
CRA Y -2" Computer Systems
Functional Description Manual

HR·02000·0D

Cray Research, Inc.

Record of Revision
Each time this manual is revised and reprinted. all cbanges issued against the previous version are incorporated into the new version and
the new version is assigned an alphabetic level which is indicated in the publication number on each page of the manual.

Changes to part of a page are indicated by a change bar in the margin directly opposite the change. A change bar in the footer indicates
that most, if not all, of the page is new. If the manual is rewritten. the revision level changes but the manual does not contain change
bars.

REVISION

A

B

C

01

D

HR·02000-0D

DESCRIPTION

May 1985 - Original printing.

October 1986 - This reprint with revision corrects various errata and improves the
format of the manual. New instructions and CAL examples were added to section 3. A
reference to pseudobanking was added to section 4. The name of a controller was
changed to External I/O controller from Front-end Interface due to confusion with
another device. All previous versions are obsolete. All trademarks are now documented
on the back of the title page.

February 1987 - This reprint with revision incorporates the HSX channel and the 128-
Mword Common Memory four-processor and two-processor versions of the eRA Y-2
computer system.

JUly 1987 - This reprint with revision incorporates the 64-Mword static Common
Memory two-processor and the 128-Mword static Common Memory four-processor
versions of the CRAY-2 computer system. It also removes reference to the 128-Mword
dynamic Common Memory two- and four-processor CRA Y -2 computer systems.

November 1988 - This change packet incorporates the 512-Mword dynamic Common
Memory four-processor version of the eRA Y -2 computer system. It also contains
information on the increased buffer size for the eRA Y -2 computer system.

June 1989 - This reprint with revision adds information on vector tailgating and Shared
registers now offered on the CRAY-2 computer system. It also incorporates various
technical corrections and change packet 01. The publication number has been changed
from HR-2000 C to HR-02000-0D.

iii

PREFACE

This manual describes the functions of the CRA Y -2 computer system and the Cray
Assembly Language (CAL) version 2 symbolic machine instructions specifically used.
with this machine. It is written to assist programmers and engineers, and the manual
assumes the readers have a familiarity with digital computers and assemblers.

The manual describes the overall computer system including its configuration and
characteristics. It also describes the operation of the Common Memory, Foreground
Processor, and Background Processors. This manual explains both the machine code and
the associated symbolic machine instructions.

Site planning information for the CRAY-2 computer system is available in the CRAY-2
Site Planning Reference Manual, publication number HR-2001.

Additional information on the Cray Assembly Language (CAL) Version 2 is available in
the CAL Version 2 Reference Manual, publication 8R-Z003.

HR .. 02000 .. 0D v

CONTENTS

PREFACE •• V

1.

2.

INTRODUCTION
1.1

1.2

1.3

CRAY-2 COMPUTER SYSTEM FEATURES
1.1.1 Physical characteristics.
1.1.2 Architecture and design ••••
CONVENTIONS • • • • • • • • • • •
1.2.1 Examples.
ORGANIZATION • • •

.

BACKGROUND PROCESSOR • •

2.1

2.2

2.3

2.4

2.5

CONTROL SECTION • . • • • •
2.1.1 Instruction issue and control

Program Address register •
Instruction buffers ••••

2.1.2
2.1.3

Instruction issue
Real-time clock
Semaphore flags

2.1.4 Common Memory field protection •
Base Address register
Limit Address register •
Memory range error • •

OPERATING REGISTERS
2.2.1 Address registers

Shared registers
2.2.2 Scalar registers
2.2.3 Vector registers
VECTOR CONTROL REGISTERS •
2.3.1 Vector Length register.
2.3.2 Vector Mask register ••
FUNCTIONAL UNITS • • • • • • • •
2.4.1 Address Add functional unit

. .

2.4.2 Address Multiply functional unit
2.4.3 Scalar Integer functional unit ••

· . . ·

· . .

2.4.4 Scalar Shift functional unit •••••••
2.4.5 Scalar Logical functional unit •••••••••
2.4.6 Vector Integer functional unit.
2.4.1 Vector Logical functional unit ••••
2.4.8 Vector Shift Functional Unit •••••••
2.4.9 Floating-point Add functional unit.
2.4.10 Floating-point Multiply functional unit
2.4.11 Local Memory. ••••• • •••
ARITHMETIC OPERATIONS • • • • • • • • •
2.5.1 Integer arithmetic ••••••••

HI-02000-0D

1-1

1-1
1-2
1-4
1-6
1-6
1-7

2-1

2-1
2-1
2-1
2-3
2-3
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-6
2-6
2-7
2-7
2-7
2-8
2-9
2-9
2-9
2-9
2-9
2-10
2-10
2-10
2-10
2-11
2-11
2-11
2-12

vii

3.

4.

5.

2.5 ARITHMETIC OPERATIONS (continued)
2.5.2 Floating-point arithmetic • • • • • • • •• 2-12

Normalizing • .. • • • • • • • • •• 2-13
Range errors • • • • • • • • • • • •• 2-13
Floating-point addition • • • • •• •• 2-14
Floating-point subtraction • • • •• 2-14
Floating-point to integer conversion • • • • •• 2-14
Integer to floating-point conversion •••• 2-15
Floating-point product • • • • • • • • •• 2-15
Reciprocal approximation • • • • • • • • • • •• 2-15
Reciprocal iteration • • • • • • • • • • •• 2-16
Reciprocal square root approximation • 2-18
Reciprocal square root iteration • • • 2-19

BACKGROUND PROCESSOR SYMBOLIC MACHINE INSTRUCTIONS • · 3-1

3.1
3.2
3.3

. SYMBOLIC INSTRUCTION FORMAT
MACHINE INSTRUCTION FORMAT •
INSTRUCTION DESCRIPTIONS • • •

COMMON MEMORY . . . · · · · · ..

4.1 MEMORY ADDRESSING . · · · 4.2 MEMORY ACCESS · · · · · · · . 4.3 MEMORY CONFLICTS · · · . . 4.4 MEMORY BACKUP · · · · · · · . 4.5 MEMORY ERROR CORRECTION

FOREGROUND SYSTEM

· . . .

· · · ·
· · · · · . · · · · · · · · · .. · · · . . . ·

5.1
5.2

FOREGROUND COMMUNICATION CHANNELS • • • •

5.3

5.4
5.5
5.6
5.1

FOREGROUND CHANNEL PORTS ••••
5.2.1 Common Memory ports
5.2.2 BaCkground Processor ports.
DISK STORAGE UNITS • • • • •
5.3.1 Disk system organization
EXTERNAL 1/0 CONTROLLER • • • •
HSX CONTROLLER • • • .. • • • • • • • •
FOREGROUND PROCESSOR • • • • • • • •
MAINTENANCE CONTROL CONSOLE • • • • •

. . ..

· . . .
.

3-1
3-2
3-3

4-1

4-1
4-1
4-2
4-2
4-3

5-1

5-1
5-2
5-3
5-3
5-3
5-3
5-4
5-5
5-5
5-6

APPENDIX SECTION

A. SYMBOLIC MACHINE INSTRUCTIONS LISTED BY FUNCTIONALITY A-1

A.1 SYMBOLIC NOTATION · A-1

viii HR-02000-0D

A. SYMBOLIC MACHINE INSTRUCTIONS LISTED BY FUNCTIONALITY (continued)

A.2

A.3
A.4
A.5

A.6

A.7

A.8

A.9

A.I0

A.II
A.l2

HR-02000-0D

BRANCH INSTRUCTIONS
A.2.1 Conditional branches ••
A.2.2 Unconditional jumps •••••
A.2.3 Exits •• • • • • • • • • •••
PASS INSTRUCTIONS •• • • •
SEMAPHORE INSTRUCTIONS • • •
REGISTER ENTRY INSTRUCTIONS
A.S.I Entries into A registers
A.5.2 Entries into S registers •
A.S.3 Entries into V registers •
INTER-REGISTER TRANSFER INSTRUCTIONS •
A.6.1 Transfers to A registers
A.6.2 Transfers to S registers ••
A.6.3 Transfers to V registers •••.
A.6.4 Transfer to Vector Mask register •.
A.6.5 Transfer to Vector Length register •
MEMORY TRANSFER INSTRUCTIONS
A.7.I

A.7.2

Stores • . • • • • • • •
Local Memory writes
Common Memory writes • •
Loads • • •
Local Memory reads • • •

.

Complete Memory references •••.
Common Memory reads
Memory Range Error flags •

INTEGER ARITHMETIC OPERATION INSTRUCTIONS
A.8.1 Integer sums. • • • . ..••
A.8.2 Integer differences •••••
A.8.3 Integer products ••••••..
FLOATING-POINT ARITHMETIC INSTRUCTIONS
A.9.l Floating-point sums
A.9.2 Reciprocal iterations
A.9.3 Reciprocal approximations
A.9.4 Floating-point differences •.
A.9.S Integer to floating-point conversions
A.9.6 Floating-point to integer conversions
A.9.7 Floating-point products
A.9.S Square root iterations •••
A.9.9 Square root approximations.
A.9.l0 Floating-point errors
LOGICAL OPERATION INSTRUCTIONS .
A.IO.l Logical products ••
A.lO.2 Logical sums •••.
A.lO.3 Vector streaming ••
A.lO.4 Logical differences
A.I0.5 Vector mask ••••
A.IO.6 Compressed iota
BIT COUNT INSTRUCTIONS •
SHIFT INSTRUCTIONS • •
A.l2.l Left shifts
A.l2.2 Right shifts ••

A-l
A-3
A-3
A-4
A-4
A-4
A-5
A-S
A-6
A-7
A-7
A-7
A-8
A-8
A-9
A-9

·A-IO
A-I0
A-IO
A-I1
A-12
A-12
A-12
A-l3
A-13
A-14
A-14
A-14
A-IS
A-IS
A-15
A-16
A-16
A-16
A-17
A-17
A-17
A-l8
A-18
A-1S
A-19
A-19
A-l9
A-20
A-20
A-2I
A-2I
A-22
A-23
A-23
A-23

ix

B. CRAY-2 SYSTEM CONFIGURATIONS -' . . . 8-1

FIGURES

1-1 CRAY-2 Computer System Mainframe • • • • • • • • • • • • •• 1-3
1-2 CRAY-2 Four Background Processor Computer System

Mainframe Configuration • • • • • • • • • • • . • • • • • •• 1-5
2-1 Control and Data Paths in One Background Processor • • 2-2
2-2 Floating-point Data Format • • • • • • • • • • • • • • 2-12
2-3 48-by-48 Bit Matrix Used for Floating-point Product. • 2-17
2-4 48-by-48 Bit Matrix Used for Reciprocal Iteration • • • • 2-20
2-5 48-by-48 Bit Matrix Used for Square Root Iteration 2-21
3-1 Instruction Parcel Format • • • • • • • • • •• 3-2
4-1 Memory Address for Common Memory • • • • • • • • 4-1
4-2 Error Correction Matrix • • • • • • • •• •••• 4-4
5-1 Channel Loop • • • • • • • • • • • • • • • • • 5-2
A-1 CRAY-2 Computer System Symbolic Machine Instructions • • •• A-2

B-1 CRAY-2 Computer System Overview • • • • • • • • . • • • • • •

SPECIFICATION SHEETS

CRAY-2 MODEL NUMBER 4-256 or 4-512 SPECIFICATION SHEET • • • • • • •
CRAY-2S MODEL NUMBER 4-128 SPECIFICATION SHEET
CRAY-2S MODEL NUMBER 2-128 SPECIFICATION SHEET
CRAY-2S MODEL NUMBER 2-64 SPECIFICATION SHEET •

. .

B-2

B-3
B-7
B-11
B-15

x HR-02000-0D

1. INTRODUCTION

The CRAY-2 computer system is a powerful, general-purpose computer system
with extremely high processing rates. Scalar and vector capabilities in
a multiprocessing environment combined with integrated foreground
processing achieve these high rates.

1.1 CRAY-2 COMPUTER SYSTEM FEATURES

The CRAY-2 computer system mainframe contains either two or four
independent Background Processors, each more powerful than a CRAY-l
computer system processor. Featuring a clock-cycle time faster than any
other computer system available, each of these processors offers
exceptional scalar and vector processing capabilities. The Background
Processors can operate independently on separate jobs or concurrently on
a single problem. The very high speed Local Memory integral to each
Background Processor is available for temporary storage of vector and
scalar data.

Common Memory is one of the most important features of the CRAY-2
computer system. It consists of 256 or 512 Mwords in dynamic memory, or
64 or 128 Mwords in static memory, 64-bits long, randomly accessible from
any of the Background Processors and from any of the data channels. The
memory is arranged in quadrants with either 64 or 128 interleaved banks.
All memory access is performed automatically by the hardware. Any user
may use all or part of the memory not being used by the operating system.

Control of network access equipment and the high-speed disk drives is
integral to the CRAY-2 computer system mainframe hardware. A single
Foreground Processor coordinates the data flow between the system's
Common Memory and all the external devices across either two or four
high-speed 110 channels. The synchronous operation of the Foreground
Processor with the Background Processors and the external devices
provides a significant increase in data throughput.

The most important CRAY-2 computer system features are:

• Extremely large directly addressable Common Memory

• Fastest cycle time available in a computer system

• Scalar, vector, and multiprocessing combined in one system

• Integral Foreground Processor

HR-02000-0D 1-1

• Elegant architecture

• Extremely high reliability

• High density memory chips and extremely fast silicon logic chips

• Liquid immersion cooling

1.1.1 PHYSICAL CHARACTERISTICS

The CRAY-2 computer system mainframe is elegant in appearance as well as
in architecture (see figure 1-1). The memory, computer logic, and DC
power supplies are integrated into a compact mainframe composed of 14
vertical columns arranged in a 300 0 arc.

The upper part of each column contains a stack of logic modules and the
lower part contains power supplies for the system. Total cabinet height,
including the power supplies, is 45 in. (114.3 cm); the diameter of the
mainframe is 53 in. (134.6 cm). Thus, the "footprint" of the mainframe
is a mere 16 ft2 (1.49 m2).

An inert fluorocarbon liquid circulates in the mainframe cabinet in
direct contact with the integrated circuit packages. This liquid
immersion cooling technology allows for the small size of the CRAY-2
computer system mainframe and is thus largely responsible for the high
computation rates.

Significant CRAY-2 computer system physical characteristics are:

• Occupies only 16 ft2 (1.49 m2) of floor space

• Stands 45 in. (114.3) high, diameter is 53 in. (134.6 cm)

• Contains 14 columns arranged in a 300 0 arc

• Contains 3-dimensional modules

• Contains liquid immersion cooling

• Contains cooling water heat exchange

1-2 HR-02000-0D

Figure 1-1. CRAY-2 Computer System Mainframe

HR-2000 C 1-3

1.1.2 ARCHITECTURE AND DESIGN

In addition to the cooling technology, the extremely high processing
rates are achieved by a balanced integration of scalar and vector
capabilities and a large Common Memory in a multiprocessing environment.

Significant architectural components of the CRAY-2 computer system
include the following:

• Two or four independent Background Processors capable of vector
and scalar operation. Synchronization of the Background
Processors is achieved through the Foreground Processor and
semaphore flags in the Background Processors.

• 256 or 512 Mwords of dynamic Common Memory, or 64 or 128 Mwords of
static Common Memory

• A foreground system that controls and monitors system operation,
including:

A Foreground Processor for system supervision

Two or four high-speed synchronous communication channels

Up to 40 1/0 devices

Disk controllers to control up to 36 disk storage units (DSUs)

Two or four Common Memory ports for data transfer

Two or four Background Processor ports to allow Foreground
Processor control

External 1/0 controllers (from one to as many as four per
channel)

HSX controllers (two maximum per channel)

The identical Background Processors each contain registers and functional
units to perform both vector and scalar operations. The single
Foreground Processor supervises the Background Processors. The large
Common Memory complements the processors and provides architectural
balance, thus assuring extremely high throughput rates (see figure 1-2),

Shown in figure 1-2 is the four-processor model. The two-processor
versions have two high-speed synchronous communication channels. The
contents of a channel are the same in each version of the system.

On-site maintenance is possible through the maintenance control console.

1-4 HR-02000-0D

-

Background
Processor

A

Background
Processor

Port

External
I/O

Controllers

Disk
Controllers

HSX
Controllers

Common Memory

Background
Processor

B

Background
Processor

Port

External
I/O

Controllers

Disk
Controllers

HSX
Controllers

Background
Processor

C

Background
Processor

Port

External
liD

Controllers

Disk
Controllers

HSX
Controllers

Background
Processor

D

Background
Processor

Port

External
I/O

Controllers

Disk
Controllers

HSX
Controllers

Maintenance
Control console

Figure 1-2. CRAY-2 Four Background Processor Computer System
Mainframe Configuration

HR-02000-0D 1-5

1.2 CONVENTIONS

This manual uses the following conventions:

Convention

lowercase
italics

X or x or X

n

(Xx)

Register bit
designators

Description

Variable information

An ignored value

An unknown variable value

The contents of a register designated by the Xx
value

Numbered right to left as powers of 2, starting
with 20.

Unless otherwise indicated, numbers in this manual are decimal numbers.
Octal numbers are indicated with an 8 subscript. Exceptions are
instruction parcels in instruction buffers and instruction forms which
are given in octal without the subscript.

1.2.1 EXAMPLES

Illustrations of the above conventions.

1-6

Example

Transmit (Ak) to 8i

167ixk

Read n words from memory

Bit 263 of an S or V
register

Description

Transmit the contents of the A register
specified by the k designator to the
S register specified by the i
designator

Machine instruction 167 where the j
register designator is not used and is
an ignored value

Read an unknown variable number of
words from memory. You can read,
within the stated restrictions, as few
or many words from memory as you wish.

Value represents the most siqnificant
bit

HR-02000-0D

Example Description

Bit 231 of an A register Value represents the most significant
bit

VM register element The VM register contains 64 bits, each
corresponding to a word element in a
Vector register. Bit 263 corresponds
to element 0, bit 20 corresponds to
element 63.

1.3 ORGANIZATION

This manual is organized into the following sections:

Section

1

2

3

Description

Contains the introduction to this manual

Describes the CRAY-2 computer system Background
Processor. The registers, functional units, and
algorithms used are described.

Provides detailed information on the CAL instructions
that operate on the CRAY-2 computer system. Each machine
instruction can be represented symbolically in Cray
Assembly Language (CAL) Version 2. The instructions are
listed octally in a box format that provides the Cray
Assembly Language (CAL) Version 2 syntax format, an
operand if required, a brief description of each
instruction, and the machine instruction.

Following the boxed information is a detailed description
of the instruction and an example using the instruction.

4 Describes the CRAY-2 Common Memory, phased memory access,
and single-error correction/double-error detection
(SECDED)

5 Describes the CRAY-2 Foreground System, which handles the
I/O

Appendix A Lists the symbolic machine instructions by function. The
octal machine code can be used as an index when referring
to section 3 for a detailed description of the
instruction.

Appendix B Contains the CRAY-2 system configuration specification
sheets

HR-02000-0D 1-7

2. BACKGROUND PROCESSOR

The CRAY-2 computer system has either two or four identical Background
Processors each containing operating and vector control registers~ and
functional units to perform both vector and scalar operations. The
Foreground Processor supervises the Background Processors.

A Background Processor performs arithmetic and logical calculations.
These operations, and the other functions of a Background Processor are
coordinated through the control section.

Figure 2-1 shows the control and datapaths for one Background Processor.

2.1 CONTROL SECTION

Each Background Processor contains an identical, independent control
section of registers and instruction buffers for instruction issue and
control. This section describes the following control mechanisms:

• Instruction issue and control
• Real-time clock
• Semaphore flags
• Common Memory field protection

2.1.1 INSTRUCTION ISSUE AND CONTROL

Each Background Processor contains a Program Address register, an
instruction buffer with eight fields, and an instruction issue control
mechanism to implement instruction issue and control.

Program Address register

Each Background Processor has a 32-bit Program Address (P) register
indicating the address of the program instruction parcel currently in the
issue position during normal operation. The Foreground Processor loads
the P register with data at the beginning of a computation period. As
each parcel issues from the instruction queue, the contents of the P
register advance by 1.

The P register contents are reset to the branch destination address when
a jump instruction is executed.

HR-02000-0D 2-1

Common

Memory

Storage

Module

2-2

,
~

~

"
"
"
~

~

CRAV .. 2 BLOCK DIAGRAM (1 OF 4 BACKGROUND PROCESSORS)

Common

Memory

Control

Modules

_I Reciprocal
Foreground _________ 111001 Square Root I -------~..r==:_---, L Look·up Table r

r
Vector Registers

A
- 00 VO-V7

•
: ~ ViVk ~

YJL

77 'L, Vi
~-------,---- -

Vector Mask JW~-------J:======!:~! ,
Vector Control
Scalar Register

SI SI Vector Funtion,,1 Units

I Logical

I Shift
Ak ~lf4.n. ~~SiSk SlSiSli.

