exchanges using tEXP. The CPU executes the
code at iTRAPDC, which writes A0 (always 3) at the memory location
idleSTAT+CPU and writes A2 (address of the current exchange package)
at trapADDR; then, the CPU hangs in a loop. After the exchange, tEXP
contains the exchange package that was running when the exchange in the
standard code occurred.

For an exchange within the standard code, the MME base window shows
that CPU 0 has a controller error code of TRP [invalid exchange (trap)].
The ERROR runtime information display for the controller indicates that
the controller had an invalid exchange. The P register in the tEXP table of
the EXCHANGE runtime information display for the controller shows the
code that was executing when the exchange occurred. View the exchange
package at the P register value to verify the interrupt flag. View the
trapSTAT and idleSTAT locations to verify the values.

Exchange with an Invalid Exchange Address Handler

An invalid exchange occurs when the CPU exchanges to the wrong
exchange package and that exchange package is not an exchange package
for some other control point (tEXP, dEXP or sEXP). When this happens,
the CPU exchanges to iTRAPXA, which traps the CPU.

For an invalid exchange, the MME base window indicates that the
controller has some trap condition. The ERROR runtime information
display for the controller shows what caused the trap condition and
indicates that you should view the EXCHANGE runtime information
display for the controller. The EXCHANGE runtime information display
shows that an invalid exchange took place at 37008. The P register value
for this exchange package indicates which code the CPU was executing
when the exchange took place.

Environment 2 MME User Guide

154 Cray Research/Silicon Graphics Proprietary HDM-102-B

Click on Halt

Click on to issue the Halt –> Register Dump option, which is the
only halt option that is available in environment 2. The following
sequence of events occurs for each executing control point:

 1. MME sets the A7 registers for the deadstart exchange package
(DEXP) and the starting exchange package (SEXP) for the control
point to the CPU number of the control point:

DEXP A7 = CPU number
SEXP A7 = CPU number

 2. MME sets the SEXP exchange address to its original value plus the
CPU number (in A7) multiplied by 408 [SEXP XA = XA + (A7 *
408)]. This makes the XA point to the WEXP for the CPU.

MME also sets exit address 0 (EA0) through EA4 to the original
value plus A7 multiplied by 408:

EA0 = EA0 + (A7 * 408)
EA1 = EA1 + (A7 * 408)
EA2 = EA2 + (A7 * 408)
EA3 = EA3 + (A7 * 408)
EA4 = EA4 + (A7 * 408)

 3. MME copies SEXP to FEXP.

 4. MME writes the data to mainframe addresses 08 through 2008,
which contain the first four exchange packages for the controller.

 5. MME writes the TEXP for the current CPU.

 6. MME writes a halt command in the controller communications port.
Refer again to Table 14 for more information about the HALT
command.

 7. MME waits for the command to clear.

 8. The CPU stops executing control point code.

	MME User Guide (CRAY T90‰ Series)
	HDM-102-B