LL1L....:S:O:.S~7 __ t:~W~/Z/ 8"L~_ooIIMo Si· -1-::~-r-t"-.... -"t"r...l~&i·---1 (Add, Pop! Parity,

Si Leading Zero) ~

Integer

(Common I
Memory RTC SI Vi Si Sj Vi _____ jk

~~~A;,kess ~ddr~ess Registers Local Memory I Address Functional Units 

'"1/ /p, AjAk AI I 

~ 
Multiply 

A.. J,4i-..... A;u.I,i,Q AUC"'-__ ....... -+-t __ ... ~H-...;.;Ajil..:A~k~ Add 

AO.A7 ~~ Ai J Ai 

Fetch 

Vector Cant rol 

_ Instruction Buffer 

Common 
Memory 

Port 

IAj YAk 

Vector Length 

Background Foreground 
~ Processor ~ I/O Interfaces r--- Processor 

Port ** 

Shared with other 
background processors 

*. One foreground processor 
controls all four 
background processor. 
and channel loops 

*** The IAlIB module 
instruction buffe' has 178 
words 

Figure 2-1. Control and Data Paths in One Background Processor 

HR-02000-0D 



Instruction buffers 

Each Background Processor has a buffer with eight independent fields to 
allow program loops to execute without additional Common Memory 
references. Programs can loop within the instruction buffer using any of 
the branch instructions. 

Each independent field contains 16 or 32 words. The total instruction 
buffer size is 128 or 256 words. 

The next sequential instruction out of the instruction buffer or a branch 
out of the instruction buffer discards the oldest data field and replaces 
it with 16 or 32 words of new data. 

Instruction issue 

Background instructions are translated in several steps and are allowed 
to issue sequentially by an instruction issue control mechanism. The 
words are disassembled into 16-bit parcels that are placed in a queue 
where the translation occurs. The instruction issue process involves 
checking the reservation flags for the registers and functional unit 
involved in the instruction sequence. The parcel waits in issue position 
in the instruction queue until all required resources are free. 

Instruction parcels and 16-bit constants are intermixed in the instruction 
queue. The constant parcels are passed through the instruction queue 
without test. 

2.1.2 REAL-TIME CLOCK 

Each Background Processor has a 64-bit register that counts continuously 
at the clock period rate. This count value determines the passage of 
real time to an accuracy of 1 clock period (CP). The real-time clocks in 
the Background Processors are synchronized at deadstart. Instruction 115 
reads the real-time clock. 

2.1.3 SEMAPHORE FLAGS 

To synchronize Common Memory references, eight semaphore flags in the 
background system interlock Common Memory references when multiple 
Background Processors are executing a single job. One semaphore flag is 
assigned to each currently active job in the background system. A 
Background Processor also assigned to a job is assigned a semaphore flag 
at the same time. 

HR-02000-0D 2-3 



The Background Processor uses four instructions in synchronizing its 
Common Memory references: 004, 005, 006, and 001. A 004 or 005 
instruction requests the semaphore flag when the Background Processor 
program is accessing a Common Memory area that can interfere with other 
processors assigned to the job. The branch instruction results determine 
when the processor has exclusive access to this Common Memory area. The 
program must clear the semaphore flag to release the Common Memory area 
to another processor assigned to the same job. 

2.1.4 COMMON MEMORY FIELD PROTECTION 

At execution time each object program has a designated field of Common 
Memory holding instructions and data. The foreground functions specify 
the field limits when the object program is loaded and initiated. Field 
limits are contained in the Base Address (BA) register and the Limit 
Address (LA) register. 

All memory addresses contained in the object program code are relative to 
the base address beginning the defined field. An object program cannot 
read or alter any Common Memory location with an absolute address lower 
than the base address. Each object program reference to Common Memory is 
checked against the limit and base addresses to determine if the address 
is within the assigned bounds. 

Base Address register 

Each Background Processor has a 32-bit BA register. The BA register 
defines the lower boundary of the Common Memory address field. The 
Foreground Processor enters data into this register while the Background 
Processor is in idle mode. The data remains in the register for the 
duration of the Background Processor computation period. 

Each Common Memory reference from the Background Processor includes the 
addition of the BA register contents to the other parts of the memory 
reference base address. All Background Processor references to Common 
Memory are relative to the base address boundary. 

Limit Address register 

Each Background Processor has a 32-bit LA register. The LA register 
defines the upper boundary of the Common Memory address field. The 
Foreground Processor enters data into this register while the Background 
Processor is in idle mode. The data remains in this register for the 
duration of the Background Processor computation period. 

2-4 HR-02000-0D 



Memory range error 

When a memory reference exceeds the range limits, a memory range error 
occurs. Each Common Memory reference from the Background Processor 
includes a test of the resulting absolute Common Memory address against 
the contents of the BA and LA registers. An error signal is sent to the 
status register if the resulting absolute Common Memory address is less 
than the base address or equal to, or greater than, the limit address. A 
read reference results in zero data for this case. A write reference is 
aborted. 

2.2 OPERATING REGISTERS 

Each Background Processor contains the following independent set of 
operating registers: 

• Address 
• Scalar 
• Vector 

Operating registers, a primary programmable resource of the Background 
Processor, enhance the speed of the system by satisfying heavy demands 
for data made by functional units. Different functional units can be 
used concurrently. 

2.2.1 ADDRESS REGISTERS 

Eight 32-bit Address (A) registers are used primarily to hold memory 
address for Local Memory and Common Memory references. A registers are 
used for 32-bit integer calculations and to move data directly from Local 
Memory. Data is also transferred between Address and Scalar registers. 

Shared registers 

Eight 32-bit Shared registers prove a way to transfer data between 
Address registers in different CPUs. The Shared registers can be 
accessed by any of the four background processors, and are written into 
and read out of the Address registers. Data paths between the Shared 
registers and the background processors issuing the request are eight 
bits wide. The data transfer is organized into a 4-packet/4-clock period 
design scheme. The Shared registers are only available with SIN 2025. 

HR-02000-0D 2-5 



2.2.2 SCALAR REGISTERS 

Eight 64-bit Scalar (S) registers serve as source and destination for 
operands executing scalar arithmetic and logical instructions. S 
registers can furnish one operand in vector instructions. 

The eight 64-bit S registers in a Background Processor support Vector (V) 
registers in operations when one element of the computation is a constant 
value. The S registers function as computational way stations between 
Common Memory and the functional units where vector implementation of the 
work is not possible. 

2.2.3 VECTOR REGISTERS 

The major computational registers of the Background Processor are eight 
Vector (V) registers, each having 64 elements. Each V register element 
has 64 bits. When associated data is grouped into successive elements of 
a V register, the register quantity is treated as a vector. Examples of 
vector quantities are rows or columns of a matrix, and elements of a 
table. 

Computational efficiency is achieved by identically processing each 
element of a vector. Vector instructions provide for the iterative 
processing of successive V register elements. A vector operation begins 
by obtaining operands from the first element of one or more V registers 
and delivering the result to the first element of a V register. 
Successive elements are provided during each CP, and as each operation is 
performed, the result is delivered to successive elements of the result V 
register. Vector operation continues until the number of operations 
performed by the instruction equals a count specified by the contents of 
the Vector Length register (described in subsection 2.3). 

Since many vectors exceed 64 elements, longer vectors are processed as 
one or more 64-element segments and a possible remainder of less than 64 
elements. 

The instruction issue control mechanism reserves the V registers that are 
involved in a functional unit operation. One, two, or three V registers 
can be involved, depending on the specific instruction. The functional 
unit is reserved at the same time as the V registers. The instruction 
sequence can then proceed to the next instruction and initiate concurrent 
activity as long as the resources reserved are not required. 

The i, j, and k designators in a vector instruction can have the 
same value; it is advised, however, that the i designator always has a 
unique value. In the case of identical source operands, the data is 
streamed from the same V register to both data paths. In the case of a 
destination register that is the same as a source register, the V 

2-6 HR-02000-0D 



2.3 VECTOR CONTROL REGISTERS 

The Vector Length (VL) register and the Vector Mask (VM) register provide 
control information needed in the performance of vector operations. 

2.3.1 VECTOR LENGTH REGISTER 

The Vector Length (VL) register is a 6-bit special purpose register 
explicitly referenced in the Background Processor instructions. The VL 
register holds the vector length during a portion of the background 
computation. All vector operations capture the vector length at the time 
of instruction issue from the VL register. 

Vector registers always begin a read or write operation at the zero 
element position in the V register. Elements are read or written 
sequentially for the length of the current vector data. A short vector 
after a long vector leaves the old vector data in those positions not 
replaced with new data. 

Values allowed in the VL register are 0 through 63. A zero value is 
interpreted as 64. Background instructions 025 and 036 communicate 
explicitly with the VL register. 

2.3.2 VECTOR MASK REGISTER 

The Vector Mask (VM) register is a 64-bit special purpose register 
explicitly referenced by the Background Processor instructions. The VM 
register merges vector data according to a set of precomputed Element 
flags. In effect, it provides a vehicle for implementing vector branch 
operations. 

One bit of the VM register is associated with each element in the 
64-element vector registers. The high-order bit (263 ) of the vector 
mask corresponds to element 0 of the vector data. The bits of the mask 
then proceed in order to represent the following vector elements. 

The vector mask data can be formed by a vector operation in which each 
element is evaluated for a specific criterion. Instructions 030 through 
033 perform these tests. The VM register is cleared at the beginning of 
these instruction sequences and then bits are entered one at a time as 
the vector stream passes the test station. 

The vector mask data can be used to merge two vector streams into a 
single result stream. Instructions 146 and 141 are used for this 
purpose. Elements of the j operand are selected when the mask contains 
1 bits. Elements of the k operand are selected when the mask contains 
Obits. 

HR-02000-0D 2-1 



I 

Instructions 034 and 114 move data between the VM register and an S 
register. 

2.4 FUNCTIONAL UNITS 

Each Background Processor has a set of functional units to implement 
algorithms for the instruction set. A number of functional units can ~. 
operate simultaneously. Each functional unit produces one result per 
CPo No information is retained in a functional unit for reference by 
subsequent instructions. 

A functional unit receives operands from registers and delivers the 
result to a register when the function has been performed. Functional 
units operate essentially in three-address mode. Nonvector functional 
units can accept operands as fast as the instructions can issue. 

A functional unit engaged in a vector operation remains busy for the 
duration and cannot participate in other operations. In this state, the 
functional unit is reserved. Other instructions requiring the same 
functional unit do not issue until the previous operation is completed. 
Only one functional unit of each type is available to the vector 
instruction hardware. When the vector operation completes, the 
reservation is dropped and the functional unit is then available for 
another operation. 

Vector tailgating provides a means of using a vector operand register of 
one instruction as a destination register for a subsequent vector 
instruction before the first instruction has completed. Vector 
tailgating is only available on SIN 2025, 2027, and above. 

Any two vector instructions, except for the vector instructions involving 
common memory or compress iota, can be tailgated. The tailgated 
instruction does not have to immediately follow the instruction to which 
it is tailgated. 

Each Background Processor has the following set of functional units: 

• Address Add 

• Address Multiply 

• Scalar Integer 

• Scalar Shift 

• Scalar Logical 

• Vector Integer 

• Vector Logical 

• Vector Shift 

• Floating-point Add 

• Floating-point Multiply 

2-8 HR-02000-0D 



In addition, a Background Processor contains a Local Memory which is a 
buffer for the A, S, and V register data. 

2.4.1 ADDRESS ADD FUNCTIONAL UNIT 

The Address Add unit performs 32-bit integer addition and subtraction of 
two A register operands. (Instruction 020 performs integer sums and 021 
performs integer differences.) This unit can accept address operands as 
fast as the instructions can issue. 

2.4.2 ADDRESS MULTIPLY FUNCTIONAL UNIT 

The Address Multiply unit performs 32-bit integer multiplication of two A 
register operands. (Instructions 022 and 023 perform integ~r products.) 
This unit can accept address operands as fast as the instructions can 
issue. 

2.4.3 SCALAR INTEGER FUNCTIONAL UNIT 

The Scalar Integer unit performs 64-bit integer addition and subtraction 
of S register operands. (Instruction 104 performs integer sums and 
instruction 105 performs integer differences.) It also performs 
population count (instruction 106ijO), population count parity 
(instruction 106ij1), and leading zero (instruction 107). This unit 
can accept scalar operands as fast as the instructions can issue. 

2.4.4 SCALAR SHIFT FUNCTIONAL UNIT 

The Scalar Shift unit shifts the entire 54-bit contents of an S register 
(instruction 110 left or 111 right) or the double 128-bit contents of two 
concatenated S registers (instruction 112 left or 113 right). This unit 
can accept scalar operands as fast as the instructions can issue. 

2.4.5 SCALAR LOGICAL FUNCTIONAL UNIT 

The Scalar Logical unit manipulates bit-by-bit the 64-bit quantities 
obtained from S registers. (Instruction 100 performs logical products, 
instruction 101 performs logical products complemented, instruction 102 
performs logical differences, and instruction 103 performs logical 
sums.) This unit can accept scalar operands as fast as the instructions 
can issue. 

HR-02000-0D 2-9 



I 

2.4.6 VECTOR INTEGER FUNCTIONAL UNIT 

The Vector Integer unit performs vector shifts (instruction 150 for left 
single, instruction 151 for right single, instruction 152 for left 
double, and instruction 153 for right double), vector integer arithmetic 
(instructions 160 and 161 for integer sums and instructions 162 and 163 
for integer differences), vector population count (instruction 164ijO 
for population count and instruction 164ijl for population parity), 
vector leading zero count (instruction 165), and compressed iota 
(instruction 176). The unit can accept operand data each CP, and after a 
transit time delay, can deliver a result each CPt 

For those CRAY-2 computer systems featuring vector tailgating (SIN 2025, 
2-27, and above), the Vector Integer unit performs vector integer 
arithmetic, compressed iota, and operations involving the vector mask 
register. 

2.4.7 VECTOR LOGICAL FUNCTIONAL UNIT 

The Vector Logical unit manipulates bit-by-bit the 64-bit quantities from 
two V registers or from V registers and S registers (instructions 140 and 
141 perform logical products, instructions 142 and 143 perform logical 
differences, and instructions 144 and 145 perform logical sums). The 
unit can accept operand data each CP, and after a transit time delay, can 
deliver a result each CPo 

2.4.8 VECTOR SHIFT FUNCTIONAL UNIT 

Those systems with vector tailgating contain the Vector Shift functional 
unit which performs vector shifts (instruction 150 for left single, 
instruction 151 for right single, instruction 152 for left double, and 
instruction 153 for right double), vector population count (instruction 
164ijO for population count and instruction 164ij1 for population 
parity), and vector leading-zero count (instruction 165). 

2.4.9 FLOATING-POINT ADD FUNCTIONAL UNIT 

The Floating-Point Add unit performs addition or subtraction of 64-bit 
operands in floating-point format for both scalar and vector operations. 
It also performs the conversion between integer and floating-point. See 
subsection 2.5.2, Floating-point Arithmetic, for a description of the 
instructions that use this unit. 

2-10 HR-02000-0D 



The unit is reserved for the time of a vector stream during execution of 
vector addition instructions. The unit can accept vector operand data 
each CP, and after a transit time delay, can deliver a result each CPo 
The unit can accept scalar references as fast as they issue if the unit 
is not processing vector data. 

2.4.10 FLOATING-POINT MULTIPLY FUNCTIONAL UNIT 

The Floating-Point Multiply unit performs full multiplication of 64-bit 
operands in floating-point format for both scalar and vector operations. 
It also performs reciprocal approximation, reciprocal square root 
approximation, reciprocal iteration, and reciprocal square root 
iteration. See subsection 2.5.2, Floating-point Arithmetic, for a 
description of the instructions that use this unit. 

The unit is reserved for the time of a vector stream during execution of 
vector Floating-Point Multiply unit instructions. The unit can accept 
vector operand data each CP, and after a transit time delay, can deliver 
a result each CPo The unit can accept scalar multiply, reciprocal 
iteration, reciprocal square root iteration references as fast as they 
issue if the unit is not processing vector data. Scalar reciprocal 
approximation and reciprocal square root approximation references place a 
4 CP reservation on the functional unit. 

2.4.11 LOCAL MEMORY 

Each Background Processor contains 16,384 64-bit words of Local Memory. 
This memory holds scalar operands during a computation period. The Local 
Memory also can be used for temporary storage of vector elements when 
these elements are used more than once in a computation in the V 
registers. Instructions that use Local Memory are: 

• 044 and 046 read from Local Memory to A register .' 045 and 047 write to Local Memory from A register 

• 054 and 056 read from Local Memory to S register 

• 055 and 057 write to Local Memory from S register 

• 074 read from Local Memory to V register 

• 075 write to Local Memory from V register 

2.5 ARITHMETIC OPERATIONS 

Functional units in the Background Processor perform either twos 
complement integer arithmetic or floating-point arithmetic. 

HR-02000-0D 2-11 



2.5.1 INTEGER ARITHMETIC 

All integer arithmetic, whether 32 bits or 64 bits, is twos complement. 
The Address Add and Address Multiply units perform 32-bit arithmetic. 
The Scalar Integer unit performs scalar 64-bit arithmetic and the Vector 
Integer unit performs vector 64-bit arithmetic. 

Integer representations of the integers 0, +1, and -1 in 32-bit and 
64-bit format are shown using octal notation. 

Integer 

o 
+1 
-1 

32-bit Format 

00000000000 
00000000001 
37777777777 

64-bit Format 

0000000000000000000000 
0000000000000000000001 
1777777777777777777777 

Multiplication of two scalar integer operands is accomplished by using 
the floating-point multiply instruction. Division is done by using an 
algorithm; the particular algorithm used depends on the number of bits in 
the quotient. 

2.5.2 FLOATING-POINT ARITHMETIC 

Floating-point numbers are represented in a standard format throughout 
the Background Processor. This format is a packed representation of a 
binary coefficient and an exponent. The coefficient is a 48-bit signed 
fraction. Figure 2-2 shows the sign of the coefficient is separated from 
the rest of the coefficient. Since the coefficient is signed magnitude, 
it is not complemented for negative values. 

Binary point 

Coefficient I 
---L-_~ ___ _ 

Sign Exponent 

Figure 2-2. Floating-point Data Format 

The exponent portion of the floating-point format is represented as a 
biased integer in bits 262 through 248. The bias that is added to 
the exponents is 400008' The positive range of exponents is 400008 
through 577778' The negative range of exponents is 377778 through 
200008' Thus, the unbiased range of exponents is the following (the 
negative range is one larger): 

2-200008 through 2+177778 

2-12 HR-02000-0D 



In terms of decimal values, the floating-point format of the Background 
Processor allows the accurate expression of numbers to about 15 decimal 
digits in the approximate decimal range of 10-2466 through 10+2466 • 

A floating-point representation of the integers 0, +1, and -1 in 
normalized form is shown using octal notation for each of the three 
fields. 

Integer 

o 
+1 
-1 

Normalizing 

Floating-point Representation 

o 00000 0000000000000000 
o 40001 4000000000000000 
1 40001 4000000000000000 

A nonzero floating-point number is normalized if the most significant bit 
of the coefficient is nonzero. This condition implies the coefficient 
has been shifted as far left as possible and the exponent adjusted 
accordingly. Therefore, the floating-point number has no leading zeros 
in the coefficient. The exception is that a normalized floating-point 
zero is all zeros. 

When a floating-point number is created by inserting an exponent of 
400608 into a 48-bit integer word, the result should be normalized 
before being used in a floating-point operation. Normalization can be 
accomplished by adding the unnormalized floating-point operand to 0 (see 
subsection Integer to Floating-point Conversion, later in this section). 

Range errors 

Exponent values of 600008 and greater are considered to have overflowed 
the exponent range. Hardware tests are performed for these values to 
indicate floating-point range error. Exponent values less than 200008 
are considered to have underflowed the floating-point range. Such values 
are treated as if they had a zero value. The hardware does not indicate 
when a computation underflows the floating-point range. 

Whether or not range errors are enabled, when an overflow condition is 
detected by the hardware the result exponent is forced to an overflow 
value. Each floating-point operation forces a signature exponent as 
follows: 

Floating-point add/subtract 
Floating-point multiply 
Floating-point reciprocal approximation 
Floating-point square root approximation 

HR-02000-0D 

600008 
60001S 
600028 
600048 

2-13 



Floatinq-point addition 

The Floating-point Add unit forms the sum of two operands in 
floating-point format and delivers a result in floating-point format. 
The result is always normalized regardless of source operand status. 
Instructions 120, 170, and 171 use the Floating-point Add sequence. 

In the process of adding two floating-point operands, one operand 
coefficient is shifted right for exponent matching. The coefficient from 
this shifting operation is rounded up. 

A special test is made for all 0 bits in the result coefficient. When 
this occurs, the exponent field in the result is also cleared. A word of 
all zeros is delivered to the destination register. 

A special test is made for one or both operands with an overflow 
exponent. An error signal is sent to the Background Port Status register 
(see section 5) if range errors are enabled, and an overflow exponent 
(600008) is forced in the result delivered to the destination register. 

Floatinq-point subtraction 

The Floating-point Add unit forms the difference of two operands in 
floating-point format and delivers a result in floating-point format. 
Instructions 121, 172, and 173 use the floating-point subtraction 
sequence. 

Floating-point to integer conversion 

The Floating-point Add unit forms an integer representation of a 
floating-point operand. This process is accomplished by adding the 
operand to a constant integer. Instructions 122 and 174 use this form of 
the floating-point add sequence. 

The maximum size of the resulting integer value is 48 bits. A positive 
or negative result is sign extended to form a 54-bit integer result. 

An operand with a floating-point value greater than a 48-bit integer is 
an error condition. An error signal is sent to the Background Port 
Status register if floating-point range errors are enabled, and a zero 
result is delivered to the destination register. 

2-14 HR-02000-0D 



Integer to floating-point conversion 

The Floating-point Add unit forms a floating-point representation of an 
integer operand. This process is accomplished by adding the operand to a 
constant and using the floating-point normalize hardware to form the 
proper floating-point result. Instructions 123 and 175 use this form of 
the floating-point add sequence. 

The maximum allowable size of the integer operand is 48 bits, if greater 
no error is flagged. The bits above 48 bits are discarded during the 
operation. 

Floating-point product 

The Floating-point Multiply unit forms the product of two operands in 
floating-point format and delivers a result in floating-point format. If 
both operands are normalized, the result is also normalized. 
Instructions 124, 154, and 155 use this sequence. 

The 48 by 48 matrix of logical product bits is truncated 8 bit positions 
below the low-order result coefficient bit (see figure 2-3). Round bits 
are added to this lower field to give an equal population of high and low 
round errors for random operands. A round bias exists over narrow ranges 
of operands because of the 1-bit correction shift after the round 
operation. 

The following special cases are treated in floating-point multiplication 
for operands out of range: 

1. One or both operands have overflow exponent. 
2. Sum of operand exponents is an overflow. 
3. Sum of exponents is an underflow. 
4. Both exponents are all zeros. 

Cases 1 and 2 cause a Floating-point Error signal to be sent to the 
Background Port Status register if the floating-point range errors are 
enabled. The result delivered to the destination register is forced to 
an overflow exponent value (600018). Case 3 results in an all-zero 
word sent to the destination register. Case 4 computes the coefficients 
with no normalize correction. The resulting exponent and sign bit for 
this case is 0, which aids multiple-precision and integer calculations. 

Reciprocal approximation 

The Floating-point Multiply unit forms an approximation to the reciprocal 
of a floating-point operand value. Instructions 132 and 166 use this 
sequence. 

HR-02000-0D 2-15 



The values from a table are used in a linear interpolation computation. 
The following example shows the form of this computation. 

Example: 

In this example, A is a reciprocal approximation for the high-order 12 
bits of operand coefficient, B is the operand coefficient, and R is the 
better reciprocal approximation. 

Then the iteration step for interpolation is: 

R = 2A - A*A*B 

. The two approximations read from a table are 2A and -A*A. The normal 
multiply mechanism is then used to form the product with the additional 
term included in the summing process. 

Two special cases occur in the reciprocal approximation sequence. 

• Operand exponent has overflow value. 
• Operand exponent has underflow value. 

Both cases cause an error signal to be sent to the Background Port Status 
register if the floating-point range error is enabled and cause the 
computational result exponent to be forced to an overflow value (600028). 

Reciprocal iteration 

******************************************************* 

CAUTION 

The reciprocal iteration instructions (126 and 156) 
should be used only with the reciprocal approximation 
instructions (132 and 166) and should only be used for 
one additional iteration. Operands not generated by 
the reciprocal approximation instructions may not 
deliver the expected result. 

******************************************************* 

The Floating-point Multiply unit forms a floating-point number that is 
used in a second iteration for the reciprocal of a full-precision 
operand. The first iteration is formed in the reciprocal approximation 
previously described. The second iteration uses the same process to form 
a reciprocal approximation with 46 bits of coefficient accuracy. 
Instructions 126 and 156 use this sequence (see figure 2-4). 

2-16 HR-02000-0D 



2-1 2-49 

8 
Bits 

2-56 

14------ 48 Bits ---------JllJII+o. ,. ... ------- 48 Bits 

2-1 through 2-48 2-49 2-50 2-51 2-52 2-53 2-54 2-55 

0----------- 0 o 1 o o o 

2-56 

1 

Figure 2-3. 48-by-48 Bit Matrix Used for Floating-point Product 

2-96 

HR-02000-0D 2-17 



The division algorithm that computes 81/82 to full precision requires 
four operations. 

1. S1 = a Dividend 

82 = b Divisor 

53 = IHS2 11 b1 - Half-precision 
reciprocal 

2. 54 = 52 * IS3 c = (2 - S2 * 53) -
Correction factor 

3. S5 = S3 • FS4 b 2 = (11 b1 * c) -
reciprocal 

4. S6 = Sl * F55 x = (a * 11 b 2 ) - full 
precision reciprocal 

Reciprocal square root approximation 

The Floating-point Multiply unit forms an approximation to the 
reciprocal square root of a floating-point operand value. 
Instructions 133 and 167 use this sequence. 

The values from the table are used in a linear interpolation 
computation. The following example shows the form of this 
computation. 

Example: 

In this example, A is a reciprocal square root approximation for 
the operand coefficient, B is the operand coefficient, and R is 
the better reciprocal square root approximation. 

The iteration step for interpolation is: 

R = (3A/2) - (A*A*A*B/2) 

The two approximations read from the table are 3A/2 and 
-A*A*A/2. The normal multiply mechanism is then used to form 
the product with the additional term included in the summing 
process. 

Three special cases occur in the reciprocal square root 
approximation sequence. 

1. Operand exponent has overflow value. 
2. Operand exponent has value of 0 through 3. 
3. Operand is a negative value. 

2-18 HR-02000-0D 



Cases 1 and 3 cause an error signal to be sent to the Background Port 
Status register. All three cases cause the computational result exponent 
to be forced to an overflow value (600048). 

Reciprocal square root iteration 

••••••••••••••••••••••••••••••••• **.* ••• ** ••••••••••••• 

CAUTION 

The square root iteration instructions (127 and 157) 
should be used only with the reciprocal square root 
approximation instructions (133 and 167) and should 
only be used for one additional iteration. Operands 
not generated by the reciprocal square root 
approximation instructions may not deliver the expected 
result. 

** ••••••••••• **** ••• *.* •••••••••••••••••••••••••• * ••••• 

The Floating-point Multiply unit forms a floating-point number 
which is used in a second iteration for the reciprocal square 
root of an operand. The first iteration is formed in the 
reciprocal square root approximation previously described. The 
second iteration uses the same process to form a reciprocal 
square root with 46 bits of coefficient accuracy. Instructions 
127 and 157 use this sequence (see figure 2-5). 

The square root algorithm that computes the square root of Sl 
requires five operations. 

1. Sl = 
82 = 

2. 83 = 

X 

·Q81 

1 

Find square root of X 

y = 11 sqrt(x) - Half-precision 
reciprocal square root approximation 

S4 = 81 S3 Force X odd before doing the iteration 

3. 55 = 
4. 86 = 

5. 57 = 

HR-02000-0D 

S4 " FS2 

52 " QSS 

S5 • FS6 

X • y 

z = (3 - X • Y " y)/2 - Square 
root iteration correction factor 

Sqrt (X) = (x • g) • z - full 
precision square root 

2-19 



., ( 
I 

2-96 
2-1 2-49 2-5 

I 
I 
I 
I 
I 8 I 
I Bits 
I 
I 
I 
I 
I 

48 Bits )I ,<II( 48 Bits 

2-1 through 2-48 2-49 2-50 2-51 2-52 2-53 2-54 2-55 2-56 

1 ---------- ... 1 o 1 o o o 

Figure 2-4. 48-by-48 Bit Matrix Used for Reciprocal Iteration 

2-20 HR-02000-0D 



2-1 

8 
Bits 

2-5 

.... ----- 48 Bits ---------I ... ~t .... ---------- 48 Bits 

2-1 through 2-48 2-49 2-50 2-51 2-52 2-53 2-54 2-55 

1 ... ---------- 1 o o o o 1 

2-56 

o 

Figure 2-5. 48-by-48 Bit Matrix Used for Square Root Iteration 

2-96 

HR-02000-0D 2-21 





3. BACKGROUND PROCESSOR SYMBOLIC MACHINE 
INSTRUCTIONS 

This section contains detailed information about individual instructions 
or groups of related instructions. Each instruction begins with boxed 
information consisting of the Cray Assembly Language (CAL) Version 2 
syntax format, an operand (if required), a brief description of each 
instruction, and the machine instruction (octal code sequence defined by 
the E field). 

Following the boxed information is a more detailed description of the 
instruction and an example using the instruction. 

3.1 SYMBOLIC INSTRUCTION FORMAT 

The following special characters can appear in the operand field of 
symbolic machine instructions and are used by the assembler in 
determining the operation to be performed. 

Character 

+ 
+F,+f 

-F,-f 

" *F,"f 
"I,*i 

"O,"q 
*Q,*q 

/H,/h 
# 
) 

< 
& 

\ 
CI,ci 
F,f 
FIX, fix 
FLT,flt 
R,h 
L,l 
M,m 

HR-02000-0D 

Description 

Integer sum of adjoining registers 
Floating-point sum of adjoining registers 
Integer difference of adjoining registers 
Floating-point difference of adjoining registers 
Integer product of adjoining registers 
Floating-point product of adjoining register$ 
Floating-point reciprocal iteration of adjoining 
registers 
Floating-point square root approximation 
Floating-point square root iteration of adjoining 
registers 
Floating-point reciprocal approximation 
Use ones complement 
Shift value or form mask from left to right 
Shift value or form mask from right to left 
Logical product of adjoining registers 
Logical sum of adjoining registers 
Logical difference of adjoining registers 
Compressed iota 
Full load (64-bits) 
Convert from floating-point to integer 
Convert from integer to floating-point 
Half load (32-bits) 
Left load (32-bits) 
Negative 

3-1 



Character 

H,n 
p,p 
p,p 
p,p 
O,q 
S,s 
Z,z 
Z,z 

Description 

Nonzero 
Parcel load (16 bits) 
Population count 
Positive 
Parity count 
Short load (6 bits) 
Leading-zero count 
Zero 

3.2 MACHINE INSTRUCTION FORMAT 

The Background Processors translate instructions in 16-bit parcels of 
data. These parcels are packed 4 per word in the Common Memory. The 
parcels are addressed as if the Common Memory had four times as many 
locations and the data were 16 bits long. 

Figure 3-1 illustrates the format of a 16-bit instruction parcel. 

f i j k 

7 3 3 3 

Figure 3-1. Instruction Parcel Format 

As shown in figure 3-1, the f designator is the operation code. The 
i, j, and k designators generally refer to V, S, or A registers in 
a three-address format. The i designator generally specifies the 
destination register for the functional computation. The j and k 
designators generally specify the source operands. 

Uppercase or lowercase designators for the registers are allowed in CAL. 
Registers can be entered in mixed case letters and have the same 
meaning_ Mnemonics can be entered in all uppercase or all lowercase and 
have the same meaning. Both cases are used in the symbolic instruction 
descriptions. The instructions are listed in lowercase and the written 
descriptions in uppercase for visual clarity. 

Some instructions include additional parcels of constant data. An 
instruction can contain the following parcels of constant data depending 
on the specific instruction: 

• 1 (ml) 
• 2 (ml and m2) 
• 4 (ml' m2, m3, and m4) 

3-2 HR-02000-0D 



Single parcel constants generally address the Local Memory_ Two parcel 
constants address Common Memory or enter a 32-bit value into an A or S 
register. Four parcel constants enter 64-bit values in the S registers. 

When instructions read constants from the following parcels in the 
instruction stream, the program address is advanced over these data 
parcels to point to the next instruction. The high-order data parcel is 
read first for multiparcel data. 

3.3 INSTRUCTION DESCRIPTIONS 

The instruction descriptions begin with the octal code for the high-order 
7 bits of the parcel (f designator). The three octal register 
designators (i, j, and k) then follow. An X appears in the description 
where a register's designator is ignored. CAL will insert a zero for 
every x. 

HR-02000-0D 3-3 



IHSTRUC7IONS 000 - 001 

Machine 
Result Operand Description Instruction 

err Error exit OOoxoo 

exit Normal exit OOoxOl 

exit exp Normal exit OOOxjJc 

CMR Hold issue on memory busy OOlxxx 

Instructions 000 and 001 stop the current program sequence, place the 
Background Processor in idle mode, and set the Exit Mode and Idle Mode 
flags in the Background Port Status register. The 6-bit jk value is 
entered into the Background Port Status register. 

Examples: 

Code Generated Location Result . Operand Comment 
1 10 20 35 

I I I 
1000000 lerr I 
I I I 
1000001 lexit I 
I I I 
1000004 lexit 14 
I I I 

3-4 HR-02000-0D 



INSTRUCTION 002 

Machine 
Result Operand Description Instruction 

r,ai ale Register jump to ( ak) with 002ixk 
return address to ai 

j ak Register jump to (ak), value 002kxk 
in at erased 

Instruction 002 stops the current program sequence and begins a new 
sequence at a computed parcel address read from the Ale register. The 
parcel address for the next instruction in the current program sequence 
is entered into the Ai register. 

Examples: 

Code Generated 

I 
1002102 
I 
1002101 
I 

HR-02000-0D 

Location Result 
1 10 

tr,al 
I 
I j 
I 

Operand 
20 

1 
la2 
I 
fal 
I 

Comment 
35 

3-5 



INSTRUCTION 003 

Machine 
Result Operand Description Instruction 

j exp Unconditional jump 003xxx ml m2 

Instruction 003 stops the current program sequence and begins a new 
sequence at a specified constant parcel address read from the next 
2 parcels in the instruction queue. 

For the expression: 

• A word address is not allowed. 
• An immobile relative attribute is not allowed. 
• A parcel address is forced if the expression has a value attribute. 
• If the expression is relocatable, it must be relative to either a 

mixed or code section targeted for Common Memory. 

Example: 

Code Generated Location Result 
1 10 

I I 
1003000 00000000012d I j 
1 I 

3-6 

Operand 
20 

I 
1+43 
I 

Comment 
35 

HR-02000-0D 



INSTRUCTIONS 004 - 005 

Machine 
Result Operand Description Instruction 

jcs exp Jump to constant parcel if 004xxx ml mZ 
Semaphore clear; set Semaphore. 

jss exp Jump to constant parcel if 005xxx ml m2 
Semaphore set; set Semaphore. 

Instructions 004 and 005 conditionally stop the current instruction 
sequence and begin a new sequence at a specified constant parcel address 
read from the next 2 parcels in the instruction queue. 

The branch is conditional on the state of the Semaphore flag assigned to 
this Background Processor. The Background Port Status register points to 
the Semaphore flag. The Semaphore flag is set for either instruction if 
it was not previously set. The Semaphore flag bit in the Background Port 
Status register is set if either instruction alters the state of the flag 
from 0 to 1. 

For the expression: 

• A word address is not allowed. 
• An immobile relative attribute is not allowed. 
• A parcel address is forced if the expression has a value attribute. 
• If the expression is relocatable, it must be relative to either a 

mixed or code section targeted for Common Memory. 

Examples: 

Code Generated Location 
1 

I 
1004000 00000000025a 
I 
1005000 00000000025a 
I 

HR-02000-0D 

Result 
10 

I 
I jcs 
I 
Ijss 
I 

Operand 
20 

I 
11+83 
I 
183+1 
I 

Comment 
35 

3-7 



INSTRUCTION 006 

Machine 
Result Operand Description Instruction 

ssm Set Semaphore 006xxx 

Instruction 006 sets the Semaphore flag assigned to this Background 
Processor without regard to its previous state. The Semaphore flag bit 
in the Background Port Status register is set if the previous state of 
the Semaphore flag was a O. The operating system program uses this 
instruction to restore Semaphore flag values at the time of job restart. 

Example: 

Code Generated 

I 
1006000 
1 

3-8 

Location 
1 

Result 
10 

Issm 
I 

Operand 
20 

Comment 
35 

HR-02000-0D 



INSTRUCTION 007 

Machine 
Result Operand Description Instruction 

csm Clear Semaphore 007xxx 

Instruction 007 clears the Semaphore flag assigned to this Background 
Processor without regard to its previous value. When this instruction 
executes, the semaphore bit in the Background Port Status register is 
cleared. A Background Processor program may use this instruction to 
release access to a privileged area of Common Memory for other processors 
assigned to this job. 

This instruction issues without delay_ Execution of the function may be 
delayed, however, by activity in the Common Memory port. The following 
instruction does not issue until the Common Memory quadrant buffers are 
clear. The delay ensures that any Common Memory write operations have 
been completed before another processor is allowed access to the 
privileged area. 

Example: 

Code Generated 

I 
1007000 
I 

HR-02000-0D 

Location 
1 

Result Operand Comment 
10 20 35 

Icsm 
I 

3-9 



INSTRUCTIONS 010 - 013 

Machine 
Result Operand Description Instruction 

jz ak,exp ,BranCh if (ak) is zero OlOxxk ml 112 

jn ak,exp Branch if ( ak) is nonzero Ollxxk ml mZ 

jp ak,exp Branch if (ak) is positive 012xxk ml 112 

jm ak,exp Branch if ( ak) is negative 013xxk III 112 

Instructions 010 through 013 conditionally stop the current instruction 
sequence and begin a new sequence at a specified constant parcel address 
read from the next 2 parcels in the instruction queue. 

The contents of the Ak register determine the branch condition. The 
current program sequence is continued if the branch criterion is not met. 

For the expression: 

• A word address is not allowed. 
• An immobile relative attribute is not allowed. 
• A parcel address is forced if the expression has a value attribute. 
• If the expression is relocatable, it must be relative to either a 

mixed or code section targeted for Common Memory. 

Examples: 

Code Generated Location Result Operand Comment 
1 10 2n 35 

I I I 
1010001 OOOOOOOOOOOa Ijz la1,0 
I I I 
1011007 OOOOOOOOOOOb Ijn la7,1 
I I I 
1012005 OOOOOOOOOOOc Ijp la5,2 
I I I 
1013002 OOOOOOOOOOOd Ijm la2,3 
I I 1 

3-10 HR-02000-0D 



INSTRUCTIONS 014 - 017 

Machine 
Result Operand Description Instruction 

jz sj,exp Branch if (Sj) is zero 014xjx ml mZ 

( sj,exp (ranCh if (Sj) is nonzero 015xjx ml mZ 

sj,exp I Branch if (Sj) is positive 016xjx ml mZ 
I~P 

ISj,exp I Branch if (Sj) is negative I017Xj X ml mZ 
I

Jm 

Instructions 014 through 017 conditionally stop the current instruction 
sequence and begin a new sequence at a specified constant parcel address 
read from the next 2 parcels in the instruction queue. 

The contents of the Sj register determine the branch condition as 
previously indicated. The current program sequence is continued if the 
branch criterion is not met. 

For the expression: 

• A word address is not allowed. 
• An immobile relative attribute is not allowed. 
• A parcel address is forced if the expression has a value attribute. 
• If the expression is relocatable, it must be relative to either a 

mixed or code section targeted for Common Memory. 

Examples: 

Code Generated Location Result Operand Comment 
1 10 20 35 

I I I 
1014010 00000000001a Ijz Is1,4 
I I I 
1015040 000OOOOOO01b Ijn Is4,5 , I I 
1016060 0000000000lc Ijp Is6,6 
I I I 
1017020 0OOOOOOOOO1d Ijm Is2,7 
I I I 

HR-02000-0D 3-11 



INSTRUCTIONS 020 - 021 

Machine 
Result Operand Description Instruction 

ai aj+ak Integer sum of ( aj> and (ale) 020ijk 
to ai 

ai aj-ak Integer difference of (aj) and 021ijk 
(ak) to ai 

Instructions 020 and 021 perform 32-bit integer arithmetic in the A 
registers. The operands are obtained from registers Aj and Ak, and 
the result is delivered to register Ai. 

Instruction 020 forms the 32-bit integer sum. 

Instruction 021 forms the 32-bit integer difference. 

Examples: 

Code Generated 

I 
1020123 
I 
1021123 
I 

3-12 

Location 
1 

Result 
10 

I 
la1 
I 
tal 
I 

Operand 
20 

t 
la2+a3 
I 
la2-a3 
I 

Comment 
35 

HR-02000-0D 



INSTRUCTIONS 022 - 023 

Machine 
Result Operand Description Instruction 

ai laj*ak ,Integer product of (aj) and ,022i j k 
(ak) to ai 

I 
IExecutes the same as 022ijk I023i j k 

Instruction 022 forms the integer product of two 32-bit integer operands. 
The operands are obtained from the Aj and Ak registers. The low-order 
32-bits of the result data are delivered to the Ai register. 

Example: 

Code Generated 

I 
1022123 
I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
lal 
I 

Operand 
20 

la2*a3 
I 

Comment 
35 

3-13 



INSTRUCTION 024 

Machine 
Result Operand Description Instruction 

a o 

~ 
s 0 

J Copy (s 0) 
J to ai 024ijx 

Instruction 024 reads a 64-bit word from the Sj register and enters 
the low-order 32 bits into the Ai register. 

Example: 

Code Generated 

I 
1024120 

I 

3-14 

Location 
1 

Result 
10 

I 
la1 
I 

Operand 
20 

I 
Is2 
I 

Comment 
35 

HR-OZOOO-OD 



INSTRUCTION 025 

Machine 
Result Operand Description Instruction 

a· 1 vl Copy (vI) to ai 025ixx 

Instruction 025 forms a 32-bit word from the data in the VL register. 
The low-order 6 bits are copied from the VL data. The high-order 26 bits 
are O. The result data is delivered to the Ai register. 

Example: 

Code Generated 

I 
1025400 
I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
la4 
I 

Operand 
20 

I 
Ivl 
I 

Comment 
35 

3-15 



INSTRUCTIONS 026 - 027 

Machine 
Result Operand Description Instruction 

ai exp Load ai with a value 026ijk 

ai exp,s Load ai with a 6-bit value 026ijk 

ai exp,s,p Load a' l with a 6-bit positive 026ijk 
value 

ai exp Load a' l with a value 027ijk 

a' l exp,s Load a' l with a 6-bit value 027ijk 

a' l exp,s,m Load ai with a 6-bit negative 027ijk 
value 

Instructions 026 and 027 form a 32-bit word from the jk data in the 
instruction parcel. The low-order 6 bits are copied from the instruction 
parcel. For instruction 026, the high-order 26 bits are zeros. For 
instruction 027, the high-order 26 bits are ones. The result data is 
delivered to the Ai register. 

The Ai exp instruction maps into either an 026, 027, 040, 041, or 
an 042 opcode. If all symbols within the expression have been previously 
defined within the currently enabled qualifier, CAL maps this instruction 
into the proper opcode with the fewest number of parcels into which the 
expression will fit. Otherwise, this instruction is mapped into the 042 
opcode. 

CAL maps the Ai exp,S instruction into the 027 opcode if the 
expression is negative and has a relative attribute of absolute. 
Otherwise, this instruction is mapped into the 026 opcode. 

Instruction 026 loads the Ai register with positive jk. 

Instruction 027 loads the Ai register with negative jk. 

3-16 HR-02000-0D 



Examples: 

Code Generated Location Result Operand Comment 
1 10 20 _35 

I 
1026001 aO 1 
I 
1026102 a1 2,s 
I 
026104 a1 4,s,p 

027177 a1 -1 

027177 a1 -l,s 

027106 a1 6,s,m 

026501 as possym,s 

026101 a1 possym,s,p 
I 

027201 a2 Ipossym,s,m 
I 

042500 00000000001 a5 Ipossym · forward , 
I · reference , 
I 

1 possym = 11 · symbol with , 
I I ; positive 
I I ; value 
I I 

026401 a4 Ipossym I ; backward 
I I ; reference 
I I 
I I 
I I 

027376 a3 !negsyrn,s I 
I I I 

026776 la7 Inegsym,s,p I 
I I I 

027076 laO Inegsym,s,m I 
I I I 

042100 37777777776 tal Inegsym I ; forward 
I ! I ; reference 
I I I 

-2 negsym 1= 1-2 I ; symbol with 
I I I ; negative I 
I I I ; value I 
I I I I 

027376 la3 Inegsym I ; backward I 
I I I ; reference , 

HI-02000-0D 3-17 



INSTRUCTIONS 030 - 033 

Machine 
Result Operand Description Instruction 

vm vk'z Set vm from zero elements 030xxk 
of (vk) 

vm vk,n Iset VIII from nonzero elements 031xxk 
of (vk) 

vrn vk,P Set vm from positive elements 032xxk 
of (vk) 

vm ,Vk,m Iset VIII from negative elements 033xxk 

I 
10f (vk) 

Instructions 030 through 033 create a vector mask in the VM register 
based on the results of testing the contents of the elements of register 
Vk- The VM register is initially cleared, and a bit is entered in 
the VM register where elements of the vector stream meet the test 
criterion_ The high-order bit position in the VM register corresponds to 
the first element of the vector. The bit positions are then assigned in 
order for the remainder of the vector stream. 

These instructions are performed in the Vector Logical unit. 

These instructions are part of the Vector Integer unit in those systems 
that contain the vector tailgating feature (SIN 2025, 2021, and above). 

Examples: 

Code Generated Location Result Operand Comment 
1 10 20 35 

I I 
1030001 Ivm Iv1,z 
I I I 
1031001 Ivm Ivl,n 
I I I 
1032001 Ivm Ivl,p 
I I I 
1033001 Ivm Ivl,m 
I I I 

3-18 HR-02000-0D 



INSTRUCTION 034 

Machine 
Result Operand Description Instruction 

vm Sj Copy (Sj) to vm 034xjx 

Instruction 034 enters the VM register with a 54-bit word from the Sj 
register. 

Example: 

Code Generated 

I 
1034020 
I 

HR-02000-0D 

Location 
1 

Result 
10 

1 
Ivrn 
I 

Operand 
20 

I 
Is2 
I 

Comment 
35 

3-19 



INSTRUCTION 035 

Machine 
Result Operand Description Instruction 

dri Disable halt on memory field 035xxO 
range error 

eri Enable halt on memory field 035xx1 
range error 

dfi Disable halt on floating-point 035xx2 
error 

efi Enable halt on floating-point 035xx3 
error 

Instruction 035 alters 2 status bits (bits 21 and 22) in the Background 
Port Status register depending on the value of the k designator in the 
instruction parcel. 

Examples: 

Code Generated 

I 
1035000 
I 
1035001 
I 
1035002 
I 
1035003 
I 

3-20 

Location 
1 

Result 
10 

I 
Idri 
1 
leri 
I 
Idfi 
I 
lefi 
I 

Operand Comment 
20 35 

HR-02000-0D 



INSTRUCTIONS 036 - 037 

Machine 
Result Operand Description Instruction 

vI 

la
k Copy (ak) to vI I036XXk 

IExecutes the same as 036xxk 037xxk 

Instruction 036 enters the low-order 6 bits of data from the Ak 
register into the VL register. A value of 0 in the VL register is 
interpreted as 64. 

Example: 

Code Generated 

I 
1036004 
I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Ivl 

I 

Operand Comment 
20 35 

I 
I a4 

I 

3-21 



INSTRUCTIONS 040 - 041 

Machine 
Result Operand Description Instruction 

la
i exp I Load a" with a value I040~XX ml 

lexp,p 

1 

la
i I Load a" with a 16-bit value I040~XX ml 

lexp,p,p 

1 

a" Load a" with a 16-bit 040lXX ml l. 1 
positive value 

a" l. exp Load a" 1 with a value 041ixx ml 

a" 1 exp,p Load a" 1 with a 16-bit value 041ixx ml 

a" 1 exp,p,m Load a" 1 with a 16-bit 041ixx ml 
negative value 

Instructions 040 and 041 enter a 32-bit constant into the Ai register. 
The low-order 16 bits are read from the following parcel in the 
instruction queue. 

The Ai exp instruction maps into either an 026, 027, 040, 041, or 
an 042 opcode. If all symbols within the expression have been previously 
defined within the currently enabled qualifier, CAL maps this instruction 
into the proper opcode with the fewest number of parcels into which the 
expression will fit. Otherwise, this instruction is mapped into the 042 
opcode. 

CAL maps the Ai exp,p instruction into the 041 opcode if the 
expression is negative and has a relative attribute of absolute. 
Otherwise, this instruction is mapped into the 040 opcode. 

For instruction 040, the high-order 16 bits are zero-filled. 

For instruction 041, the high-order 16 bits are set to ones. 

3-22 HR-02000-0D 



Examples: 

Code Generated Location Result Operand Comment 
1 10 20 35 

040100 000114 a1 124 

040100 000001 a1 1,p 

040100 000001 a1 1,p,p 

041100 111604 a1 -124 

041100 111604 a1 -124,p 

041100 000001 a1 1,p,m 

026100 a1 a 

040100 000000 a1 o,p 

040600 004321 a5 possym,p 

040000 004321 aO possym,p,p 

041300 004321 a3 possym,p,m 

042200 00000004321 a2 possym forward 
reference 

4321 possym = 0'4321 symbol with 

· positive , 

· value , 

040500 004321 a5 possym ; backward 

· reference , 

HR-02000-0D 3-23 



Examples (continued): 

Code Generated Location Result Operand Comment 
1 10 20 35 

027477 a4 -1 

041400 177777 a4 -l,p 

041300 176544 a3 negsym,p 

040700 176544 a7 negsym,p,p 

041000 176544 aO negsym,p,m 

042100 37777776544 al negsym · forward , 
· reference , 

-1234 negsyrn = -0'1234 · symbol with , 
; negative 

· value , 

041300 176544 a3 negsym ; backward 
; reference 

3-24 HR-02000-0D 



INSTRUCTIONS 042 - 043 

Machine 
Result Operand Description Instruction 

ai exp Load ai with a value I042~XX ml m2 

ieXP,h iLoad ai with a ao 32-bit value I042~XX ml m2 ~ 

the same as 042ixx 

I 
I Executes I0431XX ml m2 

Instruction 042 loads the Ai register with a 32-bit constant read 
f~om the next 2 parcels in the instruction queue. 

The Ai exp instruction maps into either an 026, 027, 040, 041, or an 
042 opcode. If all symbols within the expression have been previously 
defined within the currently enabled qualifier, CAL maps this instruction 
into the proper opcode with the fewest number of parcels into which the 
expression will fit. Otherwise, this instruction is mapped into the 042 
opcode. 

Examples: 

Code Generated Location Result Operand Comment 
1 10 20 35 

I 
042100 00004172107 a1 1111111 

042100 00000000007 a1 7,h 

026601 a6 1 

042600 00000000001 a6 1,h 

042200 00007654321 a2 possym forward 
reference 

7654321 possym = 0'7654321 symbol with 
positive 
value 

042500 00007654321 a5 possym . backward , 
reference 

HR-02000-0D 3-25 



Examples (continued): 

Code Generated Location Result Operand Comment 
1 10 20 35 

I 
027376 a3 1-2 

1 
042300 37777777776 a3 1-2,h 

1 
042100 37776543211 a1 Inegsyrn . forward , 

1 . reference , 
I 

-1234567 negsym = 1-0'1234567 symbol with 

I negative 

1 value 

I 
042300 37776543211 a3 Inegsyrn backward 

1 reference 

I 

3-26 HR-02000-0D 



INSTRUCTION 044 

Machine 
Result Operand Description Instruction 

lai I [exp] IRead from location exp 1044ixx ml 

I I 
lin Local Memory to ai 

I 
Instruction 044 enters the Ai register with the low-order 32 bits of 
a data word in Local Memory. The Local Memory address is obtained from 
the following parcel in the instruction queue. 

If the expression has a relative attribute of relocatable, it must be 
relative to a Local Memory section. Local Memory section is defined in 
the Section Assignment subsection of the Pseudo Instruction section in 
CAL Assembler Version 2 Reference Manual, CRI publication SR-2003. 

If the expression is immobile or relocatable relative to a task common 
section, CAL issues a warning message. 

Example: 

Code Generated 

1 
1044100·000003 

1 

HR-02000-0D 

Location 
1 

Result 
10 

1 

la1 

1 

Operand 
20 

1 

1[1+2] 
1 

Comment 
35 

3-27 



INSTRUCTION 045 

Machine 
Result Operand Description Instruction 

I [exp] ak Write (ak) to location exp 045xxk ml 
in Local Memory 

Instruction 045 writes one 64-bit word in Local Memory. The Local Memory 
address is obtained from the following parcel in the instruction queue. 
The data word is obtained by sign extending the content of the Ak 
register through the high-order 32 bit positions of the 64-bit word. 

If the expression has a relative attribute of relocatable, it must be 
relative to a Local Memory section. Local Memory section is defined in 
the Section Assignment subsection of the Pseudo Instruction section in 
CAL Assembler Version 2 Reference Manual, CRI publication SR-2003. 

If the expression is immobile or relocatable relative to a task common 
section, CAL issues a warning message. 

Example: 

Code Generated Location 
1 

1 
1045001 000003 
1 

3-28 

Result 
10 

1 
1[1+2] 
1 

Operand 
20 

1 
lal 
1 

Comment 
35 

HR-02000-OD 



INSTRUCTION 046 

Machine 
Result Operand Description Instruction 

r 1 i ixk 
I 
al I [ak] I Read f om ocat on ak 1046 

1 ____________ ~I ________ ~I_i_n __ L_o_c_a_l __ M_e_m_O_r_y __ t_o __ a_l_· ______________ ~I ____________ __ 

Instruction 046 enters the Ai register with the low-order 32 bits of 
a word in Local Memory. The Local Memory address is obtained from the 
Ak register. 

Example: 

Code Generated 

I 
1046102 
I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
la1 
I 

Operand Comment 
20 35 

I 
I [a2] 
I 

3-29 



INSTRUCTION 047 

Result Operand Description 

l

a j IWrite (aj) to location ak in 
. .Local Memory 

Machine 
Instruction 

I047Xj k 

Instruction 047 writes one 64-bit word in Local Memory. The Local Memory 
address is obtained from the Ak register. The write data word is 
obtained by sign extending the contents of the Aj register through 
the high-order 32 bit positions of the 64-bit word. 

Example: 

Code Generated 

1 
1047012 

1 

3-30 

Location 
1 

Result 
10 

1 
1 [a2] 
1 

Operand 
20 

1 
la1 

1 

Comment 
35 

HR-02000-0D 



INSTRUCTIONS 050 - 052 

Machine 
Result Operand Description Instruction 

s . ex p 

lexP,h 

lexP,h,p 

Load s' with a value 

ILoad S: with a 32-bit value 

Load si with a 32-bit positive 
value 

050ixx m 

I

Io50ixx 

050ixx 

m 1 2 

s . 
~ 

exp Load s . 
~ with a value 051ixx ml m2 

s . 
~ 

exp,h Load s . 
~ with a 32-bit value 051ixx ml m2 

s . 
~ 

exp,h,m Load s· ~ with a 32-bit 051ixx ml m2 
negative value 

lSi lexP,l I
Load 

si 
left side with a 32-bit I052iXX ml m2 

value 

The Si exp instruction maps into either an 050, 051, 052, 053, 116, or 
a 117 opcode. If all the symbols within the expression have been 
previously defined within the currently enabled qualifier, CAL maps this 
instruction into the proper opcode with the fewest number of parcels into 
which the expression will fit. Otherwise, this instruction is mapped 
into the 053 opcode. 

CAL maps the Si exp,H instruction into the 051 opcode if the expression 
is negative and has a relative attribute of absolute. Otherwise, this 
instruction is mapped into the 050 opcode. 

Instructions 050 through 052 load a 64-bit value into the Si register. 

Instruction 050 reads the low-order 32 bits from the next 2 parcels in 
the instruction queue. The high-order 32 bits are zero-filled. 

Instruction 051 reads the low~order 32 bits from the next 2 parcels in 
the instruction queue. The high-order 32 bits are filled with ones. 

Instruction 052 reads the high-order 32 bits of a constant from the next 
2 parcels in the instruction queue. The low-order 32 bits are 
zero-filled. 

HR-02000-0D 3-31 



Examples: 

Code Generated Location Result Operand Comment 
1 10 20 3£ 

050100 00004172107 sl 1111111 

050100 00000000007 sl 7,h 

050100 00000000007 sl 7,h,p 

051100 37773605671 sl -1111111 

051100 37773605671 sl -1111111,h 

051100 00000000007 sl 7,h,m 

052100 00000000007 sl 7,1 

116403 s4 3 

050400 00000000003 s4 3,h 

050700 00000004321 s7 possym,h 

050700 00000004321 s7 possym,h,p 

051300 00000004321 s3 possym,h,m 

053000 sO possym forward 
0000000000000000004321 reference 

4321 possym = 0'4321 symbol with 
positive 
value 

050400 00000004321 s4 possym backward 
reference 

3-32 HR-02000-0D 



Examples (continued): 

Code Generated Location Result Operand Comment 
1 1J) 20 _35 

117775 s7 -3 

051700 37777777775 s7 -3,h 

051200 37777776544 s2 negsym,h 

050600 37777776544 s6 negsym,h,p 

051500 37777776544 s5 negsym,h,m 

053100 sl negsym forward 
1777777777777777776544 reference 

-6544 neg5ym = -0'1234 symbol with 
negative 
value 

051400 37777776544 54 negsym backward 
; reference 

052200 10000300000 s2 1.0 

052300 30000300000 s3 -1.0 

052500 00000000001 s5 1,1 force left 
side opcode 

053700 s7 sym ; forward 
0400036000000000000000 reference 

0400036000000000000000 5ym = 6.0 

052600 10000740000 56 sym ; backward . reference , 

HR-02000-0D 3-33 



INSTRUCTION 053 

Machine 
Result Operand Description Instruction 

s . 
L exp Load si with a value 053ixx 

ml m2 m3 m4 

s . 
L exp,f Load si with a 64-bit value 053ixx 

ml m2 m3 m4 

The Si exp instruction maps into either an 050, 051, 052, 053, 116, 
or a 117 opcode. If all the symbols within the expression have been 
previously defined within the currently enabled qualifier, CAL maps this 
instruction into the proper opcode with the fewest number of parcels into 
which the expression will fit. Otherwise, this instruction is mapped into 
the 053 opcode. 

Instruction 053 loads the Si register with a 64-bit constant read from 
the following 4 parcels in the instruction queue. 

Examples: 

Code Generated 

053100 
0000000020126330410707 

053100 
0000000000000000000007 

116607 

053200 
0000000000000000000007 

053700 
0001234567012345670123 

1234567012345670123 

053000 
0001234567012345670123 

3-34 

Location Result 
1 10 

sl 

sl 

s6 

s2 

s7 : 

sym = 

sO 

Operand Comment 
20 35 

1111111111111 

7,f 

7 

7,f 

sym forward . reference , 

0'1234567012345670123 

I 
sym I ; backward 

I ; reference 

HR-02000-0D 



INSTRUCTION 054 

Machine 
Result Operand Description Instruction 

s· I ~ ex p] Read from location ex 
ILocal Memory 

p in 054ixx m 

Instruction 054 enters the Si register with a 64-bit data word from 
the Local Memory. The Local Memory address is obtained from the 
following parcel in the instruction queue. 

1 

If the expression has a relative attribute of relocatable, it must be 
relative to a Local Memory section. Local Memory section is defined in 
the Section Assignment subsection of the Pseudo Instruction section in 
CAL Assembler Version 2 Reference Manual, CRI publication SR-2003. 

If the expression is immobile or relocatable relative to a task common 
section, CAL issues a warning message. 

Example: 

Code Generated 

I 
1054100 000001 

1 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Is1 

I 

Operand Comment 
20 35 

I 
I [1] 

I 

3-35 



INSTRUCTION 055 

Machine 
Result Operand Description Instruction 

[exp] 
ISj Iwrite (Sj) to location exp in I055XjX ml 

Memory Local 

Instruction 055 writes one 64-bit word into the Local Memory. The Local 
Memory address is obtained from the following parcel in the instruction 
queue. The 64-bit word is obtained from the Sj register. 

If the expression has a relative attribute of relocatable, it must be 
relative to a Local Memory section. Local Memory section is defined in 
the Section Assignment subsection of the Pseudo Instruction section in 
CAL Assembler Version 2 Reference Manual, CRr publication SR-2003. 

If the expression is immobile or relocatable relative to a task common 
section, CAL issues a warning message. 

Example: 

Code Generated Location 
1 

1 
1055010 000001 

1 

3-36 

Result 
10 

I 
1[1] 

I 

Operand 
20 

I 
lsI 
1 

Comment 
35 

HR-02000-0D 



INSTRUCTION 056 

- Machine 
Result Operand Description Instruction 

s . I ~ Re d from location a 
ILocal Memory 

a in 0 ixk 

Instruction 056 enters the Si register with a 64-bit data word from 
Local Memory. The Local Memory address is obtained from the Ak 
register. 

Example: 

Code Generated 

1 
1056102 
I 

HR-02000-0D 

Location 
1 

1 

I· 
1 

Result 
10 

I 
Is1 

I 

Operand Comment 
20 35 

1 
I [a2] 
I 

3-37 



INSTRUCTION 057 

Result Operand Description 

l

Si Iwrite (si) to location (ak) in 
. . Local Memory 

Machine 
Instruction 

057ixk 

Instruction 057 stores one 64-bit word in Local Memory. The Local Memory 
address is obtained from the Ak register. The 64-bit word is obtained 
from the Si register. 

Example: 

Code Generated 

I 
1057102 

I 

3-38 

Location Result 
1 10 

I 
I [a2] 

I 

Operand 
2Q 

I 
Is1 

I 

Comment 
35 

HR-02000-0D 



Result Operand 

INSTRUCTION 060 

Description 
Machine 

Instruction 

l
Si I(aj,ak) Read from Common Memory location 1060i j k 

II (aj)+(ak) to si 

I ____ ~I--~_~----------~I-----
Instruction 060 reads one 64-bit word from Common Memory and enters it in 
the Si register. The relative Common Memory location is determined by 
adding the contents of register Aj to the contents of register Ak. 

Example: 

Code Generated 

I 
1060123 

I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Is1 

I 

Operand Comment 
20 35 

I 
I (a2, a3) 

I 

3-39 



INSTRUCTION 061 

Machine 
Result Operand Description Instruction 

a o a s 0 Write s 0 to Common Memor y at Ii ok 06 ] 
I ( J' k) 1 I ( 1) 

1 ____________ ~ ________ ~I_l_o_c_a_t_i_O_n __ (_a_j_}_+_(_a_k_) ________________ ~~ __________ ___ 

Instruction 061 stores one 64-bit word into Common Memory from the Si 
register. The relative Common Memory location is determined by adding 
the contents of register Aj to the contents of register Ak. 

Example: 

Code Generated 

1 
1061123 
I 

3-40 

Location 
1 

Result 
10 

I 
I (a2, a3) 
I 

Operand 
20 

I 
lsI 
I 

Comment 
35 

HR-02000-0D 



INSTRUCTION 062 

Machine 
Result Operand Description Instruction 

s . a 
I L I( k) I Read from Common Memor y at 062ixk 

, location (ak) to si 

I--~~I--~_------------~---
Instruction 062 reads one 64-bit word from Common Memory and enters it in 
the Si register. The relative Common Memory location is obtained from 
the Ak register. 

Example: 

Code Generated 

I 
1062102 

1 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Is1 

1 

Operand Comment 
20 35 

I 
I (a2) 
1 

3-41 



INSTRUCTION 063 

Machine 
Result Operand Description Instruction 

(ak) lSi Write (si) to Common Memory at 1063iXk 

I 
,location (ak) 

I 
Instruction 063 writes one 64-bit word in the Common Memory. The 
relative Common Memory location is obtained from the Ak register. The 
64-bit word is obtained from the Si register. 

Example: 

Code Generated 

I 
1063102 
I 

3-42 

Location 
1 

Result 
10 

I 
I (a2) 
I 

Operand 
20 

I 
Is1 

I 

Comment 
35 

HR-02000-0D 



Result Operand 

INSTRUCTION 064 

Description 
Machine 

Instruction 

l
Si I (ak,exp) IRead from Common Memory at 1064iXk ml m2 

1 ____________ ~I __________ ~I_Io __ c_a_t_i_O_n __ (_a_k_)_+_e __ x_p __ t_o __ s_i ____________ ~I ______________ __ 
Instruction 064 reads one 64-bit word from Common Memory and enters it in 
the Si register. The relative Common Memory location is determined 
by adding the contents of register Ak to a 32-bit constant from the 
next 2 parcels in the instruction queue. 

If the expression has a relative attribute of relocatable, it must be 
relative to a Common Memory section. Common Memory section is defined in 
the Section Assignment subsection of the Pseudo Instruction section in 
CAL Assembler Version 2 Reference Manual, CRI publication SR-2003. Also, 
the parcel must not have a parcel address attribute. 

An instruction that would normally translate into a 064ixk ml m2 
instruction that contains a zero expression can be converted by the 
assembler into a 062ixk instruction. For this conversion to occur, all 
symbols within the expression must be previously defined and must be 
defined within the currently enabled qualifier. Also the value of the 
expression must be zero and have an relative attribute of either absolute 
or relocatable relative to a stack section. 

Examples: 

Code Generated 

I 
1064102 00000000001 
I 
1062204 
I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Is1 

I 
Is2 

I 

Operand Comment 
20 35 

I 
I (a2, 1) 
I 
I (a4, 0) 
I 

3-43 



INSTRUCTION 065 

Machine 
Result Operand Description Instruction 

(ak,exp) si Write (si) to Cornmon Memory at 065ixk ml mZ 
location (ak)+exp 

Instruction 065 writes one 64-bit word into Common Memory. The relative 
Common Memory location is determined by adding the contents of the Ak 
register to a 32-bit constant from the next 2 parcels in the instruction 
queue. The 64-bit word is obtained from the Si register. 

If the expression has a relative attribute of relocatable, it must be 
relative to a Common Memory section. Common Memory section is defined in 
the Section Assignment subsection of the Pseudo Instruction section in 
CAL Assembler Version 2 Reference Manual, CRI publication SR-2003. Also, 
the parcel must not have a parcel address attribute. 

An instruction that would normally translate into a 065ixk ml mZ 
instruction that contains a zero expression can be converted by the 
assembler into a 063ixk instruction. For this conversion to occur, all 
symbols within the expression must be previously defined and must be 
defined within the currently enabled qualifier. Also the value of the 
expression must be zero and have an relative attribute of either absolute 
or relocatable relative to a stack section. 

Examples: 

Code Generated Location 
1 

I 
1065102 00000000001 
I 
1063306 
I 

3-44 

Result 
10 

I 
I (a2, 1) 
I 
I (a6, 0) 

I 

Operand 
20 

I 
Is1 

I 
Is3 

I 

Comment 
35 

HR-02000-0D 

I 



INSTRUCTION 066 

Machine 
Result Operand Description Instruction 

si (exp) ,Read from Common Memory ,066iXX ml m2 

I 
Ilocation exp to si 

I 
Instruction 066 reads one 64-bit word from Common Memory and enters it in 
the Si register. The relative memory location is obtained from the 
next 2 parcels in the instruction queue. 

If the expression has a relative attribute of relocatable, it must be 
relative to a Common Memory section. Common Memory section is defined in 
the Section Assignment subsection of the Pseudo Instruction section in 
CAL Assembler Version 2 Reference Manual, CRI publication SR-2003. Also, 
the parcel must not have a parcel address attribute. 

If the expression is immobile or relocatable relative to a task common 
section, CAL issues a warning message. 

Example: 

Code Generated 

1 
1066100 00000000003 

I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Is1 

I 

Operand Comment 
20 35 

I 
I ( 1+2) 
I 

3-45 

I 



INSTRUCTION 067 

Machine 
Result Operand Description Instruction 

I (exp) lSi 
(rite. (si) to Common Memory at I067ixX ml m2 
locat~on exp 

Instruction 067 writes one 64-bit word in the Common Memory. The 
relative Common Memory location is obtained from the next 2 parcels in 
the instruction queue. The data word is obtained from the Si 
register. 

If the expression has a relative attribute of relocatable, it must be 
relative to a Common Memory section. Common Memory section is defined in 
the Section Assignment subsection of the Pseudo Instruction section in 
CAL Assembler Version 2 Reference Manual, eRI publication SR-2003. Also, 
the parcel must not have a parcel address attribute. 

If the expression is immobile or relocatable relative to a task common 
section, CAL issues a warning message. 

Example: 

Code Generated Location 
1 

I 
1067100 00000000003 
I 

3-46 

Result 
10 

I 
I (1+2) 

I 

Operand 
2Q 

I 
Is1 

I 

Comment 
35 

HR-02000-0D 



INSTRUCTION 070 

Machine 
Result Operand Description Instruction 

R fr mm r 7 
.. 

'

VI ,(aJ,ak) ,ead om Co on Memo y 100IJk 

'

location (aj) incremented 

1 _______ I~ __ ~I_by_(_ak_)_t_o_Vl_· ____________ ~I ______ __ 

Instruction 070 reads a vector stream of 54-bit words from Common Memory 
and enters it into the Vi register. The contents of the VL register 
determines the length of the stream. 

The first address for the Common Memory reference is formed by adding the 
contents of the Aj register to the Background Processor base 
address. The following addresses for the Common Memory reference are 
separated by constant increments or decrements (strides). The stride is 
read from register Ak. Ak can contain positive, zero, or 
negative values. 

Example: 

Code Generated 

I 
1070123 

1 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Iv1 

1 

Operand Comment 
20 35 

1 
1 (a2, a3) 

I 

3-47 



INSTRUCTION 071 

Machine 
Result Operand Description Instruction 

(aj,ak) ,Vi Write (vi) to Common Memory \071i j k 
location a" incremented b y 

Instruction 071 writes a vector stream of 64-bit words from the Vi 
register into Common Memory. The contents of the VL register determines 
the length of the stream. 

The first address for the Common Memory reference is formed by adding the 
contents of the Aj register to the Background Processor base 
address_ The following addresses for the Common Memory reference are 
separated by constant increments or decrements (strides). The stride is 
read from register Ak- Ak can contain positive, zero, or 
negative values. 

Example: 

Code Generated 

1 
1071123 
I 

3-48 

Location 
1 

Result 
10 

I 
I (a2, a3) 

I 

Operand 
2Q 

1 
Iv1 

1 

Comment 
15 

HR-02000-0D 



INSTRUCTION 072 

Result Operand Description 
Machine 

Instruction 

Gather from Common Memory 
,locations (ak)+(Vj) to vi 

1072i j k 

I 
Instruction 072 reads a vector stream of 64-bit words from Common Memory 
into the Vi register. The contents of the VL register determines the 
length of the stream. 

The relative Common Memory location is computed separately for each 
element of the vector. The contents of the Ak register is read at 
the beginning of instruction execution and held in the Common Memory 
port. The contents of the Vj register is streamed to the Common 
Memory port. The high-order 32 bits of this data are discarded. The 
low-order 32 bits are used as components in the address calculation. 

The first address for the Common Memory reference is formed by adding the 
first element of Vj data to Ak data and the Background Processor base 
address. The following addresses for the Common Memory reference are 
formed by adding the following elements of Vj data to the Ak data 
and the Background Processor base address. 

Example: 

Code Generated 

I 
1072132 
I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Ivl 
I 

Operand Comment 
20 35 

I 
I (a2 ,v3) 
I 

3-49 



INSTRUCTION 073 

Machine 
Result Operand Description Instruction 

(ak,Vj) v· Scatter (vi) to Common Memory 073ijk ~ 

locations (ak)+(Vj) 

Instruction 073 stores a vector stream of 64-bit words into Common Memory 
from the Vi register. The contents of the VL register determines the 
length of the stream. 

The relative Common Memory location is computed separately for each 
element of this vector stream. The contents of the Ak register is 
read at the beginning of instruction execution and held in the Common 
Memory port. The contents of the Vj register is streamed to the 
Common Memory port. The high-order 32 bits of this data stream are 
discarded. The low-order 32 bits are used as components in the address 
calculation. 

The first address for the Common Memory reference is formed by adding the 
first element of Vj data to Ak data and the Background Processor 
base address. The following addresses for the Common Memory reference 
are formed by adding the following elements of Vj data to the Ak 
data and the Background Processor base address. 

Example: 

Code Generated 

I 
1073132 
I 

3-50 

Location 
1 

Result 
10 

I 
I (a2, v3) 
I 

Operand 
20 

I 
Iv1 
I 

Comment 
35 

HR-02000-0D 



INSTRUCTION 074 

Machine 
Result Operand Description Instruction 

vi [ak] 
I
Read from Local Memory 1074iXk 

i 

Instruction 074 reads a stream of 64-bit words from Local Memory at 
consecutive locations. The initial Local Memory address is obtained from 
the Ak register. The data stream is entered into the Vi register. 
The contents of the VL register determines the length of the stream. 

Example: 

Code Generated 

I 
1074102 

1 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Iv1 
I 

Operand 
20 

I 
l[a2] 

I 

Comment 
35 

3-51 

I 



INSTRUCTION 075 

Machine 
Result Operand Description Instruction 

[ak] vi Write (vi) to Local Memory I075iXk 

I 
Ilocation (ak) 

Instruction 075 stores a vector stream of 64-bit words into Local Memory 
at consecutive locations. The initial Local Memory address is obtained 
from the Ak register. The Vi register contains the data stream, and 
the contents of the VL register determines the length of the stream. 

Example: 

Code Generated 

1 
1075102 
I 

3-52 

Location 
1 

Result 
10 

I 
l[a2] 
I 

Operand 
20 

I 
Iv1 

I 

Comment 
35 

HR-02000-0D 



INSTRUCTIONS 076 - 077 

Result Operand Description 

pass Pass 

pass exp Pass 

Executes same as 076xxx 

Instructions 076 and 077 issue without functional activity. 

Examples: 

Code Generated 

I 
1076000 
I 
1076001 
I 

HR-02000-0D 

Location 
1 

Result 
10 

Ipass 
I 
Ipass 
I 

Operand 
20 

I 
I 
I 
11 
I 

Machine 
Instruction 

076xxx 

076ijk 

077xxx 

Comment 
35 

3-53 



INSTRUCTIONS 100 - 103 

Machine 
Result Operand Description Instruction 

si Sj&Sk Logical product of (s .) 
J and 100ijk 

(sk) to s· ~ 

si #Sk&Sj Logical product of (s .) 
J and 101ijk 

complement (sk) to s . 
~ 

si Sj\sk Logical difference of (s .) 
] and 102ijk 

(sk) to s· ~ 

si Sj!sk Logical sum of (s .) 
J and 103ijk 

(Sk) to si 

s . 
1 Sj S register copy (j=k) 103ijj 

Instructions 100 through 103 perform scalar logical operations. The 
operands are obtained from registers Sj and Sk' and the result is 
returned to register Si' 

Instructions 100 and 101 read two 64-bit scalar operands and form the 
bit-by-bit logical product. Instruction 101 complements the Sk data 
before the logical product is formed. 

Instruction 102 reads two 64-bit scalar operands and forms the bit-by-bit 
logical difference. 

Instruction 103 reads two 64-bit scalar operands and forms the bit-by-bit 
logical sum. 

3-54 HR-02000-0D 



Examples: 

Code Generated Location Result Operand Comment 
1 10 20 35 

I I I 
1100123 lsI Is2&s3 
I I I 
1101132 lsI Ils2&s3 
I I I 
1102123 Is1 Is2\s3 
I I I 
1103123 Is1 Is2!s3 
I I I 
1103122 Is1 Is2 
I I I 

HR-02000-0D 3-55 



INSTRUCTIONS 104 - 105 

Machine 
Result Operand Description Instruction 

si Sj+sk Integer sum of (Sj)+(Sk) 104ijk 

to si 

s· l Sj-Sk Integer difference of (Sj)-(sk) 105ijk 

to si 

Instructions 104 and 105 perform integer arithmetic. The operands are 
obtained from registers Sj and SkI and the result is returned to 
register Si. 

Instruction 104 reads two 64-bit scalar operands and forms the integer 
sum. 

Instruction 105 reads two 64-bit scalar operands and forms the integer 
difference. 

Examples: 

Code Generated 

1 
1104123 
I 
1105123 
I 

3-56 

Location 
1 

Result 
10 

I 
Is1 

I 
\sl 
I 

Operand 
20 

\s2+s3 
\ 
\s2-s3 
\ 

Comment 
35 

HR-02000-0D 

I 



INSTRUCTIONS 106 - 107 

Machine 
Result Operand Description Instruction 

si PSj Population count of (Sj) 106ijO 

to si 

s· l. qSj Parity of Population count(sj) 106ijl 

to si 

s· l. ZSj Leading zero count of (Sj) 107ijx 

to si 

Instruction 106ijO reads a 64-bit operand from the Sj register and 
forms a count of the number of 1 bits in the operand. This count is 
delivered as a positive integer to the Si register. 

Instruction 106ijl counts the number of bits set to 1 in the Sj 
register. Then the low-order bit, showing the odd/even state of the 
result, is transferred to the low-order bit position of the Si 
register. The high-order 63 bits are cleared. The actual population 
count is not transferred. 

Instruction 107 reads a 64-bit operand from the Sj register and forms 
a count of the number of leading zeros in the operand. The operand is 
considered a field of 64 individual bits in this operation. The 
resulting count can have the values 0 through 64. The result is 
delivered to the Si register as a positive integer. 

Examples: 

Code Generated 

I 
1106120 
1 
1106121 
I 
1107120 
I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Is1 
I 
Is1 
I 
Is1 
I 

Operand 
20 

I 
Ips2 
I 
Iqs2 
I 
Izs2 
I 

Comment 
35 

3-57 

I 



INSTRUCTIONS 110 - III 

Machine 
Result Operand Description Instruction 

si si<exp Shift (si) left exp=64-jk 110ijk 
places to si 

si si>exp Shift (si) right exp=jk lllijk 
places to si 

Instructions 110 and 111 shift 64-bit values in an S register by an 
amount specified by jk. 

Instruction 110 reads a 64-bit operand from the Si register, shifts 
the data to the left, and returns it to the Si register. The number 
of bit positions in the shift count is a constant from the instruction 
parcel. This constant has a value 64 minus the low-order 6 bits in the 
parcel. The range of this constant is 1 through 64. The CAL assembler 
allows, however, a range of 0 through 64. When 0 is specified, CAL 
changes the opcode from 110 to 111 and inserts zero into the jk field. 
Thus, as expected, Si is shifted zero bits. 

The data is shifted left in an open-ended manner. That is, zero bits are 
inserted from the right as bits shift off to the left. A shift count of 
64 results in a word of all zeros. 

Instruction 111 reads a 64-bit operand from the Si register, shifts 
the data to the right, and returns it to the Si register. The number 
of bit positions in the shift count is a constant from the instruction 
parcel. This constant has a value equal to the low-order 6 bits in the 
parcel. The range of this constant is 0 through 63. The CAL assembler 
allows, however, a range of 0 through 64. When 64 is specified, CAL 
changes the opcode from 111 to 110 and inserts zero into the jk field. 
Thus, as expected, Si is zeroed. 

The data is shifted right in an open-ended manner. That is, zero bits 
are inserted from the left as bits shift off to the right. 

3-58 HR-02000-0D 



Examples: 

Code Generated Location Result Operand Comment 
1 10 20 J5 

I I I 
1110177 Is1 Is1<1 
I I I 
1111100 Is1 Is1<0 
I I I 
1111302 Is3 Is3>2 
I I I 
1110300 Is3 Is3>d'64 
I I I 
1110300 Is3 Is3)0'100 
I 1 I 

HR-02000-0D 3-59 



INSTRUCTIONS 112 - 113 

Machine 
Result Operand Description Instruction 

si si,sj<ak Shift (si and Sj> left (ak) 112ijk 
places to Si 

s· l sj,si>ak Shift (si and s . > J right (ak> 113ijk 
places to si 

Instructions 112 and 113 shift 128-bit values formed from two 
S registers. The data is shifted in an open-ended manner. That is, as 
bits shift off one end of the register, zeros are inserted in the other 
end. 

Instruction 112 reads two 64-bit operands from registers Si and Sj. 
The data is concatenated in a 128-bit field with the low-order bit of 
Si next to the high-order bit of Sj data. 

Instruction 113 reads two 64-bit operands from registers Si and Sj. 
The data is concatenated in a 128-bit field with the low-order bit of 
Sj next to the high-order bit of Si data. 

The result field is taken from the 64-bit window corresponding to the 
original Si data. The shift count is read from the Ak register. The 
A register contents is treated as a 32-bit positive integer. Shift counts 
greater than or equal to 128 result in a zero data field, a shift count of 
64 results in the Sj data, and a shift count of 0 results in the 
original Si data. 

Examples: 

Code Generated 

1 
1112123 
1 
1113123 
1 

3-60 

Location 
_1 

Result 
10 

I 
Is1 
I 
Is1 
I 

Operand 
20 

Is1,s2<a3 
I 
Is2,s1>a3 
I 

Comment 
35 

BR-02000-0D 



INSTRUCTION 114 

Machine 
Result Operand Description Instruction 

si vrn Transmit (vrn) to si 114ixx 

Instruction 114 reads the 64-bit mask from the VM register and enters it 
into the Si register. 

Example: 

Code Generated 

I 
1114100 

I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Is1 

I 

Operand 
20 

I 
Ivrn 
I 

Comment 
35 

3-61 



INSTRUCTION 115 

Machine 
Result Operand Description Instruction 

s· .1 rt Transmit real-time count to s . 
.1 115ixx 

Instruction 115 reads the 64-bit real-time clock and enters the count 
into the Si register. 

Example: 

Code Generated 

I 
1115100 

I 

3-62 

Location 
1 

Result 
10 

I 
Is1 

I 

Operand 
20 

1 
Irt 

I 

Comment 
35 

HR-02000-0D 



INSTRUCTIONS 116 - 117 

Machine 
Result Operand Description Instruction 

si exp Load s· ~ with a value 116ijk 

si exp,s Load s . 
~ with a 6-bit value 116ijk 

si exp,s,p Load s· ~ with a 6-bit 116ijk 
positive value 

si exp Load si with a value 117ijk 

s· ~ exp,s Load s . 
~ with a 6-bit value 117ijk 

si exp,s,m Load si with a 6-bit 117ijk 
negative value 

The Si exp instruction maps into either an 050, 051, 052, 053, 116, 
or a 117 opcode. If all the symbols within the expression have been 
previously defined within the currently enabled qualifier, CAL maps this 
instruction into the proper opcode with the fewest number of parcels into 
which the expression will fit. Otherwise, this instruction is mapped 
into the 053 opcode. 

CAL maps the Si exp,S instruction into the 117 opcode if the 
expression is negative and has a relative attribute of absolute. 
Otherwise, this instruction is mapped into the 116 opcode. 

Instructions 116 and 117 form a 64-bit word from the jk data in the 
instruction parcel. The low-order 6 bits are copied from the instruction 
parcel. The result is delivered to the Si register. 

For instruction 116, the high-order bits are zeros. 

For instruction 117, the high-order bits are ones. 

HR-02000-0D 3-63 



Examples: 

Code Generated Location Result 
1 10 

I 
1116101 sl 
1 
1116102 sl 
1 
116104 sl 

117177 sl 

117177 sl 

117106 sl 

116404 s4 

116004 1 sO 
1 

117504 I s5 
1 

053100 I sl 
00000000000000000000041 

I 
4 Jpossym = 

116704 s7 
I 

117675 s6 

116375 s3 

117275 52 

053700 s7 
1777777777777777777775 

-3 negsym = 

117175 sl 

3-64 

Operand 
20 

1 

2,s 

4,s,p 

-1 

-l,s 

6,s,m 

possym,s 

possym,s,p 

possym,s,m 

possym 

4 

possym 

negsym,s 

negsym,s,p 

negsym,s,m 

negsym 

-3 

negsym 

Comment 
35 

forward 
reference 

symbol with 
positive 
value 

backward 
reference 

forward 
reference 

symbol with 
negative 

I; value 
I 
I; backward 
I; reference 

HR-02000-0D 



INSTRUCTIONS 120 - 121 

Machine 
Result Operand Description Instruction 

si Sj+fSk Floating-point sum of 120ijk 
(s .) 

] and (sk) to si 

s· J. Sj-fSk Floating-point difference of 121ijk 

(Sj) and (sk) to si 

Instructions 120 and 121 perform floating-point arithmetic operations. 

Instruction 120 forms the 64-bit floating-point sum of two 64-bit 
floating-point operands read from registers Sj and Sk. The 
result is delivered to the Si register. 

Instruction 121 forms the 64-bit floating-point difference of two 64-bit 
floating-point operands. The minuend is read from the Sj register 
and the subtrahend from the Sk register. The result is delivered to 
the Si register. 

Subsection 2.4.8, Floating-point Add Functional unit, describes special 
case treatment of instructions 120 and 121. 

Examples: 

Code Generated 

I 
1120123 
I 
1121123 
I 

HR-02000-0D 

Location 
1 

Result 
10 

1 
Is1 
I 
Is1 
I 

Operand 
20 

Is2+fs3 
I 
Is2-fs3 
I 

Comment 
35 

3-65 



INSTRUCTIONS 122 - 123 

Machine 
Result Operand Description Instruction 

s· 1 fix,sk Convert (sk) from floating point 122ixk 
to integer and enter into si 

si flt,sk Convert (sk) from integer to 123ixk 
floating point and enter into s· 1 

Instructions 122 and 123 perform conversions between floating-point and 
integer (fixed-point) formats. 

Instruction 122 reads a floating-point operand from the Sk register 
and delivers an integer result to the Si register. The conversion 
from floating-point to integer is accomplished by adding the operand to a 
constant in the Floating-point Add unit. The result is then sign 
extended to form a 64-bit integer. 

Instruction 123 reads an integer operand from the Sk register and 
delivers a floating-point result to the Si register. The conversion 
from integer to floating-point is accomplished by adding the operand to a 
constant in the Floating-point Add unit. 

Subsection 2.4.8, Floating-point Add Functional unit, describes special 
case treatment of instructions 122 and 123. 

Examples: 

Code Generated 

/ 
1122102 
/ 
/123102 
I 

3-66 

Location 
1 

Result 
10 

I 
/sl 
I 
lsI 
/ 

Operand 
20 

Ifix,s2 
I 
Iflt,s2 
I 

Comment 
35 

HR-02000-0D 



INSTRUCTIONS 124 - 125 

Machine 
Result Operand Description Instruction 

si Sj*fSk Floating-point product of (Sj) 124ijk 
and (sk) to S· 1 

Executes same as 124ijk 125ijk 

Instruction 124 forms the 64-bit floating-point product of two 64-bit 
floating-point operands. The operands are read from registers Si and 
Sk. The result is delivered to the Si register. 

Subsection 2.4.9, Floating-point Multiply Functional unit, describes 
special case treatment of instruction 124. 

Example: 

Code Generated 

I 
1124123 

I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Is1 
I 

Operand 
20 

Is2*fs3 
I 

Comment 
35 

3-67 



INSTRUCTIONS 126 - 127 

Machine 
Result Operand Description Instruction 

si Sj*iSk Reciprocal iteration of 126ijk 

2-(Sj)*(Sk) to si 

S . 
1 Sj*qsk Reciprocal square root iteration 127ijk 

of [3-(Sj)*(Sk)]/2 to si 

Instruction 126 forms the 64-bit floating-point quantity used in the 
reciprocal iteration algorithm. The operands are read from registers 
Sj and Sk. The result is delivered to the Si register. 

Instruction 127 forms a floating-point quantity used in the reciprocal 
square root iteration algorithm. The operands are read from registers 
Sj and Sk. The result is delivered to the Si register. 

See subsection 2.4.9, the Floating-point Multiply Functional unit, for a 
description of this sequence. 

3-68 

*********.*****.* ••••••••• * •••••••••••••••••••••••••••• 

CAUTION 

Instruction 126 should be used only with the reciprocal 
approximation instruction (132), and instruction 127 
should be used only with the reciprocal square root 
approximation instruction (133). 

* ••• ** ••••• *******.** •• ***** ••••••••••• * ••• * ••••••••• *. 

HR-02000-0D 

I 



Examples: 

Code Generated Location Result Operand Comment 
1 10 20 35 

I 
126123 lsI Is2*is3 

I I 
127112 lsI Isl*qs2 

I I 
I I 

Divide Sequence 
I 
I 

052100 10001300000 Is1 16. 
I 

052200 10000700000 Is2 4. 
I 

132320 Is3 Ihs2 · reciprocal , 
I · approx. , 
I 

126423 Is4 s2*is3 · correction , 
I · factor , 
I 

124534 IsS s3*fs4 · reciprocal , 
I 

124615 Is6 sl*f55 · quotient , 
1 

HR-02000-0D 3-69 



INSTRUCTIONS 130 - 131 

Machine 
Result Operand Description Instruction 

s . 
~ ak Transmit (ak) to s . 

~ with 130ixk 
no sign extension 

s . 
~ +ak Transmit (ak) to s· ~ with 131ixk 

sign extension 

Instructions 130 and 131 read a 32-bit operand from the Ak register 
and transmit it to the Si register •. 

Instruction 130 zero-fills the high-order 32 bits, creating a 64-bit 
result. 

Instruction 131 fills the high-order 32 bits with copies of bit 231 , 
creating a 64-bit result. 

Examples: 

Code Generated 

I 
1130102 
I 
1131102 
I 

3-70 

Location 
1 

Result 
10 

I 
Is1 

1 
Is1 

I 

Operand 
2Q 

I 
la2 
I 
l+a2 
I 

Comment 
15 

HR-02000-0D 



INSTRUCTIONS 132 - 133 

Machine 
Result Operand Description Instruction 

s· ~ Ihs· ] Floating-point reciprocal 132ijx 
approximation of (Sj) to si 

s· ~ *qSj Floating-point reciprocal square 133ijx 
root approximation of (Sj) 
to si 

Instruction 132 forms a floating-point first approximation to the 
reciprocal of a floating-point operand. The operand is read from the 
Sj register, and the result is delivered to the Si register. 

Instruction 133 forms a floating-point first approximation to the 
reciprocal square root of a floating-point operand. The operand is read 
from the Sj register, and the result is delivered to the Si register. 

See subsection 2.4.9, Floating-point Multiply Functional unit, for details 
of the sequence. 

HR-02000-0D 3-71 



Examples: 

Code Generated Location Result Operand Comment 
1 10 20 35 

I I I 
1132120 Is1 I/hs2 
1 I I 
1133120 151 l*qs2 
I I I 
I I I 
I Square Root Sequence 
I 
I 
1052100 10001300000 sl 16. 
I 
1133210 s2 *qs1 · square root , 
I · approx. , 
1 
1124312 s3 sl*fs2 half-prec. 
1 · square root , 
I 
1127423 s4 s2*qs3 · square root , 
I · iteration , 
1 
1124534 s5 s3*fs4 · square root , 
1 

3-72 HR-02000-OD 



INSTRUCTIONS 134 - 137 

Machine 
Result Operand Description Instruction 

Pass 134xxx 

Pass 135xxx 

Pass 136xxx 

Pass 137xxx 

Instructions 134 through 137 issue without functional activity. The 
assembler does not use these instructions. See the 076 opcode. 

The shared registers use these instructions, described below, in SIN 2025 
only. 

Machine 
Result Operand Description Instruction 

Ak SR ° J Set Shared register j(j=O or 1) 134xjk 
from Ak 

Pass 135xxx 

SRj Ai Read Shared register 136ijx 
j(j=O or 1) to Ai 

A-1 SRo+ J Read and increment Shared register 137ijx 
j to Ai (j=O or 1) 

HR-02000-0D 3-73 

I 



INSTRUCTIONS 140 and 141 

Machine 
Result Operand Description Instruction 

V' ~ Sj&vk Logical products of (s .) 
J 140ijk 

and (vk) to vi 

V' ~ Vj&vk Logical products of (v .) ] 141ijk 

I 
and (vk) to vi 

Instruction 140 reads a stream of vector elements from the Vk register, 
processes the data in the Vector Logical unit, and delivers a stream of 
result elements to register Vi. Data is read from the Sj register 
and is held in the Vector Logical unit during the streaming operation. 

Instruction 141 reads two sets of vector elements, processes them in the 
Vector Logical unit, and delivers result elements to register Vi. The 
source streams are from the Vj and Vk registers. 

For both instructions, the VL register determines the number of operations 
performed. Each element of the vector is processed independent of the 
other elements in the stream. A bit-by-bit logical product is formed 
between the two source operands. The resulting 64 logical products are 
then delivered as one element to the destination stream. 

Examples: 

Code Generated 

I 
1140123 
I 
1141123 
I 

3-74 

Location 
1 

Result 
10 

I 
Iv1 
1 
Iv1 
1 

Operand 
211 

Is2&v3 
r 
Iv2&v3 
I 

Comment 
15 

HR-02000-0D 



INSTRUCTIONS 142 and 143 

Machine 
Result Operand Description Instruction 

vi Sj\vk Logical differences of (s .) ] 142ijk 
and (vk) to vi 

V' 1 Vj\Vk Logical differences of (Vj) 143ijk 
and (vk) to vi 

V' 1 0 Clear vi 143iiit 

t Special syntax form 

Instruction 142 reads a stream of vector elements from register Vk' 
processes the data in the Vector Logical unit, and delivers a stream of 
result elements to the Vi register. Data is read from the Sj 
register and is held in the Vector Logical unit during the streaming 
operation. 

Instruction 143 reads two streams of vector elements, processes them in 
the Vector Logical unit, and delivers a stream of result elements to 
register Vi- The source streams are from registers Vj and Vk. 

For both instructions, the VL register determines the operation length. 
Each element of the vector stream is processed independent of the other 
elements in the stream. A bit-by-bit logical difference is formed 
between the two source operands. The resulting 64 logical differences 
are delivered as one element to the destination stream. 

Examples: 

Code Generated 

I 
1142123 
1 
1143123 
I 
1143666 
1 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Iv1 
I 
Iv1 
I 
Iv6 
I 

Operand 
20 

Is2\v3 
I 
Iv2\v3 
I 
10 
I 

Comment 
35 

3-75 

I 



INSTRUCTIONS 144 and 145 

Machine 
Result Operand Description Instruction 

vi Sj!Vk Logical sums of (s .) ] 144ijk 
and (vk) to vi 

vi s· ] Copy (Sj) to vi 144ijit 

v· 1 Vj!vk Logical sums of (Vj) 145ijk 
and (vk) to vi 

vi Vj v register copy (j=k) 145ijj 

t Special syntax form 

Instruction 144 reads a stream of vector elements from register Vk' 
processes the data in the Vector Logical unit, and delivers a stream of 
result elements to the Vi register. Data is read from the Sj register 
and is held in the Vector Logical unit during the streaming operation. 

Instruction 145 reads two streams of vector elements, processes them in 
the Vector Logical unit, and delivers a stream of result elements to 
register Vi. The source streams are from registers Vj and Vk-

For both instructions, the VL register determines the operation length. 
Each element of the vector stream is processed independent of the other 
elements in the stream. A bit-by-bit logical sum is formed between the 
two source operands. The resulting 64 logical sums are delivered as one 
element to the destination stream. 

Examples: 

Code Generated Location Result Operand Comment 
1 10 20 35 

I I 
1144123 Iv1 Is2!v3 
I I I 
1144121 Ivl Is2 
I I 1 
1145123 Iv1 Iv2!v3 
I I I 
1145122 Iv! Iv2 
I I I 

3-76 HR-02000-0D 



INSTRUCTION 146 

Machine 
Result Operand Description Instruction 

V' 1 Sj!Vk&vm Transmit (s .) 
J if vm bit=l; 146ijk 

(vk) if vm bit=O to V' 1 

Instruction 146 reads a stream of vector elements in sequence from the 
Vk register, processes the data in the Vector Logical unit, and 
delivers a stream of result elements to the Vi register. Data is 
read from the Sj register and is held in the Vector Logical unit 
during the streaming operation. The contents of the VL register 
determine the vector stream length. 

The VM register works as a control mechanism to select either the S 
register data or the vector element data as each element arrives at the 
Vector Logical unit. A bit of VM register data is associated with each 
element. The high-order bit of VM data is associated with the first 
vector element. The following bits of VM register data correspond with 
the following vector elements. The S register data is selected as a 
result element if the VM register contains a 1 in the designated element 
position. The Vk register element is selected as a result element if 
the VM register contains a 0 in the designated element position. 

These instructions are part of the Vector Integer unit in those systems 
that contain the vector tailgating feature (SIN 2025, 2027, and above). 

Example: 

Code Generated 

I 
1146123 
I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Iv1 
I 

Operand 
20 

Is2!v3&vm 
I 

Comment 
35 

3-77 



INSTRUCTION 147 

Machine 
Result Operand Description Instruction 

vi Vj!vk&vm Transmit (v .) ] if vm bit=1; 147ijk 

(vk) if vm bit=O to vi-

Instruction 147 reads two streams of vector elements, processes them in 
the Vector Logical unit, and delivers a stream of result elements to the 
Vi register. The source streams are from registers Vj and Vk. 
The contents of the VL register determine the length of each vector 
stream. 

The VM register works as a control mechanism to select either the Vj 
data or the Vk data as each element pair arrives at the Vector Logical 
unit. A bit of VM register data is associated with each element. The 
high-order bit of VM data is associated with the first vector element. 
The following bits of VM register data correspond with the following 
vector elements. The Vj data is selected as a result element if the 
VM register contains a 1 in the designated element position. The Vk 
register element is selected as a result element if the VM register 
contains a 0 in the designated element position. 

These instructions are part of the Vector Integer unit in those systems 
that contain the vector tailgating feature (SIN 2025, 2027, and above). 

Example: 

Code Generated 

I 
1147123 

I 

3-78 

Location 
1 

Result 
10 

I 
Iv1 
I 

O£erand 
20 

Iv2!v3&vm 

I 

Comment 
35 

HR-02000-0D 



INSTRUCTIONS 150 and 151 

Machine 
Result Operand Description Instruction 

vi vj<ak Shift (v -) ] left ( ak) bits with 150ijk 
zero-fill, results to vi 

vi vj>ak Shift (Vj) right ( ak) bits with 151ijk 
zero-fill, results to vi 

Instructions 150 and 151 read a stream of vector elements in sequence 
from the Vj register, process the data in the Vector Integer unit, 
and deliver a stream of result elements to the Vi register. Data is 
read from the Ak register and is held in the Vector Integer unit 
during the streaming operation. The contents of the VL register 
determine the vector stream length. 

Instruction 150 shifts data to the left and instruction 151 shifts data 
to the right. Each element of the vector stream is processed independent 
of the other elements in the stream. Each element is shifted by the 
number of bit positions indicated by the Ak register value. Zero bits 
are inserted as bits shift off. 

The contents of the Ak register is treated as a 32-bit positive integer. 
Shift counts equal to or greater than 64 cause a zero data field. 

These instructions are part of the Vector Shift unit in those systems with 
the vector tailgating feature (SIN 2025, 2027, and above). 

Examples: 

Code Generated 

1 
1150123 
I 
1151123 
I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Iv1 
I 
Iv1 
I 

Operand Comment 
20 35 

Iv2<a3 
I 
Iv2>a3 
I 

3-79 



INSTRUCTIONS 152 and 153 

Machine 
Result Operand Description Instruction 

vi vj,vj<ak Double shift (v·) J left (ak) 152ijk 
places to Vi 

v· 1. vj,vj>ak Double shift (v·) J right (ak) 153ijk 

I 
places to vi 

Instructions 152 and 153 process the elements of data from the Vj 
register in pairs for this sequence. Each element is concatenated with 
the following element and the resulting 128-bit field is shifted by the 
number of bit positions in the Ak register data. A 64-bit field from 
the original element window is then delivered to the destination vector 
stream. 

Instruction 152 shifts data to the left. The first element of Vj data 
is positioned in the high-order 64 bits of the 128-bit shift field. The 
second element of Vj data is positioned in the low-order 64 bits of the 
12B-bit shift field. The 128-bit field then shifts left by the amount of 
the shift count. A first result element is read from that portion of the 
128-bit field originally occupied by the first element of data. 

The second element of Vj data is then positioned in the higher portion 
of the 128-bit shift field. The third element of Vj data is entered 
in the low-order 64 bits of the field. This 128-bit field is then shifted 
left by the amount of the shift count. A second result element is read 
from the high-order 64 bits of the 128-bit field originally occupied by 
the second element of data. 

This process continues until the last element of data is entered in the 
high-order 64 bits of the 12B-bit shift field. A zero field is entered in 
the low-order 64 bits. This 128-bit field is then shifted left by the 
amount of the shift count. The last result element is read from the upper 
portion of the shift field. 

The Ak register contents is treated as a 32-bit positive integer. 
Shift counts greater than 128 result in a zero data field. Zero bits are 
inserted at the right end of the 128-bit shift field as bits are shifted 
off to the left. 

3-BO HR-02000-0D 



INSTRUCTIONS 152 and 153 (continued) 

Instruction 153 shifts data to the right. The first element of V' 
data is positioned in the low-order 64 bits of the 128-bit shift lield. 
The high-order 64 bits of the 128-bit shift field is cleared. The 128-bit 
field then shifts to the right by the amount of the shift count. A first 
result element is read from the low-order 64 bits of the 128-bit field 
originally occupied by the first element of data. 

The second element of Vj data is then positioned in the lower portion 
of the 128-bit shift field. The first element of VJ data is entered 
in the high-order 64 bits of the field. This 128-b1t field is then 
shifted right by the amount of the shift count. A second result element 
is read from the low-order 64 bits of the 128-bit field originally 
occupied by the second element of data. 

This process continues until the last element of data is entered in the 
low-order 64 bits of the 128-bit shift field. The preceding element is 
entered in the high-order 64 bits. This 128-bit field is then shifted 
right by the amount of the shift count. The last result element is read 
from the low-order 64 bits of the field. 

The Ak register contents is treated as a ~2-bit positive integer. 
Shift counts greater than 128 result in a zero data field. Zero bits are 
inserted at the left end of the 128-bit shift field as bits are shifted 
off to the right. 

Examples: 

Code Generated 

I 
1152123 

I 
1153123 
I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Iv1 
I 
Iv1 
I 

Operand 
20 

Iv2,v2<a3 
I 
Iv2,v2>a3 

I 

Comment 
35 

3-81 



INSTRUCTION 154 

Machine 
Result Operand Description Instruction 

vi sj*fvk Floating-point product of 154ijk 
(s .) 

J and (vk) to vi 

Instruction 154 reads a stream of vector elements in sequence from the 
Vk register, processes the data in the Floating-point Multiply unit, 
and delivers a stream of result elements to the Vi register. Data is 
read from the Sj register and is held in the Floating-point Multiply 
unit during the streaming operation. The contents of the VL register 
determine the vector stream length. 

Each element of the vector stream is processed independent of the other 
elements in the stream. The Floating-point Multiply unit forms the 
64-bit floating-point product of the arriving vector element and the 
scalar operand held in the unit. The result element is delivered to the 
Vi register. See subsection 2.4.9, Floating-point Multiply 
Functional unit, for details and special case treatment. 

Example: 

Code Generated 

I 
1154123 
1 

3-82 

Location 
1 

Result 
10 

1 
Iv! 
I 

Operand 
20 

Is2*fv3 
I 

Comment 
35 

HR-02000-0D 



INSTRUCTION 155 

Machine 
Result Operand Description Instruction 

vi vj*fvk Floating-point product of (Vj) 155ijk 
and (vk) to vi 

Instruction 155 reads two streams of vector elements, processes them in 
the Floating-point Multiply unit, and delivers a result stream to the 
Vi register. The source streams are from registers Vj and Vk. The VL 
register determines the length of each vector stream. 

Each element of the vector stream is processed independent of the other 
elements in the stream. The Floating-point Multiply unit forms the 64-bit 
floating-point product of the arriving vector elements. The result 
element is delivered to the Vi register. See subsection 2.4.9, 
Floating-point Multiply Functional unit, for details and special case 
treatment. 

Example: 

Code Generated 

I 
1155123 

I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Iv1 
I 

Operand 
20 

Iv2*fv3 
I 

Comment 
35 

3-83 



INSTRUCTIONS 156 and 157 

Machine 
Result Operand Description Instruction 

vi Vj*iVk Reciprocal iteration of 156ijk 
2-(vj)*(vk) to vi 

v· 1 Vj*qvk Reciprocal square root iteration 157ijk 

I 
of [3-(vj>*(Vk)]/2 to vi 

Instructions 156 and 157 read two streams of vector elements, process 
them in the Floating-point Multiply unit, and deliver a result stream to 
the Vi register. The source streams are from registers Vj and Vk. 
The contents of the VL register determine the length of each vector 
stream. 

For instruction 156, the Floating-point Multiply unit forms a 64-bit 
floating-point quantity used in the reciprocal iteration algorithm from 
each pair of arriving vector elements. 

For instruction 157, the Floating-point Multiply unit forms a 64-bit 
floating-point quantity used in the reciprocal square root iteration 
algorithm from each pair of arriving elements. 

See subsection 2.4.9, Floating-point Multiply Functional unit, for 
details and special case treatment. 

Examples: 

Code Generated 

I 
1156123 

1 
1157123 

I 

3-84 

Location 
1 

Result 
10 

I 
Iv1 
I 
Iv1 
I 

Operand 
20 

Iv2*iv3 

I 
Iv2*qv3 

I 

Comment 
35 

HR-02000-0D 



INSTRUCTIONS 160 and 161 

Machine 
Result Operand Description Instruction 

vi Sj+vk Integer sums of (Sj) and 160ijk 

(vk) to v· ~ 

v· ~ Vj+vk Integer sums of (v .) 
] and 161ijk 

(vk) to vi 

Instruction 160 reads a stream of vector elements from the Vk 
register, processes the data in the Vector Integer unit, and delivers a 
stream of result elements to the Vi register. Data is read from the 
Sj register and is held in the Vector Integer unit during the 
streaming operation. 

Instruction 161 reads two streams of vector elements, processes them in 
the Vector Integer unit, and delivers a stream of result elements to the 
Vi register. The source streams are from registers Vj and Vk. 

For both instructions, the VL register determines the vector stream 
length. Each element of the vector stream is processed independent of 
the other elements in the stream. The Vector Integer unit forms the 
integer sum of the two operands. The result is delivered as one element 
of the destination stream. 

Examples: 

Code Generated 

I 
1160123 
1 
1161123 
I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Iv! 
I 
Iv1 
I 

Operand 
2J1 

Is2+v3 
I 
Iv2+v3 
1 

Comment 
15 

3-85 



INSTRUCTIONS 162 and 163 

Machine 
Result Operand Description Instruction 

V' 1 Sj-Vk Integer differences of (s .) 
J and 162ijk 

(vk) to v· 1 

V' 1 Vj-Vk Integer differences of (v .) 
J and 163ijk 

(vk) to vi 

V' 1 -vk Copies twos complement of 163iikt 

(vk) to vi 

t Special syntax form 

Instruction 162 reads a stream of vector elements from Vk register, 
processes the data in the Vector Integer unit, and delivers a stream of 
result elements to the Vi register. Data is read from the Sj register 
and is held in the Vector Integer unit during the streaming operation. 

Instruction 163 reads two streams of vector elements, processes them in 
the Vector Integer unit, and delivers a stream of result elements to the 
Vi register. The source streams are from registers Vj and Vk. 

For both instructions, the VL register determines the vector stream 
length. Each element of the vector stream is processed independent of 
the other elements in the stream. The Vector Integer unit forms the 
integer difference of the two operands. The result is delivered as one 
element of the destination stream. 

Examples: 

Code Generated 

I 
1162123 

I 
1163123 

I 
1163774 

I 

3-86 

Location 
1 

Result 
10 

I 
Iv1 
I 
Iv! 
I 
Iv7 
I 

QQerand 
20 

Is2-v3 

I 
Iv2-v3 

I 
l-v4 
I 

Comment 
35 

HR-02000-0D 



INSTRUCTIONS 164 - 165 

Machine 
Result Operand Description Instruction 

vi PVj Population counts of (v·) J to vi 164ijO 

vi qVj Population count parity of (v .) 
J 164ijl 

to vi 

v· 1 ZVj Leading zero count of (v .) 
J 165ijx 

to Vi 

Instruction 164 reads a stream of vector elements in sequence from the 
Vj register, processes the data in the Vector Integer unit, and 
delivers a stream of result elements to the Vi register. The 
contents of the VL register determine the vector stream length. 

Each element of the vector stream is processed independent of the other 
elements in the stream. The Vector Integer unit counts the number of 1 
bits in each vector element and delivers the count as a positive integer 
to the result stream. 

Instruction 164ijO counts the number of bits set to 1 in each element 
of Vj and enters the results into corresponding elements of Vi. The 
results are entered into the low-order 7 bits of each Vi element; the 
remaining high-order bits of each Vi element are zeroed. 

Instruction 164ijl counts the number of bits set to 1 in each element 
of Vj. The least significant bit of each result shows whether the 
result is an odd or even number. Only the least significant bit of each 
result is transferred to the least significant bit position of the 
corresponding element of register Vi. The remainder of the result is 
set to zeros. The actual population count results are not transferred. 

Instruction 165ijx reads a stream of vector elements in sequence from 
the Vj register, processes the data in the Vector Integer unit, and 
delivers a stream of result elements to the Vi register. The 
contents of the VL register determine the vector stream length. 

Each element of the vector stream is processed independent of the other 
elements in the stream. The Vector Integer unit counts the number of 
leading zeros in each element. The element is considered as a field of 
64 individual bits in this operation. This count is delivered as a 
positive integer to the result stream. 

These instructions are .part of the Vector Shift unit in those systems 
that contain the vector tailgating feature (SIN 2025, 2027, and above). 

HR-02000-0D 3-87 



Examples: 

Code Generated Location Result OJ;>erand Comment 
1 10 20 35 

I I I 
1164120 Ivl Ipv2 
1 I 1 
1164121 Iv1 Iqv2 
1 I 1 
1165120 Ivl Izv2 
I I I 

3-88 HR-02000-0D 



INSTRUCTIONS 166 - 167 

Machine 
Result Operand Description Instruction 

V· 
~ Ihvk Floating-point reciprocal 166ixk 

approximations of (vk) to v· 1 

Vi *qvk Floating-point reciprocal square 167ixk 

root approximations of (vk) 

to vi 

Instruction 166 and 167 read a stream of vector elements in sequence from 
the Vk register, process the data in the Floating-point Multiply unit, 
and deliver a stream of result elements to the Vi register. The 
contents of the VL register determines the length of the vector stream. 
See subsection 2.4.9, Floating-point Multiply Functional unit, for 
details of this sequence. 

For instruction 166, the Floating-point Multiply unit forms a 
floating-point quantity which is a first approximation to the reciprocal 
of the arriving vector element. 

For instruction 167, the Floating-point Multiply unit forms a 
floating-point quantity which is a first approximation to the reciprocal 
square root of the arriving vector element. 

Examples: 

Code Generated 

I 
1166102 
I 
1167103 
I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Iv1 
I 
Iv1 
I 

Operand 
20 

I 
I/hv2 
I 
l*qv3 
I 

Comment 
35 

3-89 



INSTRUCTIONS 170 - 171 

Machine 
Result Operand Description Instruction 

vi sj+fVk Floating-point sum of (Sj) 170ijk 
and (vk) to vi 

vi vj+fvk Floating-point sum of (v .) 
J 171ijk 

I 
and (vk) to vi 

Instruction 170 reads a stream of vector elements in sequence from the 
Vk register, processes the data in the Floating-point Add unit, and 
delivers a stream of result elements to the Vi register. Data is read 
from the Sj register and is held in the Floating-point Add unit 
during the streaming operation. 

Instruction 171 reads two streams of vector elements, processes them in 
the Floating-point Add unit, and delivers a result stream to the Vi 
register. The source streams are from registers Vj and Vk. 

For both instructions, the contents of the VL register determine the 
vector stream length. Each element of the vector stream is processed 
independent of the other elements in the stream. The Floating-point Add 
unit forms the 64-bit floating-point sum of the two operands. The result 
is delivered to register Vi. See subsection 2.4.8, Floating-point 
Add Functional unit, for details and special case treatment. 

Examples: 

Code Generated 

I 
1170123 
I 
1171123 
I 

3-90 

Location 
1 

Result 
10 

I 
Ivl 
I 
Iv1 
I 

Operand 
20 

Is2+fv3 
I 
Iv2+fv3 
I 

Comment 
35 

HR-02000-0D 



INSTRUCTIONS 172 - 173 

Machine 
Result Operand Description Instruction 

vi Sj-fVk Floating-point difference of 172ijk 

(Sj) and (vk) to vi 

v· l. Vj-fVk Floating-point difference of 173ijk 

(v·) ] and (vk) to vi 

V' l. -fvk Copy normalized negative of 173iikt 

I 
(vk) to vi 

t Special syntax form 

Instruction 172 reads a stream of vector elements in sequence from the 
Vk register, processes the data in the Floating-point Add unit, and 
delivers a stream of result elements to the Vi register. Data is 
read from the Sj register and is held in the Floating-point Add unit 
during the streaming operation. 

Instruction 173 reads two streams of vector elements, processes them in 
the Floating-point Add unit, and delivers a result stream to the Vi 
register. The source streams are from registers Vj and Vk. 

For both instructions, the contents of the VL register determine the 
vector stream length. Each element of the vector stream is processed 
independent of the other elements in the stream. The Floating-point Add 
unit forms the 64-bit floating-point difference of the two operands. The 
result is delivered to register Vi. See subsection 2.4.8, 
Floating-point Add Functional unit, for details and special case 
treatment. 

Examples: 

Code Generated 

I 
1172123 
1 
1173123 
I 
1173556 
I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Ivl 
I 
Ivl 
I 
Iv5 
I 

O~erand 

20 

I 
Is2-fv3 
I 
Iv2-fv3 
I 
l-fv6 
I 

Comment 
35 

3-91 



INSTRUCTIONS 114 - 115 

Machine 
Result Operand Description Instruction 

vi fix,vk Integer form of floating-point 174ixk 
(vk) to vi 

vi flt,vk Floating-point form of integer 175ixk 
(vk) to vi 

Instructions 174 and 175 read a stream of vector elements in sequence 
from the Vk register, process the data in the Floating-point Add 
unit, and deliver a stream of result elements to the Vi register. 
The contents of the VL register determine the vector stream length. 

Instruction 114 performs the conversion from floating-point to integer 
format by adding the operand to a constant in the Floating-point Add 
unit. The result is sign extended to form a 64-bit integer. 

Instruction 115 performs the conversion from integer to floating-point 
format by adding the operand to a constant in the Floating-point Add 
unit. The result is delivered to the Vi register. 

See subsection 2.4.8, Floating-point Add Functional unit, for details and 
special case treatment. 

Examples: 

Code Generated 

I 
1114102 
I 
1175102 
I 

3-92 

Location 
1 

Result 
10 

I 
Iv1 
I 
Iv1 
I 

Operand 
20 

Ifix,v2 
I 
Iflt,v2 
I 

Comment 
35 

HR-02000-0D 



INSTRUCTIONS 176 - 177 

Machine 
Result Operand Description Instruction 

vi ci,sj&Sk Enter vi with compressed 176ijk 

iota Sj and sk 

Executes same as 176ijk 177xxx 

Instruction 176 forms a vector from two scalar operands. The first 
scalar operand is a 64-bit mask from the Sj register. The second 
scalar operand is a 32-bit vector stride from the Sk register. The 
stride is taken from the low-order 32 bits of the Sk register data. 

The Vector Integer unit forms a 64-element iota vector from the stride. 
This is a vector whose first element has a zero value, and whose 
subsequent elements are spaced by the stride increment. The sequence of 
element values is as follows: 

The two scalar operands are captured and held in the Vector Integer 
unit. The Sk value is repeatedly added to the accumulated sum to 
form the iota vector. The 64-bit mask is shifted to the left 1 bit 
position per clock period. The Vector Integer unit then compresses the 
iota vector, using the mask data, and delivers the resulting vector to 
register Vi. 

An element of the iota vector is delivered to the result vector where 
there is a 1 bit in the mask. An element of the iota vector is skipped, 
and the position compressed, where there is a 0 bit in the mask. The 
resulting vector has the same number of elements as there were 1 bits in 
the mask. 

The first mask bit tested is the high-order bit. Bits are then tested in 
order to the low-order bit. A zero test is made on the remaining mask 
bits to stop the sequence. Execution time is then variable depending on 
the mask contents. 

Example: 

Code Generated 

I 
1176123 
I 

HR-02000-0D 

Location 
1 

Result 
10 

I 
Iv! 
I 

Operand 
20 

Ici,s2&s3 
I 

Comment 
35 

3-93 





I 

4. COMMON MEMORY 

Common Memory contains 256 or 512 Mwords of dynamic memory, or 64 or 128 
Mwords of static memory. The memory consists of either 64 or 128 banks. 
Each 72-bit word consists of 64-data bits and 8 error-correction bits. 

Common Memory is organized into quadrants with 32 banks in each 
quadrant. The 64 Mword version has 16 banks per quadrant. Each memory 
quadrant has a data path to each of the Common Memory ports. A 
Background Processor and a foreground communication channel are connected 
to each Common Memory port. The total memory bandwidth of a 
four-processor system is 64 Gbits/s. The total memory capacity is now 
equal to 34 Gbits. 

The Foreground Processor, Background Processors, external 1/0 devices, 
and disk controllers share Common Memory. Common Memory contains program 
code for the Background Processors, data for problem solution, and 
Foreground Processor system tables. 

4.1 MEMORY ADDRESSING 

A word in memory is addressed by 32 bits. The low-order 2 bits select 
the quadrants and the next 5 bits select the bank. The 64-Mword system 
uses 4 bits for bank select. Figure 4-1 shows the format of the memory 
address for Common Memory. 

Bank Address 
Bank 

Select 

Figure 4-1. Memory Address for Common Memory 

4.2 MEMORY ACCESS 

Quad 
Select 

The Background Processors are locked into a phased access time scheme 
with the memory quadrants through the Common Memory ports. Through its 
Common Memory port, a Background Processor can access any given quadrant 
but only in the processor's own phase time, that is, every fourth clock 
period (CP). If a Background Processor requests a quadrant out of its 
phase time, the request is delayed until the correct time. 

HR-02000-0D 4-1 



For example, assume the Background Processors are A through D, and the 
quadrants are 0 through 3. Also assume processor A is locked into 
quadrant 0 at phase time o. If processor A references quadrant 0 at 
phase time 1, it must wait until the next phase time 0 (CP 4) to have 
access to memory in that quadrant. 

Memory banks in a quadrant share a data path to each Common Memory port. 
Because of the phased access time between the quadrants and the Common 
Memory ports, however, only 1 bank accesses the path in a given 4-CP time 
slot. Because 2 banks never compete for the same data path in the same 
time slot, each bank functionally has an independent path to each of the 
four Common Memory ports. 

4.3 MEMORY CONFLICTS 

To prevent memory conflicts, each memory bank in the dynamic system has 
two Bank Busy flags. Each bank is divided logically into two or four 
pseudobanks. This enables quicker access to the half of the bank that is 
not busy. When a bank has been accessed it sets both of its busy flags. 
A long count busy applies to the pseudo bank that is actually busy, while 
a short count busy applies to the pseudo bank that is not. If the bank 
is busy, the quadrant sends a rejected signal to the requesting memory 
port. The requesting port retries the data. 

The static memory, being much faster, does not require the pseudo bank 
arrangement. One bank busy is used per bank. 

4.4 MEMORY BACKUP 

Memory back-up occurs when too many memory references arrive at a single 
memory quadrant. Each Common Memory port has four quadrant buffers, one 
for each quadrant. Each buffer can hold two memory references for its 
memory quadrant. Therefore, references can continue to the memory port 
when the reference is not in the proper phase time. When a quadrant 
buffer in a memory port is filled, and another reference to that quadrant 
is made, the memory port begins a back-up procedure. 

The memory port back-up procedure stops instruction issue for the 
associated Background Processor if that processor is making a memory 
reference. Vector streams initiated in the Background Processor and 
associated with a Common Memory reference are held. 

After all references have been submitted for retry, stop issue is 
released allowing additional references to issue. A conflict during the 
retry process causes the back-up procedure to begin again at the point 
the conflict occurred; which could be the original back-up reference or 
another reference buffered during backup. 

4-2 HR-02000-0D 



NOTE 

Special timing exists for execution of Background 
Processor instruction 072 (the gather instruction). 
This instruction allows addresses in any sequence with 
respect to the low-order 2 bits, quadrant select. 
Without special treatment of this instruction, the data 
could arrive at the Vector Destination register out of 
order. Therefore, the hardware forces a maximum memory 
reference pattern of four references and 12 null 
references which averages to one reference every 4 CPs. 

4.5 MEMORY ERROR CORRECTION 

A single-error correction/double-error detection (SECDED) network is used 
between the Background Processors and memory. 

Using SECDED, the single error alteration is automatically corrected if a 
single bit of a data word is altered before the data word is passed to 
the computer. If 2 bits of the same data word are altered, the double 
error is detected but not corrected. In either case, the Background 
Processors can be interrupted, depending on interrupt options selected, 
to allow processing of the error. For 3 or more bits in error, results 
are ambiguous. 

The 8 check bits and the data word are stored in memory at the same 
location. When read from memory, the 64-bit matrix, shown in figure 4-2, 
generates a new set of check bits, which are compared with the old check 
bits that were stored in memory. The resulting 8 comparison bits are 
called syndrome (5) bits. The states of these 5 bits are symptomatic of 
any error that occurred (1 = no compare). If all syndrome bits are 0, no 
memory error is assumed. 

Any change of state of a single bit in memory causes an odd number of 5 
bits to be set to 1. A double error (an error in 2 bits) appears as an 
even number of S bits set to 1. The XIS in the matrix of figure 2-3 
determine which syndrome bit is affected by a failing memory word bit. 
For example, if memory word bit 263 fails, S bits 1 through 7 are 
forced to ones. Each memory word bit and the S bits have a unique 
pattern of S bits, which identifies a failure of that bit. 

The matrix is designed so that: 

• If all syndrome bits are 0, no error is assumed. 

HR-02000-0D 4-3 



• If only 1 syndrome bit is 1, the associated check bit is in error. 

• If more than 1 syndrome bit is 1 and the parity of all syndrome 
bits is odd, then a single correctable error is assumed to have 
occurred. The syndrome bits can be decoded to identify the bit in 
error. 

• If 3 or more memory bits are in error, the parity of all syndrome 
bits is odd and results are ambiguous. 

• If more than 1 syndrome bit is 1 and the parity of all syndrome 
bits SO through S7 is even, then a double error (or an even number 
of bit errors) occurred within the data bits or check bits. 

CHECK BYTE 

check bit 0 

check bi t 1 

check bit 2 

check bit 3 

check bi t 4 

check bit 5 

check bi t 6 

check bit 7 x 

y. 

x 

x 

x 

x 

x 

x x x x x x x x 

x x x x x x x x 

x x x x x x x x 

x x x x 

x x x x 

x x x x 

x x x 

x x x x x x x x 

x x x x x x x x 

x x x x X K X X 

x x x 

x x x x 

x x x x 

x x x x 

x x x x x x x x x x x x x x x x x x x x 

x x x x x x x x x x x x x x x x x x x x 

x x x x x x x x x x x x 

x x x x x x x x x x x x 

x x x x x x x x 

x x x x x x x x x x x x x x x x 

x x x x x x x x x x x x x x x x 

x x x x x x x x x x x x x x x x 

x x x x x x x x x x x x 

x x x x x x x x x x x x 

x x x x x x x x x x x x 

x x x x x x x x x x x x 

x x x x x x x x x x x x x xx x x x x x x x x x 

x x x x x xx x x x x x x x x x 

x x x x x x x x x x x x x x x x 

x x x x x x x x x x x x x xx x 
1270 

Figure 4-2. Error Correction Matrix 

4-4 HR-2000 C 



s. FOREGROUND SYSTEM 

The CRAY-2 computer system contains a foreground system to control and 
monitor system operations. The Foreground Processor contains the 
following: 

• Either two or four high-speed synchronous communication channels 
to interconnect the Background Processors, Foreground Processor, 
disk controllers, HSX controllers, and External liD controllers 

• Foreground channel ports 

Either two or four Common Memory ports to control data 
transfer between Common Memory and the Foreground Processor, 
disk storage units (DSUs), HSX controllers, and the External 
liD controllers 

Either two or four Background Processor ports to allow the 
Foreground Processor to monitor and control the Background 
Processors 

• Up to 40 liD devices can be attached 

Disk controllers to control up to 36 DSUs 

External liD controllers to connect the CRAY-2 computer 
system mainframe to external devices at 6 Mbyte/s (Front-end 
Interface) or 12 Mbyte/s (HYPERchannel or Cray Tape 
Controller) 

HSX controllers to connect the CRAY-2 computer system 
mainframe to high-speed external devices at 100 Mbyte/s 

• A Foreground Processor to supervise overall system activity and 
respond to requests for interaction among the system members 

• A maintenance control console to deadstart the CRAY-2 computer 
system mainframe and monitor system operation 

5.1 FOREGROUND COMMUNICATION CHANNELS 

Either two or four high-speed communication channels in the foreground 
system link the Common Memory, Background ProcessOrs, Foreground 
Processor, disk controllers, HSX controllers, and External 1/0 

HR-02000-0D 5-1 



controllers. The Foreground Processor supervises the channels. Data 
blocks are generally 512 Common Memory words. 

Each channel accesses one Common Memory port and one Background Processor 
port. Each channel in the system can have up to four External I/O 
controllers and two HSX controllers. Disk controllers are generally 
divided equally among the channels. The disk controller configuration 
can be adjusted, however, for special system requirements. 

A channel interconnects the Foreground Processor, disk controllers, 
External I/O controllers, HSX controllers, a Background Processor port, 
and a Common Memory port in a continuous channel loop. Figure 5-1 shows 
a configuration of a single channel loop. 

Foreground 
Processor 

Figure 5-1. Channel Loop 

Each member of the loop is called a channel node. Each channel node 
receives data on the path during each clock period and transmits that 
data to the next node in the following clock period. Data can then move 
about the loop from any transmitting node to any receiving node. 

5.2 FOREGROUND CHANNEL PORTS 

Two independent sets of channel ports exist in the Foreground Processor: 
Common Memory ports and Background Processor ports. The Common Memory 
ports contain controls and status information for transfer of data to and 
from Common Memory. The Background Processor ports contain controls and 
status information used by the Foreground Processor to control the 
Background Processors. 

5-2 HR-02000-0D 



5.2.1 COMMON MEMORY PORTS 

The foreground system contains either two or four Common Memory ports. 
One Common Memory port is associated with each of the Background 
Processors. A foreground channel is associated with each of the Common 
Memory ports. The Foreground Processor makes Common Memory requests 
through the Common Memory port for those foreground devices on the same 
channel. Background Processor Common Memory requests have priority over 
foreground system requests. There is one exception, the refresh has 
priority over the background operand references. The Common Memory port 
accepts requests according to the following priority scheme, from highest 
to lowest priority. 

1. Background Processor instruction references 

2. Background Processor operand references 

3. Foreground channel transfer references 

5.2.2 BACKGROUND PROCESSOR PORTS 

Each Background Processor has a Background Processor port connecting it 
to one of the channels in the foreground system. This port allows the 
Foreground Processor to control the operation of the Background Processor. 

5.3 DISK STORAGE UNITS 

The Foreground Processor spends considerable time transferring data 
between the DSUs and Common Memory. The system has provision for up to 
36 DSUs. Control for these units is on an individual DSU basis so that 
all 36 DSUs can operate concurrently. 

5.3.1 DISK SYSTEM ORGANIZATION 

The disk storage system on the CRAY-2 computer system has the option of 
operating in a synchronous mode with all DSUs running in parallel in a 
lock step mode. For this approach to be practical, the buffer size for 
individual disk references must be of the order of 100,000 words. 

HR-02000-0D 5-3 



A system configuration with 16 DSUs can illustrate the synchronous mode 
of operation. The Foreground Processor is given a disk address 
consisting of a pseudo-track number. This number is the cylinder and 
head group for a disk file with no flaws. A table look-up converts this 
pseudo-track into a physical track for each DSU. All DSUs are positioned 
in parallel. 

The Foreground Processor reads angular position for each disk surface to 
determine the sector currently under the recording head. It then begins 
a data stream from Common Memory to disk surfaces, choosing the portion 
of the Common Memory buffer appropriate for the current angular position 
of each OSU. Data to 15 of the DSUs is moved directly from the Common 
Memory buffer. Data for the 16th DSU is a logical difference data stream 
using the word-by-word data from the desired file. All 16 OSUs write one 
track of data as the basic reservation unit. 

On data readback, the 16th DSU is read concurrently with the other 15 
DSUs. If the cyclic redundancy code (CRC) detectors indicate no data 
errors, the 16th DSU data is discarded. If an error has occurred, it can 
be corrected with minor CPU overhead and no time loss in the data 
stream. The correction process recreates the missing data by using the 
wor~-by-word logical difference of the 15 DSU's supplying good data. 

The overhead introduced by this arrangement is one DSU for every 15 DSUs 
used. The following three benefits occur: 

• The data rate is 15 times faster than a single DSU data transfer. 

• The DSU rotational latency has been reduced to 1/2 of a sector time. 

• A DSU can fail completely due to a head crash or motor failure 
with no loss of data and little time loss. 

A DSU failure in this system can be corrected during system operation by 
removing the defective DSU, and replacing it with another unit. The new 
unit can then be brought online by running a background job that takes 
approximately 2.5 minutes of disk system time to record the faulty unit 
data from the data on the other 15 OSUs. 

5.4 EXTERNAL I/O CONTROLLER 

The CRAY-2 computer system mainframe is connected to a 
system through a controller in the foreground system. 
controller can support a 6 Mbyte per second channel or 
second channel. Each channel loop can hold up to four 
controllers. 

front-end computer 
The External I/O 
a 12 Mbyte per 
External I/O 

Each controller contains a 512 64-bit word buffer. The data block can be 
of arbitrary word length up to this limit. 

5-4 HR-02000-0D 



5.5 HSX CONTROLLER 

The HSX channel controller connects high-speed external devices to the 
CRAY-2 computer system. The HSX channel controller is a 100 Mbyte/s full 
duplex channel. A foreground channel loop can hold up to two HSX 
channels. 

The HSX channel controller is made up of two independent parts, an input 
channel and an output channel. Each part contains two alternating 512 
64-bit word buffers. The data blocks can be of arbitrary length. 

5.6 FOREGROUND PROCESSOR 

The Foreground Processor supervises system operation by responding to 
Background Processor requests and sequencing Channel Communication 
signals. The user programs reside in the Common Memory in a protected 
area and are executed in Background Processors. 

The Foreground Processor code is loaded at deadstart from a diskette at 
the maintenance control console. The code is firmware and is not altered 
during the system operation. 

******************************************************* 

CAUTION 

A Foreground Processor program code error is as fatal 
to system operation as a hardware failure. 

******************************************************* 

The primary functions of the Foreground Processor program are real-time 
response to various signals from a variety of sources in the foreground 
system. As many as 50 simultaneous real-time sequences can be operating 
in an interleaved manner in the Foreground Processor. Many of these 
responses must be of the order of a microsecond or less. 

The Foreground Processor contains the following sections: 

• Instruction Memory 
• Local Data Memory 
• Arithmetic functions 
• Real-time clock 
• Error checking 
• Instruction issue mechanism 
• Instruction set 

HR-02000-0D 5-5 



The Foreground Processor performs arithmetic functions on 32-bit 
integers. The following functions are performed: 

• Add 

• Subtract 

• Shift left open ended 

• Shift right open ended 

• Logical product 

• Logical difference 

• Logical sum 

A detailed description of the Foreground Processor and its functional 
units is beyond the scope of this manual. The Foreground Processor is 
transparent to the user of the CRAY-2 computer system. 

5.7 MAINTENANCE CONTROL CONSOLE 

The maintenance control console deadstarts the system and exchanges data 
with the Foreground Processor. Instructions for execution in the 
Foreground Processor are loaded into the Foreground Instruction Memory at 
deadstart from a diskette at the maintenance control console. This 
memory is a Read-only Memory during system operation. Data for 
supervision of the system is maintained in Common Memory and is moved to 
the Foreground Processor Local Memory as required. 

5-6 HR-02000-0D 



A. SYMBOLIC MACHINE INSTRUCTIONS LISTED BY 
FUNCTIONALITY 

Instructions are listed in numerical order and explained in section 3. 
The octal machine code can be used to cross-reference instructions in 
this appendix to their descriptions in section 3. See section 2 for 
descriptions of functional units. 

A.1 SYMBOLIC NOTATION 

This appendix lists the symbolic machine instructions by functionality. 
Instructions are described in the following functional categories: 

• Branch instructions 

• Pass instructions 

• Semaphore instructions 

• Register entry instructions 

• Inter-register transfer instructions 

• Memory transfer instructions 

• Integer arithmetic operation instructions 

• Floating-point arithmetic operation instructions 

• Logical operation instructions 

• Bit count instructions 

• Shift operation instructions 

A.2 BRANCH INSTRUCTIONS 

Instructions that perform conditional branches, unconditional jumps, or 
exits are listed in this group. 

HR-02000-0D A-I 



Register Entry Instructions Integer Arithmetic Operations 

aj exp 51 exp aj aj+alc al arllJc 41 OJ*41c 

a.l. exp,5 5.1. exp.s 51 Sj+5Jc s.l. srs 1c 
al exp,s,p sl exp,s,p vl Sj+Vk V.I. srvJc 

al exp.s,m sl exp,s,m VI Vj+vk v.I. vrvJc v.I. ci'Sj&Sk 

aj exp,p sl exp,h 

al exp.p.p 5.1. exp,h,p 

a.l. exp,p.m 51 exp.h,m Floating Point Operations 

a1 exp,h 51 exp,l 

0 
s1 exp.f 

Vj 
sl sJ+fsJc sl SrfSk sl SJ* fS1c 

Inter Register Transfers 
Vi sJ+fVk Vi srfVk Vi Sj*fvle 

Vi Vj+fVk Vi vrfv1c Vi Vj*fvle 

al sJ Vi 5j 
sJ*isk fix'Sk s/'q5k 51 51 si 

51 Sj Vi Vj VI vj*iVk Vi fix'Vk Vt Vj*qvk 

vI 
VI -vk 

aj 

vm 
v.I. -fVk 51 IhSj Si flt,Sk 5.1. *qSj 

51 

51 rt 
VI Ihv1c VI flt,Vk Vi *qvJc 

51 ak vl ak 

5.1. +ak m 5j dfi efi 

Bit Count Inst ruct ions Logical Operat ions 

51 PSj VI PVj si SJ&Sk s1 sjlSk s,1 Sj\SIe 

51 qSj VI qVj VI SJ&Vk V.I. SjlVk V.I. Sj\Vk 

51 ZSj VI zVJ VI Vj&vk VI Vj!vk Vi Vj\Vk 

51 iSJc&sJ vm vk' z 

Shift Ins t ruc t ions vm vlc,n 

VI Sj lVk&vm vm Vk'P 

51 51 <exp sl 51>exp Vi Vj !vk&vm vm Vk· m 

V.I. Vj<ak v1 Vj>ak 

51 Si 'Sj<ak 51 5j,sl>ak Pass Instruct ions Semaphore Instructions 

v1 vj,vj<ak v1 Vj ,vj>ak 
pass \pass exp csm 

1
55m 

Memory Transfers Branch Instructions 

al [exp] [exp] ak jz ak·exp jz sj.exp 

al [ak] [ak] aj jn ale·exp jn Sj.exp 

51 [exp] [exp] Sj jp ale,exp jp Sj.exp 

51 [ak] [ale] 51 jm ak·exp jm Sj,exp 

Vi [ak] [ak] VI 
jcs exp j ak 

51 (exp) (exp) 51 jss exp r,at Ilk 

51 (ak) (ak) 51 

51 (ak,exp) (ak,exp) 51 j eJCp 

51 (aJ ,ak) (aj ,ak) 51 

VI (aj,ak) (aj .ak) v1 err exit 

VI (ak'Vj) (ak'Vj) v1 exit exp 

dri eri 

1295 

Figure A-l. CRAY-2 Computer System Symbolic Machine Instructions 

A-2 HR-2000 C 



A.2.1 CONDITIONAL BRANCHES 

Machine 
Result Operand Description Instruction 

jz ak,exp Branches if (ak) is zero OlOxxk ml m2 

jn ak,exp Branches if (ak) is nonzero Ollxxk ml m2 

jp ak,exp Branches if (ak) is positive O12xxk ml m2 

jm ak,exp Branches if (ak) is negative 013xxk ml m2 

jz sj,exp Branches if (Sj) is zero 014xjx ml m2 

jn sj,exp Branches if (s .) 
] is nonzero 015xjx ml m2 

jp sj,exp Branches if (Sj) is positive 016xjx ml m2 

jrn sj,exp Branches if (Sj) is negative 017xjx ml m2 

jcs exp Jumps to constant parcel if 004xxx ml m2 
Semaphore flag clear; sets 
Semaphore flag. 

jss exp Jump to constant parcel if 005xxx ml m2 
Semaphore flag is set; sets 
Semaphore flag. 

A.2.2 UNCONDITIONAL JUMPS 

Machine 
Result Operand Description Instruction 

j exp Unconditional jump 003xxx ml m2 

r,ai ak Register jump to (ak) with 002ixk 
return address to ai 

j ak Register jump to (ak), value 002kxk 
is aJc erased 

HR-02000-0D A-3 



A.2.3 EXITS 

Machine 
Result Operand Description Instruction 

err Error exit OOoxoo 

exit Normal exit OOoxOl 

exit exp Normal exit OOOxjk 

A.3 PASS INSTRUCTIONS 

Machine 
Result Operand Description Instruction 

pass Pass 076xxx 

pass exp Pass 076ijk 

A.4 SEMAPHORE INSTRUCTIONS 

Machine 
Result Operand Description Instruction 

ssm Sets Semaphore flag 006xxx 

csm Clears Semaphore flag 007xxx 

A-4 HR-02000-0D 



A.S REGISTER ENTRY INSTRUCTIONS 

Instructions that load the A or S registers are listed in this group. 

A.S.l ENTRIES INTO A REGISTERS 

Result Operand Description 

a" 1 exp Loads ai with a value 

ai exp,s Loads ai with a 6-bit value 

ai exp,s,p Loads ai with a 6-bit positive 
value 

a" 1 exp,s,m Loads ai with a 6-bit negative 
value 

a" 1 exp,p Loads ai with a 16-bit value 

ai exp,p,p Loads ai with a 16-bit 
positive value 

ai exp,p,m Loads ai with a 16-bit 

negative value 

ai exp,h Loads ai with a 32-bit value 

t Forces one of five opcodes 
tt Forces one of two opcodes 
ttt Forces a single opcode 

HR-02000-0D 

Machine 
Instruction 

026ijk or 

027ijk or 
040ijk ml or 

041ijk ml or 

042ijk ml m2t 

026ijk or 

027ijktt 

026ijkttt 

027ijkttt 

040ixx ml or 

041ixx mItt 

040ixx m1ttt 

041ixx m1ttt 

042ixx ml m2ttt 

A-5 



A.S.2 ENTRIES INTO S REGISTERS 

Result Operand Description 

s . 
1 exp Loads si with a value 

s· 1 exp,s Loads si with a 6-bit value 

s· 1 exp,s,p Loads s· 1 with a 6-bit 

positive value 

s· 1 exp,s,m Loads s· 1 with a 6-bit 

negative value 

s· 1 exp,h Loads s . 
1 with a 32-bit value 

s· 1 exp,h,p Loads s . 
1 with a 32-bit 

positive value 

s . 
1 exp,h,m Loads si with a 32-bit 

negative value 

s· 1 exp,l Loads s . 
1 left side with a 

32-bit value 

s· 1 exp,f Loads 

t Forces one of six opcodes 
tt Forces one of two opcodes 
ttt Forces a single opcode 

si with a 64-bit value 

Machine 
Instruction 

OSOixx ml m2 or 

OSlixx ml m2 or 

OS2ixx ml m2 or 

oS3ixx 
ml m2 m3 m4 or 

116ijk or 

117ijkt 

116ijk or 

117ijktt 

116ijkttt 

117ijkttt 

OSOixx ml m2 or 

OSlixx ml m2tt 

050ixx ml m2ttt 

OSlixx ml m2ttt 

OS2ixx ml m2ttt 

OS3ixx 

ml m2 m3 m4ttt 

A-6 HR-02000-0D 



A.S.3 ENTRIES INTO V REGISTERS 

Machine 
Result Operand Description Instruction 

vI 0 Clear vi 143iiit 

t Special syntax form 

A.6 INTER-REGISTER TRANSFER INSTRUCTIONS 

Instructions in this group provide for transferring the contents of one 
register to another register. In some cases, the register contents can 
be complemented, converted to floating-point format, or sign extended as 
a function of the transfer. 

A.fi.l TRANSFERS TO A REGISTERS 

Machine 
Result Operand Description Instruction 

ai Sj Copies (Sj) to ao 
1 024ijx 

ai vI Copies (vI) to ao 
1 025ixx 

HR-02000-0D A-7 



A.6.2 TRANSFERS TO S REGISTERS 

Machine 
Result Operand Description Instruction 

si s . 
] Copies (s .) ] to s . 

1 (j=k) lO3ijj 

S . 
1 ak Copies ( ak) to s' 1 with no 130ixk 

sign extension 

s . 
1 +ak Copies (ak) to s . 

1 with 131ixk 
sign extension 

si vm Copies (vm) to s . 
1 114ixx 

Si rt Copies real-time count to s' 1 115ixx 

A.6.3 TRANSFERS TO V REGISTERS 

Machine 
Result Operand Description Instruction 

vi s . 
] Copy (s .) ] to Vi 144ijit 

vi Vj Copies (v .) 
] to vi (j=k) 145ijj 

V· 1 -vk Copies twos complement of (vk) 163ijit 

to vi 

Vi -fvk Copy normalized negative of 173iikt 

(vk) to vi 

t Special syntax form 

A-8 HR-02000-0D 



A.6.4 TRANSFER TO VECTOR MASK REGISTER 

The following syntax and its special form transmit the contents of 
register Sj to the VM register. The VM register is zeroed if the j 
designator is 0; the special form accommodates this case. 

This instruction can be used in conjunction with the vector merge 
instructions where an operation is performed depending on the VM register 
contents. 

Machine 
Result Operand Description Instruction 

vm Sj Copies (s .) 
] to vm 034xjx 

A.6.S TRANSFER TO VECTOR LENGTH REGISTER 

The following syntax and its special form enters the low-order 7 bits of 
the contents of register Ak into the VL register. 

The VL register contents determine the number of operations performed by 
a vector instruction. Since a Vector register has 64 elements, from 1 to 
64 operations can be performed. The number of operations is (VL) modulo 
64. A special case exists such that when (VL) modulo 64 is 0, then the 
number of operations performed is 64. 

In this manual, a reference to register Vi implies operations 
involving the first n elements where n is the vector length unless a 
single element is explicitly noted as in the instructions Si Vj' 
Ak and Vi, Ak Sj. 

Machine 
Result Operand Description Instruction 

vI ak Copies ( ak) to vI 036xxk 

Vector operations controlled by the VL register contents begin with 
element 0 of the Vector registers. 

HR-02000-0D A-9 



A.7 MEMORY TRANSFER INSTRUCTIONS 

This category includes instructions that transfer data between reqisters 
and memory. 

A.7.1 STORES 

Several instructions store data from registers into memory. 

Local Memory writes 

Machine 
Result Operand Description Instruction 

[exp] ak Writes (ak) to location exp 045xxk ml 
in Local Memory 

[ak] aj Writes (a .) 
] to location ak 047xjk 

in Local Memory 

[exp] Sj Writes (s .) 
J to location exp 055xjx ml 

in Local Memory 

[ak] s· 1 Writes (si) to location ak 057ixk 
in Local Memory 

[ak] vi Writes (vi) to Local Memory 075ixk 
location (ak) 

I 

A-10 HR-02000-0D 



Common Memory writes 

Machine 
Result Operand Description Instruction 

(exp) si Writes (si) to Common Memory 067ixx ml m2 
at location exp 

(ak) si Writes (si) to Common Memory 063ixk 

at location (ak) 

(ak,exp) si Writes (si) to Common Memory 065ixk ml m2 
at location (ak)+exp 

(aj,ak) s· 1- Writes (si) to Common Memory 061ijk 

at location (aj)+(ak) 

(aj,ak) vi Writes (vi) to Common Memory 071ijk 

location ( aj> incremented by (ak) 

(ak,Vj) vi Scatters (vi) to Common Memory 073ijk 

locations (ak)+(Vj) 

HR-02000-0D A-11 



A.7.2 LOADS 

Several instructions can be used to load data from memory into registers. 

Local Memory reads 

Machine 
Result Operand Description Instruction 

ai [exp] Reads from location exp in 044ixx ml 
Local Memory to ai 

ao 
1 [ak] Reads from location to ak in 046ixk 

Local Memory to ai 

si [exp] Reads from location exp in 054ixx ml 
Local Memory to si 

s . 
1 [ak] Reads from location to ak in 056ixk 

Local Memory to si 

v· 1 [ak] Reads from Local Memory 074ixk 
location (ak) to vi 

Complete Memory references 

Machine 
Result Operand Description Instruction 

CMR Hold issue on memory busy OOlxxx 

A-12 HR-02000-0P 



Common Memory reads 

Machine 
Result Operand Description Instruction 

si (exp) Reads from Common Memory 066ixx ml m2 
location exp to si 

s . 
1 (ak) Reads from Common Memory at 062ixk 

location (ak) to si 

si (ak,exp) Reads from Common Memory at 064ixk ml m2 
location (ak)+exp to si 

si (aj,ak) Reads from Common Memory 060ijk 
location (aj)+(ak) to si 

vi (aj,ak) Reads from Common Memory 070ijk 
location (aj) incremented 

by ak 

vi (ak,Vj) Gathers from Common Memory 072ijk 
locations (ak)+(vj) to vi 

Memory Range Error flags 

Machine 
Result Operand Description Instruction 

dri Disables halt on memory field 035xxO 
range error 

eri Enables halt on memory field 035xxl 
range error 

HR-02000-0D A-13 



A.8 INTEGER ARITHMETIC OPERATION INSTRUCTIONS 

Integer arithmetic operations obtain operands from registers and return 
results to registers. No direct memory references are allowed. 

A.8.l INTEGER SUMS 

Machine 
Result Operand Description Instruction 

a' 1 aj+ak Integer sum of (a .) 
J and 020ijk 

(ak) to ai 

s· 1 Sj+sk Integer sum of (s .) 
] and lO4ijk 

(sk) to s· 1 

Vi Sj+vk Integer sums of (s .) 
] and 160ijk 

(vk) to V' 1 

Vi Vj+vk Integer sums of (v .) 
J and 161ijk 

(vk) to vi 

A.8.2 INTEGER DIFFERENCES 

Machine 
Result Operand Description Instruction 

a' 1 aj-ak Integer difference of 021ijk 
(a .) 

J and (ak) to ai 

s· 1 Sj-Sk Integer difference of 105ijk 
(s .) 

J and (sk) to si 

V' 1 Sj-Vk Integer differences of 162ijk 
(s .) 

J and (vk) to vi 

vi Vj-Vk Integer differences of 163ijk 
(v' ) J and (vk) to vi 

A-14 HR-02000-0D 



A.8.3 INTEGER PRODUCTS 

Machine 
Result Operand Description Instruction 

ai aj"ak Integer product of (aj) 022ijk 
and (ak) to ai 

A.9 FLOATING-POINT ARITHMETIC INSTRUCTIONS 

All floating-point arithmetic operations use registers as the source of 
operands and return results to registers. 

A.9.l FLOATING-POINT SUMS 

Machine 
Result Operand Description Instruction 

si Sj+fSk Floating-point sum of l20ijk 
(s .) 

J and ( sk) to si 

vi sj+fvk Floating-point sums of I70ijk 
(s .) 

J and (vk) to vi 

Vi vj+fVk Floating-point sums of 171ijk 
(Vj) and (vk) to vi 

HR-02000-0D A-IS 



A.9.2 RECIPROCAL ITERATIONS 

Machine 
Result Operand Description Instruction 

si Sj*iSk Reciprocal iteration step, 126ijk 

2-(sj>*(Sk) to si 

v· 1 Vj*ivk Reciprocal iteration step, 156ijk 

2-(vj>*(Vk) to s . 
1 

A.9.3 RECIPROCAL APPROXIMATIONS 

Machine 
Result Operand Description Instruction 

S . 
1 Ihs· J Floating-point reciprocal 132ijx 

approximation of (s .) 
J to si 

vi Ihv· J Floating-point reciprocal 166ixk 
approximation of (vk) to vi 

A.9.4 FLOATING-POINT DIFFERENCES 

Machine 
Result Operand Description Instruction 

S . 
1 Sj-fSk Floating-point difference 121ijk 

of (s .) 
J and (sk) to si 

vi Sj-fVk Floating-point difference 172ijk 
of (Sj) and (vk) to vi 

vi Vj-fVk Floating-point difference 173ijk 
of (Vj) and (vk) to vi 

A-16 HR-02000-0D 



A.9.S INTEGER TO FLOATING-POINT CONVERSIONS 

Machine 
Result Operand Description Instruction 

si fix,sk Converts (sk) from floating-point 122ixk 
to integer and enter into s· 1 

Vi fix,vk Integer form of floating-point 174ixk 

(vk) to V' 1 

A.9.6 FLOATING-POINT TO INTEGER CONVERSIONS 

Machine 
Result Operand Description Instruction 

si flt,sk Converts (sk) from integer to 123ixk 
floating-point and enter into si 

vi flt,vk Floating-point form of integer 175ixk 

(vk) to vi 

A.9.7 FLOATING-POINT PRODUCTS 

Machine 
Result Operand Description Instruction 

si Sj*fSk Floating-point product of 124ijk 

(Sj) and (sk) to si 

V' 1 sj*fVk Floating-point products of 154ijk 
(S .) 

] and (vk) to vi 

vi vj*fVk Floating-point products of lS5ijk 

(Vj) and (vk) to vi 

HR-02000-0D A-17 



A.9.8 SQUARE ROOT ITERATIONS 

Machine 
Result Operand Description Instruction 

s . 
1 Sj*qsk Square root iteration of 127ijk 

[3-(sj>*(Sk)]/2 to si 

V· 1 Vj*qvk Square root iteration of 157ijk 

[3-(vj)*(vk>]/2 to vi 

A.9.9 SQUARE ROOT APPROXIMATIONS 

Machine 
Result Operand Description Instruction 

si *qSj Square root approximation of 133ijx 

(Sj) to si 

vi *qvk Square root approximation of 167ixk 

(vk> to vi 

A.9.10 FLOATING-POINT ERRORS 

Machine 
Result Operand Description Instruction 

dfi Disables halt on floating-point 035xx2 
error 

efi Enables halt on floating-point 035xx3 
error 

A-18 HR-02000-0D 



A.10 LOGICAL OPERATION INSTRUCTIONS 

Instructions which perform logical products, logical sums, vector 
streaming, logical differences, vector mask, or compressed iota are listed 
in this group. 

A.10.l LOGICAL PRODUCTS 

Machine 
Result Operand Description Instruction 

s· 1 Sj&Sk Logical product of (Sj) and lOOijk 

(Sk) to s· 1 

S . 
1 #Sk&Sj Logical product of (s .) 

J and lOlijk 

complement of (sk) to si 

vi Sj&Vk Logical product of (Sj) and 140ijk 

(vk) to vi 

vi Vj&vk Logical product of (v .) 
J and 141ijk 

(vk) to V' 1 

A.l0.2 LOGICAL SUMS 

Machine 
Result Operand Description Instruction 

si Sj!Sk Logical sum of (Sj) and lO3ijk 

(sk) to s' 1 

V' 1 Sj!Vk Logical sums of (Sj) and 144ijk 

(Vk) to vi 

V' L Vj!vk Logical sums of (Vj) and 145ijk 

(vk) to vi 

HR-02000-0D A-19 



A.lO.3 VECTOR STREAMING 

Machine 
Result Operand Description Instruction 

vi Sj!vk&vm Transmits (Sj) if vm bit=!; 146ijk 
(vk) if vm bit=O to vi' 

vi Vj!Vk&vm Transmits (Vj) if vm bit=!; 147ijk 

(vk) if vm bit=O to vi-

A.I0.4 LOGICAL DIFFERENCES 

Machine 
Result Operand Description Instruction 

S . 
l Sj\Sk Logical difference of 102ijk 

(Sj) and (sk) to si 

vi Sj\Vk Logical difference of 142ijk 

(Sj) and (vk) to vi 

vi Vj\vk Logical difference of 143ijk 
(v .) 

J and (vk) to vi 

A-20 HR-02000-0D 



A.l0.S VECTOR MASK 

Machine 
Result Operand Description Instruction 

vm vk,z Sets vm from zero elements of 030xxk 

(vk) 

vm vk,n Sets vm from nonzero elements 031xxk 

of (vk) 

vm vk,P Sets vrn from positive elements 032xxk 

of (vk) 

vm vk,m Sets vm from negative elements 033xxk 

of (vk) 

A.l0.6 COMPRESSED IOTA 

Machine 
Result Operand Description Instruction 

vi ci,sj&Sk Enters vi with compressed 176ijk 
iota (Sj) and ( sk) 

HR-02000-0D A-21 



A.I1 BIT COUNT INSTRUCTIONS 

Machine 
Result Operand Description Instruction 

s· 1 PSj Population count of (s .) ] to 106ijO 
s· 1 

vi PVj Population count of (Vj) to 164ijO 
v· 1 

S . 
1 qSj Parity of population count 106ij1 

(s .) 
] to S . 

1 

V· 1 qVj Parity of population count 164ij1 
(v .) 

] to vi 

si ZSj Leading zero count of (Sj) to 107ijx 

si 

V· 1 ZVj Leading zero count of (v .) 
] to 165ijx 

vi 

A-22 HR-02000-0D 



A.12 SHIFT INSTRUCTIONS 

Instructions which perform left or right shifts are listed in this group. 

A.12.1 LEFT SHIFTS 

Machine 
Result Operand Description Instruction 

s . 
1 si<exp Shifts (Sj) left exp=64-jk 110ijk 

places to Si 

v· 1 vj<ak Shifts (Vj) left (ak) bits with 150ijk 
zero-fill. Results to vi. 

si si,sj<ak Shifts (si and Sj) left 112ijk 
ak places to S· 1 

Vi vj,vj<ak Double shift (Vj) left 152ijk 
ak places to v· 1 

A.12.2 RIGHT SHIFTS 

Machine 
Result Operand Description Instruction 

s· 1 si>exp Shifts (si) right exp=jk l11ijk 
places to si 

v· 1 vj>ak Shifts (Vj) right (ak) bits with 151ijk 
zero-fill. Results to vi· 

S· 1 sj,si>ak Shifts (s . 
J and si) right 113ijk 

ak places to si 

vi vj,vj>ak Double shift (Vj) right 153ijk 
ak places to vi 

HR-02000-00 A-23 





B. CRAV -2 SYSTEM CONFIGURATIONS 

The CRAY-2 mainframe, I/O devices, and associated equipment units are 
available with a number of options in a variety of system configurations. 
The options, such as the number of central processing units (CPUs), I/O 
devices (controllers), and a variety of memory sizes, banking 
arrangements, memory chip types, and peripheral devices, are used to 
produce several unique models. Table B-1 shows an overview of all CRAY-2 
models currently available. Specification sheets that contains specific 
information for each of the CRAY-2 models follow the table. 

HR-02000-0D 8-1 



= I 
tV 

== $ICl 
I 
o 
tv 
o 
o 
o 
I 
o 
'=' 

System 
(Model 

Number) 

4-256 

4-128 

2-128 

2-64 

Background 
Clock 

Processors 
Speed 

(Number of 
(in Nanoseconds) 

CPUs) 

4 4.1 

4 4.1 

2 4.1 

2 4.1 

Table B-1. CRAV-2 Computer System Overview 

I/O Information 
(maximum configuration Totals) Common Memory 

Maximum Maximum 
Number 

Maximum Maximum 
Number of Number Number 

Number 
of of Memory 

Foreground 
I/O 

of of 
External 

Memory Number of Number of 
Size (in 

Channels Disk HSX Type Quadrants Banks 
Devices 

Storage Units Controllers 
1/0 Mwords) 

Allowed Controllers 

Two Disk Requires Two One Required 
Storage Units 1/0 Device Per 
are Required Positions Foreground 

(Optional) Channel 

4 40 36 8 16 dynamic 4 128 256 

4 40 36 8 16 static 4 128 128 i 

i 

2 20 18 4 8 static 4 128 128 

2 20 18 4 8 static 4 64 64 



CRAY-2 MODEL NUMBER 4-256 or 4-512 SPECIFICATION SHEET 

CPU Features 

Number of CPUs 4 

Clock Speed 4.1 ns 

Common memory 512 Mwords or 256 
size Mwords 

Common memory Dynamic MOS 
chip type 

Number of quadrants 4 

Number of banks 128 

Number of common 4 
memory ports 

Number of foreground 4 
channels 

Maximum number of 40 
I/O devices 

Maximum number of 36 
disk storage devices 

Maximum number of 8 
HSX controllers 

Maximum number of 16 
external I/O 
controllers 

Number of columns 14 

ARC 300 0 

Floor space 16 ft2 
(1.49 m2) 

Weight 5500lb 
(2495 kg) 

HR-02000-0D 

Functional Units 
(register units) 

Available per Background Processor 

Address functional units: 
• Add/subtract (A) 
• Multiply (A) 

Scalar functional units: 
• Integer 

• Add/subtract (S) 
• Population/parity (S) 
• Leading zero count (S) 

• Shift (S) 
• Logical (5) 

Vector functional units: 

• Integer 
• Add/subtract (S) 
• Shift (S) 
• Population/parity (S) 
• Leading zero count (S) 
• Compressed iota (S and V) 

• Logical (S and V) 

Vector functional units for those CRAy'·2 
computer systems with the Vector 
Tailgating feature: 

• Integer 
• Add/substract (S) 
• Compressed iota (S and V) 

• Logical (S and V) 
• Shift (S) 

• Population/parity (S) 
• Leading zero count (S) 

Floating-paint functional units: 
• Add/subtract (S and V) 
• Multiply, reciprocal, and square root 

(5 and V) 

B-3 



Register Type Quantity Size Available per Background Processor 

Address (A) 8 32 bits 

- Scalar (5) 8 64 bits 

Vector (V) 8 64 elements (64 
bits per element) 

Local Memory (used for register save) 1 16K 64-bit words 

Support Equipment Number of Units 
Required per CRA Y -2 Computer System Needed 

Reservoir 1 

M-pod 1 

S-pod 1 

Motor-generator Sets 3 

Maintenance Control Console 1 

B-4 HR-02000-0D 



CRAY .. 214-256 or 4 .. 512 System Block Diagram 

00-49 

00-49 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

0 
HSX 

Channel 

VAX 

Front·end 

HR-02000-0D 

00-49 

00-49 

00-49 

00·49 

00·49 

00·49 

00·49 

00-49 

00·49 

0 

IBM 
Front·end 

00-49 

00-49 

00·49 

00·49 

00·49 

00·49 

00-49 

00·49 

00·49 

0 

CTC 
(3480 tape 
controller) 

00-49 Maintenance 
Control 
Console 

00-49 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

OD·49 

0 
Operator 

Workstation 

NSC HYPERchannel 

8-5 





CRAY-2S MODEL NUMBER 4-128 SPECIFICATION SHEET 

CPU Features 

Number of CPUs 4 

Clock Speed 4.1 ns 

Common memory 128 Mwords 
size 

Common memory Static MOS 
chip type 

Number of quadrants 4 

Number of banks 128 

Number of common 4 
memory ports 

Number of foreground 4 
channels 

Maximum number of 40 
I/O devices 

Maximum number of 36 
disk storage devices 

Maximum number of 8 
HSX controllers 

Maximum number of 16 
external I/O 
controllers 

Number of columns 14 

ARC 300 0 

Floor space 16 ft2 

(1.49 m2) 

Weight 5500lb 
(2495 kg) 

HR-02000-0D 

Functional Units 
(register units) 

Available per Background Processor 

Address functional units: 
• Add/subtract (A) 
• Multiply (A) 

Scalar functional units: 
• Integer 

• Add/subtract (S) 
• Population/parity (S) 
• Leading zero count (S) 

• Shift (S) 
• Logical (S) 

Vector functional units: 
• Integer 

• Add/subtract (S and V) 
• Shift (V) 
• Population/parity (V) 
• Leading zero count (V) 
• Compressed iota (S and V) 

• Logical (S and V) 

Vector functional units for those CRAY-2 
computer systems with the Vector 
Tailgating feature: 

• Integer 
• Add/substract (S) 
• Compressed iota (S and V) 

• Logical (S and V) 
• Shift (S) 

• Population/parity (5) 
• Leading zero count (S) 

Floating-point functional units: 
• Add/subtract (S and V) 
• Multiply, reciprocal, and square root 

(S and V) 

8-1 



Register Type 
Quantity Size Available per Background Processor 

Address (A) 8 32 bits 

Scalar (S) 8 64 bits 

Vector (V) 8 64 elements (64 
bits per element) 

Local Memory (used fer register save) 1 16K 64-bit words 

Support Equipment Number of Units 
Required per CRA Y -2 Computer System Needed 

Reservoir 1 

M-pod 1 

S-pod 1 

Motor -generator Sets 3 

Maintenance Control Console 1 

B-8 HR-02000-0D 



CRAY .. 2S/4 .. 128 System Block Diagram 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

0 
HSX 

Channel 

VAX 
Front·end 

HR-02000-0D 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

0 

IBM 
Front-end 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

00-49 

0 

CTC 
(3480 tape 
controller) 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

00-49 

0 

Maintenance 
Control 
Console 

Operator 
Workstation 

NSC HYPE Rchannel 

8-9 





CRAY-2S MODEL NUMBER 2-128 SPECIFICATION SHEET 

CPU Features 

Number of CPUs 2 

Clock Speed 4.1 ns 

Common memory 128 Mwords 
size 

Common memory Static MOS 
chip type 

Number of quadrants 4 

Number of banks 128 

Number of common 2 
memory ports 

Number of foreground 2 
channels 

Maximum number of 20 
I/O devices 

Maximum number of 18 
disk storage devices 

Maximum number of 4 
HSX controllers 

Maximum number of 8 
external I/O 
controllers 

Number of columns 14 

ARC 300 0 

Floor space 16 ft2 
(1.49 m2) 

Weight 5500 Ib 
(2495 kg) 

HR-02000-0D 

Functional Units 
(register units) 

Available per Background Processor 

Address functional units: 
• Add/subtract (A) 
• Multiply (A) 

Scalar functional units: 

• Integer 
• Add/subtract (S) 
• Population/parity (S) 
• Leading zero count (3) 

• Shift (8) 
• Logical (S) 

Vector functional units: 
• Integer 

• Add/subtract (S and V) 
• Shift (V) 
• Population/parity (V) 
• Leading zero count (V) 
• Compressed iota (S and V) 

• Logical (S and V) 

Floating·point functional units: 
• Add/subtract (8 and V) 
• Multiply, reciprocal, and square root 

(3 and V) 

8-11 



Register Type Quantity Size 
Available per Background Processor 

Address (A) 8 32 bits 

Scalar (S) 8 64 bits 

Vector (V) 8 64 elements (64 
bits per element) 

Local Memory (used for register save) 1 16K 64-bit words 

Support Equipment Number of Units 
Required per CRA Y -2 Computer System Needed 

Reservoir 1 

M-pod 1 

S-pod 1 

Motor-generator Sets 3 

Maintenance Control Console 1 

B-12 HR-02000-0D 



CRAV -2812-128 System Block Diagram 

HR-02000-OD 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

0 
HSX 

IBM 
Front·end 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

00·49 

0 

Other 
Front·end 

Control 

Console 

8-13 





CRAY-2S MODEL NUMBER 2-64 SPECIFICATION SHEET 

CPU Features 

Number of CPUs 2 

Clock Speed 4.1 ns 

Common memory 64 Mwords 
size 

Common memory Static MOS 
chip type 

Number of quadrants 4 

Number of banks 64 

Number of common 2 
memory ports 

Number of foreground 2 
channels 

Maximum number of 20 
I/O devices 

Maximum number of 18 
disk storage devices 

Maximum number of 4 
H8X controllers 

Maximum number of 8 
external I/O 
controllers 

Number of columns 14 

ARC 300 0 

Floor space 16 ft2 

(1.49 m2) 

Weight 5500lb 
(2495 kg) 

HR-02000-0D 

Functional Units 
(register units) 

Available per Background Processor 

Address functional units: 
• Add/subtract (A) 
• Multiply (A) 

Scalar functional units: 
• Integer 

• Add/subtract (8) 
• Population/parity (8) 
• Leading zero count ('8) 

• Shift (S) 
• Logical (8) 

Vector functional units: 
• Integer 

• Add/subtract (S and V) 
• Shift (V) 
• Population/parity (V) 
• Leading zero count (V) 
• Compressed iota (8 and V) 

• Logical (8 and V) 

Floating-point functional units: 
• Add/subtract (8 and V) 
• Multiply, reciprocal, and square root 

(8 and V) 

B-1S 



Register Type Quantity Size 
Available per Background Processor 

Address (A) 8 32 bits 

Scalar (5) 8 64 bits 

Vector (V) 8 64 elements (64 
bits per element) 

Local Memory (used for register save) 1 16K 64-bit words 

Support Equipment Number of Units 
Required per CRAY -2 Computer System Needed 

Reservoir 1 

M-pod 1 

S-pod 1 

Motor-generator Sets 2 

Maintenance Control Console 1 

8-16 HR-02000-0D 



CRAY-2SI2-64 System Block Diagram 

HR-02000-0D 

00-49 

00-49 

00-49 

00-49 

00-49 

00·49 

00-49 

00-49 

0 
HSX 

IBM 
Front-end 

00-49 

00-49 

00-49 

00-49 

00-49 

00-49 

DO-49 

00-49 

00-49 

0 

Other 
Front·end 

Control 

Console 

B-17 





Reader Comment Form 

Title: CRA Y -2 Computer Systems Functional Description Manual Number: HR-02000-0D 

Your comments help us improve the quality and usefulness of your publications. Please use the space 
provided below to share your comments with us. When possible, please give specific page and 
paragraph references. 

NAME ______________________________________ __ 

JOB TITLE __________________ _ 

FIRM ____________________ _ 

ADDRESS __________________________________ __ ~ESEARCH. INC. 

CITY __________ STATE ______ ZIP ___ _ 

DATE ________________________________________ _ 


